• Research article
  • Open access
  • Published: 16 November 2020

Exercise/physical activity and health outcomes: an overview of Cochrane systematic reviews

  • Pawel Posadzki 1 , 2 ,
  • Dawid Pieper   ORCID: orcid.org/0000-0002-0715-5182 3 ,
  • Ram Bajpai 4 ,
  • Hubert Makaruk 5 ,
  • Nadja Könsgen 3 ,
  • Annika Lena Neuhaus 3 &
  • Monika Semwal 6  

BMC Public Health volume  20 , Article number:  1724 ( 2020 ) Cite this article

33k Accesses

140 Citations

131 Altmetric

Metrics details

Sedentary lifestyle is a major risk factor for noncommunicable diseases such as cardiovascular diseases, cancer and diabetes. It has been estimated that approximately 3.2 million deaths each year are attributable to insufficient levels of physical activity. We evaluated the available evidence from Cochrane systematic reviews (CSRs) on the effectiveness of exercise/physical activity for various health outcomes.

Overview and meta-analysis. The Cochrane Library was searched from 01.01.2000 to issue 1, 2019. No language restrictions were imposed. Only CSRs of randomised controlled trials (RCTs) were included. Both healthy individuals, those at risk of a disease, and medically compromised patients of any age and gender were eligible. We evaluated any type of exercise or physical activity interventions; against any types of controls; and measuring any type of health-related outcome measures. The AMSTAR-2 tool for assessing the methodological quality of the included studies was utilised.

Hundred and fifty CSRs met the inclusion criteria. There were 54 different conditions. Majority of CSRs were of high methodological quality. Hundred and thirty CSRs employed meta-analytic techniques and 20 did not. Limitations for studies were the most common reasons for downgrading the quality of the evidence. Based on 10 CSRs and 187 RCTs with 27,671 participants, there was a 13% reduction in mortality rates risk ratio (RR) 0.87 [95% confidence intervals (CI) 0.78 to 0.96]; I 2  = 26.6%, [prediction interval (PI) 0.70, 1.07], median effect size (MES) = 0.93 [interquartile range (IQR) 0.81, 1.00]. Data from 15 CSRs and 408 RCTs with 32,984 participants showed a small improvement in quality of life (QOL) standardised mean difference (SMD) 0.18 [95% CI 0.08, 0.28]; I 2  = 74.3%; PI -0.18, 0.53], MES = 0.20 [IQR 0.07, 0.39]. Subgroup analyses by the type of condition showed that the magnitude of effect size was the largest among patients with mental health conditions.

There is a plethora of CSRs evaluating the effectiveness of physical activity/exercise. The evidence suggests that physical activity/exercise reduces mortality rates and improves QOL with minimal or no safety concerns.

Trial registration

Registered in PROSPERO ( CRD42019120295 ) on 10th January 2019.

Peer Review reports

The World Health Organization (WHO) defines physical activity “as any bodily movement produced by skeletal muscles that requires energy expenditure” [ 1 ]. Therefore, physical activity is not only limited to sports but also includes walking, running, swimming, gymnastics, dance, ball games, and martial arts, for example. In the last years, several organizations have published or updated their guidelines on physical activity. For example, the Physical Activity Guidelines for Americans, 2nd edition, provides information and guidance on the types and amounts of physical activity that provide substantial health benefits [ 2 ]. The evidence about the health benefits of regular physical activity is well established and so are the risks of sedentary behaviour [ 2 ]. Exercise is dose dependent, meaning that people who achieve cumulative levels several times higher than the current recommended minimum level have a significant reduction in the risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events [ 3 ]. Benefits of physical activity have been reported for numerous outcomes such as mortality [ 4 , 5 ], cognitive and physical decline [ 5 , 6 , 7 ], glycaemic control [ 8 , 9 ], pain and disability [ 10 , 11 ], muscle and bone strength [ 12 ], depressive symptoms [ 13 ], and functional mobility and well-being [ 14 , 15 ]. Overall benefits of exercise apply to all bodily systems including immunological [ 16 ], musculoskeletal [ 17 ], respiratory [ 18 ], and hormonal [ 19 ]. Specifically for the cardiovascular system, exercise increases fatty acid oxidation, cardiac output, vascular smooth muscle relaxation, endothelial nitric oxide synthase expression and nitric oxide availability, improves plasma lipid profiles [ 15 ] while at the same time reducing resting heart rate and blood pressure, aortic valve calcification, and vascular resistance [ 20 ].

However, the degree of all the above-highlighted benefits vary considerably depending on individual fitness levels, types of populations, age groups and the intensity of different physical activities/exercises [ 21 ]. The majority of guidelines in different countries recommend a goal of 150 min/week of moderate-intensity aerobic physical activity (or equivalent of 75 min of vigorous-intensity) [ 22 ] with differences for cardiovascular disease [ 23 ] or obesity prevention [ 24 ] or age groups [ 25 ].

There is a plethora of systematic reviews published by the Cochrane Library critically evaluating the effectiveness of physical activity/exercise for various health outcomes. Cochrane systematic reviews (CSRs) are known to be a source of high-quality evidence. Thus, it is not only timely but relevant to evaluate the current knowledge, and determine the quality of the evidence-base, and the magnitude of the effect sizes given the negative lifestyle changes and rising physical inactivity-related burden of diseases. This overview will identify the breadth and scope to which CSRs have appraised the evidence for exercise on health outcomes; and this will help in directing future guidelines and identifying current gaps in the literature.

The objectives of this research were to a. answer the following research questions: in children, adolescents and adults (both healthy and medically compromised) what are the effects (and adverse effects) of exercise/physical activity in improving various health outcomes (e.g., pain, function, quality of life) reported in CSRs; b. estimate the magnitude of the effects by pooling the results quantitatively; c. evaluate the strength and quality of the existing evidence; and d. create recommendations for future researchers, patients, and clinicians.

Our overview was registered with PROSPERO (CRD42019120295) on 10th January 2019. The Cochrane Handbook for Systematic Reviews of interventions and Preferred Reporting Items for Overviews of Reviews were adhered to while writing and reporting this overview [ 26 , 27 ].

Search strategy and selection criteria

We followed the practical guidance for conducting overviews of reviews of health care interventions [ 28 ] and searched the Cochrane Database of Systematic Reviews (CDSR), 2019, Issue 1, on the Cochrane Library for relevant papers using the search strategy: (health) and (exercise or activity or physical). The decision to seek CSRs only was based on three main aspects. First, high quality (CSRs are considered to be the ‘gold methodological standard’) [ 29 , 30 , 31 ]. Second, data saturation (enough high-quality evidence to reach meaningful conclusions based on CSRs only). Third, including non-CSRs would have heavily increased the issue of overlapping reviews (also affecting data robustness and credibility of conclusions). One reviewer carried out the searches. The study screening and selection process were performed independently by two reviewers. We imported all identified references into reference manager software EndNote (X8). Any disagreements were resolved by discussion between the authors with third overview author acting as an arbiter, if necessary.

We included CSRs of randomised controlled trials (RCTs) involving both healthy individuals and medically compromised patients of any age and gender. Only CSRs assessing exercise or physical activity as a stand-alone intervention were included. This included interventions that could initially be taught by a professional or involve ongoing supervision (the WHO definition). Complex interventions e.g., assessing both exercise/physical activity and behavioural changes were excluded if the health effects of the interventions could not have been attributed to exercise distinctly.

Any types of controls were admissible. Reviews evaluating any type of health-related outcome measures were deemed eligible. However, we excluded protocols or/and CSRs that have been withdrawn from the Cochrane Library as well as reviews with no included studies.

Data analysis

Three authors (HM, ALN, NK) independently extracted relevant information from all the included studies using a custom-made data collection form. The methodological quality of SRs included was independently evaluated by same reviewers using the AMSTAR-2 tool [ 32 ]. Any disagreements on data extraction or CSR quality were resolved by discussion. The entire dataset was validated by three authors (PP, MS, DP) and any discrepant opinions were settled through discussions.

The results of CSRs are presented in a narrative fashion using descriptive tables. Where feasible, we presented outcome measures across CSRs. Data from the subset of homogeneous outcomes were pooled quantitatively using the approach previously described by Bellou et al. and Posadzki et al. [ 33 , 34 ]. For mortality and quality of life (QOL) outcomes, the number of participants and RCTs involved in the meta-analysis, summary effect sizes [with 95% confidence intervals (CI)] using random-effects model were calculated. For binary outcomes, we considered relative risks (RRs) as surrogate measures of the corresponding odds ratio (OR) or risk ratio/hazard ratio (HR). To stabilise the variance and normalise the distributions, we transformed RRs into their natural logarithms before pooling the data (a variation was allowed, however, it did not change interpretation of results) [ 35 ]. The standard error (SE) of the natural logarithm of RR was derived from the corresponding CIs, which was either provided in the study or calculated with standard formulas [ 36 ]. Binary outcomes reported as risk difference (RD) were also meta-analysed if two more estimates were available. For continuous outcomes, we only meta-analysed estimates that were available as standardised mean difference (SMD), and estimates reported with mean differences (MD) for QOL were presented separately in a supplementary Table  9 . To estimate the overall effect size, each study was weighted by the reciprocal of its variance. Random-effects meta-analysis, using DerSimonian and Laird method [ 37 ] was applied to individual CSR estimates to obtain a pooled summary estimate for RR or SMD. The 95% prediction interval (PI) was also calculated (where ≥3 studies were available), which further accounts for between-study heterogeneity and estimates the uncertainty around the effect that would be anticipated in a new study evaluating that same association. I -squared statistic was used to measure between study heterogeneity; and its various thresholds (small, substantial and considerable) were interpreted considering the size and direction of effects and the p -value from Cochran’s Q test ( p  < 0.1 considered as significance) [ 38 ]. Wherever possible, we calculated the median effect size (with interquartile range [IQR]) of each CSR to interpret the direction and magnitude of the effect size. Sub-group analyses are planned for type and intensity of the intervention; age group; gender; type and/or severity of the condition, risk of bias in RCTs, and the overall quality of the evidence (Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria). To assess overlap we calculated the corrected covered area (CCA) [ 39 ]. All statistical analyses were conducted on Stata statistical software version 15.2 (StataCorp LLC, College Station, Texas, USA).

The searches generated 280 potentially relevant CRSs. After removing of duplicates and screening, a total of 150 CSRs met our eligibility criteria [ 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 , 90 , 91 , 92 , 93 , 94 , 95 , 96 , 97 , 98 , 99 , 100 , 101 , 102 , 103 , 104 , 105 , 106 , 107 , 108 , 109 , 110 , 111 , 112 , 113 , 114 , 115 , 116 , 117 , 118 , 119 , 120 , 121 , 122 , 123 , 124 , 125 , 126 , 127 , 128 , 129 , 130 , 131 , 132 , 133 , 134 , 135 , 136 , 137 , 138 , 139 , 140 , 141 , 142 , 143 , 144 , 145 , 146 , 147 , 148 , 149 , 150 , 151 , 152 , 153 , 154 , 155 , 156 , 157 , 158 , 159 , 160 , 161 , 162 , 163 , 164 , 165 , 166 , 167 , 168 , 169 , 170 , 171 , 172 , 173 , 174 , 175 , 176 , 177 , 178 , 179 , 180 , 181 , 182 , 183 , 184 , 185 , 186 , 187 , 188 , 189 ] (Fig.  1 ). Reviews were published between September 2002 and December 2018. A total of 130 CSRs employed meta-analytic techniques and 20 did not. The total number of RCTs in the CSRs amounted to 2888; with 485,110 participants (mean = 3234, SD = 13,272). The age ranged from 3 to 87 and gender distribution was inestimable. The main characteristics of included reviews are summarised in supplementary Table  1 . Supplementary Table  2 summarises the effects of physical activity/exercise on health outcomes. Conclusions from CSRs are listed in supplementary Table  3 . Adverse effects are listed in supplementary Table  4 . Supplementary Table  5 presents summary of withdrawals/non-adherence. The methodological quality of CSRs is presented in supplementary Table  6 . Supplementary Table  7 summarises studies assessed at low risk of bias (by the authors of CSRs). GRADE-ings of the review’s main comparison are listed in supplementary Table  8 .

figure 1

Study selection process

There were 54 separate populations/conditions, considerable range of interventions and comparators, co-interventions, and outcome measures. For detailed description of interventions, please refer to the supplementary tables . Most commonly measured outcomes were - function 112 (75%), QOL 83 (55%), AEs 70 (47%), pain 41 (27%), mortality 28 (19%), strength 30 (20%), costs 47 (31%), disability 14 (9%), and mental health in 35 (23%) CSRs.

There was a 13% reduction in mortality rates risk ratio (RR) 0.87 [95% CI 0.78 to 0.96]; I 2  = 26.6%, [PI 0.70, 1.07], median effect size (MES) = 0.93 [interquartile range (IQR) 0.81, 1.00]; 10 CSRs, 187 RCTs, 27,671 participants) following exercise when compared with various controls (Table 1 ). This reduction was smaller in ‘other groups’ of patients when compared to cardiovascular diseases (CVD) patients - RR 0.97 [95% CI 0.65, 1.45] versus 0.85 [0.76, 0.96] respectively. The effects of exercise were not intensity or frequency dependent. Sessions more than 3 times per week exerted a smaller reduction in mortality as compared with sessions of less than 3 times per week RR 0.87 [95% CI 0.78, 0.98] versus 0.63 [0.39, 1.00]. Subgroup analyses by risk of bias (ROB) in RCTs showed that RCTs at low ROB exerted smaller reductions in mortality when compared to RCTs at an unclear or high ROB, RR 0.90 [95% CI 0.78, 1.02] versus 0.72 [0.42, 1.22] versus 0.86 [0.69, 1.06] respectively. CSRs with moderate quality of evidence (GRADE), showed slightly smaller reductions in mortality when compared with CSRs that relied on very low to low quality evidence RR 0.88 [95% CI 0.79, 0.98] versus 0.70 [0.47, 1.04].

Exercise also showed an improvement in QOL, standardised mean difference (SMD) 0.18 [95% CI 0.08, 0.28]; I 2  = 74.3%; PI -0.18, 0.53], MES = 0.20 [IQR 0.07, 0.39]; 15 CSRs, 408 RCTs, 32,984 participants) when compared with various controls (Table 2 ). These improvements were greater observed for health related QOL when compared to overall QOL SMD 0.30 [95% CI 0.21, 0.39] vs 0.06 [− 0.08, 0.20] respectively. Again, the effects of exercise were duration and frequency dependent. For instance, sessions of more than 90 mins exerted a greater improvement in QOL as compared with sessions up to 90 min SMD 0.24 [95% CI 0.11, 0.37] versus 0.22 [− 0.30, 0.74]. Subgroup analyses by the type of condition showed that the magnitude of effect was the largest among patients with mental health conditions, followed by CVD and cancer. Physical activity exerted negative effects on QOL in patients with respiratory conditions (2 CSRs, 20 RCTs with 601 patients; SMD -0.97 [95% CI -1.43, 0.57]; I 2  = 87.8%; MES = -0.46 [IQR-0.97, 0.05]). Subgroup analyses by risk of bias (ROB) in RCTs showed that RCTs at low or unclear ROB exerted greater improvements in QOL when compared to RCTs at a high ROB SMD 0.21 [95% CI 0.10, 0.31] versus 0.17 [0.03, 0.31]. Analogically, CSRs with moderate to high quality of evidence showed slightly greater improvements in QOL when compared with CSRs that relied on very low to low quality evidence SMD 0.19 [95% CI 0.05, 0.33] versus 0.15 [− 0.02, 0.32]. Please also see supplementary Table  9 more studies reporting QOL outcomes as mean difference (not quantitatively synthesised herein).

Adverse events (AEs) were reported in 100 (66.6%) CSRs; and not reported in 50 (33.3%). The number of AEs ranged from 0 to 84 in the CSRs. The number was inestimable in 83 (55.3%) CSRs. Ten (6.6%) reported no occurrence of AEs. Mild AEs were reported in 28 (18.6%) CSRs, moderate in 9 (6%) and serious/severe in 20 (13.3%). There were 10 deaths and in majority of instances, the causality was not attributed to exercise. For this outcome, we were unable to pool the data as effect sizes were too heterogeneous (Table 3 ).

In 38 CSRs, the total number of trials reporting withdrawals/non-adherence was inestimable. There were different ways of reporting it such as adherence or attrition (high in 23.3% of CSRs) as well as various effect estimates including %, range, total numbers, MD, RD, RR, OR, mean and SD. The overall pooled estimates are reported in Table 3 .

Of all 16 domains of the AMSTAR-2 tool, 1876 (78.1%) scored ‘yes’, 76 (3.1%) ‘partial yes’; 375 (15.6%) ‘no’, and ‘not applicable’ in 25 (1%) CSRs. Ninety-six CSRs (64%) were scored as ‘no’ on reporting sources of funding for the studies followed by 88 (58.6%) failing to explain the selection of study designs for inclusion. One CSR (0.6%) each were judged as ‘no’ for reporting any potential sources of conflict of interest, including any funding for conducting the review as well for performing study selection in duplicate.

In 102 (68%) CSRs, there was predominantly a high risk of bias in RCTs. In 9 (6%) studies, this was reported as a range, e.g., low or unclear or low to high. Two CSRs used different terminology i.e., moderate methodological quality; and the risk of bias was inestimable in one CSR. Sixteen (10.6%) CSRs did not identify any studies (RCTs) at low risk of random sequence generation, 28 (18.6%) allocation concealment, 28 (18.6%) performance bias, 84 (54%) detection bias, 35 (23.3%) attrition bias, 18 (12%) reporting bias, and 29 (19.3%) other bias.

In 114 (76%) CSRs, limitation of studies was the main reason for downgrading the quality of the evidence followed by imprecision in 98 (65.3%) and inconsistency in 68 (45.3%). Publication bias was the least frequent reason for downgrading in 26 (17.3%) CSRs. Ninety-one (60.7%) CSRs reached equivocal conclusions, 49 (32.7%) reviews reached positive conclusions and 10 (6.7%) reached negative conclusions (as judged by the authors of CSRs).

In this systematic review of CSRs, we found a large body of evidence on the beneficial effects of physical activity/exercise on health outcomes in a wide range of heterogeneous populations. Our data shows a 13% reduction in mortality rates among 27,671 participants, and a small improvement in QOL and health-related QOL following various modes of physical activity/exercises. This means that both healthy individuals and medically compromised patients can significantly improve function, physical and mental health; or reduce pain and disability by exercising more [ 190 ]. In line with previous findings [ 191 , 192 , 193 , 194 ], where a dose-specific reduction in mortality has been found, our data shows a greater reduction in mortality in studies with longer follow-up (> 12 months) as compared to those with shorter follow-up (< 12 months). Interestingly, we found a consistent pattern in the findings, the higher the quality of evidence and the lower the risk of bias in primary studies, the smaller reductions in mortality. This pattern is observational in nature and cannot be over-generalised; however this might mean less certainty in the estimates measured. Furthermore, we found that the magnitude of the effect size was the largest among patients with mental health conditions. A possible mechanism of action may involve elevated levels of brain-derived neurotrophic factor or beta-endorphins [ 195 ].

We found the issue of poor reporting or underreporting of adherence/withdrawals in over a quarter of CSRs (25.3%). This is crucial both for improving the accuracy of the estimates at the RCT level as well as maintaining high levels of physical activity and associated health benefits at the population level.

Even the most promising interventions are not entirely risk-free; and some minor AEs such as post-exercise pain and soreness or discomfort related to physical activity/exercise have been reported. These were typically transient; resolved within a few days; and comparable between exercise and various control groups. However worryingly, the issue of poor reporting or underreporting of AEs has been observed in one third of the CSRs. Transparent reporting of AEs is crucial for identifying patients at risk and mitigating any potential negative or unintended consequences of the interventions.

High risk of bias of the RCTs evaluated was evident in more than two thirds of the CSRs. For example, more than half of reviews identified high risk of detection bias as a major source of bias suggesting that lack of blinding is still an issue in trials of behavioural interventions. Other shortcomings included insufficiently described randomisation and allocation concealment methods and often poor outcome reporting. This highlights the methodological challenges in RCTs of exercise and the need to counterbalance those with the underlying aim of strengthening internal and external validity of these trials.

Overall, high risk of bias in the primary trials was the main reason for downgrading the quality of the evidence using the GRADE criteria. Imprecision was frequently an issue, meaning the effective sample size was often small; studies were underpowered to detect the between-group differences. Pooling too heterogeneous results often resulted in inconsistent findings and inability to draw any meaningful conclusions. Indirectness and publication bias were lesser common reasons for downgrading. However, with regards to the latter, the generally accepted minimum number of 10 studies needed for quantitatively estimate the funnel plot asymmetry was not present in 69 (46%) CSRs.

Strengths of this research are the inclusion of large number of ‘gold standard’ systematic reviews, robust screening, data extractions and critical methodological appraisal. Nevertheless, some weaknesses need to be highlighted when interpreting findings of this overview. For instance, some of these CSRs analysed the same primary studies (RCTs) but, arrived at slightly different conclusions. Using, the Pieper et al. [ 39 ] formula, the amount of overlap ranged from 0.01% for AEs to 0.2% for adherence, which indicates slight overlap. All CSRs are vulnerable to publication bias [ 196 ] - hence the conclusions generated by them may be false-positive. Also, exercise was sometimes part of a complex intervention; and the effects of physical activity could not be distinguished from co-interventions. Often there were confounding effects of diet, educational, behavioural or lifestyle interventions; selection, and measurement bias were inevitably inherited in this overview too. Also, including CSRs only might lead to selection bias; and excluding reviews published before 2000 might limit the overall completeness and applicability of the evidence. A future update should consider these limitations, and in particular also including non-CSRs.

Conclusions

Trialists must improve the quality of primary studies. At the same time, strict compliance with the reporting standards should be enforced. Authors of CSRs should better explain eligibility criteria and report sources of funding for the primary studies. There are still insufficient physical activity trends worldwide amongst all age groups; and scalable interventions aimed at increasing physical activity levels should be prioritized [ 197 ]. Hence, policymakers and practitioners need to design and implement comprehensive and coordinated strategies aimed at targeting physical activity programs/interventions, health promotion and disease prevention campaigns at local, regional, national, and international levels [ 198 ].

Availability of data and materials

Data sharing is not applicable to this article as no raw data were analysed during the current study. All information in this article is based on published systematic reviews.

Abbreviations

Adverse events

Cardiovascular diseases

Cochrane Database of Systematic Reviews

Cochrane systematic reviews

Confidence interval

Grading of Recommendations Assessment, Development and Evaluation

Hazard ratio

Interquartile range

Mean difference

Prediction interval

Quality of life

Randomised controlled trials

Relative risk

Risk difference

Risk of bias

Standard error

Standardised mean difference

World Health Organization

https://www.who.int/dietphysicalactivity/pa/en/ . (Accessed 8 June 2020).

Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, George SM, Olson RD. The physical activity guidelines for AmericansPhysical activity guidelines for AmericansPhysical activity guidelines for Americans. Jama. 2018;320(19):2020–8.

PubMed   Google Scholar  

Kyu HH, Bachman VF, Alexander LT, Mumford JE, Afshin A, Estep K, Veerman JL, Delwiche K, Iannarone ML, Moyer ML, et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the global burden of disease study 2013. BMJ. 2016;354:i3857.

PubMed   PubMed Central   Google Scholar  

Abell B, Glasziou P, Hoffmann T. The contribution of individual exercise training components to clinical outcomes in randomised controlled trials of cardiac rehabilitation: a systematic review and meta-regression. Sports Med Open. 2017;3(1):19.

Anderson D, Seib C, Rasmussen L. Can physical activity prevent physical and cognitive decline in postmenopausal women? A systematic review of the literature. Maturitas. 2014;79(1):14–33.

Barbaric M, Brooks E, Moore L, Cheifetz O. Effects of physical activity on cancer survival: a systematic review. Physiother Can. 2010;62(1):25–34.

Barlow PA, Otahal P, Schultz MG, Shing CM, Sharman JE. Low exercise blood pressure and risk of cardiovascular events and all-cause mortality: systematic review and meta-analysis. Atherosclerosis. 2014;237(1):13–22.

CAS   PubMed   Google Scholar  

Aljawarneh YM, Wardell DW, Wood GL, Rozmus CL. A systematic review of physical activity and exercise on physiological and biochemical outcomes in children and adolescents with type 1 diabetes. J Nurs Scholarsh. 2019.

Chastin SFM, De Craemer M, De Cocker K, Powell L, Van Cauwenberg J, Dall P, Hamer M, Stamatakis E. How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. Br J Sports Med. 2019;53(6):370–6.

Abdulla SY, Southerst D, Cote P, Shearer HM, Sutton D, Randhawa K, Varatharajan S, Wong JJ, Yu H, Marchand AA, et al. Is exercise effective for the management of subacromial impingement syndrome and other soft tissue injuries of the shoulder? A systematic review by the Ontario protocol for traffic injury management (OPTIMa) collaboration. Man Ther. 2015;20(5):646–56.

Alanazi MH, Parent EC, Dennett E. Effect of stabilization exercise on back pain, disability and quality of life in adults with scoliosis: a systematic review. Eur J Phys Rehabil Med. 2018;54(5):647–53.

Adsett JA, Mudge AM, Morris N, Kuys S, Paratz JD. Aquatic exercise training and stable heart failure: a systematic review and meta-analysis. Int J Cardiol. 2015;186:22–8.

Adamson BC, Ensari I, Motl RW. Effect of exercise on depressive symptoms in adults with neurologic disorders: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2015;96(7):1329–38.

Abdin S, Welch RK, Byron-Daniel J, Meyrick J. The effectiveness of physical activity interventions in improving well-being across office-based workplace settings: a systematic review. Public Health. 2018;160:70–6.

Albalawi H, Coulter E, Ghouri N, Paul L. The effectiveness of structured exercise in the south Asian population with type 2 diabetes: a systematic review. Phys Sportsmed. 2017;45(4):408–17.

Sellami M, Gasmi M, Denham J, Hayes LD, Stratton D, Padulo J, Bragazzi N. Effects of acute and chronic exercise on immunological parameters in the elderly aged: can physical activity counteract the effects of aging? Front Immunol. 2018;9:2187.

Hagen KB, Dagfinrud H, Moe RH, Østerås N, Kjeken I, Grotle M, Smedslund G. Exercise therapy for bone and muscle health: an overview of systematic reviews. BMC Med. 2012;10(1):167.

Burton DA, Stokes K, Hall GM. Physiological effects of exercise. Contin Educ Anaesth Crit Care Pain. 2004;4(6):185–8.

Google Scholar  

Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339–61.

Nystoriak MA, Bhatnagar A. Cardiovascular effects and benefits of exercise. Front Cardiovasc Med. 2018;5:135.

CAS   PubMed   PubMed Central   Google Scholar  

Vina J, Sanchis-Gomar F, Martinez-Bello V, Gomez-Cabrera MC. Exercise acts as a drug; the pharmacological benefits of exercise. Br J Pharmacol. 2012;167(1):1–12.

Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol. 2017;32(5):541–56.

Excellence NIfHaC: Cardiovascular disease prevention public health guideline [PH25] Published date: June 2010. Available at: https://www.nice.org.uk/guidance/ph25/resources/cardiovascular-disease-prevention-pdf-1996238687173 .

Excellence NIfHaC: Obesity prevention clinical guideline [CG43] published date: December 2006 Last updated: March 2015. Available at: https://www.nice.org.uk/guidance/cg43/resources/obesity-prevention-pdf-975445344709 .

Excellence NIfHaC: Physical activity for children and young people public health guideline [PH17] Published date: January 2009. Available at: https://www.nice.org.uk/guidance/ph17/resources/physical-activity-for-children-and-young-people-pdf-1996181580229 .

Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Version 6 [updated September 2018] edition. Available from www.cochrane-handbook.org : The Cochrane Collaboration, 2011. 2011.

Bougioukas KI, Liakos A, Tsapas A, Ntzani E, Haidich A-B. Preferred reporting items for overviews of systematic reviews including harms checklist: a pilot tool to be used for balanced reporting of benefits and harms. J Clin Epidemiol. 2018;93:9–24.

Pollock M, Fernandes RM, Newton AS, Scott SD, Hartling L. The impact of different inclusion decisions on the comprehensiveness and complexity of overviews of reviews of healthcare interventions. Syst Rev. 2019;8(1):18.

Handoll H, Madhok R. Quality of Cochrane reviews. Another study found that most Cochrane reviews are of a good standard. BMJ. 2002;324(7336):545.

Petticrew M, Wilson P, Wright K, Song F. Quality of Cochrane reviews. Quality of Cochrane reviews is better than that of non-Cochrane reviews. BMJ. 2002;324(7336):545.

Shea B, Moher D, Graham I, Pham B, Tugwell P. A comparison of the quality of Cochrane reviews and systematic reviews published in paper-based journals. Eval Health Prof. 2002;25(1):116–29.

Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, Moher D, Tugwell P, Welch V, Kristjansson E, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008.

Posadzki PP, Bajpai R, Kyaw BM, Roberts NJ, Brzezinski A, Christopoulos GI, Divakar U, Bajpai S, Soljak M, Dunleavy G, et al. Melatonin and health: an umbrella review of health outcomes and biological mechanisms of action. BMC Med. 2018;16(1):18.

Bellou V, Belbasis L, Tzoulaki I, Evangelou E, Ioannidis JP. Environmental risk factors and Parkinson's disease: an umbrella review of meta-analyses. Parkinsonism Relat Disord. 2016;23:1–9.

Walter SD, Cook RJ. A comparison of several point estimators of the odds ratio in a single 2 x 2 contingency table. Biometrics. 1991;47(3):795–811.

Khan H, Sempos CT. Statistical methods in epidemiology. New York: Oxford University Press; 1989.

DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

CAS   Google Scholar  

Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019): Cochrane; 2019. Available from www.training.cochrane.org/handbook .

Pieper D, Antoine SL, Mathes T, Neugebauer EA, Eikermann M. Systematic review finds overlapping reviews were not mentioned in every other overview. J Clin Epidemiol. 2014;67(4):368–75.

Adeniyi FB, Young T. Weight loss interventions for chronic asthma. Cochrane Database Syst Rev. 2012;7.

Al-Khudairy L, Loveman E, Colquitt JL, Mead E, Johnson RE, Fraser H, Olajide J, Murphy M, Velho RM, O'Malley C, et al. Diet, physical activity and behavioural interventions for the treatment of overweight or obese adolescents aged 12 to 17 years. Cochrane Database Syst Rev. 2017;6.

Amorim Adegboye AR, Linne YM. Diet or exercise, or both, for weight reduction in women after childbirth. Cochrane Database Syst Rev. 2013;7.

Anderson L, Nguyen TT, Dall CH, Burgess L, Bridges C, Taylor RS. Exercise-based cardiac rehabilitation in heart transplant recipients. Cochrane Database Syst Rev. 2017;4.

Anderson L, Thompson DR, Oldridge N, Zwisler AD, Rees K, Martin N, Taylor RS. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2016;1.

Andriolo RB, El Dib RP, Ramos L, Atallah Á, da Silva EMK. Aerobic exercise training programmes for improving physical and psychosocial health in adults with Down syndrome. Cochrane Database Syst Rev. 2010;5.

Araujo DN, Ribeiro CTD, Maciel ACC, Bruno SS, Fregonezi GAF, Dias FAL. Physical exercise for the treatment of non-ulcerated chronic venous insufficiency. Cochrane Database Syst Rev. 2016;12.

Ashworth NL, Chad KE, Harrison EL, Reeder BA, Marshall SC. Home versus center based physical activity programs in older adults. Cochrane Database Syst Rev. 2005;1.

Bartels EM, Juhl CB, Christensen R, Hagen KB, Danneskiold-Samsøe B, Dagfinrud H, Lund H. Aquatic exercise for the treatment of knee and hip osteoarthritis. Cochrane Database Syst Rev. 2016;3.

Beggs S, Foong YC, Le HCT, Noor D, Wood-Baker R, Walters JAE. Swimming training for asthma in children and adolescents aged 18 years and under. Cochrane Database Syst Rev. 2013;4.

Bergenthal N, Will A, Streckmann F, Wolkewitz KD, Monsef I, Engert A, Elter T, Skoetz N. Aerobic physical exercise for adult patients with haematological malignancies. Cochrane Database Syst Rev. 2014;11.

Bidonde J, Busch AJ, Schachter CL, Overend TJ, Kim SY, Góes SM, Boden C, Foulds HJA. Aerobic exercise training for adults with fibromyalgia. Cochrane Database Syst Rev. 2017;6.

Bidonde J, Busch AJ, van der Spuy I, Tupper S, Kim SY, Boden C. Whole body vibration exercise training for fibromyalgia. Cochrane Database Syst Rev. 2017;9.

Bidonde J, Busch AJ, Webber SC, Schachter CL, Danyliw A, Overend TJ, Richards RS, Rader T. Aquatic exercise training for fibromyalgia. Cochrane Database Syst Rev. 2014;10.

Braam KI, van der Torre P, Takken T, Veening MA, van Dulmen-den Broeder E, Kaspers GJL. Physical exercise training interventions for children and young adults during and after treatment for childhood cancer. Cochrane Database Syst Rev. 2016;3.

Bradt J, Shim M, Goodill SW. Dance/movement therapy for improving psychological and physical outcomes in cancer patients. Cochrane Database Syst Rev. 2015;1.

Broderick J, Crumlish N, Waugh A, Vancampfort D. Yoga versus non-standard care for schizophrenia. Cochrane Database Syst Rev. 2017;9.

Broderick J, Knowles A, Chadwick J, Vancampfort D. Yoga versus standard care for schizophrenia. Cochrane Database Syst Rev. 2015;10.

Broderick J, Vancampfort D. Yoga as part of a package of care versus standard care for schizophrenia. Cochrane Database Syst Rev. 2017;9.

Brown J, Ceysens G, Boulvain M. Exercise for pregnant women with gestational diabetes for improving maternal and fetal outcomes. Cochrane Database Syst Rev. 2017;6.

Busch AJ, Barber KA, Overend TJ, Peloso PMJ, Schachter CL. Exercise for treating fibromyalgia syndrome. Cochrane Database Syst Rev. 2007;4.

Busch AJ, Webber SC, Richards RS, Bidonde J, Schachter CL, Schafer LA, Danyliw A, Sawant A, Dal Bello-Haas V, Rader T, et al. Resistance exercise training for fibromyalgia. Cochrane Database Syst Rev. 2013;12.

Cameron ID, Dyer SM, Panagoda CE, Murray GR, Hill KD, Cumming RG, Kerse N. Interventions for preventing falls in older people in care facilities and hospitals. Cochrane Database Syst Rev. 2018;9.

Carson KV, Chandratilleke MG, Picot J, Brinn MP, Esterman AJ, Smith BJ. Physical training for asthma. Cochrane Database Syst Rev. 2013;9.

Carvalho APV, Vital FMR, Soares BGO. Exercise interventions for shoulder dysfunction in patients treated for head and neck cancer. Cochrane Database Syst Rev. 2012;4.

Cavalheri V, Granger C. Preoperative exercise training for patients with non-small cell lung cancer. Cochrane Database Syst Rev. 2017;6.

Cavalheri V, Tahirah F, Nonoyama ML, Jenkins S, Hill K. Exercise training undertaken by people within 12 months of lung resection for non-small cell lung cancer. Cochrane Database Syst Rev. 2013;7.

Ceysens G, Rouiller D, Boulvain M. Exercise for diabetic pregnant women. Cochrane Database Syst Rev. 2006;3.

Choi BKL, Verbeek JH, Tam WWS, Jiang JY. Exercises for prevention of recurrences of low-back pain. Cochrane Database Syst Rev. 2010;1.

Colquitt JL, Loveman E, O'Malley C, Azevedo LB, Mead E, Al-Khudairy L, Ells LJ, Metzendorf MI, Rees K. Diet, physical activity, and behavioural interventions for the treatment of overweight or obesity in preschool children up to the age of 6 years. Cochrane Database Syst Rev. 2016;3.

Connolly B, Salisbury L, O'Neill B, Geneen LJ, Douiri A, Grocott MPW, Hart N, Walsh TS, Blackwood B. Exercise rehabilitation following intensive care unit discharge for recovery from critical illness. Cochrane Database Syst Rev. 2015;6.

Cooney GM, Dwan K, Greig CA, Lawlor DA, Rimer J, Waugh FR, McMurdo M, Mead GE. Exercise for depression. Cochrane Database Syst Rev. 2013;9.

Corbetta D, Sirtori V, Castellini G, Moja L, Gatti R. Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst Rev. 2015;10.

Cramer H, Lauche R, Klose P, Lange S, Langhorst J, Dobos GJ. Yoga for improving health-related quality of life, mental health and cancer-related symptoms in women diagnosed with breast cancer. Cochrane Database Syst Rev. 2017;1.

Cramp F, Byron-Daniel J. Exercise for the management of cancer-related fatigue in adults. Cochrane Database Syst Rev. 2012;11.

Dal Bello-Haas V, Florence JM. Therapeutic exercise for people with amyotrophic lateral sclerosis or motor neuron disease. Cochrane Database Syst Rev. 2013;5.

Dale MT, McKeough ZJ, Troosters T, Bye P, Alison JA. Exercise training to improve exercise capacity and quality of life in people with non-malignant dust-related respiratory diseases. Cochrane Database Syst Rev. 2015;11.

Daley A, Stokes-Lampard H, Thomas A, MacArthur C. Exercise for vasomotor menopausal symptoms. Cochrane Database Syst Rev. 2014;11.

de Morton N, Keating JL, Jeffs K. Exercise for acutely hospitalised older medical patients. Cochrane Database Syst Rev. 2007;1.

Dobbins M, Husson H, DeCorby K, LaRocca RL. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst Rev. 2013;2.

Doiron KA, Hoffmann TC, Beller EM. Early intervention (mobilization or active exercise) for critically ill adults in the intensive care unit. Cochrane Database Syst Rev. 2018;3.

Ekeland E, Heian F, Hagen KB, Abbott JM, Nordheim L. Exercise to improve self-esteem in children and young people. Cochrane Database Syst Rev. 2004;1.

Elbers RG, Verhoef J, van Wegen EEH, Berendse HW, Kwakkel G. Interventions for fatigue in Parkinson's disease. Cochrane Database Syst Rev. 2015;10.

Felbel S, Meerpohl JJ, Monsef I, Engert A, Skoetz N. Yoga in addition to standard care for patients with haematological malignancies. Cochrane Database Syst Rev. 2014;6.

Forbes D, Forbes SC, Blake CM, Thiessen EJ, Forbes S. Exercise programs for people with dementia. Cochrane Database Syst Rev. 2015;4.

Fransen M, McConnell S, Harmer AR, Van der Esch M, Simic M, Bennell KL. Exercise for osteoarthritis of the knee. Cochrane Database Syst Rev. 2015;1.

Fransen M, McConnell S, Hernandez-Molina G, Reichenbach S. Exercise for osteoarthritis of the hip. Cochrane Database Syst Rev. 2014;4.

Freitas DA, Holloway EA, Bruno SS, Chaves GSS, Fregonezi GAF, Mendonça K. Breathing exercises for adults with asthma. Cochrane Database Syst Rev. 2013;10.

Furmaniak AC, Menig M, Markes MH. Exercise for women receiving adjuvant therapy for breast cancer. Cochrane Database Syst Rev. 2016;9.

Giangregorio LM, MacIntyre NJ, Thabane L, Skidmore CJ, Papaioannou A. Exercise for improving outcomes after osteoporotic vertebral fracture. Cochrane Database Syst Rev. 2013;1.

Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM, Lamb SE. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012;9.

Gorczynski P, Faulkner G. Exercise therapy for schizophrenia. Cochrane Database Syst Rev. 2010;5.

Grande AJ, Keogh J, Hoffmann TC, Beller EM, Del Mar CB. Exercise versus no exercise for the occurrence, severity and duration of acute respiratory infections. Cochrane Database Syst Rev. 2015;6.

Grande AJ, Reid H, Thomas EE, Nunan D, Foster C. Exercise prior to influenza vaccination for limiting influenza incidence and its related complications in adults. Cochrane Database Syst Rev. 2016;8.

Grande AJ, Silva V, Andriolo BNG, Riera R, Parra SA, Peccin MS. Water-based exercise for adults with asthma. Cochrane Database Syst Rev. 2014;7.

Gross A, Kay TM, Paquin JP, Blanchette S, Lalonde P, Christie T, Dupont G, Graham N, Burnie SJ, Gelley G, et al. Exercises for mechanical neck disorders. Cochrane Database Syst Rev. 2015;1.

Hageman D, Fokkenrood HJP, Gommans LNM, van den Houten MML, Teijink JAW. Supervised exercise therapy versus home-based exercise therapy versus walking advice for intermittent claudication. Cochrane Database Syst Rev. 2018;4.

Han A, Judd M, Welch V, Wu T, Tugwell P, Wells GA. Tai chi for treating rheumatoid arthritis. Cochrane Database Syst Rev. 2004;3.

Han S, Middleton P, Crowther CA. Exercise for pregnant women for preventing gestational diabetes mellitus. Cochrane Database Syst Rev. 2012;7.

Hartley L, Dyakova M, Holmes J, Clarke A, Lee MS, Ernst E, Rees K. Yoga for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2014;5.

Hartley L, Flowers N, Lee MS, Ernst E, Rees K. Tai chi for primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2014;4.

Hartley L, Lee MS, Kwong JSW, Flowers N, Todkill D, Ernst E, Rees K. Qigong for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2015;6.

Hassett L, Moseley AM, Harmer AR. Fitness training for cardiorespiratory conditioning after traumatic brain injury. Cochrane Database Syst Rev. 2017;12.

Hayden J, van Tulder MW, Malmivaara A, Koes BW. Exercise therapy for treatment of non-specific low back pain. Cochrane Database Syst Rev. 2005;3.

Hay-Smith EJC, Herderschee R, Dumoulin C, Herbison GP. Comparisons of approaches to pelvic floor muscle training for urinary incontinence in women. Cochrane Database Syst Rev. 2011;12.

Heine M, van de Port I, Rietberg MB, van Wegen EEH, Kwakkel G. Exercise therapy for fatigue in multiple sclerosis. Cochrane Database Syst Rev. 2015;9.

Heiwe S, Jacobson SH. Exercise training for adults with chronic kidney disease. Cochrane Database Syst Rev. 2011;10.

Hemmingsen B, Gimenez-Perez G, Mauricio D, Roqué i Figuls M, Metzendorf MI, Richter B. Diet, physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database Syst Rev. 2017;12.

Herbert RD, de Noronha M, Kamper SJ. Stretching to prevent or reduce muscle soreness after exercise. Cochrane Database Syst Rev. 2011;7.

Heymans MW, van Tulder MW, Esmail R, Bombardier C, Koes BW. Back schools for non-specific low-back pain. Cochrane Database Syst Rev. 2004;4.

Holland AE, Hill CJ, Jones AY, McDonald CF. Breathing exercises for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2012;10.

Howe TE, Rochester L, Neil F, Skelton DA, Ballinger C. Exercise for improving balance in older people. Cochrane Database Syst Rev. 2011;11.

Howe TE, Shea B, Dawson LJ, Downie F, Murray A, Ross C, Harbour RT, Caldwell LM, Creed G. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev. 2011;7.

Hurkmans E, van der Giesen FJ, Vliet Vlieland TPM, Schoones J, Van den Ende E. Dynamic exercise programs (aerobic capacity and/or muscle strength training) in patients with rheumatoid arthritis. Cochrane Database Syst Rev. 2009;4.

Hurley M, Dickson K, Hallett R, Grant R, Hauari H, Walsh N, Stansfield C, Oliver S. Exercise interventions and patient beliefs for people with hip, knee or hip and knee osteoarthritis: a mixed methods review. Cochrane Database Syst Rev. 2018;4.

Jones M, Harvey A, Marston L, O'Connell NE. Breathing exercises for dysfunctional breathing/hyperventilation syndrome in adults. Cochrane Database Syst Rev. 2013;5.

Katsura M, Kuriyama A, Takeshima T, Fukuhara S, Furukawa TA. Preoperative inspiratory muscle training for postoperative pulmonary complications in adults undergoing cardiac and major abdominal surgery. Cochrane Database Syst Rev. 2015;10.

Kendrick D, Kumar A, Carpenter H, Zijlstra GAR, Skelton DA, Cook JR, Stevens Z, Belcher CM, Haworth D, Gawler SJ, et al. Exercise for reducing fear of falling in older people living in the community. Cochrane Database Syst Rev. 2014;11.

Kramer MS, McDonald SW. Aerobic exercise for women during pregnancy. Cochrane Database Syst Rev. 2006;3.

Lahart IM, Metsios GS, Nevill AM, Carmichael AR. Physical activity for women with breast cancer after adjuvant therapy. Cochrane Database Syst Rev. 2018;1.

Lane R, Harwood A, Watson L, Leng GC. Exercise for intermittent claudication. Cochrane Database Syst Rev. 2017;12.

Larun L, Brurberg KG, Odgaard-Jensen J, Price JR. Exercise therapy for chronic fatigue syndrome. Cochrane Database Syst Rev. 2017;4.

Larun L, Nordheim LV, Ekeland E, Hagen KB, Heian F. Exercise in prevention and treatment of anxiety and depression among children and young people. Cochrane Database Syst Rev. 2006;3.

Lauret GJ, Fakhry F, Fokkenrood HJP, Hunink MGM, Teijink JAW, Spronk S. Modes of exercise training for intermittent claudication. Cochrane Database Syst Rev. 2014;7.

Lawrence M, Celestino Junior FT, Matozinho HHS, Govan L, Booth J, Beecher J. Yoga for stroke rehabilitation. Cochrane Database Syst Rev. 2017;12.

Lin CWC, Donkers NAJ, Refshauge KM, Beckenkamp PR, Khera K, Moseley AM. Rehabilitation for ankle fractures in adults. Cochrane Database Syst Rev. 2012;11.

Liu CJ, Latham NK. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev. 2009;3.

Long L, Anderson L, Dewhirst AM, He J, Bridges C, Gandhi M, Taylor RS. Exercise-based cardiac rehabilitation for adults with stable angina. Cochrane Database Syst Rev. 2018;2.

Loughney LA, West MA, Kemp GJ, Grocott MPW, Jack S. Exercise interventions for people undergoing multimodal cancer treatment that includes surgery. Cochrane Database Syst Rev. 2018;12.

Macedo LG, Saragiotto BT, Yamato TP, Costa LOP, Menezes Costa LC, Ostelo R, Maher CG. Motor control exercise for acute non-specific low back pain. Cochrane Database Syst Rev. 2016;2.

Macêdo TMF, Freitas DA, Chaves GSS, Holloway EA, Mendonça K. Breathing exercises for children with asthma. Cochrane Database Syst Rev. 2016;4.

Martin A, Booth JN, Laird Y, Sproule J, Reilly JJ, Saunders DH. Physical activity, diet and other behavioural interventions for improving cognition and school achievement in children and adolescents with obesity or overweight. Cochrane Database Syst Rev. 2018;3.

McKeough ZJ, Velloso M, Lima VP, Alison JA. Upper limb exercise training for COPD. Cochrane Database Syst Rev. 2016;11.

McNamara RJ, McKeough ZJ, McKenzie DK, Alison JA. Water-based exercise training for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2013;12.

McNeely ML, Campbell K, Ospina M, Rowe BH, Dabbs K, Klassen TP, Mackey J, Courneya K. Exercise interventions for upper-limb dysfunction due to breast cancer treatment. Cochrane Database Syst Rev. 2010;6.

Mead E, Brown T, Rees K, Azevedo LB, Whittaker V, Jones D, Olajide J, Mainardi GM, Corpeleijn E, O'Malley C, et al. Diet, physical activity and behavioural interventions for the treatment of overweight or obese children from the age of 6 to 11 years. Cochrane Database Syst Rev. 2017;6.

Meekums B, Karkou V, Nelson EA. Dance movement therapy for depression. Cochrane Database Syst Rev. 2015;2.

Meher S, Duley L. Exercise or other physical activity for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev. 2006;2.

Mehrholz J, Kugler J, Pohl M. Water-based exercises for improving activities of daily living after stroke. Cochrane Database Syst Rev. 2011;1.

Mehrholz J, Kugler J, Pohl M. Locomotor training for walking after spinal cord injury. Cochrane Database Syst Rev. 2012;11.

Mehrholz J, Thomas S, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2017;8.

Mishra SI, Scherer RW, Geigle PM, Berlanstein DR, Topaloglu O, Gotay CC, Snyder C. Exercise interventions on health-related quality of life for cancer survivors. Cochrane Database Syst Rev. 2012;8.

Mishra SI, Scherer RW, Snyder C, Geigle PM, Berlanstein DR, Topaloglu O. Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev. 2012;8.

Montgomery P, Dennis JA. Physical exercise for sleep problems in adults aged 60+. Cochrane Database Syst Rev. 2002;4.

Morris NR, Kermeen FD, Holland AE. Exercise-based rehabilitation programmes for pulmonary hypertension. Cochrane Database Syst Rev. 2017;1.

Muktabhant B, Lawrie TA, Lumbiganon P, Laopaiboon M. Diet or exercise, or both, for preventing excessive weight gain in pregnancy. Cochrane Database Syst Rev. 2015;6.

Ngai SPC, Jones AYM, Tam WWS. Tai chi for chronic obstructive pulmonary disease (COPD). Cochrane Database Syst Rev. 2016;6.

Norton C, Cody JD. Biofeedback and/or sphincter exercises for the treatment of faecal incontinence in adults. Cochrane Database Syst Rev. 2012;7.

O'Brien K, Nixon S, Glazier R, Tynan AM. Progressive resistive exercise interventions for adults living with HIV/AIDS. Cochrane Database Syst Rev. 2004;4.

O'Brien K, Nixon S, Tynan AM, Glazier R. Aerobic exercise interventions for adults living with HIV/AIDS. Cochrane Database Syst Rev. 2010;8.

Østerås N, Kjeken I, Smedslund G, Moe RH, Slatkowsky-Christensen B, Uhlig T, Hagen KB. Exercise for hand osteoarthritis. Cochrane Database Syst Rev. 2017;1.

Page MJ, Green S, Kramer S, Johnston RV, McBain B, Chau M, Buchbinder R. Manual therapy and exercise for adhesive capsulitis (frozen shoulder). Cochrane Database Syst Rev. 2014;8.

Page MJ, Green S, McBain B, Surace SJ, Deitch J, Lyttle N, Mrocki MA, Buchbinder R. Manual therapy and exercise for rotator cuff disease. Cochrane Database Syst Rev. 2016;6.

Page MJ, O'Connor D, Pitt V, Massy-Westropp N. Exercise and mobilisation interventions for carpal tunnel syndrome. Cochrane Database Syst Rev. 2012;6.

Panebianco M, Sridharan K, Ramaratnam S. Yoga for epilepsy. Cochrane Database Syst Rev. 2017;10.

Perry A, Lee SH, Cotton S, Kennedy C. Therapeutic exercises for affecting post-treatment swallowing in people treated for advanced-stage head and neck cancers. Cochrane Database Syst Rev. 2016;8.

Radtke T, Nevitt SJ, Hebestreit H, Kriemler S. Physical exercise training for cystic fibrosis. Cochrane Database Syst Rev. 2017;11.

Regnaux JP, Lefevre-Colau MM, Trinquart L, Nguyen C, Boutron I, Brosseau L, Ravaud P. High-intensity versus low-intensity physical activity or exercise in people with hip or knee osteoarthritis. Cochrane Database Syst Rev. 2015;10.

Ren J, Xia J. Dance therapy for schizophrenia. Cochrane Database Syst Rev. 2013;10.

Rietberg MB, Brooks D, Uitdehaag BMJ, Kwakkel G. Exercise therapy for multiple sclerosis. Cochrane Database Syst Rev. 2005;1.

Risom SS, Zwisler AD, Johansen PP, Sibilitz KL, Lindschou J, Gluud C, Taylor RS, Svendsen JH, Berg SK. Exercise-based cardiac rehabilitation for adults with atrial fibrillation. Cochrane Database Syst Rev. 2017;2.

Romano M, Minozzi S, Bettany-Saltikov J, Zaina F, Chockalingam N, Kotwicki T, Maier-Hennes A, Negrini S. Exercises for adolescent idiopathic scoliosis. Cochrane Database Syst Rev. 2012;8.

Ryan JM, Cassidy EE, Noorduyn SG, O'Connell NE. Exercise interventions for cerebral palsy. Cochrane Database Syst Rev. 2017;6.

Saragiotto BT, Maher CG, Yamato TP, Costa LOP, Menezes Costa LC, Ostelo R, Macedo LG. Motor control exercise for chronic non-specific low-back pain. Cochrane Database Syst Rev. 2016;1.

Saunders DH, Sanderson M, Hayes S, Kilrane M, Greig CA, Brazzelli M, Mead GE. Physical fitness training for stroke patients. Cochrane Database Syst Rev. 2016;3.

Schulzke SM, Kaempfen S, Trachsel D, Patole SK. Physical activity programs for promoting bone mineralization and growth in preterm infants. Cochrane Database Syst Rev. 2014;4.

Seron P, Lanas F, Pardo Hernandez H, Bonfill Cosp X. Exercise for people with high cardiovascular risk. Cochrane Database Syst Rev. 2014;8.

Shaw KA, Gennat HC, O'Rourke P, Del Mar C. Exercise for overweight or obesity. Cochrane Database Syst Rev. 2006;4.

Shepherd E, Gomersall JC, Tieu J, Han S, Crowther CA, Middleton P. Combined diet and exercise interventions for preventing gestational diabetes mellitus. Cochrane Database Syst Rev. 2017;11.

Sibilitz KL, Berg SK, Tang LH, Risom SS, Gluud C, Lindschou J, Kober L, Hassager C, Taylor RS, Zwisler AD. Exercise-based cardiac rehabilitation for adults after heart valve surgery. Cochrane Database Syst Rev. 2016;3.

Silva IS, Fregonezi GAF, Dias FAL, Ribeiro CTD, Guerra RO, Ferreira GMH. Inspiratory muscle training for asthma. Cochrane Database Syst Rev. 2013;9.

States RA, Pappas E, Salem Y. Overground physical therapy gait training for chronic stroke patients with mobility deficits. Cochrane Database Syst Rev. 2009;3.

Strike K, Mulder K, Michael R. Exercise for haemophilia. Cochrane Database Syst Rev. 2016;12.

Takken T, Van Brussel M, Engelbert RH, van der Net JJ, Kuis W, Helders P. Exercise therapy in juvenile idiopathic arthritis. Cochrane Database Syst Rev. 2008;2.

Taylor RS, Sagar VA, Davies EJ, Briscoe S, Coats AJS, Dalal H, Lough F, Rees K, Singh SJ, Mordi IR. Exercise-based rehabilitation for heart failure. Cochrane Database Syst Rev. 2014;4.

Thomas D, Elliott EJ, Naughton GA. Exercise for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006;3.

Ussher MH, Taylor AH, Faulkner GEJ. Exercise interventions for smoking cessation. Cochrane Database Syst Rev. 2014;8.

Valentín-Gudiol M, Mattern-Baxter K, Girabent-Farrés M, Bagur-Calafat C, Hadders-Algra M, Angulo-Barroso RM. Treadmill interventions in children under six years of age at risk of neuromotor delay. Cochrane Database Syst Rev. 2017;7.

van der Heijden RA, Lankhorst NE, van Linschoten R, Bierma-Zeinstra SMA, van Middelkoop M. Exercise for treating patellofemoral pain syndrome. Cochrane Database Syst Rev. 2015;1.

Vloothuis JDM, Mulder M, Veerbeek JM, Konijnenbelt M, Visser-Meily JMA, Ket JCF, Kwakkel G, van Wegen EEH. Caregiver-mediated exercises for improving outcomes after stroke. Cochrane Database Syst Rev. 2016;12.

Voet NBM, van der Kooi EL. Riphagen, II, Lindeman E, van Engelen BGM, Geurts ACH: strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev. 2013;7.

White CM, Pritchard J, Turner-Stokes L. Exercise for people with peripheral neuropathy. Cochrane Database Syst Rev. 2004;4.

Wieland LS, Skoetz N, Pilkington K, Vempati R, D'Adamo CR, Berman BM. Yoga treatment for chronic non-specific low back pain. Cochrane Database Syst Rev. 2017;1.

Williams AD, Bird ML, Hardcastle SGK, Kirschbaum M, Ogden KJ, Walters JAE. Exercise for reducing falls in people living with and beyond cancer. Cochrane Database Syst Rev. 2018;10.

Williams MA, Srikesavan C, Heine PJ, Bruce J, Brosseau L, Hoxey-Thomas N, Lamb SE. Exercise for rheumatoid arthritis of the hand. Cochrane Database Syst Rev. 2018;7.

Yamamoto S, Hotta K, Ota E, Matsunaga A, Mori R. Exercise-based cardiac rehabilitation for people with implantable ventricular assist devices. Cochrane Database Syst Rev. 2018;9.

Yamato TP, Maher CG, Saragiotto BT, Hancock MJ, Ostelo R, Cabral CMN, Menezes Costa LC, Costa LOP. Pilates for low back pain. Cochrane Database Syst Rev. 2015;7.

Yang ZY, Zhong HB, Mao C, Yuan JQ, Huang YF, Wu XY, Gao YM, Tang JL. Yoga for asthma. Cochrane Database Syst Rev. 2016;4.

Young J, Angevaren M, Rusted J, Tabet N. Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. 2015;4.

Zainuldin R, Mackey MG, Alison JA. Optimal intensity and type of leg exercise training for people with chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2011;11.

Mok A, Khaw K-T, Luben R, Wareham N, Brage S. Physical activity trajectories and mortality: population based cohort study. Bmj. 2019;365:l2323.

Ekelund U, Brown WJ, Steene-Johannessen J, Fagerland MW, Owen N, Powell KE, Bauman AE, Lee IM. Do the associations of sedentary behaviour with cardiovascular disease mortality and cancer mortality differ by physical activity level? A systematic review and harmonised meta-analysis of data from 850 060 participants. Br J Sports Med. 2019;53(14):886–94. https://doi.org/10.1136/bjsports-2017-098963 . Epub 2018 Jul 10.

Article   PubMed   Google Scholar  

Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, Bauman A, Lee IM. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016;388(10051):1302–10.

Lear SA, Hu W, Rangarajan S, Gasevic D, Leong D, Iqbal R, Casanova A, Swaminathan S, Anjana RM, Kumar R, et al. The effect of physical activity on mortality and cardiovascular disease in 130000 people from 17 high-income, middle-income, and low-income countries: the PURE study. Lancet. 2017;390(10113):2643–54.

Sattelmair J, Pertman J, Ding EL, Kohl HW 3rd, Haskell W, Lee IM. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation. 2011;124(7):789–95.

Heyman E, Gamelin FX, Goekint M, Piscitelli F, Roelands B, Leclair E, Di Marzo V, Meeusen R. Intense exercise increases circulating endocannabinoid and BDNF levels in humans--possible implications for reward and depression. Psychoneuroendocrinology. 2012;37(6):844–51.

Horton R. Offline: the gravy train of systematic reviews. Lancet. 2019;394(10211):1790.

Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob Health. 2018;6(10):e1077–86.

Fletcher GF, Landolfo C, Niebauer J, Ozemek C, Arena R, Lavie CJ. Promoting physical activity and exercise: JACC health promotion series. J Am Coll Cardiol. 2018;72(14):1622–39.

Download references

Acknowledgements

Not applicable.

There was no funding source for this study. Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and affiliations.

Kleijnen Systematic Reviews Ltd., York, UK

Pawel Posadzki

Nanyang Technological University, Singapore, Singapore

Institute for Research in Operative Medicine, Witten/Herdecke University, Witten, Germany

Dawid Pieper, Nadja Könsgen & Annika Lena Neuhaus

School of Medicine, Keele University, Staffordshire, UK

Jozef Pilsudski University of Physical Education in Warsaw, Faculty Physical Education and Health, Biala Podlaska, Poland

Hubert Makaruk

Health Outcomes Division, University of Texas at Austin College of Pharmacy, Austin, USA

Monika Semwal

You can also search for this author in PubMed   Google Scholar

Contributions

PP wrote the protocol, ran the searches, validated, analysed and synthesised data, wrote and revised the drafts. HM, NK and ALN screened and extracted data. MS and DP validated and analysed the data. RB ran statistical analyses. All authors contributed to writing and reviewing the manuscript. PP is the guarantor. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Dawid Pieper .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1:.

Supplementary Table 1. Main characteristics of included Cochrane systematic reviews evaluating the effects of physical activity/exercise on health outcomes ( n  = 150). Supplementary Table 2. Additional information from Cochrane systematic reviews of the effects of physical activity/exercise on health outcomes ( n  = 150). Supplementary Table 3. Conclusions from Cochrane systematic reviews “quote”. Supplementary Table 4 . AEs reported in Cochrane systematic reviews. Supplementary Table 5. Summary of withdrawals/non-adherence. Supplementary Table 6. Methodological quality assessment of the included Cochrane reviews with AMSTAR-2. Supplementary Table 7. Number of studies assessed as low risk of bias per domain. Supplementary Table 8. GRADE for the review’s main comparison. Supplementary Table 9. Studies reporting quality of life outcomes as mean difference.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Posadzki, P., Pieper, D., Bajpai, R. et al. Exercise/physical activity and health outcomes: an overview of Cochrane systematic reviews. BMC Public Health 20 , 1724 (2020). https://doi.org/10.1186/s12889-020-09855-3

Download citation

Received : 01 April 2020

Accepted : 08 November 2020

Published : 16 November 2020

DOI : https://doi.org/10.1186/s12889-020-09855-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Effectiveness

BMC Public Health

ISSN: 1471-2458

health risks research paper

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 11 April 2022

Water quality assessment and evaluation of human health risk of drinking water from source to point of use at Thulamela municipality, Limpopo Province

  • N. Luvhimbi 1 ,
  • T. G. Tshitangano 1 ,
  • J. T. Mabunda 1 ,
  • F. C. Olaniyi 1 &
  • J. N. Edokpayi 2  

Scientific Reports volume  12 , Article number:  6059 ( 2022 ) Cite this article

20k Accesses

20 Citations

1 Altmetric

Metrics details

  • Environmental sciences
  • Risk factors

Water quality has been linked to health outcomes across the world. This study evaluated the physico-chemical and bacteriological quality of drinking water supplied by the municipality from source to the point of use at Thulamela municipality, Limpopo Province, South Africa; assessed the community practices regarding collection and storage of water and determined the human health risks associated with consumption of the water. Assessment of water quality was carried out on 114 samples. Questionnaires were used to determine the community’s practices of water transportation from source to the point-of-use and storage activities. Many of the households reported constant water supply interruptions and the majority (92.2%) do not treat their water before use. While E. coli and total coliform were not detected in the water samples at source (dam), most of the samples from the street taps and at the point of use (household storage containers) were found to be contaminated with high levels of E. coli and total coliform. The levels of E. coli and total coliform detected during the wet season were higher than the levels detected during the dry season. Trace metals’ levels in the drinking water samples were within permissible range of both the South African National Standards and World Health Organisation. The calculated non-carcinogenic effects using hazard quotient toxicity potential and cumulative hazard index of drinking water through ingestion and dermal pathways were less than unity, implying that consumption of the water could pose no significant non-carcinogenic health risk. Intermittent interruption in municipal water supply and certain water transportation and storage practices by community members increase the risk of water contamination. We recommend a more consistent supply of treated municipal water in Limpopo province and training of residents on hygienic practices of transportation and storage of drinking water from the source to the point of use.

Similar content being viewed by others

health risks research paper

Access to basic drinking water services, safe water storage, and household water treatment practice in rural communities of northwest Ethiopia

health risks research paper

Ecological and health risk assessment of trace metals in water collected from Haripur gas blowout area of Bangladesh

health risks research paper

A systematic study on occurrence, risk estimation and health implications of heavy metals in potable water from different sources of Garhwal Himalaya, India

Introduction.

Water is among the major essential resources for the sustenance of humans, agriculture and industry. Social and economic progress are based and sustained upon this pre-eminent resource 1 . Availability and easy access to safe and quality water is a fundamental human right 2 and availability of clean water and sanitation for all has been listed as one of the goals to be achieved by the year 2030 for sustainable development by the United Nations General Assembly (UNGA) 3 .

The physical, chemical, biological and aesthetic properties of water are the parameters used to describe its quality and determine its capability for a variety of uses including the protection of human health and the aquatic ecosystem. Most of these properties are influenced by constituents that are either dissolved or suspended in water and water quality can be influenced by both natural processes and human activities 4 , 5 . The capacity of a population to safeguard sustainable access to adequate quantities and acceptable quality of water for sustaining livelihoods of human well-being and socioeconomic growth; as well as ensuring protection against pollution and water related disasters; and for conserving ecosystems in a climate of peace and political balance is regarded to as water security 6 .

Although the world’s multitudes have access to water, in numerous places, the available water is seldom safe for human drinking and not obtainable in sufficient quantities to meet basic health needs 7 . The World Health Organization (WHO) estimated that about 1.1 billion people globally drink unsafe water and most diarrheal diseases in the world (88%) is attributed to unsafe water, poor sanitation and unhygienic practices. In addition, the water supply sector is facing enormous challenges due to climate change, global warming and urbanization. Insufficient quantity and poor quality of water have serious impact on sustainable development, especially in developing countries 8 .

The quality of water supplied by the municipality is to be measured against the national standards for drinking water developed by the federal governments and other relevant bodies 9 . These standards considered some attributes to be of primary importance to the quality of drinking water, while others are considered to be of secondary importance. Generally, the guidelines for drinking water quality recommend that faecal indicator bacteria (FIB), especially Escherichia coli ( E. coli ) or thermo tolerant coliform (TTC), should not be found in any 100 mL of drinking water sample 8 .

Despite the availability of these standards and guidelines, numerous WHO and United Nations International Children Emergency Fund (UNICEF) reports have documented faecal contamination of drinking water sources, including enhanced sources of drinking water like the pipe water, especially in low-income countries 10 . Water-related diseases remain the primary cause of a high mortality rate for children under the age of five years worldwide. These problems are specifically seen in rural areas of developing countries. In addition, emerging contaminants and disinfection by-products have been associated with chronic health problems for people in both developed and developing countries 11 . Efforts by governmental and non-governmental organizations to ensure water security and safety in recent years have failed in many areas due to a lack of sustainability of water supply infrastructures 12 .

Water quality, especially regarding the microbiological content, can be compromised during collection, transport, and home storage. Possible sources of drinking water contamination are open field defecation, animal wastes, economic activities (agricultural, industrial and businesses), wastes from residential areas as well as flooding. Any water source, especially is vulnerable to such contamination 13 . Thus, access to a safe source alone does not ensure the quality of water that is consumed, and a good water source alone does not automatically translate to full health benefits in the absence of improved water storage and sanitation 14 . In developing countries, it has been observed that drinking-water frequently becomes re-contaminated following its collection and during storage in homes 15 .

Previous studies in developing countries have identified a progressive contamination of drinking water samples with E. coli and total coliforms from source to the point of use in the households, especially as a result of using dirty containers for collection and storage processes 16 , 17 , 18 . Also, the type of water treatment method employed at household levels, the type of container used to store drinking water, the number of days of water storage, inadequate knowledge and a lack of personal and domestic hygiene have all been linked with levels of water contamination in households 19 , 20 .

In South Africa, many communities have access to treated water supplied by the government. However, the water is more likely to be piped into individual households in the urban than rural areas. In many rural communities, the water is provided through the street taps and residents have to collect from those taps and transport the water to their households. Also, water supply interruptions are frequently experienced in rural communities, hence, the need for long-term water storage. A previous study of water quality in South Africa reported better quality of water at source than the water samples obtained from the household storage containers, showing that water could be contaminated in the process of transporting it from source to the point of use 21 .

This study was conducted in a rural community at Thulamela Municipality, Limpopo province, South Africa, to describe the community’s drinking water handling practices from source to the point of use in the households and evaluate the quality of the water from source (the reservoir), main distribution systems (street taps), yard connections (household taps) and at the point of use (household storage containers). Water quality assessment was done by assessing the microbial contamination and trace metal concentrations, and the possible health risks due to exposure of humans to the harmful pathogens and trace metals in the drinking water were determined.

The study was conducted at Lufule village in Thulamela municipality, Limpopo Province, South Africa. The municipality is situated in the eastern subtropical region of the province. The province is generally hot and humid and it receives much of its rainfall during summer (October–March) 22 . Lufule village is made up of 386 households and a total population of 1, 617 residents 23 . The study area includes Nandoni Dam (main reservoir) which acquires its raw water from Luvuvhu river that flows through Mutoti and Ha-Budeli villages just a few kilometers away from Thohoyandou town. Nandoni dam is where purification process takes place to ensure that the water meets the standards set for drinking water. This dam is the main source of water around the municipality, and it is the one which supplies water to selected areas around the dam, including Lufule village. Water samples for analysis were collected from the dam (D), street taps (ST), household taps (HT) and household storage containers (HSC) (Fig.  1 ).

figure 1

Map of the study area showing water samples’ collection areas.

Research design

This study adopted a quantitative design comprising of field survey and water analysis.

Field survey

The survey was done to identify the selected households and their shared source of drinking water (street taps). The village was divided into 10 quadrants for sampling purposes. From each quadrant, 6 households were randomly selected where questionnaires were distributed and household water samples were also collected for analysis.

Quantitative data collection

A structured interviewer-administered questionnaire was employed for data collection in the selected households. The population of Lufule village residents aged 15–69 years is 1, 026 (Census, 2011). About 10% of the adult population (~ 103) was selected to complete the questionnaires to represent the entire population. However, a total of 120 questionnaires were distributed, to take care of those which might be lacking vital information and therefore would not qualify to be analysed. Adults between the ages of 18 and 69 years were randomly selected to complete the questionnaire which includes questions concerning demographic and socio-economic statuses of the respondents, water use practices, sanitation, hygiene practices as well as perception of water quality and health. The face validity of the instrument was ensured by experts in the Department of Public Health, University of Venda, who reviewed questionnaire and confirmed that the items measure the concepts of interest relevant to the study 24 . Respondents were given time to go through the questionnaire and the researcher was present to clear any misunderstanding that may arise.

Water sampling

Permission to collect water samples from the reservoir tank at the Nandoni water treatment plant and households was obtained from the plant manager and the households’ heads respectively. Two sampling sites were identified at the dam, from where a water sample each was collected during the dry and the wet season. Similarly, 8 sampling sites were identified from the street and household taps, while 60 sampling sites were targeted for the household storage containers. However, only 39 household sites were accessible for sample collection, due to unavailability of the residents at the times of the researcher’s visit. Thus, water samples were collected from a total of 57 sites. Samples were collected from each of the sites during the dry (12th–20th April, 2019) and wet seasons (9th–12th December, 2019) between the hours of 08h00 and 14h30. A total of 114 samples were collected during the sampling period: 4 from the reservoir, 16 from street taps, 16 from household taps and 78 from households’ storage systems. Water samples were collected in 500 mL sterile polyethylene bottles. After collection, the containers were transported to the laboratory on ice in a cooler box. Each of the samples was tested for physico-chemical parameters, microbial parameters and trace metals’ concentration.

Physicochemical parameters’ analysis

Onsite analysis of temperature, pH, Electrical conductivity (EC) and Total Dissolved Solids (TDS) were performed immediately after sampling using a multimeter (model HI “HANNA” instruments), following the standards protocols and methods of American Public Health Association (APHA) 25 . The instrument was calibrated in accordance with the manufacturer’s guideline before taking the measurements. The value of each sample was taken after submerging the probe in the water and held for a couple of minutes to achieve a reliable reading. After measurement of each sample, the probe was rinsed with de-ionized water to avoid cross contamination among different samples.

ICP-OES and ICP-MS analyses of major and trace elements

An inductively coupled plasma optical emission spectrophotometer (ICP-OES) was used to analyse the major metals (Calcium (Ca), Sodium (Na), Potassium (K) and Magnesium (Mg)) in the water samples while inductively coupled plasma mass spectrophotometer (ICP-MS) was used to analyze the trace metals. The instrument was standardized with a multi-element calibration standard IV for ICP for Copper (Cu), Manganese (Mn), Iron (Fe), Chromium (Cr), Cadmium (Cd), Arsenic (As), Nickel (Ni), Zinc (Zn), Lead (Pb) and Cobalt (Co) and analytical precision was checked by frequently analysing the standards as well as blanks. ICP multi Standard solution of 1000 ppm for K, Ca, Mg and Na was prepared with NH 4 OAC for analysis to verify the accuracy of the calibration of the instrument and quantification of selected metals before sample analysis, as well as throughout the analysis to monitor drift.

Microbiological water quality analysis

Analysis of microbial parameters was conducted within 6 h of collection as recommended by APHA 25 . Viable Total coliform and E. coli were quantified in each sample using the IDEXX technique approved by the United States Environmental Protection Agency (USEPA). Colilert media was added to 100 mL sample and mixed until dissolved completely. The solution was poured into an IDEXX Quanti-Tray/2000 and sealed using the Quanti-Tray sealer 26 . The samples were incubated at 35 °C for 24 h. Trays were scanned using a fluorescent UV lamp to count fluorescent wells positive for E. coli concentration and counted with the most probable number (MPN) table provided by the manufacturer 27 .

Health risk assessment

Risk assessment have been estimated for ingestion and dermal pathways. Exposure pathway to water for ingestion and dermal routes are calculated using Eqs. ( 1 ) and ( 2 ) below:

where Exp ing : exposure dose through ingestion of water (mg/kg/day); BW: average body weight (70 kg for adults; 15 kg for children); Exp derm : exposure dose through dermal absorption (mg/kg/day); C water : average concentration of the estimated metals in water (μg/L); IR: ingestion rate in this study (2.0 L/day for adults; 1.0 L/day for children); ED: exposure duration (70 years for adults; and 6 years for children);AT: averaging time (25,550 days for an adult; 2190 days for a child); EF: exposure frequency (365 days/year) SA: exposed skin area (18.000 cm 2 for adults; 6600 cm 2 for children); K p : dermal permeability coefficient in water, (cm/h), 0.001 for Cu, Mn, Fe and Cd, while 0.0006 for Zn; 0.002 for Cr and 0.004 for Pb; ET: exposure time (0.58 h/ day for adults; 1 h/day for children) and CF: unit conversion factor (0.001 L/cm 3 ) 28 .

The hazard quotient (HQ) of non-carcinogenic risk by ingestion pathway can be determined by Eq. ( 3 )

where RfD ing is ingestion toxicity reference dose (mg/kg/day). An HQ under 1 is assumed to be safe and taken as significant non-carcinogenic, but HQ value above 1 may indicate a major potential health concern associated with over-exposure of humans to the contaminants 28 .

The total non-carcinogenic risk is represented by hazard index (HI). HI < 1 means the non-carcinogenic risk is acceptable, while HI > 1 indicates the risk is beyond the acceptable level 29 . The HI of a given pollutant through multiple pathways can be calculated by summing the hazard quotients by Eq. ( 4 ) below.

Carcinogenic risks for ingestion pathway is calculated by Eq. ( 5 ). For the selected metals in the study, carcinogenic risk (CR ing ) can be defined as the probability that an individual will develop cancer during his lifetime due to exposure under specific scenarios 30 .

where CRing is carcinogenic risk via ingestion route and SF ing is the carcinogenic slope factor.

Data analysis

Data obtained from the survey were analysed using Microsoft Excel and presented as descriptive statistics in the form of tables and graphs. The experimental data obtained was compared with the South African National Standards (SANS) 31 and Department of Water Affairs and Forestry (DWAF) 32 guidelines for domestic water use.

Ethics approval and consent to participate

The ethical clearance for this study was granted by the University of Venda Health, Safety and Research Ethics’ Committee (SHS/19/PH/14/1104). Permission to conduct the study was obtained from the Department of Water affairs, Limpopo province, Vhembe district Municipality and the selected households. Respondents were duly informed about the study and informed consent was obtained from all of them. The basic ethical principles of voluntary participation, informed consent, anonymity and confidentiality of respondents were duly complied with during data collection, analysis and reporting.

Consent for publication

Not applicable.

Socio-demographic characteristics of respondents

A total of 120 questionnaires were distributed but only 115 were completed, making a good response rate of 95%. The socio-demographic characteristics of the respondents are presented in Table 1 .

Household water supply

Many households (68.7%) had their primary water source from the municipality piped into their yards, but only 5.2% have the water flowing within their houses. The others have to fetch water at their neighbours’ yards or use the public taps on the streets. When the primary water supply is interrupted (i.e. when there is no water flowing through the pipes within the houses, yards or the public taps due to water rationing activities by the municipality, leakage of water distribution pipes, vandalization of pipes during road maintenance, etc.), the interruption usually lasts between a week or two, during which the respondents resort to other alternative sources. A return trip to the secondary source of water usually takes between 10 and 30 min for more than half of the respondents (53.0%) (Table 2 ).

Water storage and treatment practices at the household

Household water was most frequently stored in plastic buckets (n = 78, 67.8%), but ceramic vessels, metal buckets and other containers are also used for water storage (Fig.  2 ). Most households reported that their drinking water containers were covered (n = 111, 96.5%). More than half (53.9%) of the respondents used cups with handles to collect water from the storage containers whereas 37.4% used cups with no handles. Only 7.8% households reported that they treat their water before use mainly by boiling. Approximately 82.6% of respondent are of the opinion that one cannot get sick from drinking water and only 17.4% knew the risks that come with untreated water, and cited diarrhoea, schistosomiasis, cholera, fever, vomiting, ear infections, malnutrition, rash, flu and malaria as specific illnesses associated with water. Despite these perceptions, the majority (76.5%) were satisfied with their current water source. The few (23.5%) who were not satisfied cited poor quality, uncleanness, cloudiness, bad odour and taste in the water as reasons for their dissatisfaction (Table 3 ).

figure 2

Examples of household water storage containers, some with lids and others without lids (photo from fieldwork).

Sanitation practices at the household level

More than half of the respondents (67%) use pit toilets, whereas only 26.1% use the flush to septic tank system, most of the toilets (93.9%) have a concrete floor. About 76.5% of households do not have designated place to wash their hands, however, all respondents indicated that they always wash their hands with soap or any of its other alternatives before preparing meals and after using the toilet (Table 4 ).

Water samples analysis

The water samples analyses comprise of microbial analysis, physico-chemical analysis and trace metals' parameters.

Microbial analysis

The samples from the reservoir during dry and wet season had 0 MPN/100 mL of total coliform and E. coli and were within the recommended limits of WHO and SANS for drinking water. During the wet season, seven out of the eight water samples collected from the street taps were contaminated with total coliform, while four of the samples taken from the same source were contaminated with total coliform during the dry season. Water samples from street taps 3 and 7 (ST 3 and ST7) were contaminated with total coliform during both seasons, however, the total coliform counts during the wet season were more than the counts during the dry season. None of the samples was contaminated with E. coli during the dry season, however, 2 samples from the street taps (ST3 & ST6) were found to be contaminated with E. coli during the wet season. Samples from household taps showed a similar trend with the street taps—with all samples being contaminated with total coliform during the wet season. Though 7 of the 8 samples taken from the household taps were contaminated with total coliform during the dry season, the samples from the same sources showed a higher level of total coliform in the wet season, with almost all the samples showing contamination at maximum detection levels of more than 2000 MPN/100 mL, except one sample (HT8) which showed a higher level of contamination with total coliform during the dry compared with the wet season. Only one sample (HT4) was found to be contaminated with E. coli during both dry and wet season. This shows that total coliform contamination levels are higher during the wet season than the dry season (Table 5 ).

Water samples from household storage containers (HSC) showed a higher level of total coliform during the wet season than the dry season and more samples were contaminated with E. coli during the wet season also (Table 6 ). A higher level of contamination was recorded for the HSCs compared to the street and household taps.

Physico-chemical analysis

In the reservoir samples, the pH value ranged from 8.37 to 8.45, EC ranged between 183 and 259 µS/cm whereas TDS varied between 118 and 168 mg/L. Similarly, in the street tap samples, pH value ranged from 7.28 and 9.33, EC ranged between 26 and 867 µS/cm whereas TDS varied between 16 and 562 mg/L (Fig.  3 ).

figure 3

EC and TDS levels for the street taps and reservoir samples.

In the household taps, pH value ranged from 7.70–9.98, EC range between 28–895 µS/cm and TDS varied between 18 and 572 mg/L (Fig.  4 ).

figure 4

EC and TDS levels for household taps.

In household storage container samples, the pH value ranges from 7.67–9.77, EC ranged between 19–903 µS/cm and TDS values ranged from 12–1148 mg/L (Fig.  5 ).

figure 5

EC and TDS levels for household storage container samples.

Analysis of cations and trace metals in water

To detect the cations’ and trace metals’ concentrations in the water samples, representative samples from each of the sources were selected for analysis. The concentration of Calcium ranged between 2.14 and 31.65 mg/L, Potassium concentration ranged from 0.14 to 1.85 mg/L, Magnesium concentration varied from 1.32 to 16.59 mg/L, Sodium ranged from 0.18 to 12.96 mg/L (Table 7 ).

Trace metals’ analysis

The minimum and maximum concentrations of trace metals (Al, Mn, Fe, Co, Ni, Cu, Zn, As and Pb) present in water samples from selected street taps, household taps and household storage containers are presented in Table 8 .

Hazard quotient (HQ) and carcinogenic risk assessment

Table 9 presents the exposure dosage and hazard quotient (HQ) for ingestion and dermal pathway for metals. The HQ ing and HQ derm for all analyzed trace metals in both children and adults were less than one unit, indicating that there are no potential non-carcinogenic health risks associated with consumption of the water. Table 10 presents the total Hazard Quotient and Health risk index (HI) for trace metals in the water samples, showing that residents of the study area are not susceptible to non-cancer risks due to exposure to trace metals in drinking water. Table 11 presents the cancer risk associated with the levels of Ni, As and Pb in the drinking water samples. The table shows that only the maximum levels of lead had the highest chance of cancer risks for both adults and children.

This study provides information about the quality of drinking water in a selected rural community of Thulamela municipality of Limpopo province, South Africa, taking into consideration the physicochemical, microbiological and trace metals’ parameters of the treated water supplied to the village by the government, through the municipality. Many participants in the study have their primary source of water piped into their yards, while very few have water in their houses. This implies that getting water for household use would involve collecting the water from the yard and then into the storage containers. Those who do not have the taps in their yards have to collect water from the neighbours’ yards or the street taps. This observation is not restricted to the study area, as a similar situation has been observed in other rural communities of Limpopo Province 21 . This need to pass water through multiple containers before the point of use increases the risk of contamination.

Residents of the study area, just like residents of other settlements in Thulamela Municipality 21 , store their drinking water in plastic buckets, ceramic vessels, jerry cans and other containers. Almost all the respondents (96.5%) claim that their water storage vessels are covered and that their drinking water usually stays for less than a week in the storage containers (87.8%). Covering of water storage containers reduces the risk of water contamination from dust or other airborne particles. However, intermittent interruption of municipal water supply lasting for a week or more in the study area and the consequent use of alternative sources of water predispose the residents to various health risks as intermittent interruption in water supply has been linked to higher chances of contamination in the distribution systems, compared with continuous supply; in addition, the alternative sources of water may not be of a good quality as the treated municipal water 33 , 34 , yet, more than half of the respondents in this study (53%) use water directly from source without any form of treatment. This is because many residents in rural communities of Limpopo province believe that the water they drink is of good quality and thus do not need any further treatment 21 . The few who treat their water before drinking mostly use the boiling method. While boiling and other home-based interventions like solar disinfection of water have been reported to improve the quality of drinking water; drinking vessels, like cups, have also been implicated in water re-contamination of treated water at the point of use 16 and most respondents (91.3%) in this study admittedly use cups to collect water from the storage containers. The risk of contamination is even increased when cups without handles are used, where there is a higher chance that the water collector would touch the water in the container with his/her fingers. The Centres for Disease Control and Prevention (CDC) recommends that containers for drinking water should be fitted with a small opening with a cover or a spigot, through which water can be collected while the container remains closed, without dipping any potentially contaminated object into the container 35 . However, it is noteworthy that all the respondents claim to always wash their hands with soap (or its equivalents) and water after using the toilets, a constant practice of hand washing after using the toilet has been associated with a reduced risk of water contamination with E. coli 19 .

Treated water from the dam tested negative for both total coliform and E. coli hence complied with regulatory standards of SANS 31 and WHO 8 . The results could probably be due to the use of chlorine as a disinfectant in the treatment plant. Using disinfectants, pathogenic bacteria from the water can be killed and water made safe for the user. Similar studies have also reported that treated water in urban water treatment plants contains no total coliforms and E. coli 36 . In contrast, treated water sources in rural areas have been reported to have considerable levels of total coliform and E. coli 37 . The reason alluded to this include lack of disinfectant, no residual chlorine in the treated water, high prevalence of open defecation and unhygienic practices in proximity to water sources 38 .

From the water samples collected from the street taps, 62.5% were found to be contaminated with total coliform during the dry season, while the percentage rose to 87.5% during the wet season. The street tap which is about 13 km from the reservoir recorded high levels of total coliform ranging from 1.0 -2000 MPN/100 mL with most of the sites exceeding the WHO guidelines of 10 MPN/100 mL 8 . In both seasons, all the samples tested negative for E. coli , this complies with the WHO guideline of 0 MPN/100 mL. While the water leaving the treatment plant met bacteriological standards, the detection of coliform bacteria in the distribution lines suggest that the water is contaminated in the distribution networks. This could be due to the adherence of bacteria onto biofilms or accidental point source contamination by broken pipes, installation and repair works 39 . Furthermore, the water samples from households’ storage containers were contaminated by total coliform (73% and 85%) and E. coli (10.4% and 13.2%) during the dry and wet season, respectively. Microbiological contamination of household water stored in containers could be due to unhygienic practices occurring between the collection point and the point-of-use 40 , 41 .

Generally, higher levels of contamination were recorded in the wet season than in the dry season. The wet season in Thulamela Municipality is often characterized with increased temperature which could lead to favourable condition for microbial growth. Also, the treatment plant usually makes use of the same amount of chlorine for water purification during both seasons, even though influent water would be of a higher turbidity during the wet season, hence reducing the levels of residual chlorine 42 .

The pH of the analyzed samples from the study area ranged from 7.15 to 9.92. Most of the samples were within the values recommended by SANS (5 to 9.7) and comparable to results from previous similar studies 31 , 43 . Also, the electrical conductivity of all water samples from this study ranged from 28 µS/cm to 903 µS/cm which complied with the recommended value of SANS: < 1700 µS/cm 31 . The presence of dissolved solids such as calcium, chloride, and magnesium in water samples is responsible for its electrical conductivity 44 .

Total dissolved solids are the inorganic salts and small amounts of organic substance, which are present as solution in water 45 . Water has the ability to dissolve a wide range of inorganic and some organic minerals or salts such as potassium, calcium, sodium, bicarbonates, chlorides, magnesium, sulphates, etc. These minerals produced unwanted taste and colour in water 46 . A high TDS value indicates that water is highly mineralised. The recommended TDS value set for drinking water quality is ≤ 1200 mg/L 31 . In this study, the TDS values ranged from 18 mg/L to 572 mg/L. Hence, the TDS of all the household’s storage samples complied with the guidelines and consistent with previous studies 47 .

The analysis of magnesium (1.32 to 16.59 mg/L) and calcium (2.14 to 31.65 mg/L) concentrations showed that they were within the permissible range recommended for drinking water by SANS 31 and WHO 8 . All living organisms depend on magnesium in all types of cells, body tissues and organs for variety of functions while calcium is very important for human cell physiology and bones. Similar studies in Ethiopia and Turkey also showed acceptable levels of these metals in drinking water 46 , 48 . Likewise, the levels of potassium (0.14 to 1.85 mg/L) and sodium (0.18 to 12.96 mg/L) were within the permissible limit of WHO and SANS and may not cause health related problems. Sodium is essential in humans for the regulation of body fluid and electrolytes, and for proper functioning of the nerves and muscles, however, excessive sodium in the body can increase the risk of developing a high blood pressure, cardiovascular diseases and kidney damage 49 , 50 . Potassium is very important for protein synthesis and carbohydrate metabolism, thus, it is very important for normal growth and body building in humans, but, excessive quantity of potassium in the body (hyperkalemia) is characterized with irritability, decreased urine production and cardiac arrest 51 .

Metals like copper (Cu), cobalt (Co) and zinc (Zn) are essential requirements for normal body growth and functions of living organisms, however, in high concentrations, they are considered highly toxic for human and aquatic life 42 . Elevated trace metal(loids) concentrations could deteriorate water quality and pose significant health risks to the public due to their toxicity, persistence, and bio accumulative nature 52 . In this study, the concentrations of Manganese, Cobalt, Nickel and Copper all complied with the recommended concentration by SANS for domestic water use.

Aluminum concentration in the drinking water samples ranged from 1.25—13.46 µg/L. All analysed samples complied with the recommended concentration of ≤ 300 µg/L for domestic water use 31 . The recorded levels of Al in water from this study should not pose any health risk. At a high concentration, aluminium affects the nervous system, and it is linked to several diseases, such as Parkinson’s and Alzheimer’s diseases 53 . Iron (Fe) is an essential element for human health, required for the production of protein haemoglobin, which carries oxygen from our lungs to the other parts of the body. Insufficient or excess levels of iron can have negative effect on body functions 54 . The recommended concentration of iron in drinking water is ≤ 2000 µg/L 31 . In this study, the concentration of iron in the samples ranged from 0.96 to 73.53 µg/L. Similar results were reported by Jamshaid et al. in Khyber Pakhtunkhwa province 55 . A high concentration of Fe in water can give water a metallic taste, even though it is still safe to drink 56 .

The levels of Pb, As and Zn were in the range of 0.02–0.57 µg/L, 0.02–0.17 µg/L, and 2.54–194.96 µg/L, respectively whereas Cr was not detected in the samples collected. The levels recorded complied with the SANS 31 and WHO 8 guidelines for drinking water. Similar results were reported by Mohod and Dhote 57 . Lead is not desirable in drinking water because it is carcinogenic and can cause growth impairment in children 41 . Inorganic arsenic is a confirmed carcinogen and is the most significant chemical contaminant in drinking-water globally 44 . Zinc deficiency can cause loss of appetite, decreased sense of taste and smell, slow wound healing and skin sores 58 . Cr is desirable at low concentration but can be harmful if present in elevated levels.

The hazard quotient (HQ) takes into consideration the oral toxicity reference dose for a trace metal that humans can be exposed to 59 . Health related risk associated with the exposure through ingestion depends on the weight, age and volume of water consumed by an individual. HQ ing and HQ derm for all analyzed trace metals in both children and adults were less than one unit (Table 9 ), indicating that there are no potential non-carcinogenic health risks associated with the consumption of the water from the study area either by children or adults. The calculated average cumulative health risk index (HI) for children and adult was 3.88E-02 and 1.78E-02, respectively. HQ across metals serve as a conservative assessment tool to estimate high-end risk rather than low end-risk in order to protect the public. This served as a screen value to determine whether there is major significant health risk 60 . The results in this study signifies that the population of the investigated area are not susceptible to non-cancer risks due to exposure to trace metals in drinking water. Similar observation has been reported by Bamuwamye et al. after investigating human health risk assessment of trace metals in Kampala (Uganda) drinking water 61 . It should be noted that the hazard index values for children were higher than that of adult, suggesting that children were more susceptible to non-carcinogenic risk from the trace metals.

Drinking water with trace metals such as Pb, As, Cr and Cd could potentially enhance the risk of cancer in human beings 62 , 63 . Long term exposure to low amounts of toxic metals might, consequently, result in many types of cancers. Using As, Ni and Pb carcinogens, the total exposure risks of the residents in Table 11 . For trace metals, an acceptable carcinogenic risk value of less than 1 × 10 −6 is considered as insignificant and the cancer risk can be neglected; while an acceptable carcinogenic risk value of above 1 × 10 –4 is considered as harmful and the cancer risk is worrisome. Amongst the studied trace metals, only the maximum levels of lead for both adults and children had the highest chance of cancer risks (1.93E−03 and 4.46E−03) while Arsenic and Nickel have no chance of cancer risk with values of 3.34E−06; 7.72E−06 and 2.24E−05; 5.18E−05, in both adults and children respectively. The only cancer risk to residents of the studied area could be from the cumulative ingestion of lead in their drinking water. The levels of Pb recorded in this study complied to the SANS guideline value for safe drinking water. While the levels of Pb from the dam and the street pipes were relatively low, higher levels where recorded at household taps and storage containers and this may be due to the kind of storage containers and pipes used in those households. Generally, the water supply is of low Pb levels which should not pose any health risk to the consumers. However, the residents in rural areas should be properly educated on the kind of materials to be used for safe storage of water which should not pose an additional health burden. The likelihood of cancer risk was only associated with the consumption of the highest levels of Pb reported for a life time for adults (set at 70 years) and 6 years for children. Consistent consumption of water from the same source throughout an adult’s lifetime is unlikely as residents in those communities may change their locations at some points, hence reducing the possible risk associated with consistent exposure to the same levels of Pb.

Conclusions

The study shows that as distance increases from the treatment reservoir to distribution points, the cross-contamination rate also increases, therefore, good hygienic practices is required while transporting, storing and using water. Unhygienic handling practices at any point between collection and use contribute to the deterioration of drinking water quality.

The physicochemical, bacteriological quality and trace metals’ concentration of water samples from treated source, street taps and household storage containers were majorly within the permissible range of both WHO and SANS drinking water standards. HQ for both children and adults were less than unity, showing that the drinking water poses less significance health threat to both children and adults. Amongst the studied trace metals, only the maximum level of lead for both adults and children has the highest chance of cancer risks.

We recommend that appropriate measures should be taken to maintain residual free chlorine at the distribution points, supply of municipal treated water should be more consistent in all the rural communities of Thulamela municipality, Limpopo province and residents should be trained on hygienic practices of transportation and storage of drinking water from the source to the point of use.

Data availability

The datasets used and analysed during the current study are available from the first author on reasonable request.

Abbreviations

American Public Health Association

Centres for Disease Control and Prevention

Department of Water Affairs and Forestry

Electrical conductivity

Health risk index

Hazard quotient

Household storage containers

Household taps

Inductively coupled plasma mass spectrophotometer

Inductively coupled plasma optical emission spectrophotometer

Most probable number

South African National Standards

Street taps

Total Dissolved Solids

United Nations General Assembly

United Nations International Children Emergency Fund

United States Environmental Protection Agency

World Health Organization

Taiwo, A.M., Olujimi, O.O., Bamgbose, O. & Arowolo, T.A. Surface water quality monitoring in Nigeria: Situational analysis and future management strategy. In Water Quality Monitoring and Assessment (ed. Voudouris, K) 301–320 (IntechOpen, 2012).

Corcoran, E., et al. Sick water? The central role of wastewater management in sustainable development: A rapid response assessment. United Nations Enviromental Programme UN-HABITAT, GRID-Arendal. https://wedocs.unep.org/20.500.11822/9156 (2010).

United Nations, The 2030 Agenda and the Sustainable Development Goals: An opportunity for Latin America and the Caribbean (LC/G.2681-P/Rev.3), Santiago (2018).

Hubert, E. & Wolkersdorfer, C. Establishing a conversion factor between electrical conductivity and total dissolved solids in South African mine waters. Water S.A. 41 , 490–500 (2015).

Article   CAS   Google Scholar  

Department of Water Affairs (DWA). Groundwater Strategy. Department of Water Affairs: Pretoria, South Africa. 64 (2010).

Lu, Y., Nakicenovic, N., Visbeck, M. & Stevance, A. S. Policy: Five priorities for the UN sustainable development goals. Nature 520 , 432–433 (2015).

Article   ADS   PubMed   Google Scholar  

Shaheed, A., Orgil, J., Montgomery, M. A., Jeuland, M. A. & Brown, J. Why, “improved” water sources are not always safe. Bull. World Health Organ. 92 , 283–289 (2014).

Article   PubMed   PubMed Central   Google Scholar  

WHO. Guidelines for Drinking Water Quality 4th Edn (World Health Organization, Geneva, Switzerland, 2011). http://apps.who.int/iris/bitstream/10665/44584/1/9789241548151_eng.pdf .

Patil, P. N., Sawant, D. V. & Deshmukh, R. N. Physico-chemical parameters for testing of water—a review. Int. J. Environ. Sci. 3 , 1194–1207 (2012).

CAS   Google Scholar  

Bain, R. et al. Fecal contamination of drinking-water in low-and middle-income countries: A systematic review and meta-analysis. PLoS Med. 11 , e1001644 (2014).

Younos, T. & Grady, C.A. Potable water, emerging global problems and solutions. In The Handbook of Environmental Chemistry 30 (2014).

Tigabu, A. D., Nicholson, C. F., Collick, A. S. & Steenhuis, T. S. Determinants of household participation in the management of rural water supply systems: A case from Ethiopia. Water Policy. 15 , 985–1000 (2013).

Article   Google Scholar  

Oljira, G. Investigation of drinking water quality from source to point of distribution: The case of Gimbi Town, in Oromia Regional State of Ethiopia (2015).

Clasen, T., Haller, L., Walker, D., Bartram, J. & Cairncross, S. Cost-effectiveness of water quality interventions for preventing diarrhoeal disease in developing countries. J. Water Health 5 , 599–608 (2007).

Article   PubMed   Google Scholar  

Too, J. K., Sang, W. K., Ng’ang’a, Z. & Ngayo, M. O. Fecal contamination of drinking water in Kericho District, Western Kenya: Role of source and household water handling and hygiene practices. J. Water Health 14 , 662–671 (2016).

Rufener, S., Mausezahl, D., Mosler, H. & Weingartner, R. Quality of drinking-water at source and point-of-consumption—drinking cup as a high potential recontamination risk: A field Study in Bolivia. J. Health Popul. Nutri. 28 , 34–41 (2010).

Google Scholar  

Nsubuga, F. N. W., Namutebi, E. N. & Nsubuga-ssenfuma, M. Water resources of Uganda: An assessment and review. Water Resour. Prot. 6 , 1297–1315 (2014).

Rawway, M., Kamel, M. S. & Abdul-raouf, U. M. Microbial and physico-chemical assessment of water quality of the river Nile at Assiut Governorate (Upper Egypt). J. Ecol. Health Environ. 4 , 7–14 (2016).

Agensi, A., Tibyangye, J., Tamale, A., Agwu, E. & Amongi C. Contamination potentials of household water handling and storage practices in Kirundo Subcounty, Kisoro District, Uganda. J. Environ. Public Health. Article ID 7932193, 8 pages (2019).

Mahmud, Z. H. et al. Occurrence of Escherichia coli and faecal coliforms in drinking water at source and household point-of-use in Rohingya camps, Bangladesh. Gut Pathog. 11 , 52. https://doi.org/10.1186/s13099-019-0333-6 (2019).

Edokpayi, J. N. et al. Challenges to sustainable safe drinking water: A case study of water quality and use across seasons in rural communities in Limpopo Province, South Africa. Water 10 , 159 (2018).

Article   PubMed   PubMed Central   CAS   Google Scholar  

Musyoki, A., Thifhulufhelwi, R. & Murungweni, F. M. The impact of and responses to flooding in Thulamela Municipality, Limpopo Province, South Africa, Jàmbá. J. Disaster Risk Stud. 8 , 1–10 (2016).

Census 2011. Main Place: Lufule. Accessed from Census 2011: Main Place: Lufule (adrianfrith.com) on 30/01/2022.

Bolarinwa, O. A. Principles and methods of validity and reliability testing of questionnaires used in social and health science researches. Niger. Postgrad. Med. J. 22 , 195–201 (2015).

Association, A. P. H. Standard Methods for the Examination of Water and Waste Water 16th edn. (American Public Health Association, Washington, 1992).

Bernardes, C., Bernardes, R., Zimmer, C. & Dorea, C. C. A simple off-grid incubator for microbiological water quality analysis. Water 12 , 240 (2020).

Rich CR, Sellers JM, Taylor HB, IDEXX Laboratories Inc. Chemical reagent test slide. U.S. Patent Application 29/218,589. (2006).

Naveedullah, et al. Concentrations and human health risk assessment of selected heavy metals in surface water of siling reservoir watershed in Zhejiang Province, China. Pol. J. Environ. Stud. 23 , 801–811 (2014).

Wu, J. & Sun, Z. Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expos. Health. 8 , 311–329 (2016).

Wu, L., Zhang, X. & Ju, H. Amperometric glucose sensor based on catalytic reduction of dissolved oxygen at soluble carbon nanofiber. Biosens. Bioelectron. 23 , 479–484 (2007).

Article   PubMed   CAS   Google Scholar  

South African National Standard (SANS). 241-1: Drinking Water, Part 1: Microbiological, Physical, Aesthetic and Chemical Determinants. 241-2: 2015 Drinking Water, Part 2: Application of SANS 241-1 (2015).

Department of Water Affairs and Forestry (DWAF). South African Water Quality Guidelines (second edition). Volume 1: Domestic Use, (1996).

Drake, M.J. & Stimpfl, M. Water matters. In Lunar and Planetary Science Conference , Vol. 38, 1179 (2007).

Kumpel, E. & Nelson, K. L. Intermittent water supply: prevalence, practice, and microbial water quality. Environ. Sci. Technol. 50 , 542–553 (2016).

Article   ADS   CAS   PubMed   Google Scholar  

Centers for Disease Control and Prevention. The safe water system: Safe storage of drinking water. Accessed from CDC Fact Sheet on 30/01/2022 (2012).

Hashmi, I., Farooq, S. & Qaiser, S. Chlorination and water quality monitoring within a public drinking water supply in Rawalpindi Cantt (Westridge and Tench) area, Pakistan. Environ. Monit. Assess. 158 , 393–403 (2009).

Article   CAS   PubMed   Google Scholar  

Onyango, A. E., Okoth, M. W., Kunyanga, C. N. & Aliwa, B. O. Microbiological quality and contamination level of water sources in Isiolo country in Kenya. J. Environ. Public Health . 2018 , 2139867 (2018).

Gwimbi, P., George, M. & Ramphalile, M. Bacterial contamination of drinking water sources in rural villages of Mohale Basin, Lesotho: Exposures through neighbourhood sanitation and hygiene practices. Environ. Health Prev. Med. 24 , 33 (2019).

Karikari, A. Y. & Ampofo, J. A. Chlorine treatment effectiveness and physico-chemical and bacteriological characteristics of treated water supplies in distribution networks of Accra-Tema Metropolis, Ghana. Appl. Water Sci. 3 , 535–543 (2013).

Article   ADS   CAS   Google Scholar  

Thompson, T., Sobsey, M. & Bartram, J. Providing clean water, keeping water clean: An integrated approach. Int. J. Environ. Health Res. 13 , S89–S94 (2003).

Cronin, A. A., Breslin, N., Gibson, J. & Pedley, S. Monitoring source and domestic water quality in parallel with sanitary risk identification in Northern Mozambique to Prioritise protection interventions. J. Water Health 4 , 333–345 (2006).

Edokpayi, J. N., Enitan, A. M., Mutileni, N. & Odiyo, J. O. Evaluation of water quality and human risk assessment due to heavy metals in groundwater around Muledane area of Vhembe District, Limpopo Province, South Africa. Chem. Cent. J. 12 , 2 (2018).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Edimeh, P. O., Eneji, I. S., Oketunde, O. F. & Sha’Ato, R. Physico-chemical parameters and some heavy metals content of Rivers Inachalo and Niger in Idah, Kogi State. J. Chem. Soc. Nigeria 36 , 95–101 (2011).

Rahmanian, N., et al . Analysis of physiochemical parameters to evaluate the drinking water quality in the State of Perak, Malaysia. J. Chem. 1–10. Article ID 716125 (2015).

WHO/FAO. Diet, Nutrition, and the Prevention of Chronic Diseases (World Health Organisation, Geneva, 2003).

Meride, Y. & Ayenew, B. Drinking water quality assessment and its effects on resident’s health in Wondo genet campus, Ethiopia. Environ. Syst. Res. 5 , 1 (2016).

Mapoma, H. W. & Xie, X. Basement and alluvial aquifers of Malawi: An overview of groundwater quality and policies. Afr. J. Environ. Sci. Technol. 8 , 190–202 (2014).

Soylak, M., Aydin, F., Saracoglu, S., Elci, L. & Dogan, M. Chemical analysis of drinking water samples from Yozgat. Turkey Pol. J. Environ. Stud. 11 , 151–156 (2002).

Munteanu, C. & Iliuta, A. The role of sodium in the body. Balneo Res. J. 2 , 70–74 (2011).

Strazzullo, P. & Leclercq, C. Sodium. Adv. Nutr. 5 , 188–190 (2014).

Pohl, H. R., Wheeler, J. S. & Murray, H. E. Sodium and potassium in health and disease. Met. Ions Life Sci. 13 , 29–47 (2013).

Muhammad, S., Shah, M. T. & Khan, S. Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchem. J. 98 , 334–343 (2011).

Inan-Eroglu, E. & Ayaz, A. Is aluminum exposure a risk factor for neurological disorders?. J. Res. Med. Sci. 23 , 51 (2018).

Milman, N. Prepartum anaemia: Prevention and treatment. Ann. Hematol. 87 , 949–959 (2008).

Jamshaid, M., Khan, A. A., Ahmed, K. & Saleem, M. Heavy metal in drinking water its effect on human health and its treatment techniques—a review. Int. J. Biosci. 12 , 223–240 (2018).

Tagliabue, A., Aumont, O. & Bopp, L. The impact of different external sources of iron on the global carbon cycle. Geophys. Res. Lett. 41 , 920–926 (2014).

Mohod, C. V. & Dhote, J. Review of heavy metals in drinking water and their effect on human health. Int. J. Innov. Res. Technol. Sci. Eng. 2 , 2992–2996 (2013).

Bhowmik, D., Chiranjib, K. P. & Kumar, S. A potential medicinal importance of zinc in human health and chronic. Int. J. Pharm. 1 , 05–11 (2010).

Mahmud, M. A. et al. Low temperature processed ZnO thin film as electron transport layer for efficient perovskite solar cells. Sol. Energy Mater. Sol. Cells. 159 , 251–264 (2017).

Rajan, S. & Ishak, N. S. Estimation of target hazard quotients and potential health risks for metals by consumption of shrimp ( Litopenaeus vannamei ) in Selangor, Malaysia. Sains Malays. 46 , 1825–1830 (2017).

Bamuwamye, M. et al. Human health risk assessment of heavy metals in Kampala (Uganda) drinking water. J. Food Res. 6 , 6–16 (2017).

Saleh, H. N. et al. Carcinogenic and non-carcinogenic risk assessment of heavy metals in groundwater wells in Neyshabur Plain, Iran. Biol. Trace Elem. Res. 190 , 251–261 (2019).

Tani, F. H. & Barrington, S. Zinc and copper uptake by plants under two transpiration rates Part II Buckwheat ( Fagopyrum esculentum L.). Environ. Pollut. 138 , 548–558 (2005).

Download references

Acknowledgements

The authors wish to thank the University of Venda Health, Safety and Research Ethics’ Committee, the Department of Water affairs, Limpopo province and Vhembe district Municipality for granting the permission to conduct this study. We also thank all the respondents from the selected households in Lufule community.

The study was funded by the Research and Publication Committee of the University of Venda (Grant number: SHS/19/PH/14/1104).

Author information

Authors and affiliations.

Department of Public Health, School of Health Sciences, University of Venda, Thohoyandou, 0950, South Africa

N. Luvhimbi, T. G. Tshitangano, J. T. Mabunda & F. C. Olaniyi

Department of Hydrology and Water Resources, School of Environmental Sciences, University of Venda, Thohoyandou, 0950, South Africa

J. N. Edokpayi

You can also search for this author in PubMed   Google Scholar

Contributions

L.N. and J.N.E. conceptualized the study, L.N. collected and analysed the data, T.G.T., J.T. M., and J.N.E. supervised the data collection and analysis. F.C.O. drafted the original manuscript, J.N.E. reviewed and edited the original manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to F. C. Olaniyi .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Luvhimbi, N., Tshitangano, T.G., Mabunda, J.T. et al. Water quality assessment and evaluation of human health risk of drinking water from source to point of use at Thulamela municipality, Limpopo Province. Sci Rep 12 , 6059 (2022). https://doi.org/10.1038/s41598-022-10092-4

Download citation

Received : 02 December 2021

Accepted : 30 March 2022

Published : 11 April 2022

DOI : https://doi.org/10.1038/s41598-022-10092-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Characterization of natural zeolite and determination of its ion-exchange potential for selected metal ions in water.

  • G. M. Wangi
  • P. W. Olupot
  • R. Kulabako

Environmental Processes (2023)

Relations between personal exposure to elevated concentrations of arsenic in water and soil and blood arsenic levels amongst people living in rural areas in Limpopo, South Africa

  • Thandi Kapwata
  • Caradee Y. Wright
  • Angela Mathee

Environmental Science and Pollution Research (2023)

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

health risks research paper

Advances and perspectives in environmental health research in China

  • Perspectives
  • Open access
  • Published: 10 May 2024
  • Volume 18 , article number  76 , ( 2024 )

Cite this article

You have full access to this open access article

health risks research paper

  • Tong Zhu 1 , 2 ,
  • Yingjun Liu 1 , 2 ,
  • Shunqing Xu 3 ,
  • Guanghui Dong 4 ,
  • Cunrui Huang 5 ,
  • Nan Sang 6 ,
  • Yunhui Zhang 7 ,
  • Guanyong Su 8 ,
  • Jingwen Chen 9 ,
  • Jicheng Gong 1 , 2 ,
  • Guohua Qin 6 ,
  • Xinghua Qiu 1 , 2 ,
  • Jing Shang 1 , 2 ,
  • Haobo Wang 9 ,
  • Pengpeng Wang 10 &
  • Mei Zheng 1 , 2  

Environmental health research aims to identify environmental conditions suitable for the healthy living and reproduction of human beings. Through the interdisciplinary research bridging environmental sciences and health/medical sciences, the impacts of physical, chemical, and biological environmental factors on human health are investigated. This includes identifying environmental factors detrimental to human health, evaluating human exposure characteristics to environmental factors, clarifying causal relationships between environmental exposure and health effects, analyzing the underlying biochemical mechanisms, linking environmental factors to the onset and progression of diseases, establishing exposure-response relationships, and determining effect thresholds. Ultimately, the results of environmental health research can serve as a scientific basis for formulating environmental management strategies and guiding prevention and intervention measures at both the public and individual levels. This paper summarizes the recent advances and future perspectives of environmental health research in China, as reported by a group of Chinese scientists who recently attended a workshop in Hainan, China. While it is not intended to provide a comprehensive review of this expansive field, it offers a glimpse into the significant progress made in understanding the health impacts of environmental factors over the past decade. Looking ahead, it is imperative not only to sustain efforts in studying the health effects of traditional environmental pollution, but also to prioritize research on the health impacts of emerging pollutants and climate change.

health risks research paper

Article PDF

Download to read the full article text

Avoid common mistakes on your manuscript.

Dong G H, Zhang Y H, Zheng L, Liu W, Jin Y H, He Q C (2009). Chronic effects of perfluorooctanesulfonate exposure on immunotoxicity in adult male C57BL/6 mice. Archives of Toxicology, 83(9): 805–815

Article   CAS   Google Scholar  

Dong Q L, Meng X, Gong J C, Zhu T (2024). A review of advances in black carbon exposure assessment and health effects. Chinese Science Bulletin, 69(6): 703–716 (in Chinese)

Article   Google Scholar  

Hu J, Zhao H, Braun J M, Zheng T, Zhang B, Xia W, Zhang W, Li J, Zhou Y, Li H, et al. (2019). Associations of trimester-specific exposure to bisphenols with size at birth: a Chinese prenatal cohort study. Environmental Health Perspectives, 127(10): 107001

Hu X, He L, Zhang J, Qiu X, Zhang Y, Mo J, Day D B, Xiang J, Gong J (2020). Inflammatory and oxidative stress responses of healthy adults to changes in personal air pollutant exposure. Environmental Pollution, 263: 114503

Ji J S, Xia Y, Liu L, Zhou W, Chen R, Dong G, Hu Q, Jiang J, Kan H, Li T, et al. (2023). China’s public health initiatives for climate change adaptation. Lancet Regional Health. Western Pacific, 40: 100965

Ji S, Guo Y, Ding J, Hong W, Yan Z, Cai Z, Yue H, Qiu X, Sang N (2024). Nontargeted identification of organic components in fine particulate matter related to lung tumor metastasis based on an adverse outcome pathway strategy. Environmental Science & Technology, 58(9): 4083–4091

CAS   Google Scholar  

Jiang X, Han Y, Qiu X, Chai Q, Zhang H, Chen X, Cheng Z, Wang Y, Fan Y, Xue T, et al. (2021). Organic components of personal PM 2.5 exposure associated with inflammation: Evidence from an untargeted exposomic approach. Environmental Science & Technology, 55(15): 10589–10596

Li Y, Hou J, Wang Z, Dai X, Sun Y, Liu J, Liu Y (2023a). Phthalate levels in Chinese residences: seasonal and regional variations and the implication on human exposure. National Science Open, 2(6): 20230011

Li C, Liu Z, Li W, Lin Y, Hou L, Niu S, Xing Y, Huang J, Chen Y, Zhang S, Gao X, Xu Y, Wang C, Zhao Q, Liu Q, Ma W, Cai W, Gong P, Luo Y, et al. (2023b). Projecting future risk of dengue related to hydrometeorological conditions in the mainland of China under climate change scenarios: a modelling study. Lancet. Planetary Health, 7(5): e397–e406

Li Y F, Qiao L N, Ren N Q, Macdonald R W, Kannan K (2020). Gas/particle partitioning of semi-volatile organic compounds in the atmosphere: transition from unsteady to steady state. Science of the Total Environment, 710: 136394

Liu C, Chen R, Sera F, Vicedo-Cabrera A M, Guo Y, Tong S, Coelho M S Z S, Saldiva P H N, Lavigne E, Matus P, et al. (2019). Ambient particulate air pollution and daily mortality in 652 cities. New England Journal of Medicine, 381(8): 705–715

Liu W, Wang Z, Chen J, Tang W, Wang H (2023a). Machine learning model for screening thyroid stimulating hormone receptor agonists based on updated datasets and improved applicability domain metrics. Chemical Research in Toxicology, 36(6): 947–958

Liu Y, Yan M, Du H, Sun Q, Brooke Anderson G, Li T (2023b). Increased mortality risks from a spectrum of causes of tropical cyclone exposure — China, 2013–2018. China CDC Weekly, 5(6): 119–124

Luan M, Zhang T, Li X, Yan C, Sun J, Zhi G, Shen G, Liu X, Zheng M (2022). Investigating the relationship between mass concentration of particulate matter and reactive oxygen species based on residential coal combustion source tests. Environmental Research, 212: 113499

Meng W, Li J, Shen J, Deng Y, Letcher R J, Su G (2020). Functional group-dependent screening of organophosphate esters (OPEs) and discovery of an abundant OPE bis-(2-ethylhexyl)-phenyl phosphate in indoor dust. Environmental Science & Technology, 54(7): 4455–4464

Pan Y, Cui Q, Wang J, Sheng N, Jing J, Yao B, Dai J (2019). Profiles of emerging and legacy per-/polyfluoroalkyl substances in matched serum and semen samples: new implications for human semen quality. Environmental Health Perspectives, 127(12): 127005

Qiu J, Xie D, Li Y, Qu Y, Liu Y, Zhu T, Liu Y (2021). Dibasic esters observed as potential emerging indoor air pollutants in new apartments in Beijing, China. Environmental Science & Technology Letters, 8(6): 445–450

Shi G, Guo H, Sheng N, Cui Q, Pan Y, Wang J, Guo Y, Dai J (2018). Two-generational reproductive toxicity assessment of 6:2 chlorinated polyfluorinated ether sulfonate (F-53B, a novel alternative to perfluorooctane sulfonate) in zebrafish. Environmental Pollution, 243: 1517–1527

Sinharay R, Gong J, Barratt B, Ohman-Strickland P, Ernst S, Kelly F J, Zhang J, Collins P, Cullinan P, Chung K F (2018). Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study. Lancet, 391(10118): 339–349

Tong M, Xu H, Wang R, Liu H, Li J, Li P, Qiu X, Gong J, Shang J, Zhu T, et al. (2023). Estimating birthweight reduction attributable to maternal ozone exposure in low- and middle-income countries. Science Advances, 9(49): eadh4363

Wang H, Liu W, Chen J, Wang Z (2023). Applicability domains based on molecular graph contrastive learning enable graph attention network models to accurately predict 15 environmental end points. Environmental Science & Technology, 57(44): 16906–16917

Wang H, Wang P, Li Q, Li J, Zhang L, Shi H, Li J, Zhang Y (2022). Prenatal exposure of organophosphate esters and its trimester-specific and gender-specific effects on fetal growth. Environmental Science & Technology, 56(23): 17018–17028

Wang Q, Li B, Benmarhnia T, Hajat S, Ren M, Liu T, Knibbs L D, Zhang H, Bao J, Zhang Y, et al. (2020). Independent and combined effects of heatwaves and PM 2.5 on preterm birth in Guangzhou, China: a survival analysis. Environmental Health Perspectives, 128(1): 017006

Wei J, Lin Y, Li Y, Ying C, Chen J, Song L, Zhou Z, Lv Z, Xia W, Chen X, et al. (2011). Perinatal exposure to bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology, 152(8): 3049–3061

World Health Organization (2021). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Geneva: World Health Organization

Google Scholar  

Xu Y, Han Y, Chen W, Chatzidiakou L, Yan L, Krause A, Li Y, Zhang H, Wang T, Xue T, et al. (2024). Susceptibility of hypertensive individuals to acute blood pressure increases in response to personal-level environmental temperature decrease. Environment International, 185: 108567

Ye L, Meng W, Huang J, Li J, Su G (2021). Establishment of a target, suspect, and functional group-dependent screening strategy for organophosphate esters (OPEs): “Into the Unknown” of OPEs in the sediment of Taihu lake, China. Environmental Science & Technology, 55(9): 5836–5847

Yu K, Qiu G, Chan K H, Lam K B H, Kurmi O P, Bennett D A, Yu C, Pan A, Lv J, Guo Y, et al. (2018). Association of solid fuel use with risk of cardiovascular and all-cause mortality in rural China. Journal of the American Medical Association, 319(13): 1351–1361

Yuan X, Liang F, Zhu J, Huang K, Dai L, Li X, Wang Y, Li Q, Lu X, Huang J, et al. (2023). Maternal exposure to PM 2.5 and the risk of congenital heart defects in 1.4 million births: a nationwide surveillance-based study. Circulation, 147(7): 565–574

Zahm S, Bonde J P, Chiu W A, Hoppin J, Kanno J, Abdallah M, Blystone C R, Calkins M M, Dong G H, Dorman D C, et al. (2024). Carcinogenicity of perfluorooctanoic acid and perfluorooctane-sulfonic acid. Lancet. Oncology, 25(1): 16–17

Zhang S, Zhang C, Cai W, Bai Y, Callaghan M, Chang N, Chen B, Chen H, Cheng L, Dai H, et al. (2023). The 2023 China report of the Lancet Countdown on health and climate change: taking stock for a thriving future. Lancet. Public Health, 8(12): e978–e995

Zhang Y, Hajat S, Zhao L, Chen H, Cheng L, Ren M, Gu K, Ji J S, Liang W, Huang C (2022). The burden of heatwave-related preterm births and associated human capital losses in China. Nature Communications, 13(1): 7565

Zhou Y, Li Q, Wang P, Li J, Zhao W, Zhang L, Wang H, Cheng Y, Shi H, Li J, et al. (2023). Associations of prenatal PFAS exposure and early childhood neurodevelopment: evidence from the Shanghai Maternal-Child Pairs Cohort. Environment International, 173: 107850

Download references

Acknowledgements

We thank the Environment and Health Branch of Chinese Society for Sustainability for organizing and Hainan University for hosting the workshop. We thank all participants of the workshop for stimulating discussion. This work is partially supported by the Ministry of Science and Technology of China (No. 2022YFC3702600).

Author information

Authors and affiliations.

SKL-ESPC & SEPKL-AERM, Department of Environmental Health, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China

Tong Zhu, Yingjun Liu, Jicheng Gong, Xinghua Qiu, Jing Shang & Mei Zheng

Center for Environment and Health, Peking University, Beijing, 100871, China

School of Life and Health Sciences, Huainan University, Haikou, 570228, China

Shunqing Xu

Joint International Research Laboratory of Environment and Health (Ministry of Education), Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China

Guanghui Dong

Vanke School of Public Health, Tsinghua University, Beijing, 100084, China

Cunrui Huang

Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, 030006, China

Nan Sang & Guohua Qin

Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China

Yunhui Zhang

School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China

Guanyong Su

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China

Jingwen Chen & Haobo Wang

Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China

Pengpeng Wang

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Tong Zhu .

Ethics declarations

Conflict of Interests Tong Zhu is an advisory board member of Frontiers of Environmental Science & Engineering . The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

• Environmental health research has surged in China over the past decade

• The scope extends beyond health effects of classic pollutants to include those of emerging pollutants and climate change

• Future research priorities and opportunities are proposed

Author Biography

Dr. Tong ZHU is a Boya Chair Professor, College of Environmental Sciences and Engineering, Peking University.

He graduated with BSc and MSc from Peking University, and Dr. rer. nat in Physical Chemistry from Wuppertal University, Germany. He was a postdoc at the Center for Atmospheric Chemistry of York University, Canada (1991–1992), a postdoctoral fellow and contract research scientist at the Soil and Biological Resources Research Centre of Agriculture Canada (1993–1999). Since 1999, he holds a professor position at Peking University, was the founding director of the Center for Environment and Health (2007–2022) and the dean of the College of Environmental Sciences and Engineering (2012–2023). He is a member of Chinese Academy of Sciences (2021) and Chinese Academy of Medical Sciences (2022), a Fellow of American Geophysical Union (2019), and appointed as a Counsellor of the State Council of People’s Republic of China (2020). His research focuses on Atmospheric Chemistry and Environmental Health, and has published more than 480 papers in Science, PNAS, JAMA and other journals, with a H-index of 87 (Google scholar). He is the chair of the advisory group of the NSFC major program “Fundamental researches on the formation and response mechanism of air pollution complex in China”, and the chair of Future Earth-Monsoon Asia Integrated Research for Sustainable Development (FE-MAIRS).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Zhu, T., Liu, Y., Xu, S. et al. Advances and perspectives in environmental health research in China. Front. Environ. Sci. Eng. 18 , 76 (2024). https://doi.org/10.1007/s11783-024-1836-z

Download citation

Received : 18 March 2024

Revised : 15 April 2024

Accepted : 16 April 2024

Published : 10 May 2024

DOI : https://doi.org/10.1007/s11783-024-1836-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Environmental pollution
  • Emerging pollutants
  • Climate change

Advertisement

  • Find a journal
  • Publish with us
  • Track your research

The Effects of Mental Health Interventions on Labor Market Outcomes in Low- and Middle-Income Countries

Mental health conditions are prevalent but rarely treated in low- and middle-income countries (LMICs). Little is known about how these conditions affect economic participation. This paper shows that treating mental health conditions substantially improves recipients’ capacity to work in these contexts. First, we perform a systematic review and meta-analysis of all randomized controlled trials (RCTs) ever conducted that evaluate treatments for mental ill-health and measure economic outcomes in LMICs. On average, treating common mental disorders like depression with psychotherapy improves an aggregate of labor market outcomes made up of employment, time spent working, capacity to work and job search by 0.16 standard deviations. Treating severe mental disorders, like schizophrenia, improves the aggregate by 0.30 standard deviations, but effects are noisily estimated. Second, we build a new dataset, pooling all available microdata from RCTs using the most common trial design: studies of psychotherapy in LMICs that treated depression and measured days participants were unable to work in the past month. We observe comparable treatment effects on mental health and work outcomes in this sub-sample of highly similar studies. We also show evidence consistent with mental health being the mechanism through which psychotherapy improves work outcomes.

The three authors listed first (Crick Lund, Kate Orkin, and Marc Witte) are jointly the first author. This study was funded by the Wellspring Philanthropic Fund. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

Vikram Patel acknowledges research support from the NIMH, Wellcome Trust, Grand Challenges Canada and the Medical Research Council. He also receives funding from the Lone Star Prize and serves as a consultant to Modern Health and Johnson & Johnson.

MARC RIS BibTeΧ

Download Citation Data

  • data appendix

More from NBER

In addition to working papers , the NBER disseminates affiliates’ latest findings through a range of free periodicals — the NBER Reporter , the NBER Digest , the Bulletin on Retirement and Disability , the Bulletin on Health , and the Bulletin on Entrepreneurship  — as well as online conference reports , video lectures , and interviews .

15th Annual Feldstein Lecture, Mario Draghi, "The Next Flight of the Bumblebee: The Path to Common Fiscal Policy in the Eurozone cover slide

medRxiv

Exploring the Relationship Between Early Life Exposures and the Comorbidity of Obesity and Hypertension: Findings from the 1970 The British Cohort Study (BCS70)

  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S Stannard
  • For correspondence: [email protected]
  • ORCID record for R Owen
  • ORCID record for A Berrington
  • ORCID record for N Ziauddeen
  • ORCID record for SDS Fraser
  • ORCID record for S Paranjothy
  • ORCID record for RB Hoyle
  • ORCID record for N A Alwan
  • Info/History
  • Supplementary material
  • Preview PDF

Background Epidemiological research commonly investigates single exposure-outcome relationships, while children’s experiences across a variety of early lifecourse domains are intersecting. To design realistic interventions, epidemiological research should incorporate information from multiple risk exposure domains to assess effect on health outcomes. In this paper we identify exposures across five pre-hypothesised childhood domains and explored their association to the odds of combined obesity and hypertension in adulthood.

Methods We used data from 17,196 participants in the 1970 British Cohort Study. The outcome was obesity (BMI of ≥30) and hypertension (blood pressure>140/90mm Hg or self-reported doctor’s diagnosis) comorbidity at age 46. Early life domains included: ‘prenatal, antenatal, neonatal and birth’, ‘developmental attributes and behaviour’, ‘child education and academic ability’, ‘socioeconomic factors’ and ‘parental and family environment’. Stepwise backward elimination selected variables for inclusion for each domain. Predicted risk scores of combined obesity and hypertension for each cohort member within each domain were calculated. Logistic regression investigated the association between domain-specific risk scores and odds of obesity-hypertension, controlling for demographic factors and other domains.

Results Adjusting for demographic confounders, all domains were associated with odds of obesity-hypertension. Including all domains in the same model, higher predicted risk values across the five domains remained associated with increased odds of obesity-hypertension comorbidity, with the strongest associations to the parental and family environment domain (OR1.11 95%CI 1.05-1.18) and the socioeconomic factors domain (OR1.11 95%CI 1.05-1.17).

Conclusions Targeted prevention interventions aimed at population groups with shared early-life characteristics could have an impact on obesity-hypertension prevalence which are known risk factors for further morbidity including cardiovascular disease.

Competing Interest Statement

R.O. is a member of the National Institute for Health and Care Excellence (NICE) Technology Appraisal Committee, member of the NICE Decision Support Unit (DSU), and associate member of the NICE Technical Support Unit (TSU). She has served as a paid consultant to the pharmaceutical industry and international reimbursement agencies, providing unrelated methodological advice. She reports teaching fees from the Association of British Pharmaceutical Industry (ABPI). R.H. is a member of the Scientific Board of the Smith Institute for Industrial Mathematics and System Engineering.

Funding Statement

This work is part of the multidisciplinary ecosystem to study lifecourse determinants and prevention of early-onset burdensome multimorbidity (MELD-B) project which is supported by the National Institute for Health Research (NIHR203988). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Ethics approval for this work has been obtained from the University of Southampton Faculty of Medicine Ethics committee (ERGO II Reference 66810).

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Data Availability Statement

The BCS70 datasets generated and analysed in the current study are available from the UK Data Archive repository (available here: http://www.cls.ioe.ac.uk/page.aspx?&sitesectionid=795 ).

View the discussion thread.

Supplementary Material

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Reddit logo

Citation Manager Formats

  • EndNote (tagged)
  • EndNote 8 (xml)
  • RefWorks Tagged
  • Ref Manager
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
  • Addiction Medicine (323)
  • Allergy and Immunology (627)
  • Anesthesia (163)
  • Cardiovascular Medicine (2367)
  • Dentistry and Oral Medicine (288)
  • Dermatology (206)
  • Emergency Medicine (379)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (835)
  • Epidemiology (11765)
  • Forensic Medicine (10)
  • Gastroenterology (702)
  • Genetic and Genomic Medicine (3731)
  • Geriatric Medicine (348)
  • Health Economics (633)
  • Health Informatics (2392)
  • Health Policy (929)
  • Health Systems and Quality Improvement (896)
  • Hematology (340)
  • HIV/AIDS (780)
  • Infectious Diseases (except HIV/AIDS) (13303)
  • Intensive Care and Critical Care Medicine (767)
  • Medical Education (365)
  • Medical Ethics (104)
  • Nephrology (398)
  • Neurology (3493)
  • Nursing (198)
  • Nutrition (523)
  • Obstetrics and Gynecology (673)
  • Occupational and Environmental Health (662)
  • Oncology (1819)
  • Ophthalmology (535)
  • Orthopedics (218)
  • Otolaryngology (287)
  • Pain Medicine (232)
  • Palliative Medicine (66)
  • Pathology (446)
  • Pediatrics (1032)
  • Pharmacology and Therapeutics (426)
  • Primary Care Research (420)
  • Psychiatry and Clinical Psychology (3172)
  • Public and Global Health (6135)
  • Radiology and Imaging (1279)
  • Rehabilitation Medicine and Physical Therapy (746)
  • Respiratory Medicine (825)
  • Rheumatology (379)
  • Sexual and Reproductive Health (372)
  • Sports Medicine (322)
  • Surgery (401)
  • Toxicology (50)
  • Transplantation (172)
  • Urology (145)
  • Alzheimer's disease & dementia
  • Arthritis & Rheumatism
  • Attention deficit disorders
  • Autism spectrum disorders
  • Biomedical technology
  • Diseases, Conditions, Syndromes
  • Endocrinology & Metabolism
  • Gastroenterology
  • Gerontology & Geriatrics
  • Health informatics
  • Inflammatory disorders
  • Medical economics
  • Medical research
  • Medications
  • Neuroscience
  • Obstetrics & gynaecology
  • Oncology & Cancer
  • Ophthalmology
  • Overweight & Obesity
  • Parkinson's & Movement disorders
  • Psychology & Psychiatry
  • Radiology & Imaging
  • Sleep disorders
  • Sports medicine & Kinesiology
  • Vaccination
  • Breast cancer
  • Cardiovascular disease
  • Chronic obstructive pulmonary disease
  • Colon cancer
  • Coronary artery disease
  • Heart attack
  • Heart disease
  • High blood pressure
  • Kidney disease
  • Lung cancer
  • Multiple sclerosis
  • Myocardial infarction
  • Ovarian cancer
  • Post traumatic stress disorder
  • Rheumatoid arthritis
  • Schizophrenia
  • Skin cancer
  • Type 2 diabetes
  • Full List »

share this!

May 15, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

Two decades of studies suggest health benefits associated with plant-based diets, but caution urged

by Public Library of Science

Two decades of studies suggest health benefits associated with plant-based diets

Vegetarian and vegan diets are generally associated with better status on various medical factors linked to cardiovascular health and cancer risk, as well as lower risk of cardiovascular diseases, cancer, and death, according to a new review of 48 previously published papers. Angelo Capodici and colleagues present these findings in the open-access journal PLOS ONE on May 15, 2024.

Prior studies have linked certain diets with increased risk of cardiovascular disease and cancer. A diet that is poor in plant products and rich in meat, refined grains, sugar, and salt is associated with higher risk of death. Reducing consumption of animal-based products in favor of plant-based products has been suggested to lower the risk of cardiovascular disease and cancer. However, the overall benefits of such diets remain unclear.

To deepen an understanding of the potential benefits of plant-based diets, Capodici and colleagues reviewed 48 papers published between January 2000 and June 2023 that had compiled evidence from multiple prior studies. Following an "umbrella" review approach, they extracted and analyzed data from the 48 papers on links between plant-based diets, cardiovascular health , and cancer risk.

Their analysis showed that, overall, vegetarian and vegan diets have a robust statistical association with better health status on a number of risk factors associated with cardiometabolic diseases, cancer, and mortality, such as blood pressure , management of blood sugar, and body mass index. Such diets are associated with reduced risk of ischemic heart disease, gastrointestinal and prostate cancer , and death from cardiovascular disease.

However, among pregnant women specifically, those with vegetarian diets faced no difference in their risk of gestational diabetes and hypertension compared to those on non-plant-based diets.

Overall, these findings suggest that plant-based diets are associated with significant health benefits. However, the researchers note, the statistical strength of this association is significantly limited by the many differences between past studies in terms of the specific diet regimens followed, patient demographics, study duration, and other factors.

Moreover, some plant-based diets may introduce vitamin and mineral deficiencies for some people. Thus, the researchers caution against large-scale recommendation of plant-based diets until more research is completed.

The authors add, "Our study evaluates the different impacts of animal-free diets for cardiovascular health and cancer risk showing how a vegetarian diet can be beneficial to human health and be one of the effective preventive strategies for the two most impactful chronic diseases on human health in the 21st century."

Explore further

Feedback to editors

health risks research paper

Neuroplasticity study shows how singing rehabilitates speech production in post-stroke aphasia

34 minutes ago

health risks research paper

Despite its 'nothingburger' reputation, COVID-19 remains deadlier than the flu

2 hours ago

health risks research paper

Fruit fly study reveals brain-cell circuitry that could underlie how creatures large and small see wavelengths of light

4 hours ago

health risks research paper

Climate change is likely to aggravate brain conditions, study finds

15 hours ago

health risks research paper

Researchers develop innovative platform for modeling human muscle diseases in worms

16 hours ago

health risks research paper

Pre- and post-surgical immunotherapy improves outcomes for patients with operable lung cancer, Phase III study finds

health risks research paper

Study finds reduced risk of breast cancer following bariatric surgery in women with hyperinsulinemia

health risks research paper

Treatment-resistant depression linked to body mass index: Study

health risks research paper

Chiropractic associated with lower likelihood of tramadol prescription in adults with sciatica

health risks research paper

Study finds two genes of the germline are essential for the development of brain tumors in Drosophila

Related stories.

health risks research paper

Video: Busting plant-based diet myths

Apr 18, 2024

health risks research paper

Healthy diet lowers heart disease risk in breast cancer survivors, study finds

Apr 17, 2024

health risks research paper

New review highlights benefits of plant-based diets for heart health

May 30, 2018

health risks research paper

Healthy plant-based diets better for the environment than less healthy plant-based diets

Nov 10, 2022

Plant-based diets improve cardiometabolic risk factors in diabetes patients

Jun 18, 2018

health risks research paper

People who eat a healthy, plant-based diet are less likely to suffer from dangerous snoring, finds study

Feb 20, 2024

Recommended for you

health risks research paper

Researchers find microplastics in canine and human testicular tissue

19 hours ago

health risks research paper

Scientists want to know how the smells of nature benefit our health

health risks research paper

The doctor is in… but what's behind them? Study reveals impacts of telehealth background settings

21 hours ago

health risks research paper

Up to 246 million older people may be exposed to heat risk by 2050 due to global warming

health risks research paper

First study to globally map heat-wave-related mortality finds 153,000+ deaths associated with heat waves

May 14, 2024

health risks research paper

Scientists find sleep may not clear brain toxins

May 13, 2024

Let us know if there is a problem with our content

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

health risks research paper

Cultural Relativity and Acceptance of Embryonic Stem Cell Research

Article sidebar.

health risks research paper

Main Article Content

There is a debate about the ethical implications of using human embryos in stem cell research, which can be influenced by cultural, moral, and social values. This paper argues for an adaptable framework to accommodate diverse cultural and religious perspectives. By using an adaptive ethics model, research protections can reflect various populations and foster growth in stem cell research possibilities.

INTRODUCTION

Stem cell research combines biology, medicine, and technology, promising to alter health care and the understanding of human development. Yet, ethical contention exists because of individuals’ perceptions of using human embryos based on their various cultural, moral, and social values. While these disagreements concerning policy, use, and general acceptance have prompted the development of an international ethics policy, such a uniform approach can overlook the nuanced ethical landscapes between cultures. With diverse viewpoints in public health, a single global policy, especially one reflecting Western ethics or the ethics prevalent in high-income countries, is impractical. This paper argues for a culturally sensitive, adaptable framework for the use of embryonic stem cells. Stem cell policy should accommodate varying ethical viewpoints and promote an effective global dialogue. With an extension of an ethics model that can adapt to various cultures, we recommend localized guidelines that reflect the moral views of the people those guidelines serve.

Stem cells, characterized by their unique ability to differentiate into various cell types, enable the repair or replacement of damaged tissues. Two primary types of stem cells are somatic stem cells (adult stem cells) and embryonic stem cells. Adult stem cells exist in developed tissues and maintain the body’s repair processes. [1] Embryonic stem cells (ESC) are remarkably pluripotent or versatile, making them valuable in research. [2] However, the use of ESCs has sparked ethics debates. Considering the potential of embryonic stem cells, research guidelines are essential. The International Society for Stem Cell Research (ISSCR) provides international stem cell research guidelines. They call for “public conversations touching on the scientific significance as well as the societal and ethical issues raised by ESC research.” [3] The ISSCR also publishes updates about culturing human embryos 14 days post fertilization, suggesting local policies and regulations should continue to evolve as ESC research develops. [4]  Like the ISSCR, which calls for local law and policy to adapt to developing stem cell research given cultural acceptance, this paper highlights the importance of local social factors such as religion and culture.

I.     Global Cultural Perspective of Embryonic Stem Cells

Views on ESCs vary throughout the world. Some countries readily embrace stem cell research and therapies, while others have stricter regulations due to ethical concerns surrounding embryonic stem cells and when an embryo becomes entitled to moral consideration. The philosophical issue of when the “someone” begins to be a human after fertilization, in the morally relevant sense, [5] impacts when an embryo becomes not just worthy of protection but morally entitled to it. The process of creating embryonic stem cell lines involves the destruction of the embryos for research. [6] Consequently, global engagement in ESC research depends on social-cultural acceptability.

a.     US and Rights-Based Cultures

In the United States, attitudes toward stem cell therapies are diverse. The ethics and social approaches, which value individualism, [7] trigger debates regarding the destruction of human embryos, creating a complex regulatory environment. For example, the 1996 Dickey-Wicker Amendment prohibited federal funding for the creation of embryos for research and the destruction of embryos for “more than allowed for research on fetuses in utero.” [8] Following suit, in 2001, the Bush Administration heavily restricted stem cell lines for research. However, the Stem Cell Research Enhancement Act of 2005 was proposed to help develop ESC research but was ultimately vetoed. [9] Under the Obama administration, in 2009, an executive order lifted restrictions allowing for more development in this field. [10] The flux of research capacity and funding parallels the different cultural perceptions of human dignity of the embryo and how it is socially presented within the country’s research culture. [11]

b.     Ubuntu and Collective Cultures

African bioethics differs from Western individualism because of the different traditions and values. African traditions, as described by individuals from South Africa and supported by some studies in other African countries, including Ghana and Kenya, follow the African moral philosophies of Ubuntu or Botho and Ukama , which “advocates for a form of wholeness that comes through one’s relationship and connectedness with other people in the society,” [12] making autonomy a socially collective concept. In this context, for the community to act autonomously, individuals would come together to decide what is best for the collective. Thus, stem cell research would require examining the value of the research to society as a whole and the use of the embryos as a collective societal resource. If society views the source as part of the collective whole, and opposes using stem cells, compromising the cultural values to pursue research may cause social detachment and stunt research growth. [13] Based on local culture and moral philosophy, the permissibility of stem cell research depends on how embryo, stem cell, and cell line therapies relate to the community as a whole. Ubuntu is the expression of humanness, with the person’s identity drawn from the “’I am because we are’” value. [14] The decision in a collectivistic culture becomes one born of cultural context, and individual decisions give deference to others in the society.

Consent differs in cultures where thought and moral philosophy are based on a collective paradigm. So, applying Western bioethical concepts is unrealistic. For one, Africa is a diverse continent with many countries with different belief systems, access to health care, and reliance on traditional or Western medicines. Where traditional medicine is the primary treatment, the “’restrictive focus on biomedically-related bioethics’” [is] problematic in African contexts because it neglects bioethical issues raised by traditional systems.” [15] No single approach applies in all areas or contexts. Rather than evaluating the permissibility of ESC research according to Western concepts such as the four principles approach, different ethics approaches should prevail.

Another consideration is the socio-economic standing of countries. In parts of South Africa, researchers have not focused heavily on contributing to the stem cell discourse, either because it is not considered health care or a health science priority or because resources are unavailable. [16] Each country’s priorities differ given different social, political, and economic factors. In South Africa, for instance, areas such as maternal mortality, non-communicable diseases, telemedicine, and the strength of health systems need improvement and require more focus [17] Stem cell research could benefit the population, but it also could divert resources from basic medical care. Researchers in South Africa adhere to the National Health Act and Medicines Control Act in South Africa and international guidelines; however, the Act is not strictly enforced, and there is no clear legislation for research conduct or ethical guidelines. [18]

Some parts of Africa condemn stem cell research. For example, 98.2 percent of the Tunisian population is Muslim. [19] Tunisia does not permit stem cell research because of moral conflict with a Fatwa. Religion heavily saturates the regulation and direction of research. [20] Stem cell use became permissible for reproductive purposes only recently, with tight restrictions preventing cells from being used in any research other than procedures concerning ART/IVF.  Their use is conditioned on consent, and available only to married couples. [21] The community's receptiveness to stem cell research depends on including communitarian African ethics.

c.     Asia

Some Asian countries also have a collective model of ethics and decision making. [22] In China, the ethics model promotes a sincere respect for life or human dignity, [23] based on protective medicine. This model, influenced by Traditional Chinese Medicine (TCM), [24] recognizes Qi as the vital energy delivered via the meridians of the body; it connects illness to body systems, the body’s entire constitution, and the universe for a holistic bond of nature, health, and quality of life. [25] Following a protective ethics model, and traditional customs of wholeness, investment in stem cell research is heavily desired for its applications in regenerative therapies, disease modeling, and protective medicines. In a survey of medical students and healthcare practitioners, 30.8 percent considered stem cell research morally unacceptable while 63.5 percent accepted medical research using human embryonic stem cells. Of these individuals, 89.9 percent supported increased funding for stem cell research. [26] The scientific community might not reflect the overall population. From 1997 to 2019, China spent a total of $576 million (USD) on stem cell research at 8,050 stem cell programs, increased published presence from 0.6 percent to 14.01 percent of total global stem cell publications as of 2014, and made significant strides in cell-based therapies for various medical conditions. [27] However, while China has made substantial investments in stem cell research and achieved notable progress in clinical applications, concerns linger regarding ethical oversight and transparency. [28] For example, the China Biosecurity Law, promoted by the National Health Commission and China Hospital Association, attempted to mitigate risks by introducing an institutional review board (IRB) in the regulatory bodies. 5800 IRBs registered with the Chinese Clinical Trial Registry since 2021. [29] However, issues still need to be addressed in implementing effective IRB review and approval procedures.

The substantial government funding and focus on scientific advancement have sometimes overshadowed considerations of regional cultures, ethnic minorities, and individual perspectives, particularly evident during the one-child policy era. As government policy adapts to promote public stability, such as the change from the one-child to the two-child policy, [30] research ethics should also adapt to ensure respect for the values of its represented peoples.

Japan is also relatively supportive of stem cell research and therapies. Japan has a more transparent regulatory framework, allowing for faster approval of regenerative medicine products, which has led to several advanced clinical trials and therapies. [31] South Korea is also actively engaged in stem cell research and has a history of breakthroughs in cloning and embryonic stem cells. [32] However, the field is controversial, and there are issues of scientific integrity. For example, the Korean FDA fast-tracked products for approval, [33] and in another instance, the oocyte source was unclear and possibly violated ethical standards. [34] Trust is important in research, as it builds collaborative foundations between colleagues, trial participant comfort, open-mindedness for complicated and sensitive discussions, and supports regulatory procedures for stakeholders. There is a need to respect the culture’s interest, engagement, and for research and clinical trials to be transparent and have ethical oversight to promote global research discourse and trust.

d.     Middle East

Countries in the Middle East have varying degrees of acceptance of or restrictions to policies related to using embryonic stem cells due to cultural and religious influences. Saudi Arabia has made significant contributions to stem cell research, and conducts research based on international guidelines for ethical conduct and under strict adherence to guidelines in accordance with Islamic principles. Specifically, the Saudi government and people require ESC research to adhere to Sharia law. In addition to umbilical and placental stem cells, [35] Saudi Arabia permits the use of embryonic stem cells as long as they come from miscarriages, therapeutic abortions permissible by Sharia law, or are left over from in vitro fertilization and donated to research. [36] Laws and ethical guidelines for stem cell research allow the development of research institutions such as the King Abdullah International Medical Research Center, which has a cord blood bank and a stem cell registry with nearly 10,000 donors. [37] Such volume and acceptance are due to the ethical ‘permissibility’ of the donor sources, which do not conflict with religious pillars. However, some researchers err on the side of caution, choosing not to use embryos or fetal tissue as they feel it is unethical to do so. [38]

Jordan has a positive research ethics culture. [39] However, there is a significant issue of lack of trust in researchers, with 45.23 percent (38.66 percent agreeing and 6.57 percent strongly agreeing) of Jordanians holding a low level of trust in researchers, compared to 81.34 percent of Jordanians agreeing that they feel safe to participate in a research trial. [40] Safety testifies to the feeling of confidence that adequate measures are in place to protect participants from harm, whereas trust in researchers could represent the confidence in researchers to act in the participants’ best interests, adhere to ethical guidelines, provide accurate information, and respect participants’ rights and dignity. One method to improve trust would be to address communication issues relevant to ESC. Legislation surrounding stem cell research has adopted specific language, especially concerning clarification “between ‘stem cells’ and ‘embryonic stem cells’” in translation. [41] Furthermore, legislation “mandates the creation of a national committee… laying out specific regulations for stem-cell banking in accordance with international standards.” [42] This broad regulation opens the door for future global engagement and maintains transparency. However, these regulations may also constrain the influence of research direction, pace, and accessibility of research outcomes.

e.     Europe

In the European Union (EU), ethics is also principle-based, but the principles of autonomy, dignity, integrity, and vulnerability are interconnected. [43] As such, the opportunity for cohesion and concessions between individuals’ thoughts and ideals allows for a more adaptable ethics model due to the flexible principles that relate to the human experience The EU has put forth a framework in its Convention for the Protection of Human Rights and Dignity of the Human Being allowing member states to take different approaches. Each European state applies these principles to its specific conventions, leading to or reflecting different acceptance levels of stem cell research. [44]

For example, in Germany, Lebenzusammenhang , or the coherence of life, references integrity in the unity of human culture. Namely, the personal sphere “should not be subject to external intervention.” [45]  Stem cell interventions could affect this concept of bodily completeness, leading to heavy restrictions. Under the Grundgesetz, human dignity and the right to life with physical integrity are paramount. [46] The Embryo Protection Act of 1991 made producing cell lines illegal. Cell lines can be imported if approved by the Central Ethics Commission for Stem Cell Research only if they were derived before May 2007. [47] Stem cell research respects the integrity of life for the embryo with heavy specifications and intense oversight. This is vastly different in Finland, where the regulatory bodies find research more permissible in IVF excess, but only up to 14 days after fertilization. [48] Spain’s approach differs still, with a comprehensive regulatory framework. [49] Thus, research regulation can be culture-specific due to variations in applied principles. Diverse cultures call for various approaches to ethical permissibility. [50] Only an adaptive-deliberative model can address the cultural constructions of self and achieve positive, culturally sensitive stem cell research practices. [51]

II.     Religious Perspectives on ESC

Embryonic stem cell sources are the main consideration within religious contexts. While individuals may not regard their own religious texts as authoritative or factual, religion can shape their foundations or perspectives.

The Qur'an states:

“And indeed We created man from a quintessence of clay. Then We placed within him a small quantity of nutfa (sperm to fertilize) in a safe place. Then We have fashioned the nutfa into an ‘alaqa (clinging clot or cell cluster), then We developed the ‘alaqa into mudgha (a lump of flesh), and We made mudgha into bones, and clothed the bones with flesh, then We brought it into being as a new creation. So Blessed is Allah, the Best of Creators.” [52]

Many scholars of Islam estimate the time of soul installment, marked by the angel breathing in the soul to bring the individual into creation, as 120 days from conception. [53] Personhood begins at this point, and the value of life would prohibit research or experimentation that could harm the individual. If the fetus is more than 120 days old, the time ensoulment is interpreted to occur according to Islamic law, abortion is no longer permissible. [54] There are a few opposing opinions about early embryos in Islamic traditions. According to some Islamic theologians, there is no ensoulment of the early embryo, which is the source of stem cells for ESC research. [55]

In Buddhism, the stance on stem cell research is not settled. The main tenets, the prohibition against harming or destroying others (ahimsa) and the pursuit of knowledge (prajña) and compassion (karuna), leave Buddhist scholars and communities divided. [56] Some scholars argue stem cell research is in accordance with the Buddhist tenet of seeking knowledge and ending human suffering. Others feel it violates the principle of not harming others. Finding the balance between these two points relies on the karmic burden of Buddhist morality. In trying to prevent ahimsa towards the embryo, Buddhist scholars suggest that to comply with Buddhist tenets, research cannot be done as the embryo has personhood at the moment of conception and would reincarnate immediately, harming the individual's ability to build their karmic burden. [57] On the other hand, the Bodhisattvas, those considered to be on the path to enlightenment or Nirvana, have given organs and flesh to others to help alleviate grieving and to benefit all. [58] Acceptance varies on applied beliefs and interpretations.

Catholicism does not support embryonic stem cell research, as it entails creation or destruction of human embryos. This destruction conflicts with the belief in the sanctity of life. For example, in the Old Testament, Genesis describes humanity as being created in God’s image and multiplying on the Earth, referencing the sacred rights to human conception and the purpose of development and life. In the Ten Commandments, the tenet that one should not kill has numerous interpretations where killing could mean murder or shedding of the sanctity of life, demonstrating the high value of human personhood. In other books, the theological conception of when life begins is interpreted as in utero, [59] highlighting the inviolability of life and its formation in vivo to make a religious point for accepting such research as relatively limited, if at all. [60] The Vatican has released ethical directives to help apply a theological basis to modern-day conflicts. The Magisterium of the Church states that “unless there is a moral certainty of not causing harm,” experimentation on fetuses, fertilized cells, stem cells, or embryos constitutes a crime. [61] Such procedures would not respect the human person who exists at these stages, according to Catholicism. Damages to the embryo are considered gravely immoral and illicit. [62] Although the Catholic Church officially opposes abortion, surveys demonstrate that many Catholic people hold pro-choice views, whether due to the context of conception, stage of pregnancy, threat to the mother’s life, or for other reasons, demonstrating that practicing members can also accept some but not all tenets. [63]

Some major Jewish denominations, such as the Reform, Conservative, and Reconstructionist movements, are open to supporting ESC use or research as long as it is for saving a life. [64] Within Judaism, the Talmud, or study, gives personhood to the child at birth and emphasizes that life does not begin at conception: [65]

“If she is found pregnant, until the fortieth day it is mere fluid,” [66]

Whereas most religions prioritize the status of human embryos, the Halakah (Jewish religious law) states that to save one life, most other religious laws can be ignored because it is in pursuit of preservation. [67] Stem cell research is accepted due to application of these religious laws.

We recognize that all religions contain subsets and sects. The variety of environmental and cultural differences within religious groups requires further analysis to respect the flexibility of religious thoughts and practices. We make no presumptions that all cultures require notions of autonomy or morality as under the common morality theory , which asserts a set of universal moral norms that all individuals share provides moral reasoning and guides ethical decisions. [68] We only wish to show that the interaction with morality varies between cultures and countries.

III.     A Flexible Ethical Approach

The plurality of different moral approaches described above demonstrates that there can be no universally acceptable uniform law for ESC on a global scale. Instead of developing one standard, flexible ethical applications must be continued. We recommend local guidelines that incorporate important cultural and ethical priorities.

While the Declaration of Helsinki is more relevant to people in clinical trials receiving ESC products, in keeping with the tradition of protections for research subjects, consent of the donor is an ethical requirement for ESC donation in many jurisdictions including the US, Canada, and Europe. [69] The Declaration of Helsinki provides a reference point for regulatory standards and could potentially be used as a universal baseline for obtaining consent prior to gamete or embryo donation.

For instance, in Columbia University’s egg donor program for stem cell research, donors followed standard screening protocols and “underwent counseling sessions that included information as to the purpose of oocyte donation for research, what the oocytes would be used for, the risks and benefits of donation, and process of oocyte stimulation” to ensure transparency for consent. [70] The program helped advance stem cell research and provided clear and safe research methods with paid participants. Though paid participation or covering costs of incidental expenses may not be socially acceptable in every culture or context, [71] and creating embryos for ESC research is illegal in many jurisdictions, Columbia’s program was effective because of the clear and honest communications with donors, IRBs, and related stakeholders.  This example demonstrates that cultural acceptance of scientific research and of the idea that an egg or embryo does not have personhood is likely behind societal acceptance of donating eggs for ESC research. As noted, many countries do not permit the creation of embryos for research.

Proper communication and education regarding the process and purpose of stem cell research may bolster comprehension and garner more acceptance. “Given the sensitive subject material, a complete consent process can support voluntary participation through trust, understanding, and ethical norms from the cultures and morals participants value. This can be hard for researchers entering countries of different socioeconomic stability, with different languages and different societal values. [72]

An adequate moral foundation in medical ethics is derived from the cultural and religious basis that informs knowledge and actions. [73] Understanding local cultural and religious values and their impact on research could help researchers develop humility and promote inclusion.

IV.     Concerns

Some may argue that if researchers all adhere to one ethics standard, protection will be satisfied across all borders, and the global public will trust researchers. However, defining what needs to be protected and how to define such research standards is very specific to the people to which standards are applied. We suggest that applying one uniform guide cannot accurately protect each individual because we all possess our own perceptions and interpretations of social values. [74] Therefore, the issue of not adjusting to the moral pluralism between peoples in applying one standard of ethics can be resolved by building out ethics models that can be adapted to different cultures and religions.

Other concerns include medical tourism, which may promote health inequities. [75] Some countries may develop and approve products derived from ESC research before others, compromising research ethics or drug approval processes. There are also concerns about the sale of unauthorized stem cell treatments, for example, those without FDA approval in the United States. Countries with robust research infrastructures may be tempted to attract medical tourists, and some customers will have false hopes based on aggressive publicity of unproven treatments. [76]

For example, in China, stem cell clinics can market to foreign clients who are not protected under the regulatory regimes. Companies employ a marketing strategy of “ethically friendly” therapies. Specifically, in the case of Beike, China’s leading stem cell tourism company and sprouting network, ethical oversight of administrators or health bureaus at one site has “the unintended consequence of shifting questionable activities to another node in Beike's diffuse network.” [77] In contrast, Jordan is aware of stem cell research’s potential abuse and its own status as a “health-care hub.” Jordan’s expanded regulations include preserving the interests of individuals in clinical trials and banning private companies from ESC research to preserve transparency and the integrity of research practices. [78]

The social priorities of the community are also a concern. The ISSCR explicitly states that guidelines “should be periodically revised to accommodate scientific advances, new challenges, and evolving social priorities.” [79] The adaptable ethics model extends this consideration further by addressing whether research is warranted given the varying degrees of socioeconomic conditions, political stability, and healthcare accessibilities and limitations. An ethical approach would require discussion about resource allocation and appropriate distribution of funds. [80]

While some religions emphasize the sanctity of life from conception, which may lead to public opposition to ESC research, others encourage ESC research due to its potential for healing and alleviating human pain. Many countries have special regulations that balance local views on embryonic personhood, the benefits of research as individual or societal goods, and the protection of human research subjects. To foster understanding and constructive dialogue, global policy frameworks should prioritize the protection of universal human rights, transparency, and informed consent. In addition to these foundational global policies, we recommend tailoring local guidelines to reflect the diverse cultural and religious perspectives of the populations they govern. Ethics models should be adapted to local populations to effectively establish research protections, growth, and possibilities of stem cell research.

For example, in countries with strong beliefs in the moral sanctity of embryos or heavy religious restrictions, an adaptive model can allow for discussion instead of immediate rejection. In countries with limited individual rights and voice in science policy, an adaptive model ensures cultural, moral, and religious views are taken into consideration, thereby building social inclusion. While this ethical consideration by the government may not give a complete voice to every individual, it will help balance policies and maintain the diverse perspectives of those it affects. Embracing an adaptive ethics model of ESC research promotes open-minded dialogue and respect for the importance of human belief and tradition. By actively engaging with cultural and religious values, researchers can better handle disagreements and promote ethical research practices that benefit each society.

This brief exploration of the religious and cultural differences that impact ESC research reveals the nuances of relative ethics and highlights a need for local policymakers to apply a more intense adaptive model.

[1] Poliwoda, S., Noor, N., Downs, E., Schaaf, A., Cantwell, A., Ganti, L., Kaye, A. D., Mosel, L. I., Carroll, C. B., Viswanath, O., & Urits, I. (2022). Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice.  Orthopedic reviews ,  14 (3), 37498. https://doi.org/10.52965/001c.37498

[2] Poliwoda, S., Noor, N., Downs, E., Schaaf, A., Cantwell, A., Ganti, L., Kaye, A. D., Mosel, L. I., Carroll, C. B., Viswanath, O., & Urits, I. (2022). Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice.  Orthopedic reviews ,  14 (3), 37498. https://doi.org/10.52965/001c.37498

[3] International Society for Stem Cell Research. (2023). Laboratory-based human embryonic stem cell research, embryo research, and related research activities . International Society for Stem Cell Research. https://www.isscr.org/guidelines/blog-post-title-one-ed2td-6fcdk ; Kimmelman, J., Hyun, I., Benvenisty, N.  et al.  Policy: Global standards for stem-cell research.  Nature   533 , 311–313 (2016). https://doi.org/10.1038/533311a

[4] International Society for Stem Cell Research. (2023). Laboratory-based human embryonic stem cell research, embryo research, and related research activities . International Society for Stem Cell Research. https://www.isscr.org/guidelines/blog-post-title-one-ed2td-6fcdk

[5] Concerning the moral philosophies of stem cell research, our paper does not posit a personal moral stance nor delve into the “when” of human life begins. To read further about the philosophical debate, consider the following sources:

Sandel M. J. (2004). Embryo ethics--the moral logic of stem-cell research.  The New England journal of medicine ,  351 (3), 207–209. https://doi.org/10.1056/NEJMp048145 ; George, R. P., & Lee, P. (2020, September 26). Acorns and Embryos . The New Atlantis. https://www.thenewatlantis.com/publications/acorns-and-embryos ; Sagan, A., & Singer, P. (2007). The moral status of stem cells. Metaphilosophy , 38 (2/3), 264–284. http://www.jstor.org/stable/24439776 ; McHugh P. R. (2004). Zygote and "clonote"--the ethical use of embryonic stem cells.  The New England journal of medicine ,  351 (3), 209–211. https://doi.org/10.1056/NEJMp048147 ; Kurjak, A., & Tripalo, A. (2004). The facts and doubts about beginning of the human life and personality.  Bosnian journal of basic medical sciences ,  4 (1), 5–14. https://doi.org/10.17305/bjbms.2004.3453

[6] Vazin, T., & Freed, W. J. (2010). Human embryonic stem cells: derivation, culture, and differentiation: a review.  Restorative neurology and neuroscience ,  28 (4), 589–603. https://doi.org/10.3233/RNN-2010-0543

[7] Socially, at its core, the Western approach to ethics is widely principle-based, autonomy being one of the key factors to ensure a fundamental respect for persons within research. For information regarding autonomy in research, see: Department of Health, Education, and Welfare, & National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research (1978). The Belmont Report. Ethical principles and guidelines for the protection of human subjects of research.; For a more in-depth review of autonomy within the US, see: Beauchamp, T. L., & Childress, J. F. (1994). Principles of Biomedical Ethics . Oxford University Press.

[8] Sherley v. Sebelius , 644 F.3d 388 (D.C. Cir. 2011), citing 45 C.F.R. 46.204(b) and [42 U.S.C. § 289g(b)]. https://www.cadc.uscourts.gov/internet/opinions.nsf/6c690438a9b43dd685257a64004ebf99/$file/11-5241-1391178.pdf

[9] Stem Cell Research Enhancement Act of 2005, H. R. 810, 109 th Cong. (2001). https://www.govtrack.us/congress/bills/109/hr810/text ; Bush, G. W. (2006, July 19). Message to the House of Representatives . National Archives and Records Administration. https://georgewbush-whitehouse.archives.gov/news/releases/2006/07/20060719-5.html

[10] National Archives and Records Administration. (2009, March 9). Executive order 13505 -- removing barriers to responsible scientific research involving human stem cells . National Archives and Records Administration. https://obamawhitehouse.archives.gov/the-press-office/removing-barriers-responsible-scientific-research-involving-human-stem-cells

[11] Hurlbut, W. B. (2006). Science, Religion, and the Politics of Stem Cells.  Social Research ,  73 (3), 819–834. http://www.jstor.org/stable/40971854

[12] Akpa-Inyang, Francis & Chima, Sylvester. (2021). South African traditional values and beliefs regarding informed consent and limitations of the principle of respect for autonomy in African communities: a cross-cultural qualitative study. BMC Medical Ethics . 22. 10.1186/s12910-021-00678-4.

[13] Source for further reading: Tangwa G. B. (2007). Moral status of embryonic stem cells: perspective of an African villager. Bioethics , 21(8), 449–457. https://doi.org/10.1111/j.1467-8519.2007.00582.x , see also Mnisi, F. M. (2020). An African analysis based on ethics of Ubuntu - are human embryonic stem cell patents morally justifiable? African Insight , 49 (4).

[14] Jecker, N. S., & Atuire, C. (2021). Bioethics in Africa: A contextually enlightened analysis of three cases. Developing World Bioethics , 22 (2), 112–122. https://doi.org/10.1111/dewb.12324

[15] Jecker, N. S., & Atuire, C. (2021). Bioethics in Africa: A contextually enlightened analysis of three cases. Developing World Bioethics, 22(2), 112–122. https://doi.org/10.1111/dewb.12324

[16] Jackson, C.S., Pepper, M.S. Opportunities and barriers to establishing a cell therapy programme in South Africa.  Stem Cell Res Ther   4 , 54 (2013). https://doi.org/10.1186/scrt204 ; Pew Research Center. (2014, May 1). Public health a major priority in African nations . Pew Research Center’s Global Attitudes Project. https://www.pewresearch.org/global/2014/05/01/public-health-a-major-priority-in-african-nations/

[17] Department of Health Republic of South Africa. (2021). Health Research Priorities (revised) for South Africa 2021-2024 . National Health Research Strategy. https://www.health.gov.za/wp-content/uploads/2022/05/National-Health-Research-Priorities-2021-2024.pdf

[18] Oosthuizen, H. (2013). Legal and Ethical Issues in Stem Cell Research in South Africa. In: Beran, R. (eds) Legal and Forensic Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32338-6_80 , see also: Gaobotse G (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[19] United States Bureau of Citizenship and Immigration Services. (1998). Tunisia: Information on the status of Christian conversions in Tunisia . UNHCR Web Archive. https://webarchive.archive.unhcr.org/20230522142618/https://www.refworld.org/docid/3df0be9a2.html

[20] Gaobotse, G. (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[21] Kooli, C. Review of assisted reproduction techniques, laws, and regulations in Muslim countries.  Middle East Fertil Soc J   24 , 8 (2020). https://doi.org/10.1186/s43043-019-0011-0 ; Gaobotse, G. (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[22] Pang M. C. (1999). Protective truthfulness: the Chinese way of safeguarding patients in informed treatment decisions. Journal of medical ethics , 25(3), 247–253. https://doi.org/10.1136/jme.25.3.247

[23] Wang, L., Wang, F., & Zhang, W. (2021). Bioethics in China’s biosecurity law: Forms, effects, and unsettled issues. Journal of law and the biosciences , 8(1).  https://doi.org/10.1093/jlb/lsab019 https://academic.oup.com/jlb/article/8/1/lsab019/6299199

[24] Wang, Y., Xue, Y., & Guo, H. D. (2022). Intervention effects of traditional Chinese medicine on stem cell therapy of myocardial infarction.  Frontiers in pharmacology ,  13 , 1013740. https://doi.org/10.3389/fphar.2022.1013740

[25] Li, X.-T., & Zhao, J. (2012). Chapter 4: An Approach to the Nature of Qi in TCM- Qi and Bioenergy. In Recent Advances in Theories and Practice of Chinese Medicine (p. 79). InTech.

[26] Luo, D., Xu, Z., Wang, Z., & Ran, W. (2021). China's Stem Cell Research and Knowledge Levels of Medical Practitioners and Students.  Stem cells international ,  2021 , 6667743. https://doi.org/10.1155/2021/6667743

[27] Luo, D., Xu, Z., Wang, Z., & Ran, W. (2021). China's Stem Cell Research and Knowledge Levels of Medical Practitioners and Students.  Stem cells international ,  2021 , 6667743. https://doi.org/10.1155/2021/6667743

[28] Zhang, J. Y. (2017). Lost in translation? accountability and governance of Clinical Stem Cell Research in China. Regenerative Medicine , 12 (6), 647–656. https://doi.org/10.2217/rme-2017-0035

[29] Wang, L., Wang, F., & Zhang, W. (2021). Bioethics in China’s biosecurity law: Forms, effects, and unsettled issues. Journal of law and the biosciences , 8(1).  https://doi.org/10.1093/jlb/lsab019 https://academic.oup.com/jlb/article/8/1/lsab019/6299199

[30] Chen, H., Wei, T., Wang, H.  et al.  Association of China’s two-child policy with changes in number of births and birth defects rate, 2008–2017.  BMC Public Health   22 , 434 (2022). https://doi.org/10.1186/s12889-022-12839-0

[31] Azuma, K. Regulatory Landscape of Regenerative Medicine in Japan.  Curr Stem Cell Rep   1 , 118–128 (2015). https://doi.org/10.1007/s40778-015-0012-6

[32] Harris, R. (2005, May 19). Researchers Report Advance in Stem Cell Production . NPR. https://www.npr.org/2005/05/19/4658967/researchers-report-advance-in-stem-cell-production

[33] Park, S. (2012). South Korea steps up stem-cell work.  Nature . https://doi.org/10.1038/nature.2012.10565

[34] Resnik, D. B., Shamoo, A. E., & Krimsky, S. (2006). Fraudulent human embryonic stem cell research in South Korea: lessons learned.  Accountability in research ,  13 (1), 101–109. https://doi.org/10.1080/08989620600634193 .

[35] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: interviews with researchers from Saudi Arabia. BMC medical ethics, 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6

[36] Association for the Advancement of Blood and Biotherapies.  https://www.aabb.org/regulatory-and-advocacy/regulatory-affairs/regulatory-for-cellular-therapies/international-competent-authorities/saudi-arabia

[37] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: Interviews with researchers from Saudi Arabia.  BMC medical ethics ,  21 (1), 35. https://doi.org/10.1186/s12910-020-00482-6

[38] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: Interviews with researchers from Saudi Arabia. BMC medical ethics , 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6

Culturally, autonomy practices follow a relational autonomy approach based on a paternalistic deontological health care model. The adherence to strict international research policies and religious pillars within the regulatory environment is a great foundation for research ethics. However, there is a need to develop locally targeted ethics approaches for research (as called for in Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: interviews with researchers from Saudi Arabia. BMC medical ethics, 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6), this decision-making approach may help advise a research decision model. For more on the clinical cultural autonomy approaches, see: Alabdullah, Y. Y., Alzaid, E., Alsaad, S., Alamri, T., Alolayan, S. W., Bah, S., & Aljoudi, A. S. (2022). Autonomy and paternalism in Shared decision‐making in a Saudi Arabian tertiary hospital: A cross‐sectional study. Developing World Bioethics , 23 (3), 260–268. https://doi.org/10.1111/dewb.12355 ; Bukhari, A. A. (2017). Universal Principles of Bioethics and Patient Rights in Saudi Arabia (Doctoral dissertation, Duquesne University). https://dsc.duq.edu/etd/124; Ladha, S., Nakshawani, S. A., Alzaidy, A., & Tarab, B. (2023, October 26). Islam and Bioethics: What We All Need to Know . Columbia University School of Professional Studies. https://sps.columbia.edu/events/islam-and-bioethics-what-we-all-need-know

[39] Ababneh, M. A., Al-Azzam, S. I., Alzoubi, K., Rababa’h, A., & Al Demour, S. (2021). Understanding and attitudes of the Jordanian public about clinical research ethics.  Research Ethics ,  17 (2), 228-241.  https://doi.org/10.1177/1747016120966779

[40] Ababneh, M. A., Al-Azzam, S. I., Alzoubi, K., Rababa’h, A., & Al Demour, S. (2021). Understanding and attitudes of the Jordanian public about clinical research ethics.  Research Ethics ,  17 (2), 228-241.  https://doi.org/10.1177/1747016120966779

[41] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[42] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[43] The EU’s definition of autonomy relates to the capacity for creating ideas, moral insight, decisions, and actions without constraint, personal responsibility, and informed consent. However, the EU views autonomy as not completely able to protect individuals and depends on other principles, such as dignity, which “expresses the intrinsic worth and fundamental equality of all human beings.” Rendtorff, J.D., Kemp, P. (2019). Four Ethical Principles in European Bioethics and Biolaw: Autonomy, Dignity, Integrity and Vulnerability. In: Valdés, E., Lecaros, J. (eds) Biolaw and Policy in the Twenty-First Century. International Library of Ethics, Law, and the New Medicine, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-030-05903-3_3

[44] Council of Europe. Convention for the protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine: Convention on Human Rights and Biomedicine (ETS No. 164) https://www.coe.int/en/web/conventions/full-list?module=treaty-detail&treatynum=164 (forbidding the creation of embryos for research purposes only, and suggests embryos in vitro have protections.); Also see Drabiak-Syed B. K. (2013). New President, New Human Embryonic Stem Cell Research Policy: Comparative International Perspectives and Embryonic Stem Cell Research Laws in France.  Biotechnology Law Report ,  32 (6), 349–356. https://doi.org/10.1089/blr.2013.9865

[45] Rendtorff, J.D., Kemp, P. (2019). Four Ethical Principles in European Bioethics and Biolaw: Autonomy, Dignity, Integrity and Vulnerability. In: Valdés, E., Lecaros, J. (eds) Biolaw and Policy in the Twenty-First Century. International Library of Ethics, Law, and the New Medicine, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-030-05903-3_3

[46] Tomuschat, C., Currie, D. P., Kommers, D. P., & Kerr, R. (Trans.). (1949, May 23). Basic law for the Federal Republic of Germany. https://www.btg-bestellservice.de/pdf/80201000.pdf

[47] Regulation of Stem Cell Research in Germany . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-germany

[48] Regulation of Stem Cell Research in Finland . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-finland

[49] Regulation of Stem Cell Research in Spain . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-spain

[50] Some sources to consider regarding ethics models or regulatory oversights of other cultures not covered:

Kara MA. Applicability of the principle of respect for autonomy: the perspective of Turkey. J Med Ethics. 2007 Nov;33(11):627-30. doi: 10.1136/jme.2006.017400. PMID: 17971462; PMCID: PMC2598110.

Ugarte, O. N., & Acioly, M. A. (2014). The principle of autonomy in Brazil: one needs to discuss it ...  Revista do Colegio Brasileiro de Cirurgioes ,  41 (5), 374–377. https://doi.org/10.1590/0100-69912014005013

Bharadwaj, A., & Glasner, P. E. (2012). Local cells, global science: The rise of embryonic stem cell research in India . Routledge.

For further research on specific European countries regarding ethical and regulatory framework, we recommend this database: Regulation of Stem Cell Research in Europe . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-europe   

[51] Klitzman, R. (2006). Complications of culture in obtaining informed consent. The American Journal of Bioethics, 6(1), 20–21. https://doi.org/10.1080/15265160500394671 see also: Ekmekci, P. E., & Arda, B. (2017). Interculturalism and Informed Consent: Respecting Cultural Differences without Breaching Human Rights.  Cultura (Iasi, Romania) ,  14 (2), 159–172.; For why trust is important in research, see also: Gray, B., Hilder, J., Macdonald, L., Tester, R., Dowell, A., & Stubbe, M. (2017). Are research ethics guidelines culturally competent?  Research Ethics ,  13 (1), 23-41.  https://doi.org/10.1177/1747016116650235

[52] The Qur'an  (M. Khattab, Trans.). (1965). Al-Mu’minun, 23: 12-14. https://quran.com/23

[53] Lenfest, Y. (2017, December 8). Islam and the beginning of human life . Bill of Health. https://blog.petrieflom.law.harvard.edu/2017/12/08/islam-and-the-beginning-of-human-life/

[54] Aksoy, S. (2005). Making regulations and drawing up legislation in Islamic countries under conditions of uncertainty, with special reference to embryonic stem cell research. Journal of Medical Ethics , 31: 399-403.; see also: Mahmoud, Azza. "Islamic Bioethics: National Regulations and Guidelines of Human Stem Cell Research in the Muslim World." Master's thesis, Chapman University, 2022. https://doi.org/10.36837/ chapman.000386

[55] Rashid, R. (2022). When does Ensoulment occur in the Human Foetus. Journal of the British Islamic Medical Association , 12 (4). ISSN 2634 8071. https://www.jbima.com/wp-content/uploads/2023/01/2-Ethics-3_-Ensoulment_Rafaqat.pdf.

[56] Sivaraman, M. & Noor, S. (2017). Ethics of embryonic stem cell research according to Buddhist, Hindu, Catholic, and Islamic religions: perspective from Malaysia. Asian Biomedicine,8(1) 43-52.  https://doi.org/10.5372/1905-7415.0801.260

[57] Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[58] Lecso, P. A. (1991). The Bodhisattva Ideal and Organ Transplantation.  Journal of Religion and Health ,  30 (1), 35–41. http://www.jstor.org/stable/27510629 ; Bodhisattva, S. (n.d.). The Key of Becoming a Bodhisattva . A Guide to the Bodhisattva Way of Life. http://www.buddhism.org/Sutras/2/BodhisattvaWay.htm

[59] There is no explicit religious reference to when life begins or how to conduct research that interacts with the concept of life. However, these are relevant verses pertaining to how the fetus is viewed. (( King James Bible . (1999). Oxford University Press. (original work published 1769))

Jerimiah 1: 5 “Before I formed thee in the belly I knew thee; and before thou camest forth out of the womb I sanctified thee…”

In prophet Jerimiah’s insight, God set him apart as a person known before childbirth, a theme carried within the Psalm of David.

Psalm 139: 13-14 “…Thou hast covered me in my mother's womb. I will praise thee; for I am fearfully and wonderfully made…”

These verses demonstrate David’s respect for God as an entity that would know of all man’s thoughts and doings even before birth.

[60] It should be noted that abortion is not supported as well.

[61] The Vatican. (1987, February 22). Instruction on Respect for Human Life in Its Origin and on the Dignity of Procreation Replies to Certain Questions of the Day . Congregation For the Doctrine of the Faith. https://www.vatican.va/roman_curia/congregations/cfaith/documents/rc_con_cfaith_doc_19870222_respect-for-human-life_en.html

[62] The Vatican. (2000, August 25). Declaration On the Production and the Scientific and Therapeutic Use of Human Embryonic Stem Cells . Pontifical Academy for Life. https://www.vatican.va/roman_curia/pontifical_academies/acdlife/documents/rc_pa_acdlife_doc_20000824_cellule-staminali_en.html ; Ohara, N. (2003). Ethical Consideration of Experimentation Using Living Human Embryos: The Catholic Church’s Position on Human Embryonic Stem Cell Research and Human Cloning. Department of Obstetrics and Gynecology . Retrieved from https://article.imrpress.com/journal/CEOG/30/2-3/pii/2003018/77-81.pdf.

[63] Smith, G. A. (2022, May 23). Like Americans overall, Catholics vary in their abortion views, with regular mass attenders most opposed . Pew Research Center. https://www.pewresearch.org/short-reads/2022/05/23/like-americans-overall-catholics-vary-in-their-abortion-views-with-regular-mass-attenders-most-opposed/

[64] Rosner, F., & Reichman, E. (2002). Embryonic stem cell research in Jewish law. Journal of halacha and contemporary society , (43), 49–68.; Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[65] Schenker J. G. (2008). The beginning of human life: status of embryo. Perspectives in Halakha (Jewish Religious Law).  Journal of assisted reproduction and genetics ,  25 (6), 271–276. https://doi.org/10.1007/s10815-008-9221-6

[66] Ruttenberg, D. (2020, May 5). The Torah of Abortion Justice (annotated source sheet) . Sefaria. https://www.sefaria.org/sheets/234926.7?lang=bi&with=all&lang2=en

[67] Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[68] Gert, B. (2007). Common morality: Deciding what to do . Oxford Univ. Press.

[69] World Medical Association (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA , 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053 Declaration of Helsinki – WMA – The World Medical Association .; see also: National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. (1979).  The Belmont report: Ethical principles and guidelines for the protection of human subjects of research . U.S. Department of Health and Human Services.  https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html

[70] Zakarin Safier, L., Gumer, A., Kline, M., Egli, D., & Sauer, M. V. (2018). Compensating human subjects providing oocytes for stem cell research: 9-year experience and outcomes.  Journal of assisted reproduction and genetics ,  35 (7), 1219–1225. https://doi.org/10.1007/s10815-018-1171-z https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063839/ see also: Riordan, N. H., & Paz Rodríguez, J. (2021). Addressing concerns regarding associated costs, transparency, and integrity of research in recent stem cell trial. Stem Cells Translational Medicine , 10 (12), 1715–1716. https://doi.org/10.1002/sctm.21-0234

[71] Klitzman, R., & Sauer, M. V. (2009). Payment of egg donors in stem cell research in the USA.  Reproductive biomedicine online ,  18 (5), 603–608. https://doi.org/10.1016/s1472-6483(10)60002-8

[72] Krosin, M. T., Klitzman, R., Levin, B., Cheng, J., & Ranney, M. L. (2006). Problems in comprehension of informed consent in rural and peri-urban Mali, West Africa.  Clinical trials (London, England) ,  3 (3), 306–313. https://doi.org/10.1191/1740774506cn150oa

[73] Veatch, Robert M.  Hippocratic, Religious, and Secular Medical Ethics: The Points of Conflict . Georgetown University Press, 2012.

[74] Msoroka, M. S., & Amundsen, D. (2018). One size fits not quite all: Universal research ethics with diversity.  Research Ethics ,  14 (3), 1-17.  https://doi.org/10.1177/1747016117739939

[75] Pirzada, N. (2022). The Expansion of Turkey’s Medical Tourism Industry.  Voices in Bioethics ,  8 . https://doi.org/10.52214/vib.v8i.9894

[76] Stem Cell Tourism: False Hope for Real Money . Harvard Stem Cell Institute (HSCI). (2023). https://hsci.harvard.edu/stem-cell-tourism , See also: Bissassar, M. (2017). Transnational Stem Cell Tourism: An ethical analysis.  Voices in Bioethics ,  3 . https://doi.org/10.7916/vib.v3i.6027

[77] Song, P. (2011) The proliferation of stem cell therapies in post-Mao China: problematizing ethical regulation,  New Genetics and Society , 30:2, 141-153, DOI:  10.1080/14636778.2011.574375

[78] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[79] International Society for Stem Cell Research. (2024). Standards in stem cell research . International Society for Stem Cell Research. https://www.isscr.org/guidelines/5-standards-in-stem-cell-research

[80] Benjamin, R. (2013). People’s science bodies and rights on the Stem Cell Frontier . Stanford University Press.

Olivia Bowers

MS Bioethics Columbia University (Disclosure: affiliated with Voices in Bioethics)

Mifrah Hayath

SM Candidate Harvard Medical School, MS Biotechnology Johns Hopkins University

Article Details

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License .

  • Share full article

Advertisement

Supported by

Study Suggests Genetics as a Cause, Not Just a Risk, for Some Alzheimer’s

People with two copies of the gene variant APOE4 are almost certain to get Alzheimer’s, say researchers, who proposed a framework under which such patients could be diagnosed years before symptoms.

A colorized C.T. scan showing a cross-section of a person's brain with Alzheimer's disease. The colors are red, green and yellow.

By Pam Belluck

Scientists are proposing a new way of understanding the genetics of Alzheimer’s that would mean that up to a fifth of patients would be considered to have a genetically caused form of the disease.

Currently, the vast majority of Alzheimer’s cases do not have a clearly identified cause. The new designation, proposed in a study published Monday, could broaden the scope of efforts to develop treatments, including gene therapy, and affect the design of clinical trials.

It could also mean that hundreds of thousands of people in the United States alone could, if they chose, receive a diagnosis of Alzheimer’s before developing any symptoms of cognitive decline, although there currently are no treatments for people at that stage.

The new classification would make this type of Alzheimer’s one of the most common genetic disorders in the world, medical experts said.

“This reconceptualization that we’re proposing affects not a small minority of people,” said Dr. Juan Fortea, an author of the study and the director of the Sant Pau Memory Unit in Barcelona, Spain. “Sometimes we say that we don’t know the cause of Alzheimer’s disease,” but, he said, this would mean that about 15 to 20 percent of cases “can be tracked back to a cause, and the cause is in the genes.”

The idea involves a gene variant called APOE4. Scientists have long known that inheriting one copy of the variant increases the risk of developing Alzheimer’s, and that people with two copies, inherited from each parent, have vastly increased risk.

The new study , published in the journal Nature Medicine, analyzed data from over 500 people with two copies of APOE4, a significantly larger pool than in previous studies. The researchers found that almost all of those patients developed the biological pathology of Alzheimer’s, and the authors say that two copies of APOE4 should now be considered a cause of Alzheimer’s — not simply a risk factor.

The patients also developed Alzheimer’s pathology relatively young, the study found. By age 55, over 95 percent had biological markers associated with the disease. By 65, almost all had abnormal levels of a protein called amyloid that forms plaques in the brain, a hallmark of Alzheimer’s. And many started developing symptoms of cognitive decline at age 65, younger than most people without the APOE4 variant.

“The critical thing is that these individuals are often symptomatic 10 years earlier than other forms of Alzheimer’s disease,” said Dr. Reisa Sperling, a neurologist at Mass General Brigham in Boston and an author of the study.

She added, “By the time they are picked up and clinically diagnosed, because they’re often younger, they have more pathology.”

People with two copies, known as APOE4 homozygotes, make up 2 to 3 percent of the general population, but are an estimated 15 to 20 percent of people with Alzheimer’s dementia, experts said. People with one copy make up about 15 to 25 percent of the general population, and about 50 percent of Alzheimer’s dementia patients.

The most common variant is called APOE3, which seems to have a neutral effect on Alzheimer’s risk. About 75 percent of the general population has one copy of APOE3, and more than half of the general population has two copies.

Alzheimer’s experts not involved in the study said classifying the two-copy condition as genetically determined Alzheimer’s could have significant implications, including encouraging drug development beyond the field’s recent major focus on treatments that target and reduce amyloid.

Dr. Samuel Gandy, an Alzheimer’s researcher at Mount Sinai in New York, who was not involved in the study, said that patients with two copies of APOE4 faced much higher safety risks from anti-amyloid drugs.

When the Food and Drug Administration approved the anti-amyloid drug Leqembi last year, it required a black-box warning on the label saying that the medication can cause “serious and life-threatening events” such as swelling and bleeding in the brain, especially for people with two copies of APOE4. Some treatment centers decided not to offer Leqembi, an intravenous infusion, to such patients.

Dr. Gandy and other experts said that classifying these patients as having a distinct genetic form of Alzheimer’s would galvanize interest in developing drugs that are safe and effective for them and add urgency to current efforts to prevent cognitive decline in people who do not yet have symptoms.

“Rather than say we have nothing for you, let’s look for a trial,” Dr. Gandy said, adding that such patients should be included in trials at younger ages, given how early their pathology starts.

Besides trying to develop drugs, some researchers are exploring gene editing to transform APOE4 into a variant called APOE2, which appears to protect against Alzheimer’s. Another gene-therapy approach being studied involves injecting APOE2 into patients’ brains.

The new study had some limitations, including a lack of diversity that might make the findings less generalizable. Most patients in the study had European ancestry. While two copies of APOE4 also greatly increase Alzheimer’s risk in other ethnicities, the risk levels differ, said Dr. Michael Greicius, a neurologist at Stanford University School of Medicine who was not involved in the research.

“One important argument against their interpretation is that the risk of Alzheimer’s disease in APOE4 homozygotes varies substantially across different genetic ancestries,” said Dr. Greicius, who cowrote a study that found that white people with two copies of APOE4 had 13 times the risk of white people with two copies of APOE3, while Black people with two copies of APOE4 had 6.5 times the risk of Black people with two copies of APOE3.

“This has critical implications when counseling patients about their ancestry-informed genetic risk for Alzheimer’s disease,” he said, “and it also speaks to some yet-to-be-discovered genetics and biology that presumably drive this massive difference in risk.”

Under the current genetic understanding of Alzheimer’s, less than 2 percent of cases are considered genetically caused. Some of those patients inherited a mutation in one of three genes and can develop symptoms as early as their 30s or 40s. Others are people with Down syndrome, who have three copies of a chromosome containing a protein that often leads to what is called Down syndrome-associated Alzheimer’s disease .

Dr. Sperling said the genetic alterations in those cases are believed to fuel buildup of amyloid, while APOE4 is believed to interfere with clearing amyloid buildup.

Under the researchers’ proposal, having one copy of APOE4 would continue to be considered a risk factor, not enough to cause Alzheimer’s, Dr. Fortea said. It is unusual for diseases to follow that genetic pattern, called “semidominance,” with two copies of a variant causing the disease, but one copy only increasing risk, experts said.

The new recommendation will prompt questions about whether people should get tested to determine if they have the APOE4 variant.

Dr. Greicius said that until there were treatments for people with two copies of APOE4 or trials of therapies to prevent them from developing dementia, “My recommendation is if you don’t have symptoms, you should definitely not figure out your APOE status.”

He added, “It will only cause grief at this point.”

Finding ways to help these patients cannot come soon enough, Dr. Sperling said, adding, “These individuals are desperate, they’ve seen it in both of their parents often and really need therapies.”

Pam Belluck is a health and science reporter, covering a range of subjects, including reproductive health, long Covid, brain science, neurological disorders, mental health and genetics. More about Pam Belluck

The Fight Against Alzheimer’s Disease

Alzheimer’s is the most common form of dementia, but much remains unknown about this daunting disease..

How is Alzheimer’s diagnosed? What causes Alzheimer’s? We answered some common questions .

A study suggests that genetics can be a cause of Alzheimer’s , not just a risk, raising the prospect of diagnosis years before symptoms appear.

Determining whether someone has Alzheimer’s usually requires an extended diagnostic process . But new criteria could lead to a diagnosis on the basis of a simple blood test .

The F.D.A. has given full approval to the Alzheimer’s drug Leqembi. Here is what to know about i t.

Alzheimer’s can make communicating difficult. We asked experts for tips on how to talk to someone with the disease .

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • HHS Author Manuscripts

Logo of nihpa

Vaping epidemic: challenges and opportunities

Ahmad besaratinia.

1 Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA

Stella Tommasi

Author Contributions

This article is a timely, concise, and unbiased analysis of the national and international responses to the spate of vaping-related lung illnesses and deaths and the epidemic of teen vaping. In view of the recent outbreak of vaping-related lung injuries and deaths in the U.S. and the epidemic of teen vaping, the viewpoints and recommendations presented in this article have immediate policy implications in the U.S. and around the world. The perspectives and recommendations are expected to assist medical communities, public health professionals, and regulatory authorities in addressing complex issues related to vaping regulation, which is intertwined with public health, economy, and politics of nations, worldwide.

1. Introduction

Electronic cigarettes (e-cigs) use, otherwise known as ‘vaping’, is promoted as a safe or less-harmful alternative to smoking or as an aide to smoking cessation [ 1 ]. Since the introduction of e-cigs into the U.S. market over a decade ago, the appeal and popularity of vaping have significantly increased [ 2 ]. Accordingly, there has been a massive and steady rise in vaping prevalence, especially among adolescent never smokers and adult smokers seeking a putatively less-harmful tobacco substitute [ 3 ]. Meanwhile, the number and type of e-cig products have increased exponentially, albeit little or no systematic regulation of sales has been in place [ 4 ].

E-cigs are handheld battery-powered vaporizing devices that simulate tobacco smoking by heating a liquid to produce an inhalable aerosol (vapor) [ 5 ]. The liquid, also referred to as ‘e-liquid/e-juice’, contains a mixture of propylene glycol, glycerin, flavors, nicotine at variable concentrations (incl. zero), and other substances and additives, e.g. , cannabinoids (optional), such as tetrahydrocannabinol (THC) and cannabinoid (CBD) oils [ 1 ]. Of note, THS is the main psychoactive mind-altering compound in marijuana that produces the infamous “high”. In recent years, significant increases in marijuana vaping have been reported, especially among U.S. adolescents [ 6 , 7 ]. Vaping replicates some of the behavioral aspects of cigarette smoking, including the hand-to-mouth action, but without burning tobacco, which is responsible for production of a myriad of toxicants and carcinogens. Because vapor in e-cigs is not produced as a result of tobacco pyrolysis, vaping is claimed to be, at best, a safe, and at worst, a less unhealthy alternative to smoking [ 1 ]. However, chemical analyses of e-cig liquid and vapor have shown the presence of many of the same toxicants and carcinogens as those found in tobacco smoke, albeit in generally lower concentrations [ 2 , 4 ]. Currently, investigating the biological consequences of exposure to e-cig derived toxicants and carcinogens is a high priority research area [ 8 ].

2. Epidemic of teen vaping

Recent data from National Institutes of Health’s (NIH) Monitoring the Future Survey show a significant rise in American teens’ use of e-cigs in just a single year, with 37.3% of 12 th graders reporting use in the past 12 months, compared to 27.8% in 2017 [ 9 , 10 ]. The data from the NIH survey confirm the 2018 National Youth Tobacco Survey, which demonstrates a surge in e-cig use among youth, reaching epidemic proportions [ 11 ]. The number of high school students who use e-cigs has increased by 78% last year to approximately 3.6 millions, which correspond to about 21% of all U.S. high school students. Similarly, use among middle school students has risen by 48% [ 11 ]. Due to these alarming trends, many experts in public health and tobacco control have voiced concerns that we might be on the verge of addicting a new generation to the harmful effects of nicotine use.

3. Vaping-related severe lung injury and death

In the past several months, the health concerns about vaping have escalated to an unprecedented level both in the United States and around the world. Since August 2019, the Centers for Disease Control and Prevention (CDC), the U.S. Food and Drug Administration (FDA), state and local health departments, and other clinical and public health partners have been dealing with a nation-wide outbreak of vaping-related severe lung illnesses, also referred to as “ e -cig, or v aping, product use- a ssociated l ung i njury (EVALI)”. National and state data have shown a sharp increase in symptoms or cases of EVALI in August 2019, a peak in September 2019, and a gradual, but persistent decrease since then. As of February 18, 2020, a total of 2,807 hospitalized EVALI cases or deaths have been reported to CDC from all 50 states, the District of Columbia, and two U.S. territories, including Puerto Rico and U.S. Virgin Islands. Sixty-eight deaths have been confirmed in 29 states and the District of Columbia. Analysis of data from patient reports and product sample testing have revealed that THC-emulsified with vitamin E acetate-containing e-cigs or vaping products, especially those obtained from informal sources like friends, family, or in-person or online dealers, are strongly linked to EVALI. As such, Vitamin E acetate has been detected in product samples tested by FDA and state laboratories and in EVALI patients’ lung fluid samples (bronchoalveolar lavage (BAL)) tested by CDC from geographically diverse states. In contrast, no vitamin E acetate has been found in the lung fluid of people who did not have EVALI. As it stands, there is not sufficient evidence to rule out the contribution of other chemical constituents of THC- or non-THC-containing vaping products to some of the reported EVALI cases. In light of the above findings, the continued decline in EVALI cases reported since September 2019 have been ascribed to (I) increased public awareness of the risk associated with THC-containing e-cigs or vaping products; (II) removal of vitamin E acetate from some vaping products; and (III) law enforcement actions taken against the sale and distribution of illicit e-cigs and vaping products [ 12 ].

4. National and international reactions to the call for e-cig regulation

Worldwide, backlash against e-cig use is gaining more momentum. On Wednesday September 18, 2019, India joined the list of countries to effectively ban the sale, import, advertising, and production of e-cigs [ 13 ]. An emergency ordinance, to be converted into law by the parliament, was approved by the Prime Minister, Narendra Modi. According to this executive order, first-time offenders will face up to one year in prison and a fine of 100,000 rupees (~$1,400), while repeat offenders will be sentenced to 3 years in prison and 500,000 rupees (~$7,000) fine. Simply possessing e-cigs or similar devices will also be an offense, punishable by up to 6 months imprisonment and a fine of up to 50,000 rupees (~$700) [ 13 ].

Thus far, 42 other countries have banned e-cig sale, 55 countries allow sale but have put restrictions on where and how e-cig products can be sold, while 30 countries regulate the amount of nicotine used in e-cig devices [ 14 ]. For example, Singapore has an outright ban on e-cigs, whereas Japan allows sale and distribution of non-nicotine e-cigs and “heat-not-burn” tobacco products. Because liquid nicotine is highly regulated in Japan, vaping devices with nicotine-containing e-juices are banned; however, non-nicotine e-cigs and heated smoking devices, e.g. , “I Quit Original Smoking” (IQOS), are widely marketed and sold. Legislation on e-cigs is also being tightened in other countries; in July 2019, China, home to nearly one-third of the world’s smokers (300 million Chinese smoke tobacco), announced a need for “severely strengthening the supervision of e-cig”. Just days prior to the India’s ban on e-cigs, vaping products from Juul, the San Francisco based world’s largest maker of e-cigs with 72% of the market share, were mysteriously vanished from online Chinese marketplaces [ 14 ]. India’s ban also came on the heels of New York becoming the first U.S. state to ban flavored vape products on September 17, 2019. A similar emergency directive has earlier been approved in Michigan, and is expected to go into effects in a few weeks’ time. However, the New York state’s emergency ban on flavored vaping products was later challenged in court by the Vapor Technology Association, an industry group, and two of its member businesses. The request for injunction against enforcing the ban argued that it would force vaping businesses across the state to close. In January 2020, Acting State Supreme Court Justice, Catherine Cholakis, blocked the ban by ruling that the state Public Health and Health Planning Council overstepped its authority last September when it issued the emergency ban. In her ruling, Judge Cholakis stated that regulating the vaping industry is a job for the state Legislature, not the executive branch, whose function is to implement policy set by lawmakers. Kyle Kotary, a spokesman for Governor Andrew Cuomo (D), called Cholakis’ decision “unfortunate ” but added that the judge had acknowledged the seriousness of the vaping issue in her ruling. “That said, we’re reviewing the decision, evaluating our procedural options and moving forward with comprehensive legislation to address the public health concerns related to vaping,” the Governor’s spokesman, also stated.

On Wednesday September 11, 2019, Donald Trump announced his administration’s plan for a ban on most flavored e-cig products believed to be responsible for teen vaping, and the issuance of the FDA’s guidance on how to take these products off the market [ 15 ]. In response, industry and political allies warned that such a ban would cost thousands of jobs and alienate voters. Two days later, Trump quickly dialed back and softened his rhetoric by tweeting that “While I like the Vaping alternative to Cigarettes, we need to make sure this alternative is SAFE for ALL! Let’s get counterfeits off the market, and keep young children from Vaping!”. In November 2019, he further backtracked after a White House meeting with tobacco industry giants, vaping advocates, and public health groups. On January 2, 2020, the Trump Administration finally announced a ban on some—but not all—flavored e-cig products, in a compromise that sparked criticism from both vaping advocates and adversaries. The limited ban applies to the cartridge-based e-cig devices manufactured by companies like Juul Labs, which are highly popular among teenagers. Under this ban, companies are prohibited from selling sweet and fruity flavored vape pods and e-liquid cartridges, whilst menthol and tobacco flavored products as well as larger, open-tank vaping systems, which users can manually fill with e-liquids of their choice, remain exempt.

In countries where e-cig use is encouraged as a way to quit smoking, the news of spate of U.S. deaths and pulmonary illnesses associated with vaping drew a different reaction. On September 12, 2019, Public Health England (PHE), the country’s leading health body, shared its advice by stating that: “Our advice on e-cigarettes remains unchanged - vaping isn’t completely risk free but is far less harmful than smoking tobacco. There is no situation where it would be better for your health to continue smoking rather than switching completely to vaping. All UK e-cigarette products are tightly regulated for quality and safety by @MHRAgovuk. It’s important to use UK-regulated e-liquids and never risk vaping home-made or illicit e-liquids or adding substances, any of which could be harmful. Smoking kills thousands eveiy year and creating a smoke free generation is one of oar top priorities. Vaping is a fraction of the risk of smoking and makes it much more likely you’ll quit successfully than relying on willpower alone. The sooner you stop smoking completely the better.” The PHE’s advice echoed remarks from its head of Tobacco Control, Martin Dockrell, who had earlier told the Guardian: “Unlike the US, all e-cigarette products in the UK are tightly regulated for quality and safety by the Medicines and Healthcare Products Regulatory Agency and they operate the yellow card scheme, encouraging vapers to report any bad experiences” [ 16 ].

5. Challenges and opportunities of e-cig regulation

The epidemic of teen vaping and the outbreak of vaping-related lung injuries and deaths in the U.S. underscore the urgent need to systematically regulate e-cig manufacturing, marketing, and distribution. However, development of plausible and effective vaping regulations and most importantly, their enforcement are likely to present unique challenges to different countries across the globe. The challenges may vary depending on the legal, regulatory, economic, and sociopolitical contexts of each nation. For example, India’s ban on e-cigs raises the importance of transparency when authorities decide to address a highly ‘complex’ problem. According to various officials, the government’s decision to ban vaping has been in the making for the past two years, and is based, at least, in part, on a white paper by the Indian Council of Medical Research (hardly an ally of the tobacco companies), which warns against the net negative impact e-cigs have on public health and the threat they pose to future generations. Notwithstanding those statements, accusations and suspicions have been floating around the government’s motive in imposing a ban on vaping. India has one of the highest rates of tobacco use in the world, with 106 million adult smokers (second only to China) and another 200 million users of chewing tobacco and other such products [ 17 ]. The government owns 28% of I.T.C. Limited (ITC, Ltd), a leading manufacturer of cigarettes, which means it directly profits from cigarette sales and high taxes, while also earning immense revenues from exporting $1 billion-worth of tobacco, annually [ 13 , 14 ]. Conversely, India’s vaping market, which is relatively small and valued at $15.6 millions, relies exclusively on imported vaping products [ 14 ]. As a source of revenue for the government, the latter clearly pales into insignificance compared to the locally grown tobacco and the associated industry. Skepticism has also been high as to why the government is bent on banning e-cigs whilst tobacco cigarettes and bidis (traditional small, thin, hand-rolled cigarettes wrapped in a tendu or temburni leaf), which are proven to kill one million Indians per year [ 17 ], remain exempt. Not only that, the government continues to encourage and subsidize tobacco farming. With 45.7 million people whose livelihoods depend on the tobacco sector [ 14 ], the Indian government should embrace this ‘opportunity’ to make a compelling case that the push for e-cig ban was solely to protect the health and wellbeing of the population, and not economically driven nor to appease a large voting bloc.

Globally, 35 million people are estimated to use e-cigs or “heat-not-burn” tobacco products [ 17 , 14 ]. Although the global market for e-cigs is still small compared to tobacco cigarettes, it is growing very swiftly. Last year, worldwide sales of tobacco cigarettes reached more than $713 billions, compared to $15.7 billions for e-cigs. By 2023, the sales of vaping products are projected to more than double to $40 billions, while cigarette sales are expected to decline slightly [ 17 , 14 ]. Governments around the world are facing the predicament of how to best deal with the epidemic of vaping. An ideal solution would entail improving the public’s health, as the first and foremost priority, while avoiding compromising the nations’ economy, causing social backlash or political fallout, and getting engulfed by a tsunami of litigations, most certainly, to be brought by vaping industry, tobacco companies, and other stakeholders. Presumably, commercial interests in both marketing of e-cig products and delaying/blocking vaping regulations will be a driving factor in most, if not, all countries involved.

6. Concluding remarks and future directions

The Latin phrase “scientia potentia est” (translation: “knowledge is power”) is a reminder that gaining knowledge on various aspects of vaping can empower us to solve the ‘complex’ problem of “to vape or not to vape”. Philosopher, essayist, poet, and novelist, George Santayana, famously said: “Those who cannot remember the past are condemned to repeat it.” Let’s remind ourselves of Santayana’s phrase and learn from the history of tobacco regulation and smoking prevention. Throughout the years, development of effective regulations on tobacco products leading to successful declines in smoking rates has always been interwoven with scientific breakthroughs providing ‘compelling’ evidence on the adverse health consequences of smoking [ 17 ]. Thus, evidence-based regulations and scientifically driven recommendations on vaping will not only be more effective, sensible, and enforceable, but they will also minimize/eliminate the risk of unintended outcomes, such as inadvertently turning e-cigs into a “prohibitos autem fructum” (translation: forbidden fruit). While research data are accumulating on the adverse biological effects of e-cig use [ 18 – 20 ]. evidence is also emerging on the efficacy of vaping combined with behavioral therapy in helping smokers quit [ 21 ] (although initial studies have produced mixed results [ 22 ]). The existing data clearly demonstrate that vaping is not risk free. This together with the growing concern that vaping may lead to nicotine addiction and smoking, especially among youth, underlines the importance of investigating the health risks associated with vaping. The health-risk profile of vaping should be determined both in absolute terms (to inform never-smokers of potential risks posed by vaping) and relative to smoking (to inform smokers about the relative risk of vaping to smoking). Let’s keep a fair and open mind while continuing our important research on the health risks or potential benefits of vaping vs. smoking. An unbiased and balanced interpretation of the findings will ensure the scientific integrity of our work and the effectiveness of their implications for regulatory purposes. Towards that goal, our hope is that the present article has offered readers with a concise and unbiased presentation of the stances taken by ‘both’ sides of the debate on vaping regulation, which is all but certain to impact public health, economy, and politics of nations, worldwide.

Acknowledgements

This work was supported by grants from the National Institute of Dental and Craniofacial Research of the National Institutes of Health (1R01DE026043 to AB) and the University of California Tobacco-Related Disease Research Program (TRDRP-28IR-0058 to AB and TRDRP-26IP-0051 to ST). The sponsors of the study had no role in study design, data collection, data analysis, data interpretation, writing of the report, or in the decision to submit for publication.

Financial disclosure: No financial disclosures are reported by the authors of this paper.

Publisher's Disclaimer: This Author Accepted Manuscript is a PDF file of an unedited peer-reviewed manuscript that has been accepted for publication but has not been copyedited or corrected. The official version of record that is published in the journal is kept up to date and so may therefore differ from this version.

Conflict of interest statement: Both authors (AB and ST) declare that there are no financial or non-financial conflicts of interest.

Conflicts of Interest Statement

Both authors (A.B. and S.T.) declare no conflict of interest.

Read the Latest on Page Six

  • Weird But True
  • Sex & Relationships
  • Viral Trends
  • Human Interest
  • Fashion & Beauty
  • Food & Drink
  • Health Care
  • Men’s Health
  • Women’s Health
  • Mental Health
  • Health & Wellness Products
  • Personal Care Products

trending now in Lifestyle

Doctor cancer-free one year after using own revolutionary treatment on terminal brain tumor: ‘I couldn’t be happier!’

Doctor cancer-free one year after using own revolutionary...

JetBlue passenger confused over mysterious mist on her 4-hour NY-bound flight: 'Raining in the cabin'

JetBlue passenger confused over mysterious mist on her 4-hour...

Mexican taco truck becomes first to earn Michelin star, but chef won't wear coveted jacket

Mexican taco truck becomes first to earn Michelin star, but chef...

'Anti-sex' beds have arrived at Paris Olympics — after horny athletes admit to orgies amid competition

'Anti-sex' beds have arrived at Paris Olympics — after horny...

Dear Abby: My mother-in-law gifts me literal trash, how do I tell her I don't want it

Dear Abby: My mother-in-law gifts me literal trash, how do I tell...

McDonald's is getting rid of free drink refills — and more fast-food chains may follow

McDonald's is getting rid of free drink refills — and more...

Mother-in-law's 'unforgivable' wedding act stuns internet: 'Makes me vomit'

Mother-in-law's 'unforgivable' wedding act stuns internet: 'Makes...

Hey, Red Lobster: Please don’t cut bait on your surprisingly good Times Square location

Hey, Red Lobster: Please don’t cut bait on your surprisingly...

These diets are best for lowering risk of diseases and cancer: study.

  • View Author Archive
  • Follow on Twitter
  • Get author RSS feed

Thanks for contacting us. We've received your submission.

Researchers found "significant" health benefits of plant-based diets after reviewing 48 papers published between January 2000 and June 2023.

Turns out, vegan and vegetarian diets are un-beet-able when it comes to lowering the risk of cardiovascular diseases and cancer, new research has found .

Dr. Angelo Capodici, of the University of Bologna in Italy, and his colleagues reviewed 48 papers published between January 2000 and June 2023 that investigated the link between plant-based diets, cardiovascular health and cancer risk. They found “significant” health benefits in plant-based diets.

The pros of eating a diet rich in fruits, vegetables, nuts, seeds, oils, whole grains, legumes, and beans have long been espoused.

“Our umbrella review seems consistent with other primary evidence that links the consumption of red processed meats to an increased risk of cancers of the gastrointestinal tract,” Capodici and his team wrote in their findings, published Wednesday in PLOS One .

The World Health Organization’s International Agency for Research on Cancer classified processed meat as “carcinogenic to humans” in 2015 ,  noting that there is  “sufficient evidence from epidemiological studies that eating processed meat causes colorectal cancer.” IARC also declared red meat as “probably carcinogenic to humans.”

Nevertheless, Capodici warned that “caution should be paid” before making a large-scale recommendation for plant-based diets because of limitations to the studies and potential vitamin and mineral deficiencies associated with these eating plans.

The pros of eating a diet rich in fruits, vegetables, nuts, seeds, oils, whole grains, legumes and beans have long been espoused.

Capodici and crew said lower blood pressure, better blood sugar management and a healthier body mass index are some outcomes of vegetarian and vegan diets.

They did point out that people who tend to follow these diets are “more prone to engage in healthy lifestyles,” such as regular exercise, avoidance of sugar-sweetened beverages and abstinence from alcohol and tobacco, which also reduces the risk of heart disease.

They also noted that pregnant women who adopted vegetarian diets did not lower their risk of developing gestational diabetes and hypertension compared to women who ate meat.

However, pregnant women who adopted vegetarian diets did not lower their risk of developing gestational diabetes and hypertension compared to women who ate meat, the researchers found.

Get the latest breakthroughs in medicine, diet & nutrition tips and more.

Subscribe to our weekly Post Care newsletter!

Thanks for signing up!

Please provide a valid email address.

By clicking above you agree to the Terms of Use and Privacy Policy .

Never miss a story.

And vegans risk developing anemia due to a lack of vitamin B12, an essential nutrient naturally found in animal products. Vegans are encouraged to eat grains fortified with vitamin B12 or take a daily supplement .

Capodici’s team advised that more research is needed into the effects of vegetarian and vegan diets — they say the studies they analyzed differed in dietary patterns, sample size and participant demographics, among other factors.

Share this article:

IMAGES

  1. FREE 8+ Sample Health and Safety Risk Assessment Templates in MS Word

    health risks research paper

  2. (PDF) Addressing Risks: Mental Health, Work-Related Stress, and

    health risks research paper

  3. (PDF) Health Care Policy Paper

    health risks research paper

  4. PPT

    health risks research paper

  5. (PDF) OCCUPATIONAL HEALTH, SAFETY AND RISK ANALYSIS

    health risks research paper

  6. (PDF) Risk, Hazards and Crisis in Research: What Risks Get Researched

    health risks research paper

VIDEO

  1. What is a Health Risk Assessment and How Does it Evaluate Wellness

  2. New App Predicts the Risk of Heart Disease from High Blood Pressure, Obesity and High Cholesterol

  3. Environmental, social, and governance (ESG) data: Can it enhance returns and reduce risks?

  4. Risk assessment

  5. ECO11: #1 Munich Re Peter Hoeppe Climate Change Risk Management

COMMENTS

  1. Obesity: Risk factors, complications, and strategies for sustainable long‐term weight management

    The obesity epidemic. The World Health Organization (WHO) defines overweight and obesity as abnormal or excessive fat accumulation that presents a risk to health (WHO, 2016a).A body mass index (BMI) ≥25 kg/m 2 is generally considered overweight, while obesity is considered to be a BMI ≥ 30 kg/m 2.It is well known that obesity and overweight are a growing problem globally with high rates in ...

  2. Obesity and Overweight: Probing Causes, Consequences, and Novel

    In both children and adults, major consequences of obesity include the development of serious chronic disorders that further reduce quality of life and life span, such as type 2 diabetes, dyslipidemias, hypertension, and cardio‐ and cerebrovascular disease and their consequences in ischemic injuries. 7, 8 Furthermore, in 2020, the SARS‐CoV ...

  3. Health Risks Due To Climate Change: Inequity In Causes ...

    Health risks of warming of 1.5° C, 2° C, ... Advancing Australia's role in climate change and health research. ... Environmental Health: A Position Paper From the American College of Physicians.

  4. Human Health Risks due to Exposure to Water Pollution: A Review

    This review, "Human health risks due to exposure to water pollution: A Review", is a compilation of several case studies on human health risk assessment and its associated dangers in connection to various types of pollutants and sources in various regions of the world. In this paper, multidisciplinary tools are used to evaluate the risk to ...

  5. Practical Opportunities to Improve the Impact of Health Risk Assessment

    1. Introduction. Recent research has recognized a continuous spread of fundamental issues in health risk assessment (HRA), as well as a poor, or at least unclear, link between HRA results and (risk management) decision-making [1,2,3,4,5].Some studies expressed concern about inconsistent practices that are drifting away from the definition and generally approved process of HRA [6,7,8,9], while ...

  6. Tracking the impacts of climate change on human health via indicators

    Climate change affects global health via multiple direct and indirect pathways [1, 2].Every year, disasters involving weather- and climate-related hazards result in thousands of deaths worldwide and contribute to the global burden of disease [3, 4].Direct health consequences may derive from changes in temperature and precipitation, and human exposure to heatwaves, wildfires, floods, and ...

  7. Health effects associated with smoking: a Burden of Proof study

    We identified three outcomes with a 4-star association with smoking: COPD (72% increase in risk based on the BPRF, 0.54 ROS), lower respiratory tract infection (54%, 0.43) and pancreatic cancer ...

  8. Health effects of dietary risks in 195 countries, 1990-2017: a

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013.

  9. Hot weather and heat extremes: health risks

    Hot ambient conditions and associated heat stress can increase mortality and morbidity, as well as increase adverse pregnancy outcomes and negatively affect mental health. High heat stress can also reduce physical work capacity and motor-cognitive performances, with consequences for productivity, and increase the risk of occupational health problems. Almost half of the global population and ...

  10. Neglecting sex and gender in research is a public-health risk

    Yet, when it comes to the risk of dying, social and environmental factors — shaped by gender — also seem to be important. Tobacco consumption increases a person's risk of having a heart ...

  11. Exercise/physical activity and health outcomes: an ...

    Sedentary lifestyle is a major risk factor for noncommunicable diseases such as cardiovascular diseases, cancer and diabetes. It has been estimated that approximately 3.2 million deaths each year are attributable to insufficient levels of physical activity. We evaluated the available evidence from Cochrane systematic reviews (CSRs) on the effectiveness of exercise/physical activity for various ...

  12. Chemical Exposures and Impact on Health

    Connected with this initiative, there was a symposium held by the Division of Chemical Toxicology of the American Chemical Society dedicated to Chemical Exposures and Impact on Health, which was summarized in a subsequent ToxWatch. (1) Key facets of the research presented included the advancement of nontargeted exposure and biological response ...

  13. Environmental and Health Impacts of Air Pollution: A Review

    Short-term and long-term adverse effects on human health are observed. VOCs are responsible for indoor air smells. Short-term exposure is found to cause irritation of eyes, nose, throat, and mucosal membranes, while those of long duration exposure include toxic reactions ( 92 ).

  14. Environmental pollutants and their effects on human health

    Table 1: Major environmental pollutants, their sources, and impact on human health Pollutants and health effects are less studied because of the need for more information on exposure to pollutants in less developed countries, where waste management could be better, there is higher poverty, and the application of new technologies is limited The same situation is observed in many developed ...

  15. On insurance and health risks

    This special issue of The Geneva Papers on Risk and Insurance on health aims at better understanding the role of insurance mechanisms in financing and managing health risks. It concentrates on four topics: the structure and performance of health insurance markets, the drivers of long-term care (LTC) insurance purchase, the phenomena of moral hazard in health insurance, and the effect of health ...

  16. Water quality assessment and evaluation of human health risk of

    Water quality has been linked to health outcomes across the world. This study evaluated the physico-chemical and bacteriological quality of drinking water supplied by the municipality from source ...

  17. Balancing Consideration of the Risks and Benefits of E-Cigarettes

    We review the health risks of e-cigarette use, the likelihood that vaping increases smoking cessation, concerns about youth vaping, and the need to balance valid concerns about risks to youths with the potential benefits of increasing adult smoking cessation. (Am J Public Health. 2021;111(9):1661 -1672.

  18. Occupational health and safety risk assessment: A ...

    1. Introduction. Risk management is the coordinating activities to direct and control an organization with regard to risk (ISO 31000, 2018).In general, it is the whole of the decisions to be taken to manage risks in the sense that they are recognized, assessed, and measured (Tepe and Kaya, 2020).Effective risk management can not only reduce losses, costs and the waste of social resource, but ...

  19. Advances and perspectives in environmental health research in China

    Environmental health research aims to identify environmental conditions suitable for the healthy living and reproduction of human beings. Through the interdisciplinary research bridging environmental sciences and health/medical sciences, the impacts of physical, chemical, and biological environmental factors on human health are investigated. This includes identifying environmental factors ...

  20. Genetically modified foods: A critical review of their promise and

    Health risks associated with GM foods Three major health risks potentially associated with GM foods are: toxicity, allergenicity and genetic hazards. These arise from three potential sources, the inserted gene and their expressed proteins per se, secondary or pleiotropic effects of the products of gene expression, and the possible disruption of ...

  21. The Effects of Mental Health Interventions on Labor Market Outcomes in

    This paper shows that treating mental health conditions substantially improves recipients' capacity to work in these contexts. First, we perform a systematic review and meta-analysis of all randomized controlled trials (RCTs) ever conducted that evaluate treatments for mental ill-health and measure economic outcomes in LMICs.

  22. Exploring the Relationship Between Early Life Exposures and the

    Abstract Background: Epidemiological research commonly investigates single exposure-outcome relationships, while childrens experiences across a variety of early lifecourse domains are intersecting. To design realistic interventions, epidemiological research should incorporate information from multiple risk exposure domains to assess effect on health outcomes. In this paper we identify ...

  23. Two decades of studies suggest health benefits associated with plant

    Following an "umbrella" review approach, they extracted and analyzed data from the 48 papers on links between plant-based diets, cardiovascular health, and cancer risk.

  24. Impact of heavy metals on the environment and human health: Novel

    Because of the growing demand for food in recent decades, food safety has become a major public health concern in terms of human health. This scenario serves to motivate researchers and scientists to do study on the health risks linked with the ingestion of heavy metals, pesticides, and toxin-contaminated food products (Jaishankar et al., 2014).

  25. Health Risks and Benefits of Alcohol Consumption

    Patterns of moderate drinking, on the other hand, have been associated with a key health benefit—that is, a lower CHD risk. Research is now in progress to clarify the extent to which alcohol itself, or other factors or surrogates such as lifestyle, diet, exercise, or additives to alcoholic beverages, may be responsible for the lower risk.

  26. Cultural Relativity and Acceptance of Embryonic Stem Cell Research

    Voices in Bioethics is currently seeking submissions on philosophical and practical topics, both current and timeless. Papers addressing access to healthcare, the bioethical implications of recent Supreme Court rulings, environmental ethics, data privacy, cybersecurity, law and bioethics, economics and bioethics, reproductive ethics, research ethics, and pediatric bioethics are sought.

  27. Study Suggests Genetics as a Cause, Not Just a Risk, for Some Alzheimer

    May 6, 2024 Updated 12:19 p.m. ET. Scientists are proposing a new way of understanding the genetics of Alzheimer's that would mean that up to a fifth of patients would be considered to have a ...

  28. Vaping epidemic: challenges and opportunities

    2. Epidemic of teen vaping. Recent data from National Institutes of Health's (NIH) Monitoring the Future Survey show a significant rise in American teens' use of e-cigs in just a single year, with 37.3% of 12 th graders reporting use in the past 12 months, compared to 27.8% in 2017 [9,10].The data from the NIH survey confirm the 2018 National Youth Tobacco Survey, which demonstrates a ...

  29. Plant-based diets best for lowering disease, cancer risk: study

    Published May 15, 2024, 2:00 p.m. ET. Researchers found "significant" health benefits of plant-based diets after reviewing 48 papers published between January 2000 and June 2023. Stock.adobe.com ...