Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

DNA articles from across Nature Portfolio

DNA (deoxyribonucleic acid) is the nucleic acid polymer that forms the genetic code for a cell or virus. Most DNA molecules consist of two polymers (double-stranded) of four nucleotides that each consist of a nucleobase, the carbohydrate deoxyribose and a phosphate group, where the carbohydrate and phosphate make up the backbone of the polymer.

dna research paper topics

Forced rewiring of RTK signaling

Reprogramming intercellular mechanotransduction and signaling pathways is still challenging. A recent advance uses a plug-and-play DNA nanodevice to allow non-mechanosensitive receptor tyrosine kinase (RTK) to transmit force-induced cellular signals.

  • Ahsan Ausaf Ali
  • Mahmoud Amouzadeh Tabrizi

dna research paper topics

LiMCA: Hi-C gets an RNA twist

A multiomics method measures both the cellular three-dimensional genome and transcriptome at the single-cell level.

  • Jane Kawaoka
  • Stavros Lomvardas

Latest Research and Reviews

dna research paper topics

Reciprocating RNA Polymerase batters through roadblocks

During transcription, RNA polymerases may encounter protein roadblocks along template DNA. Here, Qian et al. use magnetic tweezers to show that RNA polymerases can backtrack and ram into longer lived roadblocks to transit through them.

  • Allison Cartee
  • Laura Finzi

dna research paper topics

Control of DNA replication in vitro using a reversible replication barrier

This protocol describes the establishment of a reversible replication barrier using plasmid templates containing a lacO array bound by LacR repressor. The method allows fine control of replication fork movement and replication fork encounter with DNA lesions.

  • Emma J. Vontalge
  • Tamar Kavlashvili
  • James M. Dewar

dna research paper topics

Chemical unclonable functions based on operable random DNA pools

Physical unclonable functions provide algorithm-independent cryptography based on non-distributable unique tokens. Here, the authors introduce unclonable functions based on random DNA pools, enabling secure decentralized authentication.

  • Anne M. Luescher
  • Andreas L. Gimpel
  • Robert N. Grass

dna research paper topics

GCN5 mediates DNA-PKcs crotonylation for DNA double-strand break repair and determining cancer radiosensitivity

  • Hongling Zhao
  • Ping-Kun Zhou

dna research paper topics

Dbf4-dependent kinase promotes cell cycle controlled resection of DNA double-strand breaks and repair by homologous recombination

The repair of DNA double strand breaks is strictly controlled during the cell cycle by the CDK kinase. Here the authors identify the DDK kinase as a second major regulator for this cell cycle regulation and elucidate its functional targets.

  • Lorenzo Galanti
  • Martina Peritore
  • Boris Pfander

dna research paper topics

Feeding Drosophila gut microbiomes from young and old flies modifies the microbiome

  • Jonas Bruhn Wesseltoft
  • Christian Dupont Danielsen
  • Torsten Nygaard Kristensen

Advertisement

News and Comment

dna research paper topics

Guiding DNA repair at the nuclear periphery

The nuclear envelope participates in the spatial regulation of DNA repair, but the mechanisms behind this are unclear. A study now reports that a nuclear envelope-localized nuclease, NUMEN/ENDOD1, guides the choice of DNA-repair pathway by inhibiting the resection of DNA ends and aberrant recombination, ensuring genome stability.

  • Sylvain Audibert
  • Evi Soutoglou

dna research paper topics

Regional imaging

Smc5/6 caught in the act of loop extrusion.

  • Katarzyna Ciazynska

dna research paper topics

DNA damage twists base choreography

The mechanisms responsible for replicative misincorporation of an adenine into DNA opposite 8-oxoguanine (8OG) remain obscure. A new study suggests that 8OG redistributes the balance between several mispair conformations, enabling the high rates of misincorporation of adenine paired with 8OG by DNA polymerases.

  • Serge L. Smirnov

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

dna research paper topics

  • Search Menu
  • Advance Articles
  • Editor's Choice
  • Information for authors
  • Submission Site
  • Open Access Options
  • Why publish with the journal
  • About DNA Research
  • About the Kazusa DNA Research Institute
  • Editorial Board
  • Advertising and Corporate Services
  • Journals Career Network
  • Self-Archiving Policy
  • Dispatch Dates
  • Journals on Oxford Academic
  • Books on Oxford Academic

Browse issues

Issue Cover

Cover image

issue cover

Volume 31, Issue 2, April 2024

Research articles, the genome of a globally invasive passerine, the common myna, acridotheres tristis.

  • View article
  • Supplementary data

Genome assembly of Genji firefly ( Nipponoluciola cruciata ) reveals novel luciferase-like luminescent proteins without peroxisome targeting signal

Assessing genetic diversity and geographical differentiation in a global collection of wild soybean ( glycine soja sieb. et zucc.) and assigning a mini-core collection, resource article: genomes explored, chromosomal dna sequences of the pacific saury genome: versatile resources for fishery science and comparative biology, high-quality chromosome-level genome assembly of the northern pacific sea star asterias amurensis, population genetic analysis based on the polymorphisms mediated by transposons in the genomes of pig, email alerts.

  • Author Guidelines

Affiliations

  • Online ISSN 1756-1663
  • Copyright © 2024 Kazusa DNA Research Institute
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Main Logo

  • Vision, Mission and Purpose
  • Focus & Scope
  • Editorial Info
  • Open Access Policy
  • Editing Services
  • Article Outreach
  • Why with us
  • Focused Topics
  • Manuscript Guidelines
  • Ethics & Disclosures
  • What happens next to your Submission
  • Submission Link
  • Special Issues
  • Latest Articles
  • All Articles
  • FOCUSED RESEARCH TOPICS
  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

122 The Best Genetics Research Topics For Projects

genetics research topics

The study of genetics takes place across different levels of the education system in academic facilities all around the world. It is an academic discipline that seeks to explain the mechanism of heredity and genes in living organisms. First discovered back in the 1850s, the study of genetics has come a pretty long way, and it plays such an immense role in our everyday lives. Therefore, when you are assigned a genetics research paper, you should pick a topic that is not only interesting to you but one that you understand well.

Choosing Research Topics in Genetics

Even for the most knowledgeable person in the room, choosing a genetics topic for research papers can be, at times, a hectic experience. So we put together a list of some of the most exciting top in genetics to make the endeavor easier for you. However, note, while all the topics we’ve listed below will enable you to write a unique genetic project, remember what you choose can make or break your paper. So again, select a topic that you are both interested and knowledgeable on, and that has plenty of research materials to use. Without further ado, check out the topics below.

Interesting Genetics Topics for your Next Research Paper

  • Genes and DNA: write a beginners’ guide to genetics and its applications
  • Factors that contribute or/and cause genetic mutations
  • Genetics and obesity, what do you need to know?
  • Describe RNA information
  • Is there a possibility of the genetic code being confidential?
  • Are there any living cells present in the gene?
  • Cancer and genetics
  • Describe the role of genetics in the fight against Alzheimer’s disease
  • What is the gene
  • Is there a link between genetics and Parkinson’s disease? Explain your answer.
  • Replacement of genes and artificial chromosomes
  • Explain genetic grounds for obesity
  • Development and disease; how can genetics dissect the developing process
  • Analyzing gene expression – RNA
  • Gene interaction; eye development
  • Advances and developments in nanotechnology to enable therapeutic methods for the treatment of HIV and AIDS.
  • Isolating and identifying the cancer treatment activity of special organic metal compounds.
  • Analyzing the characteristics in certain human genes that can withstand heavy metals.
  • A detailed analysis of genotypes that is both sensitive and able to endure heavy metals.
  • Isolating special growth-inducing bacteria that can assist crops during heavy metal damage and identifying lipid directing molecules for escalating heavy metal endurance in plants.

Hot and Controversial Topics in Genetics

  • Is there a link between genetics and homosexuality? Explain your answer
  • Is it ethical and morally upright to grow human organs
  • Can DNA changes beat aging
  • The history and development of human cloning science
  • How addictive substances alter our genes
  • Are genetically modified foods safe for human and animal consumption?
  • Is depression a genetically based condition?
  • Genetic diagnosis of the fetus
  • Genetic analysis of the DNA structure
  • What impact does cloning have on future generations?
  • What is the link between genetics and autism?
  • Can artificial insemination have any sort of genetic impact on a person?
  • The advancements in genetic research and the bioethics that come with them.
  • Is human organ farming a possibility today?
  • Can genetics allow us to design and build a human to our specifications?
  • Is it ethical to try and tamper with human genetics in any way?

Molecular Genetics Topics

  • Molecular techniques: How to analyze DNA(including genomes), RNA as well as proteins
  • Stem cells describe their potential and shortcomings
  • Describe molecular and genome evolution
  • Describe DNA as the agent of heredity
  • Explain the power of targeted mutagenesis
  • Bacteria as a genetic system
  • Explain how genetic factors increase cancer susceptibility
  • Outline and describe recent advances in molecular cancer genetics
  • Does our DNA sequencing have space for more?
  • Terminal illness and DNA.
  • Does our DNA determine our body structure?
  • What more can we possibly discover about DNA?

Genetic Engineering Topics

  • Define gene editing, and outline key gene-editing technologies, explaining their impact on genetic engineering
  • The essential role the human microbiome plays in preventing diseases
  • The principles of genetic engineering
  • Project on different types of cloning
  • What is whole genome sequencing
  • Explain existing studies on DNA-modified organisms
  • How cloning can impact medicine
  • Does our genetics hold the key to disease prevention?
  • Can our genetics make us resistant to certain bacteria and viruses?
  • Why our genetics plays a role in chronic degenerative diseases.
  • Is it possible to create an organism in a controlled environment with genetic engineering?
  • Would cloning lead to new advancements in genetic research?
  • Is there a possibility to enhance human DNA?
  • Why do we share DNA with so many other animals on the planet?
  • Is our DNA still evolving or have reached our biological limit?
  • Can human DNA be manipulated on a molecular or atomic level?
  • Do we know everything there is to know about our DNA, or is there more?

Controversial Human Genetic Topics

  • Who owns the rights to the human genome
  • Is it legal for parents to order genetically perfect children
  • is genetic testing necessary
  • What is your stand on artificial insemination vs. ordinary pregnancy
  • Do biotech companies have the right to patent human genes
  • Define the scope of the accuracy of genetic testing
  • Perks of human genetic engineering
  • Write about gene replacement and its relationship to artificial chromosomes.
  • Analyzing DNA and cloning
  • DNA isolation and nanotechnology methods to achieve it.
  • Genotyping of African citizens.
  • Greatly mutating Y-STRs and the isolated study of their genetic variation.
  • The analytical finding of indels and their genetic diversity.

DNA Research Paper Topics

The role and research of DNA are so impactful today that it has a significant effect on our daily lives today. From health care to medication and ethics, over the last few decades, our knowledge of DNA has experienced a lot of growth. A lot has been discovered from the research of DNA and genetics.

Therefore, writing a good research paper on DNA is quite the task today. Choosing the right topic can make things a lot easier and interesting for writing your paper. Also, make sure that you have reliable resources before you begin with your paper.

  • Can we possibly identify and extract dinosaur DNA?
  • Is the possibility of cloning just around the corner?
  • Is there a connection between the way we behave and our genetic sequence?
  • DNA research and the environment we live in.
  • Does our DNA sequencing have something to do with our allergies?
  • The connection between hereditary diseases and our DNA.
  • The new perspectives and complications that DNA can give us.
  • Is DNA the reason all don’t have similar looks?
  • How complex human DNA is.
  • Is there any sort of connection between our DNA and cancer susceptibility and resistance?
  • What components of our DNA affect our decision-making and personality?
  • Is it possible to create DNA from scratch under the right conditions?
  • Why is carbon such a big factor in DNA composition?
  • Why is RNA something to consider in viral research and its impact on human DNA?
  • Can we detect defects in a person’s DNA before they are born?

Genetics Topics For Presentation

The subject of genetics can be quite broad and complex. However, choosing a topic that you are familiar with and is unique can be beneficial to your presentation. Genetics plays an important part in biology and has an effect on everyone, from our personal lives to our professional careers.

Below are some topics you can use to set up a great genetics presentation. It helps to pick a topic that you find engaging and have a good understanding of. This helps by making your presentation clear and concise.

  • Can we create an artificial gene that’s made up of synthetic chromosomes?
  • Is cloning the next step in genetic research and engineering?
  • The complexity and significance of genetic mutation.
  • The unlimited potential and advantages of human genetics.
  • What can the analysis of an individual’s DNA tell us about their genetics?
  • Is it necessary to conduct any form of genetic testing?
  • Is it ethical to possibly own a patent to patent genes?
  • How accurate are the results of a genetics test?
  • Can hereditary conditions be isolated and eliminated with genetic research?
  • Can genetically modified food have an impact on our genetics?
  • Can genetics have a role to play in an individual’s sexuality?
  • The advantages of further genetic research.
  • The pros and cons of genetic engineering.
  • The genetic impact of terminal and neurological diseases.

Biotechnology Topics For Research Papers

As we all know, the combination of biology and technology is a great subject. Biotechnology still offers many opportunities for eager minds to make innovations. Biotechnology has a significant role in the development of modern technology.

Below you can find some interesting topics to use in your next biotechnology research paper. Make sure that your sources are reliable and engage both you and the reader.

  • Settlements that promote sustainable energy technology maintenance.
  • Producing ethanol through molasses emission treatment.
  • Evapotranspiration and its different processes.
  • Circular biotechnology and its widespread framework.
  • Understanding the genes responsible for flora response to harsh conditions.
  • Molecule signaling in plants responding to dehydration and increased sodium.
  • The genetic improvement of plant capabilities in major crop yielding.
  • Pharmacogenomics on cancer treatment medication.
  • Pharmacogenomics on hypertension treating medication.
  • The uses of nanotechnology in genotyping.
  • How we can quickly detect and identify food-connected pathogens using molecular-based technology.
  • The impact of processing technology both new and traditional on bacteria cultures linked to Aspalathus linearis.
  • A detailed analysis of adequate and renewable sorghum sources for bioethanol manufacturing in South Africa.
  • A detailed analysis of cancer treatment agents represented as special quinone compounds.
  • Understanding the targeted administering of embelin to cancerous cells.

Tips for Writing an Interesting Genetics Research Paper

All the genetics research topics above are excellent, and if utilized well, could help you come up with a killer research paper. However, a good genetics research paper goes beyond the topic. Therefore, besides choosing a topic, you are most interested in, and one with sufficient research materials ensure you

Fully Understand the Research Paper Format

You may write on the most interesting genetics topics and have a well-thought-out set of ideas, but if your work is not arranged in an engaging and readable manner, your professor is likely to dismiss it, without looking at what you’ve written. That is the last thing you need as a person seeking to score excellent grades. Therefore, before you even put pen to paper, understand what research format is required.

Keep in mind that part of understanding the paper’s format is knowing what words to use and not to use. You can contact our trustful masters to get qualified assistance.

Research Thoroughly and Create an Outline

Whichever genetics research paper topics you decide to go with, the key to having excellent results is appropriately researching it. Therefore, embark on a journey to understand your genetics research paper topic by thoroughly studying it using resources from your school’s library and the internet.

Ensure you create an outline so that you can note all the useful genetic project ideas down. A research paper outline will help ensure that you don’t forget even one important point. It also enables you to organize your thoughts. That way, writing them down in the actual genetics research paper becomes smooth sailing. In other words, a genetics project outline is more like a sketch of the paper.

Other than the outline, it pays to have an excellent research strategy. In other words, instead of looking for information on any random source you come across, it would be wise to have a step-by-step process of looking for the research information.

For instance, you could start by reading your notes to see what they have to say about the topic you’ve chosen. Next, visit your school’s library, go through any books related to your genetics research paper topic to see whether the information on your notes is correct and for additional information on the topic. Note, you can visit the library either physically or via your school’s website. Lastly, browse educational sites such as Google Scholar, for additional information. This way, you’ll start your work with a bunch of excellent genetics project ideas, and at the same time, you’ll have enjoyed every step of the research process.

Get Down to Work

Now turn the genetics project ideas on your outline into a genetics research paper full of useful and factual information.

There is no denying writing a genetics research paper is one of the hardest parts of your studies. But with the above genetics topics and writing tips to guide you, it should be a tad easier. Good luck!

Leave a Reply Cancel reply

163 DNA Essay Topic Ideas & Examples

🏆 best dna topic ideas & essay examples, 💡 most interesting dna argumentative essay topics, 📑 good research topics about dna, 📌 simple & easy dna essay titles, 👍 good essay topics on dna, ❓ questions about dna.

  • The Use of DNA Technology in the O. J. Simpson’s Murder Trial The tests revealed that the blood samples taken from the crime scene, the victims’ blood and the blood at the gate matched Simpson’s blood.
  • Moral and Ethical Issues of Recombinant DNA Technology In my opinion that debate is of the greatest importance and my hope is that these six lectures may have contributed to it. We will write a custom essay specifically for you by our professional experts 808 writers online Learn More
  • Sex and Biology of Gender, From DNA to the Brain The video helped me actualize my prior knowledge on sex and gender as well as enriched my understanding of what biological processes make people transgender. In conclusion, the video under analysis helped me improve my […]
  • Biochemical Metabolism: Foreign DNA Molecule The virtual gel should show the band pattern that would result from incubating the plasmid with restriction enzymes as indicated below.
  • DNA Cloning and Sequencing: The Experiment The plasmid vector pTTQ18 and the GFP PCR product will be digested with restriction enzymes and the desired DNA fragments obtained thereof will be purified by Polyacrylamide gel electrophoresis and ligated with DNA ligase resulting […]
  • DNA Barcoding Sequence Analysis of Unknown Plant The efficiency of this instrumental method is built on the idea of close similarity in the structure of DNA molecules to be more precise, the arrangement of nucleotides in it between closely related species: the […]
  • The DNA Extraction Procedure: Scientific Experiment It touches on plant cell DNA extraction, animal cell DNA extraction, sequence used in DNA extraction and composition of the sample.
  • Forensic DNA Analysis: A Technique to Achieve a Conclusion of Identity Thus, a DNA match corroborates the fact that the suspect was at the scene of the crime and this evidence can help in establishing a case against the suspects.
  • Benefits and Challenges of DNA Profiling The simplest option is to take a sample from the suspect and compare it with the DNA found at the crime scene.
  • DNA in Criminal Investigations In fact, it is possible to speak about the advent of a new field of criminalistics, DNA profiling. RFLP analysis is very discriminative, though, it is worth mentioning, that the samples have to be undamaged, […]
  • Rosalind Franklin: The Discovery of the DNA Structure The discovery of the spatial structure of DNA undoubtedly made a decisive contribution to the development of modern biological science and related fields.
  • The Amplification of DNA Samples The isothermal amplification of nucleic acids represents a simplified process that allows for the quick and efficient accumulation of nucleic acid sequences in an environment of constant temperatures.
  • Application of DNA in Criminal Forensics In phylogenetic studies, the analysis of DNA from fossil remains allows one to determine the taxonomic identity of a species, while in forensics, one can find the connection between traces and the perpetrator or the […]
  • Ethics of Informed Consent in DNA Research The ethical issue that is the focus of the current study is the use of patient DNA for research by a company without their knowledge and consent.
  • Neanderthal DNA in the Genomes The article shares the reasons behind the presence of Denisovans; genetic fingerprints are present in many parts of the world today.
  • The Nature of DNA Structure Discovery Thus, scientists should expand the idea about the nature of discovery without relying only on insight or results, acknowledging Franklin as a discoverer of DNA structure. It is time to reconsider the nature of discovery […]
  • The Discovery of the Deoxyribonucleic Acid (DNA) Structure Watson and Crick are independent; they come up with the idea of building a DNA structure on their own. Chadarevien argues that the image of Crick, Watson, and the double-helical DNA model has a great […]
  • Transfer of Beta-Carotene via DNA Techniques Adding yeast as a vector may significantly alleviate the incorporation of the new genes into any species because it includes protein which is vital for the species’ growth and rapid gene manipulation.
  • DNA Sequencing with Polymerase Chain Reaction Sixteen possible combinations of the four nucleotide bases of the DNA would give rise to the 16 amino acids. This explains the high melting point of a high G + C content DNA.
  • Mitochondria DNA (mtDNA) in Genealogy It is the development of mtDNA that enabled Sykes to trace and guess about the lives of the clan mothers since through it he was able to assess the genetic makeup of modern Europeans.
  • Deoxyribonucleic Acid (DNA): Structure and Function This is true of the current article, “The Structure of DNA,” which describes the function, structure, and biological significance of the most important molecule in nature.
  • DNA Evidence: The Case of the Golden State Killer Thus, DNA evidence should be used to narrow the circle of suspects before the technology is improved and other people could safely submit their DNA samples.
  • DNA Analysis in Criminal Cases The murderer, Bradley Robert Edwards, was recognized to be guilty after committing two rapes in 2016 his DNA samples were taken from under the nails of the victim as she was fighting the rapist in […]
  • DNA Profiling and Required Genetic Testing The reliable tests for conducting genetic testing should be more than one in order to remove the element of doubt on matching DNA bands.
  • DNA Microarray Technology and Applications These DNA microarrays are used by scientists in order to determine the appearance levels of a big number of genes, and also to the manifold region of a genome.
  • Covalent Modification of Deoxyribonucleic Acid Regulates Memory Formation The article by Miller and Sweatt examines the possible role of DNA methylation as an epigenetic mechanism in the regulation of memory in the adult central nervous system.
  • Short Tandem Repeat (STR) DNA Analysis and the CODIS Database The core STR loci developed provides a foundation for global databases of DNA and has future implications in the field of forensic science.
  • DNA Analysis in Criminal Investigations DNA analysis is a method aimed at the identification of a person according to his or her characteristics of DNA. In the earlier stages of an investigation, when the mentioned technique serves as a powerful […]
  • Ethical Issues on DNA Testing On some occasions, parents and clinicians have used such knowledge to manipulate the fetus’s genetic structure, hindering natural reproduction and messing with God’s creation.
  • Importance of Deoxyribonucleic Acid The history of the discovery of DNA dates back to 1865 when Gregory Mendel used theories of heredity in analyzing the genetic profiles of pea plants.
  • Knowing One’s DNA Genetic Makeup: Pros and Cons In addition, the knowledge that one might not get a job or insurance because of their genetic makeup is stressful and depressive.
  • The Concept of DNA Barcoding The first step towards safeguarding and gaining from biodiversity involves sampling, identifying, and studying the biological specimens to identify the extent of the diversity and use that knowledge for the benefit of the country.
  • Forensic Analysis of DNA and Biological Material This was the first stage when carrying out the DNA test on a biological material. Notably, the forensic analyst was not allowed to touch the collection pad of the swab as a precaution measure.
  • Developmental Biology: DNA and MicroRNA This is augmented by the strengthening of patterns and the increase in the number of lateral cells that are crucial for the process to be successful.
  • Deoxyribonucleic Acid: Review The goals of this experiment are: to enable us to become well acquainted with the physical characteristics of DNA by separating it from living tissue, and the use of each stage in the isolation process […]
  • Interesting and Relevant Applications of DNA Technology Week One Activities Learning Outcomes DNA Technology in Laboratory Medicine Diagnostic Relevance and future prospects. Interesting and Relevant Applications of DNA Technology Areas Most striking and need further review in my career – modernized to detect pathogens from the clinical samples in the diagnostic hospitals. Preferred method of identifying organisms based on genomic make up. […]
  • DNA Retention and National Security The experiences of Kuwait and the UAE are yet to demonstrate the consequences of the extreme expansion of DNA retention system, but another country has also provided some information for the consideration in the worldwide […]
  • Deoxyribonucleic Acid Profiling in Forensics The last part of the analysis includes discussion of the potential for error in DNA profiling. It has to do with the fact that DNA is a material that fulfills most of the criteria making […]
  • DNA Tests in the O.J. Simpson’s Case The fact that John’s DNA results match the crime blood DNA results does not prove beyond reasonable doubt that he is responsible for Sally’s murder.
  • The E.Z.N.A Commercial Kit: Soil DNA Extraction Optimisation In this paper, the researcher sought to investigate the effectiveness of using the kit for the purposes of optimising the extraction of DNA from marine soils.
  • The Helical Structure of DNA: Watson and Crick’s Opinion In addition, the author of this paper makes a comparison between the structure proposed by the two biologists and the information provided in recent textbooks.
  • Restriction of Lambda DNA in the Laboratory The DNA in the head of the virus has a unique structure. The restriction site is used for the purposes of recognizing a particular DNA molecule.
  • DNA Vaccines: Optimization Methods The three optimization methods scientists have been using to optimize DNA vaccines are the use of regulatory elements, optimization of the codons, and addition of the kozak sequences.
  • Comparative Sequence Study in Human and Primate DNA Samples In general, the differences between DNA samples are qualitative and quantitative, and this is explained by the fact that these are responsible for the key biological differences between humans and primates.
  • Molecular Components of the DNA Molecule The DNA serves as storage of the genetic information in the form of codes. The DNA polymerase is the enzyme that is responsible for the combination of the phosphate and the nucleotide.
  • FRET Detection or DNA Molecules It is for this reason that the method is possibly applicable in the DNA sequencing methods that are composed of single molecules and these are viewed as belonging to the “next-generation”.
  • The Concept of DNA Cloning In the approach based on cells both the replicating molecule or the biological vehicle known as the vector and the foreign DNA fragment are cut using the same restriction enzyme to produce compatible cohesive or […]
  • Biotechnology, Nanotechnology Its a Science for Brighter Future, DNA This means that there should be efforts that are aimed at the promotion of this field so that we can be in a position of solving most of these problems.
  • Post Conviction DNA Testing The DNA was first presented as evidence in court in the year 1986 in the USA, and in the subsequent years it presented serious challenges in the court rooms, presently it is been accepted in […]
  • Deoxyribonucleic Acid (DNA) Explained to Students In the chromosomes, DNA is organized and compacted by chromatin proteins. The interaction of DNA and other proteins is guided by compact structures.
  • DNA Fingerprinting as Biotechnology Application DNA fingerprinting, also known as genetic fingerprinting or DNA profiling is a method used to identify a specific individual. DNA fingerprinting is used to determine the parents of a person i.e.establish paternity.
  • Deoxyribonucleic Acid (DNA) Nanotechnology: Chemical and Physical Structure and Properties The essence of DNA in every living organism and certain viruses is that it forms the basis of the genetic instructions that are essential in the development and functioning of these organisms.
  • Use of the Information Technology to Solve Crimes: DNA Tests and Biometrics The modus operandi of the IAFIS is as follows: The fingerprints are taken after arrest, processed locally, and then electronically transmitted to state or federal agencies for processing.”The fingerprints are then electronically forwarded through the […]
  • Criminal Justice and DNA: “Genetic Fingerprinting” DNA is one of the popular methods used by criminologists today, DNA technique is also known as “genetic fingerprinting”.the name given the procedure by Cellmark Diagnostics, a Maryland company that certified the technique used in […]
  • Structure of Deoxyribonucleic Acid The nucleotides join to one another by covalent bonds between the sugar of one nucleotide and the phosphate of the next. The sequence of nucleotides in the DNA strand can be different and vary in […]
  • The Innocence Project, Habib Wahir’s Case: DNA Testing During the appeal, the court found that the semen left in the lady by the culprit did not match Habib’s DNA.
  • DNA and Genealogy Solving Cold Case Murders: The Modern Technology The issues above are essential, and they make people ask questions of whether it is reasonable to use modern technology in DNA and genealogy.
  • Modern Technology in DNA and Genealogy Solving Cold Case Murders The purpose of the study lays in establishing the relationship between ethical, legal, and privacy challenges of using genomics during the investigation.
  • DNA and Evolution – What’s Similar Transformation, in molecular genetics, is a change in the hereditary properties of cells as a result of the penetration of foreign DNA into them.
  • The Main Objective of DNA Fingerprinting in Agriculture Therefore, the main objective of DNA fingerprinting in agriculture is to overcome the limitation of insufficient dissimilarity among prior genotypes and come up with the best ideas to discover new molecular markers and collect data […]
  • DNA Diagnostic Technologies Description This has made it possible to understand the aspects concerning the development of human life as well as genetic causes of abnormalities that are seen in the human body. In the treatment of genetic diseases, […]
  • Importance of Expanding FBI’s Forensic DNA Laboratory In addition, acceptance of DNA analysis results as evidence in the Court of law has entrenched DNA analysis in forensic investigations. These have increased the number of samples for DNA analysis in FBI forensic laboratories.
  • Meiosis and Splitting of the Dna Into Gametes Meiosis is the basic process happening in the cells carrying the genetic information about the organism into two cells, while the number of chromosomes in the resulting cells is divided into two equal parts, thus […]
  • Biotechnology: Copying DNA (Deoxyribonucleic Acid) It refers to a new but identical collection of cells acquired from an original cell by the process of fission, wherein a cell divides itself forming two cells, or by the process of mitosis, wherein […]
  • DNA as the Secret of Life Deoxyribonucleic Acid which is commonly referred to as DNA is the nucleic acid that is used in the study of the genetics of the development and the functioning of almost all living organisms with an […]
  • Deoxyribonucleic Acid (DNA): Structure & Function The significant factor was that the two strands run in the reverse directions and the molecule had a definite base pairing.
  • Oswald T. Avery and the Discovery of the DNA Oswald Avery was a man driven with the desire to contribute to humanity but when he finally discovered something of utmost importance the world of science was not quick enough to give recognition to his […]
  • Biomedical Discovery of DNA Structure The first parts of the book comprised of the opening of Sir Lawrence Bragg, who gave an overview of the entire book and talked about the significance of Francis Crick and James Watson’s discovery with […]
  • Artificial Manipulation of DNA Technology There is microinjection of genes in the zygote pronuclear and the other technique is by injecting the stem cells of the embryo into blastocoels.
  • Infectious Bacterial Identification From DNA Sequencing The first is the preparation of the DNA sequence and matching it with the database of known DNA sequences. Given below is a screenshot of the process PCR Amplification: To prepare the polymerase chain reaction, […]
  • Mattew Warren: Four New DNA Letters Double Life’s Alphabet In this article, the author describes the work of Steven Benner and other scientists who contributed to the improvement in understanding the nature of synthetic DNA bases.
  • DNA Testing Techniques and Challenges Therefore, even though the major part of the evidence can be inaccessible, the sample can be amplified due to the development of technology. The final stage is the evaluation of the accuracy of the analysis […]
  • DNA Profiling and Analysis Interpretation Regarding the case of the robbery and murder of a man and a woman, different types of physical evidence can be collected. However, this method can be less effective in case of the contamination of […]
  • Species Identification Reveals Mislabeling of Important Fish Products in Iran The article under discussion is devoted to the method of DNA barcoding in fish species identification and its ability to shed light on the situation with product identity in Iran.
  • Sleep Helps to Repair Damaged DNA in Neurons The researchers found that the chromosomes in the fish’s neurons would often change shape while their owners slept, enabling the repair of the damage accumulated in periods of activity.
  • DNA Replication as a Semiconservative Process The process of DNA replication has been studied extensively as the pathway to understanding the processes of inheritance and the possible platform for addressing a range of health issues occurring as a result of DNA […]
  • Obtaining a DNA Sample Legally Furthermore, it is impossible to search not only the suspect’s house but also the curtilage, which is also protected according to the Fourth Amendment because it is a private territory.
  • Dr. Michio Kaku’s Predictions of the DNA Screening In the documentary, the city planners warn the public that the insufficient growth and the development of the suburban areas threaten both the economy of the country as well as its community.
  • Exponentials and Logarithms: the Cell and DNA The result will be; log to the base of 2 of ‘x’ equals ‘y’.’y’ usually refers to the power to which one raises ‘2’ to get ‘x’ This can be simplified as follows; F =2x […]
  • Bird DNA Extraction: Sex Determination of Gallus Gallus DNA was obtained from blood, muscle tissue and feathers of the bird. The last step was to visualize the DNA extract through gel electrophoresis and making conclusions of the bird’s sex.
  • Recombinant DNA Technology and pGLO Plasmid Use Transformation of bacterial cells, which is one of the approaches used in genetic engineering, involves the transfer of genetic material from one bacterium to another using a plasmid vector.
  • DNA in Action: Sockeye Salmon Fisheries Management The researchers in the article carried out an analysis entailing a total sum of 9300 salmon fish species. The latter was followed by mixed stock samples in the lower region of Fraser River and test […]
  • DNA-Binding Specificities of Human Transcription Factors The main purpose of the experiment was to analyze and determine how human transcription factors are specifically bound by DNA. Most human transcriptional factors have been systematically analyzed in the methodology and result sections of […]
  • Innovator’s DNA: Entrepreneurial Assessment With time, I discovered that the questioning spirit was a reflection of what goes on in the mind of an entrepreneur.
  • DNA Evidence and Its Use in the US Criminal Law The concluding statement of the Supreme Court of the United States defined the procedure of obtaining DNA samples as a procedure identical to taking fingerprints or taking pictures of the crime scene.
  • Wildlife Forensic DNA Laboratory and Its Risks The mission of the Wildlife Forensic DNA Laboratory is to provide evidence to governmental and non-governmental organizations to ensure the protection of the wildlife in the country.
  • Genes, Deoxyribonucleic Acid (DNA), and Heredity Others said RNA and DNA are the same and that they are responsible for making proteins. The statement “you are your genes” is virtually right because DNA is the basis of heredity and it is […]
  • How Has DNA Changed the Field of Physical Anthropology? It is indeed correct to argue that contemporary DNA research has not only changed the field of physical anthropology in major ways, but it continues to alter and broaden our understanding and perceptions in a […]
  • Organizational DNA Analysis Moreover, due to the spontaneous growth of the organization that took a snowball design, it experienced a challenge in supplying its products to the target consumers.
  • DNA as an Evidence From a Crime Scene The mitochondrial DNA is transferred directly from the mother to the offspring and in this case, there is no DNA of the father present here.
  • DNA Definition and Its Use by the US Police The location for most DNA is the nucleus though some may be found in the mitochondria and is called mitochondrial DNA.
  • DNA Analysis: A Crime-Fighting Tool or Invasion of Privacy? This paper set out to demonstrate that DNA analysis offers a versatile tool for fighting crime and therefore ensuring the success of our civilization.
  • The DNA of an Entrepreneur: Is There an Entrepreneur Gene
  • The Use and Importance of DNA Profiling in the Police Force in America
  • The Role of DNA Technology in Crime Investigation
  • The Future of Computers and DNA Computing
  • Will a National DNA Database Decrease Crime in the U.S
  • The Human Genome Project and Patenting DNA
  • The Essential Features of the Watson-Crick Model on the DNA
  • The Structure of the DNA and the Future of Genetic Engineering
  • The Effectiveness of DNA Evidence in Obtaining Criminal Convictions
  • The Evolution of DNA Silencing Technology over the Years
  • The History, Function and Advancement in DNA Technologies
  • The Different Uses and Importance of DNA Replication
  • The Advancement of DNA Testing in Criminal Trials and Its Benefits
  • The Idea of Cloning Animals and Humans since the Discovery of DNA
  • The Biochemical Description of the DNA and Its Importance in Cloning
  • Why Ageing Occurs Are All Under The Guideline Of DNA
  • Self Assembling Circuits Using DNA, The Next Computer Breakthrough
  • Significance of Discoveries in Genetics and DNA
  • Understanding Recombinant DNA Technology
  • The Contribution of DNA Profiling to Changing the Crime Solving System
  • Understanding How Genetic Engineering Works from the Perspective of the DNA
  • The Use of Recombinant DNA Technology
  • The Random Amplified Polymorphic DNA Polymerase Chain Reaction
  • The Genesis of DNA Profiling and Its Use in the Modern World
  • The Effects Of Gene Editing On Human DNA
  • Use Of DNA In Criminal Investigations
  • Tools and Techniques for DNA Manipulation
  • Timeline on Our Understanding of DNA and Heredity
  • Rosalind Franklin: Unsung Hero Of The DNA Revolution
  • The Impact of the Use of DNA Analysis for Forensic Analysis
  • Your DNA: Who Has Access To It And How It Should Be Used
  • Structure and Analysis of DNA and Implications for Society
  • The Light and Dark Side of DNA Technology
  • The Functions Of DNA And Protein Synthesis
  • Watson and Crick and the Discovery of DNA’s Structure
  • The Uses of DNA Technology in Forensic Science
  • The Discovery and Understanding of the Structure of DNA by James Watson and Francis Crick
  • The Work of James Watson and Francis Crick on the Exploration of DNA Structure
  • Uses Of DNA And Fingerprints In Crime Scene Investigation
  • The Structure of DNA and the Risks Inherent in Understanding It
  • The Concept and Role of DNA Fingerprinting in Solving Crimes
  • How Is DNA Deciphered?
  • Which Scientists Participated in the Discovery of DNA?
  • What Experiments Did Scientists Use to Discover DNA?
  • What Is the Structure of DNA?
  • What Are the Methods of Diagnosing Plant Diseases Based on DNA?
  • DNA: What Are the Potential Effects on Skeletal Muscle Aging in Humans?
  • How Many Crimes Are Solved by DNA?
  • What Does Vitamin Help With DNA Repair?
  • Why Do Researchers Study DNA?
  • Is It Possible to Control the Aids Virus With a DNA Vaccine?
  • How Does DNA Help Fight Crime?
  • What Are the Analytical Methods of DNA Extraction?
  • What Is a DNA Sequence?
  • How Would You Analyze the DNA Matches of Identical Twins?
  • When Was DNA Discovered?
  • How Different Is Human DNA From Animal DNA?
  • Is It Possible to Clone the DNA of Animals and Plants?
  • How Many DNA Molecules Are in a Chromosome?
  • Is It Possible to Artificially Create DNA?
  • Can Cancer Be Detected in DNA?
  • How Accurate Is DNA Evidence?
  • What Is the DNA Replication Process?
  • Can Siblings Have Different DNA?
  • Why Does ATM Deficiency Accelerate DNA Damage in HIV-Infected Individuals?
  • Can DNA Evidence Ever Be Wrong?
  • A Bioethical Question: Is DNA Fingerprinting Mandatory?
  • Which Part of DNA Carries Genetic Information?
  • How Is DNA Used in Research?
  • What Are the Types of DNA?
  • What Is the Basic Structure of DNA?
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2024, February 26). 163 DNA Essay Topic Ideas & Examples. https://ivypanda.com/essays/topic/dna-essay-topics/

"163 DNA Essay Topic Ideas & Examples." IvyPanda , 26 Feb. 2024, ivypanda.com/essays/topic/dna-essay-topics/.

IvyPanda . (2024) '163 DNA Essay Topic Ideas & Examples'. 26 February.

IvyPanda . 2024. "163 DNA Essay Topic Ideas & Examples." February 26, 2024. https://ivypanda.com/essays/topic/dna-essay-topics/.

1. IvyPanda . "163 DNA Essay Topic Ideas & Examples." February 26, 2024. https://ivypanda.com/essays/topic/dna-essay-topics/.

Bibliography

IvyPanda . "163 DNA Essay Topic Ideas & Examples." February 26, 2024. https://ivypanda.com/essays/topic/dna-essay-topics/.

  • Animal Testing Topics
  • Viruses Research Topics
  • Culture Topics
  • Ethnicity Research Topics
  • Biochemistry Research Topics
  • Cloning Questions
  • Biodiversity Research Topics
  • Determinism Research Topics
  • Epigenetics Essay Titles
  • Down Syndrome Topics
  • Gene Titles
  • Vaccination Research Topics
  • Genetic Engineering Topics
  • Innovation Titles
  • Genetics Research Ideas

111 DNA Essay Topics

🏆 best essay topics on dna, ✍️ dna essay topics for college, 🎓 most interesting dna research titles, 💡 simple dna essay ideas, ❓ questions about dna.

  • DNA Retention: Advantages and Disadvantages for DNA Collection
  • DNA Cloning and Sequencing: The Vector pTTQ18
  • A Practical Report on DNA Fingerprinting
  • The Structure of Deoxyribonucleic Acid (DNA)
  • DNA Physical Properties and Viscosity: A Lab Study
  • DNA and RNA Transcription
  • The Usage of DNA Technology in Forensic Science
  • Privacy Concerns Over DNA Sequences This essay will review the presented issue of privacy concerns over DNA sequences from the position of the scientific community and lawmakers.
  • DNA and Proteins as Evolutionary Tape Measures DNA and proteins can be used as tape measures of evolution but their usage depends on the concept of a linear sequence of nucleotides.
  • Cell DNA and Protein Synthesis The most prominent one in eukaryotic cells is the nucleus, which contains the DNA and controls the cell’s operations.
  • Is DNA a Foolproof Way of Identifying a Person? This post aims to discuss different ways of using DNA to determine if it is a reliable source of identification.
  • Differences Between Human and Chimpanzee DNA When it is necessary to learn some physiological characteristics of human health conditions, scientists and researchers address genetic studies.
  • Relationships Between Reproduction, Heredity, and DNA Genetic information in DNA is transcribed to RNA and then translated into the amino acid sequence of a Protein.
  • Complete Mapping of DNA‐Protein Interactions by Liu et al. The regulation of genetic information is important and must occur within the confines of specific conditions to ensure the expression of the target genes.
  • Genomic Data: The Role of Deoxyribonucleic Acid Deoxyribonucleic acid commonly referred to as DNA is a heredity carrier in living organisms containing genetic information on growth and development.
  • Genomic Analysis DNA of Bacillus Subtilis In the case, there is the genomic DNA of Bacillus Subtilis given to compare the utility of different types of DNA sequencing technologies.
  • Transcription and DNA Replication DNA replication is the most important process in the regulation of cell life, contributing to efficient cell division and preservation of genetic material through generations.
  • Evidence of Non-Random Mutations in DNA Although the results discussed prove that non-random mutations occur in thale cress, there is a high probability that similar processes will happen in other live organisms.
  • Encoding and Saving Data in DNA for Business The desire for constant development might become a basis for the innovation implementation and integration the DNA information technology into business operations.
  • DNA Fingerprinting Technology: Description and Use . Invented in 1984, DNA fingerprinting still remains relevant to this day, and it is used in many fields, including criminology.
  • DNA for Identifying Convicts: Article Response In his 2006 article, Danny Hakim addresses a somewhat controversial issue of using DNA to identify possible suspects among known convicts in case of a crime.
  • Short Tandem Repeat (STR) DNA Analysis and the CODIS Database Short tandem repeat (STR) is a molecular biology tool mainly exploited in forensic science in order to determine certain locations known as loci present on the nuclear material DNA.
  • An Experiment in DNA Cloning and Sequencing The aim of this experiment is to clone a fragment of DNA that includes the Green Fluorescent Protein (GFP) gene into the vector pTTQ18, which is an expression vector.
  • Types and Causes of the DNA Mutations Mutations occur when mistakes occur in DNA duplication and are classified based on different premises; all of them are rare and lead to abnormal alleles.
  • DNA Analysis in Forensic Science This paper aims to describe its details, such as the PCR process, loci and their relation to CODIS, and the functions of touch DNA.
  • Digital Forensics and Deoxyribonucleic Acid The practice of digital forensics involves analysis of data collected computing devices from a particular crime scene.
  • DNA and the Birth of Molecular Genetics Molecular genetics is critical in studying traits that are passed through generations. The paper analyzes the role of DNA to provide an ample understanding of molecular genetics.
  • DNA Analysis: A Crime-Fighting Tool or Invasion of Privacy? The paper argues that DNA analysis is an important crime-fighting tool and bring great benefit despite the likelihood of an invasion of privacy.
  • Ancient DNA Studies and Current Events Analysis The study of DNA, starting with the human genome, has broadened to allow researchers to explore changes in various animal patterns.
  • DNA Manipulation in Control of Mosquitoes and Gene The DNA sequence specific to the mutated PLA2 (PLA2) would be finally placed in the downstream region of a mosquito midgut-specific promoter.
  • DNA Profiling: Genetic Variation in DNA Sequences The paper aims to determine the importance of genetic variation in sequences in DNA profiling using specific techniques.
  • The Relevance of DNA Computers in the Modern World The researchers propose as an alternative to use natural biomolecules contained in the organisms of all living things, namely, DNA.
  • Cancer Interference With Dna Replication Reports indicate that a greater percentage of human cancers originate from chemical substances as well as environmental substances.
  • Natural Sciences: Junk DNA Has an Important Role The paper examines the phenomenon of the junk DNA and provides the agruments why it is truly not junk and acts as a key role in the evolution of mankind.
  • Detection of Pathogens With Cell-Free Dna Extracting and studying cfDNA not only led to breakthrough achievements in pathogen diagnosis but also replaced difficult and dangerous invasive methods, such as amniocentesis.
  • DNA Profiles in the Golden State Killer Case One of the most recent tools available for crime investigations is a DNA match of one’s profile in a publicly available genealogy database.
  • Genetics Seminar: The Importance of Dna Roles DNA has to be stable. In general, its stability becomes possible due to a large number of hydrogen bonds which make DNA strands more stable.
  • The Cloning of a DNA Fragment, and a Southern Blot . Southern blotting can either be used in the determination of small fragment of a single gene or a large DNA sequence such as part of the genome of an organism.
  • Major Experiments and Scientists Involved in the Discovery of DNA as Our Hereditary Material and Its Structure
  • DNA Mutations and Their Effects on Humans
  • Bacterial Chromosome Replication and DNA Repair During the Stringent Response
  • Using Integrative Analysis of DNA Methylation and Gene Expression Data in Multiple Tissue Types
  • Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection
  • Bioinformatics Tools and Databases to Assess the Pathogenicity of Mitochondrial DNA Variants
  • Cell-Free Fetal DNA Testing Market to Make Great Impact in Near Future by 2026
  • Age-Related DNA Methylation Changes: Potential Impact on Skeletal Muscle Aging in Humans
  • DNA Analysis Using Polymerase Chain Reaction: Implications for the Study of Ancient DNA
  • Aging Neurovascular Unit and Potential Role of DNA Damage and Repair in Combating Vascular Disorders
  • DNA Damage: From Chronic Inflammation to Age-Related Deterioration
  • Complete Pattern Matching for DNA Computing
  • AIDS Virus and Possible Control Through a DNA Vaccine
  • DNA Fingerprinting and Polymerase Chain Reaction
  • Alternative Splicing and DNA Damage Response in Plants
  • Correcting for Errors Inherent in DNA Pooling Methods
  • Beyond DNA Repair: Additional Functions of PARP-1 in Cancer
  • Moral and Ethical Issues Associated With Recombinant DNA Technology
  • Analyzing Cloned Sequences: What Exactly Is a DNA Sequence
  • Cancerous Genes: Their Presence in Human DNA
  • Anti-double Stranded DNA Antibodies: Origin, Pathogenicity, and Targeted Therapies
  • Chromatin Modifications and DNA Repair: Beyond Double-Strand Breaks
  • Assessing DNA Sequence Alignment Methods for Characterizing Ancient Genomes and Methylomes
  • Binary Auto-Regressive Geometric Modelling in a DNA Context
  • Associations Between Behavioral Effects of Bisphenol A and DNA Methylation in Zebrafish Embryos
  • High-Quality DNA From Peat Soil for Metagenomic Studies: A Minireview on DNA Extraction Methods
  • Cost-Effective Method for DNA Purification
  • DNA Analysis and Facial Reconstruction of Human Skull
  • Blood-Based DNA Methylation Biomarkers for Type 2 Diabetes: Potential for Clinical Applications
  • How Recombinant DNA Techniques May Be Used to Correct a Point Mutation
  • Bioethical Issue: Mandatory DNA Fingerprinting
  • DNA Abnormalities That Manifest as Disorders
  • Asymmetric Cell Division and Template DNA Co-Segregation in Cancer Stem Cells
  • How the Discovery of Non-coding DNA and RNA Can Change Our Understanding of Addiction
  • The Origin of DNA and Molecular Structure
  • DNA and Seed Developmental Genes
  • Analyzing Conserved Non-Coding DNA Sequences
  • Barry Scheck’s Innocent Project and DNA
  • DNA Vaccination and How It Can Greatly Impact the Medical World
  • Convicted Criminals and DNA Mandatory Testing
  • Analytical Techniques for DNA Extraction
  • Differences Between Plasmid and Chromosomal DNA in Bacteria
  • Cloning: DNA and Artificial Embryo Twinning
  • DNA-Based Markers Throughout the World of Molecular Plant Breeding
  • Cell Biology: The DNA of Both Prokaryotes and Eukaryotes
  • Adjusting for Batch Effects in DNA Methylation Microarray Data
  • DNA Studies Using Atomic Force Microscopy: Capabilities for the Measurement of Short DNA Fragments
  • Genetic Engineering and DNA Technology in Agricultural Productivity
  • Does DNA Profiling Live Up to Its Expectations?
  • How Accurate Are DNA Paternity Tests?
  • What Are DNA Sequence Motifs? Why Are They Important?
  • How Are the Structures of DNA and RNA Similar?
  • What Are DNA Vaccines?
  • How Are the Young People in DNA Affected by the Crimes They Commit?
  • What Are the Base-Pairing Rules for DNA?
  • How Can Paint and Fiber Evidence Be Overshadowed by the More Glamorous DNA Evidence in Cases Today?
  • What Are Three Key Structural Chemical Differences Between RNA and DNA?
  • How Could the Ethical Management of Health Data in the Medical Field Inform Police Use of DNA?
  • What Are the Principles of DNA Fingerprinting?
  • How Does DNA and DNA Profiling Work?
  • What Can DNA Exonerations Tell Us About Racial Differences in Wrongful Conviction Rates?
  • How Is DNA Technology Used in Solving Crimes?
  • What Data Obtained From the Chemical Analysis of DNA?
  • How Does DNA Control Cell Activity?
  • Which Technique Rapidly Replicates Specific DNA Fragments?
  • How Does DNA Play a Role in Inheritance?
  • Does Radiation Damage DNA?
  • How Does Recombinant DNA Differ From Normal DNA?
  • What Can DNA Sequencing Detect?
  • How Does Recombinant DNA Technology Work?
  • Can Plant DNA Be Patented?
  • How Is DNA Sequencing Used in Identifying Organisms?
  • Who Is the Mother of DNA?

Cite this post

  • Chicago (N-B)
  • Chicago (A-D)

StudyCorgi. (2022, June 5). 111 DNA Essay Topics. https://studycorgi.com/ideas/dna-essay-topics/

"111 DNA Essay Topics." StudyCorgi , 5 June 2022, studycorgi.com/ideas/dna-essay-topics/.

StudyCorgi . (2022) '111 DNA Essay Topics'. 5 June.

1. StudyCorgi . "111 DNA Essay Topics." June 5, 2022. https://studycorgi.com/ideas/dna-essay-topics/.

Bibliography

StudyCorgi . "111 DNA Essay Topics." June 5, 2022. https://studycorgi.com/ideas/dna-essay-topics/.

StudyCorgi . 2022. "111 DNA Essay Topics." June 5, 2022. https://studycorgi.com/ideas/dna-essay-topics/.

These essay examples and topics on DNA were carefully selected by the StudyCorgi editorial team. They meet our highest standards in terms of grammar, punctuation, style, and fact accuracy. Please ensure you properly reference the materials if you’re using them to write your assignment.

This essay topic collection was updated on December 28, 2023 .

ScienceDaily

Researchers uncover human DNA repair by nuclear metamorphosis

Researchers at the University of Toronto have discovered a DNA repair mechanism that advances understanding of how human cells stay healthy, and which could lead to new treatments for cancer and premature aging.

The study, published in the journal Nature Structural and Molecular Biology , also sheds light on the mechanism of action of some existing chemotherapy drugs.

"We think this research solves the mystery of how DNA double-strand breaks and the nuclear envelope connect for repair in human cells," said Professor Karim Mekhail, co-principal investigator on the study and a professor of laboratory medicine and pathobiology at U of T's Temerty Faculty of Medicine.

"It also makes many previously published discoveries in other organisms applicable in the context of human DNA repair, which should help science move even faster."

DNA double-strand breaks arise when cells are exposed to radiation and chemicals, and through internal processes such as DNA replication. They are one of the most serious types of DNA damage because they can stall cell growth or put it in overdrive, promoting aging and cancer.

The new discovery, made in human cells and in collaboration with Professor Razqallah Hakem, a researcher at University Health Network and professor at Temerty Medicine, extends prior research on DNA damage in yeast by Mekhail and other scientists.

In 2015, Mekhail and collaborators showed how motor proteins deep inside the nucleus of yeast cells transport double-strand breaks to 'DNA hospital-like' protein complexes embedded in the nuclear envelope at the edge of the nucleus.

Other studies uncovered related mechanisms during DNA repair in flies and other organisms. However, scientists exploring similar mechanisms in human and other mammalian cells reported little to no DNA mobility for most breaks.

"We knew that nuclear envelope proteins were important for DNA repair across most of these organisms, so we wondered how to explain the limited mobility of damaged DNA in mammalian cells," Mekhail says.

The answer is both surprising and elegant.

When DNA inside the nucleus of a human cell is damaged, a specific network of microtubule filaments forms in the cytoplasm around the nucleus and pushes on the nuclear envelope. This prompts the formation of tiny tubes, or tubules, which reach into the nucleus and catch most double-strand breaks.

"It's like fingers pushing on a balloon," says Mekhail. "When you squeeze a balloon, your fingers form tunnels in its structure, which forces some parts of the balloon's exterior inside itself."

Further research by the study authors detailed several aspects of this process. Enzymes called DNA damage response kinases and tubulin acetyltransferase are the master regulators of the process, and promote the formation of the tubules.

Enzymes deposit a chemical mark on a specific part of the microtubule filaments, which causes them to recruit tiny motor proteins and push on the nuclear envelope. Consequently, the repair-promoting protein complexes push the envelope deep into the nucleus, creating bridges to the DNA breaks.

"This ensures that the nucleus undergoes a form of reversible metamorphosis, allowing the envelope to temporarily infiltrate DNA throughout the nucleus, capturing and reconnecting broken DNA," says Mekhail.

The findings have significant implications for some cancer treatments.

Normal cells use the nuclear envelope tubules to repair DNA, but cancer cells appear to need them more. To explore the mechanism's potential impact, the team analyzed data representing over 8,500 patients with various cancers. The need was visible in several cancers, including triple-negative breast cancer, which is highly aggressive.

"There is a huge effort to identify new therapeutic avenues for cancer patients, and this discovery is a big step forward," says Hakem, a senior scientist at UHN's Princess Margaret Cancer Centre and a professor in U of T's department of medical biophysics and department of laboratory medicine and pathobiology.

"Until now, scientists were unclear as to the relative impact of the nuclear envelope in the repair of damaged DNA in human cells. Our collaboration revealed that targeting factors that modulate the nuclear envelope for damaged DNA repair effectively restrains breast cancer development," Hakem says.

In the aggressive triple negative breast cancer, there are elevated levels of the tubules, likely because they have more DNA damage than normal cells. When the researchers knocked out the genes needed to control the tubules, cancer cells were less able to form tumours.

One medication used to treat triple negative breast cancer is a class of drugs called PARP inhibitors. PARP is an enzyme that binds to and helps repair damaged DNA. PARP inhibitors block the enzyme from performing repair, preventing the ends of a DNA double-strand break in cancer cells from reconnecting to one another.

The cancer cells end up joining two broken ends that are not part of the same pair. As more mismatched pairs are created, the resulting DNA structures become impossible for cells to copy and divide.

"Our study shows that the drug's ability to trigger these mismatches relies on the tubules. When fewer tubules are present, cancer cells are more resistant to PARP inhibitors," says Hakem.

Partnerships among researchers in distinct fields was essential for the findings in cancer cells. The study underscores the importance of cross-disciplinary collaboration, Mekhail says.

"The brain power behind every project is crucial. Every team member counts. Also, every right collaborator added to the research project is akin to earning another doctorate in a new specialty; it's powerful," he says.

Mekhail notes the discovery is also relevant to premature aging conditions like progeria. The rare genetic condition causes rapid aging within the first two decades of life, commonly leading to early death.

Progeria is linked to a gene coding for lamin A. Mutations in this gene reduce the rigidity of the nuclear envelope. The team found that expression of mutant lamin A is sufficient to induce the tubules, which DNA damaging agents further boosted. The team thinks that even weak pressure on the nuclear envelope spurs the creation of tubules in premature aging cells.

The findings suggest that in progeria, DNA repair may be compromised by the presence of too many or poorly regulated tubules. The study results also have implications for many other clinical conditions, Mekhail says.

"It's exciting to think about where these findings will lead us next," says Mekhail. "We have excellent colleagues and incredible trainees here at Temerty Medicine and in our partner hospitals. We're already working toward following this discovery and using our work to create novel therapeutics."

  • Human Biology
  • Breast Cancer
  • Biochemistry Research
  • Biotechnology
  • Molecular Biology
  • Stem cell treatments
  • Chemotherapy
  • Baldness treatments

Story Source:

Materials provided by University of Toronto . Original written by Erin Howe. Note: Content may be edited for style and length.

Journal Reference :

  • Mitra Shokrollahi, Mia Stanic, Anisha Hundal, Janet N. Y. Chan, Defne Urman, Chris A. Jordan, Anne Hakem, Roderic Espin, Jun Hao, Rehna Krishnan, Philipp G. Maass, Brendan C. Dickson, Manoor P. Hande, Miquel A. Pujana, Razqallah Hakem, Karim Mekhail. DNA double-strand break–capturing nuclear envelope tubules drive DNA repair . Nature Structural & Molecular Biology , 2024; DOI: 10.1038/s41594-024-01286-7

Cite This Page :

Explore More

  • Two Species Interbreeding Created New Butterfly
  • Warming Antarctic Deep-Sea and Sea Level Rise
  • Octopus Inspires New Suction Mechanism for ...
  • Cities Sinking: Urban Populations at Risk
  • Puzzle Solved About Ancient Galaxy
  • How 3D Printers Can Give Robots a Soft Touch
  • Combo of Multiple Health Stressors Harming Bees
  • Methane Emission On a Cold Brown Dwarf
  • Remarkable Memories of Mountain Chickadees
  • Predicting Future Marine Extinctions

Trending Topics

Strange & offbeat.

  • How It Works
  • PhD thesis writing
  • Master thesis writing
  • Bachelor thesis writing
  • Dissertation writing service
  • Dissertation abstract writing
  • Thesis proposal writing
  • Thesis editing service
  • Thesis proofreading service
  • Thesis formatting service
  • Coursework writing service
  • Research paper writing service
  • Architecture thesis writing
  • Computer science thesis writing
  • Engineering thesis writing
  • History thesis writing
  • MBA thesis writing
  • Nursing dissertation writing
  • Psychology dissertation writing
  • Sociology thesis writing
  • Statistics dissertation writing
  • Buy dissertation online
  • Write my dissertation
  • Cheap thesis
  • Cheap dissertation
  • Custom dissertation
  • Dissertation help
  • Pay for thesis
  • Pay for dissertation
  • Senior thesis
  • Write my thesis

119 Genetics Research Topics You Must Know About

genetics research topics

Put simply, Genetics is the study of genes and hereditary traits in living organisms. Knowledge in this field has gone up over time, and this is proportional to the amount of research.

Right from the DNA structure discovery, a lot more has come out into the open. There are so many genetics research topics to choose from because of the wide scope of research done in recent years.

Genetics is so dear to us since it helps us understand our genes and hereditary traits. In this guide, you will get to understand this subject more and get several topic suggestions that you can consider when looking for interesting genetics topics.

Writing a paper on genetics is quite intriguing nowadays. Remember that because there are so many topics in genetics, choosing the right one is crucial. It will help you cut down on research time and the technicality of selecting content for the topic. Thus, it would matter a lot if you confirmed whether or not the topic you’re choosing has relevant sources in plenty.

What Is Genetics?

Before we even go deeper into genetics topics for research papers, it is essential to have a basic understanding of what the subject entails.

Genetics is a branch of Biology to start with. It is mainly focused on the study of genetic variation, hereditary traits, and genes.

Genetics has relations with several other subjects, including biotechnology, medicine, and agriculture. In Genetics, we study how genes act on the cell and how they’re transmitted from a parent to the offspring. In modern Genetics, the emphasis is more on DNA, which is the chemical substance found in genes. Remember that Genetics cut across animals, insects, and plants – basically any living organism there is.

Tips On How To Write A Decent Research Paper On Genetics

When planning to choose genetics topics, you should also make time and learn how to research. After all, this is the only way you can gather the information that will help you come up with the content for the paper. Here are some tips that can bail you out whenever you feel stuck:

Choosing the topic, nonetheless, is not an easy thing for many students. There are just so many options present, and often, you get spoilt for choice. But note that this is an integral stage/process that you have to complete. Do proper research on the topic and choose the kind of information that you’d like to apply.

Choose a topic that has enough sources academically. Also, choosing interesting topics in genetics is a flex that can help you during the writing process.

On the web, there’s a myriad of information that often can become deceiving. Amateurs try their luck to put together several pieces of information in a bid to try and convince you that they are the authority on the subject. Many students become gullible to such tricks and end up writing poorly in Genetics.

Resist the temptation to look for an easy way of gaining sources/information. You have to take your time and dig up information from credible resources. Otherwise, you’ll look like a clown in front of your professor with laughable Genetics content.

Also, it is quite important that you check when your sources were updated or published. It is preferred and advised that you use recent sources that have gone under satisfactory research and assessment.

Also, add a few words to each on what you’re planning to discuss.Now, here are some of the top genetics paper topics that can provide ideas on what to write about.

Good Ideas For Genetics Topics

Here are some brilliant ideas that you can use as research paper topics in the Genetics field:

  • Is the knowledge of Genetics ahead of replication and research?
  • What would superman’s genetics be like?
  • DNA molecules and 3D printing – How does it work?
  • How come people living in mountainous regions can withstand high altitudes?
  • How to cross genes in distinct animals.
  • Does gene-crossing really help to improve breeds or animals?
  • The human body’s biggest intriguing genetic contradictions
  • Are we still far away from achieving clones?
  • How close are we to fully cloning human beings?
  • Can genetics really help scientists to secure various treatments?
  • Gene’s regulation – more details on how they can be regulated.
  • Genetic engineering and its functioning.
  • What are some of the most fascinating facts in the field of Genetics?
  • Can you decipher genetic code?
  • Cancer vaccines and whether or not they really work.
  • Revealing the genetic pathways that control how proteins are made in a bacterial cell.
  • How food affects the human body’s response to and connection with certain plants’ and animals’ DNA.

Hot Topics In Genetics

In this list are some of the topics that raise a lot of attention and interest from the masses. Choose the one that you’d be interested in:

  • The question of death: Why do men die before women?
  • Has human DNA changed since the evolution process?
  • How much can DNA really change?
  • How much percentage of genes from the father goes to the child?
  • Does the mother have a higher percentage of genes transferred to the child?
  • Is every person unique in terms of their genes?
  • How does genetics make some of us alike?
  • Is there a relationship between diets and genetics?
  • Does human DNA resemble any other animal’s DNA?
  • Sleep and how long you will live on earth: Are they really related?
  • Does genetics or a healthy lifestyle dictate how long you’ll live?
  • Is genetics the secret to long life on earth?
  • How much does genetics affect your life’s quality?
  • The question on ageing: Does genetics have a role to play?
  • Can one push away certain diseases just by passing a genetic test?
  • Is mental illness continuous through genes?
  • The relationship between Parkinson’s, Alzheimer’s and the DNA.

Molecular Genetics Topics

Here is a list of topics to help you get a better understanding of Molecular genetics:

  • Mutation of genes and constancy.
  • What can we learn more about viruses, bacteria, and multicellular organisms?
  • A study on molecular genetics: What does it involve?
  • The changing of genetics in bacteria.
  • What is the elucidation of the chemical nature of a gene?
  • Prokaryotes genetics: Why does this take a centre stage in the genetics of microorganisms?
  • Cell study: How this complex assessment has progressed.
  • What tools can scientists wield in cell study?
  • A look into the DNA of viruses.
  • What can the COVID-19 virus help us to understand about genetics?
  • Examining molecular genetics through chemical properties.
  • Examining molecular genetics through physical properties.
  • Is there a way you can store genetic information?
  • Is there any distinction between molecular levels and subcellular levels?
  • Variability and inheritance: What you need to note about living things at the molecular level.
  • The research and study on molecular genetics: Key takeaways.
  • What scientists can do within the confines of molecular genetics?
  • Molecular genetics research and experiments: What you need to know.
  • What is molecular genetics, and how can you learn about it?

Human Genetics Research Topics

Human genetics is an interesting field that has in-depth content. Some topics here will jog your brain and invoke curiosity in you. However, if you have difficulty writing a scientific thesis , you can always contact us for help.

  • Can you extend your life by up to 100% just by gaining more understanding of the structure of DNA?
  • What programming can you do with the help of DNA?
  • Production of neurotransmitters and hormones through DNA.
  • Is there something that you can change in the human body?
  • What is already predetermined in the human body?
  • Do genes capture and secure information on someone’s mentality?
  • Vaccines and their effect on the DNA.
  • What’s the likelihood that a majority of people on earth have similar DNA?
  • Breaking of the myostatin gene: What impact does it have on the human body?
  • Is obesity passed genetically?
  • What are the odds of someone being overweight when the rest of his lineage is obese?
  • A better understanding of the relationship between genetics and human metabolism.
  • The truths and myths engulfing human metabolism and genetics.
  • Genetic tests on sports performance: What you need to know.
  • An insight on human genetics.
  • Is there any way that you can prevent diseases that are transmitted genetically?
  • What are some of the diseases that can be passed from one generation to the next through genetics?
  • Genetic tests conducted on a person’s country of origin: Are they really accurate?
  • Is it possible to confirm someone’s country of origin just by analyzing their genes?

Current Topics in Genetics

A list to help you choose from all the most relevant topics:

  • DNA-altering experiments: How are scientists conducting them?
  • How important is it to educate kids about genetics while they’re still in early learning institutions?
  • A look into the genetics of men and women: What are the variations?
  • Successes and failures in the study of genetics so far.
  • What does the future of genetics compare to the current state?
  • Are there any TV series or science fiction films that showcase the future of genetics?
  • Some of the most famous myths today are about genetics.
  • Is there a relationship between genetics and homosexuality?
  • Does intelligence pass through generations?
  • What impact does genetics hold on human intelligence?
  • Do saliva and hair contain any genetic data?
  • What impact does genetics have on criminality?
  • Is it possible that most criminals inherit the trait through genetics?
  • Drug addiction and alcohol use: How close can you relate it to genetics?
  • DNA changes in animals, humans, and plants: What is the trigger?
  • Can you extend life through medication?
  • Are there any available remedies that extend a person’s life genetically?
  • Who can study genetics?
  • Is genetics only relevant to scientists?
  • The current approach to genetics study: How has it changed since ancient times?

Controversial Genetics Topics

Last, but definitely not least, are some controversial topics in genetics. These are topics that have gone through debate and have faced criticism all around. Here are some you can write a research paper about:

  • Gene therapy: Some of the ethical issues surrounding it.
  • The genetic engineering of animals: What questions have people raised about it?
  • The controversy around epigenetics.
  • The human evolution process and how it relates to genetics.
  • Gene editing and the numerous controversies around it.
  • The question on same-sex relations and genetics.
  • The use of personal genetic information in tackling forensic cases.
  • Gene doping in sports: What you need to know.
  • Gene patenting: Is it even possible?
  • Should gene testing be compulsory?
  • Genetic-based therapies and the cloud of controversy around them.
  • The dangers and opportunities that lie in genetic engineering.
  • GMOs and their impact on the health and welfare of humans.
  • At what stage in the control of human genetics do we stop to be human?
  • Food science and GMO.
  • The fight against GMOs: Why is it such a hot topic?
  • The pros and cons of genetic testing.
  • The debates around eugenics and genetics.
  • Labelling of foods with GMO: Should it be mandatory?
  • What really are the concerns around the use of GMOs?
  • The Supreme Court decision on the patent placed on gene discoveries.
  • The ethical issues surrounding nurses and genomic healthcare.
  • Cloning controversial issues.
  • Religion and genetics.
  • Behavior learning theories are pegged on genetics.
  • Countries’ war on GMOs.
  • Studies on genetic disorders.

Get Professional Help Online

Now that we have looked at the best rated topics in genetics, from interesting to controversial topics genetics, you have a clue on what to choose. These titles should serve as an example of what to select.

Nonetheless, if you need help with a thesis, we are available to offer professional and affordable thesis writing services . Our high quality college and university assignment assistance are available to all students online at a cheap rate. Get a sample to check on request and let us give you a hand when you need it most.

170 AP Research Topics

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Comment * Error message

Name * Error message

Email * Error message

Save my name, email, and website in this browser for the next time I comment.

As Putin continues killing civilians, bombing kindergartens, and threatening WWIII, Ukraine fights for the world's peaceful future.

Ukraine Live Updates

Featured Topics

Featured series.

A series of random questions answered by Harvard experts.

Explore the Gazette

Read the latest.

People walking and running in park.

Exercise cuts heart disease risk in part by lowering stress, study finds

Headshot of Elizabeth Comen.

Women rarely die from heart problems, right? Ask Paula.

Cathy Wu

When will patients see personalized cancer vaccines?

How to realize immense promise of gene editing.

Jennifer Doudna.

Nobel laureate Jennifer Doudna at Harvard Medical School.

Photos by Niles Singer/Harvard Staff Photographer

Alvin Powell

Harvard Staff Writer

Nobel-winning CRISPR pioneer says approval of revolutionary sickle-cell therapy shows need for more efficient, less expensive process 

The world stands on the edge of an era when gene editing can address many serious ills plaguing humankind, according to a pioneer of the revolutionary gene editing technique known as CRISPR-Cas9. But first, she said, there is a problem to solve.

Jennifer Doudna , whose work on CRISPR earned her the 2020 Nobel Prize in chemistry , applauded the recent approval of a CRISPR-based gene-editing therapy to help those struggling with sickle-cell disease. The therapy, developed by Boston-based Vertex Pharmaceuticals and CRISPR Therapeutics, was approved by the FDA in 2023. Preapproval studies showed it was very effective at reducing the severe pain that accompanies the life-threatening blood disorder.

Doudna, who visited Harvard Medical School last week to deliver the century-old Dunham Lectures, said the advance shows how CRISPR-based therapies can address hard-to-treat ailments, but it also highlights the hurdles that still stand in the way of widespread use. The therapy, she said, uses a process similar to that of a bone-marrow transplant. Blood stem cells are extracted from a patient’s bone marrow, genetically engineered, and then reinfused into the marrow to produce blood cells that greatly reduce disease symptoms and dangerous complications.

That process, while groundbreaking, is physically challenging for patients, and expensive, with each treatment costing more than $1 million. Together, those factors explain why only 250 people have received the therapy so far, Doudna said, even though the condition afflicts 90,000 to 100,000 in the U.S. and millions worldwide.

“It’s exciting, but that’s quite a small number,” Doudna said.

Jennifer Doudna giving a lecture in the Joseph B Martin Conference Center.

Doudna delivered her talk, “Rewriting the Future of Health Care with Genome Editing,” on Thursday in a packed Joseph B. Martin Amphitheater on HMS’ Longwood Campus in Boston.

She said that if CRISPR is to match its promise to reduce human suffering, new delivery methods are essential. She described several efforts underway in her lab and those of colleagues to create nanoparticle delivery systems that could, if perfected, relatively simply and cheaply deliver the CRISPR-based gene editor to target cells in various tissues.

That would allow the gene-editing process to occur inside the patient’s body rather than in the lab, as occurs with the new sickle-cell treatment. That would avoid the expensive and arduous process of extracting cells from a patient’s body, engineering them to address a condition’s genetic causes, and then reinjecting them into the patient.

“How we can achieve in vivo genome editing, I increasingly think this is the bottleneck in this field,” Doudna said. “Broadly speaking, what we need to be addressing is how these editors are going to get into target cells in the body. It’s a really interesting, really big challenge, and there’s many people working on it.”

The discovery of CRISPR/Cas9 in 2012 stemmed from basic scientific research into how bacteria fight off viruses. Researchers realized that a portion of the bacterial immune system contains molecules that precisely snip DNA at specific locations, and developed that into the molecular scissors of CRISPR/Cas9 that allow the precise editing of human, plant, and animal DNA at specific locations.

The technique was immediately seen as a major advance and other scientists began using it in their own research.

“Her groundbreaking development of CRISPR/Cas9 genome editing technology, with collaborator Emmanuelle Charpentier, earned the two of them the Nobel Prize in chemistry in 2020 and forever changed the course of human, animal, and agricultural research,” said Stephen Blacklow , chair of the HMS Department of Biological Chemistry and Molecular Pharmacology , who introduced Doudna. He added that Doudna has an “unsurpassed capacity to engage and inspire the next generation.”

Doudna, who received her Ph.D. from HMS’ Biological Chemistry and Molecular Pharmacology Department in 1989 under Nobel laureate Jack Szostak, expressed confidence that the problem of delivering gene-editing therapy directly to patients’ cells is a solvable one. Her talk dealt with strategies to tackle the problem including lentiviruses, lipid nanoparticles, and something called EDV — enveloped delivery vehicles.

“It makes me think that ultimately … we can come up with a strategy for a particle that will be both easy to make, easy to program, and be effective at delivering in vivo,” Doudna said.

Share this article

You might like.

Benefits nearly double for people with depression

Headshot of Elizabeth Comen.

New book traces how medical establishment’s sexism, focus on men over centuries continues to endanger women’s health, lives

Cathy Wu

Sooner than you may think, says researcher who recently won Sjöberg Prize for pioneering work in field

So what exactly makes Taylor Swift so great?

Experts weigh in on pop superstar's cultural and financial impact as her tours and albums continue to break records.

Finding right mix on campus speech policies

Legal, political scholars discuss balancing personal safety, constitutional rights, academic freedom amid roiling protests, cultural shifts

share this!

April 17, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

Researchers uncover human DNA repair by nuclear metamorphosis

by Erin Howe, University of Toronto

dna

Researchers at the University of Toronto have discovered a DNA repair mechanism that advances understanding of how human cells stay healthy, and which could lead to new treatments for cancer and premature aging.

The study, published in the journal Nature Structural and Molecular Biology , also sheds light on the mechanism of action of some existing chemotherapy drugs.

"We think this research solves the mystery of how DNA double-strand breaks and the nuclear envelope connect for repair in human cells," said Professor Karim Mekhail, co-principal investigator on the study and a professor of laboratory medicine and pathobiology at U of T's Temerty Faculty of Medicine.

"It also makes many previously published discoveries in other organisms applicable in the context of human DNA repair, which should help science move even faster."

DNA double-strand breaks arise when cells are exposed to radiation and chemicals, and through internal processes such as DNA replication. They are one of the most serious types of DNA damage because they can stall cell growth or put it in overdrive, promoting aging and cancer.

The new discovery, made in human cells and in collaboration with Professor Razqallah Hakem, a researcher at University Health Network and professor at Temerty Medicine, extends prior research on DNA damage in yeast by Mekhail and other scientists.

In 2015, Mekhail and collaborators showed how motor proteins deep inside the nucleus of yeast cells transport double-strand breaks to "DNA hospital-like" protein complexes embedded in the nuclear envelope at the edge of the nucleus.

Other studies uncovered related mechanisms during DNA repair in flies and other organisms. However, scientists exploring similar mechanisms in human and other mammalian cells reported little to no DNA mobility for most breaks.

"We knew that nuclear envelope proteins were important for DNA repair across most of these organisms, so we wondered how to explain the limited mobility of damaged DNA in mammalian cells," Mekhail says.

The answer is both surprising and elegant.

When DNA inside the nucleus of a human cell is damaged, a specific network of microtubule filaments forms in the cytoplasm around the nucleus and pushes on the nuclear envelope. This prompts the formation of tiny tubes, or tubules, which reach into the nucleus and catch most double-strand breaks.

"It's like fingers pushing on a balloon," says Mekhail. "When you squeeze a balloon, your fingers form tunnels in its structure, which forces some parts of the balloon's exterior inside itself."

Further research by the study authors detailed several aspects of this process. Enzymes called DNA damage response kinases and tubulin acetyltransferase are the master regulators of the process, and promote the formation of the tubules.

Enzymes deposit a chemical mark on a specific part of the microtubule filaments, which causes them to recruit tiny motor proteins and push on the nuclear envelope. Consequently, the repair-promoting protein complexes push the envelope deep into the nucleus, creating bridges to the DNA breaks.

"This ensures that the nucleus undergoes a form of reversible metamorphosis, allowing the envelope to temporarily infiltrate DNA throughout the nucleus, capturing and reconnecting broken DNA," says Mekhail.

The findings have significant implications for some cancer treatments.

Normal cells use the nuclear envelope tubules to repair DNA, but cancer cells appear to need them more. To explore the mechanism's potential impact, the team analyzed data representing over 8,500 patients with various cancers. The need was visible in several cancers, including triple-negative breast cancer , which is highly aggressive.

"There is a huge effort to identify new therapeutic avenues for cancer patients, and this discovery is a big step forward," says Hakem, a senior scientist at UHN's Princess Margaret Cancer Center and a professor in U of T's department of medical biophysics and department of laboratory medicine and pathobiology.

"Until now, scientists were unclear as to the relative impact of the nuclear envelope in the repair of damaged DNA in human cells. Our collaboration revealed that targeting factors that modulate the nuclear envelope for damaged DNA repair effectively restrains breast cancer development," Hakem says.

In the aggressive triple negative breast cancer, there are elevated levels of the tubules, likely because they have more DNA damage than normal cells. When the researchers knocked out the genes needed to control the tubules, cancer cells were less able to form tumors.

One medication used to treat triple negative breast cancer is a class of drugs called PARP inhibitors. PARP is an enzyme that binds to and helps repair damaged DNA. PARP inhibitors block the enzyme from performing repair, preventing the ends of a DNA double-strand break in cancer cells from reconnecting to one another.

The cancer cells end up joining two broken ends that are not part of the same pair. As more mismatched pairs are created, the resulting DNA structures become impossible for cells to copy and divide.

"Our study shows that the drug's ability to trigger these mismatches relies on the tubules. When fewer tubules are present, cancer cells are more resistant to PARP inhibitors," says Hakem.

Partnerships among researchers in distinct fields was essential for the findings in cancer cells. The study underscores the importance of cross-disciplinary collaboration, Mekhail says.

"The brain power behind every project is crucial. Every team member counts. Also, every right collaborator added to the research project is akin to earning another doctorate in a new specialty; it's powerful," he says.

Mekhail notes the discovery is also relevant to premature aging conditions like progeria. The rare genetic condition causes rapid aging within the first two decades of life, commonly leading to early death.

Progeria is linked to a gene coding for lamin A. Mutations in this gene reduce the rigidity of the nuclear envelope. The team found that expression of mutant lamin A is sufficient to induce the tubules, which DNA damaging agents further boosted. The team thinks that even weak pressure on the nuclear envelope spurs the creation of tubules in premature aging cells.

The findings suggest that in progeria, DNA repair may be compromised by the presence of too many or poorly regulated tubules. The study results also have implications for many other clinical conditions, Mekhail says.

"It's exciting to think about where these findings will lead us next," says Mekhail. "We have excellent colleagues and incredible trainees here at Temerty Medicine and in our partner hospitals. We're already working toward following this discovery and using our work to create novel therapeutics."

Journal information: Nature Structural & Molecular Biology , Nature Structural and Molecular Biology

Provided by University of Toronto

Explore further

Feedback to editors

dna research paper topics

Giant galactic explosion exposes galaxy pollution in action

11 hours ago

dna research paper topics

Crucial building blocks of life on Earth can more easily form in outer space, says new research

18 hours ago

dna research paper topics

Saturday Citations: Irrationality modeled; genetic basis for PTSD; Tasmanian devils still endangered

Apr 20, 2024

dna research paper topics

Lemur's lament: When one vulnerable species stalks another

dna research paper topics

Study uncovers neural mechanisms underlying foraging behavior in freely moving animals

dna research paper topics

Scientists assess paths toward maintaining BC caribou until habitat recovers

dna research paper topics

European XFEL elicits secrets from an important nanogel

Apr 19, 2024

dna research paper topics

Chemists introduce new copper-catalyzed C-H activation strategy

dna research paper topics

Scientists discover new way to extract cosmological information from galaxy surveys

dna research paper topics

Compact quantum light processing: New findings lead to advances in optical quantum computing

Relevant physicsforums posts, major evolution in action.

3 hours ago

The Cass Report (UK)

If theres a 15% probability each month of getting a woman pregnant..., can four legged animals drink from beneath their feet.

Apr 15, 2024

Mold in Plastic Water Bottles? What does it eat?

Apr 14, 2024

Dolphins don't breathe through their esophagus

More from Biology and Medical

Related Stories

dna research paper topics

Team shows how an anticancer drug kills cancer cells and damages healthy cells, paves way for improved treatment

Mar 20, 2024

dna research paper topics

Research uncovers how damaged cell nucleus reseals and repairs itself

Dec 8, 2021

dna research paper topics

Researchers discover intricate process of DNA repair in genome stability

Feb 5, 2020

dna research paper topics

The nuclear envelope and breast cancer metastasis

Oct 18, 2023

dna research paper topics

DNA repair discovery could improve biotechnology

Mar 2, 2023

dna research paper topics

Key clues to DNA repair mechanism might lead to new cancer treatments

Nov 13, 2023

Recommended for you

dna research paper topics

Why zebrafish can regenerate damaged heart tissue, while other fish species cannot

dna research paper topics

Light show in living cells: New method allows simultaneous fluorescent labeling of many proteins

dna research paper topics

Seeing is believing: Scientists reveal connectome of the fruit fly visual system

dna research paper topics

Uncovering key players in gene silencing: Insights into plant growth and human diseases

dna research paper topics

RNA's hidden potential: New study unveils its role in early life and future bioengineering

Apr 18, 2024

dna research paper topics

Key protein regulates immune response to viruses in mammal cells

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

PrepScholar

Choose Your Test

Sat / act prep online guides and tips, 113 great research paper topics.

author image

General Education

feature_pencilpaper

One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and cover a wide range of subjects so you can easily find the best topic for you.

In addition to the list of good research topics, we've included advice on what makes a good research paper topic and how you can use your topic to start writing a great paper.

What Makes a Good Research Paper Topic?

Not all research paper topics are created equal, and you want to make sure you choose a great topic before you start writing. Below are the three most important factors to consider to make sure you choose the best research paper topics.

#1: It's Something You're Interested In

A paper is always easier to write if you're interested in the topic, and you'll be more motivated to do in-depth research and write a paper that really covers the entire subject. Even if a certain research paper topic is getting a lot of buzz right now or other people seem interested in writing about it, don't feel tempted to make it your topic unless you genuinely have some sort of interest in it as well.

#2: There's Enough Information to Write a Paper

Even if you come up with the absolute best research paper topic and you're so excited to write about it, you won't be able to produce a good paper if there isn't enough research about the topic. This can happen for very specific or specialized topics, as well as topics that are too new to have enough research done on them at the moment. Easy research paper topics will always be topics with enough information to write a full-length paper.

Trying to write a research paper on a topic that doesn't have much research on it is incredibly hard, so before you decide on a topic, do a bit of preliminary searching and make sure you'll have all the information you need to write your paper.

#3: It Fits Your Teacher's Guidelines

Don't get so carried away looking at lists of research paper topics that you forget any requirements or restrictions your teacher may have put on research topic ideas. If you're writing a research paper on a health-related topic, deciding to write about the impact of rap on the music scene probably won't be allowed, but there may be some sort of leeway. For example, if you're really interested in current events but your teacher wants you to write a research paper on a history topic, you may be able to choose a topic that fits both categories, like exploring the relationship between the US and North Korea. No matter what, always get your research paper topic approved by your teacher first before you begin writing.

113 Good Research Paper Topics

Below are 113 good research topics to help you get you started on your paper. We've organized them into ten categories to make it easier to find the type of research paper topics you're looking for.

Arts/Culture

  • Discuss the main differences in art from the Italian Renaissance and the Northern Renaissance .
  • Analyze the impact a famous artist had on the world.
  • How is sexism portrayed in different types of media (music, film, video games, etc.)? Has the amount/type of sexism changed over the years?
  • How has the music of slaves brought over from Africa shaped modern American music?
  • How has rap music evolved in the past decade?
  • How has the portrayal of minorities in the media changed?

music-277279_640

Current Events

  • What have been the impacts of China's one child policy?
  • How have the goals of feminists changed over the decades?
  • How has the Trump presidency changed international relations?
  • Analyze the history of the relationship between the United States and North Korea.
  • What factors contributed to the current decline in the rate of unemployment?
  • What have been the impacts of states which have increased their minimum wage?
  • How do US immigration laws compare to immigration laws of other countries?
  • How have the US's immigration laws changed in the past few years/decades?
  • How has the Black Lives Matter movement affected discussions and view about racism in the US?
  • What impact has the Affordable Care Act had on healthcare in the US?
  • What factors contributed to the UK deciding to leave the EU (Brexit)?
  • What factors contributed to China becoming an economic power?
  • Discuss the history of Bitcoin or other cryptocurrencies  (some of which tokenize the S&P 500 Index on the blockchain) .
  • Do students in schools that eliminate grades do better in college and their careers?
  • Do students from wealthier backgrounds score higher on standardized tests?
  • Do students who receive free meals at school get higher grades compared to when they weren't receiving a free meal?
  • Do students who attend charter schools score higher on standardized tests than students in public schools?
  • Do students learn better in same-sex classrooms?
  • How does giving each student access to an iPad or laptop affect their studies?
  • What are the benefits and drawbacks of the Montessori Method ?
  • Do children who attend preschool do better in school later on?
  • What was the impact of the No Child Left Behind act?
  • How does the US education system compare to education systems in other countries?
  • What impact does mandatory physical education classes have on students' health?
  • Which methods are most effective at reducing bullying in schools?
  • Do homeschoolers who attend college do as well as students who attended traditional schools?
  • Does offering tenure increase or decrease quality of teaching?
  • How does college debt affect future life choices of students?
  • Should graduate students be able to form unions?

body_highschoolsc

  • What are different ways to lower gun-related deaths in the US?
  • How and why have divorce rates changed over time?
  • Is affirmative action still necessary in education and/or the workplace?
  • Should physician-assisted suicide be legal?
  • How has stem cell research impacted the medical field?
  • How can human trafficking be reduced in the United States/world?
  • Should people be able to donate organs in exchange for money?
  • Which types of juvenile punishment have proven most effective at preventing future crimes?
  • Has the increase in US airport security made passengers safer?
  • Analyze the immigration policies of certain countries and how they are similar and different from one another.
  • Several states have legalized recreational marijuana. What positive and negative impacts have they experienced as a result?
  • Do tariffs increase the number of domestic jobs?
  • Which prison reforms have proven most effective?
  • Should governments be able to censor certain information on the internet?
  • Which methods/programs have been most effective at reducing teen pregnancy?
  • What are the benefits and drawbacks of the Keto diet?
  • How effective are different exercise regimes for losing weight and maintaining weight loss?
  • How do the healthcare plans of various countries differ from each other?
  • What are the most effective ways to treat depression ?
  • What are the pros and cons of genetically modified foods?
  • Which methods are most effective for improving memory?
  • What can be done to lower healthcare costs in the US?
  • What factors contributed to the current opioid crisis?
  • Analyze the history and impact of the HIV/AIDS epidemic .
  • Are low-carbohydrate or low-fat diets more effective for weight loss?
  • How much exercise should the average adult be getting each week?
  • Which methods are most effective to get parents to vaccinate their children?
  • What are the pros and cons of clean needle programs?
  • How does stress affect the body?
  • Discuss the history of the conflict between Israel and the Palestinians.
  • What were the causes and effects of the Salem Witch Trials?
  • Who was responsible for the Iran-Contra situation?
  • How has New Orleans and the government's response to natural disasters changed since Hurricane Katrina?
  • What events led to the fall of the Roman Empire?
  • What were the impacts of British rule in India ?
  • Was the atomic bombing of Hiroshima and Nagasaki necessary?
  • What were the successes and failures of the women's suffrage movement in the United States?
  • What were the causes of the Civil War?
  • How did Abraham Lincoln's assassination impact the country and reconstruction after the Civil War?
  • Which factors contributed to the colonies winning the American Revolution?
  • What caused Hitler's rise to power?
  • Discuss how a specific invention impacted history.
  • What led to Cleopatra's fall as ruler of Egypt?
  • How has Japan changed and evolved over the centuries?
  • What were the causes of the Rwandan genocide ?

main_lincoln

  • Why did Martin Luther decide to split with the Catholic Church?
  • Analyze the history and impact of a well-known cult (Jonestown, Manson family, etc.)
  • How did the sexual abuse scandal impact how people view the Catholic Church?
  • How has the Catholic church's power changed over the past decades/centuries?
  • What are the causes behind the rise in atheism/ agnosticism in the United States?
  • What were the influences in Siddhartha's life resulted in him becoming the Buddha?
  • How has media portrayal of Islam/Muslims changed since September 11th?

Science/Environment

  • How has the earth's climate changed in the past few decades?
  • How has the use and elimination of DDT affected bird populations in the US?
  • Analyze how the number and severity of natural disasters have increased in the past few decades.
  • Analyze deforestation rates in a certain area or globally over a period of time.
  • How have past oil spills changed regulations and cleanup methods?
  • How has the Flint water crisis changed water regulation safety?
  • What are the pros and cons of fracking?
  • What impact has the Paris Climate Agreement had so far?
  • What have NASA's biggest successes and failures been?
  • How can we improve access to clean water around the world?
  • Does ecotourism actually have a positive impact on the environment?
  • Should the US rely on nuclear energy more?
  • What can be done to save amphibian species currently at risk of extinction?
  • What impact has climate change had on coral reefs?
  • How are black holes created?
  • Are teens who spend more time on social media more likely to suffer anxiety and/or depression?
  • How will the loss of net neutrality affect internet users?
  • Analyze the history and progress of self-driving vehicles.
  • How has the use of drones changed surveillance and warfare methods?
  • Has social media made people more or less connected?
  • What progress has currently been made with artificial intelligence ?
  • Do smartphones increase or decrease workplace productivity?
  • What are the most effective ways to use technology in the classroom?
  • How is Google search affecting our intelligence?
  • When is the best age for a child to begin owning a smartphone?
  • Has frequent texting reduced teen literacy rates?

body_iphone2

How to Write a Great Research Paper

Even great research paper topics won't give you a great research paper if you don't hone your topic before and during the writing process. Follow these three tips to turn good research paper topics into great papers.

#1: Figure Out Your Thesis Early

Before you start writing a single word of your paper, you first need to know what your thesis will be. Your thesis is a statement that explains what you intend to prove/show in your paper. Every sentence in your research paper will relate back to your thesis, so you don't want to start writing without it!

As some examples, if you're writing a research paper on if students learn better in same-sex classrooms, your thesis might be "Research has shown that elementary-age students in same-sex classrooms score higher on standardized tests and report feeling more comfortable in the classroom."

If you're writing a paper on the causes of the Civil War, your thesis might be "While the dispute between the North and South over slavery is the most well-known cause of the Civil War, other key causes include differences in the economies of the North and South, states' rights, and territorial expansion."

#2: Back Every Statement Up With Research

Remember, this is a research paper you're writing, so you'll need to use lots of research to make your points. Every statement you give must be backed up with research, properly cited the way your teacher requested. You're allowed to include opinions of your own, but they must also be supported by the research you give.

#3: Do Your Research Before You Begin Writing

You don't want to start writing your research paper and then learn that there isn't enough research to back up the points you're making, or, even worse, that the research contradicts the points you're trying to make!

Get most of your research on your good research topics done before you begin writing. Then use the research you've collected to create a rough outline of what your paper will cover and the key points you're going to make. This will help keep your paper clear and organized, and it'll ensure you have enough research to produce a strong paper.

What's Next?

Are you also learning about dynamic equilibrium in your science class? We break this sometimes tricky concept down so it's easy to understand in our complete guide to dynamic equilibrium .

Thinking about becoming a nurse practitioner? Nurse practitioners have one of the fastest growing careers in the country, and we have all the information you need to know about what to expect from nurse practitioner school .

Want to know the fastest and easiest ways to convert between Fahrenheit and Celsius? We've got you covered! Check out our guide to the best ways to convert Celsius to Fahrenheit (or vice versa).

These recommendations are based solely on our knowledge and experience. If you purchase an item through one of our links, PrepScholar may receive a commission.

author image

Christine graduated from Michigan State University with degrees in Environmental Biology and Geography and received her Master's from Duke University. In high school she scored in the 99th percentile on the SAT and was named a National Merit Finalist. She has taught English and biology in several countries.

Student and Parent Forum

Our new student and parent forum, at ExpertHub.PrepScholar.com , allow you to interact with your peers and the PrepScholar staff. See how other students and parents are navigating high school, college, and the college admissions process. Ask questions; get answers.

Join the Conversation

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Improve With Our Famous Guides

  • For All Students

The 5 Strategies You Must Be Using to Improve 160+ SAT Points

How to Get a Perfect 1600, by a Perfect Scorer

Series: How to Get 800 on Each SAT Section:

Score 800 on SAT Math

Score 800 on SAT Reading

Score 800 on SAT Writing

Series: How to Get to 600 on Each SAT Section:

Score 600 on SAT Math

Score 600 on SAT Reading

Score 600 on SAT Writing

Free Complete Official SAT Practice Tests

What SAT Target Score Should You Be Aiming For?

15 Strategies to Improve Your SAT Essay

The 5 Strategies You Must Be Using to Improve 4+ ACT Points

How to Get a Perfect 36 ACT, by a Perfect Scorer

Series: How to Get 36 on Each ACT Section:

36 on ACT English

36 on ACT Math

36 on ACT Reading

36 on ACT Science

Series: How to Get to 24 on Each ACT Section:

24 on ACT English

24 on ACT Math

24 on ACT Reading

24 on ACT Science

What ACT target score should you be aiming for?

ACT Vocabulary You Must Know

ACT Writing: 15 Tips to Raise Your Essay Score

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

Is the ACT easier than the SAT? A Comprehensive Guide

Should you retake your SAT or ACT?

When should you take the SAT or ACT?

Stay Informed

dna research paper topics

Get the latest articles and test prep tips!

Looking for Graduate School Test Prep?

Check out our top-rated graduate blogs here:

GRE Online Prep Blog

GMAT Online Prep Blog

TOEFL Online Prep Blog

Holly R. "I am absolutely overjoyed and cannot thank you enough for helping me!”

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Forensic Sci Int Synerg

Recent advances in forensic biology and forensic DNA typing: INTERPOL review 2019–2022

Associated data.

This review paper covers the forensic-relevant literature in biological sciences from 2019 to 2022 as a part of the 20th INTERPOL International Forensic Science Managers Symposium. Topics reviewed include rapid DNA testing, using law enforcement DNA databases plus investigative genetic genealogy DNA databases along with privacy/ethical issues, forensic biology and body fluid identification, DNA extraction and typing methods, mixture interpretation involving probabilistic genotyping software (PGS), DNA transfer and activity-level evaluations, next-generation sequencing (NGS), DNA phenotyping, lineage markers (Y-chromosome, mitochondrial DNA, X-chromosome), new markers and approaches (microhaplotypes, proteomics, and microbial DNA), kinship analysis and human identification with disaster victim identification (DVI), and non-human DNA testing including wildlife forensics. Available books and review articles are summarized as well as 70 guidance documents to assist in quality control that were published in the past three years by various groups within the United States and around the world.

1. Introduction

This review explores developments in forensic biology and forensic DNA analysis of biological evidence during the years 2019–2022. In some cases, there may be overlap with 2019 articles mentioned in the previous INTERPOL review covering 2016 to 2019 [ 1 ]. This review includes books and review articles, published guidance documents to assist in quality control, rapid DNA testing, using law enforcement DNA databases plus investigative genetic genealogy DNA databases along with privacy/ethical issues, forensic biology and body fluid identification, DNA extraction and typing methods, mixture interpretation involving probabilistic genotyping software (PGS), DNA transfer and activity level evaluations, next-generation sequencing (NGS), DNA phenotyping, lineage markers (Y-chromosome, mitochondrial DNA, X-chromosome), new markers and approaches (microhaplotypes, proteomics, and microbial DNA), kinship analysis and human identification with disaster victim identification (DVI), and non-human DNA testing including wildlife forensics.

Multiple searches, using the Scopus (Elsevier) and Web of Science (Clarivate) databases, were conducted in the first half of 2022 with “forensic” and “DNA” or “biology” and “2019 to 2022” as search options. Over 4000 articles were returned with these searches. Through visual examination of titles and authors, duplicates were removed, and articles sorted into 32 subcategories to arrive at a list of almost 2000 publications that were supplemented throughout the remainder of the year as this review was being prepared. The tables of contents for non-indexed journals, such as WIRES Forensic Science , Journal of Forensic Identification , and Forensic Genomics were also examined to locate potentially relevant articles.

For example, a Scopus search conducted on June 13, 2022, using “forensic DNA” and “2019 to 2022” found a total of 3059 documents. Table 1 lists the top ten journals from this search. The Forensic Science International: Genetics Supplement Series (see row #4 in Table 1 ) provides the proceedings of the International Society for Forensic Genetics (ISFG) meeting held in Prague in September 2019. This volume contains 914 pages with 347 articles (although only 172 showed up in the Scopus search) that are freely available at https://www.fsigeneticssup.com /[ 2 ]. Thus, searches conducted with one or even multiple databases (e.g., Scopus and Web of Science) may not be comprehensive or exhaustive.

Top ten journals with forensic DNA articles published from 2019 to 2022 based on a Scopus search on June 13, 2022.

1.1. Books, special issues, and review articles of note

Books published during the period of this review relating to forensic biology and forensic DNA include Essential Forensic Biology, Third Edition [ 3 ], Principles and Practices of DNA Analysis: A Laboratory Manual for Forensic DNA Typing [ 4 ], Forensic DNA Profiling: A Practical Guide to Assigning Likelihood Ratios [ 5 ], Forensic Practitioner's Guide to the Interpretation of Complex DNA Profiles [ 6 ], Silent Witness: Forensic DNA Evidence in Criminal Investigations and Humanitarian Disasters [ 7 ], Mass Identifications: Statistical Methods in Forensic Genetics [ 8 ], Probability and Forensic Evidence: Theory, Philosophy, and Applications [ 9 ], Interpreting Complex Forensic DNA Evidence [ 10 ], Understanding DNA Ancestry [ 11 ], Understanding Forensic DNA [ 12 ], and Handbook of DNA Profiling [ 13 ]. The 2022 Handbook of DNA Profiling spans two volumes and 1206 pages with 54 chapters from 115 contributors representing 17 countries.

Over the past three years, several special issues on topics related to forensic biology were published in Forensic Science International: Genetics and Genes . These special issues were typically collated virtually rather than physically as invited articles were published online over some period of time and then bundled together virtually as a special issue. Some of these review articles or a set of special issue articles are open access (i.e., the authors paid a publication fee so that the article would be available online for free to readers).

During the time frame of this INTERPOL DNA review, FSI Genetics published two special issues: (1) “Trends and Perspectives in Forensic Genetics” (editor: Manfred Kayser) 1 with nine review and two original research articles published between September 2018 and January 2019, and (2) “Forensic Genetics – Unde venisti et quo vadis?” [Latin for “where did you come from and where are you going?”] (editor: Manfred Kayser) with nine articles published in 2021 and early 2022 and likely two more before the end of 2022. Topics for review articles in these special issues include DNA transfer [ 14 ], probabilistic genotyping software [ 15 ], microhaplotypes in forensic genetics [ 16 ], investigative genetic genealogy [ 17 ], forensic proteomics [ 18 ], distinguishing male monozygotic twins [ 19 ], and using the human microbiome for estimating post-mortem intervals and identifying individuals, tissues, or body fluids [ 20 , 21 ]. All of these topics will be discussed later in this article.

A Genes special issue “Forensic Genetics and Genomics” (editors: Emiliano Giardina and Michele Ragazzo) 2 published 11 online articles plus an editorial from April 2020 to January 2021 while another Genes special issue “Forensic Mitochondrial Genomics” (editors: Mitch Holland and Charla Marshall) 3 compiled 11 articles from February 2020 to April 2021. An “Advances in Forensic Genetics” Genes special issue (editor: Niels Morling) 4 included 25 articles shared between April 2021 and May 2022. In July 2022, the Advances in Forensic Genetics articles were compiled as a 518-page book. 5 Other Genes special issues in development or forthcoming covering aspects of forensic DNA and requesting potential manuscripts by late 2022 or early 2023 include “State-of-the-Art in Forensic Genetics” (editor: Chiara Turchi), 6 “Trends in Population Genetics and Identification—Impact on Anthropology (editors: Antonio Amorim, Veronica Gomes, Luisa Azevedo), 7 “Identification of Human Remains for Forensic and Humanitarian Purposes: From Molecular to Physical Methods” (editors: Elena Pilli, Cristina Cattaneo), 8 “Improved Methods in Forensic and DNA Analysis” (editor: Marie Allen), 9 “Forensic DNA Mixture Interpretation and Probabilistic Genotyping” (editor: Michael Coble) 10 , and “Advances in Forensic Molecular Genetics” (editors: Erin Hanson and Claire Glynn). 11 There has been a proliferation of review articles and special issues in this field in the past several years!

A new journal Forensic Science International: Reports was launched in November 2019. As of June 2022, it has published 89 articles involving DNA, most of which are descriptions of population genetic data. Likewise, a June 27, 2022, PubMed search with “forensic DNA” and the journal “Genes” found 88 articles – many of which are part of the previously mentioned special issues.

1.2. Guidance documents

Numerous documentary standards and guidance documents related to forensic DNA have been published by various organizations around the world. Table 2 lists 70 such documents released in the past three years (2019–2022) in the United States, UK, Australia, and the European Union.

Guidance documents related to forensic DNA published from 2019 to 2022. The titles are hyperlinked to available documents. Abbreviations: FBI (Federal Bureau of Investigation), CODIS (Combined DNA Index System), SWGDAM (Scientific Working Group on DNA Analysis Methods), NGS (next generation sequencing), US DOJ (United States Department of Justice), ULTR (Uniform Language for Testimony and Reports), AABB (Association for the Advancement of Blood and Biotherapies), ASB (Academy Standards Board), OSAC (Organization of Scientific Area Committees for Forensic Science), UKFSR (United Kingdom Forensic Science Regulator), ENFSI (European Network of Forensic Science Institutes), NIFS (National Institute of Forensic Science), ISFG (International Society for Forensic Genetics).

1.2.1. SWGDAM, FBI, and other US DOJ activities

The Federal Bureau of Investigation (FBI) Laboratory funds the Scientific Working Group on DNA Analysis Methods (SWGDAM) 12 to serve as a forum for discussing, sharing, and evaluating forensic biology methods, protocols, training, and research. In addition to creating guidelines on various topics, SWGDAM, which meets semiannually in January and July, provides recommendations to the FBI Director on the Quality Assurance Standards (QAS) used to assess U.S. forensic DNA laboratories involved in the National DNA Index System (NDIS) that perform DNA databasing and forensic casework. New versions of the QAS became effective July 1, 2020.

SWGDAM work products from the timeframe of 2019–2022 (see Table 2 ) include QAS audit and guidance documents, mitochondrial DNA analysis and short tandem repeat (STR) interpretation guideline revisions related to next-generation sequencing (NGS), training and Y-chromosome interpretation guidelines, a Y-chromosome Haplotype Reference Database (YHRD) update for U.S. laboratories, and reports on investigative genetic genealogy and Y-screening of sexual assault evidence kits. These documents are all accessible online. 13

In January 2022, the FBI produced a 13-page guide 14 on rapid DNA testing describing booking station applications and their vision for future integration of crime scene sample analysis and the Combined DNA Index System (CODIS), which builds on a joint position statement published in July 2020 by leaders of U.S. and European groups [ 22 ]. In addition, the FBI has shared guidance on their website for non-CODIS use of rapid DNA testing with law enforcement applications 15 and considerations for court. 16

United States Department of Justice (US DOJ) Uniform Language for Testimony and Reports (ULTRs), 17 contain three ULTRs for the forensic DNA discipline that became effective in March 2019: autosomal DNA with probabilistic genotyping, mitochondrial DNA, and Y-STR DNA. USDOJ also released an interim policy on investigative genetic genealogy in November 2019 [ 23 ] along with an opinion piece in the journal Science calling for responsible genetic genealogy [ 24 ].

Other agencies within US DOJ, namely the Bureau of Justice Assistance (BJA) and the National Institute of Justice (NIJ), published a guide for prosecutors on triaging forensic evidence [ 25 ] and best practices for improving DNA laboratory process efficiency [ 26 ]. A 200-page report to Congress on the needs assessment of forensic laboratories and medical examiner/coroner offices was released in December 2019 calling for $640 million annually in additional funding to support U.S. forensic efforts [ 27 ].

In September 2021, the Forensic Technology Center of Excellence (FTCOE), which is funded by NIJ, published a 29-page implementation strategy on next-generation sequencing for DNA analysis that was written by the NIJ Forensic Laboratory Needs Technology Working Group (FLN-TWG) [ 28 ]. In May 2022, FTCOE released a 50-page landscape study examining technologies and automation for differential extraction and sperm separation used in sexual assault investigations [ 29 ]. An introduction to forensic genetic genealogy was released in September 2022 [ 30 ].

The FTCOE also published a human factors forensic science sourcebook 18 in March 2022 through open access articles in the journal Forensic Science International: Synergy . This sourcebook, which has general applicability rather than being specific to forensic DNA analysts, includes an overview article [ 31 ] along with articles on personnel selection and assessment [ 32 ], the benefits of committing errors during training [ 33 ], how characteristics of human reasoning and certain situations can contribute to errors [ 34 ], stressors that impact performance [ 35 ], and the impact of communication between forensic analysts and detectives using a new metaphor [ 36 ].

1.2.2. OSAC and ASB activities

The Organization of Scientific Area Committees for Forensic Science (OSAC) 19 is congressionally-funded and administered by the Special Programs Office within the National Institute of Standards and Technology (NIST). OSAC consists of a governing board and over 600 members and associates organized into seven scientific area committees (SACs) and 22 subcommittees. The Biology SAC is divided into human and wildlife forensic biology activities. The Human Forensic Biology Subcommittee 20 focuses on standards and guidelines related to training, method development and validation, data analysis, interpretation, and statistical analysis as well as reporting and testimony for human forensic serological and DNA testing. The Wildlife Forensics Subcommittee 21 works on standards and guidelines related to taxonomic identification, individualization, and geographic origin of non-human biological evidence based on morphological and genetic analyses.

The Academy Standards Board (ASB) 22 is a wholly owned subsidiary of the American Academy of Forensic Sciences (AAFS) and was established as a standards developing organization (SDO). In 2015, ASB was accredited as an SDO by the American National Standards Institute (ANSI). The ASB DNA Consensus Body, with a membership consisting of practitioners, researchers, and lawyers, develops standards and guidelines related to the use of DNA in legal proceedings. Many of the documents developed by ASB were originally proposed OSAC standards or guidelines.

The OSAC Registry 23 is a repository of high-quality and technically-sound standards (both published and proposed) that are intended for implementation in forensic science laboratories. As of July 2022, the OSAC Registry contains 11 standards published by ASB as well as two (2) proposed OSAC standards or best practice recommendations related to human forensic biology. Another four ASB standards and two proposed OSAC standards related to wildlife forensic biology are on the OSAC Registry. The ASB standards issued in the past three years related to human forensic biology cover interpretation and comparison protocols, training in various parts of the process, and validation of forensic serological and DNA analysis methods as well as probabilistic genotyping systems (see Table 2 for names of these documents). A number of other documents 24 related to serological testing methods, assigning propositions for likelihood ratios in forensic DNA interpretations, validation of forensic DNA methods and software, familial DNA searching, management and use of quality assurance DNA elimination databases, setting thresholds, evaluative forensic DNA testimony, and training in use of statistics are in development within OSAC and ASB.

Additional work products of OSAC include (1) a lexicon 25 with 3282 records (although multiple records may exist for the same word, e.g., there are five definitions provided for “validation” from various sources), (2) a 35-page technical guidance document 26 on human factors in validation and performance testing that describes key issues in designing, conducting, and reporting validation research, (3) a listing of research and development needs in forensic science 27 including 18 identified by the OSAC Human Forensic Biology Subcommittee during their deliberations ( Table 3 ), and (4) process maps for several forensic disciplines including a 42-page depiction of current practices and decisions in human forensic DNA analysis released in May 2022 [ 37 ]. As a visual representation of critical steps and decision points, a process map is intended to help improve efficiencies and reduce errors, and highlight gaps where further research or standardization would be beneficial. Process maps can assist with training new examiners and enable development of specific laboratory policies or help identify best practices for the field.

Research and development needs in forensic biology as identified by the OSAC Human Forensic Biology Subcommittee (as of July 2022, see https://www.nist.gov/osac/osac-research-and-development-needs ).

1.2.3. UK Forensic Science Regulator

The UK Forensic Science Regulator (UKFSR) oversees forensic science efforts in England, Wales, and Northern Ireland. In March 2021, the Regulator released the seventh issue 28 of the Codes of Practice and Conduct for forensic science providers and practitioners in the criminal justice system. This 114-page document, which has been updated every few years, provides the overall framework for forensic science activities in the UK with other supporting guidance documents on specific areas like DNA analysis or general tasks like validation. In September 2020, a number of the Regulator documents were revised and reissued. As noted in Table 2 (see rows with documents containing “Issue 1” in the title), new guidance documents were also released in the past few years on sexual assault examinations, development of evaluative opinions, proficiency testing for DNA mixture interpretation, Y-STR profiling, DNA relationship testing, and methods employing rapid DNA testing devices. Table 2 lists 20 guidance documents pertinent to forensic biology from the UKFSR.

1.2.4. European Union and Australia

The European Network of Forensic Science Institutes (ENFSI) DNA Working Group published two documents in the past three years: one on DNA database management and the other on training of staff in forensic DNA laboratories (see Table 2 ). A best practice manual for human forensic biology and DNA profiling is also under development.

The Australian National Institute of Forensic Science (NIFS) published three documents of relevance to forensic biology on case record review, empirical study design, and transitioning technology from the laboratory to the field (see Table 2 ).

1.2.5. Other international efforts

The Association for the Advancement of Blood and Biotherapies (AABB) 29 published the 15th edition of their Standard for Relationship Testing Laboratories, which became effective on January 1, 2022. This documentary standard was developed by the AABB Relationship Testing Standards Committee and applies to laboratories accredited for paternity testing and other forms of genetic relationship assessment.

The International Society for Forensic Genetics (ISFG) DNA Commission 30 published two articles during the timeframe of this INTERPOL review (see Table 2 ). In 2020, guidelines and considerations were published on evaluating DNA results under activity level propositions [ 38 ]. In addition, the state of the field regarding interpretation of Y-STR results was examined along with different approaches for haplotype frequency estimation using population data – with the Discrete Laplace approach being recommended [ 39 ]. Future ISFG DNA Commission efforts will address STR allele sequence nomenclature and phenotyping.

2. Advancements in current practices

This section (Section 2 ) is intended to be law enforcement and practitioner-focused through examination of advances in current practices. The following section (Section 3 ) is intended to be researcher-focused through emphasis on emerging technologies and new developments. In this section, topics specifically covered include rapid DNA analysis, use of DNA databases to aid investigations (including familial searching, investigative genetic genealogy, genetic privacy and ethical concerns, and sexual assault kit testing), body fluid identification, DNA extraction and typing methods, and DNA interpretation at the sub-source and activity level.

2.1. Rapid DNA analysis

Rapid DNA instruments that provide integrated “swab-in-profile-out” results in 90 min or less can be used in police booking station environments and assist investigations outside of a traditional laboratory environment. These instruments were initially designed for analysis of buccal swabs to help speed processing of reference samples associated with criminal cases. Such samples are expected to contain relatively large quantities of DNA from a single contributor. Some attempts to extend the range of sample types to low quantities of DNA or mixtures have been published with various levels of success (see Table 4 ). Researcher and practitioners from Australia [ [40] , [41] , [42] ], Canada [ 43 ], China [ 44 ], Italy [ 45 ], Japan [ 46 , 47 ], and the United States [ [48] , [49] , [50] , [51] , [52] , [53] , [54] , [55] , [56] , [57] ] have contributed to an increased understanding of rapid DNA testing capabilities and limitations.

Summary of 20 rapid DNA instrument validation and evaluation studies published from 2019 to 2022. Abbreviations: A-Chip (arrestee cartridge, designed for high-quantity DNA samples), I-Chip (investigative cartridge, designed for low-quantity DNA samples), ACE (arrestee cartridge with GlobalFiler STR markers), RapidINTEL (uses 32 rather than 28 PCR cycles to increase success with low-quantity DNA samples). A-Chip and I-Chip amplify the FlexPlex set of 23 autosomal STRs, three Y-STRs, and amelogenin [ 51 ]. ACE and RapidINTEL utilize the GlobalFiler set of 21 autosomal STRs, one Y-STR, one Y-chromosome InDel, and amelogenin.

The Accelerated Nuclear DNA Equipment (ANDE) 6C (ANDE, Longmont, CO, USA) and the RapidHIT ID (Thermo Fisher Scientific, Waltham, MA, USA) are the current 31 commercially available rapid DNA systems. Each system consists of a swab for introducing the sample, a cartridge or biochip with pre-packed reagents, the instrument, and analysis software with an expert system for automated STR allele calling. Different sample cartridges can be run on each system depending on the sample type and expected quantity of DNA.

For ANDE, the arrestee cartridge (A-Chip), can accommodate up to five samples and is intended for relatively high quantities of DNA typically collected from reference buccal swabs, while the investigative cartridge (I-Chip), can process up to four samples and is intended for lower quantities of DNA that might be present in casework or disaster victim identification samples. Both ANDE cartridges use the FlexPlex27 STR assay that tests 23 autosomal STR loci, three Y-chromosome STRs, and amelogenin to generate data compatible with DNA databases around the world [ 51 ]. The RapidHIT ID ACE cartridge and RapidINTEL cartridge serve similar purposes as the ANDE A-Chip and I-Chip using GlobalFiler Express kit markers (21 autosomal STRs, DYS391, a Y-chromosome insertion/deletion marker, and amelogenin) instead of the FlexPlex assay. The ACE sample cartridge uses buccal swabs while the EXT sample cartridge processes DNA extracts [ 56 ]. Sensitivity is enhanced in the RapidINTEL cartridge by increasing the number of PCR cycles from 28 to 32 and decreasing the lysis buffer volume from 500 μL to 300 μL compared to the ACE cartridge parameters [ 46 ].

With rapid DNA testing's swab-in and answer-out integrated configuration, limited options exist for testing conditions (e.g., either A-Chip or I-Chip with ANDE). Therefore, users should evaluate performance for the sample types they desired to routinely test in their specific environment. Table 4 summarizes recently published studies containing rapid DNA assessments.

National DNA Index System (NDIS) approval has been provided by the FBI Laboratory for accredited forensic DNA laboratories to use either the ANDE 6C or RapidHIT ID Systems (A-Chip and ACE cartridges only) 32 with eligible reference mouth swabs. As noted in Table 2 , the FBI.gov website contains three documents related to rapid DNA testing: “Non-CODIS Rapid DNA Considerations and Best Practices for Law Enforcement Use” (7-pages), “Rapid DNA Testing for Non-CODIS Uses: Considerations for Court” (5-pages), and “A Guide to All Things Rapid DNA” (13-pages) in January 2022 to provide information on the topic to law enforcement agencies.

The ENFSI DNA Working Group, SWGDAM, and an FBI Rapid DNA Crime Scene Technology Advancement Task Group co-published a position statement on the use of rapid DNA testing from crime scene samples [ 22 ]. These groups emphasized the need to have future rapid DNA systems with (1) methods to identify low quantity, degradation, and inhibition as well as meeting the human quantification requirements shared by SWGDAM and others, (2) the ability to export analyzable raw data for analysis or reanalysis by trained and qualified forensic DNA analysts, (3) an on-board fully automated expert system to accurately flag single-source or mixture DNA profiles requiring analyst evaluation, (4) improved peak height ratio balance (per locus and across loci) for low-quality and mixture samples “through enhancements in extraction efficiencies, changes in cycling parameters, and/or changes in STR kit chemistries,” and (5) published developmental validation studies on a wide variety of forensic evidence type samples with “data-supported recommendations regarding types of forensic evidence that are suitable and unsuitable for use with Rapid DNA technology” [ 22 ].

With a likely increase in the capabilities and the availability of rapid DNA systems, investigators will need to decide whether to use this capability onsite in specific situations or to send collected samples to a conventional forensic laboratory for processing at a later time. A group in the Netherlands collaborated with the New York City Police Department Crime Scene Unit and Evidence Collection Team to explore a decision support system [ 60 ]. In this study, participants were informed that rapid DNA testing was less sensitive compared to laboratory analysis and that the sample would be consumed, but that results from rapid DNA testing could identify a suspect within 2 h as opposed to waiting an average of 45 days for the laboratory results [presumably due to sample backlogs]. They were also told that a DNA profile obtained with rapid DNA would be acceptable in court. In the end, “>90% of the participants (85 out of 91) saw added value for using a Rapid DNA device in their investigative process …” with “a systematic approach, which consists of weighing all possible outcomes before deciding to use a Rapid DNA analysis device” [ 60 ]. The authors note that for such an approach to be successful “knowledge on DNA success rates [with various evidence types] is necessary in making evidence-based decisions for Rapid DNA analysis” [ 60 ].

A group in Australia performed a cost-benefit analysis of a decentralized rapid DNA workflow that might exist in the future with instruments placed at police stations around their country [ 61 ]. A virtual assessment considered all reference DNA samples collected during a two-month time period at 10 participating police stations in five regions of Australia. Processing times at the corresponding DNA analysis laboratories were calculated based on when the sample was received compared to the day when a DNA profile was obtained for that sample. From the survey conducted, it was estimated that up to 80,000 reference DNA samples are currently processed each year in forensic DNA laboratories across Australia [ 61 ].

Consumable costs for conventional DNA testing reagents in Australia were found to range from $17 to $35 whereas the rapid DNA consumable costs were estimated to be $100 per sample along with an anticipated $100,000 instrument cost per police station. Of course, the rate of use is expected to vary based on the number of reference samples collected in that jurisdiction. Since rapid DNA instruments utilize consumable cartridges with expiration dates, it was estimated that a police station would need to process six DNA samples per week to avoid having to discard an expired cartridge and thus increase the overall cost of their rapid DNA testing efforts. The authors of this study conclude “that routine laboratory DNA analysis meets the current needs for the majority of cases … It is anticipated that while the cost discrepancy between laboratory and rapid DNA processing remains high, the uptake of the technology in Australia will be limited [at least for a police booking station scenario]” [ 61 ].

Rapid DNA technology can be used in a variety of contexts including some that extend beyond traditional law enforcement. Seven distinct use contexts for rapid DNA capabilities have been described [ 62 ]: (1) evidence processing at or near crime scenes to generate leads for confirmation by a forensic laboratory, (2) booking or detection stations to compare an individual's DNA profile to a forensic database while the individual is still in custody, (3) disaster victim identification to permit rapid DNA processing of a victim's family members during their visit to family assistance centers when filing missing persons reports, (4) missing persons investigations to quickly process unidentified human remains and/or family reference samples to generate leads for confirmation by a forensic laboratory, (5) border security to develop DNA data from detainees for comparison to indices of prior border crossers while the individual is still in custody, (6) human trafficking and immigration fraud detection to permit immigration officials to verify family relationship claims, and (7) migrant family reunification to allow immigration officials to verify parentage claims and reunite family members separated at the border. Social and ethical considerations have been proposed for each of these use contexts in terms of data collection, data access and storage, and oversight and data protection [ 62 ].

One study [ 47 ] evaluating buccal swabs and mock disaster victim identification samples drew an important conclusion worth repeating here: “The Rapid DNA system provides robust and automated analysis of forensic samples without human review. Sample analysis failure can happen by chance in both the Rapid DNA system and conventional laboratory STR testing. While re-injection of PCR product is easily possible in the conventional method, this is not an option with the Rapid DNA system. Accordingly, the Rapid DNA system is a suitable choice but should be limited to samples that can easily be collected again if necessary or to samples that are of sufficient amount for repeated analysis. Application of this system to valuable samples such as those related to casework need to be considered carefully before analysis.”

2.2. Using DNA databases to aid investigations (national databases, familial searching, investigative genetic genealogy, genetic privacy & ethical concerns, sexual assault kit testing)

Forensic DNA databases can aid investigations by demonstrating connections between crime scenes, linking a previously enrolled DNA profile from an arrestee or convicted offender to biological material recovered from a crime scene, or aiding identification of missing persons through association of remains with biological relatives. Establishment of these databases requires significant investments over time to enroll data from crime scenes and potential serial offenders or unidentified human remains and relatives of missing persons. This section explores issues around national DNA databases, familial searching, investigative genetic genealogy, and genetic privacy and ethical concerns.

A systematic review regarding the effectiveness of forensic DNA databases looked at 19 articles published between 1985 and 2018 and found most studies support the assumption that DNA databases are an effective tool for the police, society, and forensic scientists [ 63 ]. Recommendations have been proposed to make cross-border exchange of DNA data more transparent and accountable with the Prüm system that enables information sharing across the European Union [ 64 ]. An analysis of news articles discussing the use of DNA testing in family reunification with migrants separated at the U.S.-Mexico border has been performed [ 65 ], and a standalone humanitarian DNA identification database has been proposed [ 66 ]. Aspects of international DNA kinship matching were explored to aid missing persons investigations and disaster victim identification processes [ 67 ]. A business case was presented for expanded DNA indirect matching using additional genetic markers, such as Y-chromosome STRs, mitochondrial DNA, and X-chromosome STRs, to reveal previously undetected familial relationships [ 68 ].

Approaches to transnational exchange of DNA data include (1) creation of an international DNA database, (2) linked or networked national DNA databases, (3) request-based exchange of data, and (4) a combination of these [ 69 ]. For example, the INTERPOL DNA database 33 contains more than 247,000 profiles contributed by 84 member countries. The I-Familia global database assists with missing persons identification based on international DNA kinship matching. 34

2.2.1. National DNA databases

Since the United Kingdom launched the first national DNA database in 1995, national DNA databases continue to be added in many countries including Brazil [ 70 , 71 ], India [ 72 ], Pakistan [ 73 , 74 ], Portugal [ 75 ], and Serbia [ 76 ]. A survey of 15 Latin American countries found that 13 of them had some kind of DNA database [ 77 ]. The opinions of 210 prisoners and prison officials in three Spanish penitentiary centers were also collected regarding DNA databases [ 78 ].

The effectiveness of databases has been debated over the years. Seven key indicators were used in a 2019 examination of the effectiveness of the UK national DNA database. These indicators included (1) implementation cost – the financial input required to implement the database system, (2) crime-solving capability – the ability of the database to assist criminal justice officials in case resolution, (3) incapacitation effect – the ability of the database to reduce crime through the incapacitation of offenders, (4) deterrence effect – the preventative potential of the database through deterrence of individuals from committing crime, (5) privacy protection – protection of the privacy or civil liberty rights of individuals, (6) legitimacy – compliance of the databasing system to the principle of proportionality, and (7) implementation efficiency – the time and non-monetary resource required to implement the database system [ 79 ].

A follow-up article concluded: “Available evidence shows that while DNA analysis has contributed to successful investigations in many individual cases, its aggregate value to the resolution of all crime is low” [ 80 ]. The systematic review of 19 articles on DNA databases cited previously noted “the expansion of DNA databases would only have positive effects on detection and clearance if the offender were already included in the database” [ 63 ]. When previous offenders are not already in a law enforcement DNA database to provide a hit to a crime scene profile, efforts are increasingly turning to familial searching and investigative genetic genealogy as described in the following sections.

2.2.2. Familial DNA searching

Familial DNA searching (FDS) extends the traditional direct matching of STR profiles within law enforcement databases to search for potential close family relationships, such as a parent or sibling, of a profile in the database. 35 FDS typically uses Y-STR lineage testing to narrow the set of candidate possibilities along with other case information such as geographic details of the crime and age of the person(s) of interest. For example, FDS helped solve murder cases in Romania [ 81 ] and China [ 82 ] by locating the perpetrator through a relative in the DNA database. A survey of 103 crime laboratories in the United States found that 11 states use FDS while laboratories in 24 states use a similar but distinct practice of partial matching [ 83 ].

The expansion of the number of STRs from 15 to 20 or 21 helps distinguish between true and false matches during a DNA database search by reducing the number of FDS adventitious matches [ 84 ]. Another study noted that the choice of allele frequencies affects the rate at which non-relatives are erroneously classified as relatives and found that using ancestry inference on the query profile can reduce false positive rates [ 85 ]. New Y-STR kits have been developed to assist with familial searching [ 86 , 87 ]. FDS of law enforcement databases differs from investigative genetic genealogy in two important ways – the genetic markers and the databases used for searching [ 88 , 89 ].

2.2.3. Investigative genetic genealogy

In recent years when national DNA databases fail to generate a lead to a potential person of interest, law enforcement agencies have started to utilize the capabilities of investigative genetic genealogy (IGG), also called forensic genetic genealogy (FGG) or forensic investigative genetic genealogy (FIGG), as an approach to locate potential persons of interest in criminal or missing persons cases. For example, a pilot case study in Sweden used IGG to locate the perpetrator of a double murder from 2004 who had evaded detection despite 15 years of various investigation efforts including more than 9000 interrogations and mass DNA screenings of more than 6000 men [ 90 ]. Hardly a week goes by without mention in the global media of another cold case being solved with IGG. Since the arrest of Joseph DeAngelo in April 2018 identified as the infamous Golden State Killer using IGG, hundreds of cold criminal and unidentified human remains cases have been resolved [ 91 ].

IGG involves examination of about 600,000 single nucleotide polymorphisms (SNPs), rather than the 20 or so STRs used in conventional forensic DNA testing, to enable associations of relatives as distant as third or fourth cousins [ 17 ]. IGG relies on a combination of publicly accessible records and the consent of individuals who have uploaded their genetic genealogy DNA profiles to genetic genealogy databases [ 92 ]. Multiple reviews and research articles have been published describing current IGG methods, knowledge, and practice along with the effectiveness and operational limits of the technique [ 17 , 30 , [93] , [94] , [95] , [96] , [97] ]. IGG works best with high-quality, single-source DNA samples. A case study involving whole genome sequencing of human remains from a 2003 murder victim found that it was possible to perform IGG for identification of the victim in this situation [ 98 ].

The four main direct-to-consumer (DTC) genetic genealogy companies, 23andMe (Mountain View, CA), Ancestry (Salt Lake City, UT), FamilyTree DNA (Houston, TX), and My Heritage (Lehi, UT), have DNA data from over 41 million individuals 36 as of July 2022 [ 97 ]. Individuals can upload their DTC data to GEDmatch, which is a DNA comparison and analysis website launched in 2010 and purchased in 2019 by Verogen (San Diego, CA). Law enforcement IGG searches are currently permitted with DTC data for individuals who opt into the GEDmatch database or do not opt out of the FamilyTree DNA database [ 99 , 100 ]. Currently most DTC genetic genealogy data comes from the United States and individuals of European origin. A UK study found that 4 of 10 volunteer donors could be identified with IGG including someone of Indian heritage demonstrating that under the right circumstances individuals of non-European origin can be identified [ 101 ].

As noted previously in Section 1.2.1 , the U.S. Department of Justice released an interim policy guide to forensic genetic genealogical DNA analysis and searching [ 23 ], and the FBI Laboratory's chief biometric scientist published an editorial in Science calling for responsible genetic genealogy [ 24 ]. SWGDAM has provided an overview of IGG that emphasizes the approach being used only after a regular STR profile search of a law enforcement DNA database fails to produce any investigative leads [ 102 ]. Policy and practical implications of IGG have been explored in Australia [ 103 ] and within the UK as part of probing the perceptions of 45 professional and public stakeholders [ 104 , 105 ].

Four misconceptions about IGG were examined by several members of the SWGDAM group: (1) when law enforcement conducts IGG in a genetic genealogy database, they are given special access to participants' SNP profiles, (2) law enforcement will arrest a genetic genealogy database participant's relatives based on the genetic information the participant provided to the database, (3) IGG necessarily involves collecting and testing DNA samples from a larger number of innocent persons than would be the case if IGG were not used in the investigation, and (4) IGG is or soon will be ubiquitous because there are no barriers to IGG that limit the cases in which it can be conducted [ 106 ].

In May 2021, the state of Maryland passed the first law in the United States and in the world that regulates law enforcement's use of DTC genetic data to investigate crimes. A policy forum article in Science explained how this new law provides a model for others in this area [ 107 ]. Six important features were described: (1) requiring judicial authorization for the initiation of an IGG search, (2) affirming individual control over the investigative use of one's genetic data, (3) establishing strong protections for third parties who are not suspects in the case, (4) ensuring that IGG is available to prove either guilt or innocence, (5) imposing consequences and fines for violations, and (6) requiring annual public reporting and review to enable informed oversight of IGG methods. However, as of September 2022, these regulations have not been implemented apparently due to lack of resources with these unfunded requirements. 37

Efforts have been made to raise awareness among defense attorneys about how IGG searches can potentially invade people's privacy in unique ways [ 108 ]. Important perspectives on ethical, legal, and social issues have been offered along with directions for future research [ 109 ]. These concerns about data privacy, public trust, proficiency and agency trust, and accountability have led to a call for standards and certification of IGG to address issues raised by privacy scholars, law enforcement agencies, and traditional genealogists [ 110 , 111 ] and for an ethical and privacy assessment framework covering transparency, access criteria, quality assurance, and proportionality [ 112 ].

2.2.4. Genetic privacy and ethical concerns

Two important topics are considered in this section: (1) do the genetic markers used in traditional forensic DNA typing reveal more than identity and therefore potentially impact privacy of the individuals tested? and (2) are samples collected and tested according to ethical principles?

Forensic DNA databases utilize STR markers that were intentionally selected to avoid phenotypic associations. An extensive review of the literature examined 107 articles associating a forensic STR with some genetic trait and found “no demonstration of forensic STR variants directly causing or predicting disease” [ 113 ]. A study of the potential association of 15 STRs and 3 facial characteristics on 721 unrelated Han Chinese individuals also found “scarcely any association between [the] STRs with studied facial characteristics” [ 114 ].

In 2021, the American Type Culture Collection (ATCC) published a standard for authentication of human cell lines using DNA profiling with the 13 CODIS STR markers [ 115 ]. This use of forensic STR markers for biospecimen authentication led a bioethicist and a law professor to write a policy forum article in Science titled “Get law enforcement out of biospecimen authentication” [ 116 ]. The authors of this policy forum believe that using the same genetic markers could potentially: (1) undermine efforts to recruit research participants from historically marginalized and excluded groups that are underrepresented in research, (2) risk drawing law enforcement interest in gaining access to these research data, and (3) impose additional potential harms on already vulnerable populations, particularly children. Instead they advocate for using non-CODIS STRs or a new SNP assay to distinguish biospecimens in repositories, something done recently at the Coriell Institute for Medical Research with six new STR markers [ 117 ]. A responsive letter to the editor regarding this policy forum article expressed that “their proposal could potentially create artificial silos between genomic data in the justice system and in biomedical research, making it inefficient and ultimately counterproductive” [ 118 ]. The authors of the original article responded that “the risk of attracting law enforcement interest to research data increases when the data are available in a recognizable way” [ 119 ].

Modern scientific research seeks to protect the dignity, rights, and welfare of research participants by following ethical requirements. Six forensic science journals over the time period of 2010–2019 were examined for their reporting of ethical approval and informed consent in original research using human or animal subjects [ 120 ]. These journals were Forensic Science International: Genetics , Science & Justice , Journal of Forensic and Legal Medicine , the Australian Journal of Forensic Sciences , Forensic Science International , and the International Journal of Legal Medicine . A total of 3010 studies that described research on human or animal subjects and/or samples were selected from these journals with only 1079 articles (36%) reporting that they had obtained ethical approval and 527 articles (18%) stating that informed consent was sought either by written or verbal agreement. The authors of this study noted that reported compliance with ethical guidelines in forensic science research and publication was below what is considered minimal reporting rates in biomedical research and encouraged widespread adoption of the 2020 guidelines described below [ 120 ].

Guidelines and recommendations for ethnical research on genetics and genomics of biological material were jointly adopted and published in Forensic Science International: Genetics [ 121 ] and Forensic Science International: Reports [ 122 ]. These guidelines utilize the following principles as prerequisites for publication in these two journals as well as the Forensic Science International: Genetics Supplement Series : (1) general ethics principles that are regulated by national boards and represent widely signed international agreements, (2) universal declarations that require implementations in state members, such as the World Medical Association Declaration of Helsinki biomedical research on human subjects, and (3) universal declarations and principles drafted by independent organizations that have been widely adopted by the scientific community. This includes the U.S. Federal Policy for the Protection of Human Subjects (“Common Rule”) that was revised in 2017 (with a compliance date delayed to January 21, 2019). 38

Submitted manuscripts must provide the following supporting documentation to demonstrate compliance with the publication guidelines: (1) ethical approval in the country of [sample] collection by the appropriate local ethical committee or institutional review board, (2) ethical approval in the country of experimental work according to local legislation; if material collection and experimentation are conducted in different countries, both (1) and (2) are required, (3) template of consent forms in the case of human material as approved by the relevant ethical committee, and (4) approved export/import permits as applicable. Authors must declare in their submitted manuscript that these guidelines have been strictly followed [ 121 , 122 ].

Forensic genetic frequency databases, such as the Y-chromosome Haplotype Reference Database (YHRD), have been challenged over the ethics of DNA holdings, specifically of samples originating from the minority Muslim Uyghur population in western China [ 123 , 124 ]. A survey of U.S. state policies on potential law enforcement access to newborn screening samples found that nearly one-third of states permit these samples or their related data to be disclosed to or used by law enforcement and more than 25% of states have no discernible policy in place regarding law enforcement access [ 125 ].

A framework for ethical conduct of forensic scientists as “lived practice” has been proposed, and three case studies were discussed in terms of decision-making processes involving forensic DNA phenotyping and biographical ancestry testing, investigative genetic genealogy, and forensic epigenetics [ 126 ]. An ethos for forensic genetics involving the values of integrity, trustworthiness, and effectiveness has likewise been described [ 127 ].

2.2.5. Sexual assault kit testing

Unsubmitted or untested sexual assault kits (SAKs) may exist in police or laboratory evidence lockers for many years leading to rape kit backlogs that can spark community outrage when discovered. A number of articles have been published in the past three years describing success rates with examining SAKs and the policies surrounding them. For example, an evaluation of 3422 unsubmitted SAKs in Michigan found 1239 that produced a DNA profile eligible for upload into CODIS with 585 yielding a CODIS hit [ 128 ]. In addition, results from a groping and sexual assault case were presented to support the expansion of touch DNA evidence in these types of cases [ 129 ].

To assess success rates in their jurisdiction, the Houston Police Department randomly selected 491 cases of over 6500 previously unsubmitted sexual assault kits [ 130 ]. Of these, 336 cases (68%; 336/491) screened positive for biological evidence; a DNA profile was developed in 270 cases (55%; 270/491) with 213 (43%; 213/491) uploaded to CODIS; and 104 (21% total; 104/491 or 49% of uploaded profiles; 104/213) resulted in a CODIS hit. The statute of limitation had expired in 44% of these CODIS-hit cases, which prohibited arrests and prosecution. Victims were unwilling to participate in a follow-up investigation in another 25% of these cases. When the data were compiled for the publication, charges had been filed in only one CODIS-hit case [ 130 ].

Sexual assault cases can be difficult to prosecute as victims may be re-traumatized when a cold case is reopened. The authors of one study shared: “A key to successful pursuit of cold case sexual assaults is to have a well-crafted victim-notification plan and a victim advocate as part of the investigative team” [ 131 ]. Interviews with eight assistant district attorneys provided important prosecutors’ perspectives on SAK cases, the development of narratives to explain the evidence in a case, and the decision on whether a case should be pursued or what further investigative activities may be needed [ 132 ]. The authors concluded: “Our findings suggest that forensic evidence does not magically lead to criminal justice outcomes by itself, but must be used thoughtfully in conjunction with other evidence as part of a well-considered strategy of investigation and prosecution” [ 132 ].

Discussing a data set from Denver, Colorado where 1200 sexual assault cold cases with testable DNA samples were examined and 600 cases were processed through the laboratory resulting in 97 CODIS hits, 55 arrests and court filings, and 48 convictions, the authors conclude that the cost of the Denver cold case sexual assault program was worth the investment [ 131 ].

From December 2015 to July 2018, the Palm Beach County Sheriff's Office (Florida, USA) researched more than 5500 cases and evaluated evidence from previously untested sexual assault kits spanning a 43-year period at a cost of over $1 million. Of the 1558 sexual assaults examined, there were 686 cases (44%; 686/1558) with CODIS-eligible profiles, 261 CODIS hits, and 5 arrests when the article was written in mid-2019 [ 133 ]. The Palm Beach County Sheriff's Office also helped develop a backlog reduction effort through creating a biological processing laboratory within the Boca Raton Police Services Department [ 134 ]. With this joint effort from 2016 to 2018, the total average turnaround time decreased from 30 days to under 20 days with the 3489 DNA profiles entered into CODIS resulting in 1254 associations and 965 investigations aided. Important takeaway lessons include the value of (1) engaging legal counsel early to outline necessary legal procedures and the timeline, (2) bringing all stakeholders “to the table” early to discuss expectations, as well as legal and operational responsibilities, and (3) creating a realistic timeline with a comprehensive memorandum of understanding so all parties have agreed to their roles and responsibilities [ 134 ].

From 275 previously untested sexual assault kits submitted for DNA testing in one region of Central Brazil, a total of 176 profiles were uploaded to their DNA database resulting in 60 matches (34%; 60/176) and 32 assisted investigations (18%; 32/176) with information about the suspect identity or the connection of serial sexual assaults assigned to the same individual [ 135 ]. Another study from the same region of Brazil examined 2165 cases and noted that 13% (286/2165) had information regarding the victim-offender relationship with 63% (179/286) being stranger-perpetrated rapes and 37% (107/286) being non-stranger [ 136 ]. The authors then summarize: “Hits were detected only with stranger-perpetrated assaults ( n  = 41), which reinforces that DNA databases are fundamental to investigate sexual crimes. Without DNA typing and DNA databases, probably these cases would never be solved” [ 136 ].

Given that laboratories have limited resources and need to prioritize their efforts, some business analytics have been applied to SAK testing. An analysis of the potential societal return on investment (ROI) for processing backlogged, untested SAKs reported a range of 10%–65% ROI depending on the volume of activity for the laboratory conducting the analysis [ 137 ]. An evaluation of data from 868 SAKs tested by the San Francisco Policy Department Criminalistics Laboratory during 2017–2019 found that machine learning algorithms outperformed forensic examiners in flagging potentially probative samples [ 138 ].

An examination of 5165 SAKs collected in Cuyahoga County (Ohio, USA) from 1993 through 2011 found 3099 with DNA of which 2127 produced a CODIS hit, with 803 investigations leading to an indictment and eventually 78 to trial along with 330 pleas [ 139 ]. The authors report a “cost savings to the community of $26.48 million after the inclusion of tangible and intangible costs of future sexual assaults averted through convictions” and advocate for “the cost-effectiveness of investigating no CODIS hit cases and support an ‘investigate all’ approach” [ 139 ]. Likewise an assessment of 900 previously-untested SAKs from Detroit (Michigan, USA) found that “few of the tested variables were significant predictors of CODIS hit rate” and “testing all previously-unsubmitted kits may generate information that is useful to the criminal justice system, while also potentially addressing the institutional betrayal victims experienced when their kits were ignored” [ 140 ].

A group in the Philippines described an integrated system to improve their SAK processing [ 141 ]. With an optimized workflow in Montreal, Canada, SAK processing median turnaround time decreased from 140 days to 45 days with a foreign DNA profile being obtained in 44% of cases [ 142 ]. In addition, this group examined casework data to guide resource allocation through identifying the likelihood of specific types of cases and samples yielding foreign biological material [ 142 ]. Decision trees and logistic regression models were also used to try and predict whether or not SAKs will yield a CODIS-eligible DNA profile [ 143 ]. Finally, direct PCR and rapid DNA approaches to streamline SAK testing were reviewed [ 144 ].

2.3. Forensic biology and body fluid identification

The basic workflow for biological samples in forensic examinations typically involves a visual examination of the evidence, a presumptive and/or confirmatory test for a suspected body fluid (e.g., the amylase assay for saliva), and DNA analysis and interpretation [ 145 ]. Body fluid identification (BFID), in particular with blood, saliva, semen, or vaginal fluid stains, provides valuable evidence in many investigations that can aid in the resolution of a crime [ 146 ]. Many of these BFID tests are presumptive and not nearly as sensitive as modern DNA tests meaning that “obtaining a DNA profile without being able to associate [it] with a body fluid is an increasingly regular occurrence” and “it is necessary and important, especially in the eyes of the law, to be able to say which body fluid that the DNA profile was obtained from” [ 147 ].

A number of approaches are being taken to improve the sensitivity and specificity of BFID in recent years including DNA methylation [ [148] , [149] , [150] , [151] , [152] , [153] , [154] , [155] , [156] , [157] , [158] , [159] , [160] , [161] ], messenger RNA (mRNA) [ [162] , [163] , [164] , [165] , [166] ], microRNA (miRNA) [ 167 ], protein mass spectrometry for seminal fluid detection [ 168 ], and microbiome analysis [ 169 , 170 ]. Although many new techniques are being described in the scientific literature, traditional methods for semen identification are still widely used in regular forensic casework [ 171 ].

When using RNA assays, DNA and RNA are co-extracted from examined samples [ 172 , 173 ]. Some tests may only distinguish between two possible body fluids, such as saliva and vaginal fluid [ 174 ], while other tests may attempt to distinguish six forensically relevant body fluids – vaginal fluid, seminal fluids, sperm cells, saliva, menstrual blood, and peripheral blood – although not always as clearly as desired [ 175 ]. BFID assays must also cope with mixed body fluids [ 176 ].

2.4. DNA collection and extraction

The process of obtaining a DNA profile begins with collecting a biological sample and extracting DNA from it. A review of recent trends and developments in forensic DNA extraction focused on isolating male DNA in sexual assault cases, using portable rapid DNA testing instruments, recovering DNA from difficult samples such as human remains, and bypassing DNA extraction altogether with direct PCR methods [ 177 ].

2.4.1. Touch evidence and fingerprint processing methods

Various studies have explored the compatibility of common fingerprint processing methods with DNA typing results [ [178] , [179] , [180] , [181] , [182] , [183] , [184] , [185] , [186] , [187] , [188] ]. For example, DNA recovery was explored after various steps in three different latent fingerprint processing methods – and fewer treatments were judged preferable with a 1,2-indanedione-zinc (IND/Zn) method appearing least harmful to downstream DNA analysis [ 187 ]. A different study found improved recovery of DNA from cigarette butts following latent fingerprint processing with 1,8-diazafluoren-9-one (DFO) compared to IND/Zn [ 179 ].

DNA losses were quantified with mock fingerprints deposited on four different surfaces to better understand DNA collection and extraction method performance [ 189 ]. The application of Diamond Dye has been shown to enable visualization of cells deposited on surfaces without interfering with subsequent PCR amplification and DNA typing [ [190] , [191] , [192] ].

It was possible to recover DNA profiles from clothing that someone touched for as little as 2 s [ 193 ]. DNA sampling success rates from car seats and steering wheels were studied [ 194 ] and recovery of DNA from vehicle surfaces using different swabs was explored [ 195 ]. In addition, the double-swab technique, where a wipe using a wet swab is followed by a wipe with a dry one, was revisited with an observation that for non-absorbing surfaces, the first web swab yielded 16 times more DNA than the second dry swab [ 196 ]. Swabs of cotton, flocked nylon, and foam reportedly provided equivalent DNA recoveries for smooth/non-absorbing surfaces, and an optimized swabbing technique involving the application of a 60-degree angle and rotating the swab during sampling improved DNA yields for cotton swabs [ 197 ].

2.4.2. Results from unfired and fired cartridge cases

Ammunition needs to be handled to load a weapon and thus DNA from the handler may be deposited onto the ammunition via touch [ 198 ]. Important progress has been made in recovering DNA from ammunition such as unfired cartridges or fired cartridge cases (FCCs) that may remain at a crime scene after a weapon has been fired. Trace quantities of DNA recovered from firearm or FCC surfaces has been used to try and link results to gun-related crimes.

A 2019 review of the literature regarding obtaining successful DNA results from ammunition examined collection techniques, extraction methodologies, and various amplification kits and conditions [ 199 ]. A direct PCR approach detected more STR alleles than methods using DNA extraction, and the authors noted that mixtures are commonly observed from gun surfaces, bullets, and cartridges in both controlled experimental conditions and from actual casework evidence and they encourage careful interpretation of these results [ 200 ]. The development of a crime scene FCC collector was combined with a new DNA recovery method that uses a rinse-and-swab technique [ 201 ].

Research studies and review articles have considered factors affecting DNA recovery from cartridge cases and the impact of metal surfaces on DNA recovery [ [202] , [203] , [204] , [205] , [206] , [207] , [208] , [209] ]. Recovery of mtDNA from unfired ammunition components has been assessed for sequence quality [ 210 ].

2.5. DNA typing

Following collection of DNA evidence and its extraction from biological samples, the typical typing process involves DNA quantitation, PCR amplification of STR markers, and STR typing using capillary electrophoresis. Direct PCR avoids the DNA extraction and quantitation steps, which can improve recovery of trace amounts of DNA [ 211 , 212 ]. Whole genome amplification prior to STR analysis has also been examined to aid recovery of degraded DNA [ 213 ] and to enable profiling of single sperm cells [ 214 ].

PCR amplification using STR typing kits can sometimes produce artifacts that impact DNA interpretation including missing (null) alleles [ 215 ], false tri-allelic patterns [ 216 ] or extra peaks when amplified in the presence of microbial DNA [ [217] , [218] , [219] ].

Applied Biosystems Genetic Analyzers have been the primary means of performing multi-colored capillary electrophoresis for many years [ 4 ]. First experiences with Promega's new Spectrum Compact CE System have recently been reported [ 220 ]. A number of new research and commercial STR kits have been introduced in recent years along with the publication of at least 24 validation studies ( Table 5 ). These validation studies typically follow guidelines outlined by the ENFSI DNA Working Group, 39 SWGDAM 40 , or a 2009 Chinese National Standard. 41

STR kits assessed with 24 published validation studies during 2019–2022.

A report on the first two years of submissions to the STRidER 42 (STRs for Identity ENFSI Reference) database for online allele frequencies revealed that 96% of the submitted 165 autosomal STR datasets generated by CE contained errors, showing the value of centralized quality control and data curation [ 245 ].

2.6. DNA interpretation at the source or sub-source level

The designation of STR alleles and genotypes of contributors in DNA mixtures are key aspects of DNA interpretation [ 246 , 247 ]. Electropherograms generated by CE instruments exhibit both STR alleles and artifacts that complicate data interpretation. Efforts are underway to understand and model instrumental artifacts [ [248] , [249] , [250] , [251] ] as well as biological artifacts of the PCR amplification process such as STR stutter products [ 252 , 253 ]. Machine learning approaches are being applied to classify artifacts versus alleles with the goal to eventually replace manual data interpretation with computer algorithms [ [254] , [255] , [256] , [257] ]. One such program, FaSTR DNA, enables potential artifact peaks from stutter, pull-up, and spikes to be filtered or flagged, and a developmental validation has been published examining 3403 profiles generated with seven different STR kits [ 258 ].

2.6.1. DNA mixture interpretation

Forensic evidence routinely contains contributions from multiple donors, which result in DNA mixtures. A number of approaches have been taken and advances made in DNA mixture interpretation [ 259 ]. These include probabilistic genotyping software [ 15 ], using genetic markers beyond traditional autosomal STR typing [ 260 ], or separating contributor cells and performing single-cell analysis [ [261] , [262] , [263] , [264] , [265] , [266] ].

In June 2021, the National Institute of Standards and Technology (NIST) released a draft report regarding the scientific foundations of DNA mixture interpretation [ 267 ]. This 250-page document described 16 principles that underpin DNA mixture interpretation, provided 25 key takeaways, and cited 528 references. NIST also began a Human Factors Expert Working Group on DNA Interpretation in February 2020 and plans to release a report with recommendations in 2023.

Assessment of the number of contributors (NoC) is a critical element of accurate DNA mixture interpretation. For example, the LRs relating to minor contributors can be reduced when the incorrect number of contributors is assumed [ 268 ]. Allele sharing among contributors to a mixture and masking of alleles due to STR stutter artifacts can lead to inaccurate NoC estimates based on simply counting the number of alleles at a locus. Different approaches and software programs have been used for NoC estimation [ [269] , [270] , [271] , [272] , [273] , [274] , [275] ]. Total allele count (TAC) distribution via TAC curves showed an improvement in manually estimating the number of contributors with complex mixtures [ 276 ]. Sequence analysis of STR loci expands the number of possible alleles compared to CE-based length measurements and thus can improve NoC estimates [ 277 ].

In the past three years, validation studies have been performed with a number of probabilistic genotyping software (PGS) systems including EuroForMix [ 278 ], DNAStatistX [ 279 , 280 ], TrueAllele [ 281 ], STRmix [ 282 ], Statistefix [ 283 ], Mixture Solution [ 284 ], Kongoh [ 285 ], and MaSTR [ 286 , 287 ]. Developers of EuroForMix, DNAStatistX, and STRmix provided a review of these systems [ 288 ]. Multi-laboratory assessments have been described [ 289 , 290 ] and likelihood ratios obtained from EuroForMix and STRmix compared [ [291] , [292] , [293] , [294] ]. With a growing literature in this area, there are many other articles that could have been cited.

2.7. DNA interpretation at the activity level

DNA interpretation at the source or sub-source level helps to answer the question of who deposited the cell material, whether attribution for the result can be made to a specific cell type (i.e., source level) or simply to the DNA if no attribution can be made to a specific cell type (i.e., sub-source level). Activity-level propositions seek to answer the question of how did an individual's cell material get there. Interpretation at the activity level is sometimes referred to as evaluative reporting [ 295 , 296 ].

In 2020, the ISFG DNA Commission [ 38 ] discussed the why, when, and how to carry out evaluative reporting given activity level propositions through providing examples of formulating these propositions. These Commission recommendations emphasize that reports using a likelihood ratio based on case-specific propositions and relevant conditioning information should highlight the assumptions being made and that “it is not valid to carry over a likelihood ratio from a low level, such as sub-source, to a higher level such as source or activity propositions … because the LRs given sub-source level propositions are often very high and LRs given activity level propositions will often be many orders of magnitude lower” [ 38 ]. Another recommendation specifies that “scientists must not give their opinion on what is the ‘most likely way of transfer’ (direct or indirect), as this would amount to giving an opinion on the activities and result in a prosecutor's fallacy (i.e., give the probability that X is true). The scientists' role is to assess the value of the results if each proposition is true in accordance with the likelihood ratio framework (the probability of the results if X is true and if Y is true)” [ 38 ] (emphasis in the original). This DNA Commission provided 11 recommendations and 4 considerations that should be studied carefully by those who implement activity-level DNA interpretation.

2.7.1. DNA transfer and persistence studies

To evaluate DNA findings given activity-level propositions it is important to understand the factors and variables that may impact DNA transfer, persistence, prevalence, and recovery (DNA-TPPR). These factors include history of contacting surfaces, biological material type, quantity and quality of DNA, dryness of biological material, manner and duration of contact, number and order of contacts, substrate type(s), time lapses and environment, and methods and thresholds used in the forensic DNA laboratory to generate the available data [ 297 ].

Three valuable review articles were published on this topic in 2019 [ 14 , 28 , 299 ]. Following a comprehensive January 2019 review that cited [ 298 ] references on DNA-TPPR [ 14 ], the same authors provided an update in November 2021 on recent progress towards meeting challenges and a synopsis of 144 relevant articles published between January 2018 and March 2021 [ 297 ]. While few studies provide the information needed to help assign probabilities of obtaining DNA results given specific sets of circumstances, progress includes use of Bayesian Networks [ 300 ] to identify variables for complex transfer scenarios [ 38 , [301] , [302] , [303] , [304] , [305] ] as well as development of an online database DNA-TrAC 43 for relevant research articles [ 299 ] and a structured knowledge base 44 with information to help practitioners interpret general transfer events at an activity level [ 306 ].

Forensic DNA pioneer Peter Gill emphasized that awareness of the limitations of DNA evidence is important for users of this data given that an increased sensitivity of modern DNA methods means that DNA may be recovered that is irrelevant to the crime under investigation [ 307 ]. An ISFG DNA Commission (see Section 1.2.5 ) emphasized that the strength of evidence associated with a DNA match at the sub-source level cannot be carried over to activity level propositions [ 38 ]. Structuring case details into propositions, assumptions, and undisputed case information has been encouraged [ 308 ].

Factors affecting variability of DNA recovery on firearms were studied with four realistic, casework-relevant handling scenarios along with results obtained including DNA quantities, number of contributors, and relative profile contributions for known and unknown contributors [ 309 ]. These studies found that sampling several smaller surfaces on a firearm and including the sampling location in the evaluation process can be helpful in assessing results given alternative activity-level propositions in gun-related crimes. The authors recommend that “further extensive, detailed and systematic DNA transfer studies are needed to acquire the knowledge required for reliable activity-level evaluations” [ 309 ].

Other recent studies on DNA-TPPR include examining prevalence and persistence of DNA or saliva from car drivers and passengers [ [310] , [311] , [312] ], evaluation of DNA from regularly-used knives after a brief use by someone else [ 313 ], studying the accumulation of endogenous and exogenous DNA on hands [ 314 ] and non-self-DNA on the neck [ 315 ], considering the potential of DNA transfer via work gloves [ 316 , 317 ] or during lock picking [ 318 ], and investigating whether DNA can be recovered from illicit drug capsules [ 319 , 320 ] or packaging [ 321 ] to identify those individuals preparing or handling the drugs.

Efforts have been made to estimate the quantity of DNA transferred in primary versus secondary transfer scenarios [ 322 ]. As quantities of DNA transferred can be highly variable and thought to be dependent on the so-called “shedder status” – how much DNA an individual exudes, several studies explored this topic [ [323] , [324] , [325] , [326] , [327] ]. Studies have also considered the level of DNA an individual transfers to untouched items in their immediate surroundings [ 328 ], the position and level of DNA transferred during digital sexual assault [ 329 ] or during various activities with worn upper garments [ 330 , 331 ], and the DNA composition on the surface of evidence bags pre- and post-exhibit examination [ 332 ]. Studies assessing background levels of male DNA on underpants worn by females [ 333 ] and background levels of DNA on flooring within houses [ 334 ] are providing important knowledge about the possibilities and probabilities of DNA transfer and persistence.

The authors of one study summarize some key points that could be extended to many other studies as words of caution: “From a wider trace DNA point of view, this study has demonstrated that the person who most recently handled an item may not be the major contributor and someone who handled an item for longer may still not be the major contributor if they remove more DNA than they deposit. The amount of DNA transferred and retained on an item is highly variable between individuals and even within the same individual between replicates” [ 320 ].

3. Emerging technologies, research studies, and other topics

New technologies to aid forensic DNA typing are constantly under development. This section explores recent activities with next-generation DNA sequencing, DNA phenotyping for estimating a sample donor's age, ancestry, and appearance, lineage markers, other markers and approaches, and non-human DNA and wildlife forensics, and is expected to be of value to researchers and those practitioners looking to future directions in the field.

3.1. Next-generation sequencing

Next-generation sequencing (NGS), also known as massively parallel sequencing (MPS) in the forensic DNA community, expands the measurement capabilities and information content of a DNA sample beyond the traditional length-based results with STR markers obtained with capillary electrophoresis (CE) methods. Additional genetic markers, such as single nucleotide polymorphisms (SNPs), microhaplotypes, and mitochondrial genome (mtGenome) sequence, may be analyzed along with the full sequence of STR alleles. This higher information content per sample opens up new potential applications such as phenotyping of externally visible characteristics and biogeographical ancestry as described in review articles [ 335 , 336 ].

As mentioned in Section 1.2.1 , the NIJ Forensic Laboratory Needs Technology Working Group (FLN-TWG) published a 29-page implementation strategy on next-generation sequencing for DNA analysis in September 2021 [ 28 ]. This guide discusses how NGS works and its advantages and disadvantages, the various instrument platforms and commercial kits available with approximate costs, items to consider regarding facilities, data storage, and personnel training, and resources for implementing NGS technology. A total of 73% of 105 forensic DNA laboratories surveyed from 32 European countries already own an MPS platform or plan to acquire one in the next year or two and one-third of the survey participants already conduct MPS-based STR sequencing, identity, or ancestry SNP typing [ 337 ].

Validation studies have been described with the ForenSeq DNA Signature Prep kit and the MiSeq FGx system [ [338] , [339] , [340] ], with the Verogen ForenSeq Primer Mix B for phenotyping and biogeographical ancestry predictions [ 341 , 342 ], and for resizing reaction volumes with the ForenSeq DNA Signature Prep kit library preparation [ 343 ]. MPS sequence data showed excellent allele concordance with CE results for 31 autosomal STRs in the Precision ID GlobalFiler NGS STR Panel from 496 Spanish individuals [ 344 ] and from 22 autosomal STR loci in the PowerSeq 46GY panel with 247 Austrians [ 345 ].

STR flanking region sequence variation has been explored [ 346 ] and reports of population data and sequence variation were published for samples from India [ 347 ], France [ 348 ], China [ 349 , 350 ], Korea [ 351 ], Brazil [ 352 ], Tibet [ 353 ], and the United States [ 354 ].

In April 2019 the STRAND ( S hort T andem R epeat: A lign, N ame, D efine) Working Group was formalized [ 355 ] to consider several possible approaches to sequence-based STR nomenclature that have been proposed [ 356 , 357 ]. An overview of software options has been provided for analysis of forensic sequencing data [ 358 ]. Some recent published options include STRinNGS [ 359 ], STRait Razor [ 360 ], ArmedXpert tools MixtureAce and Mixture Interpretation to analyze MPS-STR data [ 361 ], and STRsearch for targeted profiling of STRs in MPS data [ 362 ]. To aid interpretation of MPS-STR data, sensitivity studies were performed with single-source samples and sequence data analyzed by DNA quantity and method used [ 363 ]. A procedure has been described to address calculation of match probabilities when results are generated using MPS kits with different trim sites than those present in the relevant population frequency database [ 364 ]. Performance of different MPS kits, markers, or methods can be compared for accuracy and precision using the Levenshtein distance metric [ 365 ].

Novel MPS STR and SNP panels developed in recent years include IdPrism [ 366 ], a QIAGEN 140-locus SNP panel [ 367 ], the 21plex monSTR identity panel [ 368 ], a 42plex STR NGS panel to assist with kinship analysis [ 369 ], the 5422 marker FORCE (FORensic Capture Enrichment) panel [ 370 ], a forensic panel with 186 SNPs and 123 STRs [ 371 ], the SifaMPS panel for targeting 87 STRs and 294 SNPs [ 372 ], a 1245 SNP panel [ 373 ], 90 STRs and 100 SNPs for application with kinship cases [ 374 ], an adaption of the SNPforID 52plex panel to MPS [ 375 ], 448plex SNP panel [ 376 ], a 133plex panel with 52 autosomal and 81 Y-chromosome STRs [ 377 ], and a forensic identification multiplex with 1270 tri-allelic SNPs involving 1241 autosomal and 29 X-chromosome markers [ 378 ]. The 124 SNPs in the Precision ID Identity Panel were examined in a central Indian population [ 379 ] and human leukocyte antigen (HLA) alleles used in the early 1990s were revisited with MPS capability [ [380] , [381] , [382] ].

MPS methods have demonstrated utility with compromised samples [ [383] , [384] , [385] , [386] , [387] , [388] ] and mixture interpretation [ [389] , [390] , [391] , [392] , [393] , [394] , [395] ]. Microhaplotype assays have also been developed to assist with DNA mixture deconvolution [ 396 , 397 ]. Collaborative studies have explored variability with laboratory performance using MPS methods [ 398 , 399 ]. Population structure [ 400 ] and linkage and linkage disequilibrium [ 401 ] were examined among the markers in forensic MPS panels.

A review of transcriptome analysis using MPS discussed efforts with body fluid and tissue identification, determination of the time since deposition of stains and the age of donors, the estimation of post-mortem interval, and assistance to post-mortem death investigations [ 402 ]. The potential for MPS methods to assist with environmental trace analysis was reviewed in terms of forensic soil analysis, forensic botany, and human identification utilizing the skin microbiome [ 403 ]. The possibility of non-invasive prenatal paternity testing using cell-free fetal DNA from maternal plasma was explored with the Precision ID Identity Panel [ 404 ] and the ForenSeq DNA Signature Prep Kit [ 405 ]. Pairwise kinship analysis was also examined using the ForenSeq DNA Signature Prep Kit and multi-generational family pedigrees [ 406 , 407 ]. Nanopore sequencing has also been explored for sequencing STR and SNP markers [ [408] , [409] , [410] , [411] , [412] , [413] , [414] , [415] , [416] ].

3.2. DNA phenotyping (ancestry, appearance, age)

Continuing research into the genetic components of biogeographic ancestry, appearance, and age predictions have improved forensic DNA phenotyping capabilities [ 417 ]. These forensic innovations may sometimes impact public expectations [ 418 ]. The investigation in a murder case was assisted using information from forensic DNA phenotyping that predicted eye, hair, and skin color of an unknown suspect with the HIrisPlex-S system involving targeted massively parallel sequencing [ 419 ].

The VISAGE ( Vis ible A ttributes Through Ge nomics) Consortium, which consists of 13 partners from academic, police, and justice institutions in 8 European countries, has established new scientific knowledge and developed and tested prototype tools for DNA analysis and statistical interpretation as well as conducted education for stakeholders. In the 2019 to 2022 time window of this review, this concerted effort produced 45 one review article [ 417 ], 22 original research publications [ 337 , [420] , [421] , [422] , [423] , [424] , [425] , [426] , [427] , [428] , [429] , [430] , [431] , [432] , [433] , [434] , [435] , [436] , [437] , [438] , [439] , [440] ], and three reports [ [441] , [442] , [443] ].

DNA phenotyping is currently an active area of research, and numerous activities and publications exist beyond the VISAGE articles noted here. Another 137 articles have appeared in the literature in the past three years on biogeographical ancestry, appearance (primarily hair color, eye color, and skin color), and biological age predictions (typically utilizing DNA methylation) (see Supplemental File ).

3.3. Lineage markers (Y-chromosome, mtDNA, X-chromosome)

Lineage markers consist of Y-chromosome, mitochondrial DNA, and X-chromosome genetic information that may be inherited from just one parent without the regular recombination that occurs with autosomal DNA markers. Research in terms of new markers, assays, and population studies continue to be published for these lineage markers.

3.3.1. Y-chromosome

Several recent review articles were published on forensic applications of Y-chromosome testing [ [444] , [445] , [446] ]. As discussed previously in Section 1.2 , an ISFG DNA Commission summarized the state of the field with Y-STR interpretation [ 39 ]. Rapidly mutating Y-STR loci can be used to differentiate closely related males [ [447] , [448] , [449] ]. New statistical approaches to assessing evidence with Y-chromosome information have been described [ 450 , 451 ]. Four commercial Y-STR multiplexes were compared with the NIST 1032 U S. population sample set and the allele and haplotype diversities explored with length-based versus sequence-based information [ 452 ].

A number of Y-STR typing systems have been described along with validation studies, such as a 36plex [ 453 ], a 41plex [ 454 ], a 29plex [ 455 ], a 17plex [ 456 ], a 24plex [ 457 ], the Microreader 40Y ID System [ 458 ], the 24 Y-STRs in the AGCU Y SUPP STR kit [ 459 ], the DNATyper Y26 PCR amplification kit [ 460 ], a multiplex with 12 multicopy Y-STR loci [ 461 ], the Yfiler Platinum PCR Amplification Kit [ 462 ], a 45plex [ 463 ], the Microreader 29Y Prime ID system [ 464 ], an assay with 30 slow and moderate mutation Y-STR markers [ 465 ], the 17plex Microreader RM-Y ID System [ 466 ], and a 26plex for rapidly mutating Y-STRs [ 467 ]. A machine learning program predicted Y haplogroups using two Y-STR multiplexes with 32 Y-STRs [ 468 ].

Deletions and duplications with 42 Y-STR were reported in a sample of 1420 unrelated males and 1160 father-son pairs from a Chinese Han population [ 469 ]. Using Y-STR allele sequences has enabled locating parallel mutations in deep-rooting family pedigrees [ 470 ]. The surname match frequency with Y-chromosome haplotypes was explored using 2401 males genotyped for 46 Y-STRs and 183 Y-SNPs [ 471 ]. In the Y-chromosome's role as a valuable kinship indicator to assist in genetic genealogy and forensic research, models to improve prediction of the time to the most recent common paternal ancestor have been studied with 46 Y-STRs and 1120 biologically related genealogical pairs [ 472 ]. A massively parallel sequencing tool was developed to analyze 859 Y-SNPs to infer 640 Y haplogroups [ 473 ]. Another MPS tool, the CSYseq panel, targeted 15,611 Y-SNPs to categorize 1443 Y-sub-haplogroup lineages worldwide along with 202 Y-STRs including 81 slow, 68 moderate, 27 fast, and 26 rapidly mutating Y-STRs to individualize close paternal relatives [ 474 ].

3.3.2. Mitochondrial DNA

Mitochondrial DNA (mtDNA), which is maternally inherited with a high copy number per cell, can aid human identification, missing persons investigations, and challenging forensic specimens containing low quantities of nuclear DNA such as hair shafts [ [475] , [476] , [477] ]. Validation studies have been published using traditional Sanger sequencing [ 478 ] and next-generation sequencing [ [479] , [480] , [481] ]. Illumina and Thermo Fisher now provide mtDNA whole genome NGS assays [ [482] , [483] , [484] , [485] ]. Many mtDNA population data sets were published in the past three years including high-quality data from U.S. populations [ 486 ]. The suitability of current mtDNA interpretation guidelines for whole mtDNA genome (mtGenome) comparisons has been evaluated [ 487 ].

NGS methods have increased sensitivity of mtDNA heteroplasmy detection [ 488 , 489 ], which can influence the ability to connect buccal reference samples and rootless hairs from the same individual [ 490 , 491 ]. Twelve polymerases were compared in terms of mtDNA amplification yields from challenging hairs – with KAPA HiFi HotStart and PrimeSTR HS outperforming AmpliTaq Gold DNA polymerase that is widely used in forensic laboratories [ 492 ]. Multiple studies and review articles have discussed distinguishing mtDNA from nuclear DNA elements of mtDNA (NUMTs) that have been inserted into our nuclear DNA [ [493] , [494] , [495] , [496] ].

NGS sequencing of the mtGenome has permitted improved resolution of the most common West Eurasian mtDNA control region haplotype [ 497 ]. Phylogenetic alignment and haplogroup classification have continued to be refined with new sequence information [ 498 ], and new assays have been developed to aid haplogroup classification [ 499 ]. Concerns over potential paternal inheritance of mtDNA have also been addressed [ 500 , 501 ].

3.3.3. X-chromosome

A 20-year review of X-chromosome use in forensic genetics examined the number and types of markers available, an overview of worldwide population data, the use of X-chromosome markers in complex kinship testing, mutation studies, current weaknesses, and future prospects [ 502 ]. One example of the forensic application of X-chromosome markers include use in relationship testing cases involving suspicion of incest or paternity without a maternal sample for comparison [ 503 ]. Four new X-STR multiplex assays were described along with validation studies including a 19plex [ 504 ], a 16plex [ 505 ], another 19plex – the Microreader 19X Direct ID System [ 506 ], and an 18plex named TYPER-X19 multiplex assay [ 507 ]. A collaborative study examined paternal and maternal mutations in X-STR markers [ 508 ]. A software program for performing population statistics on X-STR data was introduced [ 509 ] and sequence-based U.S. population data described for 7 X-STR loci [ 510 ].

3.4. New markers and approaches (microhaplotypes, InDels, proteomics, human microbiome)

In this section on new markers and approaches, publications related to microhaplotypes and insertion/deletion (InDel, or DIP for deletion insertion polymorphisms) markers are reviewed along with proteomic and microbiome approaches to supplement standard human DNA typing methods.

3.4.1. Microhaplotypes

Microhaplotype (MH) markers consist of multiple SNPs in close proximity (e.g., typically <200 bp or <300 bp) that can be simultaneously genotyped with each DNA sequence read using NGS. Two or more linked SNPs will define three or more haplotypes. Compared to STR markers, MHs do not have stutter artifacts (which complicate mixture interpretation), can be designed with shorter amplicon lengths in some cases (which benefits recovery of genetic information from degraded DNA samples), possess a higher degree of polymorphism compared to single SNP loci (which benefits discrimination power), and exhibit low mutation rates (which enables relationship testing and biogeographical ancestry inference). Thus, MH markers bring advantages to human identification, ancestry inference, kinship analysis, and mixture deconvolution to potentially assist missing person investigations, relationship testing, and forensic casework as discussed in several recent reviews [ 16 , 511 ]. A new database, MicroHapDB, has compiled information on over 400 published MH markers and frequency data from 26 global population groups [ 512 ].

A number of MH panels have been described [ [513] , [514] , [515] , [516] , [517] , [518] , [519] ]. Population data has been collected from a number of sources around the world including four U.S. population groups examined with a 74plex assay with 74 MH loci and 230 SNPs [ 520 ]. Various MH panels have been evaluated for effectiveness with kinship analysis [ [521] , [522] , [523] ]. Likewise the ability to detect minor contributors in DNA mixtures has been assessed [ [524] , [525] , [526] ].

3.4.2. InDel markers

InDel markers can be detected using a CE-based length analysis, and thus use instrumentation that forensic DNA laboratories already have. InDels can also be designed to amplify short DNA fragments (e.g., <125 bp) to help improve amplification success rates with low DNA quantity and/or quality. However, with only two possible alleles like SNPs, InDels are not as polymorphic as STRs and thus require more markers to obtain similar powers of discrimination as multi-allelic STR markers and do not work as well with mixed DNA samples. InDels possess a lower mutation rate than STRs and can be used as ancestry informative markers (AIMs) since allele frequencies may differ among geographically separated population groups.

Two commercial InDel kit exist: (1) Investigator DIPlex (QIAGEN, Hilden, Germany) with 30 InDels [ [527] , [528] , [529] , [530] , [531] ] and (2) InnoTyper 21 (InnoGenomics, New Orleans, Louisiana, USA) with 21 autosomal insertion-null (INNUL) markers [ [532] , [533] , [534] , [535] ]. In addition, a number of InDel assays have been published including a 32plex [ 536 ], a 35plex [ 537 ], a 38plex [ 538 ], a 39plex with AIMs [ 539 ], a 43plex [ 540 ], a 57plex [ 541 ], a 60plex with 57 autosomal InDels, 2 Y-chromosome InDels, and amelogenin [ 542 ], a 32plex with X-chromosome InDels [ 543 ], and a 21plex with AIMs [ 544 ].

A multi-InDel marker is a specific DNA fragment with more than one InDel marker located tightly in the physical position that provides a microhaplotype [ 545 ]. Several multi-InDel assays have been published include a 12plex [ 546 ] and an 18plex [ 547 ].

3.4.3. Proteomics

Protein analysis, often through immunological assays, has traditionally been used to identify body fluids and tissues. With improvements in protein mass spectrometry in recent years, genetic variation can be observed in hair shafts via single amino acid polymorphisms. Detection of these genetically variant peptides (GVPs) can infer the presence of corresponding SNP alleles in the genome of the individual who is the source of the protein sample. A thorough review of forensic proteomics in 2021 cited 375 references [ 18 ]. Recent efforts in this area have focused on using GVPs to differentiate individuals through their human skin cells [ [548] , [549] , [550] ] or hair samples [ [551] , [552] , [553] , [554] , [555] , [556] , [557] , [558] , [559] ]. An algorithm has been proposed for calculating random match probabilities with GVP information [ 560 ].

3.4.4. Human microbiome

Microorganisms live in and on the human body, and efforts are underway to utilize the human microbiome for a variety of potential forensic applications [ 21 , [561] , [562] , [563] ]. There are also active efforts with analysis of microbiomes in the environment (e.g., soil or water samples), which could be classified under non-human DNA testing. Forensic microbiome research covers at least six areas: (1) individual identification, (2) tissue/body fluid identification, (3) geolocation, (4) time since stain deposition estimation, (5) forensic medicine, and (6) post-mortem interval (PMI) estimation. Biological, technical, and data issues have been raised and potential solutions explored in a recent review article [ 21 ]. For example, microbes on deceased individuals are being studied to estimate the postmortem interval [ 20 ] and postmortem skin microbiomes were found to be stable during repeated sampling up to 60 h postmortem [ 564 ].

Sequence analysis of 16S rRNA using NGS provides information on the microbiome community present in a tested sample [ 565 ]. The Forensic Microbiome Database 46 correlates publicly available 16S rRNA sequence data as a community resource. If the skin microbiome is extremely diverse among individuals, then the potential exists to associate the bacterial communities on an individual's skin with objects touched by this individual assuming that the bacteria originating from the donor's skin are deposited (i.e., transfer to and persist on the surface) and can be detected and interpreted.

Specific aspects of the microbiome (e.g., the bacterial community) may be able to provide details about the donor through bacterial profiling. For example, in one study correlations were observed between the bacterial profile and gender, ethnicity, diet type, and hand sanitizer used [ 566 ]. Another study with 30 individuals found that each person left behind microbial signatures that could be used to track interaction with various surfaces within a building, but the authors concluded “we believe the human microbiome, while having some potential value as a trace evidence marker for forensic analysis, is currently under-developed and unable to provide the level of security, specificity and accuracy required for a forensic tool” [ 565 ].

Direct and indirect transfer of microbiomes between individuals has been studied [ 567 , 568 ] along with identifying background microbiomes [ 569 ] and the possibility of transfer of microbiomes within a forensic laboratory setting [ 570 ]. Changes in four bacterial species in saliva stains were charted, showing that it was possible to correctly predict deposition time within one week in 80% of the stains [ 571 ]. The ability to detect sexual contact has been explored through using the microbiome of the pubic region [ [572] , [573] , [574] ]. The microbiomes on skin, saliva, vaginal fluid, and stool samples have been compared [ 575 ]. The stability, diversity, and individualization of the human skin virome was explored with 59 viral biomarkers being found that differed across the 42 individuals studied [ 576 ]. It will be interesting to see what the future holds and what other findings come from this active area of research.

3.5. Kinship analysis, human identification, and disaster victim identification

Kinship analysis, which uses genetic markers and statistics to evaluate the potential for specific biological relationships, is important for parentage testing, disaster victim identification (DVI), and human identification of remains that may be recovered in missing person cases. New open-source software programs have been described that can assist with kinship analysis [ 577 , 578 ].

A potential biological relationship is commonly evaluated using a likelihood ratio (LR) by comparing the likelihoods of observing the genetic data given two alternative hypotheses, such as (1) an individual is related to another individual in a defined relationship versus (2) the two individuals not related. Higher LR values indicate stronger support with the genetic data if the proposed relationship is true. Multiple factors influence LR kinship calculations including the specific hypotheses, the genetic markers examined, the allele frequencies of the relevant population(s), the co-ancestry coefficient applied, and approaches to address potential mutations. STR genotypes were reported for 11 population groups used by the FBI Laboratory [ 579 ]. The status quo has been challenged in recent articles regarding how hypotheses are commonly established [ 580 ] and whether race-specific U.S. population databases should be used for allele frequency calculations [ 581 ].

Depending on the relationship being explored, information can be optimized through genetic information from additional known relatives or through collecting results at more loci [ 582 ]. Potential error rates have been modeled with the observation that false negatives, which occur when related individuals are misinterpreted as being unrelated, are more common than false positives, where unrelated people are interpreted as being related [ 583 ]. While LRs are generally reliable in detecting or confirming parent/child pairs, limitations of kinship determinations exist (e.g., distinguishing siblings from half-siblings) when using STR data [ 584 ].

Pairwise comparisons have been studied in forensic kinship analysis [ [585] , [586] , [587] ]. The effectiveness of 40 STRs plus 91 SNPs was shown to be better than 27 STRs and 91 SNPs or 40 STRs alone [ 588 ]. Only a minor increase in LRs was observed when taking NGS-generated allele sequence variation rather than fragment length allele variation [ 589 ]. The statistical power of exclusion and inclusion can be used to prioritize family members selected for testing in resolving missing person cases [ 590 ]. A strategy for making decisions when facing low statistical power in missing person and DVI cases was published [ 591 ].

The most challenging kinship cases involve efforts to separate pairs of individuals who are typically thought to be genetically indistinguishable (i.e., monozygotic twins) or distant relatives (e.g., fourth cousins) where there is an increased uncertainty in the possible relationship. In some situations, somatic mutations may permit distinguishing monozygotic twins following whole genome sequencing – and this approach was successful in four of six cases reported recently [ 19 ]. The probative value of NGS data for distinguishing monozygotic twins was explored [ 592 ]. A unique case of heteropaternal twinning was reported where opposite-sex twins apparently had different fathers [ 593 ]. An impressive effort in kinship analysis using direct-to-consumer genetic genealogy information from 56 living descendants of multiple genealogical lineages helped resolve a contested paternity case from over a century and a half ago to identify the biological father of Josephine Lyon [ 594 ].

Techniques for identification of human remains continue to improve particularly with the capabilities of NGS and hybridization capture [ 595 ] and ancient DNA extraction protocols [ 596 , 597 ]. Studies have reported variation in skeletal DNA preservation [ 598 ] and retrospectively considered success rates with compromised human remains [ 599 ].

A simulated airplane crash enabled six forensic laboratories in Switzerland to gain valuable DVI experience with kinship cases of varying complexity [ 600 ]. The ISFG Spanish-Portuguese Speaking Working Group likewise conducted a DVI collaborative exercise with a simulated airplane crash to explore fragment re-associations, victim identification through kinship analysis, coping with related victims, handling mutations or insufficient number of family references, working in a Bayesian framework, and the correct use of DVI software [ 601 ]. Other groups have explored the capability of a particular software tool [ 602 ] or implemented rapid DNA analysis to accelerate victim identification [ 603 ]. The International Commission on Missing Persons (ICMP) has gained considerable experience with DNA extraction and STR amplification from degraded skeletal remains and kinship matching procedures in large databases [ 604 ]. To supplement the INTERPOL DVI Guide, 47 some lessons learned and experienced-based recommendations for DVI operations have recently been provided [ 605 ].

3.6. Non-human DNA testing and wildlife forensics

Non-human biological evidence may inform criminal investigations when animals or plants are victims or perpetrators of crime or the presence of specific material, such as cat or dog hair, may contribute to reconstructing events at a crime scene. Non-human DNA testing includes wildlife forensics and domestic animal species as well as forensic botany and has many commonalities and some important differences compared to human DNA testing [ [606] , [607] , [608] , [609] , [610] ]. Pollen analysis can assist criminal investigations [ 611 , 612 ]. The potential for and the barriers associated with the wider application of forensic botany in civil proceedings and criminal cases have been examined [ 613 , 614 ].

Mammalian species identification can assist in determining the origins of non-human biological material found at crime scenes through narrowing the range of possibilities [ 615 ]. New sequencing methods have been developed to assist species identification [ 616 ]. A multiplex PCR assay was developed to simultaneously identify 22 mammalian species (alpaca, Asiatic black bear, Bactrian camel, brown rat, cat, cow, common raccoon, dog, European rabbit, goat, horse, house mouse, human, Japanese badger, Japanese wild boar, masked palm civet, pig, raccoon dog, red fox, sheep, Siberian weasel, and sika deer) and four poultry species (chicken, domestic turkey, Japanese quail, and mallard) [ 617 ]. A number of other species identification assays have also been reported [ [618] , [619] , [620] ].

An important effort for harmonizing canine DNA analysis is an ISFG working group known as the Canine DNA Profiling Group, or CaDNAP. 48 The CaDNAP group published an analysis of 13 STR markers in 1184 dogs from Germany, Austria, and Switzerland [ 621 ]. Six traits for predicting visible characteristics in dogs, namely coat color, coat pattern, coat structure, body size, ear shape, and tail length, were explored with 15 SNPs and six InDel markers [ 622 ]. Canine breed classification and skeletal phenotype prediction has been explored using various genetic markers [ 623 ]. A novel assay using a feline leukemia virus was developed to demonstrate that a contested bobcat was not a domestic cat hybrid [ 624 ] and a core panel of 101 SNP markers was selected for domestic cat parentage verification and identification [ 625 ].

DNA tests have been developed to assist with illegal trafficking investigations involving elephant ivory seizures [ 626 ], falcons [ 627 ], and precious coral material [ 628 ]. Accuracy in animal forensic genetic testing was explored with interlaboratory assessments performed in 2016 and 2018 [ 629 ]. A collaborative exercise conducted in 2020 and 2021 by the ISFG Italian Speaking Working Group examined performance across 21 laboratories with a 13-locus STR marker test for Cannabis sativa [ 630 ]. A molecular approach was explored to distinguish drug-type versus fiber-type hemp varieties [ 631 ].

Acknowledgments and disclaimer

I am grateful to Dominique Saint-Dizier from the French National Scientific Police for the invitation and opportunity to conduct this review and for the support of my supervisor, Shyam Sunder, for granting the time to work on this extensive review. Input and suggestions on this manuscript by Todd Bille, Thomas Callaghan, Kevin Kiesler, François-Xavier Laurent, Robert Ramotowski, Kathy Sharpless, and Robert Thompson are greatly appreciated. Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

1 https://www.sciencedirect.com/journal/forensic-science-international-genetics/special-issue/10TSDS4360H .

2 https://www.mdpi.com/journal/genes/special_issues/Forensic_Genetic .

3 https://www.mdpi.com/journal/genes/special_issues/forensic_mitochondrial_genomics .

4 https://www.mdpi.com/journal/genes/special_issues/Advances_Forensic_Genetics .

5 https://www.mdpi.com/books/pdfdownload/book/5798 .

6 https://www.mdpi.com/journal/genes/special_issues/Bioinformatics_Forensic_Genetics .

7 https://www.mdpi.com/journal/genes/special_issues/genetics_anthropology .

8 https://www.mdpi.com/journal/genes/special_issues/Identification_of_Human_Remains .

9 https://www.mdpi.com/journal/genes/special_issues/Forensic_DNA_analysis .

10 https://www.mdpi.com/journal/genes/special_issues/Forensic_DNA_Mixture .

11 https://www.mdpi.com/journal/genes/special_issues/28FBA0G4DH .

12 See https://www.swgdam.org/ .

13 https://www.swgdam.org/publications .

14 https://www.fbi.gov/file-repository/rapid-dna-guide-january-2022.pdf/view .

15 https://www.fbi.gov/file-repository/non-codis-rapid-dna-best-practices-092419.pdf/view .

16 https://www.fbi.gov/file-repository/rapid-dna-testing-for-non-codis-uses-considerations-for-court-073120.pdf/view .

17 https://www.justice.gov/olp/uniform-language-testimony-and-reports .

18 https://forensiccoe.org/human_factors_forensic_science_sourcebook/ .

19 https://www.nist.gov/organization-scientific-area-committees-forensic-science .

20 https://www.nist.gov/organization-scientific-area-committees-forensic-science/human-forensic-biology-subcommittee .

21 https://www.nist.gov/topics/organization-scientific-area-committees-forensic-science/wildlife-forensics-subcommittee .

22 https://www.aafs.org/academy-standards-board .

23 https://www.nist.gov/organization-scientific-area-committees-forensic-science/osac-registry .

24 See https://www.nist.gov/organization-scientific-area-committees-forensic-science/human-forensic-biology-subcommittee .

25 https://lexicon.forensicosac.org/ .

26 https://www.nist.gov/osac/human-factors-validation-and-performance-testing-forensic-science .

27 https://www.nist.gov/organization-scientific-area-committees-forensic-science/osac-research-and-development-needs .

28 https://www.gov.uk/government/publications/forensic-science-providers-codes-of-practice-and-conduct-2021-issue-7 .

29 https://www.aabb.org/standards-accreditation/standards/relationship-testing-laboratories .

30 https://www.isfg.org/DNA+Commission .

31 Previously available rapid DNA systems included the RapidHIT 200 from IntegenX and MiDAS (Miniaturized integrated DNA Analysis System) from the Center for Applied NanoBioscience at the University of Arizona.

32 See https://le.fbi.gov/science-and-lab-resources/biometrics-and-fingerprints/codis/rapid-dna .

33 See https://www.interpol.int/How-we-work/Forensics/DNA .

34 See https://www.interpol.int/How-we-work/Forensics/I-Familia .

35 See https://le.fbi.gov/science-and-lab-resources/biometrics-and-fingerprints/codis#Familial-Searching .

36 See https://isogg.org/wiki/Autosomal_DNA_testing_comparison_chart .

37 See https://www.wmar2news.com/infocus/maryland-quietly-shelves-parts-of-genealogy-privacy-law .

38 See https://www.hhs.gov/ohrp/regulations-and-policy/regulations/finalized-revisions-common-rule/index.html .

39 See https://enfsi.eu/about-enfsi/structure/working-groups/dna/ .

40 See https://www.swgdam.org/publications .

41 See https://www.chinesestandard.net/PDF/English.aspx/GAT815-2009 .

42 See https://strider.online/ .

43 See https://bit.ly/2R4bFgL (DNA-TrAC).

44 See https://cieqfmweb.uqtr.ca/fmi/webd/OD_CIEQ_CRIMINALISTIQUE (Transfer Traces Activity DataBase).

45 See https://www.visage-h2020.eu/index.html#publications .

46 See http://fmd.jcvi.org/ .

47 See https://www.interpol.int/en/How-we-work/Forensics/Disaster-Victim-Identification-DVI .

48 See https://www.isfg.org/Working+Groups/CaDNAP .

Appendix A Supplementary data to this article can be found online at https://doi.org/10.1016/j.fsisyn.2022.100311 .

Appendix A. Supplementary data

The following is the supplementary data to this article:

IMAGES

  1. DNA Paper Model Instructions and Questions

    dna research paper topics

  2. dna samples

    dna research paper topics

  3. (PDF) Understanding the Basics of DNA Fingerprinting in Forensic Science

    dna research paper topics

  4. DNA Research Paper (400 Words)

    dna research paper topics

  5. Writing a Research Report on a DNA Research Project

    dna research paper topics

  6. the future of forensic dna analysis

    dna research paper topics

VIDEO

  1. DNA

  2. DNA Testing & Using in Research

  3. Writing a Synthesis Essay Exam or Term Paper (CC)

  4. DNA News from MyHeritage

  5. Weeks 9-10

  6. dna model making using cardboard and paper

COMMENTS

  1. DNA

    DNA (deoxyribonucleic acid) is the nucleic acid polymer that forms the genetic code for a cell or virus. Most DNA molecules consist of two polymers (double-stranded) of four nucleotides that each ...

  2. Human Molecular Genetics and Genomics

    Genomic research has evolved from seeking to understand the fundamentals of the human genetic code to examining the ways in which this code varies among people, and then applying this knowledge to ...

  3. DNA Research

    Chromosomal DNA sequences of the Pacific saury genome: versatile resources for fishery science and comparative biology. Pacific saury ( Cololabis saira ) is a commercially important small pelagic fish species in Asia. In this study, we conducted the first-ever whole genome sequencing of this species, with single molecule, real-time (SMRT ...

  4. Issues

    The official journal of Kazusa DNA Research Institute. Publishes high quality papers on structures and function of genes and genomes.

  5. Recent advances in understanding DNA replication: cell type-specific

    Introduction. DNA synthesis occurs during the S phase of the cell cycle and is ensured by the replisome, a molecular machine made of a large number of proteins acting in a coordinated manner to synthesize DNA at many genomic locations, the replication origins 1.Replication origin activation in space and time (or replication program) is set by a sequence of events, starting already at the end ...

  6. Genetic impacts on DNA methylation: research findings and future

    DNA methylation heritability. A fundamental question in the study of human traits is to assess the extent to which a phenotype is under the influence of genetic factors, that is, how heritable it is. Heritability refers to the proportion of phenotypic variance attributed to either total genetic effects (broad-sense heritability, H 2), or additive genetic effects (narrow-sense heritability, h 2 ...

  7. FOCUSED RESEARCH TOPICS

    Research methods: DNA sequencing and genomics: Genetic testing: Cell-free fetal DNA: Newborn screening: Diagnostic testing: Carrier testing: Preimplantation genetic diagnosis: Prenatal diagnosis: Predictive and presymptomatic testing: Pharmacogenomics: Non-diagnostic testing: Forensic testing: Paternity testing: Genealogical DNA test: Research ...

  8. DNA Manipulation and Single-Molecule Imaging

    1.2. Flexibility of DNA Molecule as a Polymer. The DNA molecule is a long-chain polymer that consists of two antiparallel polynucleotide chains that coil around each other to form a double helix [8,9].Non-B-DNA structures, such as A-form or Z-form, are induced by a high salt or high ethanol concentration [10,11,12], whereas the double helix of DNA in an aqueous solution of low ion ...

  9. (PDF) DNA structure and function

    Genetic functions of DNA can be understood in two ways: the nitrogen base sequence, constituting the archive of information encoding the sequences of proteins and RNA, and the double helix ...

  10. 120+ Genetics Research Topics for Your Projects

    DNA Research Paper Topics. The role and research of DNA are so impactful today that it has a significant effect on our daily lives today. From health care to medication and ethics, over the last few decades, our knowledge of DNA has experienced a lot of growth. A lot has been discovered from the research of DNA and genetics.

  11. 163 DNA Topic Ideas to Write about & Essay Samples

    Looking for a good essay, research or speech topic on DNA? Check our list of 163 interesting DNA title ideas to write about! ... It contains thousands of paper examples on a wide variety of topics, all donated by helpful students. You can use them for inspiration, an insight into a particular topic, a handy source of reference, or even just as ...

  12. 111 DNA Essay Topics & Research Titles at StudyCorgi

    The paper analyzes the role of DNA to provide an ample understanding of molecular genetics. Relationships Between Reproduction, Heredity, and DNA. Genetic information in DNA is transcribed to RNA and then translated into the amino acid sequence of a Protein. Complete Mapping of DNA‐Protein Interactions by Liu et al.

  13. Researchers uncover human DNA repair by nuclear metamorphosis

    DNA double-strand break-capturing nuclear envelope tubules drive DNA repair. Nature Structural & Molecular Biology , 2024; DOI: 10.1038/s41594-024-01286-7 Cite This Page :

  14. The Expanding World of DNA and RNA

    The DNA polymerases that appear most able to tolerate modifications include KOD Dash, ... (GM060005 and GM097489) and the Defense Advanced Research Projects Agency Folded Non-Natural Polymers with Biological Function Fold F(x) Program (Award No. N66001-14-2-4052). ... Papers of particular interest, published within the period of review, have ...

  15. 119 Impressive Genetics Research Topics For College Students

    Here are some brilliant ideas that you can use as research paper topics in the Genetics field: Is the knowledge of Genetics ahead of replication and research? ... How food affects the human body's response to and connection with certain plants' and animals' DNA. Hot Topics In Genetics. In this list are some of the topics that raise a lot ...

  16. The Role of DNA in Forensic Science: A Comprehensive Review

    The article aims to provide a comprehensive understanding of the crucial role of forensic genetics in criminal investigations and sheds light on the latest trends and breakthroughs in this area. The evolution of DNA typing from ABO blood typing to the current standard of short tandem repeat (STR) analysis is discussed, along with alternative ...

  17. Jennifer Doudna discusses immense promise of gene editing

    The discovery of CRISPR/Cas9 in 2012 stemmed from basic scientific research into how bacteria fight off viruses. Researchers realized that a portion of the bacterial immune system contains molecules that precisely snip DNA at specific locations, and developed that into the molecular scissors of CRISPR/Cas9 that allow the precise editing of ...

  18. Understanding biochemistry: structure and function of nucleic acids

    The structure of DNA. ( A) A nucleotide (guanosine triphosphate). The nitrogenous base (guanine in this example) is linked to the 1′ carbon of the deoxyribose and the phosphate groups are linked to the 5′ carbon. A nucleoside is a base linked to a sugar. A nucleotide is a nucleoside with one or more phosphate groups.

  19. Researchers uncover human DNA repair by nuclear metamorphosis

    Topics. Week's top; Latest news; Unread news; Subscribe; ... "We think this research solves the mystery of how DNA double-strand breaks and the nuclear envelope connect for repair in human cells ...

  20. 113 Great Research Paper Topics

    113 Great Research Paper Topics. One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and cover a wide range of subjects so you can easily ...

  21. (PDF) DNA FINGERPRINTING

    DNA profiling ( DNA fingerprinting) is a technique employed by forensic scientists to assist in the identification. of individuals b y their resp ective DNA pr ofiles. DNA profiling shou ld not be ...

  22. Recent advances in forensic biology and forensic DNA typing: INTERPOL

    This review paper covers the forensic-relevant literature in biological sciences from 2019 to 2022 as a part of the 20th INTERPOL International Forensic Science Managers Symposium. Topics reviewed include rapid DNA testing, using law enforcement DNA databases plus investigative genetic genealogy DNA databases along with privacy/ethical issues ...