IAS EXPRESS upsc preparation

Renewable Energy in India – Progress, Challenges & Opportunities

' src=

From Current Affairs Notes for UPSC » Editorials & In-depths » This topic

India is anticipated to be the biggest contributor to the renewables boom in 2021, with the country’s annual growth in renewables doubling from 2020. Prime Minister of India mentioned about having huge renewable energy deployment plans for India for the next 10 years which are likely to create business opportunities of around $20 billion a year.

renewable energy mindmap notes for upsc by IAS EXPRESS

This topic of “Renewable Energy in India – Progress, Challenges & Opportunities” is important from the perspective of the UPSC IAS Examination , which falls under General Studies Portion.

What is renewable energy?

  • It is an energy that is generated from the renewable sources – the ones that can be replenished quickly on par with human demand.
  • The examples of renewable energy sources include solar energy, wind energy, tidal energy, etc.
  • These sources, if used to produce energy, can reduce the amount of carbon emitted into the atmosphere.
  • Renewable energy is often used in the following areas:
  • Electricity generation
  • Heating/cooling of air and water
  • Transportation
  • Stand-alone power system or Remote Area Power Supply (RAPS) for rural areas.
  • In recent years, renewable energy is globally established as the mainstream energy source.
  • It has been estimated that the share of renewables in the global electricity generation is more than 24% by the end of 2018.
  • Also, renewables make up one-third of the global installed power capacity.
  • This is mainly due to the policy initiatives and targets that have sent a positive signal to the industries.
  • Due to these facts, the costs of renewable energy are decreasing and the technologies are advancing to make it far more efficient and cheaper.
  • Despite the progress in renewables’ adoption, it is insufficient to achieve the goals under the Paris Agreement or the Sustainable Development Goal 7 within the deadline.
  • This is because of the fossil fuel companies’ continuous lobbying for delay or block climate change policies of various governments across the world and also influencing the public opinions with regards to climate change.

Express Learning Programme (ELP)

  • Optional Notes
  • Study Hacks
  • Prelims Sureshots (Repeated Topic Compilations)
  • Current Affairs (Newsbits, Editorials & In-depths)
  • Ancient Indian History
  • Medieval Indian History
  • Modern Indian History
  • Post-Independence Indian History
  • World History
  • Art & Culture
  • Geography (World & Indian)
  • Indian Society & Social Justice
  • Indian Polity
  • International Relations
  • Indian Economy
  • Environment 
  • Agriculture
  • Internal Security
  • Disasters & its Management
  • General Science – Biology
  • General Studies (GS) 4 – Ethics
  • Syllabus-wise learning
  • Political Science
  • Anthropology
  • Public Administration

SIGN UP NOW

Why is it important for India?

Reduce oil demand:

  • It is evident that India has a vast amount of renewable resources.
  • What India doesn’t have is the conventional energy sources like petrol and diesel.
  • India imports 84% of its oil needs.
  • With the volatile nature of international politics in the Middle East , India constantly faces insecurity in the global oil trade.
  • If India opts for renewable energy source, the global oil prices won’t affect India’s economy.

Reduce Pollution:

  • According to a study in 2019, 7 of the world’s top 10 most polluted cities are in India.
  • New Delhi is deemed to be the most polluted capital on Earth.
  • It is vital that we address the issue before the situation worsens in the major cities in India.

Rural electrification:

  • India still has many locations that do not have access to electricity.
  • Electrification of remote areas and inaccessible terrains is not possible using grid connectivity.
  • The only possible solution is the use of renewable energy sources to promote electrification to these areas.
  • This is because renewable energy sources are inexhaustible and the sourcing is versatile.

Prelims Sureshots – Most Probable Topics for UPSC Prelims

A Compilation of the Most Probable Topics for UPSC Prelims, including Schemes, Freedom Fighters, Judgments, Acts, National Parks, Government Agencies, Space Missions, and more. Get a guaranteed 120+ marks!

What are the initiatives taken by the government to promote renewable energy sector?

  • India is the first country in the world to have an exclusive ministry that is involved in the promotion and development of the renewables – Ministry of New and Renewable Energy (MNRE).
  • Nation Green Corridor Programme : This project aims at synchronising energy that is produced from renewable energy sources with the conventional stations.
  • National Clean Energy Fund : It is the fund created using the carbon tax for backing research and development of innovative eco-friendly technologies.
  • National Biogas and Manure Management Programme (NBMMP): It is a central scheme that promotes setting up of Family Type Biogas Plants mostly for the use of rural and semi-urban households. The energy is generated from biodegradable wastes such as cow-dug, wastes from the garden, kitchen, etc.
  • Biomass power and cogeneration programme: This scheme aims at optimum utilization of the country’s biomass resources in the power grid.
  • Draft National Wind-Solar Hybrid Policy: Through this policy, the government seeks to promote new renewable energy projects and hybridisation of the existing ones. It is a policy that provides a comprehensive framework to promote large grid-connected wind-solar photovoltaic hybrid system.
  • Off-Grid and Decentralised Solar Photo Voltaic Applications Programme : This scheme aims to promote off-grid application of the Solar Photovoltaic (SPV) systems for meeting the lighting and electricity needs of the individuals, communities, commercial and industrial institutions.
  • National Offshore Wind Energy Policy : This involves the utilization of India’s Exclusive Economic Zone (EEZ) for the development of offshore wind farms up to 200 Nautical Miles from the baseline.
  • Promotion of Solar Parks and Ultra Mega Solar Power Projects : The aim of the mega project is to set up at least 25 Solar Parks and Mega-Solar Power Projects to produce 20, 000 MW of solar energy between 2014-15 and 2021-22.
  • Grid Connected Solar Rooftop programme : This scheme promotes the installation of solar panels across the country. It involves the installation of the solar panel at the rooftops of the residential, commercial, industrial and institutional buildings.
  • Sustainable Rooftop Implementation for Solar Transfiguration of India (SRISTI) scheme : This scheme provides financial aids to the beneficiaries who install a solar power plant at the rooftop within the country.
  • Policy for Repowering of the Wind Power Projects : The main objective of this policy framework is to promote optimum utilization of the wind energy resources. This policy aims to replace the old wind turbines and promote a newer version of wind energy technologies.
  • Small Hydropower Programme : It involves the development of Small Hydro Power (SHP) Projects up to 25 MW station capacity. The potential of this programme is about 20,000 MW and it is mostly in the Himalayan States where the rivers are abundant and in States which have sufficient irrigation canals
  • National Solar Mission : It is a part of the National Action Plan on Climate Change. It is an initiative to promote solar power in India. This program was initiated in 2010 with a target of 20 GW by 2022. Later, this target was increased to 100 GW in 2015. By 2017-18, India has surpassed the original target of 20 GW – five years ahead of the deadline.
  • Promotion of Renewable Purchase Obligation : RPOs are policies that make it mandatory for large energy consumers utilize a certain percentage of their energy from renewable sources.
  • FDI Policy: FDI up to 100% is allowed in the renewable energy sector under the Automatic route and no prior Government approval is needed.
  • A new Hydropower policy for 2018-28 has been drafted for the growth of hydro projects in the country.
  • The Ministry of New and Renewable Energy (MNRE) has decided to give custom and excise duty benefits to the solar rooftop sector, which in result will reduce the cost of setting up as well as generate power, thus increasing growth.
  • The Indian Railways is taking increased efforts via sustained energy efficient measures and high use of clean fuel to reduce emission levels by 33 per cent by 2030.
  • Pradhan Mantri- Kisan Urja Suraksha evam Utthaan Mahabhiyan:  PM- KUSUM aims at providing financial and water security to farmers by means of utilizing solar energy capacities of 25,750 MW by 2022.
  • The Ministry of New and Renewable Energy on its website also provides Akshay Urja Portal  and India Renewable Idea Exchange (IRIX) Portal.  IRIX is a platform that enabled the exchange of ideas among energy-conscious Indians as well as the global community.

How far has India utilised its renewable energy potential?

  • India is the fifth-largest producer of solar energy and the sixth-largest producer of renewable energy.
  • However, India has not reaped the cost-effective benefits of the renewables.
  • The developing countries like China and Brazil have taken advantages of low-cost renewable energy to promote their economic growth.
  • According to International Renewable Energy Agency, China ranks first as the largest producer of renewable energy while Brazil ranks third in this list.
  • Between the years 2014 and 2017, China’s addition of its renewable energy capacity is six-times more than India’s renewable energy capacity.
  • While China increased its solar energy capacity by 105.5GW, India has increased its capacity to only 14.3 GW.
  • In other words, India has increased its capacity only one-seventh of China’s capacity.
  • The developed economies like the USA and Japan have twice this capacity.
  • Furthermore, the government has imposed safeguard duty on imported solar PV cells.
  • This, along with depreciation of rupee against the US dollar, is reducing the cost energy benefits of the renewables.
  • One of the crucial objectives for the promotion of renewable energy is to advocate the reduction of and finally eliminate the use of fossil fuels.
  • In contrast to the objective, according to Reuters, India’s annual coal demand has risen by 9.1% during the year ending March 2019.
  • Coal is among the top five most imported goods in India.
  • The coal imports have risen from 166.9 million tonnes in 2013-14 to 235.24 million tonnes in 2018-19.
  • According to a study by Centre for Science and Environment, New Delhi, India’s coal-powered thermal power plants are the most inefficient and polluting in the world.
  • 75% of these plants don’t comply with government regulation.
  • Laws like the Coal Mines (Special Provision) Act, 2015 and the Mines and Minerals (Development and Regulation) Amendment Act, 2015 have increased the domestic coal usage for power generation.
  • This has worsened environmental pollution .
  • According to a report by Centre for Financial Analysis, only private banks are willing to invest in the clean energy projects and there has been 90% decline in the investments in the coal power projects in 2018 compared to the previous year.
  • According to a report by the Centre for Financial Accountability that was released on June 2018, out of the total lending of Rs.83,680 crore for 72 energy projects, 12 were for coal-powered thermal plants that had the combined capacity of 17 GW.
  • These thermal power plants have obtained a loan worth Rs.60, 767 crores while the other 60 renewable energy projects with a combined capacity of 4.5 GW were able to obtain Rs. 22,913 crore.
  • This report also stated that 8 of the top 10 lenders for these thermal power plants were from public sector banks .
  • Through this report, it is evident that the public sector banks are not willing to invest in new and emerging technologies.
  • These nascent renewable energy technologies require financial assistance to grow.
  • If governments and public sector banks do not promote these technologies, India will not be able to stay afloat in the era that is dominated by the race for clean energy resources and also will not be able to address the crisis of climate change and global warming.

essay on renewable energy upsc

What are challenges while shifting to renewable energy?

  • High initial cost : While the coal-based power plants require an initial investment of about Rs. 4 crores per MW, the investments for solar and wind energy is far higher. The wind-based power plant with capacity utilization of 25% requires Rs. 6 crores per MW. For more efficient capacity utilization of 80%, the initial investment is about Rs.18 crore per MW. For solar power plants with a capacity of 15% requirement is Rs. 18 crores in investments. Thus due to the high cost, many opt for investment in coal-based power plants.
  • Weather- dependent : Renewable energy sources like solar, wind, tide, etc., are dependent on weather conditions. If the favourable weather conditions are not available, it becomes inefficient and unfeasible.
  • Location : Most renewable energy plants occupy large areas of space. This brings in the issue of the cost of the vast land area and other issues related to land acquisition. Also, the distance between the renewable energy source and the grid increased the cost and efficiency of renewable energy.
  • Drawbacks of wind energy technology : The turbines have caused noise pollution and are also killing birds while functioning.
  • Consequences of Hydropower plants : The dams destroy the habitat of the aquatic organisms and also hinder their migration pattern. They also reduce the movements of the sediments and nutrients which in turn affects the floodplains and deltas.
  • Integration with the Main Grid:   is the area India needs to focus upon. To improve the uptake of renewables, storage and battery solutions are required in huge quantities.
  • 24*7 Power Supply: (Sustainable + 24-hour power supply) + storage system = Huge challenge.
  • Agricultural Sector: High amount of power is consumed in the agricultural sector. Hence, the challenge is to provide enough power and energy to each household and also to the agricultural sector.

India’s Key Focus for Next 5 Years

  • Bio-CNG vehicles with 20% blending in petrol is also a target for the government.
  • Generating energy from Biomass is a better option since it will clean the cities and also decrease our energy dependence. Fuels created from biomass have a high calorific value and are cleaner than traditional biomass.
  • It should focus on getting into the manufacturing of solar panels under the Atma Nirbhar Bharat initiative because the demand is to generate jobs and supply decentralised energy to all the households in India.
  • Developing the whole supply chain of all the components besides the manufacturing sector.
  • Hydrogen based FCV:   is likely to change the landscape of renewables and moving towards Hydrogen Based Fuel Cells Vehicles  (FCV) is another area of focus.
  • Grid Integration: It is the practice of developing effective ways to provide variable renewable energy (RE) to the grid.

Way Forward:

  • It is estimated that India has the capacity to extract 900 GW from commercially available sources like the wind, hydro energy, bioenergy, and solar energy.
  • High financial assistance is essential for this nascent sector to grow.
  • The governments must undertake all measures necessary to increase the investments in the research and development of new sources of clean energy to safeguard the environment and to provide a sustainable energy source to the future generation.
  • Bulk production can reduce the production cost.
  • For example, if the solar panels are manufactured on a large scale, it will minimize the costs.
  • It is essential to integrate the new technology with the existing infrastructure to reduce the cost of renewable technology.
  • Renewable resources particularly wind cannot be set up everywhere, they require a particular location. Identification of these specific locations, integrating them with the main grid and distribution of powers; A combination of these three is what will take India forward.
  • More storage solutions need to be explored.
  • Agricultural subsidies need to be rectified for making sure that only the necessary amount of energy is consumed.
  • Hydrogen fuel cell-based vehicles and Electric vehicles are the most suitable options for moving towards renewable sources of energy and we need to focus on them.
  • If this is done the limitations of the clean energy sources can be easily overcome.

Prime Minister Narendra Modi made two important announcements at the climate summit in Glasgow (COP26):

  • India will achieve non-fossil energy capacity to 500 gigawatt (GW) by 2030.
  • The country will achieve 50 per cent of its energy needs from renewable energy by 2030.

The two targets may sound big, but in reality are just an extension of the commitments India made at the Paris Summit of 2015. However, they are significant and have helped the country get a lot of international attention, that should in time translate into much-needed funding for the rapidly increasing renewable energy market, particularly solar.

In Paris, India had said it would create 40 per cent of its installed energy capacity from non-fossil sources (solar, wind, hydro, biomass and nuclear) by 2030. Therefore, the government revised and fixed an ambitious target of generating 450 GW of renewable energy (RE) by 2030.

In Glasgow, PM revised the renewable energy installation target for this decade from 450GW to 500GW, an 11% jump.

GET MONTHLY COMPILATIONS

Related Posts

Scheme for Viability Gap Funding for BESS Development

[Editorials] India’s Transition to Clean Cooking

Small Modular Reactors (SMRs) upsc notes   1. Definition and advantages     Advanced nuclear reactors     Capacity up to 300 MW     Simplicity, safety, cost-effectiveness     Factory-made, transportable     Economical, time-efficient     Longer refueling intervals   2. India's nuclear power status     22 nuclear reactors     7 power plants     6780 MW nuclear power     Goal: 10% nuclear power by 2035   3. Global status of SMRs     70+ SMR designs     17 countries     Examples       NuScale Power (U.S.)       Akademik Lomonosov (Russia)       Rolls-Royce (U.K.)   4. India's need for more nuclear power     Limited hydropower growth potential     Coal capacity: 210 GW, 73% electricity     Environmental concerns     Intermittent wind and solar power   5. India's strategy     Transition to SMRs     Public-private partnerships     Raise nuclear power to 10% by 2035   6. Niti Aayog's suggestions     Encourage private sector participation     Implement regulatory changes for safety     Modify foreign investment policies   7. Way ahead for India     Move towards passive safety designs     Enforce nuclear liability     End NPCIL monopoly in reactor operations   8. Conclusion     Achieve net zero by 2070     Need 100 GW nuclear power by 2050     Portfolio of technologies, including SMRs     Safe and cost-effective nuclear power

There was a problem reporting this post.

Block Member?

Please confirm you want to block this member.

You will no longer be able to:

  • See blocked member's posts
  • Mention this member in posts

Please allow a few minutes for this process to complete.

Express LMS for UPSC banner

essay on renewable energy upsc

  • TRP for UPSC Personality Test
  • Interview Mentorship Programme – 2023
  • Daily News & Analysis
  • Daily Current Affairs Quiz
  • Baba’s Explainer
  • Dedicated TLP Portal
  • 60 Day – Rapid Revision (RaRe) Series – 2024
  • English Magazines
  • Hindi Magazines
  • Yojana & Kurukshetra Gist
  • PT20 – Prelims Test Series
  • Gurukul Foundation
  • Gurukul Advanced – Launching Soon
  • Prelims Exclusive Programme (PEP)
  • Prelims Test Series (AIPTS)
  • S-ILP – English
  • S-ILP – हिंदी
  • Connect to Conquer(C2C) 2024
  • TLP Plus – 2024
  • TLP Connect – 2024
  • Public Administration FC – 2024
  • Anthropology Foundation Course
  • Anthropology Optional Test Series
  • Sociology Foundation Course – 2024
  • Sociology Test Series – 2023
  • Geography Optional Foundation Course
  • Geography Optional Test Series – Coming Soon!
  • PSIR Foundation Course
  • PSIR Test Series – Coming Soon
  • ‘Mission ಸಂಕಲ್ಪ’ – Prelims Crash Course
  • CTI (COMMERCIAL TAX INSPECTOR) Test Series & Video Classes
  • Monthly Magazine

India’s Renewable Energy

  • October 15, 2021

UPSC Articles

Print Friendly, PDF & Email

Part of: Mains GS-III: Energy

  • 39% of India’s installed capacity is from non-fossil based sources. By 2022 India will reach its target of 40%.
  • India surpassed the 100 GW milestone (excluding large hydro) in 2021.
  • India has only tapped a fraction of the vast potential for renewable energy and, therefore, India has raised the target to 450 GW RE installed capacity by 2030.
  • Launching the Green Corridor Phase 2 and generally expanding transmission to put in place systems for renewable power evacuation from sites where irradiation is high, or wind speed is high. 
  • India is developing the National Green Hydrogen Energy Mission to scale up green hydrogen production and utilization across multiple sectors; targeting initially approximately 1 million tonnes annual green hydrogen production by 2030.
  • Government is coming out with bids for battery storage. Intermittency of renewable power is another challenge for the entire world highlighting that battery storage per unit currently is high and needs to come down. There is a Production Linked Incentive for battery storage already in place and demand needs to be encouraged to bring down the prices of storage.
  • The Government of India has recently launched the Production Linked Incentive scheme for the manufacture of High Efficiency Solar PV Modules. India expects to add 10 Gigawatt of solar PV manufacturing capacity over the next five years.
  • Three new areas of emerging opportunities for investors – green hydrogen, off-shore wind , and solar PV manufacturing. Mandatory purchase obligations are intended to increase use of green hydrogen in sectors like fertilizers, petroleum refining, and city gas distribution.

News Source: PIB

For a dedicated peer group, Motivation & Quick updates, Join our official telegram channel – https://t.me/IASbabaOfficialAccount

Subscribe to our YouTube Channel HERE to watch Explainer Videos, Strategy Sessions, Toppers Talks & many more…

essay on renewable energy upsc

Related Posts :

Nobel prize in economics 2021, clean india programme.

essay on renewable energy upsc

  • DAILY CURRENT AFFAIRS IAS | UPSC Prelims and Mains Exam – 22nd April 2024
  • UPSC Quiz – 2024 : IASbaba’s Daily Current Affairs Quiz 22nd April 2024
  • [DAY 43] 60 DAY RAPID REVISION (RaRe) SERIES for UPSC Prelims 2024 – GEOGRAPHY, CURRENT AFFAIRS & CSAT TEST SERIES!
  • DAILY CURRENT AFFAIRS IAS | UPSC Prelims and Mains Exam – 20th April 2024
  • UPSC Quiz – 2024 : IASbaba’s Daily Current Affairs Quiz 20th April 2024
  • [DAY 42] 60 DAY RAPID REVISION (RaRe) SERIES for UPSC Prelims 2024 – SCIENCE AND TECHNOLOGY, CURRENT AFFAIRS & CSAT TEST SERIES!
  • DAILY CURRENT AFFAIRS IAS | UPSC Prelims and Mains Exam – 19th April 2024
  • UPSC Quiz – 2024 : IASbaba’s Daily Current Affairs Quiz 19th April 2024
  • [DAY 41] 60 DAY RAPID REVISION (RaRe) SERIES for UPSC Prelims 2024 – SCIENCE AND TECHNOLOGY, CURRENT AFFAIRS & CSAT TEST SERIES!
  • UPSC Quiz – 2024 : IASbaba’s Daily Current Affairs Quiz 18th April 2024

Don’t lose out on any important Post and Update. Learn everyday with Experts!!

Email Address

Search now.....

Sign up to receive regular updates.

Sign Up Now !

essay on renewable energy upsc

Civilsdaily

No. 1 UPSC IAS Platform for preparation

Renewable Energy – Wind, Tidal, Geothermal, etc.

India’s effective approach to renewable energy and sustainable development.

From UPSC perspective, the following things are important :

Prelims level: India's sustainable development strategies and initiatives

Mains level: Understand the Changing approach towards sustainable development, India's effective strategies for renewable energy and sustainable development , challenges and way forward

Central Idea

  • In recent years, climate change has gained significant attention, necessitating urgent implementation of mitigation and adaptation measures in India. With a population of 1.4 billion residing in areas vulnerable to climate impacts, sustainable development has become crucial to safeguard lives, livelihoods, and the nation’s infrastructure investments.

The changing dynamics of Sustainable Development

  • Perception and Awareness: There has been a significant shift in the perception of sustainable development, with increased awareness of its importance. It is now recognized as a critical aspect of addressing climate change, protecting ecosystems, and ensuring the well-being of present and future generations.
  • Science-Based Approach: Sustainable development now emphasizes the integration of scientific concepts and knowledge into development plans and policies. This approach helps in understanding the complex interactions between human activities and the environment, and guides the formulation of effective solutions.
  • Technological Solutions: There is a growing emphasis on utilizing technological advancements to support sustainable development. Tools and innovations are being developed to link sustainable practices with technological solutions, enabling more efficient resource utilization, renewable energy integration, and environmentally-friendly practices.
  • Information Asymmetry : Despite progress, information asymmetry remains a challenge at the local and hyper-local governance levels. Efforts are being made to bridge this gap by promoting collaboration between scientific and research bodies and policymakers, ensuring that decision-makers have access to accurate and up-to-date information on the implications of climate change.
  • Availability of Environmental Data : The increased availability of data on various environmental indicators has transformed the formulation of climate change policies. With better data, policymakers can gain a deeper understanding of the potential impacts and casualties associated with climate change, particularly in terms of adaptation and mitigation strategies.
  • Policy and Fiscal Incentives: Governments are implementing policies and providing fiscal incentives to promote sustainable practices. These measures, such as subsidies for renewable energy, carbon pricing mechanisms, and support for sustainable infrastructure, aim to drive the adoption of sustainable solutions and transform sectors towards more environmentally-friendly practices.
  • International Collaboration : Sustainable development is no longer confined to national boundaries. Countries are recognizing the need for international collaboration and partnerships to address global challenges collectively. Initiatives like the International Solar Alliance (ISA) exemplify this trend, where countries work together to promote renewable energy and combat climate change.
  • Inclusive and Just Transitions : Sustainable development is increasingly seen through the lens of equity, inclusiveness, and justice. Efforts are being made to ensure that the benefits of sustainable practices are shared by all, and that marginalized communities are not disproportionately affected by the transition to sustainable development

India’s comprehensive approach to renewable energy

  • National Solar Mission: In 2010, India launched the National Solar Mission, which aimed to promote the use of solar energy for power generation. The mission set a target of installing 20,000 megawatts (MW) of grid-connected solar power capacity by 2022. However, this target was achieved four years ahead of schedule, leading to an increased commitment to solar energy.
  • Solar Power Capacity Expansion: India has witnessed significant growth in solar power capacity over the years. As of March 2023, more than 60,000 MW of solar capacity has been installed, making India one of the leading countries in terms of solar energy deployment.
  • Pradhan Mantri Kisan Urja Suraksha evam Utthaan Mahabhiyan (KUSUM) Scheme: The KUSUM scheme was introduced to promote the use of solar energy in the agricultural sector. Under this scheme, farmers with grid-connected agricultural pumps are provided support to run their water pumps on solar power. The scheme covers two-thirds of the cost, with the central and state governments sharing the expenses. Farmers can use the solar power generated for irrigation and sell any surplus energy to the distribution company.
  • International Solar Alliance (ISA): India, along with France, spearheaded the formation of the International Solar Alliance (ISA) during the 2015 Paris climate conference. The ISA aims to promote solar energy adoption globally, facilitate collaboration among member countries, and mobilize funds for solar projects.

India’s approach towards Sustainable Development: Various strategies and initiatives

  • Integration of Science and Policy: India recognizes the importance of integrating scientific concepts and knowledge into development plans and policies, specifically in relation to climate change and its impacts across sectors. Efforts are being made to minimize the information asymmetry on climate change implications between governance institutions and scientific/research bodies.
  • Data-Driven Decision Making : The availability of comprehensive environmental data is considered crucial for effective climate change policy-making. Improved data on environmental indicators allows for a better understanding of casualties and impacts, especially in adaptation and mitigation strategies.
  • Emphasis on Technological Solutions: India has shown a focus on leveraging technology as a means to address sustainable development challenges. Integrating technology-based solutions with public policies centered around sustainability is seen as a way to create cascading effects and contribute to good governance.
  • Policy and Fiscal Incentives : The Indian government has implemented policies and fiscal incentives to support renewable energy, including solar power. These measures have contributed to the transformation of the energy sector and can serve as a roadmap for other sustainable governance initiatives.
  • Swachh Bharat Mission: India’s Swachh Bharat Mission directly addresses Sustainable Development Goal 6 by focusing on sanitation, cleanliness, and hygiene. It aims to achieve universal sanitation and cleanliness across the country.
  • Technological Innovation for Carbon Neutrality: India recognizes the role of technology in achieving systemic shifts like carbon neutrality. Market-based mechanisms for carbon pricing and cutting-edge knowledge on carbon sequestration are seen as crucial in increasing transparency, delivering sequestration benefits, and designing compliance and liability frameworks.
  • Just and Equitable Energy Transition : As India looks to phase out coal, efforts are being made to ensure a just and equitable transition for those employed in the coal ecosystem. The aim is to apply science and policy to provide fair solutions while addressing the needs of affected individuals and communities.
  • Multi-Institutional Collaboration : Collaboration between public and private sectors is seen as essential for scalable solutions and systemic change. Technological innovation, public participation, and solutions for sustainable development are viewed as opportunities to empower individuals and drive sustainable governance.
  • Planning for Structural Shifts : India aims to plan for structural shifts and innovation in governance to promote sustainable practices. These shifts are expected to contribute to good sustainable governance, and as India assumes leadership in the G20, it has the potential to inspire and lead in sustainable governance practices.

Challenges regarding India’s approach to Sustainable Development

  • Information Asymmetry: The governance institutions at local and hyper-local levels in India are affected by information asymmetry regarding the implications of climate change. Bridging this gap and ensuring the dissemination of accurate and up-to-date information is a challenge.
  • Equity and Just Transition: As India aims to phase out coal, ensuring a just and equitable transition for those employed in the coal ecosystem poses a challenge. Balancing the need for sustainable energy sources while addressing the socio-economic concerns of affected individuals and communities is crucial.
  • Population Vulnerability: India’s large population, combined with its exposure to climate change impacts, poses challenges in protecting vulnerable communities from extreme weather events, water scarcity, and other climate-related risks.
  • Infrastructure and Environmental Impact : Balancing the rapid pace of infrastructure development with sustainability considerations is a challenge. Ensuring that infrastructure projects minimize environmental impacts, such as carbon emissions and ecosystem degradation, is essential.
  • Poverty and Inequality: Addressing poverty and income inequality is crucial in achieving sustainable development goals. Ensuring that sustainable development initiatives reach marginalized and vulnerable communities and do not exacerbate existing disparities is a challenge.
  • Waste Management: Effective waste management is identified as a challenge in India, particularly in urban areas. Improving waste segregation, recycling infrastructure, and proper disposal practices is necessary for sustainable waste management.
  • Water Management: There are challenges of water scarcity, water pollution, and unsustainable water management practices. Balancing competing water demands, promoting water conservation, and improving water quality are significant challenges.
  • Behavioral Change: Bringing about a shift in behavior and promoting sustainable lifestyles at the individual and community levels is a challenge. Encouraging environmentally conscious choices and reducing consumption patterns require widespread awareness and behavioral change campaigns.

Way Forward

  • Strengthening Awareness and Education: Increasing awareness and understanding of sustainable development among the general public, policymakers, and stakeholders is crucial. Promoting education and awareness campaigns that highlight the importance of sustainable practices and their benefits can drive behavior change and foster a culture of sustainability.
  • Integrated Policy Frameworks: Developing integrated policy frameworks that encompass environmental, social, and economic aspects of sustainable development is essential. These frameworks should provide clear guidelines and incentives for sustainable practices, address cross-cutting issues, and promote collaboration across sectors.
  • Enhancing Stakeholder Engagement : Encouraging active participation and engagement of diverse stakeholders, including local communities, civil society organizations, businesses, and academia, is vital.
  • Promoting Green Technologies and Innovation : Encouraging the development and adoption of green technologies and innovation can drive sustainable practices across sectors. This includes promoting research and development in renewable energy, sustainable agriculture, waste management, and other key areas.
  • Strengthening Governance and Institutional Capacity: Enhancing governance mechanisms, transparency, and accountability is crucial for effective implementation of sustainable development policies. This involves improving coordination among different levels of government, streamlining regulatory frameworks, and investing in capacity building for policymakers and administrators.
  • Financing Sustainable Development: Mobilizing adequate financial resources for sustainable development projects is essential. Governments, along with international organizations, should explore innovative financing mechanisms, encourage public-private partnerships, and attract investments in sustainable sectors.
  • International Cooperation: Collaboration with the international community and participation in global initiatives is important for sharing best practices, accessing technology, and mobilizing resources. Engaging in international partnerships, such as the International Solar Alliance and climate change negotiations, can strengthen India’s efforts towards sustainable development.
  • Monitoring, Evaluation, and Reporting: Establishing robust monitoring and evaluation mechanisms to track progress and measure the impact of sustainable development initiatives is crucial. Regular reporting and transparency in reporting progress can help identify gaps, inform policy adjustments, and ensure accountability.
  • India’s urgent need for sustainable development in the face of climate change requires the integration of science and policy. By leveraging scientific knowledge, implementing innovative policies, and promoting multi-institutional collaboration, India can pave the way for sustainable governance at local, national, and international levels. As the world looks to India for leadership, it is essential to plan for structural shifts and prioritize sustainable practices that ensure equity, inclusiveness, fairness, and accountability, while managing negative externalities

Get an IAS/IPS ranker as your 1: 1 personal mentor for UPSC 2024

essay on renewable energy upsc

JOIN THE COMMUNITY

Join us across social media platforms., your better version awaits you.

  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

UPSC Coaching, Study Materials, and Mock Exams

Enroll in ClearIAS UPSC Coaching Join Now Log In

Call us: +91-9605741000

World Energy Outlook

Last updated on April 16, 2024 by ClearIAS Team

World Energy Outlook

The World Energy Outlook is an annual report published by the International Energy Agency (IEA), an autonomous agency within the framework of the Organisation for Economic Co-operation and Development (OECD). Read here to learn more about the report.

The World Energy Outlook 2023 was released by the International Energy Agency (IEA) recently.

It provides in-depth analysis and strategic insights into every aspect of the global energy system. Against a backdrop of geopolitical tensions and fragile energy markets, this year’s report explores how structural shifts in economies and energy use are shifting the way that the world meets rising demand for energy.

Table of Contents

Published each year since 1998, its objective data and dispassionate analysis provide critical insights into global energy supply and demand in different scenarios and the implications for energy security, climate change goals, and economic development.

The report provides a comprehensive and in-depth analysis of global energy markets, including insights into current trends, future projections, and potential scenarios for the world’s energy systems.

  • Energy Market Analysis: The report assesses the current state of the global energy market, including the production, consumption, and trade of various energy sources such as oil, natural gas, coal, renewables, and nuclear energy.
  • Energy Projections: The World Energy Outlook presents projections and scenarios for future energy demand, production, and consumption. It considers various factors such as population growth, economic development, policy changes, and technological advancements.
  • Energy Transition: The report focuses on the ongoing transition to a more sustainable and clean energy system. It examines the role of renewable energy sources, energy efficiency, and the reduction of greenhouse gas emissions in the global energy mix.
  • Energy Access and Affordability: The report addresses issues related to energy access for underserved populations and the affordability of energy, particularly in developing countries. It explores ways to improve access to modern and sustainable energy sources.
  • Environmental Impact: The environmental impact of energy production and consumption is a significant aspect of the report. It assesses the consequences of different energy scenarios on air quality, climate change, and other environmental factors.
  • Energy Security: The World Energy Outlook examines the security of energy supplies and the resilience of energy systems in the face of geopolitical and natural disruptions.
  • Policy and Regulation: The report provides insights into energy policies and regulations worldwide, including their impact on energy markets and the environment. It offers recommendations for policymakers to enhance energy security and sustainability.
  • Technology Innovation: Technological advancements and innovations in the energy sector are a key focus. The report assesses the role of new technologies in transforming the energy landscape.
  • Scenarios and Pathways: The World Energy Outlook typically presents different scenarios that explore potential future energy pathways, including a “New Policies Scenario” based on current policy trends, and a “Sustainable Development Scenario” that outlines a more environmentally friendly and sustainable future.
  • Investment and Financing: The report examines the investment needs and financing mechanisms required to meet future energy demand and environmental goals.
  • Regional Analyses: It provides detailed regional and country-level analyses, offering insights into regional variations in energy trends and challenges.

World Energy Outlook 2023

essay on renewable energy upsc

Admissions Open: Join Prelims cum Mains Course 2025 Now

This Outlook assesses the evolving nature of energy security fifty years after the foundation of the IEA.

  • It also examines what needs to happen at the COP28 climate conference in Dubai to keep the door open for the 1.5 °C goal.

This Outlook explores three scenarios that provide a framework for exploring the implications of various policy choices, investment, and technology trends.

  • The Stated Policies Scenario is based on current policy settings and also considers the implications of industrial policies that support clean energy supply chains as well as measures related to energy and climate.
  • The Announced Pledges Scenario gives governments the benefit of the doubt and explores what the full and timely implementation of national energy and climate goals, including net zero emissions targets, would mean for the energy sector.
  • The Net Zero Emissions by 2050 Scenario maps out a transition pathway that would limit global warming to 1.5 °C.

And, as it does every year, the Outlook examines the implications of today’s energy trends in key areas including investment, trade flows, electrification, and energy access.

  • Following Russia’s invasion of Ukraine , instability in the Middle East could lead to further disruption to energy markets and prices.
  • In the Stated Policies Scenario, the average annual growth rate of 0.7% in total energy demand to 2030 is around half the rate of energy demand growth of the last decade. Demand continues to increase through 2050.
  • In the Net Zero Emissions by 2050 Scenario, electrification and efficiency gains proceed even faster, leading to a decline in primary energy of 1.2% per year to 2030.
  • Solar manufacturing growth is outpacing the rise of solar PV deployment, creating some risks of imbalances but huge opportunities for the world to accelerate energy transitions.
  • Numerous new LNG export projects (60% of which are accounted to the US and Qatar) are set to overturn gas markets.
  • Fossil fuel share in the global energy supply is projected to reduce from around 80% to 73% by 2030.
  • Global energy-related carbon dioxide (CO2) emissions peaking by 2025. Renewables are set to contribute 80% of new power capacity by 2030 in the stated policies scenario (STEPS), with solar PV alone accounting for more than half of this.
  • Extreme volatility in energy markets highlighted the importance of affordable, reliable, and resilient supply.

Several countries have adopted policies that encourage the diversification of supply chains for clean energy technologies.

  • This includes policies to promote clean energy technology manufacturing, for instance, the Inflation Reduction Act in the United States, the Net Zero Industry Act in the European Union, and the Production Linked Incentives scheme in India.

The global economy is assumed to increase at an average of 2.6% per year to 2050 in the three scenarios, while the global population expands from 8 billion today to 9.7 billion in 2050. Energy, carbon, and mineral prices find different equilibrium levels across the scenarios, but the potential for volatility remains high.

Admissions Open: Join CSAT Course Now

India has now become an importer of modern clean energy technologies as it scales up solar and wind power generation capacity.

  • India is expected to meet its 2030 target to have half of its electricity capacity be non-fossil well before the end of the decade.
  • Over the past five years, solar PV has accounted for nearly 60% of new generation capacity.
  • India’s demand for electricity for running household air-conditioners is estimated to expand nine-fold by 2050.

Way forward

Despite moves by countries to reduce dependence on imported fuels and geographically concentrated clean energy technology supply chains, the need for international trade and cooperation remains strong.

No country can expect to be wholly self-sufficient, and most will continue to depend on imports and exports. International collaboration on innovation in particular will remain vital in the development of clean energy technologies.

Today, several countries rely heavily on revenue from oil and gas production, and they face the prospect that these revenues will decline as clean energy transitions advance. This underlines the need for broader economic diversification to compensate for falling fossil fuel export revenue.

The World Energy Outlook is considered a valuable resource for governments, industries, and organizations involved in energy and environmental policy, as well as for investors and researchers.

Admissions Open: Join Prelims Test Series Now

It plays a crucial role in shaping discussions and decisions related to global energy systems, sustainability, and climate change mitigation.

-Article by Swathi Satish

Print Friendly, PDF & Email

Aim IAS, IPS, or IFS?

ClearIAS Prelims cum Mains

About ClearIAS Team

ClearIAS is one of the most trusted learning platforms in India for UPSC preparation. Around 1 million aspirants learn from the ClearIAS every month.

Our courses and training methods are different from traditional coaching. We give special emphasis on smart work and personal mentorship. Many UPSC toppers thank ClearIAS for our role in their success.

Download the ClearIAS mobile apps now to supplement your self-study efforts with ClearIAS smart-study training.

Reader Interactions

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Don’t lose out without playing the right game!

Follow the ClearIAS Prelims cum Mains (PCM) Integrated Approach.

Join ClearIAS PCM Course Now

UPSC Online Preparation

  • Union Public Service Commission (UPSC)
  • Indian Administrative Service (IAS)
  • Indian Police Service (IPS)
  • IAS Exam Eligibility
  • UPSC Free Study Materials
  • UPSC Exam Guidance
  • UPSC Prelims Test Series
  • UPSC Syllabus
  • UPSC Online
  • UPSC Prelims
  • UPSC Interview
  • UPSC Toppers
  • UPSC Previous Year Qns
  • UPSC Age Calculator
  • UPSC Calendar 2024
  • About ClearIAS
  • ClearIAS Programs
  • ClearIAS Fee Structure
  • IAS Coaching
  • UPSC Coaching
  • UPSC Online Coaching
  • ClearIAS Blog
  • Important Updates
  • Announcements
  • Book Review
  • ClearIAS App
  • Work with us
  • Advertise with us
  • Privacy Policy
  • Terms and Conditions
  • Talk to Your Mentor

Featured on

ClearIAS Featured in The Hindu

and many more...

essay on renewable energy upsc

  • Open access
  • Published: 07 January 2020

Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities

  • Charles Rajesh Kumar. J   ORCID: orcid.org/0000-0003-2354-6463 1 &
  • M. A. Majid 1  

Energy, Sustainability and Society volume  10 , Article number:  2 ( 2020 ) Cite this article

416k Accesses

253 Citations

83 Altmetric

Metrics details

The primary objective for deploying renewable energy in India is to advance economic development, improve energy security, improve access to energy, and mitigate climate change. Sustainable development is possible by use of sustainable energy and by ensuring access to affordable, reliable, sustainable, and modern energy for citizens. Strong government support and the increasingly opportune economic situation have pushed India to be one of the top leaders in the world’s most attractive renewable energy markets. The government has designed policies, programs, and a liberal environment to attract foreign investments to ramp up the country in the renewable energy market at a rapid rate. It is anticipated that the renewable energy sector can create a large number of domestic jobs over the following years. This paper aims to present significant achievements, prospects, projections, generation of electricity, as well as challenges and investment and employment opportunities due to the development of renewable energy in India. In this review, we have identified the various obstacles faced by the renewable sector. The recommendations based on the review outcomes will provide useful information for policymakers, innovators, project developers, investors, industries, associated stakeholders and departments, researchers, and scientists.

Introduction

The sources of electricity production such as coal, oil, and natural gas have contributed to one-third of global greenhouse gas emissions. It is essential to raise the standard of living by providing cleaner and more reliable electricity [ 1 ]. India has an increasing energy demand to fulfill the economic development plans that are being implemented. The provision of increasing quanta of energy is a vital pre-requisite for the economic growth of a country [ 2 ]. The National Electricity Plan [NEP] [ 3 ] framed by the Ministry of Power (MoP) has developed a 10-year detailed action plan with the objective to provide electricity across the country, and has prepared a further plan to ensure that power is supplied to the citizens efficiently and at a reasonable cost. According to the World Resource Institute Report 2017 [ 4 , 5 ], India is responsible for nearly 6.65% of total global carbon emissions, ranked fourth next to China (26.83%), the USA (14.36%), and the EU (9.66%). Climate change might also change the ecological balance in the world. Intended Nationally Determined Contributions (INDCs) have been submitted to the United Nations Framework Convention on Climate Change (UNFCCC) and the Paris Agreement. The latter has hoped to achieve the goal of limiting the rise in global temperature to well below 2 °C [ 6 , 7 ]. According to a World Energy Council [ 8 ] prediction, global electricity demand will peak in 2030. India is one of the largest coal consumers in the world and imports costly fossil fuel [ 8 ]. Close to 74% of the energy demand is supplied by coal and oil. According to a report from the Center for monitoring Indian economy, the country imported 171 million tons of coal in 2013–2014, 215 million tons in 2014–2015, 207 million tons in 2015–2016, 195 million tons in 2016–2017, and 213 million tons in 2017–2018 [ 9 ]. Therefore, there is an urgent need to find alternate sources for generating electricity.

In this way, the country will have a rapid and global transition to renewable energy technologies to achieve sustainable growth and avoid catastrophic climate change. Renewable energy sources play a vital role in securing sustainable energy with lower emissions [ 10 ]. It is already accepted that renewable energy technologies might significantly cover the electricity demand and reduce emissions. In recent years, the country has developed a sustainable path for its energy supply. Awareness of saving energy has been promoted among citizens to increase the use of solar, wind, biomass, waste, and hydropower energies. It is evident that clean energy is less harmful and often cheaper. India is aiming to attain 175 GW of renewable energy which would consist of 100 GW from solar energy, 10 GW from bio-power, 60 GW from wind power, and 5 GW from small hydropower plants by the year 2022 [ 11 ]. Investors have promised to achieve more than 270 GW, which is significantly above the ambitious targets. The promises are as follows: 58 GW by foreign companies, 191 GW by private companies, 18 GW by private sectors, and 5 GW by the Indian Railways [ 12 ]. Recent estimates show that in 2047, solar potential will be more than 750 GW and wind potential will be 410 GW [ 13 , 14 ]. To reach the ambitious targets of generating 175 GW of renewable energy by 2022, it is essential that the government creates 330,000 new jobs and livelihood opportunities [ 15 , 16 ].

A mixture of push policies and pull mechanisms, accompanied by particular strategies should promote the development of renewable energy technologies. Advancement in technology, proper regulatory policies [ 17 ], tax deduction, and attempts in efficiency enhancement due to research and development (R&D) [ 18 ] are some of the pathways to conservation of energy and environment that should guarantee that renewable resource bases are used in a cost-effective and quick manner. Hence, strategies to promote investment opportunities in the renewable energy sector along with jobs for the unskilled workers, technicians, and contractors are discussed. This article also manifests technological and financial initiatives [ 19 ], policy and regulatory framework, as well as training and educational initiatives [ 20 , 21 ] launched by the government for the growth and development of renewable energy sources. The development of renewable technology has encountered explicit obstacles, and thus, there is a need to discuss these barriers. Additionally, it is also vital to discover possible solutions to overcome these barriers, and hence, proper recommendations have been suggested for the steady growth of renewable power [ 22 , 23 , 24 ]. Given the enormous potential of renewables in the country, coherent policy measures and an investor-friendly administration might be the key drivers for India to become a global leader in clean and green energy.

Projection of global primary energy consumption

An energy source is a necessary element of socio-economic development. The increasing economic growth of developing nations in the last decades has caused an accelerated increase in energy consumption. This trend is anticipated to grow [ 25 ]. A prediction of future power consumption is essential for the investigation of adequate environmental and economic policies [ 26 ]. Likewise, an outlook to future power consumption helps to determine future investments in renewable energy. Energy supply and security have not only increased the essential issues for the development of human society but also for their global political and economic patterns [ 27 ]. Hence, international comparisons are helpful to identify past, present, and future power consumption.

Table 1 shows the primary energy consumption of the world, based on the BP Energy Outlook 2018 reports. In 2016, India’s overall energy consumption was 724 million tons of oil equivalent (Mtoe) and is expected to rise to 1921 Mtoe by 2040 with an average growth rate of 4.2% per annum. Energy consumption of various major countries comprises commercially traded fuels and modern renewables used to produce power. In 2016, India was the fourth largest energy consumer in the world after China, the USA, and the Organization for economic co-operation and development (OECD) in Europe [ 29 ].

The projected estimation of global energy consumption demonstrates that energy consumption in India is continuously increasing and retains its position even in 2035/2040 [ 28 ]. The increase in India’s energy consumption will push the country’s share of global energy demand to 11% by 2040 from 5% in 2016. Emerging economies such as China, India, or Brazil have experienced a process of rapid industrialization, have increased their share in the global economy, and are exporting enormous volumes of manufactured products to developed countries. This shift of economic activities among nations has also had consequences concerning the country’s energy use [ 30 ].

Projected primary energy consumption in India

The size and growth of a country’s population significantly affects the demand for energy. With 1.368 billion citizens, India is ranked second, of the most populous countries as of January 2019 [ 31 ]. The yearly growth rate is 1.18% and represents almost 17.74% of the world’s population. The country is expected to have more than 1.383 billion, 1.512 billion, 1.605 billion, 1.658 billion people by the end of 2020, 2030, 2040, and 2050, respectively. Each year, India adds a higher number of people to the world than any other nation and the specific population of some of the states in India is equal to the population of many countries.

The growth of India’s energy consumption will be the fastest among all significant economies by 2040, with coal meeting most of this demand followed by renewable energy. Renewables became the second most significant source of domestic power production, overtaking gas and then oil, by 2020. The demand for renewables in India will have a tremendous growth of 256 Mtoe in 2040 from 17 Mtoe in 2016, with an annual increase of 12%, as shown in Table 2 .

Table 3 shows the primary energy consumption of renewables for the BRIC countries (Brazil, Russia, India, and China) from 2016 to 2040. India consumed around 17 Mtoe of renewable energy in 2016, and this will be 256 Mtoe in 2040. It is probable that India’s energy consumption will grow fastest among all major economies by 2040, with coal contributing most in meeting this demand followed by renewables. The percentage share of renewable consumption in 2016 was 2% and is predicted to increase by 13% by 2040.

How renewable energy sources contribute to the energy demand in India

Even though India has achieved a fast and remarkable economic growth, energy is still scarce. Strong economic growth in India is escalating the demand for energy, and more energy sources are required to cover this demand. At the same time, due to the increasing population and environmental deterioration, the country faces the challenge of sustainable development. The gap between demand and supply of power is expected to rise in the future [ 32 ]. Table 4 presents the power supply status of the country from 2009–2010 to 2018–2019 (until October 2018). In 2018, the energy demand was 1,212,134 GWh, and the availability was 1,203,567 GWh, i.e., a deficit of − 0.7% [ 33 ].

According to the Load generation and Balance Report (2016–2017) of the Central Electricity Authority of India (CEA), the electrical energy demand for 2021–2022 is anticipated to be at least 1915 terawatt hours (TWh), with a peak electric demand of 298 GW [ 34 ]. Increasing urbanization and rising income levels are responsible for an increased demand for electrical appliances, i.e., an increased demand for electricity in the residential sector. The increased demand in materials for buildings, transportation, capital goods, and infrastructure is driving the industrial demand for electricity. An increased mechanization and the shift to groundwater irrigation across the country is pushing the pumping and tractor demand in the agriculture sector, and hence the large diesel and electricity demand. The penetration of electric vehicles and the fuel switch to electric and induction cook stoves will drive the electricity demand in the other sectors shown in Table 5 .

According to the International Renewable Energy Agency (IRENA), a quarter of India’s energy demand can be met with renewable energy. The country could potentially increase its share of renewable power generation to over one-third by 2030 [ 35 ].

Table 6 presents the estimated contribution of renewable energy sources to the total energy demand. MoP along with CEA in its draft national electricity plan for 2016 anticipated that with 175 GW of installed capacity of renewable power by 2022, the expected electricity generation would be 327 billion units (BUs), which would contribute to 1611 BU energy requirements. This indicates that 20.3% of the energy requirements would be fulfilled by renewable energy by 2022 and 24.2% by 2027 [ 36 ]. Figure 1 shows the ambitious new target for the share of renewable energy in India’s electricity consumption set by MoP. As per the order of revised RPO (Renewable Purchase Obligations, legal act of June 2018), the country has a target of a 21% share of renewable energy in its total electricity consumption by March 2022. In 2014, the same goal was at 15% and increased to 21% by 2018. It is India’s goal to reach 40% renewable sources by 2030.

figure 1

Target share of renewable energy in India’s power consumption

Estimated renewable energy potential in India

The estimated potential of wind power in the country during 1995 [ 37 ] was found to be 20,000 MW (20 GW), solar energy was 5 × 10 15 kWh/pa, bioenergy was 17,000 MW, bagasse cogeneration was 8000 MW, and small hydropower was 10,000 MW. For 2006, the renewable potential was estimated as 85,000 MW with wind 4500 MW, solar 35 MW, biomass/bioenergy 25,000 MW, and small hydropower of 15,000 MW [ 38 ]. According to the annual report of the Ministry of New and Renewable Energy (MNRE) for 2017–2018, the estimated potential of wind power was 302.251 GW (at 100-m mast height), of small hydropower 19.749 GW, biomass power 17.536 GW, bagasse cogeneration 5 GW, waste to energy (WTE) 2.554 GW, and solar 748.990 GW. The estimated total renewable potential amounted to 1096.080 GW [ 39 ] assuming 3% wasteland, which is shown in Table 7 . India is a tropical country and receives significant radiation, and hence the solar potential is very high [ 40 , 41 , 42 ].

Gross installed capacity of renewable energy in India

As of June 2018 reports, the country intends to reach 225 GW of renewable power capacity by 2022 exceeding the target of 175 GW pledged during the Paris Agreement. The sector is the fourth most attractive renewable energy market in the world. As in October 2018, India ranked fifth in installed renewable energy capacity [ 43 ].

Gross installed capacity of renewable energy—according to region

Table 8 lists the cumulative installed capacity of both conventional and renewable energy sources. The cumulative installed capacity of renewable sources as on the 31 st of December 2018 was 74081.66 MW. Renewable energy (small hydropower, wind, biomass, WTE, solar) accounted for an approximate 21% share of the cumulative installed power capacity, and the remaining 78.791% originated from other conventional sources (coal, gas diesel, nuclear, and large hydropower) [ 44 ]. The best regions for renewable energy are the southern states that have the highest solar irradiance and wind in the country. When renewable energy alone is considered for analysis, the Southern region covers 49.121% of the cumulative installed renewable capacity, followed by the Western region (29.742%), the Northern region (18.890%), the Eastern region (1.836%), the North-Easter region 0.394%, and the Islands (0.017%). As far as conventional energy is concerned, the Western region with 33.452% ranks first and is followed by the Northern region with 28.484%, the Southern region (24.967%), the Eastern region (11.716%), the Northern-Eastern (1.366%), and the Islands (0.015%).

Gross installed capacity of renewable energy—according to ownership

State government, central government, and private players drive the Indian energy sector. The private sector leads the way in renewable energy investment. Table 9 shows the installed gross renewable energy and conventional energy capacity (percentage)—ownership wise. It is evident from Fig. 2 that 95% of the installed renewable capacity derives from private companies, 2% from the central government, and 3% from the state government. The top private companies in the field of non-conventional energy generation are Tata Power Solar, Suzlon, and ReNew Power. Tata Power Solar System Limited are the most significant integrated solar power players in the country, Suzlon realizes wind energy projects, and ReNew Power Ventures operate with solar and wind power.

figure 2

Gross renewable energy installed capacity (percentage)—Ownership wise as per the 31.12.2018 [ 43 ]

Gross installed capacity of renewable energy—state wise

Table 10 shows the installed capacity of cumulative renewable energy (state wise), out of the total installed capacity of 74,081.66 MW, where Karnataka ranks first with 12,953.24 MW (17.485%), Tamilnadu second with 11,934.38 MW (16%), Maharashtra third with 9283.78 MW (12.532%), Gujarat fourth with 10.641 MW (10.641%), and Rajasthan fifth with 7573.86 MW (10.224%). These five states cover almost 66.991% of the installed capacity of total renewable. Other prominent states are Andhra Pradesh (9.829%), Madhya Pradesh (5.819%), Telangana (5.137%), and Uttar Pradesh (3.879%). These nine states cover almost 91.655%.

Gross installed capacity of renewable energy—according to source

Under union budget of India 2018–2019, INR 3762 crore (USD 581.09 million), was allotted for grid-interactive renewable power schemes and projects. As per the 31.12.2018, the installed capacity of total renewable power (excluding large hydropower) in the country amounted to 74.08166 GW. Around 9.363 GW of solar energy, 1.766 GW of wind, 0.105 GW of small hydropower (SHP), and biomass power of 8.7 GW capacity were added in 2017–2018. Table 11 shows the installed capacity of renewable energy over the last 10 years until the 31.12.2018. Wind energy continues to dominate the countries renewable energy industry, accounting for over 47% of cumulative installed renewable capacity (35,138.15 MW), followed by solar power of 34% (25,212.26 MW), biomass power/cogeneration of 12% (9075.5 MW), and small hydropower of 6% (4517.45 MW). In the renewable energy country attractiveness index (RECAI) of 2018, India ranked in fourth position. The installed renewable energy production capacity has grown at an accelerated pace over the preceding few years, posting a CAGR of 19.78% between 2014 and 2018 [ 45 ] .

Estimation of the installed capacity of renewable energy

Table 12 gives the share of installed cumulative renewable energy capacity, in comparison with the installed conventional energy capacity. In 2022 and 2032, the installed renewable energy capacity will account for 32% and 35%, respectively [ 46 , 47 ]. The most significant renewable capacity expansion program in the world is being taken up by India. The government is preparing to boost the percentage of clean energy through a tremendous push in renewables, as discussed in the subsequent sections.

Gross electricity generation from renewable energy in India

The overall generation (including the generation from grid-connected renewable sources) in the country has grown exponentially. Between 2014–2015 and 2015–2016, it achieved 1110.458 BU and 1173.603 BU, respectively. The same was recorded with 1241.689 BU and 1306.614 BU during 2015–2016 and 1306.614 BU from 2016–2017 and 2017–2018, respectively. Figure 3 indicates that the annual renewable power production increased faster than the conventional power production. The rise accounted for 6.47% in 2015–2016 and 24.88% in 2017–2018, respectively. Table 13 compares the energy generation from traditional sources with that from renewable sources. Remarkably, the energy generation from conventional sources reached 811.143 BU and from renewable sources 9.860 BU in 2010 compared to 1.206.306 BU and 88.945 BU in 2017, respectively [ 48 ]. It is observed that the price of electricity production using renewable technologies is higher than that for conventional generation technologies, but is likely to fall with increasing experience in the techniques involved [ 49 ].

figure 3

The annual growth in power generation as per the 30th of November 2018

Gross electricity generation from renewable energy—according to regions

Table 14 shows the gross electricity generation from renewable energy-region wise. It is noted that the highest renewable energy generation derives from the southern region, followed by the western part. As of November 2018, 50.33% of energy generation was obtained from the southern area and 29.37%, 18.05%, 2%, and 0.24% from Western, Northern, North-Eastern Areas, and the Island, respectively.

Gross electricity generation from renewable energy—according to states

Table 15 shows the gross electricity generation from renewable energy—region-wise. It is observed that the highest renewable energy generation was achieved from Karnataka (16.57%), Tamilnadu (15.82%), Andhra Pradesh (11.92%), and Gujarat (10.87%) as per November 2018. While adding four years from 2015–2016 to 2018–2019 Tamilnadu [ 50 ] remains in the first position followed by Karnataka, Maharashtra, Gujarat and Andhra Pradesh.

Gross electricity generation from renewable energy—according to sources

Table 16 shows the gross electricity generation from renewable energy—source-wise. It can be concluded from the table that the wind-based energy generation as per 2017–2018 is most prominent with 51.71%, followed by solar energy (25.40%), Bagasse (11.63%), small hydropower (7.55%), biomass (3.34%), and WTE (0.35%). There has been a constant increase in the generation of all renewable sources from 2014–2015 to date. Wind energy, as always, was the highest contributor to the total renewable power production. The percentage of solar energy produced in the overall renewable power production comes next to wind and is typically reduced during the monsoon months. The definite improvement in wind energy production can be associated with a “good” monsoon. Cyclonic action during these months also facilitates high-speed winds. Monsoon winds play a significant part in the uptick in wind power production, especially in the southern states of the country.

Estimation of gross electricity generation from renewable energy

Table 17 shows an estimation of gross electricity generation from renewable energy based on the 2015 report of the National Institution for Transforming India (NITI Aayog) [ 51 ]. It is predicted that the share of renewable power will be 10.2% by 2022, but renewable power technologies contributed a record of 13.4% to the cumulative power production in India as of the 31st of August 2018. The power ministry report shows that India generated 122.10 TWh and out of the total electricity produced, renewables generated 16.30 TWh as on the 31st of August 2018. According to the India Brand Equity Foundation report, it is anticipated that by the year 2040, around 49% of total electricity will be produced using renewable energy.

Current achievements in renewable energy 2017–2018

India cares for the planet and has taken a groundbreaking journey in renewable energy through the last 4 years [ 52 , 53 ]. A dedicated ministry along with financial and technical institutions have helped India in the promotion of renewable energy and diversification of its energy mix. The country is engaged in expanding the use of clean energy sources and has already undertaken several large-scale sustainable energy projects to ensure a massive growth of green energy.

1. India doubled its renewable power capacity in the last 4 years. The cumulative renewable power capacity in 2013–2014 reached 35,500 MW and rose to 70,000 MW in 2017–2018.

2. India stands in the fourth and sixth position regarding the cumulative installed capacity in the wind and solar sector, respectively. Furthermore, its cumulative installed renewable capacity stands in fifth position globally as of the 31st of December 2018.

3. As said above, the cumulative renewable energy capacity target for 2022 is given as 175 GW. For 2017–2018, the cumulative installed capacity amounted to 70 GW, the capacity under implementation is 15 GW and the tendered capacity was 25 GW. The target, the installed capacity, the capacity under implementation, and the tendered capacity are shown in Fig. 4 .

4. There is tremendous growth in solar power. The cumulative installed solar capacity increased by more than eight times in the last 4 years from 2.630 GW (2013–2014) to 22 GW (2017–2018). As of the 31st of December 2018, the installed capacity amounted to 25.2122 GW.

5. The renewable electricity generated in 2017–2018 was 101839 BUs.

6. The country published competitive bidding guidelines for the production of renewable power. It also discovered the lowest tariff and transparent bidding method and resulted in a notable decrease in per unit cost of renewable energy.

7. In 21 states, there are 41 solar parks with a cumulative capacity of more than 26,144 MW that have already been approved by the MNRE. The Kurnool solar park was set up with 1000 MW; and with 2000 MW the largest solar park of Pavagada (Karnataka) is currently under installation.

8. The target for solar power (ground mounted) for 2018–2019 is given as 10 GW, and solar power (Rooftop) as 1 GW.

9. MNRE doubled the target for solar parks (projects of 500 MW or more) from 20 to 40 GW.

10. The cumulative installed capacity of wind power increased by 1.6 times in the last 4 years. In 2013–2014, it amounted to 21 GW, from 2017 to 2018 it amounted to 34 GW, and as of 31st of December 2018, it reached 35.138 GW. This shows that achievements were completed in wind power use.

11. An offshore wind policy was announced. Thirty-four companies (most significant global and domestic wind power players) competed in the “expression of interest” (EoI) floated on the plan to set up India’s first mega offshore wind farm with a capacity of 1 GW.

12. 682 MW small hydropower projects were installed during the last 4 years along with 600 watermills (mechanical applications) and 132 projects still under development.

13. MNRE is implementing green energy corridors to expand the transmission system. 9400 km of green energy corridors are completed or under implementation. The cost spent on it was INR 10141 crore (101,410 Million INR = 1425.01 USD). Furthermore, the total capacity of 19,000 MVA substations is now planned to be complete by March 2020.

14. MNRE is setting up solar pumps (off-grid application), where 90% of pumps have been set up as of today and between 2014–2015 and 2017–2018. Solar street lights were more than doubled. Solar home lighting systems have been improved by around 1.5 times. More than 2,575,000 solar lamps have been distributed to students. The details are illustrated in Fig. 5 .

15. From 2014–2015 to 2017–2018, more than 2.5 lakh (0.25 million) biogas plants were set up for cooking in rural homes to enable families by providing them access to clean fuel.

16. New policy initiatives revised the tariff policy mandating purchase and generation obligations (RPO and RGO). Four wind and solar inter-state transmission were waived; charges were planned, the RPO trajectory for 2022 and renewable energy policy was finalized.

17. Expressions of interest (EoI) were invited for installing solar photovoltaic manufacturing capacities associated with the guaranteed off-take of 20 GW. EoI indicated 10 GW floating solar energy plants.

18. Policy for the solar-wind hybrid was announced. Tender for setting up 2 GW solar-wind hybrid systems in existing projects was invited.

19. To facilitate R&D in renewable power technology, a National lab policy on testing, standardization, and certification was announced by the MNRE.

20. The Surya Mitra program was conducted to train college graduates in the installation, commissioning, operations, and management of solar panels. The International Solar Alliance (ISA) headquarters in India (Gurgaon) will be a new commencement for solar energy improvement in India.

21. The renewable sector has become considerably more attractive for foreign and domestic investors, and the country expects to attract up to USD 80 billion in the next 4 years from 2018–2019 to 2021–2022.

22. The solar power capacity expanded by more than eight times from 2.63 GW in 2013–2014 to 22 GW in 2017–2018.

23. A bidding for 115 GW renewable energy projects up to March 2020 was announced.

24. The Bureau of Indian Standards (BIS) acting for system/components of solar PV was established.

25. To recognize and encourage innovative ideas in renewable energy sectors, the Government provides prizes and awards. Creative ideas/concepts should lead to prototype development. The Name of the award is “Abhinav Soch-Nayi Sambhawanaye,” which means Innovative ideas—New possibilities.

figure 4

Renewable energy target, installed capacity, under implementation and tendered [ 52 ]

figure 5

Off-grid solar applications [ 52 ]

Solar energy

Under the National Solar Mission, the MNRE has updated the objective of grid-connected solar power projects from 20 GW by the year 2021–2022 to 100 GW by the year 2021–2022. In 2008–2009, it reached just 6 MW. The “Made in India” initiative to promote domestic manufacturing supported this great height in solar installation capacity. Currently, India has the fifth highest solar installed capacity worldwide. By the 31st of December 2018, solar energy had achieved 25,212.26 MW against the target of 2022, and a further 22.8 GW of capacity has been tendered out or is under current implementation. MNRE is preparing to bid out the remaining solar energy capacity every year for the periods 2018–2019 and 2019–2020 so that bidding may contribute with 100 GW capacity additions by March 2020. In this way, 2 years for the completion of projects would remain. Tariffs will be determined through the competitive bidding process (reverse e-auction) to bring down tariffs significantly. The lowest solar tariff was identified to be INR 2.44 per kWh in July 2018. In 2010, solar tariffs amounted to INR 18 per kWh. Over 100,000 lakh (10,000 million) acres of land had been classified for several planned solar parks, out of which over 75,000 acres had been obtained. As of November 2018, 47 solar parks of a total capacity of 26,694 MW were established. The aggregate capacity of 4195 MW of solar projects has been commissioned inside various solar parks (floating solar power). Table 18 shows the capacity addition compared to the target. It indicates that capacity addition increased exponentially.

Wind energy

As of the 31st of December 2018, the total installed capacity of India amounted to 35,138.15 MW compared to a target of 60 GW by 2022. India is currently in fourth position in the world for installed capacity of wind power. Moreover, around 9.4 GW capacity has been tendered out or is under current implementation. The MNRE is preparing to bid out for A 10 GW wind energy capacity every year for 2018–2019 and 2019–2020, so that bidding will allow for 60 GW capacity additions by March 2020, giving the remaining two years for the accomplishment of the projects. The gross wind energy potential of the country now reaches 302 GW at a 100 m above-ground level. The tariff administration has been changed from feed-in-tariff (FiT) to the bidding method for capacity addition. On the 8th of December 2017, the ministry published guidelines for a tariff-based competitive bidding rule for the acquisition of energy from grid-connected wind energy projects. The developed transparent process of bidding lowered the tariff for wind power to its lowest level ever. The development of the wind industry has risen in a robust ecosystem ensuring project execution abilities and a manufacturing base. State-of-the-art technologies are now available for the production of wind turbines. All the major global players in wind power have their presence in India. More than 12 different companies manufacture more than 24 various models of wind turbines in India. India exports wind turbines and components to the USA, Europe, Australia, Brazil, and other Asian countries. Around 70–80% of the domestic production has been accomplished with strong domestic manufacturing companies. Table 19 lists the capacity addition compared to the target for the capacity addition. Furthermore, electricity generation from the wind-based capacity has improved, even though there was a slowdown of new capacity in the first half of 2018–2019 and 2017–2018.

The national energy storage mission—2018

The country is working toward a National Energy Storage Mission. A draft of the National Energy Storage Mission was proposed in February 2018 and initiated to develop a comprehensive policy and regulatory framework. During the last 4 years, projects included in R&D worth INR 115.8 million (USD 1.66 million) in the domain of energy storage have been launched, and a corpus of INR 48.2 million (USD 0.7 million) has been issued. India’s energy storage mission will provide an opportunity for globally competitive battery manufacturing. By increasing the battery manufacturing expertise and scaling up its national production capacity, the country can make a substantial economic contribution in this crucial sector. The mission aims to identify the cumulative battery requirements, total market size, imports, and domestic manufacturing. Table 20 presents the economic opportunity from battery manufacturing given by the National Institution for Transforming India, also called NITI Aayog, which provides relevant technical advice to central and state governments while designing strategic and long-term policies and programs for the Indian government.

Small hydropower—3-year action agenda—2017

Hydro projects are classified as large hydro, small hydro (2 to 25 MW), micro-hydro (up to 100 kW), and mini-hydropower (100 kW to 2 MW) projects. Whereas the estimated potential of SHP is 20 GW, the 2022 target for India in SHP is 5 GW. As of the 31st of December 2018, the country has achieved 4.5 GW and this production is constantly increasing. The objective, which was planned to be accomplished through infrastructure project grants and tariff support, was included in the NITI Aayog’s 3-year action agenda (2017–2018 to 2019–2020), which was published on the 1st of August 2017. MNRE is providing central financial assistance (CFA) to set up small/micro hydro projects both in the public and private sector. For the identification of new potential locations, surveys and comprehensive project reports are elaborated, and financial support for the renovation and modernization of old projects is provided. The Ministry has established a dedicated completely automatic supervisory control and data acquisition (SCADA)—based on a hydraulic turbine R&D laboratory at the Alternate Hydro Energy Center (AHEC) at IIT Roorkee. The establishment cost for the lab was INR 40 crore (400 million INR, 95.62 Million USD), and the laboratory will serve as a design and validation facility. It investigates hydro turbines and other hydro-mechanical devices adhering to national and international standards [ 54 , 55 ]. Table 21 shows the target and achievements from 2007–2008 to 2018–2019.

National policy regarding biofuels—2018

Modernization has generated an opportunity for a stable change in the use of bioenergy in India. MNRE amended the current policy for biomass in May 2018. The policy presents CFA for projects using biomass such as agriculture-based industrial residues, wood produced through energy plantations, bagasse, crop residues, wood waste generated from industrial operations, and weeds. Under the policy, CFA will be provided to the projects at the rate of INR 2.5 million (USD 35,477.7) per MW for bagasse cogeneration and INR 5 million (USD 70,955.5) per MW for non-bagasse cogeneration. The MNRE also announced a memorandum in November 2018 considering the continuation of the concessional customs duty certificate (CCDC) to set up projects for the production of energy using non-conventional materials such as bio-waste, agricultural, forestry, poultry litter, agro-industrial, industrial, municipal, and urban wastes. The government recently established the National policy on biofuels in August 2018. The MNRE invited an expression of interest (EOI) to estimate the potential of biomass energy and bagasse cogeneration in the country. A program to encourage the promotion of biomass-based cogeneration in sugar mills and other industries was also launched in May 2018. Table 22 shows how the biomass power target and achievements are expected to reach 10 GW of the target of 2022 before the end of 2019.

The new national biogas and organic manure program (NNBOMP)—2018

The National biogas and manure management programme (NBMMP) was launched in 2012–2013. The primary objective was to provide clean gaseous fuel for cooking, where the remaining slurry was organic bio-manure which is rich in nitrogen, phosphorus, and potassium. Further, 47.5 lakh (4.75 million) cumulative biogas plants were completed in 2014, and increased to 49.8 lakh (4.98 million). During 2017–2018, the target was to establish 1.10 lakh biogas plants (1.10 million), but resulted in 0.15 lakh (0.015 million). In this way, the cost of refilling the gas cylinders with liquefied petroleum gas (LPG) was greatly reduced. Likewise, tons of wood/trees were protected from being axed, as wood is traditionally used as a fuel in rural and semi-urban households. Biogas is a viable alternative to traditional cooking fuels. The scheme generated employment for almost 300 skilled laborers for setting up the biogas plants. By 30th of May 2018, the Ministry had issued guidelines for the implementation of the NNBOMP during the period 2017–2018 to 2019–2020 [ 56 ].

The off-grid and decentralized solar photovoltaic application program—2018

The program deals with the energy demand through the deployment of solar lanterns, solar streetlights, solar home lights, and solar pumps. The plan intended to reach 118 MWp of off-grid PV capacity by 2020. The sanctioning target proposed outlay was 50 MWp by 2017–2018 and 68 MWp by 2019–2020. The total estimated cost amounted to INR 1895 crore (18950 Million INR, 265.547 million USD), and the ministry wanted to support 637 crores (6370 million INR, 89.263 million USD) by its central finance assistance. Solar power plants with a 25 KWp size were promoted in those areas where grid power does not reach households or is not reliable. Public service institutions, schools, panchayats, hostels, as well as police stations will benefit from this scheme. Solar study lamps were also included as a component in the program. Thirty percent of financial assistance was provided to solar power plants. Every student should bear 15% of the lamp cost, and the ministry wanted to support the remaining 85%. As of October 2018, lantern and lamps of more than 40 Lakhs (4 million), home lights of 16.72 lakhs (1.672 million) number, street lights of 6.40 lakhs (0.64 million), solar pumps of 1.96 lakhs (0.196 million), and 187.99 MWp stand-alone devices had been installed [ 57 , 58 ].

Major government initiatives for renewable energy

Technological initiatives.

The Technology Development and Innovation Policy (TDIP) released on the 6th of October 2017 was endeavored to promote research, development, and demonstration (RD&D) in the renewable energy sector [ 59 ]. RD&D intended to evaluate resources, progress in technology, commercialization, and the presentation of renewable energy technologies across the country. It aimed to produce renewable power devices and systems domestically. The evaluation of standards and resources, processes, materials, components, products, services, and sub-systems was carried out through RD&D. A development of the market, efficiency improvements, cost reductions, and a promotion of commercialization (scalability and bankability) were achieved through RD&D. Likewise, the percentage of renewable energy in the total electricity mix made it self-sustainable, industrially competitive, and profitable through RD&D. RD&D also supported technology development and demonstration in wind, solar, wind-solar hybrid, biofuel, biogas, hydrogen fuel cells, and geothermal energies. RD&D supported the R&D units of educational institutions, industries, and non-government organizations (NGOs). Sharing expertise, information, as well as institutional mechanisms for collaboration was realized by use of the technology development program (TDP). The various people involved in this program were policymakers, industrial innovators, associated stakeholders and departments, researchers, and scientists. Renowned R&D centers in India are the National Institute of Solar Energy (NISE), Gurgaon, the National Institute of Bio-Energy (NIBE), Kapurthala, and the National Institute of Wind Energy (NIWE), Chennai. The TDP strategy encouraged the exploration of innovative approaches and possibilities to obtain long-term targets. Likewise, it efficiently supported the transformation of knowledge into technology through a well-established monitoring system for the development of renewable technology that meets the electricity needs of India. The research center of excellence approved the TDI projects, which were funded to strengthen R&D. Funds were provided for conducting training and workshops. The MNRE is now preparing a database of R&D accomplishments in the renewable energy sector.

The Impacting Research Innovation and Technology (IMPRINT) program seeks to develop engineering and technology (prototype/process development) on a national scale. IMPRINT is steered by the Indian Institute of Technologies (IITs) and Indian Institute of science (IISCs). The expansion covers all areas of engineering and technology including renewable technology. The ministry of human resource development (MHRD) finances up to 50% of the total cost of the project. The remaining costs of the project are financed by the ministry (MNRE) via the RD&D program for renewable projects. Currently (2018–2019), five projects are under implementation in the area of solar thermal systems, storage for SPV, biofuel, and hydrogen and fuel cells which are funded by the MNRE (36.9 million INR, 0.518426 Million USD) and IMPRINT. Development of domestic technology and quality control are promoted through lab policies that were published on the 7th of December 2017. Lab policies were implemented to test, standardize, and certify renewable energy products and projects. They supported the improvement of the reliability and quality of the projects. Furthermore, Indian test labs are strengthened in line with international standards and practices through well-established lab policies. From 2015, the MNRE has provided “The New and Renewable Energy Young Scientist’s Award” to researchers/scientists who demonstrate exceptional accomplishments in renewable R&D.

Financial initiatives

One hundred percent financial assistance is granted by the MNRE to the government and NGOs and 50% financial support to the industry. The policy framework was developed to guide the identification of the project, the formulation, monitoring appraisal, approval, and financing. Between 2012 and 2017, a 4467.8 million INR, 62.52 Million USD) support was granted by the MNRE. The MNRE wanted to double the budget for technology development efforts in renewable energy for the current three-year plan period. Table 23 shows that the government is spending more and more for the development of the renewable energy sector. Financial support was provided to R&D projects. Exceptional consideration was given to projects that worked under extreme and hazardous conditions. Furthermore, financial support was applied to organizing awareness programs, demonstrations, training, workshops, surveys, assessment studies, etc. Innovative approaches will be rewarded with cash prizes. The winners will be presented with a support mechanism for transforming their ideas and prototypes into marketable commodities such as start-ups for entrepreneur development. Innovative projects will be financed via start-up support mechanisms, which will include an investment contract with investors. The MNRE provides funds to proposals for investigating policies and performance analyses related to renewable energy.

Technology validation and demonstration projects and other innovative projects with regard to renewables received a financial assistance of 50% of the project cost. The CFA applied to partnerships with industry and private institutions including engineering colleges. Private academic institutions, accredited by a government accreditation body, were also eligible to receive a 50% support. The concerned industries and institutions should meet the remaining 50% expenditure. The MNRE allocated an INR 3762.50 crore (INR 37625 million, 528.634 million USD) for the grid interactive renewable sources and an INR 1036.50 crore (INR 10365 million, 145.629 million USD) for off-grid/distributed and decentralized renewable power for the year 2018–2019 [ 60 ]. The MNRE asked the Reserve Bank of India (RBI), attempting to build renewable power projects under “priority sector lending” (priority lending should be done for renewable energy projects and without any limit) and to eliminate the obstacles in the financing of renewable energy projects. In July 2018, the Ministry of Finance announced that it would impose a 25% safeguard duty on solar panels and modules imported from China and Malaysia for 1 year. The quantum of tax might be reduced to 20% for the next 6 months, and 15% for the following 6 months.

Policy and regulatory framework initiatives

The regulatory interventions for the development of renewable energy sources are (a) tariff determination, (b) defining RPO, (c) promoting grid connectivity, and (d) promoting the expansion of the market.

Tariff policy amendments—2018

On the 30th of May 2018, the MoP released draft amendments to the tariff policy. The objective of these policies was to promote electricity generation from renewables. MoP in consultation with MNRE announced the long-term trajectory for RPO, which is represented in Table 24 . The State Electricity Regulatory Commission (SERC) achieved a favorable and neutral/off-putting effect in the growth of the renewable power sector through their RPO regulations in consultation with the MNRE. On the 25th of May 2018, the MNRE created an RPO compliance cell to reach India’s solar and wind power goals. Due to the absence of implementation of RPO regulations, several states in India did not meet their specified RPO objectives. The cell will operate along with the Central Electricity Regulatory Commission (CERC) and SERCs to obtain monthly statements on RPO compliance. It will also take up non-compliance associated concerns with the relevant officials.

Repowering policy—2016

On the 09th of August 2016, India announced a “repowering policy” for wind energy projects. An about 27 GW turnaround was possible according to the policy. This policy supports the replacing of aging wind turbines with more modern and powerful units (fewer, larger, taller) to raise the level of electricity generation. This policy seeks to create a simplified framework and to promote an optimized use of wind power resources. It is mandatory because the up to the year 2000 installed wind turbines were below 500 kW in sites where high wind potential might be achieved. It will be possible to obtain 3000 MW from the same location once replacements are in place. The policy was initially applied for the one MW installed capacity of wind turbines, and the MNRE will extend the repowering policy to other projects in the future based on experience. Repowering projects were implemented by the respective state nodal agencies/organizations that were involved in wind energy promotion in their states. The policy provided an exception from the Power Purchase Agreement (PPA) for wind farms/turbines undergoing repowering because they could not fulfill the requirements according to the PPA during repowering. The repowering projects may avail accelerated depreciation (AD) benefit or generation-based incentive (GBI) due to the conditions appropriate to new wind energy projects [ 61 ].

The wind-solar hybrid policy—2018

On the 14th of May 2018, the MNRE announced a national wind-solar hybrid policy. This policy supported new projects (large grid-connected wind-solar photovoltaic hybrid systems) and the hybridization of the already available projects. These projects tried to achieve an optimal and efficient use of transmission infrastructure and land. Better grid stability was achieved and the variability in renewable power generation was reduced. The best part of the policy intervention was that which supported the hybridization of existing plants. The tariff-based transparent bidding process was included in the policy. Regulatory authorities should formulate the necessary standards and regulations for hybrid systems. The policy also highlighted a battery storage in hybrid projects for output optimization and variability reduction [ 62 ].

The national offshore wind energy policy—2015

The National Offshore Wind Policy was released in October 2015. On the 19th of June 2018, the MNRE announced a medium-term target of 5 GW by 2022 and a long-term target of 30 GW by 2030. The MNRE called expressions of Interest (EoI) for the first 1 GW of offshore wind (the last date was 08.06.2018). The EoI site is located in Pipavav port at the Gulf of Khambhat at a distance of 23 km facilitating offshore wind (FOWIND) where the consortium deployed light detection and ranging (LiDAR) in November 2017). Pipavav port is situated off the coast of Gujarat. The MNRE had planned to install more such equipment in the states of Tamil Nadu and Gujarat. On the 14 th of December 2018, the MNRE, through the National Institute of Wind Energy (NIWE), called tender for offshore environmental impact assessment studies at intended LIDAR points at the Gulf of Mannar, off the coast of Tamil Nadu for offshore wind measurement. The timeline for initiatives was to firstly add 500 MW by 2022, 2 to 2.5 GW by 2027, and eventually reaching 5 GW between 2028 and 2032. Even though the installation of large wind power turbines in open seas is a challenging task, the government has endeavored to promote this offshore sector. Offshore wind energy would add its contribution to the already existing renewable energy mix for India [ 63 ] .

The feed-in tariff policy—2018

On the 28th of January 2016, the revised tariff policy was notified following the Electricity Act. On the 30th May 2018, the amendment in tariff policy was released. The intentions of this tariff policy are (a) an inexpensive and competitive electricity rate for the consumers; (b) to attract investment and financial viability; (c) to ensure that the perceptions of regulatory risks decrease through predictability, consistency, and transparency of policy measures; (d) development in quality of supply, increased operational efficiency, and improved competition; (e) increase the production of electricity from wind, solar, biomass, and small hydro; (f) peaking reserves that are acceptable in quantity or consistently good in quality or performance of grid operation where variable renewable energy source integration is provided through the promotion of hydroelectric power generation, including pumped storage projects (PSP); (g) to achieve better consumer services through efficient and reliable electricity infrastructure; (h) to supply sufficient and uninterrupted electricity to every level of consumers; and (i) to create adequate capacity, reserves in the production, transmission, and distribution that is sufficient for the reliability of supply of power to customers [ 64 ].

Training and educational initiatives

The MHRD has developed strong renewable energy education and training systems. The National Council for Vocational Training (NCVT) develops course modules, and a Modular Employable Skilling program (MES) in its regular 2-year syllabus to include SPV lighting systems, solar thermal systems, SHP, and provides the certificate for seven trades after the completion of a 2-year course. The seven trades are plumber, fitter, carpenter, welder, machinist, and electrician. The Ministry of Skill Development and Entrepreneurship (MSDE) worked out a national skill development policy in 2015. They provide regular training programs to create various job roles in renewable energy along with the MNRE support through a skill council for green jobs (SCGJ), the National Occupational Standards (NOS), and the Qualification Pack (QP). The SCGJ is promoted by the Confederation of Indian Industry (CII) and the MNRE. The industry partner for the SCGJ is ReNew Power [ 65 , 66 ].

The global status of India in renewable energy

Table 25 shows the RECAI (Renewable Energy Country Attractiveness Index) report of 40 countries. This report is based on the attractiveness of renewable energy investment and deployment opportunities. RECAI is based on macro vitals such as economic stability, investment climate, energy imperatives such as security and supply, clean energy gap, and affordability. It also includes policy enablement such as political stability and support for renewables. Its emphasis lies on project delivery parameters such as energy market access, infrastructure, and distributed generation, finance, cost and availability, and transaction liquidity. Technology potentials such as natural resources, power take-off attractiveness, potential support, technology maturity, and forecast growth are taken into consideration for ranking. India has moved to the fourth position of the RECAI-2018. Indian solar installations (new large-scale and rooftop solar capacities) in the calendar year 2017 increased exponentially with the addition of 9629 MW, whereas in 2016 it was 4313 MW. The warning of solar import tariffs and conflicts between developers and distribution firms are growing investor concerns [ 67 ]. Figure 6 shows the details of the installed capacity of global renewable energy in 2016 and 2017. Globally, 2017 GW renewable energy was installed in 2016, and in 2017, it increased to 2195 GW. Table 26 shows the total capacity addition of top countries until 2017. The country ranked fifth in renewable power capacity (including hydro energy), renewable power capacity (not including hydro energy) in fourth position, concentrating solar thermal power (CSP) and wind power were also in fourth position [ 68 ].

figure 6

Globally installed capacity of renewable energy in 2017—Global 2018 status report with regard to renewables [ 68 ]

The investment opportunities in renewable energy in India

The investments into renewable energy in India increased by 22% in the first half of 2018 compared to 2017, while the investments in China dropped by 15% during the same period, according to a statement by the Bloomberg New Energy Finance (BNEF), which is shown in Table 27 [ 69 , 70 ]. At this rate, India is expected to overtake China and become the most significant growth market for renewable energy by the end of 2020. The country is eyeing pole position for transformation in renewable energy by reaching 175 GW by 2020. To achieve this target, it is quickly ramping up investments in this sector. The country added more renewable capacity than conventional capacity in 2018 when compared to 2017. India hosted the ISA first official summit on the 11.03.2018 for 121 countries. This will provide a standard platform to work toward the ambitious targets for renewable energy. The summit will emphasize India’s dedication to meet global engagements in a time-bound method. The country is also constructing many sizeable solar power parks comparable to, but larger than, those in China. Half of the earth’s ten biggest solar parks under development are in India.

In 2014, the world largest solar park was the Topaz solar farm in California with a 550 MW facility. In 2015, another operator in California, Solar Star, edged its capacity up to 579 MW. By 2016, India’s Kamuthi Solar Power Project in Tamil Nadu was on top with 648 MW of capacity (set up by the Adani Green Energy, part of the Adani Group, in Tamil Nadu). As of February 2017, the Longyangxia Dam Solar Park in China was the new leader, with 850 MW of capacity [ 71 ]. Currently, there are 600 MW operating units and 1400 MW units under construction. The Shakti Sthala solar park was inaugurated on 01.03.2018 in Pavagada (Karnataka, India) which is expected to become the globe’s most significant solar park when it accomplishes its full potential of 2 GW. Another large solar park with 1.5 GW is scheduled to be built in the Kadappa region [ 72 ]. The progress in solar power is remarkable and demonstrates real clean energy development on the ground.

The Kurnool ultra-mega solar park generated 800 million units (MU) of energy in October 2018 and saved over 700,000 tons of CO 2 . Rainwater was harvested using a reservoir that helps in cleaning solar panels and supplying water. The country is making remarkable progress in solar energy. The Kamuthi solar farm is cleaned each day by a robotic system. As the Indian economy expands, electricity consumption is forecasted to reach 15,280 TWh in 2040. With the government’s intent, green energy objectives, i.e., the renewable sector, grow considerably in an attractive manner with both foreign and domestic investors. It is anticipated to attract investments of up to USD 80 billion in the subsequent 4 years. The government of India has raised its 175 GW target to 225 GW of renewable energy capacity by 2022. The competitive benefit is that the country has sun exposure possible throughout the year and has an enormous hydropower potential. India was also listed fourth in the EY renewable energy country attractive index 2018. Sixty solar cities will be built in India as a section of MNRE’s “Solar cities” program.

In a regular auction, reduction in tariffs cost of the projects are the competitive benefits in the country. India accounts for about 4% of the total global electricity generation capacity and has the fourth highest installed capacity of wind energy and the third highest installed capacity of CSP. The solar installation in India erected during 2015–2016, 2016–2017, 2017–2018, and 2018–2019 was 3.01 GW, 5.52 GW, 9.36 GW, and 6.53 GW, respectively. The country aims to add 8.5 GW during 2019–2020. Due to its advantageous location in the solar belt (400 South to 400 North), the country is one of the largest beneficiaries of solar energy with relatively ample availability. An increase in the installed capacity of solar power is anticipated to exceed the installed capacity of wind energy, approaching 100 GW by 2022 from its current levels of 25.21226 GW as of December 2018. Fast falling prices have made Solar PV the biggest market for new investments. Under the Union Budget 2018–2019, a zero import tax on parts used in manufacturing solar panels was launched to provide an advantage to domestic solar panel companies [ 73 ].

Foreign direct investment (FDI) inflows in the renewable energy sector of India between April 2000 and June 2018 amounted to USD 6.84 billion according to the report of the department of industrial policy and promotion (DIPP). The DIPP was renamed (gazette notification 27.01.2019) the Department for the Promotion of Industry and Internal Trade (DPIIT). It is responsible for the development of domestic trade, retail trade, trader’s welfare including their employees as well as concerns associated with activities in facilitating and supporting business and startups. Since 2014, more than 42 billion USD have been invested in India’s renewable power sector. India reached US$ 7.4 billion in investments in the first half of 2018. Between April 2015 and June 2018, the country received USD 3.2 billion FDI in the renewable sector. The year-wise inflows expanded from USD 776 million in 2015–2016 to USD 783 million in 2016–2017 and USD 1204 million in 2017–2018. Between January to March of 2018, the INR 452 crore (4520 Million INR, 63.3389 million USD) of the FDI had already come in. The country is contributing with financial and promotional incentives that include a capital subsidy, accelerated depreciation (AD), waiver of inter-state transmission charges and losses, viability gap funding (VGF), and FDI up to 100% under the automated track.

The DIPP/DPIIT compiles and manages the data of the FDI equity inflow received in India [ 74 ]. The FDI equity inflow between April 2015 and June 2018 in the renewable sector is illustrated in Fig. 7 . It shows that the 2018–2019 3 months’ FDI equity inflow is half of that of the entire one of 2017–2018. It is evident from the figure that India has well-established FDI equity inflows. The significant FDI investments in the renewable energy sectors are shown in Table 28 . The collaboration between the Asian development bank and Renew Power Ventures private limited with 44.69 million USD ranked first followed by AIRRO Singapore with Diligent power with FDI equity inflow of 44.69 USD million.

figure 7

The FDI equity inflow received between April 2015 and June 2018 in the renewable energy sector [ 73 ]

Strategies to promote investments

Strategies to promote investments (including FDI) by investors in the renewable sector:

Decrease constraints on FDI; provide open, transparent, and dependable conditions for foreign and domestic firms; and include ease of doing business, access to imports, comparatively flexible labor markets, and safeguard of intellectual property rights.

Establish an investment promotion agency (IPA) that targets suitable foreign investors and connects them as a catalyst with the domestic economy. Assist the IPA to present top-notch infrastructure and immediate access to skilled workers, technicians, engineers, and managers that might be needed to attract such investors. Furthermore, it should involve an after-investment care, recognizing the demonstration effects from satisfied investors, the potential for reinvestments, and the potential for cluster-development due to follow-up investments.

It is essential to consider the targeted sector (wind, solar, SPH or biomass, respectively) for which investments are required.

Establish the infrastructure needed for a quality investor, including adequate close-by transport facilities (airport, ports), a sufficient and steady supply of energy, a provision of a sufficiently skilled workforce, the facilities for the vocational training of specialized operators, ideally designed in collaboration with the investor.

Policy and other support mechanisms such as Power Purchase Agreements (PPA) play an influential role in underpinning returns and restricting uncertainties for project developers, indirectly supporting the availability of investment. Investors in renewable energy projects have historically relied on government policies to give them confidence about the costs necessary for electricity produced—and therefore for project revenues. Reassurance of future power costs for project developers is secured by signing a PPA with either a utility or an essential corporate buyer of electricity.

FiT have been the most conventional approach around the globe over the last decade to stimulate investments in renewable power projects. Set by the government concerned, they lay down an electricity tariff that developers of qualifying new projects might anticipate to receive for the resulting electricity over a long interval (15–20 years). These present investors in the tax equity of renewable power projects with a credit that they can manage to offset the tax burden outside in their businesses.

Table 29 presents the 2018 renewable energy investment report, source-wise, by the significant players in renewables according to the report of the Bloomberg New Energy Finance Report 2018. As per this report, global investment in renewable energy was USD of 279.8 billion in 2017. The top ten in the total global investments are China (126.1 $BN), the USA (40.5 $BN), Japan (13.4 $BN), India (10.9 $BN), Germany (10.4 $BN), Australia (8.5 $BN), UK (7.6 $BN), Brazil (6.0 $BN), Mexico (6.0 $BN), and Sweden (3.7 $BN) [ 75 ]. This achievement was possible since those countries have well-established strategies for promoting investments [ 76 , 77 ].

The appropriate objectives for renewable power expansion and investments are closely related to the Nationally Determined Contributions (NDCs) objectives, the implementation of the NDC, on the road to achieving Paris promises, policy competence, policy reliability, market absorption capacity, and nationwide investment circumstances that are the real purposes for renewable power expansion, which is a significant factor for the investment strategies, as is shown in Table 30 .

The demand for investments for building a Paris-compatible and climate-resilient energy support remains high, particularly in emerging nations. Future investments in energy grids and energy flexibility are of particular significance. The strategies and the comparison chart between China, India, and the USA are presented in Table 31 .

Table 32 shows France in the first place due to overall favorable conditions for renewables, heading the G20 in investment attractiveness of renewables. Germany drops back one spot due to a decline in the quality of the global policy environment for renewables and some insufficiencies in the policy design, as does the UK. Overall, with four European countries on top of the list, Europe, however, directs the way in providing attractive conditions for investing in renewables. Despite high scores for various nations, no single government is yet close to growing a role model. All countries still have significant room for increasing investment demands to deploy renewables at the scale required to reach the Paris objectives. The table shown is based on the Paris compatible long-term vision, the policy environment for renewable energy, the conditions for system integration, the market absorption capacity, and general investment conditions. India moved from the 11th position to the 9th position in overall investments between 2017 and 2018.

A Paris compatible long-term vision includes a de-carbonization plan for the power system, the renewable power ambition, the coal and oil decrease, and the reliability of renewables policies. Direct support policies include medium-term certainty of policy signals, streamlined administrative procedures, ensuring project realization, facilitating the use of produced electricity. Conditions for system integration include system integration-grid codes, system integration-storage promotion, and demand-side management policies. A market absorption capacity includes a prior experience with renewable technologies, a current activity with renewable installations, and a presence of major renewable energy companies. General investment conditions include non-financial determinants, depth of the financial sector as well, as an inflation forecast.

Employment opportunities for citizens in renewable energy in India

Global employment scenario.

According to the 2018 Annual review of the IRENA [ 78 ], global renewable energy employment touched 10.3 million jobs in 2017, an improvement of 5.3% compared with the quantity published in 2016. Many socio-economic advantages derive from renewable power, but employment continues to be exceptionally centralized in a handful of countries, with China, Brazil, the USA, India, Germany, and Japan in the lead. In solar PV employment (3.4 million jobs), China is the leader (65% of PV Jobs) which is followed by Japan, USA, India, Bangladesh, Malaysia, Germany, Philippines, and Turkey. In biofuels employment (1.9 million jobs), Brazil is the leader (41% of PV Jobs) followed by the USA, Colombia, Indonesia, Thailand, Malaysia, China, and India. In wind employment (1.1 million jobs), China is the leader (44% of PV Jobs) followed by Germany, USA, India, UK, Brazil, Denmark, Netherlands, France, and Spain.

Table 33 shows global renewable energy employment in the corresponding technology branches. As in past years, China maintained the most notable number of people employed (3880 million jobs) estimating for 43% of the globe’s total which is shown in Fig. 8 . In India, new solar installations touched a record of 9.6 GW in 2017, efficiently increasing the total installed capacity. The employment in solar PV improved by 36% and reached 164,400 jobs, of which 92,400 represented on-grid use. IRENA determines that the building and installation covered 46% of these jobs, with operations and maintenance (O&M) representing 35% and 19%, individually. India does not produce solar PV because it could be imported from China, which is inexpensive. The market share of domestic companies (Indian supplier to renewable projects) declined from 13% in 2014–2015 to 7% in 2017–2018. If India starts the manufacturing base, more citizens will get jobs in the manufacturing field. India had the world’s fifth most significant additions of 4.1 GW to wind capacity in 2017 and the fourth largest cumulative capacity in 2018. IRENA predicts that jobs in the wind sector stood at 60,500.

figure 8

Renewable energy employment in selected countries [ 79 ]

The jobs in renewables are categorized into technological development, installation/de-installation, operation, and maintenance. Tables 34 , 35 , 36 , and 37 show the wind industry, solar energy, biomass, and small hydro-related jobs in project development, component manufacturing, construction, operations, and education, training, and research. As technology quickly evolves, workers in all areas need to update their skills through continuing training/education or job training, and in several cases could benefit from professional certification. The advantages of moving to renewable energy are evident, and for this reason, the governments are responding positively toward the transformation to clean energy. Renewable energy can be described as the country’s next employment boom. Renewable energy job opportunities can transform rural economy [ 79 , 80 ]. The renewable energy sector might help to reduce poverty by creating better employment. For example, wind power is looking for specialists in manufacturing, project development, and construction and turbine installation as well as financial services, transportation and logistics, and maintenance and operations.

The government is building more renewable energy power plants that will require a workforce. The increasing investments in the renewable energy sector have the potential to provide more jobs than any other fossil fuel industry. Local businesses and renewable sectors will benefit from this change, as income will increase significantly. Many jobs in this sector will contribute to fixed salaries, healthcare benefits, and skill-building opportunities for unskilled and semi-skilled workers. A range of skilled and unskilled jobs are included in all renewable energy technologies, even though most of the positions in the renewable energy industry demand a skilled workforce. The renewable sector employs semi-skilled and unskilled labor in the construction, operations, and maintenance after proper training. Unskilled labor is employed as truck drivers, guards, cleaning, and maintenance. Semi-skilled labor is used to take regular readings from displays. A lack of consistent data on the potential employment impact of renewables expansion makes it particularly hard to assess the quantity of skilled, semi-skilled, and unskilled personnel that might be needed.

Key findings in renewable energy employment

The findings comprise (a) that the majority of employment in the renewable sector is contract based, and that employees do not benefit from permanent jobs or security. (b) Continuous work in the industry has the potential to decrease poverty. (c) Most poor citizens encounter obstacles to entry-level training and the employment market due to lack of awareness about the jobs and the requirements. (d) Few renewable programs incorporate developing ownership opportunities for the citizens and the incorporation of women in the sector. (e) The inadequacy of data makes it challenging to build relationships between employment in renewable energy and poverty mitigation.

Recommendations for renewable energy employment

When building the capacity, focus on poor people and individuals to empower them with training in operation and maintenance.

Develop and offer training programs for citizens with minimal education and training, who do not fit current programs, which restrict them from working in renewable areas.

Include women in the renewable workforce by providing localized training.

Establish connections between training institutes and renewable power companies to guarantee that (a) trained workers are placed in appropriate positions during and after the completion of the training program and (b) training programs match the requirements of the renewable sector.

Poverty impact assessments might be embedded in program design to know how programs motivate poverty reduction, whether and how they influence the community.

Allow people to have a sense of ownership in renewable projects because this could contribute to the growth of the sector.

The details of the job being offered (part time, full time, contract-based), the levels of required skills for the job (skilled, semi-skilled and unskilled), the socio-economic status of the employee data need to be collected for further analysis.

Conduct investigations, assisted by field surveys, to learn about the influence of renewable energy jobs on poverty mitigation and differences in the standard of living.

Challenges faced by renewable energy in India

The MNRE has been taking dedicated measures for improving the renewable sector, and its efforts have been satisfactory in recognizing various obstacles.

Policy and regulatory obstacles

A comprehensive policy statement (regulatory framework) is not available in the renewable sector. When there is a requirement to promote the growth of particular renewable energy technologies, policies might be declared that do not match with the plans for the development of renewable energy.

The regulatory framework and procedures are different for every state because they define the respective RPOs (Renewable Purchase Obligations) and this creates a higher risk of investments in this sector. Additionally, the policies are applicable for just 5 years, and the generated risk for investments in this sector is apparent. The biomass sector does not have an established framework.

Incentive accelerated depreciation (AD) is provided to wind developers and is evident in developing India’s wind-producing capacity. Wind projects installed more than 10 years ago show that they are not optimally maintained. Many owners of the asset have built with little motivation for tax benefits only. The policy framework does not require the maintenance of the wind projects after the tax advantages have been claimed. There is no control over the equipment suppliers because they undertake all wind power plant development activities such as commissioning, operation, and maintenance. Suppliers make the buyers pay a premium and increase the equipment cost, which brings burden to the buyer.

Furthermore, ready-made projects are sold to buyers. The buyers are susceptible to this trap to save income tax. Foreign investors hesitate to invest because they are exempted from the income tax.

Every state has different regulatory policy and framework definitions of an RPO. The RPO percentage specified in the regulatory framework for various renewable sources is not precise.

RPO allows the SERCs and certain private firms to procure only a part of their power demands from renewable sources.

RPO is not imposed on open access (OA) and captive consumers in all states except three.

RPO targets and obligations are not clear, and the RPO compliance cell has just started on 22.05.2018 to collect the monthly reports on compliance and deal with non-compliance issues with appropriate authorities.

Penalty mechanisms are not specified and only two states in India (Maharashtra and Rajasthan) have some form of penalty mechanisms.

The parameter to determine the tariff is not transparent in the regulatory framework and many SRECs have established a tariff for limited periods. The FiT is valid for only 5 years, and this affects the bankability of the project.

Many SERCs have not decided on adopting the CERC tariff that is mentioned in CERCs regulations that deal with terms and conditions for tariff determinations. The SERCs have considered the plant load factor (PLF) because it varies across regions and locations as well as particular technology. The current framework does not fit to these issues.

Third party sale (TPS) is not allowed because renewable generators are not allowed to sell power to commercial consumers. They have to sell only to industrial consumers. The industrial consumers have a low tariff and commercial consumers have a high tariff, and SRCS do not allow OA. This stops the profit for the developers and investors.

Institutional obstacles

Institutes, agencies stakeholders who work under the conditions of the MNRE show poor inter-institutional coordination. The progress in renewable energy development is limited by this lack of cooperation, coordination, and delays. The delay in implementing policies due to poor coordination, decrease the interest of investors to invest in this sector.

The single window project approval and clearance system is not very useful and not stable because it delays the receiving of clearances for the projects ends in the levy of a penalty on the project developer.

Pre-feasibility reports prepared by concerned states have some deficiency, and this may affect the small developers, i.e., the local developers, who are willing to execute renewable projects.

The workforce in institutes, agencies, and ministries is not sufficient in numbers.

Proper or well-established research centers are not available for the development of renewable infrastructure.

Customer care centers to guide developers regarding renewable projects are not available.

Standards and quality control orders have been issued recently in 2018 and 2019 only, and there are insufficient institutions and laboratories to give standards/certification and validate the quality and suitability of using renewable technology.

Financial and fiscal obstacles

There are a few budgetary constraints such as fund allocation, and budgets that are not released on time to fulfill the requirement of developing the renewable sector.

The initial unit capital costs of renewable projects are very high compared to fossil fuels, and this leads to financing challenges and initial burden.

There are uncertainties related to the assessment of resources, lack of technology awareness, and high-risk perceptions which lead to financial barriers for the developers.

The subsidies and incentives are not transparent, and the ministry might reconsider subsidies for renewable energy because there was a sharp fall in tariffs in 2018.

Power purchase agreements (PPA) signed between the power purchaser and power generators on pre-determined fixed tariffs are higher than the current bids (Economic survey 2017–2018 and union budget on the 01.02.2019). For example, solar power tariff dropped to 2.44 INR (0. 04 USD) per unit in May 2017, wind power INR 3.46 per unit in February 2017, and 2.64 INR per unit in October 2017.

Investors feel that there is a risk in the renewable sector as this sector has lower gross returns even though these returns are relatively high within the market standards.

There are not many developers who are interested in renewable projects. While newly established developers (small and local developers) do not have much of an institutional track record or financial input, which are needed to develop the project (high capital cost). Even moneylenders consider it risky and are not ready to provide funding. Moneylenders look exclusively for contractors who have much experience in construction, well-established suppliers with proven equipment and operators who have more experience.

If the performance of renewable projects, which show low-performance, faces financial obstacles, they risks the lack of funding of renewable projects.

Financial institutions such as government banks or private banks do not have much understanding or expertise in renewable energy projects, and this imposes financial barriers to the projects.

Delay in payment by the SERCs to the developers imposes debt burden on the small and local developers because moneylenders always work with credit enhancement mechanisms or guarantee bonds signed between moneylenders and the developers.

Market obstacles

Subsidies are adequately provided to conventional fossil fuels, sending the wrong impression that power from conventional fuels is of a higher priority than that from renewables (unfair structure of subsidies)

There are four renewable markets in India, the government market (providing budgetary support to projects and purchase the output of the project), the government-driven market (provide budgetary support or fiscal incentives to promote renewable energy), the loan market (taking loan to finance renewable based applications), and the cash market (buying renewable-based applications to meet personal energy needs by individuals). There is an inadequacy in promoting the loan market and cash market in India.

The biomass market is facing a demand-supply gap which results in a continuous and dramatic increase in biomass prices because the biomass supply is unreliable (and, as there is no organized market for fuel), and the price fluctuations are very high. The type of biomass is not the same in all the states of India, and therefore demand and price elasticity is high for biomass.

Renewable power was calculated based on cost-plus methods (adding direct material cost, direct labor cost, and product overhead cost). This does not include environmental cost and shields the ecological benefits of clean and green energy.

There is an inadequate evacuation infrastructure and insufficient integration of the grid, which affects the renewable projects. SERCs are not able to use all generated power to meet the needs because of the non-availability of a proper evacuation infrastructure. This has an impact on the project, and the SERCs are forced to buy expensive power from neighbor states to fulfill needs.

Extending transmission lines is not possible/not economical for small size projects, and the seasonality of generation from such projects affect the market.

There are few limitations in overall transmission plans, distribution CapEx plans, and distribution licenses for renewable power. Power evacuation infrastructure for renewable energy is not included in the plans.

Even though there is an increase in capacity for the commercially deployed renewable energy technology, there is no decline in capital cost. This cost of power also remains high. The capital cost quoted by the developers and providers of equipment is too high due to exports of machinery, inadequate built up capacity, and cartelization of equipment suppliers (suppliers join together to control prices and limit competition).

There is no adequate supply of land, for wind, solar, and solar thermal power plants, which lead to poor capacity addition in many states.

Technological obstacles

Every installation of a renewable project contributes to complex risk challenges from environmental uncertainties, natural disasters, planning, equipment failure, and profit loss.

MNRE issued the standardization of renewable energy projects policy on the 11th of December 2017 (testing, standardization, and certification). They are still at an elementary level as compared to international practices. Quality assurance processes are still under starting conditions. Each success in renewable energy is based on concrete action plans for standards, testing and certification of performance.

The quality and reliability of manufactured components, imported equipment, and subsystems is essential, and hence quality infrastructure should be established. There is no clear document related to testing laboratories, referral institutes, review mechanism, inspection, and monitoring.

There are not many R&D centers for renewables. Methods to reduce the subsidies and invest in R&D lagging; manufacturing facilities are just replicating the already available technologies. The country is dependent on international suppliers for equipment and technology. Spare parts are not manufactured locally and hence they are scarce.

Awareness, education, and training obstacles

There is an unavailability of appropriately skilled human resources in the renewable energy sector. Furthermore, it faces an acute workforce shortage.

After installation of renewable project/applications by the suppliers, there is no proper follow-up or assistance for the workers in the project to perform maintenance. Likewise, there are not enough trained and skilled persons for demonstrating, training, operation, and maintenance of the plant.

There is inadequate knowledge in renewables, and no awareness programs are available to the general public. The lack of awareness about the technologies is a significant obstacle in acquiring vast land for constructing the renewable plant. Moreover, people using agriculture lands are not prepared to give their land to construct power plants because most Indians cultivate plants.

The renewable sector depends on the climate, and this varying climate also imposes less popularity of renewables among the people.

The per capita income is low, and the people consider that the cost of renewables might be high and they might not be able to use renewables.

The storage system increases the cost of renewables, and people believe it too costly and are not ready to use them.

The environmental benefits of renewable technologies are not clearly understood by the people and negative perceptions are making renewable technologies less prevalent among them.

Environmental obstacles

A single wind turbine does not occupy much space, but many turbines are placed five to ten rotor diameters from each other, and this occupies more area, which include roads and transmission lines.

In the field of offshore wind, the turbines and blades are bigger than onshore wind turbines, and they require a substantial amount of space. Offshore installations affect ocean activities (fishing, sand extraction, gravel extraction, oil extraction, gas extraction, aquaculture, and navigation). Furthermore, they affect fish and other marine wildlife.

Wind turbines influence wildlife (birds and bats) because of the collisions with them and due to air pressure changes caused by wind turbines and habitat disruption. Making wind turbines motionless during times of low wind can protect birds and bats but is not practiced.

Sound (aerodynamic, mechanical) and visual impacts are associated with wind turbines. There is poor practice by the wind turbine developers regarding public concerns. Furthermore, there are imperfections in surfaces and sound—absorbent material which decrease the noise from turbines. The shadow flicker effect is not taken as severe environmental impact by the developers.

Sometimes wind turbine material production, transportation of materials, on-site construction, assembling, operation, maintenance, dismantlement, and decommissioning may be associated with global warming, and there is a lag in this consideration.

Large utility-scale solar plants require vast lands that increase the risk of land degradation and loss of habitat.

The PV cell manufacturing process includes hazardous chemicals such as 1-1-1 Trichloroethene, HCL, H 2 SO 4 , N 2 , NF, and acetone. Workers face risks resulting from inhaling silicon dust. The manufacturing wastes are not disposed of properly. Proper precautions during usage of thin-film PV cells, which contain cadmium—telluride, gallium arsenide, and copper-indium-gallium-diselenide are missing. These materials create severe public health threats and environmental threats.

Hydroelectric power turbine blades kill aquatic ecosystems (fish and other organisms). Moreover, algae and other aquatic weeds are not controlled through manual harvesting or by introducing fish that can eat these plants.

Discussion and recommendations based on the research

Policy and regulation advancements.

The MNRE should provide a comprehensive action plan or policy for the promotion of the renewable sector in its regulatory framework for renewables energy. The action plan can be prepared in consultation with SERCs of the country within a fixed timeframe and execution of the policy/action plan.

The central and state government should include a “Must run status” in their policy and follow it strictly to make use of renewable power.

A national merit order list for renewable electricity generation will reduce power cost for the consumers. Such a merit order list will help in ranking sources of renewable energy in an ascending order of price and will provide power at a lower cost to each distribution company (DISCOM). The MNRE should include that principle in its framework and ensure that SERCs includes it in their regulatory framework as well.

SERCs might be allowed to remove policies and regulatory uncertainty surrounding renewable energy. SERCs might be allowed to identify the thrust areas of their renewable energy development.

There should be strong initiatives from municipality (local level) approvals for renewable energy-based projects.

Higher market penetration is conceivable only if their suitable codes and standards are adopted and implemented. MNRE should guide minimum performance standards, which incorporate reliability, durability, and performance.

A well-established renewable energy certificates (REC) policy might contribute to an efficient funding mechanism for renewable energy projects. It is necessary for the government to look at developing the REC ecosystem.

The regulatory administration around the RPO needs to be upgraded with a more efficient “carrot and stick” mechanism for obligated entities. A regulatory mechanism that both remunerations compliance and penalizes for non-compliance may likely produce better results.

RECs in India should only be traded on exchange. Over-the-counter (OTC) or off-exchange trading will potentially allow greater participation in the market. A REC forward curve will provide further price determination to the market participants.

The policymakers should look at developing and building the REC market.

Most states have defined RPO targets. Still, due to the absence of implemented RPO regulations and the inadequacy of penalties when obligations are not satisfied, several of the state DISCOMs are not complying completely with their RPO targets. It is necessary that all states adhere to the RPO targets set by respective SERCs.

The government should address the issues such as DISCOM financials, must-run status, problems of transmission and evacuation, on-time payments and payment guarantees, and deemed generation benefits.

Proper incentives should be devised to support utilities to obtain power over and above the RPO mandated by the SERC.

The tariff orders/FiTs must be consistent and not restricted for a few years.

Transmission requirements

The developers are worried that transmission facilities are not keeping pace with the power generation. Bays at the nearest substations are occupied, and transmission lines are already carrying their full capacity. This is due to the lack of coordination between MNRE and the Power Grid Corporation of India (PGCIL) and CEA. Solar Corporation of India (SECI) is holding auctions for both wind and solar projects without making sure that enough evacuation facilities are available. There is an urgent need to make evacuation plans.

The solution is to develop numerous substations and transmission lines, but the process will take considerably longer time than the currently under-construction projects take to get finished.

In 2017–2018, transmission lines were installed under the green energy corridor project by the PGCIL, with 1900 circuit km targeted in 2018–2019. The implementation of the green energy corridor project explicitly meant to connect renewable energy plants to the national grid. The budget allocation of INR 6 billion for 2018–2019 should be increased to higher values.

The mismatch between MNRE and PGCIL, which are responsible for inter-state transmission, should be rectified.

State transmission units (STUs) are responsible for the transmission inside the states, and their fund requirements to cover the evacuation and transmission infrastructure for renewable energy should be fulfilled. Moreover, STUs should be penalized if they fail to fulfill their responsibilities.

The coordination and consultation between the developers (the nodal agency responsible for the development of renewable energy) and STUs should be healthy.

Financing the renewable sector

The government should provide enough budget for the clean energy sector. China’s annual budget for renewables is 128 times higher than India’s. In 2017, China spent USD 126.6 billion (INR 9 lakh crore) compared to India’s USD 10.9 billion (INR 75500 crore). In 2018, budget allocations for grid interactive wind and solar have increased but it is not sufficient to meet the renewable target.

The government should concentrate on R&D and provide a surplus fund for R&D. In 2017, the budget allotted was an INR 445 crore, which was reduced to an INR 272.85 crore in 2016. In 2017–2018, the initial allocation was an INR 144 crore that was reduced to an INR 81 crore during the revised estimates. Even the reduced amounts could not be fully used, there is an urgent demand for regular monitoring of R&D and the budget allocation.

The Goods and Service Tax (GST) that was introduced in 2017 worsened the industry performance and has led to an increase in costs and poses a threat to the viability of the ongoing projects, ultimately hampering the target achievement. These GST issues need to be addressed.

Including the renewable sector as a priority sector would increase the availability of credit and lead to a more substantial participation by commercial banks.

Mandating the provident funds and insurance companies to invest the fixed percentage of their portfolio into the renewable energy sector.

Banks should allow an interest rebate on housing loans if the owner is installing renewable applications such as solar lights, solar water heaters, and PV panels in his house. This will encourage people to use renewable energy. Furthermore, income tax rebates also can be given to individuals if they are implementing renewable energy applications.

Improvement in manufacturing/technology

The country should move to domestic manufacturing. It imports 90% of its solar cell and module requirements from Malaysia, China, and Taiwan, so it is essential to build a robust domestic manufacturing basis.

India will provide “safeguard duty” for merely 2 years, and this is not adequate to build a strong manufacturing basis that can compete with the global market. Moreover, safeguard duty would work only if India had a larger existing domestic manufacturing base.

The government should reconsider the safeguard duty. Many foreign companies desiring to set up joint ventures in India provide only a lukewarm response because the given order in its current form presents inadequate safeguards.

There are incremental developments in technology at regular periods, which need capital, and the country should discover a way to handle these factors.

To make use of the vast estimated renewable potential in India, the R&D capability should be upgraded to solve critical problems in the clean energy sector.

A comprehensive policy for manufacturing should be established. This would support capital cost reduction and be marketed on a global scale.

The country should initiate an industry-academia partnership, which might promote innovative R&D and support leading-edge clean power solutions to protect the globe for future generations.

Encourage the transfer of ideas between industry, academia, and policymakers from around the world to develop accelerated adoption of renewable power.

Awareness about renewables

Social recognition of renewable energy is still not very promising in urban India. Awareness is the crucial factor for the uniform and broad use of renewable energy. Information about renewable technology and their environmental benefits should reach society.

The government should regularly organize awareness programs throughout the country, especially in villages and remote locations such as the islands.

The government should open more educational/research organizations, which will help in spreading knowledge of renewable technology in society.

People should regularly be trained with regard to new techniques that would be beneficial for the community.

Sufficient agencies should be available to sell renewable products and serve for technical support during installation and maintenance.

Development of the capabilities of unskilled and semiskilled workers and policy interventions are required related to employment opportunities.

An increase in the number of qualified/trained personnel might immediately support the process of installations of renewables.

Renewable energy employers prefer to train employees they recruit because they understand that education institutes fail to give the needed and appropriate skills. The training institutes should rectify this issue. Severe trained human resources shortages should be eliminated.

Upgrading the ability of the existing workforce and training of new professionals is essential to achieve the renewable goal.

Hybrid utilization of renewables

The country should focus on hybrid power projects for an effective use of transmission infrastructure and land.

India should consider battery storage in hybrid projects, which support optimizing the production and the power at competitive prices as well as a decrease of variability.

Formulate mandatory standards and regulations for hybrid systems, which are lagging in the newly announced policies (wind-solar hybrid policy on 14.05.2018).

The hybridization of two or more renewable systems along with the conventional power source battery storage can increase the performance of renewable technologies.

Issues related to sizing and storage capacity should be considered because they are key to the economic viability of the system.

Fiscal and financial incentives available for hybrid projects should be increased.

The renewable sector suffers notable obstacles. Some of them are inherent in every renewable technology; others are the outcome of a skewed regulative structure and marketplace. The absence of comprehensive policies and regulation frameworks prevent the adoption of renewable technologies. The renewable energy market requires explicit policies and legal procedures to enhance the attention of investors. There is a delay in the authorization of private sector projects because of a lack of clear policies. The country should take measures to attract private investors. Inadequate technology and the absence of infrastructure required to establish renewable technologies should be overcome by R&D. The government should allow more funds to support research and innovation activities in this sector. There are insufficiently competent personnel to train, demonstrate, maintain, and operate renewable energy structures and therefore, the institutions should be proactive in preparing the workforce. Imported equipment is costly compared to that of locally manufactured; therefore, generation of renewable energy becomes expensive and even unaffordable. Hence, to decrease the cost of renewable products, the country should become involve in the manufacturing of renewable products. Another significant infrastructural obstacle to the development of renewable energy technologies is unreliable connectivity to the grid. As a consequence, many investors lose their faith in renewable energy technologies and are not ready to invest in them for fear of failing. India should work on transmission and evacuation plans.

Inadequate servicing and maintenance of facilities and low reliability in technology decreases customer trust in some renewable energy technologies and hence prevent their selection. Adequate skills to repair/service the spare parts/equipment are required to avoid equipment failures that halt the supply of energy. Awareness of renewable energy among communities should be fostered, and a significant focus on their socio-cultural practices should be considered. Governments should support investments in the expansion of renewable energy to speed up the commercialization of such technologies. The Indian government should declare a well-established fiscal assistance plan, such as the provision of credit, deduction on loans, and tariffs. The government should improve regulations making obligations under power purchase agreements (PPAs) statutorily binding to guarantee that all power DISCOMs have PPAs to cover a hundred percent of their RPO obligation. To accomplish a reliable system, it is strongly suggested that renewables must be used in a hybrid configuration of two or more resources along with conventional source and storage devices. Regulatory authorities should formulate the necessary standards and regulations for hybrid systems. Making investments economically possible with effective policies and tax incentives will result in social benefits above and beyond the economic advantages.

Availability of data and materials

Not applicable.

Abbreviations

Accelerated depreciation

Billion units

Central Electricity Authority of India

Central electricity regulatory commission

Central financial assistance

Expression of interest

Foreign direct investment

Feed-in-tariff

Ministry of new and renewable energy

Research and development

Renewable purchase obligations

State electricity regulatory

Small hydropower

Terawatt hours

Waste to energy

Chr.Von Zabeltitz (1994) Effective use of renewable energies for greenhouse heating. Renewable Energy 5:479-485.

Article   Google Scholar  

Charles Rajesh Kumar. J, Vinod Kumar.D, M.A. Majid (2019) Wind energy programme in India: emerging energy alternatives for sustainable growth. Energy & Environment 30(7):1135-1189.

National electricity plan (2016), Volume 1, Generation, Central Electricity Authority (CEA),Ministry of Power, GOI . Available at http://www.cea.nic.in/reports/committee/nep/nep_dec.pdf .Accessed 31 Jan 2018.

Canadian environmental sustainability indicators (2017), Global greenhouse gas emissions. Available at http://www.ec.gc.ca/indicateurs-indicators/54C061B5-44F7-4A93-A3EC-5F8B253A7235/GlobalGHGEmissions_EN.pdf . Accessed 27 June.2017.

Pappas D (2017) Energy and Industrial Growth in India: The Next Emissions Superpower? Energy procedia 105:3656–3662

Agreement P (2015) Available at ttps://unfccc.int/sites/default/files/english_paris_agreement.pdf.Accessed 20. Aug 2017

Aggarwal P (2017) 2 °C target, India’s climate action plan and urban transport sector. Travel Behavior and Society 6:110–116

World Energy Scenarios Composing energy futures to 2050 (2013), World energy Council. https://www.worldenergy.org/wp-content/uploads/2013/09/World-Energy-Scenarios_Composing-energy-futures-to-2050_Full-report.pdf .Accessed 01 Jan 2017.

Blondeel M, Van de Graaf T (2018) Toward a global coal mining moratorium? A comparative analysis of coal mining policies in the USA, China, India and Australia. Climatic Change 150(1-2):89–101

Kumar S (2016) CO2 emission reduction potential assessment using renewable energy in India. Energy 97:273–282

Charles Rajesh Kumar. J, Mary Arunsi. B, Jenova. R, M.A.Majid (2019) Sustainable waste management through waste to energy technologies in India—opportunities and environmental impacts .International journal of renewable energy research 9(1): 309-342.

National Institution for Transforming India(2015), Government of India, Report of the Expert group on 175 GW RE by 2022,Available at http://niti.gov.in/writereaddata/files/writereaddata/files/document_publication/report-175-GW-RE.pdf.Accessed 31 Dec 2016.

Sholapurkar RB, Mahajan YS (2015) Review of wind energy development and policy in India. Energy Technology & Policy 2:122–132

India Energy scenarios 2047 (2015), ISGF for planning commission. Available at http://www.indiaenvironmentportal.org.in/files/file/ISGF_IES%202047%20Documentation.pdf.Accessed 01 Jan 2017].

Harrison T, Kostka G (2014) Balancing priorities, aligning interests: developing mitigation capacity in China and India. Comparative Political Studies 47:450-480

Akash KumarShukl (2017) Renewable energy resources in South Asian countries: challenges, policy and recommendations.Resource-Efficient Technologies 3: 342-346.

Schmid G (2012) The development of renewable energy power in India: which policies have been effective? Energy Policy 45:317–326

Vikas Khare, SavitaNema,PrashantBareda (2013) Status of solar wind renewable energy in India, Renewable and Sustainable Energy Reviews. 27: 1-10

Singh R (2015) India's renewable energy targets: How to overcome a $200 billion funding gap. Renewable Energy Focus. 16(4):60–61

T.Blenkinsopp, S.RColes ,K.Kirwan (2013) Renewable energy for rural communities in Maharashtra, India, Energy Policy .60:192-199

Kandp TC, Garg HP (1998) Renewable energy education for technicians/mechanics. Renewable Energy . (14(1–4):393–400

Subhes C,Bhattacharyya , Shaping a sustainable energy future for India: management challenges, Energy Policy .38(8):4173-4185

Swaran Singh, BoparaiK.C.Secretary, India and renewable energy: a future challenge, Renewable Energy . 15(1–4 ): 16-21.

Rehman S, Hussain Z (2017) Renewable energy governance in India: challenges and prospects for achieving the 2022 energy goals Journal of Resources, Energy and Development . 14(1):13–22

K Kaygusuz, S. BilgenEnergy related environmental policies in Turkey Energy Sources Part B, 3 (2008), pp. 396-410.

Y Chang, J Lee, H. Yoon Alternative projection of the world energy consumption-in comparison with the 2010 international energy outlook Energy Policy, 50 (2010), pp. 154-160.

Wang W (2014) M Zhang. P. Li Exploring temporal and spatial evolution of global energy production and consumption Renew Sustain Energy Rev 30:943–949

Google Scholar  

BP Energy Outlook country and regional insights-India (2018) https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2018-country-insight-india.pdf.Accessed 30 Jun 2018.

EIA Energy outlook 2019 with projections to 2050 (2019), Available at https://www.eia.gov/outlooks/aeo/pdf/aeo2019.pdf . .

International energy outlook 2018 (IEO2018), EIA Energy outlook 2018(2018), Available at https://www.eia.gov/pressroom/presentations/capuano_07242018.pdf .Accessed 30.07.2018.

World meters (2019).Available at http://www.worldometers.info/world-population/india-population.Accessed 24 Jan 2019.

Inaki Arto (2016) The energy requirements of a developed world", Energy for Sustainable Development.33: 1-13.

Power sector at a glance all India (2019), Ministry of Power, Government of India. Available at https://powermin.nic.in/en/content/power-sector-glance-all-india.Accessed 31 Oct 2018

VikasKhare (2013) Status of solar wind renewable energy in India Renewable and Sustainable Energy Reviews.27:1-10.

REMAP, renewable energy prospects for India (2017), The International renewable energy agency (IRENA). Available at https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/May/IRENA_REmap_India_paper_2017.pdf.Accessed 23 Aug 2017.

Draft national electricity plan, Volume 1, Generation, Central Electricity Authority (CEA), Ministry of Power, GOI Report 2016. http://www.cea.nic.in/reports/committee/nep/nep_dec.pdf .Accessed 26.06.2017.

BSK Naidu,Indian scenario of renewable energy for sustainable development, Energy policy ,Vol 24 ,N0 6,pp 575-581,1996.

Ashwani Kumar,Kapil Kumar, Naresh Kaushik, Satyawati Sharma,Saroj Mishra, Renewable energy in India:Current status and future potentials,Journal of renewable and sustainable energy reviews,14(2010),2434-2442

Bandyopadhyay S (2017) Renewable targets for India. Clean Technologies and Environmental Policy 19(2):293–294

Ministry of New and Renewable Energy (2017),Annual report 2016-17,Available at http://mnre.gov.in/file-manager/annual-report/2016-2017/EN/pdf/1.pdf.Accessed 31 April 2017.

Nimish Kumar, Nitai Pal, The existence of barriers and proposed recommendations for the development of renewable energy in Indian perspective, Environment, Development and Sustainability ,pp1-19.2018.

Yearend review (2017), Government of India, Ministry of New and Renewable Energy. Available at https://mnre.gov.in/file-manager/akshay-urja/april-2018/Images/44-45.pdf.Accessed 27 Jan 2018.

Central Electricity authority of India (2018), Government of India. Available at http://www.cea.nic.in/reports/monthly/executivesummary/2018/exe_summary-12.pdf.Accessed 31 Jan 2018.

The growth of Electricity sector in India from 1947-2017(2017), Central Electricity Authority of India, Government of India. Available at http://www.cea.nic.in/reports/others/planning/pdm/growth_2017.pdf . Accessed 31 June 2017.

Renewable energy, Indian brand equity foundation (2018). Available at https://www.ibef.org/download/renewable-energy-dec-2018.pdf.Accessed 05 Jan 2019.

Prayas energy group (2018) .Available at http://www.prayaspune.org/peg/re-capacity.html.Accessed 31 June 2018.

Subhojit Dawn, Prashant Kumar Tiwari, Arup Kumar Goswami, Ankit Kumar, Singh Rajesh Panda (2019) Wind power: Existing status, achievements and government's initiative towards renewable power dominating India Energy Strategy Reviews.23:178-199.

Generation monthly reports, Central electricity Authority of India (2018) Available at http://www.cea.nic.in/reports/monthly/renewable/2018/overview-11.pdf . .

Ian Partridge (2013) Renewable electricity generation in India—a learning rate analysis Energy Policy.60:906:915.

J. Jeslin Drusila Nesamalar, P. Venkatesh, S. Charles Raja (2017) The drive of renewable energy in Tamilnadu: Status, barriers and future prospect Renewable and Sustainable Energy Reviews.73:115-124.

A Report on Energy Efficiency and Energy Mix in the Indian Energy System (2030) Using India Energy Security Scenarios 2047 (2017), Available at http://niti.gov.in/writereaddata/files/document_publication/Energy_Efficiency.pdf.Accessed 06 April 2017.

Initiatives and achievements, MNRE (2018).Available at https://mnre.gov.in/sites/default/files/uploads/MNRE-4-Year-Achievement-Booklet.pdf . .

Acheievements of ministry of new and renewable energy during 2018. (2019).Available at https://pibindia.wordpress.com/2018/12/11/achievements-of-ministry-of-new-renewable-energy-during-2018/.Accessed 09 Jan 2019.

Standing committee on energy (2017-18), sixteenth lok sabha, MNRE, demands for grands (2018-19), 39th (2018). Available at http://164.100.47.193/lsscommittee/Energy/16_Energy_39.pdf . .

Mukesh KumarMishra, NilayKhare,Alka BaniAgrawa (2015) Small hydro power in India: Current status and future perspectives Renewable and Sustainable Energy Reviews .51:101-115.

Tara Chandra Kandpal, Bharati Joshi , Chandra ShekharSinha (1991) Economics of family sized biogas plants in India Energy Conversion and Management .32:101-113.

Sravanthi Choragudi (2013) Off-grid solar lighting systems: a way align India's sustainable and inclusive development goals Renewable and Sustainable Energy Reviews .28:890-899.

Abhigyan Singh,Alex T.Stratin,N.A.Romero Herrera,Debotosh Mahato,David V.Keyson,Hylke W.van Dijk (2018) Exploring peer-to-peer returns in off-grid renewable energy systems in rural India: an anthropological perspective on local energy sharing and trading Energy Research & Social Science .46:194-213.

Draft Technology Development and Innovation Policy (TDIP) for New &Renewable Energy, MNRE (2017). Available at https://mnre.gov.in/file-manager/UserFiles/Draft-TDIP_RE.pdf .Accessed 31 Jan 2018.

Demands for grants (2018-19), MNRE, Standing committee on energy, 16 th lok sabha, 39th Report (2018). Available at http://164.100.47.193/lsscommittee/Energy/16_Energy_39.pdf.Accessed 31 Oct 2018.

Mohit Goyal (2010) Repowering—next big thing in India Renewable and Sustainable Energy Reviews.1 4(5):1400-1409.

B.N.Prashanth,R.Pramod,G.B. VeereshKumar (2018) Design and development of hybrid wind and solar energy system for power generation. 5(5):11415-11422.

Swaminathan mani,Tarun Dhingra (2013) Policies to accelerate the growth of offshore wind energy sector in India Renewable and Sustainable Energy Reviews . 24 : 473-482

Draft amendments to tariff policy, MNRE (2018). Available at https://powermin.nic.in/sites/default/files/webform/notices/Proposed_amendments_in_Tariff_Policy_0.pdf . .

T.C.Kandpal, H.P.Garg (1998) Renewable energy education for technicians/mechanics Renewable Energy . Volume 14(1–4 ): 393-400.

T.Blenkinsopp, S.RColes K.Kirwan (2013) Renewable energy for rural communities in Maharashtra, India Energy policy.60:192-199.

Renewable Energy Country Attractiveness Index (RECAI) (2018), Available at https://www.ey.com/Publication/vwLUAssets/ey-recai-issue-52-index-scores/$File/ey-recai-issue-52-index-scores.pdf . .

Renewables 2018, global status report, Renewable energy policy network for the 21 st century (REN21) (2018). Available at http://www.ren21.net/wp-content/uploads/2018/06/17-8652_GSR2018_FullReport_web_final_.pdf . .

Clean Energy Investment trends, 2Q 2018, BloombergNEF (2018) .Available at https://data.bloomberglp.com/bnef/sites/14/2018/07/BNEF-Clean-Energy-Investment-Trends-1H-2018.pdf .Accessed 12 Dec 2018.

Rolf Wüstenhagen, Emanuela Menichetti (2012) Strategic choices for renewable energy investment: conceptual framework and opportunities for further research Energy Policy.40:1-10.

Longayanxia dam solar park, earth observatory (NASA) (2017). Available at https://earthobservatory.nasa.gov/images/89668/longyangxia-dam-solar-park . .

Dawn, Subhojit Dawn, Prashant Kumar Tiwari,Arup Kumar Goswami, Manash Kumar Mishra. (2016).Recent developments of solar energy in India: perspectives, strategies and future goals. Renewable and Sustainable Energy Reviews.62:215-235.

Press information Bureau, MNRE FDI in renewable energy sector (2018). Available at http://pib.nic.in/newsite/PrintRelease.aspx?relid=186849.Accessed 01 Feb 2019.

Renewable energy, India brand equity foundation, Report August 2018. https://www.ibef.org/download/Renewable-Energy-Report-August-2018.pdf . Accessed 31.12.2018.

Global trends in renewable energy investment 2018, Bloomberg new energy (2018).Available at http://www.iberglobal.com/files/2018/renewable_trends.pdf . .

Deep dive –Allianz climate and energy monitor (2017).Available at https://newclimate.org/wp-content/uploads/2017/04/allianz-climate-and-energy-monitor-deep-dive-2017.pdf . .

Allianz climate and energy monitor (2018), Available at https://www.allianz.com/content/dam/onemarketing/azcom/Allianz_com/sustainability/documents/Allianz_Climate_and_Energy_Monitor_2018.pdf . .

Renewable energy and Jobs –Annual review 2018 (2018). Available at https://irena.org/-/media/Files/IRENA/Agency/Publication/2018/May/IRENA_RE_Jobs_Annual_Review_2018.pdf .Accessed Jan 2019.

A. Bergmann, N. Hanley, R. Wright Valuing the attributes of renewable energy investments .Energy Policy, 34 (9) (2006), pp. 1004-1014

József Benedek, Tihamér-Tibor Sebestyén, BlankaBartók (2018) Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development Renewable and Sustainable Energy Reviews . 90 :516-535.

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by the Research Consultancy Institute (RCI) and the department of Electrical and Computer Engineering of Effat University, Saudi Arabia.

Author information

Authors and affiliations.

Department of Electrical and Computer Engineering, College of Engineering, Effat University, Box 34689, Jeddah, PO, 21478, Saudi Arabia

Charles Rajesh Kumar. J & M. A. Majid

You can also search for this author in PubMed   Google Scholar

Contributions

CRK conceptualized the research, undertook fieldwork, analyzed the data, and wrote the manuscript. MAM conceptualized the research, wrote the manuscript, and supervised the research. Both authors have read and approved the final manuscript.

Corresponding author

Correspondence to Charles Rajesh Kumar. J .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declared that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Kumar. J, C.R., Majid, M.A. Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities. Energ Sustain Soc 10 , 2 (2020). https://doi.org/10.1186/s13705-019-0232-1

Download citation

Received : 15 September 2018

Accepted : 27 November 2019

Published : 07 January 2020

DOI : https://doi.org/10.1186/s13705-019-0232-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Sustainable
  • Renewable energy
  • Achievements
  • Initiatives
  • Recommendations
  • Policymakers

Energy, Sustainability and Society

ISSN: 2192-0567

essay on renewable energy upsc

Renewable Energy - Pros and Cons_1.1

Renewable Energy – Pros and Cons

According to the International Energy Agency (IEA), Renewable electricity is growing at a faster rate in India than any other major economy, with new capacity additions on track to double by 2026.

Renewable Energy - Pros and Cons

Table of Contents

Context: According to the International Energy Agency (IEA), Renewable electricity is growing at a faster rate in India than any other major economy, with new capacity additions on track to double by 2026.

About Renewable Energy

  • Renewable energy refers to energy sources that are naturally replenished and have a significantly lower impact on the environment compared to fossil fuels.
  • The most popular renewable energy sources currently are: Solar energy, Wind energy, Hydro energy, Tidal energy, Geothermal energy, Biomass energy.
  • When it comes to nuclear energy , the energy produced by nuclear power plants is considered renewable, but the fuel required for nuclear reactions is not renewable. Additionally, nuclear energy production does not release greenhouse gases, making it a low-carbon energy source.

India’s Renewable Energy Landscape

  • As of May 2023, India’s installed renewable energy (RE) capacity, including nuclear power, stands at 197 GW, which accounts for 43% of the total installed energy capacity.
  • India stands 4th globally in Renewable Energy Installed Capacity , 4th in Wind Power capacity & 4th in Solar Power capacity (as per REN21 Renewables 2022 Global Status Report).
  • Reach  500 GW Non-fossil energy capacity by 2030.
  • 50 per cent of its energy requirements from renewable energy by 2030.
  • Reduction of total projected carbon emissions by one billion tonnes from now to 2030.
  • Reduction of the carbon intensity of the economy by 45 per cent by 2030, over 2005 levels.
  • Achieving the target of net zero emissions by 2070.

Pros and Cons of Renewable Energies & India’s Potential and Efforts

Sharing is caring!

UPSC CDS Question Paper 2024, Get Download PDF of All Set

Leave a comment

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

P2I Hinglish

  • UPSC Online Coaching
  • UPSC Exam 2024
  • UPSC Syllabus 2024
  • UPSC Prelims Syllabus 2024
  • UPSC Mains Syllabus 2024
  • UPSC Exam Pattern 2024
  • UPSC Age Limit 2024
  • UPSC Calendar 2024
  • UPSC Syllabus in Hindi
  • UPSC Full Form

PSIR Batch

Recent Posts

  • UPPSC Exam 2024
  • UPPSC Calendar
  • UPPSC Syllabus 2024
  • UPPSC Exam Pattern 2024
  • UPPSC Application Form 2024
  • UPPSC Eligibility Criteria 2024
  • UPPSC Admit card 2024
  • UPPSC Salary And Posts
  • UPPSC Cut Off
  • UPPSC Previous Year Paper

BPSC Exam 2024

  • BPSC 70th Notification
  • BPSC 69th Exam Analysis
  • BPSC Admit Card
  • BPSC Syllabus
  • BPSC Exam Pattern
  • BPSC Cut Off
  • BPSC Question Papers

IB ACIO Exam

  • IB ACIO Salary
  • IB ACIO Syllabus

CSIR SO ASO Exam

  • CSIR SO ASO Exam 2024
  • CSIR SO ASO Result 2024
  • CSIR SO ASO Exam Date
  • CSIR SO ASO Question Paper
  • CSIR SO ASO Answer key 2024
  • CSIR SO ASO Exam Date 2024
  • CSIR SO ASO Syllabus 2024

Study Material Categories

  • Daily The Hindu Analysis
  • Daily Practice Quiz for Prelims
  • Daily Answer Writing
  • Daily Current Affairs
  • Indian Polity
  • Environment and Ecology
  • Art and Culture
  • General Knowledge
  • Biographies

IMPORTANT EXAMS

youtube

  • Terms & Conditions
  • Return & Refund Policy
  • Privacy Policy

We've detected unusual activity from your computer network

To continue, please click the box below to let us know you're not a robot.

Why did this happen?

Please make sure your browser supports JavaScript and cookies and that you are not blocking them from loading. For more information you can review our Terms of Service and Cookie Policy .

For inquiries related to this message please contact our support team and provide the reference ID below.

essay on renewable energy upsc

Call us @ 08069405205

essay on renewable energy upsc

Search Here

essay on renewable energy upsc

  • An Introduction to the CSE Exam
  • Personality Test
  • Annual Calendar by UPSC-2024
  • Common Myths about the Exam
  • About Insights IAS
  • Our Mission, Vision & Values
  • Director's Desk
  • Meet Our Team
  • Our Branches
  • Careers at Insights IAS
  • Daily Current Affairs+PIB Summary
  • Insights into Editorials
  • Insta Revision Modules for Prelims
  • Current Affairs Quiz
  • Static Quiz
  • Current Affairs RTM
  • Insta-DART(CSAT)
  • Insta 75 Days Revision Tests for Prelims 2024
  • Secure (Mains Answer writing)
  • Secure Synopsis
  • Ethics Case Studies
  • Insta Ethics
  • Weekly Essay Challenge
  • Insta Revision Modules-Mains
  • Insta 75 Days Revision Tests for Mains
  • Secure (Archive)
  • Anthropology
  • Law Optional
  • Kannada Literature
  • Public Administration
  • English Literature
  • Medical Science
  • Mathematics
  • Commerce & Accountancy
  • Monthly Magazine: CURRENT AFFAIRS 30
  • Content for Mains Enrichment (CME)
  • InstaMaps: Important Places in News
  • Weekly CA Magazine
  • The PRIME Magazine
  • Insta Revision Modules-Prelims
  • Insta-DART(CSAT) Quiz
  • Insta 75 days Revision Tests for Prelims 2022
  • Insights SECURE(Mains Answer Writing)
  • Interview Transcripts
  • Previous Years' Question Papers-Prelims
  • Answer Keys for Prelims PYQs
  • Solve Prelims PYQs
  • Previous Years' Question Papers-Mains
  • UPSC CSE Syllabus
  • Toppers from Insights IAS
  • Testimonials
  • Felicitation
  • UPSC Results
  • Indian Heritage & Culture
  • Ancient Indian History
  • Medieval Indian History
  • Modern Indian History
  • World History
  • World Geography
  • Indian Geography
  • Indian Society
  • Social Justice
  • International Relations
  • Agriculture
  • Environment & Ecology
  • Disaster Management
  • Science & Technology
  • Security Issues
  • Ethics, Integrity and Aptitude

InstaCourses

  • Indian Heritage & Culture
  • Enivornment & Ecology

Print Friendly, PDF & Email

EDITORIAL ANALYSIS : Disentangling the 2030 global renewable energy target

Source: The Hindu

  • Prelims: Current events of international importance, renewable energy, solar cook-stove, G20, GCF etc
  • Mains GS Paper III: Conservation, environmental pollution and degradation, environmental impact assessment etc

ARTICLE HIGHLIGHTS

  • The presidency of the 28th Conference of Parties (COP28) of the United Nations Framework Convention on Climate Change (UNFCCC), to be held in Dubai
  • It has called for agreement on a global target of tripling renewable energy capacity from current levels by 2030

INSIGHTS ON THE ISSUE

Renewable energy:

  • They are natural and self-replenishing, and usually have a low- or zero-carbon footprint.
  • Solar power
  • Bioenergy (organic matter burned as a fuel)
  • Hydroelectric including tidal energy.

Renewable energy current status:

  • In total electricity generation the contribution by RES was only 28%.
  • It a ccounted for about 36% of RE generation, that is 10% of generation from all sources.

Target of Tripling RE capacity by 2030:

  • Adding about 6000 GW of RE capacity between 2022 and 2030.
  • Most of this capacity is expected to come from solar and wind
  • Capacity utilization factor of 25% for solar and wind combined: It implies the generation of about 13,000 TWh of electricity from RES
  • If growth in global electricity demand is at the pre-COVID-19 decade average of 2.6%: The target of tripling RE capacity implies 38% of total global electricity production from RES.

Regionally differentiated energy needs:

  • Electricity demand across countries is highly differentiated
  • The rates of growth vary for countries at different stages of development.
  • A 3(zero point three)% decline in the European Union (EU) and a minimal 0.12(zero point one two)% g rowth in the United States.
  • Any substantial RE addition in the EU and the U.S. must come from an accelerated phaseout of their fossil fuel use by 2030.
  • US and EU: Only 21% of the electricity in the U.S. and 37% in the EU comes from RES (including hydro and biomass).

How different countries will fulfill Energy demands?

  • It will need only about 26 GW of new RE capacity to meet additional demand,
  • Its share of the tripling target of an additional 6000 GW by 2030, would be only a measly 4(zero point four)%.
  • Its share of the tripling target would be 12%.
  • If all the fossil fuel-based electricity production of the U.S. and the EU is phased out: They would need to add about 1565 GW and 538 GW o f additional RE capacity, respectively
  • It will allow developing countries a less onerous transition in the energy sector.

International Renewable Energy Agency (IRENA) report:

  • It calls for “total renewable power capacity to more than triple by 2030 , compared to 2022 levels, to over 11 TW globally”.
  • IRENA’s scenario, underlying the proposed COP28 target , is very close to the first, highly inequitable scenario.
  • IRENA report: Most of the non-RE capacity to be added by 2030 is in developing regions.
  • By 2030, 80% of power generation capacity in Sub-Saharan Africa is to be from RE sources, as compared to only 70% for the EU.
  • The non-RE capacity in the EU continues to be more than four times that of Sub-Saharan Africa.
  • India : India needs to exceed even the very ambitious 500 GW mark by 2030.

Issues with the report:

  • Equity : Lack of equity apart
  • Such absolute projections of installed capacity suffer from the fundamental problem of divorcing capacity addition from growth in energy demand.
  • IRENA itself recognises that relative target s are inherently less risky as they are less dependent on demand growth matching expectations.
  • The entire burden is on developing countries.
  • The availability of viable storage options that are as yet nowhere near the scale envisaged by such ambitious targets.
  • It will pose additional challenges, given the inability to reach even the minimal annual target of $ 100 billion of climate finance covering all sectors.

essay on renewable energy upsc

Way Forward

  • S. President made no such promise or declared any renewable energy target.
  • Apart from a general announcement (not committed under the Paris Agreement) to decarbonise the energy sector by 2035.
  • The EU too has only a relative target, though an ambitious sounding goal of 40% of final energy consumption from renewable sources by 2030, but certainly not absolute.
  • For both the U.S. and the EU: The targets are essentially market signals, which the governments will promote, but are not guaranteed by government intervention as in the developing countries.
  • that are equitable and commensurate w ith their responsibility
  • An update of their Nationally Determined Contributions under the Paris Agreement.

QUESTION FOR PRACTICE

Explain the purpose of the Green Grid Initiative launched at the World Leaders Summit of the COP26 UN Climate Change Conference in Glasgow in November, 2021. When was this idea first floated in the International Solar Alliance (ISA)?(UPSC 2021) (200 WORDS, 10 MARKS)

Left Menu Icon

  • Our Mission, Vision & Values
  • Director’s Desk
  • Commerce & Accountancy
  • Previous Years’ Question Papers-Prelims
  • Previous Years’ Question Papers-Mains
  • Environment & Ecology
  • Science & Technology

IMAGES

  1. ≫ My Interest to Renewable Energy Free Essay Sample on Samploon.com

    essay on renewable energy upsc

  2. Essay on Renewable Energy

    essay on renewable energy upsc

  3. 📗 Benefits of Renewable Energy on the Environment Essay

    essay on renewable energy upsc

  4. 😂 Renewable energy essay introduction. Research Paper on Renewable Energy Essay Example for Free

    essay on renewable energy upsc

  5. 001 Essay Example Renewable Energy ~ Thatsnotus

    essay on renewable energy upsc

  6. Essay On Renewable Energy

    essay on renewable energy upsc

VIDEO

  1. 10 Lines on Renewable Energy in English || Essay on Renewable Energy || Learning Path ||

  2. O/L 2021

  3. Renewable Energy: Topic ideas, Grammar, Vocabulary and Sample Answers

  4. essay on alternative sources of energy || Alternative Energy Essay writing in English ||#cleanenergy

  5. CHAPTER 6 (RENEWABLE ENERGY) OF (SHANKAR IAS ON ENVIRONMEMENT) FOR UPSC

  6. Why Solar Energy is the Future?

COMMENTS

  1. India's Green-Energy Transition

    Efforts Towards Green Energy Transition: In 2019 India announced that it would take up its installed capacity of renewable energy to 450 GW by 2030. The Production Linked Incentive Scheme (PLI) scheme is another initiative of the Government of India with respect to enhancing the manufacturing sector for the production of raw materials for ...

  2. Towards Green Energy Transition

    ensuring a green energy transition. A holistic view which examines a range of solutions that complement each other and identifies key elements, including technology development, manufacturing, storage, power generation and distribution will be very effective. RE as a Responsible Energy: RE shouldn't stand merely for renewable energy but also ...

  3. Renewable Energy in India

    The examples of renewable energy sources include solar energy, wind energy, tidal energy, etc. These sources, if used to produce energy, can reduce the amount of carbon emitted into the atmosphere. Renewable energy is often used in the following areas: Electricity generation. Heating/cooling of air and water. Transportation.

  4. India's Achievements of Renewable Energy Target

    The country's installed Renewable Energy (RE) capacity stands at 150.54 GW (solar: 48.55 GW, wind: 40.03 GW, Small hydro Power: 4.83, Bio-power: 10.62, Large Hydro: 46.51 GW) as on 30th Nov. 2021 while its nuclear energy based installed electricity capacity stands at 6.78 GW. India has the 4th largest wind power capacity in the world.

  5. Solar Energy: Potential of India

    India's potential in building sustainable solar energy capacity. India is endowed with vast solar energy potential. About 5,000 trillion kWh per year of energy is incident over India's land area with most parts receiving 4-7 kWh per sq. m per day. Solar photovoltaic power can effectively be harnessed providing huge scalability in India.

  6. Insights Ias

    4. What are the various bottlenecks to an energy secure India? How can the government ensure successful energy transition towards renewable sources? (250 words) Difficulty level: Moderate. Reference: The Hindu. Why the question: The article discusses the actions in India's energy transition. Key Demand of the question:

  7. Green Growth: India's strategy for Green Economy

    The scheme was launched in 2019 with 3 components: Component-A: For Setting up 10,000 MW of Decentralized Grid Connected Renewable Energy Power Plants on barren land. Component-B: For Installation of 17.50 Lakh stand-alone solar agriculture pumps. Component-C: For Solarisation of 10 Lakh Grid Connected Agriculture Pumps.

  8. India's Renewable Energy

    39% of India's installed capacity is from non-fossil based sources. By 2022 India will reach its target of 40%. India surpassed the 100 GW milestone (excluding large hydro) in 2021. India has only tapped a fraction of the vast potential for renewable energy and, therefore, India has raised the target to 450 GW RE installed capacity by 2030.

  9. Renewable energy in India

    India is now in the 4th global position for overall installed renewable energy capacity. Renewable energy has a share of 26.53% of the total installed generation capacity in the country. Renewable energy installed capacity increased 286% in the last 7.5 years. H ighest ever wind capacity addition of 5.5GW in 2016-2017.

  10. Renewable Energy Generation Problems and Challenges in India

    Since 2019, the annual renewable energy auctions in India have seen a decline of 30%. Import duties and other barriers, such as the requirement for domestic sourcing of solar panels, pose significant challenges. Taxes have also impacted capital costs. For example, module prices have increased by 10-15% compared to the previous financial year ...

  11. India's Effective Approach to Renewable Energy and Sustainable

    The mission set a target of installing 20,000 megawatts (MW) of grid-connected solar power capacity by 2022. However, this target was achieved four years ahead of schedule, leading to an increased commitment to solar energy. Solar Power Capacity Expansion: India has witnessed significant growth in solar power capacity over the years.

  12. India's Solar Power Dream

    India has been aggressively pushing towards a more sustainable future by investing heavily in renewable energy sources, with solar energy at the forefront of its efforts. The Government of India has set the target to expand India's renewable energy installed capacity to 500 GW by 2030. India has promised to source nearly half its energy from non-fossil fuel sources by 2030 and, in the ...

  13. National Hydrogen Mission (NHM)

    National Hydrogen Mission aims to cut down carbon emissions and increase the use of renewable sources of energy while aligning India's efforts with global best practices in technology, policy, and regulation. The Government of India has allotted Rs 25 crore in the Union Budget 2021-22 for the research and development in hydrogen energy and ...

  14. World Energy Outlook

    The World Energy Outlook 2023 was released by the International Energy Agency (IEA) recently. It provides in-depth analysis and strategic insights into every aspect of the global energy system. Against a backdrop of geopolitical tensions and fragile energy markets, this year's report explores how structural shifts in economies and energy use ...

  15. Insights Ias

    The Prime Minister noted that India's renewable power capacity is the fourth largest in the world and is growing at the fastest speed among all major countries. The renewable energy capacity in India is currently 136 Giga Watts, which is about 36 per cent of its total capacity. The summit is organised by the Ministry of New and Renewable Energy.

  16. Renewable energy for sustainable development in India: current status

    The primary objective for deploying renewable energy in India is to advance economic development, improve energy security, improve access to energy, and mitigate climate change. Sustainable development is possible by use of sustainable energy and by ensuring access to affordable, reliable, sustainable, and modern energy for citizens. Strong government support and the increasingly opportune ...

  17. Complete overview of renewable energy and its types

    It is the source of energy derived from renewable resources. Renewable sources like sunlight, wind, rain, tide, waves and thermal heat produce energy. This type of energy is also termed clean energy, generated from natural resources. It is virtually inexhaustible. While some sources of renewable energy are replenishable, others are not.

  18. Renewable energy and India's economic growth

    MINDMAPS, Today's Article MINDMAP, MINDMAP - Renewable energy and India's economic growth. [MISSION 2022] INSIGHTS CURRENT AFFAIRS (17 May 2022 ) REVISION THROUGH MCQS. DAY - 57 (InstaTest-57): Insta 75 Days Revision Plan-2022: Topic - SCIENCE & TECHNOLOGY, PREVIOUS YEAR UPSC PAPER 2004, November 2021 CA.

  19. Net-Zero Emissions Target

    India's renewable energy targets have steadily become more ambitious, from 175 GW by 2022 declared at Paris, to 450 GW by 2030 at the UN Climate Summit, and now 500 GW by 2030, announced at COP26. India has also announced the target of 50% installed power generation capacity from non-fossil energy sources by 2030, raising the existing target ...

  20. Renewable Energy

    Context: According to the International Energy Agency (IEA), Renewable electricity is growing at a faster rate in India than any other major economy, with new capacity additions on track to double by 2026. About Renewable Energy. Renewable energy refers to energy sources that are naturally replenished and have a significantly lower impact on the environment compared to fossil fuels.

  21. Biofuels and Global Biofuels Alliance

    As the world looks towards renewable energy sources to combat climate change, biofuels have emerged as a potential solution.Recently concluded G20 summit at New Delhi saw formation of Global Biofuels Alliance which is an India-led initiative. It aims to develop an alliance of governments, international organizations, and industry to promote the adoption of biofuels.

  22. Non-conventional resources

    India's non-conventional energy potential is estimated to be about 1,95,000 MW; of which an estimate of 31% comes from sun, 30% from oceans, 26% from biofuel and 13% from wind. The Union Ministry of New and Renewable Energy announced in 2021 that the country has achieved the milestone of installing 100 gigawatts (GW) of renewable energy capacity.

  23. Modi Promised Less Coal, More Green Energy for India. That's Not Quite

    Built along a stretch of salt flats in southern India, the Tuticorin power plant epitomizes a quagmire for the world's fastest-growing major economy: how to provide reliable energy to 1.4 ...

  24. Insights Ias

    Way Forward. When the Prime Minister announced at COP26 that India would increase its ambition to 500GW from non-fossil fuel sources by 2030 . S. President made no such promise or declared any renewable energy target. Apart from a general announcement (not committed under the Paris Agreement) to decarbonise the energy sector by 2035.; The EU too has only a relative target, though an ambitious ...