• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

how to write data analysis in research

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

QuestionPro BI: From Research Data to Actionable Dashboards

QuestionPro BI: From Research Data to Actionable Dashboards

Apr 22, 2024

customer advocacy software

21 Best Customer Advocacy Software for Customers in 2024

Apr 19, 2024

quantitative data analysis software

10 Quantitative Data Analysis Software for Every Data Scientist

Apr 18, 2024

Enterprise Feedback Management software

11 Best Enterprise Feedback Management Software in 2024

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Grad Coach

Quantitative Data Analysis 101

The lingo, methods and techniques, explained simply.

By: Derek Jansen (MBA)  and Kerryn Warren (PhD) | December 2020

Quantitative data analysis is one of those things that often strikes fear in students. It’s totally understandable – quantitative analysis is a complex topic, full of daunting lingo , like medians, modes, correlation and regression. Suddenly we’re all wishing we’d paid a little more attention in math class…

The good news is that while quantitative data analysis is a mammoth topic, gaining a working understanding of the basics isn’t that hard , even for those of us who avoid numbers and math . In this post, we’ll break quantitative analysis down into simple , bite-sized chunks so you can approach your research with confidence.

Quantitative data analysis methods and techniques 101

Overview: Quantitative Data Analysis 101

  • What (exactly) is quantitative data analysis?
  • When to use quantitative analysis
  • How quantitative analysis works

The two “branches” of quantitative analysis

  • Descriptive statistics 101
  • Inferential statistics 101
  • How to choose the right quantitative methods
  • Recap & summary

What is quantitative data analysis?

Despite being a mouthful, quantitative data analysis simply means analysing data that is numbers-based – or data that can be easily “converted” into numbers without losing any meaning.

For example, category-based variables like gender, ethnicity, or native language could all be “converted” into numbers without losing meaning – for example, English could equal 1, French 2, etc.

This contrasts against qualitative data analysis, where the focus is on words, phrases and expressions that can’t be reduced to numbers. If you’re interested in learning about qualitative analysis, check out our post and video here .

What is quantitative analysis used for?

Quantitative analysis is generally used for three purposes.

  • Firstly, it’s used to measure differences between groups . For example, the popularity of different clothing colours or brands.
  • Secondly, it’s used to assess relationships between variables . For example, the relationship between weather temperature and voter turnout.
  • And third, it’s used to test hypotheses in a scientifically rigorous way. For example, a hypothesis about the impact of a certain vaccine.

Again, this contrasts with qualitative analysis , which can be used to analyse people’s perceptions and feelings about an event or situation. In other words, things that can’t be reduced to numbers.

How does quantitative analysis work?

Well, since quantitative data analysis is all about analysing numbers , it’s no surprise that it involves statistics . Statistical analysis methods form the engine that powers quantitative analysis, and these methods can vary from pretty basic calculations (for example, averages and medians) to more sophisticated analyses (for example, correlations and regressions).

Sounds like gibberish? Don’t worry. We’ll explain all of that in this post. Importantly, you don’t need to be a statistician or math wiz to pull off a good quantitative analysis. We’ll break down all the technical mumbo jumbo in this post.

Need a helping hand?

how to write data analysis in research

As I mentioned, quantitative analysis is powered by statistical analysis methods . There are two main “branches” of statistical methods that are used – descriptive statistics and inferential statistics . In your research, you might only use descriptive statistics, or you might use a mix of both , depending on what you’re trying to figure out. In other words, depending on your research questions, aims and objectives . I’ll explain how to choose your methods later.

So, what are descriptive and inferential statistics?

Well, before I can explain that, we need to take a quick detour to explain some lingo. To understand the difference between these two branches of statistics, you need to understand two important words. These words are population and sample .

First up, population . In statistics, the population is the entire group of people (or animals or organisations or whatever) that you’re interested in researching. For example, if you were interested in researching Tesla owners in the US, then the population would be all Tesla owners in the US.

However, it’s extremely unlikely that you’re going to be able to interview or survey every single Tesla owner in the US. Realistically, you’ll likely only get access to a few hundred, or maybe a few thousand owners using an online survey. This smaller group of accessible people whose data you actually collect is called your sample .

So, to recap – the population is the entire group of people you’re interested in, and the sample is the subset of the population that you can actually get access to. In other words, the population is the full chocolate cake , whereas the sample is a slice of that cake.

So, why is this sample-population thing important?

Well, descriptive statistics focus on describing the sample , while inferential statistics aim to make predictions about the population, based on the findings within the sample. In other words, we use one group of statistical methods – descriptive statistics – to investigate the slice of cake, and another group of methods – inferential statistics – to draw conclusions about the entire cake. There I go with the cake analogy again…

With that out the way, let’s take a closer look at each of these branches in more detail.

Descriptive statistics vs inferential statistics

Branch 1: Descriptive Statistics

Descriptive statistics serve a simple but critically important role in your research – to describe your data set – hence the name. In other words, they help you understand the details of your sample . Unlike inferential statistics (which we’ll get to soon), descriptive statistics don’t aim to make inferences or predictions about the entire population – they’re purely interested in the details of your specific sample .

When you’re writing up your analysis, descriptive statistics are the first set of stats you’ll cover, before moving on to inferential statistics. But, that said, depending on your research objectives and research questions , they may be the only type of statistics you use. We’ll explore that a little later.

So, what kind of statistics are usually covered in this section?

Some common statistical tests used in this branch include the following:

  • Mean – this is simply the mathematical average of a range of numbers.
  • Median – this is the midpoint in a range of numbers when the numbers are arranged in numerical order. If the data set makes up an odd number, then the median is the number right in the middle of the set. If the data set makes up an even number, then the median is the midpoint between the two middle numbers.
  • Mode – this is simply the most commonly occurring number in the data set.
  • In cases where most of the numbers are quite close to the average, the standard deviation will be relatively low.
  • Conversely, in cases where the numbers are scattered all over the place, the standard deviation will be relatively high.
  • Skewness . As the name suggests, skewness indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph, or do they skew to the left or right?

Feeling a bit confused? Let’s look at a practical example using a small data set.

Descriptive statistics example data

On the left-hand side is the data set. This details the bodyweight of a sample of 10 people. On the right-hand side, we have the descriptive statistics. Let’s take a look at each of them.

First, we can see that the mean weight is 72.4 kilograms. In other words, the average weight across the sample is 72.4 kilograms. Straightforward.

Next, we can see that the median is very similar to the mean (the average). This suggests that this data set has a reasonably symmetrical distribution (in other words, a relatively smooth, centred distribution of weights, clustered towards the centre).

In terms of the mode , there is no mode in this data set. This is because each number is present only once and so there cannot be a “most common number”. If there were two people who were both 65 kilograms, for example, then the mode would be 65.

Next up is the standard deviation . 10.6 indicates that there’s quite a wide spread of numbers. We can see this quite easily by looking at the numbers themselves, which range from 55 to 90, which is quite a stretch from the mean of 72.4.

And lastly, the skewness of -0.2 tells us that the data is very slightly negatively skewed. This makes sense since the mean and the median are slightly different.

As you can see, these descriptive statistics give us some useful insight into the data set. Of course, this is a very small data set (only 10 records), so we can’t read into these statistics too much. Also, keep in mind that this is not a list of all possible descriptive statistics – just the most common ones.

But why do all of these numbers matter?

While these descriptive statistics are all fairly basic, they’re important for a few reasons:

  • Firstly, they help you get both a macro and micro-level view of your data. In other words, they help you understand both the big picture and the finer details.
  • Secondly, they help you spot potential errors in the data – for example, if an average is way higher than you’d expect, or responses to a question are highly varied, this can act as a warning sign that you need to double-check the data.
  • And lastly, these descriptive statistics help inform which inferential statistical techniques you can use, as those techniques depend on the skewness (in other words, the symmetry and normality) of the data.

Simply put, descriptive statistics are really important , even though the statistical techniques used are fairly basic. All too often at Grad Coach, we see students skimming over the descriptives in their eagerness to get to the more exciting inferential methods, and then landing up with some very flawed results.

Don’t be a sucker – give your descriptive statistics the love and attention they deserve!

Examples of descriptive statistics

Branch 2: Inferential Statistics

As I mentioned, while descriptive statistics are all about the details of your specific data set – your sample – inferential statistics aim to make inferences about the population . In other words, you’ll use inferential statistics to make predictions about what you’d expect to find in the full population.

What kind of predictions, you ask? Well, there are two common types of predictions that researchers try to make using inferential stats:

  • Firstly, predictions about differences between groups – for example, height differences between children grouped by their favourite meal or gender.
  • And secondly, relationships between variables – for example, the relationship between body weight and the number of hours a week a person does yoga.

In other words, inferential statistics (when done correctly), allow you to connect the dots and make predictions about what you expect to see in the real world population, based on what you observe in your sample data. For this reason, inferential statistics are used for hypothesis testing – in other words, to test hypotheses that predict changes or differences.

Inferential statistics are used to make predictions about what you’d expect to find in the full population, based on the sample.

Of course, when you’re working with inferential statistics, the composition of your sample is really important. In other words, if your sample doesn’t accurately represent the population you’re researching, then your findings won’t necessarily be very useful.

For example, if your population of interest is a mix of 50% male and 50% female , but your sample is 80% male , you can’t make inferences about the population based on your sample, since it’s not representative. This area of statistics is called sampling, but we won’t go down that rabbit hole here (it’s a deep one!) – we’ll save that for another post .

What statistics are usually used in this branch?

There are many, many different statistical analysis methods within the inferential branch and it’d be impossible for us to discuss them all here. So we’ll just take a look at some of the most common inferential statistical methods so that you have a solid starting point.

First up are T-Tests . T-tests compare the means (the averages) of two groups of data to assess whether they’re statistically significantly different. In other words, do they have significantly different means, standard deviations and skewness.

This type of testing is very useful for understanding just how similar or different two groups of data are. For example, you might want to compare the mean blood pressure between two groups of people – one that has taken a new medication and one that hasn’t – to assess whether they are significantly different.

Kicking things up a level, we have ANOVA, which stands for “analysis of variance”. This test is similar to a T-test in that it compares the means of various groups, but ANOVA allows you to analyse multiple groups , not just two groups So it’s basically a t-test on steroids…

Next, we have correlation analysis . This type of analysis assesses the relationship between two variables. In other words, if one variable increases, does the other variable also increase, decrease or stay the same. For example, if the average temperature goes up, do average ice creams sales increase too? We’d expect some sort of relationship between these two variables intuitively , but correlation analysis allows us to measure that relationship scientifically .

Lastly, we have regression analysis – this is quite similar to correlation in that it assesses the relationship between variables, but it goes a step further to understand cause and effect between variables, not just whether they move together. In other words, does the one variable actually cause the other one to move, or do they just happen to move together naturally thanks to another force? Just because two variables correlate doesn’t necessarily mean that one causes the other.

Stats overload…

I hear you. To make this all a little more tangible, let’s take a look at an example of a correlation in action.

Here’s a scatter plot demonstrating the correlation (relationship) between weight and height. Intuitively, we’d expect there to be some relationship between these two variables, which is what we see in this scatter plot. In other words, the results tend to cluster together in a diagonal line from bottom left to top right.

Sample correlation

As I mentioned, these are are just a handful of inferential techniques – there are many, many more. Importantly, each statistical method has its own assumptions and limitations.

For example, some methods only work with normally distributed (parametric) data, while other methods are designed specifically for non-parametric data. And that’s exactly why descriptive statistics are so important – they’re the first step to knowing which inferential techniques you can and can’t use.

Remember that every statistical method has its own assumptions and limitations,  so you need to be aware of these.

How to choose the right analysis method

To choose the right statistical methods, you need to think about two important factors :

  • The type of quantitative data you have (specifically, level of measurement and the shape of the data). And,
  • Your research questions and hypotheses

Let’s take a closer look at each of these.

Factor 1 – Data type

The first thing you need to consider is the type of data you’ve collected (or the type of data you will collect). By data types, I’m referring to the four levels of measurement – namely, nominal, ordinal, interval and ratio. If you’re not familiar with this lingo, check out the video below.

Why does this matter?

Well, because different statistical methods and techniques require different types of data. This is one of the “assumptions” I mentioned earlier – every method has its assumptions regarding the type of data.

For example, some techniques work with categorical data (for example, yes/no type questions, or gender or ethnicity), while others work with continuous numerical data (for example, age, weight or income) – and, of course, some work with multiple data types.

If you try to use a statistical method that doesn’t support the data type you have, your results will be largely meaningless . So, make sure that you have a clear understanding of what types of data you’ve collected (or will collect). Once you have this, you can then check which statistical methods would support your data types here .

If you haven’t collected your data yet, you can work in reverse and look at which statistical method would give you the most useful insights, and then design your data collection strategy to collect the correct data types.

Another important factor to consider is the shape of your data . Specifically, does it have a normal distribution (in other words, is it a bell-shaped curve, centred in the middle) or is it very skewed to the left or the right? Again, different statistical techniques work for different shapes of data – some are designed for symmetrical data while others are designed for skewed data.

This is another reminder of why descriptive statistics are so important – they tell you all about the shape of your data.

Factor 2: Your research questions

The next thing you need to consider is your specific research questions, as well as your hypotheses (if you have some). The nature of your research questions and research hypotheses will heavily influence which statistical methods and techniques you should use.

If you’re just interested in understanding the attributes of your sample (as opposed to the entire population), then descriptive statistics are probably all you need. For example, if you just want to assess the means (averages) and medians (centre points) of variables in a group of people.

On the other hand, if you aim to understand differences between groups or relationships between variables and to infer or predict outcomes in the population, then you’ll likely need both descriptive statistics and inferential statistics.

So, it’s really important to get very clear about your research aims and research questions, as well your hypotheses – before you start looking at which statistical techniques to use.

Never shoehorn a specific statistical technique into your research just because you like it or have some experience with it. Your choice of methods must align with all the factors we’ve covered here.

Time to recap…

You’re still with me? That’s impressive. We’ve covered a lot of ground here, so let’s recap on the key points:

  • Quantitative data analysis is all about  analysing number-based data  (which includes categorical and numerical data) using various statistical techniques.
  • The two main  branches  of statistics are  descriptive statistics  and  inferential statistics . Descriptives describe your sample, whereas inferentials make predictions about what you’ll find in the population.
  • Common  descriptive statistical methods include  mean  (average),  median , standard  deviation  and  skewness .
  • Common  inferential statistical methods include  t-tests ,  ANOVA ,  correlation  and  regression  analysis.
  • To choose the right statistical methods and techniques, you need to consider the  type of data you’re working with , as well as your  research questions  and hypotheses.

how to write data analysis in research

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Narrative analysis explainer

74 Comments

Oddy Labs

Hi, I have read your article. Such a brilliant post you have created.

Derek Jansen

Thank you for the feedback. Good luck with your quantitative analysis.

Abdullahi Ramat

Thank you so much.

Obi Eric Onyedikachi

Thank you so much. I learnt much well. I love your summaries of the concepts. I had love you to explain how to input data using SPSS

Lumbuka Kaunda

Amazing and simple way of breaking down quantitative methods.

Charles Lwanga

This is beautiful….especially for non-statisticians. I have skimmed through but I wish to read again. and please include me in other articles of the same nature when you do post. I am interested. I am sure, I could easily learn from you and get off the fear that I have had in the past. Thank you sincerely.

Essau Sefolo

Send me every new information you might have.

fatime

i need every new information

Dr Peter

Thank you for the blog. It is quite informative. Dr Peter Nemaenzhe PhD

Mvogo Mvogo Ephrem

It is wonderful. l’ve understood some of the concepts in a more compréhensive manner

Maya

Your article is so good! However, I am still a bit lost. I am doing a secondary research on Gun control in the US and increase in crime rates and I am not sure which analysis method I should use?

Joy

Based on the given learning points, this is inferential analysis, thus, use ‘t-tests, ANOVA, correlation and regression analysis’

Peter

Well explained notes. Am an MPH student and currently working on my thesis proposal, this has really helped me understand some of the things I didn’t know.

Jejamaije Mujoro

I like your page..helpful

prashant pandey

wonderful i got my concept crystal clear. thankyou!!

Dailess Banda

This is really helpful , thank you

Lulu

Thank you so much this helped

wossen

Wonderfully explained

Niamatullah zaheer

thank u so much, it was so informative

mona

THANKYOU, this was very informative and very helpful

Thaddeus Ogwoka

This is great GRADACOACH I am not a statistician but I require more of this in my thesis

Include me in your posts.

Alem Teshome

This is so great and fully useful. I would like to thank you again and again.

Mrinal

Glad to read this article. I’ve read lot of articles but this article is clear on all concepts. Thanks for sharing.

Emiola Adesina

Thank you so much. This is a very good foundation and intro into quantitative data analysis. Appreciate!

Josyl Hey Aquilam

You have a very impressive, simple but concise explanation of data analysis for Quantitative Research here. This is a God-send link for me to appreciate research more. Thank you so much!

Lynnet Chikwaikwai

Avery good presentation followed by the write up. yes you simplified statistics to make sense even to a layman like me. Thank so much keep it up. The presenter did ell too. i would like more of this for Qualitative and exhaust more of the test example like the Anova.

Adewole Ikeoluwa

This is a very helpful article, couldn’t have been clearer. Thank you.

Samih Soud ALBusaidi

Awesome and phenomenal information.Well done

Nūr

The video with the accompanying article is super helpful to demystify this topic. Very well done. Thank you so much.

Lalah

thank you so much, your presentation helped me a lot

Anjali

I don’t know how should I express that ur article is saviour for me 🥺😍

Saiqa Aftab Tunio

It is well defined information and thanks for sharing. It helps me a lot in understanding the statistical data.

Funeka Mvandaba

I gain a lot and thanks for sharing brilliant ideas, so wish to be linked on your email update.

Rita Kathomi Gikonyo

Very helpful and clear .Thank you Gradcoach.

Hilaria Barsabal

Thank for sharing this article, well organized and information presented are very clear.

AMON TAYEBWA

VERY INTERESTING AND SUPPORTIVE TO NEW RESEARCHERS LIKE ME. AT LEAST SOME BASICS ABOUT QUANTITATIVE.

Tariq

An outstanding, well explained and helpful article. This will help me so much with my data analysis for my research project. Thank you!

chikumbutso

wow this has just simplified everything i was scared of how i am gonna analyse my data but thanks to you i will be able to do so

Idris Haruna

simple and constant direction to research. thanks

Mbunda Castro

This is helpful

AshikB

Great writing!! Comprehensive and very helpful.

himalaya ravi

Do you provide any assistance for other steps of research methodology like making research problem testing hypothesis report and thesis writing?

Sarah chiwamba

Thank you so much for such useful article!

Lopamudra

Amazing article. So nicely explained. Wow

Thisali Liyanage

Very insightfull. Thanks

Melissa

I am doing a quality improvement project to determine if the implementation of a protocol will change prescribing habits. Would this be a t-test?

Aliyah

The is a very helpful blog, however, I’m still not sure how to analyze my data collected. I’m doing a research on “Free Education at the University of Guyana”

Belayneh Kassahun

tnx. fruitful blog!

Suzanne

So I am writing exams and would like to know how do establish which method of data analysis to use from the below research questions: I am a bit lost as to how I determine the data analysis method from the research questions.

Do female employees report higher job satisfaction than male employees with similar job descriptions across the South African telecommunications sector? – I though that maybe Chi Square could be used here. – Is there a gender difference in talented employees’ actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – Is there a gender difference in the cost of actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – What practical recommendations can be made to the management of South African telecommunications companies on leveraging gender to mitigate employee turnover decisions?

Your assistance will be appreciated if I could get a response as early as possible tomorrow

Like

This was quite helpful. Thank you so much.

kidane Getachew

wow I got a lot from this article, thank you very much, keep it up

FAROUK AHMAD NKENGA

Thanks for yhe guidance. Can you send me this guidance on my email? To enable offline reading?

Nosi Ruth Xabendlini

Thank you very much, this service is very helpful.

George William Kiyingi

Every novice researcher needs to read this article as it puts things so clear and easy to follow. Its been very helpful.

Adebisi

Wonderful!!!! you explained everything in a way that anyone can learn. Thank you!!

Miss Annah

I really enjoyed reading though this. Very easy to follow. Thank you

Reza Kia

Many thanks for your useful lecture, I would be really appreciated if you could possibly share with me the PPT of presentation related to Data type?

Protasia Tairo

Thank you very much for sharing, I got much from this article

Fatuma Chobo

This is a very informative write-up. Kindly include me in your latest posts.

naphtal

Very interesting mostly for social scientists

Boy M. Bachtiar

Thank you so much, very helpfull

You’re welcome 🙂

Dr Mafaza Mansoor

woow, its great, its very informative and well understood because of your way of writing like teaching in front of me in simple languages.

Opio Len

I have been struggling to understand a lot of these concepts. Thank you for the informative piece which is written with outstanding clarity.

Eric

very informative article. Easy to understand

Leena Fukey

Beautiful read, much needed.

didin

Always greet intro and summary. I learn so much from GradCoach

Mmusyoka

Quite informative. Simple and clear summary.

Jewel Faver

I thoroughly enjoyed reading your informative and inspiring piece. Your profound insights into this topic truly provide a better understanding of its complexity. I agree with the points you raised, especially when you delved into the specifics of the article. In my opinion, that aspect is often overlooked and deserves further attention.

Shantae

Absolutely!!! Thank you

Thazika Chitimera

Thank you very much for this post. It made me to understand how to do my data analysis.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Top Courses
  • Online Degrees
  • Find your New Career
  • Join for Free

What Is Data Analysis? (With Examples)

Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions.

[Featured image] A female data analyst takes notes on her laptop at a standing desk in a modern office space

"It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts," Sherlock Holme's proclaims in Sir Arthur Conan Doyle's A Scandal in Bohemia.

This idea lies at the root of data analysis. When we can extract meaning from data, it empowers us to make better decisions. And we’re living in a time when we have more data than ever at our fingertips.

Companies are wisening up to the benefits of leveraging data. Data analysis can help a bank to personalize customer interactions, a health care system to predict future health needs, or an entertainment company to create the next big streaming hit.

The World Economic Forum Future of Jobs Report 2023 listed data analysts and scientists as one of the most in-demand jobs, alongside AI and machine learning specialists and big data specialists [ 1 ]. In this article, you'll learn more about the data analysis process, different types of data analysis, and recommended courses to help you get started in this exciting field.

Read more: How to Become a Data Analyst (with or Without a Degree)

Beginner-friendly data analysis courses

Interested in building your knowledge of data analysis today? Consider enrolling in one of these popular courses on Coursera:

In Google's Foundations: Data, Data, Everywhere course, you'll explore key data analysis concepts, tools, and jobs.

In Duke University's Data Analysis and Visualization course, you'll learn how to identify key components for data analytics projects, explore data visualization, and find out how to create a compelling data story.

Data analysis process

As the data available to companies continues to grow both in amount and complexity, so too does the need for an effective and efficient process by which to harness the value of that data. The data analysis process typically moves through several iterative phases. Let’s take a closer look at each.

Identify the business question you’d like to answer. What problem is the company trying to solve? What do you need to measure, and how will you measure it? 

Collect the raw data sets you’ll need to help you answer the identified question. Data collection might come from internal sources, like a company’s client relationship management (CRM) software, or from secondary sources, like government records or social media application programming interfaces (APIs). 

Clean the data to prepare it for analysis. This often involves purging duplicate and anomalous data, reconciling inconsistencies, standardizing data structure and format, and dealing with white spaces and other syntax errors.

Analyze the data. By manipulating the data using various data analysis techniques and tools, you can begin to find trends, correlations, outliers, and variations that tell a story. During this stage, you might use data mining to discover patterns within databases or data visualization software to help transform data into an easy-to-understand graphical format.

Interpret the results of your analysis to see how well the data answered your original question. What recommendations can you make based on the data? What are the limitations to your conclusions? 

You can complete hands-on projects for your portfolio while practicing statistical analysis, data management, and programming with Meta's beginner-friendly Data Analyst Professional Certificate . Designed to prepare you for an entry-level role, this self-paced program can be completed in just 5 months.

Or, L earn more about data analysis in this lecture by Kevin, Director of Data Analytics at Google, from Google's Data Analytics Professional Certificate :

Read more: What Does a Data Analyst Do? A Career Guide

Types of data analysis (with examples)

Data can be used to answer questions and support decisions in many different ways. To identify the best way to analyze your date, it can help to familiarize yourself with the four types of data analysis commonly used in the field.

In this section, we’ll take a look at each of these data analysis methods, along with an example of how each might be applied in the real world.

Descriptive analysis

Descriptive analysis tells us what happened. This type of analysis helps describe or summarize quantitative data by presenting statistics. For example, descriptive statistical analysis could show the distribution of sales across a group of employees and the average sales figure per employee. 

Descriptive analysis answers the question, “what happened?”

Diagnostic analysis

If the descriptive analysis determines the “what,” diagnostic analysis determines the “why.” Let’s say a descriptive analysis shows an unusual influx of patients in a hospital. Drilling into the data further might reveal that many of these patients shared symptoms of a particular virus. This diagnostic analysis can help you determine that an infectious agent—the “why”—led to the influx of patients.

Diagnostic analysis answers the question, “why did it happen?”

Predictive analysis

So far, we’ve looked at types of analysis that examine and draw conclusions about the past. Predictive analytics uses data to form projections about the future. Using predictive analysis, you might notice that a given product has had its best sales during the months of September and October each year, leading you to predict a similar high point during the upcoming year.

Predictive analysis answers the question, “what might happen in the future?”

Prescriptive analysis

Prescriptive analysis takes all the insights gathered from the first three types of analysis and uses them to form recommendations for how a company should act. Using our previous example, this type of analysis might suggest a market plan to build on the success of the high sales months and harness new growth opportunities in the slower months. 

Prescriptive analysis answers the question, “what should we do about it?”

This last type is where the concept of data-driven decision-making comes into play.

Read more : Advanced Analytics: Definition, Benefits, and Use Cases

What is data-driven decision-making (DDDM)?

Data-driven decision-making, sometimes abbreviated to DDDM), can be defined as the process of making strategic business decisions based on facts, data, and metrics instead of intuition, emotion, or observation.

This might sound obvious, but in practice, not all organizations are as data-driven as they could be. According to global management consulting firm McKinsey Global Institute, data-driven companies are better at acquiring new customers, maintaining customer loyalty, and achieving above-average profitability [ 2 ].

Get started with Coursera

If you’re interested in a career in the high-growth field of data analytics, consider these top-rated courses on Coursera:

Begin building job-ready skills with the Google Data Analytics Professional Certificate . Prepare for an entry-level job as you learn from Google employees—no experience or degree required.

Practice working with data with Macquarie University's Excel Skills for Business Specialization . Learn how to use Microsoft Excel to analyze data and make data-informed business decisions.

Deepen your skill set with Google's Advanced Data Analytics Professional Certificate . In this advanced program, you'll continue exploring the concepts introduced in the beginner-level courses, plus learn Python, statistics, and Machine Learning concepts.

Frequently asked questions (FAQ)

Where is data analytics used ‎.

Just about any business or organization can use data analytics to help inform their decisions and boost their performance. Some of the most successful companies across a range of industries — from Amazon and Netflix to Starbucks and General Electric — integrate data into their business plans to improve their overall business performance. ‎

What are the top skills for a data analyst? ‎

Data analysis makes use of a range of analysis tools and technologies. Some of the top skills for data analysts include SQL, data visualization, statistical programming languages (like R and Python),  machine learning, and spreadsheets.

Read : 7 In-Demand Data Analyst Skills to Get Hired in 2022 ‎

What is a data analyst job salary? ‎

Data from Glassdoor indicates that the average base salary for a data analyst in the United States is $75,349 as of March 2024 [ 3 ]. How much you make will depend on factors like your qualifications, experience, and location. ‎

Do data analysts need to be good at math? ‎

Data analytics tends to be less math-intensive than data science. While you probably won’t need to master any advanced mathematics, a foundation in basic math and statistical analysis can help set you up for success.

Learn more: Data Analyst vs. Data Scientist: What’s the Difference? ‎

Article sources

World Economic Forum. " The Future of Jobs Report 2023 , https://www3.weforum.org/docs/WEF_Future_of_Jobs_2023.pdf." Accessed March 19, 2024.

McKinsey & Company. " Five facts: How customer analytics boosts corporate performance , https://www.mckinsey.com/business-functions/marketing-and-sales/our-insights/five-facts-how-customer-analytics-boosts-corporate-performance." Accessed March 19, 2024.

Glassdoor. " Data Analyst Salaries , https://www.glassdoor.com/Salaries/data-analyst-salary-SRCH_KO0,12.htm" Accessed March 19, 2024.

Keep reading

Coursera staff.

Editorial Team

Coursera’s editorial team is comprised of highly experienced professional editors, writers, and fact...

This content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

Two data analysts discussing the data analysis process

A Step-by-Step Guide to the Data Analysis Process

how to write data analysis in research

Like any scientific discipline, data analysis follows a rigorous step-by-step process. Each stage requires different skills and know-how. To get meaningful insights, though, it’s important to understand the process as a whole. An underlying framework is invaluable for producing results that stand up to scrutiny.

In this post, we’ll explore the main steps in the data analysis process. This will cover how to define your goal, collect data, and carry out an analysis. Where applicable, we’ll also use examples and highlight a few tools to make the journey easier. When you’re done, you’ll have a much better understanding of the basics. This will help you tweak the process to fit your own needs.

Here are the steps we’ll take you through:

  • Defining the question
  • Collecting the data
  • Cleaning the data
  • Analyzing the data
  • Sharing your results
  • Embracing failure

On popular request, we’ve also developed a video based on this article. Scroll further along this article to watch that.

The five steps in the data analysis process: Define the question, gather your data, clean the data, analyze it, visualize and share your findings

Ready? Let’s get started with step one.

1. Step one: Defining the question

The first step in any data analysis process is to define your objective. In data analytics jargon, this is sometimes called the ‘problem statement’.

Defining your objective means coming up with a hypothesis and figuring how to test it. Start by asking: What business problem am I trying to solve? While this might sound straightforward, it can be trickier than it seems. For instance, your organization’s senior management might pose an issue, such as: “Why are we losing customers?” It’s possible, though, that this doesn’t get to the core of the problem. A data analyst’s job is to understand the business and its goals in enough depth that they can frame the problem the right way.

Let’s say you work for a fictional company called TopNotch Learning. TopNotch creates custom training software for its clients. While it is excellent at securing new clients, it has much lower repeat business. As such, your question might not be, “Why are we losing customers?” but, “Which factors are negatively impacting the customer experience?” or better yet: “How can we boost customer retention while minimizing costs?”

Now you’ve defined a problem, you need to determine which sources of data will best help you solve it. This is where your business acumen comes in again. For instance, perhaps you’ve noticed that the sales process for new clients is very slick, but that the production team is inefficient. Knowing this, you could hypothesize that the sales process wins lots of new clients, but the subsequent customer experience is lacking. Could this be why customers don’t come back? Which sources of data will help you answer this question?

Tools to help define your objective

Defining your objective is mostly about soft skills, business knowledge, and lateral thinking. But you’ll also need to keep track of business metrics and key performance indicators (KPIs). Monthly reports can allow you to track problem points in the business. Some KPI dashboards come with a fee, like Databox and DashThis . However, you’ll also find open-source software like Grafana , Freeboard , and Dashbuilder . These are great for producing simple dashboards, both at the beginning and the end of the data analysis process.

2. Step two: Collecting the data

Once you’ve established your objective, you’ll need to create a strategy for collecting and aggregating the appropriate data. A key part of this is determining which data you need. This might be quantitative (numeric) data, e.g. sales figures, or qualitative (descriptive) data, such as customer reviews. All data fit into one of three categories: first-party, second-party, and third-party data. Let’s explore each one.

What is first-party data?

First-party data are data that you, or your company, have directly collected from customers. It might come in the form of transactional tracking data or information from your company’s customer relationship management (CRM) system. Whatever its source, first-party data is usually structured and organized in a clear, defined way. Other sources of first-party data might include customer satisfaction surveys, focus groups, interviews, or direct observation.

What is second-party data?

To enrich your analysis, you might want to secure a secondary data source. Second-party data is the first-party data of other organizations. This might be available directly from the company or through a private marketplace. The main benefit of second-party data is that they are usually structured, and although they will be less relevant than first-party data, they also tend to be quite reliable. Examples of second-party data include website, app or social media activity, like online purchase histories, or shipping data.

What is third-party data?

Third-party data is data that has been collected and aggregated from numerous sources by a third-party organization. Often (though not always) third-party data contains a vast amount of unstructured data points (big data). Many organizations collect big data to create industry reports or to conduct market research. The research and advisory firm Gartner is a good real-world example of an organization that collects big data and sells it on to other companies. Open data repositories and government portals are also sources of third-party data .

Tools to help you collect data

Once you’ve devised a data strategy (i.e. you’ve identified which data you need, and how best to go about collecting them) there are many tools you can use to help you. One thing you’ll need, regardless of industry or area of expertise, is a data management platform (DMP). A DMP is a piece of software that allows you to identify and aggregate data from numerous sources, before manipulating them, segmenting them, and so on. There are many DMPs available. Some well-known enterprise DMPs include Salesforce DMP , SAS , and the data integration platform, Xplenty . If you want to play around, you can also try some open-source platforms like Pimcore or D:Swarm .

Want to learn more about what data analytics is and the process a data analyst follows? We cover this topic (and more) in our free introductory short course for beginners. Check out tutorial one: An introduction to data analytics .

3. Step three: Cleaning the data

Once you’ve collected your data, the next step is to get it ready for analysis. This means cleaning, or ‘scrubbing’ it, and is crucial in making sure that you’re working with high-quality data . Key data cleaning tasks include:

  • Removing major errors, duplicates, and outliers —all of which are inevitable problems when aggregating data from numerous sources.
  • Removing unwanted data points —extracting irrelevant observations that have no bearing on your intended analysis.
  • Bringing structure to your data —general ‘housekeeping’, i.e. fixing typos or layout issues, which will help you map and manipulate your data more easily.
  • Filling in major gaps —as you’re tidying up, you might notice that important data are missing. Once you’ve identified gaps, you can go about filling them.

A good data analyst will spend around 70-90% of their time cleaning their data. This might sound excessive. But focusing on the wrong data points (or analyzing erroneous data) will severely impact your results. It might even send you back to square one…so don’t rush it! You’ll find a step-by-step guide to data cleaning here . You may be interested in this introductory tutorial to data cleaning, hosted by Dr. Humera Noor Minhas.

Carrying out an exploratory analysis

Another thing many data analysts do (alongside cleaning data) is to carry out an exploratory analysis. This helps identify initial trends and characteristics, and can even refine your hypothesis. Let’s use our fictional learning company as an example again. Carrying out an exploratory analysis, perhaps you notice a correlation between how much TopNotch Learning’s clients pay and how quickly they move on to new suppliers. This might suggest that a low-quality customer experience (the assumption in your initial hypothesis) is actually less of an issue than cost. You might, therefore, take this into account.

Tools to help you clean your data

Cleaning datasets manually—especially large ones—can be daunting. Luckily, there are many tools available to streamline the process. Open-source tools, such as OpenRefine , are excellent for basic data cleaning, as well as high-level exploration. However, free tools offer limited functionality for very large datasets. Python libraries (e.g. Pandas) and some R packages are better suited for heavy data scrubbing. You will, of course, need to be familiar with the languages. Alternatively, enterprise tools are also available. For example, Data Ladder , which is one of the highest-rated data-matching tools in the industry. There are many more. Why not see which free data cleaning tools you can find to play around with?

4. Step four: Analyzing the data

Finally, you’ve cleaned your data. Now comes the fun bit—analyzing it! The type of data analysis you carry out largely depends on what your goal is. But there are many techniques available. Univariate or bivariate analysis, time-series analysis, and regression analysis are just a few you might have heard of. More important than the different types, though, is how you apply them. This depends on what insights you’re hoping to gain. Broadly speaking, all types of data analysis fit into one of the following four categories.

Descriptive analysis

Descriptive analysis identifies what has already happened . It is a common first step that companies carry out before proceeding with deeper explorations. As an example, let’s refer back to our fictional learning provider once more. TopNotch Learning might use descriptive analytics to analyze course completion rates for their customers. Or they might identify how many users access their products during a particular period. Perhaps they’ll use it to measure sales figures over the last five years. While the company might not draw firm conclusions from any of these insights, summarizing and describing the data will help them to determine how to proceed.

Learn more: What is descriptive analytics?

Diagnostic analysis

Diagnostic analytics focuses on understanding why something has happened . It is literally the diagnosis of a problem, just as a doctor uses a patient’s symptoms to diagnose a disease. Remember TopNotch Learning’s business problem? ‘Which factors are negatively impacting the customer experience?’ A diagnostic analysis would help answer this. For instance, it could help the company draw correlations between the issue (struggling to gain repeat business) and factors that might be causing it (e.g. project costs, speed of delivery, customer sector, etc.) Let’s imagine that, using diagnostic analytics, TopNotch realizes its clients in the retail sector are departing at a faster rate than other clients. This might suggest that they’re losing customers because they lack expertise in this sector. And that’s a useful insight!

Predictive analysis

Predictive analysis allows you to identify future trends based on historical data . In business, predictive analysis is commonly used to forecast future growth, for example. But it doesn’t stop there. Predictive analysis has grown increasingly sophisticated in recent years. The speedy evolution of machine learning allows organizations to make surprisingly accurate forecasts. Take the insurance industry. Insurance providers commonly use past data to predict which customer groups are more likely to get into accidents. As a result, they’ll hike up customer insurance premiums for those groups. Likewise, the retail industry often uses transaction data to predict where future trends lie, or to determine seasonal buying habits to inform their strategies. These are just a few simple examples, but the untapped potential of predictive analysis is pretty compelling.

Prescriptive analysis

Prescriptive analysis allows you to make recommendations for the future. This is the final step in the analytics part of the process. It’s also the most complex. This is because it incorporates aspects of all the other analyses we’ve described. A great example of prescriptive analytics is the algorithms that guide Google’s self-driving cars. Every second, these algorithms make countless decisions based on past and present data, ensuring a smooth, safe ride. Prescriptive analytics also helps companies decide on new products or areas of business to invest in.

Learn more:  What are the different types of data analysis?

5. Step five: Sharing your results

You’ve finished carrying out your analyses. You have your insights. The final step of the data analytics process is to share these insights with the wider world (or at least with your organization’s stakeholders!) This is more complex than simply sharing the raw results of your work—it involves interpreting the outcomes, and presenting them in a manner that’s digestible for all types of audiences. Since you’ll often present information to decision-makers, it’s very important that the insights you present are 100% clear and unambiguous. For this reason, data analysts commonly use reports, dashboards, and interactive visualizations to support their findings.

How you interpret and present results will often influence the direction of a business. Depending on what you share, your organization might decide to restructure, to launch a high-risk product, or even to close an entire division. That’s why it’s very important to provide all the evidence that you’ve gathered, and not to cherry-pick data. Ensuring that you cover everything in a clear, concise way will prove that your conclusions are scientifically sound and based on the facts. On the flip side, it’s important to highlight any gaps in the data or to flag any insights that might be open to interpretation. Honest communication is the most important part of the process. It will help the business, while also helping you to excel at your job!

Tools for interpreting and sharing your findings

There are tons of data visualization tools available, suited to different experience levels. Popular tools requiring little or no coding skills include Google Charts , Tableau , Datawrapper , and Infogram . If you’re familiar with Python and R, there are also many data visualization libraries and packages available. For instance, check out the Python libraries Plotly , Seaborn , and Matplotlib . Whichever data visualization tools you use, make sure you polish up your presentation skills, too. Remember: Visualization is great, but communication is key!

You can learn more about storytelling with data in this free, hands-on tutorial .  We show you how to craft a compelling narrative for a real dataset, resulting in a presentation to share with key stakeholders. This is an excellent insight into what it’s really like to work as a data analyst!

6. Step six: Embrace your failures

The last ‘step’ in the data analytics process is to embrace your failures. The path we’ve described above is more of an iterative process than a one-way street. Data analytics is inherently messy, and the process you follow will be different for every project. For instance, while cleaning data, you might spot patterns that spark a whole new set of questions. This could send you back to step one (to redefine your objective). Equally, an exploratory analysis might highlight a set of data points you’d never considered using before. Or maybe you find that the results of your core analyses are misleading or erroneous. This might be caused by mistakes in the data, or human error earlier in the process.

While these pitfalls can feel like failures, don’t be disheartened if they happen. Data analysis is inherently chaotic, and mistakes occur. What’s important is to hone your ability to spot and rectify errors. If data analytics was straightforward, it might be easier, but it certainly wouldn’t be as interesting. Use the steps we’ve outlined as a framework, stay open-minded, and be creative. If you lose your way, you can refer back to the process to keep yourself on track.

In this post, we’ve covered the main steps of the data analytics process. These core steps can be amended, re-ordered and re-used as you deem fit, but they underpin every data analyst’s work:

  • Define the question —What business problem are you trying to solve? Frame it as a question to help you focus on finding a clear answer.
  • Collect data —Create a strategy for collecting data. Which data sources are most likely to help you solve your business problem?
  • Clean the data —Explore, scrub, tidy, de-dupe, and structure your data as needed. Do whatever you have to! But don’t rush…take your time!
  • Analyze the data —Carry out various analyses to obtain insights. Focus on the four types of data analysis: descriptive, diagnostic, predictive, and prescriptive.
  • Share your results —How best can you share your insights and recommendations? A combination of visualization tools and communication is key.
  • Embrace your mistakes —Mistakes happen. Learn from them. This is what transforms a good data analyst into a great one.

What next? From here, we strongly encourage you to explore the topic on your own. Get creative with the steps in the data analysis process, and see what tools you can find. As long as you stick to the core principles we’ve described, you can create a tailored technique that works for you.

To learn more, check out our free, 5-day data analytics short course . You might also be interested in the following:

  • These are the top 9 data analytics tools
  • 10 great places to find free datasets for your next project
  • How to build a data analytics portfolio

Data analysis write-ups

What should a data-analysis write-up look like.

Writing up the results of a data analysis is not a skill that anyone is born with. It requires practice and, at least in the beginning, a bit of guidance.

Organization

When writing your report, organization will set you free. A good outline is: 1) overview of the problem, 2) your data and modeling approach, 3) the results of your data analysis (plots, numbers, etc), and 4) your substantive conclusions.

1) Overview Describe the problem. What substantive question are you trying to address? This needn’t be long, but it should be clear.

2) Data and model What data did you use to address the question, and how did you do it? When describing your approach, be specific. For example:

  • Don’t say, “I ran a regression” when you instead can say, “I fit a linear regression model to predict price that included a house’s size and neighborhood as predictors.”
  • Justify important features of your modeling approach. For example: “Neighborhood was included as a categorical predictor in the model because Figure 2 indicated clear differences in price across the neighborhoods.”

Sometimes your Data and Model section will contain plots or tables, and sometimes it won’t. If you feel that a plot helps the reader understand the problem or data set itself—as opposed to your results—then go ahead and include it. A great example here is Tables 1 and 2 in the main paper on the PREDIMED study . These tables help the reader understand some important properties of the data and approach, but not the results of the study itself.

3) Results In your results section, include any figures and tables necessary to make your case. Label them (Figure 1, 2, etc), give them informative captions, and refer to them in the text by their numbered labels where you discuss them. Typical things to include here may include: pictures of the data; pictures and tables that show the fitted model; tables of model coefficients and summaries.

4) Conclusion What did you learn from the analysis? What is the answer, if any, to the question you set out to address?

General advice

Make the sections as short or long as they need to be. For example, a conclusions section is often pretty short, while a results section is usually a bit longer.

It’s OK to use the first person to avoid awkward or bizarre sentence constructions, but try to do so sparingly.

Do not include computer code unless explicitly called for. Note: model outputs do not count as computer code. Outputs should be used as evidence in your results section (ideally formatted in a nice way). By code, I mean the sequence of commands you used to process the data and produce the outputs.

When in doubt, use shorter words and sentences.

A very common way for reports to go wrong is when the writer simply narrates the thought process he or she followed: :First I did this, but it didn’t work. Then I did something else, and I found A, B, and C. I wasn’t really sure what to make of B, but C was interesting, so I followed up with D and E. Then having done this…” Do not do this. The desire for specificity is admirable, but the overall effect is one of amateurism. Follow the recommended outline above.

Here’s a good example of a write-up for an analysis of a few relatively simple problems. Because the problems are so straightforward, there’s not much of a need for an outline of the kind described above. Nonetheless, the spirit of these guidelines is clearly in evidence. Notice the clear exposition, the labeled figures and tables that are referred to in the text, and the careful integration of visual and numerical evidence into the overall argument. This is one worth emulating.

How to Write Data Analysis Reports in 9 Easy Steps

how to write data analysis in research

Table of contents

Imagine a bunch of bricks. They don’t have a purpose until you put them together into a house, do they?

In business intelligence, data is your building material, and a quality data analysis report is what you want to see as the result.

But if you’ve ever tried to use the collected data and assemble it into an insightful report, you know it’s not an easy job to do. Data is supposed to tell a story about your performance, but there’s a long way from unprocessed, raw data to a meaningful narrative that you can use to create an actionable plan for making steady progress towards your goals.

This article will help you improve the quality of your data analysis reports and build them effortlessly and fast. Let’s jump right in.

What Is a Data Analysis Report?

Why is data analysis reporting important, how to write a data analysis report 9 simple steps, data analysis report examples.

marketing_overview_hubspot_ga_dashboard_databox

A data analysis report is a type of business report in which you present quantitative and qualitative data to evaluate your strategies and performance. Based on this data, you give recommendations for further steps and business decisions while using the data as evidence that backs up your evaluation.

Today, data analysis is one of the most important elements of business intelligence strategies as companies have realized the potential of having data-driven insights at hand to help them make data-driven decisions.

Just like you’ll look at your car’s dashboard if something’s wrong, you’ll pull your data to see what’s causing drops in website traffic, conversions, or sales – or any other business metric you may be following. This unprocessed data still doesn’t give you a diagnosis – it’s the first step towards a quality analysis. Once you’ve extracted and organized your data, it’s important to use graphs and charts to visualize it and make it easier to draw conclusions.

Once you add meaning to your data and create suggestions based on it, you have a data analysis report.

A vital detail everyone should know about data analysis reports is their accessibility for everyone in your team, and the ability to innovate. Your analysis report will contain your vital KPIs, so you can see where you’re reaching your targets and achieving goals, and where you need to speed up your activities or optimize your strategy. If you can uncover trends or patterns in your data, you can use it to innovate and stand out by offering even more valuable content, services, or products to your audience.

Data analysis is vital for companies for several reasons.

A reliable source of information

Trusting your intuition is fine, but relying on data is safer. When you can base your action plan on data that clearly shows that something is working or failing, you won’t only justify your decisions in front of the management, clients, or investors, but you’ll also be sure that you’ve taken appropriate steps to fix an issue or seize an important opportunity.

A better understanding of your business

According to Databox’s State of Business Reporting , most companies stated that regular monitoring and reporting improved progress monitoring, increased team effectiveness, allowed them to identify trends more easily, and improved financial performance. Data analysis makes it easier to understand your business as a whole, and each aspect individually. You can see how different departments analyze their workflow and how each step impacts their results in the end, by following their KPIs over time. Then, you can easily conclude what your business needs to grow – to boost your sales strategy, optimize your finances, or up your SEO game, for example.

An additional way to understand your business better is to compare your most important metrics and KPIs against companies that are just like yours. With Databox Benchmarks , you will need only one spot to see how all of your teams stack up against your peers and competitors.

Instantly and Anonymously Benchmark Your Company’s Performance Against Others Just Like You

If you ever asked yourself:

  • How does our marketing stack up against our competitors?
  • Are our salespeople as productive as reps from similar companies?
  • Are our profit margins as high as our peers?

Databox Benchmark Groups can finally help you answer these questions and discover how your company measures up against similar companies based on your KPIs.

When you join Benchmark Groups, you will:

  • Get instant, up-to-date data on how your company stacks up against similar companies based on the metrics most important to you. Explore benchmarks for dozens of metrics, built on anonymized data from thousands of companies and get a full 360° view of your company’s KPIs across sales, marketing, finance, and more.
  • Understand where your business excels and where you may be falling behind so you can shift to what will make the biggest impact. Leverage industry insights to set more effective, competitive business strategies. Explore where exactly you have room for growth within your business based on objective market data.
  • Keep your clients happy by using data to back up your expertise. Show your clients where you’re helping them overperform against similar companies. Use the data to show prospects where they really are… and the potential of where they could be.
  • Get a valuable asset for improving yearly and quarterly planning . Get valuable insights into areas that need more work. Gain more context for strategic planning.

The best part?

  • Benchmark Groups are free to access.
  • The data is 100% anonymized. No other company will be able to see your performance, and you won’t be able to see the performance of individual companies either.

When it comes to showing you how your performance compares to others, here is what it might look like for the metric Average Session Duration:

how to write data analysis in research

And here is an example of an open group you could join:

how to write data analysis in research

And this is just a fraction of what you’ll get. With Databox Benchmarks, you will need only one spot to see how all of your teams stack up — marketing, sales, customer service, product development, finance, and more. 

  • Choose criteria so that the Benchmark is calculated using only companies like yours
  • Narrow the benchmark sample using criteria that describe your company
  • Display benchmarks right on your Databox dashboards

Sounds like something you want to try out? Join a Databox Benchmark Group today!

It makes data accessible to everyone

Data doesn’t represent a magical creature reserved for data scientists only anymore. Now that you have streamlined and easy-to-follow data visualizations and tools that automatically show the latest figures, you can include everyone in the decision-making process as they’ll understand what means what in the charts and tables. The data may be complex, but it becomes easy to read when combined with proper illustrations. And when your teams gain such useful and accessible insight, they will feel motivated to act on it immediately.

Better collaboration

Data analysis reports help teams collaborate better, as well. You can apply the SMART technique to your KPIs and goals, because your KPIs become assignable. When they’re easy to interpret for your whole team, you can assign each person with one or multiple KPIs that they’ll be in charge of. That means taking a lot off a team leader’s plate so they can focus more on making other improvements in the business. At the same time, removing inaccurate data from your day-to-day operations will improve friction between different departments, like marketing and sales, for instance.

More productivity

You can also expect increased productivity, since you’ll be saving time you’d otherwise spend on waiting for specialists to translate data for other departments, etc. This means your internal procedures will also be on a top level.

Want to give value with your data analysis report? It’s critical to master the skill of writing a quality data analytics report. Want to know how to report on data efficiently? We’ll share our secret in the following section.

  • Start with an Outline
  • Make a Selection of Vital KPIs
  • Pick the Right Charts for Appealing Design
  • Use a Narrative
  • Organize the Information
  • Include a Summary
  • Careful with Your Recommendations
  • Double-Check Everything
  • Use Interactive Dashboards

1. Start with an Outline

If you start writing without having a clear idea of what your data analysis report is going to include, it may get messy. Important insights may slip through your fingers, and you may stray away too far from the main topic. To avoid this, start the report by writing an outline first. Plan the structure and contents of each section first to make sure you’ve covered everything, and only then start crafting the report.

2. Make a Selection of Vital KPIs

Don’t overwhelm the audience by including every single metric there is. You can discuss your whole dashboard in a meeting with your team, but if you’re creating data analytics reports or marketing reports for other departments or the executives, it’s best to focus on the most relevant KPIs that demonstrate the data important for the overall business performance.

PRO TIP: How Well Are Your Marketing KPIs Performing?

Like most marketers and marketing managers, you want to know how well your efforts are translating into results each month. How much traffic and new contact conversions do you get? How many new contacts do you get from organic sessions? How are your email campaigns performing? How well are your landing pages converting? You might have to scramble to put all of this together in a single report, but now you can have it all at your fingertips in a single Databox dashboard.

Our Marketing Overview Dashboard includes data from Google Analytics 4 and HubSpot Marketing with key performance metrics like:

  • Sessions . The number of sessions can tell you how many times people are returning to your website. Obviously, the higher the better.
  • New Contacts from Sessions . How well is your campaign driving new contacts and customers?
  • Marketing Performance KPIs . Tracking the number of MQLs, SQLs, New Contacts and similar will help you identify how your marketing efforts contribute to sales.
  • Email Performance . Measure the success of your email campaigns from HubSpot. Keep an eye on your most important email marketing metrics such as number of sent emails, number of opened emails, open rate, email click-through rate, and more.
  • Blog Posts and Landing Pages . How many people have viewed your blog recently? How well are your landing pages performing?

Now you can benefit from the experience of our Google Analytics and HubSpot Marketing experts, who have put together a plug-and-play Databox template that contains all the essential metrics for monitoring your leads. It’s simple to implement and start using as a standalone dashboard or in marketing reports, and best of all, it’s free!

marketing_overview_hubspot_ga_dashboard_preview

You can easily set it up in just a few clicks – no coding required.

To set up the dashboard, follow these 3 simple steps:

Step 1: Get the template 

Step 2: Connect your HubSpot and Google Analytics 4 accounts with Databox. 

Step 3: Watch your dashboard populate in seconds.

3. Pick the Right Charts for Appealing Design

If you’re showing historical data – for instance, how you’ve performed now compared to last month – it’s best to use timelines or graphs. For other data, pie charts or tables may be more suitable. Make sure you use the right data visualization to display your data accurately and in an easy-to-understand manner.

4. Use a Narrative

Do you work on analytics and reporting ? Just exporting your data into a spreadsheet doesn’t qualify as either of them. The fact that you’re dealing with data may sound too technical, but actually, your report should tell a story about your performance. What happened on a specific day? Did your organic traffic increase or suddenly drop? Why? And more. There are a lot of questions to answer and you can put all the responses together in a coherent, understandable narrative.

5. Organize the Information

Before you start writing or building your dashboard, choose how you’re going to organize your data. Are you going to talk about the most relevant and general ones first? It may be the best way to start the report – the best practices typically involve starting with more general information and then diving into details if necessary.

6. Include a Summary

Some people in your audience won’t have the time to read the whole report, but they’ll want to know about your findings. Besides, a summary at the beginning of your data analytics report will help the reader get familiar with the topic and the goal of the report. And a quick note: although the summary should be placed at the beginning, you usually write it when you’re done with the report. When you have the whole picture, it’s easier to extract the key points that you’ll include in the summary.

7. Careful with Your Recommendations

Your communication skills may be critical in data analytics reports. Know that some of the results probably won’t be satisfactory, which means that someone’s strategy failed. Make sure you’re objective in your recommendations and that you’re not looking for someone to blame. Don’t criticize, but give suggestions on how things can be improved. Being solution-oriented is much more important and helpful for the business.

8. Double-Check Everything

The whole point of using data analytics tools and data, in general, is to achieve as much accuracy as possible. Avoid manual mistakes by proofreading your report when you finish, and if possible, give it to another person so they can confirm everything’s in place.

9. Use Interactive Dashboards

Using the right tools is just as important as the contents of your data analysis. The way you present it can make or break a good report, regardless of how valuable the data is. That said, choose a great reporting tool that can automatically update your data and display it in a visually appealing manner. Make sure it offers streamlined interactive dashboards that you can also customize depending on the purpose of the report.

To wrap up the guide, we decided to share nine excellent examples of what awesome data analysis reports can look like. You’ll learn what metrics you should include and how to organize them in logical sections to make your report beautiful and effective.

  • Marketing Data Analysis Report Example

SEO Data Analysis Report Example

Sales data analysis report example.

  • Customer Support Data Analysis Report Example

Help Desk Data Analysis Report Example

Ecommerce data analysis report example, project management data analysis report example, social media data analysis report example, financial kpi data analysis report example, marketing data report example.

If you need an intuitive dashboard that allows you to track your website performance effortlessly and monitor all the relevant metrics such as website sessions, pageviews, or CTA engagement, you’ll love this free HubSpot Marketing Website Overview dashboard template .

Marketing Data Report Example

Tracking the performance of your SEO efforts is important. You can easily monitor relevant SEO KPIs like clicks by page, engaged sessions, or views by session medium by downloading this Google Organic SEO Dashboard .

Google Organic SEO Dashboard

How successful is your sales team? It’s easy to analyze their performance and predict future growth if you choose this HubSpot CRM Sales Analytics Overview dashboard template and track metrics such as average time to close the deal, new deals amount, or average revenue per new client.

Sales Data Analysis Report Example

Customer Support Analysis Data Report Example

Customer support is one of the essential factors that impact your business growth. You can use this streamlined, customizable Customer Success dashboard template . In a single dashboard, you can monitor metrics such as customer satisfaction score, new MRR, or time to first response time.

Customer Support Analysis Data Report Example

Other than being free and intuitive, this HelpScout for Customer Support dashboard template is also customizable and enables you to track the most vital metrics that indicate your customer support agents’ performance: handle time, happiness score, interactions per resolution, and more.

Help Desk Data Analysis Report Example

Is your online store improving or failing? You can easily collect relevant data about your store and monitor the most important metrics like total sales, orders placed, and new customers by downloading this WooCommerce Shop Overview dashboard template .

Ecommerce Data Analysis Report Example

Does your IT department need feedback on their project management performance? Download this Jira dashboard template to track vital metrics such as issues created or resolved, issues by status, etc. Jira enables you to gain valuable insights into your teams’ productivity.

Project Management Data Analysis Report Example

Need to know if your social media strategy is successful? You can find that out by using this easy-to-understand Social Media Awareness & Engagement dashboard template . Here you can monitor and analyze metrics like sessions by social source, track the number of likes and followers, and measure the traffic from each source.

Social Media Data Analysis Report Example

Tracking your finances is critical for keeping your business profitable. If you want to monitor metrics such as the number of open invoices, open deals amount by stage by pipeline, or closed-won deals, use this free QuickBooks + HubSpot CRM Financial Performance dashboard template .

Financial KPI Data Analysis Report Example

Rely on Accurate Data with Databox

“I don’t have time to build custom reports from scratch.”

“It takes too long and becomes daunting very soon.”

“I’m not sure how to organize the data to make it effective and prove the value of my work.”

Does this sound like you?

Well, it’s something we all said at some point – creating data analytics reports can be time-consuming and tiring. And you’re still not sure if the report is compelling and understandable enough when you’re done.

That’s why we decided to create Databox dashboards – a world-class solution for saving your money and time. We build streamlined and easy-to-follow dashboards that include all the metrics that you may need and allow you to create custom ones if necessary. That way, you can use templates and adjust them to any new project or client without having to build a report from scratch.

You can skip the setup and get your first dashboard for free in just 24 hours, with our fantastic customer support team on the line to assist you with the metrics you should track and the structure you should use.

Enjoy crafting brilliant data analysis reports that will improve your business – it’s never been faster and more effortless. Sign up today and get your free dashboard in no time.

Do you want an All-in-One Analytics Platform?

Hey, we’re Databox. Our mission is to help businesses save time and grow faster. Click here to see our platform in action. 

  • Databox Benchmarks
  • Future Value Calculator
  • ROI Calculator
  • Return On Ads Calculator
  • Percentage Growth Rate Calculator
  • Report Automation
  • Client Reporting
  • What is a KPI?
  • Google Sheets KPIs
  • Sales Analysis Report
  • Shopify Reports
  • Data Analysis Report
  • Google Sheets Dashboard
  • Best Dashboard Examples
  • Analysing Data
  • Marketing Agency KPIs
  • Automate Agency Google Ads Report
  • Marketing Research Report
  • Social Media Dashboard Examples
  • Ecom Dashboard Examples

how to write data analysis in research

Does Your Performance Stack Up?

Are you maximizing your business potential? Stop guessing and start comparing with companies like yours.

how to write data analysis in research

A Message From Our CEO

At Databox, we’re obsessed with helping companies more easily monitor, analyze, and report their results. Whether it’s the resources we put into building and maintaining integrations with 100+ popular marketing tools, enabling customizability of charts, dashboards, and reports, or building functionality to make analysis, benchmarking, and forecasting easier, we’re constantly trying to find ways to help our customers save time and deliver better results.

Share on Twitter

Stefana Zarić is a freelance writer & content marketer. Other than writing for SaaS and fintech clients, she educates future writers who want to build a career in marketing. When not working, Stefana loves to read books, play with her kid, travel, and dance.

Get practical strategies that drive consistent growth

12 Tips for Developing a Successful Data Analytics Strategy

how to write data analysis in research

What Is Data Reporting and How to Create Data Reports for Your Business

What is kpi reporting kpi report examples, tips, and best practices.

' src=

Build your first dashboard in 5 minutes or less

Latest from our blog

  • New in Databox: Analyze The Performance of Any Metric or KPI With Metric Insights April 22, 2024
  • The Benefits of Hiring a Fractional Chief Marketing Officer (fCMO): Perspectives of Agencies, Buyers, and fCMOs April 18, 2024
  • Metrics & KPIs
  • vs. Tableau
  • vs. Looker Studio
  • vs. Klipfolio
  • vs. Power BI
  • vs. Whatagraph
  • vs. AgencyAnalytics
  • Product & Engineering
  • Inside Databox
  • Terms of Service
  • Privacy Policy
  • Talent Resources
  • We're Hiring!
  • Help Center
  • API Documentation

Pledge 1%

  • AI & NLP
  • Churn & Loyalty
  • Customer Experience
  • Customer Journeys
  • Customer Metrics
  • Feedback Analysis
  • Product Experience
  • Product Updates
  • Sentiment Analysis
  • Surveys & Feedback Collection
  • Try Thematic

Welcome to the community

how to write data analysis in research

Qualitative Data Analysis: Step-by-Step Guide (Manual vs. Automatic)

When we conduct qualitative methods of research, need to explain changes in metrics or understand people's opinions, we always turn to qualitative data. Qualitative data is typically generated through:

  • Interview transcripts
  • Surveys with open-ended questions
  • Contact center transcripts
  • Texts and documents
  • Audio and video recordings
  • Observational notes

Compared to quantitative data, which captures structured information, qualitative data is unstructured and has more depth. It can answer our questions, can help formulate hypotheses and build understanding.

It's important to understand the differences between quantitative data & qualitative data . But unfortunately, analyzing qualitative data is difficult. While tools like Excel, Tableau and PowerBI crunch and visualize quantitative data with ease, there are a limited number of mainstream tools for analyzing qualitative data . The majority of qualitative data analysis still happens manually.

That said, there are two new trends that are changing this. First, there are advances in natural language processing (NLP) which is focused on understanding human language. Second, there is an explosion of user-friendly software designed for both researchers and businesses. Both help automate the qualitative data analysis process.

In this post we want to teach you how to conduct a successful qualitative data analysis. There are two primary qualitative data analysis methods; manual & automatic. We will teach you how to conduct the analysis manually, and also, automatically using software solutions powered by NLP. We’ll guide you through the steps to conduct a manual analysis, and look at what is involved and the role technology can play in automating this process.

More businesses are switching to fully-automated analysis of qualitative customer data because it is cheaper, faster, and just as accurate. Primarily, businesses purchase subscriptions to feedback analytics platforms so that they can understand customer pain points and sentiment.

Overwhelming quantity of feedback

We’ll take you through 5 steps to conduct a successful qualitative data analysis. Within each step we will highlight the key difference between the manual, and automated approach of qualitative researchers. Here's an overview of the steps:

The 5 steps to doing qualitative data analysis

  • Gathering and collecting your qualitative data
  • Organizing and connecting into your qualitative data
  • Coding your qualitative data
  • Analyzing the qualitative data for insights
  • Reporting on the insights derived from your analysis

What is Qualitative Data Analysis?

Qualitative data analysis is a process of gathering, structuring and interpreting qualitative data to understand what it represents.

Qualitative data is non-numerical and unstructured. Qualitative data generally refers to text, such as open-ended responses to survey questions or user interviews, but also includes audio, photos and video.

Businesses often perform qualitative data analysis on customer feedback. And within this context, qualitative data generally refers to verbatim text data collected from sources such as reviews, complaints, chat messages, support centre interactions, customer interviews, case notes or social media comments.

How is qualitative data analysis different from quantitative data analysis?

Understanding the differences between quantitative & qualitative data is important. When it comes to analyzing data, Qualitative Data Analysis serves a very different role to Quantitative Data Analysis. But what sets them apart?

Qualitative Data Analysis dives into the stories hidden in non-numerical data such as interviews, open-ended survey answers, or notes from observations. It uncovers the ‘whys’ and ‘hows’ giving a deep understanding of people’s experiences and emotions.

Quantitative Data Analysis on the other hand deals with numerical data, using statistics to measure differences, identify preferred options, and pinpoint root causes of issues.  It steps back to address questions like "how many" or "what percentage" to offer broad insights we can apply to larger groups.

In short, Qualitative Data Analysis is like a microscope,  helping us understand specific detail. Quantitative Data Analysis is like the telescope, giving us a broader perspective. Both are important, working together to decode data for different objectives.

Qualitative Data Analysis methods

Once all the data has been captured, there are a variety of analysis techniques available and the choice is determined by your specific research objectives and the kind of data you’ve gathered.  Common qualitative data analysis methods include:

Content Analysis

This is a popular approach to qualitative data analysis. Other qualitative analysis techniques may fit within the broad scope of content analysis. Thematic analysis is a part of the content analysis.  Content analysis is used to identify the patterns that emerge from text, by grouping content into words, concepts, and themes. Content analysis is useful to quantify the relationship between all of the grouped content. The Columbia School of Public Health has a detailed breakdown of content analysis .

Narrative Analysis

Narrative analysis focuses on the stories people tell and the language they use to make sense of them.  It is particularly useful in qualitative research methods where customer stories are used to get a deep understanding of customers’ perspectives on a specific issue. A narrative analysis might enable us to summarize the outcomes of a focused case study.

Discourse Analysis

Discourse analysis is used to get a thorough understanding of the political, cultural and power dynamics that exist in specific situations.  The focus of discourse analysis here is on the way people express themselves in different social contexts. Discourse analysis is commonly used by brand strategists who hope to understand why a group of people feel the way they do about a brand or product.

Thematic Analysis

Thematic analysis is used to deduce the meaning behind the words people use. This is accomplished by discovering repeating themes in text. These meaningful themes reveal key insights into data and can be quantified, particularly when paired with sentiment analysis . Often, the outcome of thematic analysis is a code frame that captures themes in terms of codes, also called categories. So the process of thematic analysis is also referred to as “coding”. A common use-case for thematic analysis in companies is analysis of customer feedback.

Grounded Theory

Grounded theory is a useful approach when little is known about a subject. Grounded theory starts by formulating a theory around a single data case. This means that the theory is “grounded”. Grounded theory analysis is based on actual data, and not entirely speculative. Then additional cases can be examined to see if they are relevant and can add to the original grounded theory.

Methods of qualitative data analysis; approaches and techniques to qualitative data analysis

Challenges of Qualitative Data Analysis

While Qualitative Data Analysis offers rich insights, it comes with its challenges. Each unique QDA method has its unique hurdles. Let’s take a look at the challenges researchers and analysts might face, depending on the chosen method.

  • Time and Effort (Narrative Analysis): Narrative analysis, which focuses on personal stories, demands patience. Sifting through lengthy narratives to find meaningful insights can be time-consuming, requires dedicated effort.
  • Being Objective (Grounded Theory): Grounded theory, building theories from data, faces the challenges of personal biases. Staying objective while interpreting data is crucial, ensuring conclusions are rooted in the data itself.
  • Complexity (Thematic Analysis): Thematic analysis involves identifying themes within data, a process that can be intricate. Categorizing and understanding themes can be complex, especially when each piece of data varies in context and structure. Thematic Analysis software can simplify this process.
  • Generalizing Findings (Narrative Analysis): Narrative analysis, dealing with individual stories, makes drawing broad challenging. Extending findings from a single narrative to a broader context requires careful consideration.
  • Managing Data (Thematic Analysis): Thematic analysis involves organizing and managing vast amounts of unstructured data, like interview transcripts. Managing this can be a hefty task, requiring effective data management strategies.
  • Skill Level (Grounded Theory): Grounded theory demands specific skills to build theories from the ground up. Finding or training analysts with these skills poses a challenge, requiring investment in building expertise.

Benefits of qualitative data analysis

Qualitative Data Analysis (QDA) is like a versatile toolkit, offering a tailored approach to understanding your data. The benefits it offers are as diverse as the methods. Let’s explore why choosing the right method matters.

  • Tailored Methods for Specific Needs: QDA isn't one-size-fits-all. Depending on your research objectives and the type of data at hand, different methods offer unique benefits. If you want emotive customer stories, narrative analysis paints a strong picture. When you want to explain a score, thematic analysis reveals insightful patterns
  • Flexibility with Thematic Analysis: thematic analysis is like a chameleon in the toolkit of QDA. It adapts well to different types of data and research objectives, making it a top choice for any qualitative analysis.
  • Deeper Understanding, Better Products: QDA helps you dive into people's thoughts and feelings. This deep understanding helps you build products and services that truly matches what people want, ensuring satisfied customers
  • Finding the Unexpected: Qualitative data often reveals surprises that we miss in quantitative data. QDA offers us new ideas and perspectives, for insights we might otherwise miss.
  • Building Effective Strategies: Insights from QDA are like strategic guides. They help businesses in crafting plans that match people’s desires.
  • Creating Genuine Connections: Understanding people’s experiences lets businesses connect on a real level. This genuine connection helps build trust and loyalty, priceless for any business.

How to do Qualitative Data Analysis: 5 steps

Now we are going to show how you can do your own qualitative data analysis. We will guide you through this process step by step. As mentioned earlier, you will learn how to do qualitative data analysis manually , and also automatically using modern qualitative data and thematic analysis software.

To get best value from the analysis process and research process, it’s important to be super clear about the nature and scope of the question that’s being researched. This will help you select the research collection channels that are most likely to help you answer your question.

Depending on if you are a business looking to understand customer sentiment, or an academic surveying a school, your approach to qualitative data analysis will be unique.

Once you’re clear, there’s a sequence to follow. And, though there are differences in the manual and automatic approaches, the process steps are mostly the same.

The use case for our step-by-step guide is a company looking to collect data (customer feedback data), and analyze the customer feedback - in order to improve customer experience. By analyzing the customer feedback the company derives insights about their business and their customers. You can follow these same steps regardless of the nature of your research. Let’s get started.

Step 1: Gather your qualitative data and conduct research (Conduct qualitative research)

The first step of qualitative research is to do data collection. Put simply, data collection is gathering all of your data for analysis. A common situation is when qualitative data is spread across various sources.

Classic methods of gathering qualitative data

Most companies use traditional methods for gathering qualitative data: conducting interviews with research participants, running surveys, and running focus groups. This data is typically stored in documents, CRMs, databases and knowledge bases. It’s important to examine which data is available and needs to be included in your research project, based on its scope.

Using your existing qualitative feedback

As it becomes easier for customers to engage across a range of different channels, companies are gathering increasingly large amounts of both solicited and unsolicited qualitative feedback.

Most organizations have now invested in Voice of Customer programs , support ticketing systems, chatbot and support conversations, emails and even customer Slack chats.

These new channels provide companies with new ways of getting feedback, and also allow the collection of unstructured feedback data at scale.

The great thing about this data is that it contains a wealth of valubale insights and that it’s already there! When you have a new question about user behavior or your customers, you don’t need to create a new research study or set up a focus group. You can find most answers in the data you already have.

Typically, this data is stored in third-party solutions or a central database, but there are ways to export it or connect to a feedback analysis solution through integrations or an API.

Utilize untapped qualitative data channels

There are many online qualitative data sources you may not have considered. For example, you can find useful qualitative data in social media channels like Twitter or Facebook. Online forums, review sites, and online communities such as Discourse or Reddit also contain valuable data about your customers, or research questions.

If you are considering performing a qualitative benchmark analysis against competitors - the internet is your best friend. Gathering feedback in competitor reviews on sites like Trustpilot, G2, Capterra, Better Business Bureau or on app stores is a great way to perform a competitor benchmark analysis.

Customer feedback analysis software often has integrations into social media and review sites, or you could use a solution like DataMiner to scrape the reviews.

G2.com reviews of the product Airtable. You could pull reviews from G2 for your analysis.

Step 2: Connect & organize all your qualitative data

Now you all have this qualitative data but there’s a problem, the data is unstructured. Before feedback can be analyzed and assigned any value, it needs to be organized in a single place. Why is this important? Consistency!

If all data is easily accessible in one place and analyzed in a consistent manner, you will have an easier time summarizing and making decisions based on this data.

The manual approach to organizing your data

The classic method of structuring qualitative data is to plot all the raw data you’ve gathered into a spreadsheet.

Typically, research and support teams would share large Excel sheets and different business units would make sense of the qualitative feedback data on their own. Each team collects and organizes the data in a way that best suits them, which means the feedback tends to be kept in separate silos.

An alternative and a more robust solution is to store feedback in a central database, like Snowflake or Amazon Redshift .

Keep in mind that when you organize your data in this way, you are often preparing it to be imported into another software. If you go the route of a database, you would need to use an API to push the feedback into a third-party software.

Computer-assisted qualitative data analysis software (CAQDAS)

Traditionally within the manual analysis approach (but not always), qualitative data is imported into CAQDAS software for coding.

In the early 2000s, CAQDAS software was popularised by developers such as ATLAS.ti, NVivo and MAXQDA and eagerly adopted by researchers to assist with the organizing and coding of data.  

The benefits of using computer-assisted qualitative data analysis software:

  • Assists in the organizing of your data
  • Opens you up to exploring different interpretations of your data analysis
  • Allows you to share your dataset easier and allows group collaboration (allows for secondary analysis)

However you still need to code the data, uncover the themes and do the analysis yourself. Therefore it is still a manual approach.

The user interface of CAQDAS software 'NVivo'

Organizing your qualitative data in a feedback repository

Another solution to organizing your qualitative data is to upload it into a feedback repository where it can be unified with your other data , and easily searchable and taggable. There are a number of software solutions that act as a central repository for your qualitative research data. Here are a couple solutions that you could investigate:  

  • Dovetail: Dovetail is a research repository with a focus on video and audio transcriptions. You can tag your transcriptions within the platform for theme analysis. You can also upload your other qualitative data such as research reports, survey responses, support conversations, and customer interviews. Dovetail acts as a single, searchable repository. And makes it easier to collaborate with other people around your qualitative research.
  • EnjoyHQ: EnjoyHQ is another research repository with similar functionality to Dovetail. It boasts a more sophisticated search engine, but it has a higher starting subscription cost.

Organizing your qualitative data in a feedback analytics platform

If you have a lot of qualitative customer or employee feedback, from the likes of customer surveys or employee surveys, you will benefit from a feedback analytics platform. A feedback analytics platform is a software that automates the process of both sentiment analysis and thematic analysis . Companies use the integrations offered by these platforms to directly tap into their qualitative data sources (review sites, social media, survey responses, etc.). The data collected is then organized and analyzed consistently within the platform.

If you have data prepared in a spreadsheet, it can also be imported into feedback analytics platforms.

Once all this rich data has been organized within the feedback analytics platform, it is ready to be coded and themed, within the same platform. Thematic is a feedback analytics platform that offers one of the largest libraries of integrations with qualitative data sources.

Some of qualitative data integrations offered by Thematic

Step 3: Coding your qualitative data

Your feedback data is now organized in one place. Either within your spreadsheet, CAQDAS, feedback repository or within your feedback analytics platform. The next step is to code your feedback data so we can extract meaningful insights in the next step.

Coding is the process of labelling and organizing your data in such a way that you can then identify themes in the data, and the relationships between these themes.

To simplify the coding process, you will take small samples of your customer feedback data, come up with a set of codes, or categories capturing themes, and label each piece of feedback, systematically, for patterns and meaning. Then you will take a larger sample of data, revising and refining the codes for greater accuracy and consistency as you go.

If you choose to use a feedback analytics platform, much of this process will be automated and accomplished for you.

The terms to describe different categories of meaning (‘theme’, ‘code’, ‘tag’, ‘category’ etc) can be confusing as they are often used interchangeably.  For clarity, this article will use the term ‘code’.

To code means to identify key words or phrases and assign them to a category of meaning. “I really hate the customer service of this computer software company” would be coded as “poor customer service”.

How to manually code your qualitative data

  • Decide whether you will use deductive or inductive coding. Deductive coding is when you create a list of predefined codes, and then assign them to the qualitative data. Inductive coding is the opposite of this, you create codes based on the data itself. Codes arise directly from the data and you label them as you go. You need to weigh up the pros and cons of each coding method and select the most appropriate.
  • Read through the feedback data to get a broad sense of what it reveals. Now it’s time to start assigning your first set of codes to statements and sections of text.
  • Keep repeating step 2, adding new codes and revising the code description as often as necessary.  Once it has all been coded, go through everything again, to be sure there are no inconsistencies and that nothing has been overlooked.
  • Create a code frame to group your codes. The coding frame is the organizational structure of all your codes. And there are two commonly used types of coding frames, flat, or hierarchical. A hierarchical code frame will make it easier for you to derive insights from your analysis.
  • Based on the number of times a particular code occurs, you can now see the common themes in your feedback data. This is insightful! If ‘bad customer service’ is a common code, it’s time to take action.

We have a detailed guide dedicated to manually coding your qualitative data .

Example of a hierarchical coding frame in qualitative data analysis

Using software to speed up manual coding of qualitative data

An Excel spreadsheet is still a popular method for coding. But various software solutions can help speed up this process. Here are some examples.

  • CAQDAS / NVivo - CAQDAS software has built-in functionality that allows you to code text within their software. You may find the interface the software offers easier for managing codes than a spreadsheet.
  • Dovetail/EnjoyHQ - You can tag transcripts and other textual data within these solutions. As they are also repositories you may find it simpler to keep the coding in one platform.
  • IBM SPSS - SPSS is a statistical analysis software that may make coding easier than in a spreadsheet.
  • Ascribe - Ascribe’s ‘Coder’ is a coding management system. Its user interface will make it easier for you to manage your codes.

Automating the qualitative coding process using thematic analysis software

In solutions which speed up the manual coding process, you still have to come up with valid codes and often apply codes manually to pieces of feedback. But there are also solutions that automate both the discovery and the application of codes.

Advances in machine learning have now made it possible to read, code and structure qualitative data automatically. This type of automated coding is offered by thematic analysis software .

Automation makes it far simpler and faster to code the feedback and group it into themes. By incorporating natural language processing (NLP) into the software, the AI looks across sentences and phrases to identify common themes meaningful statements. Some automated solutions detect repeating patterns and assign codes to them, others make you train the AI by providing examples. You could say that the AI learns the meaning of the feedback on its own.

Thematic automates the coding of qualitative feedback regardless of source. There’s no need to set up themes or categories in advance. Simply upload your data and wait a few minutes. You can also manually edit the codes to further refine their accuracy.  Experiments conducted indicate that Thematic’s automated coding is just as accurate as manual coding .

Paired with sentiment analysis and advanced text analytics - these automated solutions become powerful for deriving quality business or research insights.

You could also build your own , if you have the resources!

The key benefits of using an automated coding solution

Automated analysis can often be set up fast and there’s the potential to uncover things that would never have been revealed if you had given the software a prescribed list of themes to look for.

Because the model applies a consistent rule to the data, it captures phrases or statements that a human eye might have missed.

Complete and consistent analysis of customer feedback enables more meaningful findings. Leading us into step 4.

Step 4: Analyze your data: Find meaningful insights

Now we are going to analyze our data to find insights. This is where we start to answer our research questions. Keep in mind that step 4 and step 5 (tell the story) have some overlap . This is because creating visualizations is both part of analysis process and reporting.

The task of uncovering insights is to scour through the codes that emerge from the data and draw meaningful correlations from them. It is also about making sure each insight is distinct and has enough data to support it.

Part of the analysis is to establish how much each code relates to different demographics and customer profiles, and identify whether there’s any relationship between these data points.

Manually create sub-codes to improve the quality of insights

If your code frame only has one level, you may find that your codes are too broad to be able to extract meaningful insights. This is where it is valuable to create sub-codes to your primary codes. This process is sometimes referred to as meta coding.

Note: If you take an inductive coding approach, you can create sub-codes as you are reading through your feedback data and coding it.

While time-consuming, this exercise will improve the quality of your analysis. Here is an example of what sub-codes could look like.

Example of sub-codes

You need to carefully read your qualitative data to create quality sub-codes. But as you can see, the depth of analysis is greatly improved. By calculating the frequency of these sub-codes you can get insight into which  customer service problems you can immediately address.

Correlate the frequency of codes to customer segments

Many businesses use customer segmentation . And you may have your own respondent segments that you can apply to your qualitative analysis. Segmentation is the practise of dividing customers or research respondents into subgroups.

Segments can be based on:

  • Demographic
  • And any other data type that you care to segment by

It is particularly useful to see the occurrence of codes within your segments. If one of your customer segments is considered unimportant to your business, but they are the cause of nearly all customer service complaints, it may be in your best interest to focus attention elsewhere. This is a useful insight!

Manually visualizing coded qualitative data

There are formulas you can use to visualize key insights in your data. The formulas we will suggest are imperative if you are measuring a score alongside your feedback.

If you are collecting a metric alongside your qualitative data this is a key visualization. Impact answers the question: “What’s the impact of a code on my overall score?”. Using Net Promoter Score (NPS) as an example, first you need to:

  • Calculate overall NPS
  • Calculate NPS in the subset of responses that do not contain that theme
  • Subtract B from A

Then you can use this simple formula to calculate code impact on NPS .

Visualizing qualitative data: Calculating the impact of a code on your score

You can then visualize this data using a bar chart.

You can download our CX toolkit - it includes a template to recreate this.

Trends over time

This analysis can help you answer questions like: “Which codes are linked to decreases or increases in my score over time?”

We need to compare two sequences of numbers: NPS over time and code frequency over time . Using Excel, calculate the correlation between the two sequences, which can be either positive (the more codes the higher the NPS, see picture below), or negative (the more codes the lower the NPS).

Now you need to plot code frequency against the absolute value of code correlation with NPS. Here is the formula:

Analyzing qualitative data: Calculate which codes are linked to increases or decreases in my score

The visualization could look like this:

Visualizing qualitative data trends over time

These are two examples, but there are more. For a third manual formula, and to learn why word clouds are not an insightful form of analysis, read our visualizations article .

Using a text analytics solution to automate analysis

Automated text analytics solutions enable codes and sub-codes to be pulled out of the data automatically. This makes it far faster and easier to identify what’s driving negative or positive results. And to pick up emerging trends and find all manner of rich insights in the data.

Another benefit of AI-driven text analytics software is its built-in capability for sentiment analysis, which provides the emotive context behind your feedback and other qualitative textual data therein.

Thematic provides text analytics that goes further by allowing users to apply their expertise on business context to edit or augment the AI-generated outputs.

Since the move away from manual research is generally about reducing the human element, adding human input to the technology might sound counter-intuitive. However, this is mostly to make sure important business nuances in the feedback aren’t missed during coding. The result is a higher accuracy of analysis. This is sometimes referred to as augmented intelligence .

Codes displayed by volume within Thematic. You can 'manage themes' to introduce human input.

Step 5: Report on your data: Tell the story

The last step of analyzing your qualitative data is to report on it, to tell the story. At this point, the codes are fully developed and the focus is on communicating the narrative to the audience.

A coherent outline of the qualitative research, the findings and the insights is vital for stakeholders to discuss and debate before they can devise a meaningful course of action.

Creating graphs and reporting in Powerpoint

Typically, qualitative researchers take the tried and tested approach of distilling their report into a series of charts, tables and other visuals which are woven into a narrative for presentation in Powerpoint.

Using visualization software for reporting

With data transformation and APIs, the analyzed data can be shared with data visualisation software, such as Power BI or Tableau , Google Studio or Looker. Power BI and Tableau are among the most preferred options.

Visualizing your insights inside a feedback analytics platform

Feedback analytics platforms, like Thematic, incorporate visualisation tools that intuitively turn key data and insights into graphs.  This removes the time consuming work of constructing charts to visually identify patterns and creates more time to focus on building a compelling narrative that highlights the insights, in bite-size chunks, for executive teams to review.

Using a feedback analytics platform with visualization tools means you don’t have to use a separate product for visualizations. You can export graphs into Powerpoints straight from the platforms.

Two examples of qualitative data visualizations within Thematic

Conclusion - Manual or Automated?

There are those who remain deeply invested in the manual approach - because it’s familiar, because they’re reluctant to spend money and time learning new software, or because they’ve been burned by the overpromises of AI.  

For projects that involve small datasets, manual analysis makes sense. For example, if the objective is simply to quantify a simple question like “Do customers prefer X concepts to Y?”. If the findings are being extracted from a small set of focus groups and interviews, sometimes it’s easier to just read them

However, as new generations come into the workplace, it’s technology-driven solutions that feel more comfortable and practical. And the merits are undeniable.  Especially if the objective is to go deeper and understand the ‘why’ behind customers’ preference for X or Y. And even more especially if time and money are considerations.

The ability to collect a free flow of qualitative feedback data at the same time as the metric means AI can cost-effectively scan, crunch, score and analyze a ton of feedback from one system in one go. And time-intensive processes like focus groups, or coding, that used to take weeks, can now be completed in a matter of hours or days.

But aside from the ever-present business case to speed things up and keep costs down, there are also powerful research imperatives for automated analysis of qualitative data: namely, accuracy and consistency.

Finding insights hidden in feedback requires consistency, especially in coding.  Not to mention catching all the ‘unknown unknowns’ that can skew research findings and steering clear of cognitive bias.

Some say without manual data analysis researchers won’t get an accurate “feel” for the insights. However, the larger data sets are, the harder it is to sort through the feedback and organize feedback that has been pulled from different places.  And, the more difficult it is to stay on course, the greater the risk of drawing incorrect, or incomplete, conclusions grows.

Though the process steps for qualitative data analysis have remained pretty much unchanged since psychologist Paul Felix Lazarsfeld paved the path a hundred years ago, the impact digital technology has had on types of qualitative feedback data and the approach to the analysis are profound.  

If you want to try an automated feedback analysis solution on your own qualitative data, you can get started with Thematic .

how to write data analysis in research

Community & Marketing

Tyler manages our community of CX, insights & analytics professionals. Tyler's goal is to help unite insights professionals around common challenges.

We make it easy to discover the customer and product issues that matter.

Unlock the value of feedback at scale, in one platform. Try it for free now!

  • Questions to ask your Feedback Analytics vendor
  • How to end customer churn for good
  • Scalable analysis of NPS verbatims
  • 5 Text analytics approaches
  • How to calculate the ROI of CX

Our experts will show you how Thematic works, how to discover pain points and track the ROI of decisions. To access your free trial, book a personal demo today.

Recent posts

Watercare is New Zealand's largest water and wastewater service provider. They are responsible for bringing clean water to 1.7 million people in Tamaki Makaurau (Auckland) and safeguarding the wastewater network to minimize impact on the environment. Water is a sector that often gets taken for granted, with drainage and

Become a qualitative theming pro! Creating a perfect code frame is hard, but thematic analysis software makes the process much easier.

Qualtrics is one of the most well-known and powerful Customer Feedback Management platforms. But even so, it has limitations. We recently hosted a live panel where data analysts from two well-known brands shared their experiences with Qualtrics, and how they extended this platform’s capabilities. Below, we’ll share the

Your Modern Business Guide To Data Analysis Methods And Techniques

Data analysis methods and techniques blog post by datapine

Table of Contents

1) What Is Data Analysis?

2) Why Is Data Analysis Important?

3) What Is The Data Analysis Process?

4) Types Of Data Analysis Methods

5) Top Data Analysis Techniques To Apply

6) Quality Criteria For Data Analysis

7) Data Analysis Limitations & Barriers

8) Data Analysis Skills

9) Data Analysis In The Big Data Environment

In our data-rich age, understanding how to analyze and extract true meaning from our business’s digital insights is one of the primary drivers of success.

Despite the colossal volume of data we create every day, a mere 0.5% is actually analyzed and used for data discovery , improvement, and intelligence. While that may not seem like much, considering the amount of digital information we have at our fingertips, half a percent still accounts for a vast amount of data.

With so much data and so little time, knowing how to collect, curate, organize, and make sense of all of this potentially business-boosting information can be a minefield – but online data analysis is the solution.

In science, data analysis uses a more complex approach with advanced techniques to explore and experiment with data. On the other hand, in a business context, data is used to make data-driven decisions that will enable the company to improve its overall performance. In this post, we will cover the analysis of data from an organizational point of view while still going through the scientific and statistical foundations that are fundamental to understanding the basics of data analysis. 

To put all of that into perspective, we will answer a host of important analytical questions, explore analytical methods and techniques, while demonstrating how to perform analysis in the real world with a 17-step blueprint for success.

What Is Data Analysis?

Data analysis is the process of collecting, modeling, and analyzing data using various statistical and logical methods and techniques. Businesses rely on analytics processes and tools to extract insights that support strategic and operational decision-making.

All these various methods are largely based on two core areas: quantitative and qualitative research.

To explain the key differences between qualitative and quantitative research, here’s a video for your viewing pleasure:

Gaining a better understanding of different techniques and methods in quantitative research as well as qualitative insights will give your analyzing efforts a more clearly defined direction, so it’s worth taking the time to allow this particular knowledge to sink in. Additionally, you will be able to create a comprehensive analytical report that will skyrocket your analysis.

Apart from qualitative and quantitative categories, there are also other types of data that you should be aware of before dividing into complex data analysis processes. These categories include: 

  • Big data: Refers to massive data sets that need to be analyzed using advanced software to reveal patterns and trends. It is considered to be one of the best analytical assets as it provides larger volumes of data at a faster rate. 
  • Metadata: Putting it simply, metadata is data that provides insights about other data. It summarizes key information about specific data that makes it easier to find and reuse for later purposes. 
  • Real time data: As its name suggests, real time data is presented as soon as it is acquired. From an organizational perspective, this is the most valuable data as it can help you make important decisions based on the latest developments. Our guide on real time analytics will tell you more about the topic. 
  • Machine data: This is more complex data that is generated solely by a machine such as phones, computers, or even websites and embedded systems, without previous human interaction.

Why Is Data Analysis Important?

Before we go into detail about the categories of analysis along with its methods and techniques, you must understand the potential that analyzing data can bring to your organization.

  • Informed decision-making : From a management perspective, you can benefit from analyzing your data as it helps you make decisions based on facts and not simple intuition. For instance, you can understand where to invest your capital, detect growth opportunities, predict your income, or tackle uncommon situations before they become problems. Through this, you can extract relevant insights from all areas in your organization, and with the help of dashboard software , present the data in a professional and interactive way to different stakeholders.
  • Reduce costs : Another great benefit is to reduce costs. With the help of advanced technologies such as predictive analytics, businesses can spot improvement opportunities, trends, and patterns in their data and plan their strategies accordingly. In time, this will help you save money and resources on implementing the wrong strategies. And not just that, by predicting different scenarios such as sales and demand you can also anticipate production and supply. 
  • Target customers better : Customers are arguably the most crucial element in any business. By using analytics to get a 360° vision of all aspects related to your customers, you can understand which channels they use to communicate with you, their demographics, interests, habits, purchasing behaviors, and more. In the long run, it will drive success to your marketing strategies, allow you to identify new potential customers, and avoid wasting resources on targeting the wrong people or sending the wrong message. You can also track customer satisfaction by analyzing your client’s reviews or your customer service department’s performance.

What Is The Data Analysis Process?

Data analysis process graphic

When we talk about analyzing data there is an order to follow in order to extract the needed conclusions. The analysis process consists of 5 key stages. We will cover each of them more in detail later in the post, but to start providing the needed context to understand what is coming next, here is a rundown of the 5 essential steps of data analysis. 

  • Identify: Before you get your hands dirty with data, you first need to identify why you need it in the first place. The identification is the stage in which you establish the questions you will need to answer. For example, what is the customer's perception of our brand? Or what type of packaging is more engaging to our potential customers? Once the questions are outlined you are ready for the next step. 
  • Collect: As its name suggests, this is the stage where you start collecting the needed data. Here, you define which sources of data you will use and how you will use them. The collection of data can come in different forms such as internal or external sources, surveys, interviews, questionnaires, and focus groups, among others.  An important note here is that the way you collect the data will be different in a quantitative and qualitative scenario. 
  • Clean: Once you have the necessary data it is time to clean it and leave it ready for analysis. Not all the data you collect will be useful, when collecting big amounts of data in different formats it is very likely that you will find yourself with duplicate or badly formatted data. To avoid this, before you start working with your data you need to make sure to erase any white spaces, duplicate records, or formatting errors. This way you avoid hurting your analysis with bad-quality data. 
  • Analyze : With the help of various techniques such as statistical analysis, regressions, neural networks, text analysis, and more, you can start analyzing and manipulating your data to extract relevant conclusions. At this stage, you find trends, correlations, variations, and patterns that can help you answer the questions you first thought of in the identify stage. Various technologies in the market assist researchers and average users with the management of their data. Some of them include business intelligence and visualization software, predictive analytics, and data mining, among others. 
  • Interpret: Last but not least you have one of the most important steps: it is time to interpret your results. This stage is where the researcher comes up with courses of action based on the findings. For example, here you would understand if your clients prefer packaging that is red or green, plastic or paper, etc. Additionally, at this stage, you can also find some limitations and work on them. 

Now that you have a basic understanding of the key data analysis steps, let’s look at the top 17 essential methods.

17 Essential Types Of Data Analysis Methods

Before diving into the 17 essential types of methods, it is important that we go over really fast through the main analysis categories. Starting with the category of descriptive up to prescriptive analysis, the complexity and effort of data evaluation increases, but also the added value for the company.

a) Descriptive analysis - What happened.

The descriptive analysis method is the starting point for any analytic reflection, and it aims to answer the question of what happened? It does this by ordering, manipulating, and interpreting raw data from various sources to turn it into valuable insights for your organization.

Performing descriptive analysis is essential, as it enables us to present our insights in a meaningful way. Although it is relevant to mention that this analysis on its own will not allow you to predict future outcomes or tell you the answer to questions like why something happened, it will leave your data organized and ready to conduct further investigations.

b) Exploratory analysis - How to explore data relationships.

As its name suggests, the main aim of the exploratory analysis is to explore. Prior to it, there is still no notion of the relationship between the data and the variables. Once the data is investigated, exploratory analysis helps you to find connections and generate hypotheses and solutions for specific problems. A typical area of ​​application for it is data mining.

c) Diagnostic analysis - Why it happened.

Diagnostic data analytics empowers analysts and executives by helping them gain a firm contextual understanding of why something happened. If you know why something happened as well as how it happened, you will be able to pinpoint the exact ways of tackling the issue or challenge.

Designed to provide direct and actionable answers to specific questions, this is one of the world’s most important methods in research, among its other key organizational functions such as retail analytics , e.g.

c) Predictive analysis - What will happen.

The predictive method allows you to look into the future to answer the question: what will happen? In order to do this, it uses the results of the previously mentioned descriptive, exploratory, and diagnostic analysis, in addition to machine learning (ML) and artificial intelligence (AI). Through this, you can uncover future trends, potential problems or inefficiencies, connections, and casualties in your data.

With predictive analysis, you can unfold and develop initiatives that will not only enhance your various operational processes but also help you gain an all-important edge over the competition. If you understand why a trend, pattern, or event happened through data, you will be able to develop an informed projection of how things may unfold in particular areas of the business.

e) Prescriptive analysis - How will it happen.

Another of the most effective types of analysis methods in research. Prescriptive data techniques cross over from predictive analysis in the way that it revolves around using patterns or trends to develop responsive, practical business strategies.

By drilling down into prescriptive analysis, you will play an active role in the data consumption process by taking well-arranged sets of visual data and using it as a powerful fix to emerging issues in a number of key areas, including marketing, sales, customer experience, HR, fulfillment, finance, logistics analytics , and others.

Top 17 data analysis methods

As mentioned at the beginning of the post, data analysis methods can be divided into two big categories: quantitative and qualitative. Each of these categories holds a powerful analytical value that changes depending on the scenario and type of data you are working with. Below, we will discuss 17 methods that are divided into qualitative and quantitative approaches. 

Without further ado, here are the 17 essential types of data analysis methods with some use cases in the business world: 

A. Quantitative Methods 

To put it simply, quantitative analysis refers to all methods that use numerical data or data that can be turned into numbers (e.g. category variables like gender, age, etc.) to extract valuable insights. It is used to extract valuable conclusions about relationships, differences, and test hypotheses. Below we discuss some of the key quantitative methods. 

1. Cluster analysis

The action of grouping a set of data elements in a way that said elements are more similar (in a particular sense) to each other than to those in other groups – hence the term ‘cluster.’ Since there is no target variable when clustering, the method is often used to find hidden patterns in the data. The approach is also used to provide additional context to a trend or dataset.

Let's look at it from an organizational perspective. In a perfect world, marketers would be able to analyze each customer separately and give them the best-personalized service, but let's face it, with a large customer base, it is timely impossible to do that. That's where clustering comes in. By grouping customers into clusters based on demographics, purchasing behaviors, monetary value, or any other factor that might be relevant for your company, you will be able to immediately optimize your efforts and give your customers the best experience based on their needs.

2. Cohort analysis

This type of data analysis approach uses historical data to examine and compare a determined segment of users' behavior, which can then be grouped with others with similar characteristics. By using this methodology, it's possible to gain a wealth of insight into consumer needs or a firm understanding of a broader target group.

Cohort analysis can be really useful for performing analysis in marketing as it will allow you to understand the impact of your campaigns on specific groups of customers. To exemplify, imagine you send an email campaign encouraging customers to sign up for your site. For this, you create two versions of the campaign with different designs, CTAs, and ad content. Later on, you can use cohort analysis to track the performance of the campaign for a longer period of time and understand which type of content is driving your customers to sign up, repurchase, or engage in other ways.  

A useful tool to start performing cohort analysis method is Google Analytics. You can learn more about the benefits and limitations of using cohorts in GA in this useful guide . In the bottom image, you see an example of how you visualize a cohort in this tool. The segments (devices traffic) are divided into date cohorts (usage of devices) and then analyzed week by week to extract insights into performance.

Cohort analysis chart example from google analytics

3. Regression analysis

Regression uses historical data to understand how a dependent variable's value is affected when one (linear regression) or more independent variables (multiple regression) change or stay the same. By understanding each variable's relationship and how it developed in the past, you can anticipate possible outcomes and make better decisions in the future.

Let's bring it down with an example. Imagine you did a regression analysis of your sales in 2019 and discovered that variables like product quality, store design, customer service, marketing campaigns, and sales channels affected the overall result. Now you want to use regression to analyze which of these variables changed or if any new ones appeared during 2020. For example, you couldn’t sell as much in your physical store due to COVID lockdowns. Therefore, your sales could’ve either dropped in general or increased in your online channels. Through this, you can understand which independent variables affected the overall performance of your dependent variable, annual sales.

If you want to go deeper into this type of analysis, check out this article and learn more about how you can benefit from regression.

4. Neural networks

The neural network forms the basis for the intelligent algorithms of machine learning. It is a form of analytics that attempts, with minimal intervention, to understand how the human brain would generate insights and predict values. Neural networks learn from each and every data transaction, meaning that they evolve and advance over time.

A typical area of application for neural networks is predictive analytics. There are BI reporting tools that have this feature implemented within them, such as the Predictive Analytics Tool from datapine. This tool enables users to quickly and easily generate all kinds of predictions. All you have to do is select the data to be processed based on your KPIs, and the software automatically calculates forecasts based on historical and current data. Thanks to its user-friendly interface, anyone in your organization can manage it; there’s no need to be an advanced scientist. 

Here is an example of how you can use the predictive analysis tool from datapine:

Example on how to use predictive analytics tool from datapine

**click to enlarge**

5. Factor analysis

The factor analysis also called “dimension reduction” is a type of data analysis used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved variables called factors. The aim here is to uncover independent latent variables, an ideal method for streamlining specific segments.

A good way to understand this data analysis method is a customer evaluation of a product. The initial assessment is based on different variables like color, shape, wearability, current trends, materials, comfort, the place where they bought the product, and frequency of usage. Like this, the list can be endless, depending on what you want to track. In this case, factor analysis comes into the picture by summarizing all of these variables into homogenous groups, for example, by grouping the variables color, materials, quality, and trends into a brother latent variable of design.

If you want to start analyzing data using factor analysis we recommend you take a look at this practical guide from UCLA.

6. Data mining

A method of data analysis that is the umbrella term for engineering metrics and insights for additional value, direction, and context. By using exploratory statistical evaluation, data mining aims to identify dependencies, relations, patterns, and trends to generate advanced knowledge.  When considering how to analyze data, adopting a data mining mindset is essential to success - as such, it’s an area that is worth exploring in greater detail.

An excellent use case of data mining is datapine intelligent data alerts . With the help of artificial intelligence and machine learning, they provide automated signals based on particular commands or occurrences within a dataset. For example, if you’re monitoring supply chain KPIs , you could set an intelligent alarm to trigger when invalid or low-quality data appears. By doing so, you will be able to drill down deep into the issue and fix it swiftly and effectively.

In the following picture, you can see how the intelligent alarms from datapine work. By setting up ranges on daily orders, sessions, and revenues, the alarms will notify you if the goal was not completed or if it exceeded expectations.

Example on how to use intelligent alerts from datapine

7. Time series analysis

As its name suggests, time series analysis is used to analyze a set of data points collected over a specified period of time. Although analysts use this method to monitor the data points in a specific interval of time rather than just monitoring them intermittently, the time series analysis is not uniquely used for the purpose of collecting data over time. Instead, it allows researchers to understand if variables changed during the duration of the study, how the different variables are dependent, and how did it reach the end result. 

In a business context, this method is used to understand the causes of different trends and patterns to extract valuable insights. Another way of using this method is with the help of time series forecasting. Powered by predictive technologies, businesses can analyze various data sets over a period of time and forecast different future events. 

A great use case to put time series analysis into perspective is seasonality effects on sales. By using time series forecasting to analyze sales data of a specific product over time, you can understand if sales rise over a specific period of time (e.g. swimwear during summertime, or candy during Halloween). These insights allow you to predict demand and prepare production accordingly.  

8. Decision Trees 

The decision tree analysis aims to act as a support tool to make smart and strategic decisions. By visually displaying potential outcomes, consequences, and costs in a tree-like model, researchers and company users can easily evaluate all factors involved and choose the best course of action. Decision trees are helpful to analyze quantitative data and they allow for an improved decision-making process by helping you spot improvement opportunities, reduce costs, and enhance operational efficiency and production.

But how does a decision tree actually works? This method works like a flowchart that starts with the main decision that you need to make and branches out based on the different outcomes and consequences of each decision. Each outcome will outline its own consequences, costs, and gains and, at the end of the analysis, you can compare each of them and make the smartest decision. 

Businesses can use them to understand which project is more cost-effective and will bring more earnings in the long run. For example, imagine you need to decide if you want to update your software app or build a new app entirely.  Here you would compare the total costs, the time needed to be invested, potential revenue, and any other factor that might affect your decision.  In the end, you would be able to see which of these two options is more realistic and attainable for your company or research.

9. Conjoint analysis 

Last but not least, we have the conjoint analysis. This approach is usually used in surveys to understand how individuals value different attributes of a product or service and it is one of the most effective methods to extract consumer preferences. When it comes to purchasing, some clients might be more price-focused, others more features-focused, and others might have a sustainable focus. Whatever your customer's preferences are, you can find them with conjoint analysis. Through this, companies can define pricing strategies, packaging options, subscription packages, and more. 

A great example of conjoint analysis is in marketing and sales. For instance, a cupcake brand might use conjoint analysis and find that its clients prefer gluten-free options and cupcakes with healthier toppings over super sugary ones. Thus, the cupcake brand can turn these insights into advertisements and promotions to increase sales of this particular type of product. And not just that, conjoint analysis can also help businesses segment their customers based on their interests. This allows them to send different messaging that will bring value to each of the segments. 

10. Correspondence Analysis

Also known as reciprocal averaging, correspondence analysis is a method used to analyze the relationship between categorical variables presented within a contingency table. A contingency table is a table that displays two (simple correspondence analysis) or more (multiple correspondence analysis) categorical variables across rows and columns that show the distribution of the data, which is usually answers to a survey or questionnaire on a specific topic. 

This method starts by calculating an “expected value” which is done by multiplying row and column averages and dividing it by the overall original value of the specific table cell. The “expected value” is then subtracted from the original value resulting in a “residual number” which is what allows you to extract conclusions about relationships and distribution. The results of this analysis are later displayed using a map that represents the relationship between the different values. The closest two values are in the map, the bigger the relationship. Let’s put it into perspective with an example. 

Imagine you are carrying out a market research analysis about outdoor clothing brands and how they are perceived by the public. For this analysis, you ask a group of people to match each brand with a certain attribute which can be durability, innovation, quality materials, etc. When calculating the residual numbers, you can see that brand A has a positive residual for innovation but a negative one for durability. This means that brand A is not positioned as a durable brand in the market, something that competitors could take advantage of. 

11. Multidimensional Scaling (MDS)

MDS is a method used to observe the similarities or disparities between objects which can be colors, brands, people, geographical coordinates, and more. The objects are plotted using an “MDS map” that positions similar objects together and disparate ones far apart. The (dis) similarities between objects are represented using one or more dimensions that can be observed using a numerical scale. For example, if you want to know how people feel about the COVID-19 vaccine, you can use 1 for “don’t believe in the vaccine at all”  and 10 for “firmly believe in the vaccine” and a scale of 2 to 9 for in between responses.  When analyzing an MDS map the only thing that matters is the distance between the objects, the orientation of the dimensions is arbitrary and has no meaning at all. 

Multidimensional scaling is a valuable technique for market research, especially when it comes to evaluating product or brand positioning. For instance, if a cupcake brand wants to know how they are positioned compared to competitors, it can define 2-3 dimensions such as taste, ingredients, shopping experience, or more, and do a multidimensional scaling analysis to find improvement opportunities as well as areas in which competitors are currently leading. 

Another business example is in procurement when deciding on different suppliers. Decision makers can generate an MDS map to see how the different prices, delivery times, technical services, and more of the different suppliers differ and pick the one that suits their needs the best. 

A final example proposed by a research paper on "An Improved Study of Multilevel Semantic Network Visualization for Analyzing Sentiment Word of Movie Review Data". Researchers picked a two-dimensional MDS map to display the distances and relationships between different sentiments in movie reviews. They used 36 sentiment words and distributed them based on their emotional distance as we can see in the image below where the words "outraged" and "sweet" are on opposite sides of the map, marking the distance between the two emotions very clearly.

Example of multidimensional scaling analysis

Aside from being a valuable technique to analyze dissimilarities, MDS also serves as a dimension-reduction technique for large dimensional data. 

B. Qualitative Methods

Qualitative data analysis methods are defined as the observation of non-numerical data that is gathered and produced using methods of observation such as interviews, focus groups, questionnaires, and more. As opposed to quantitative methods, qualitative data is more subjective and highly valuable in analyzing customer retention and product development.

12. Text analysis

Text analysis, also known in the industry as text mining, works by taking large sets of textual data and arranging them in a way that makes it easier to manage. By working through this cleansing process in stringent detail, you will be able to extract the data that is truly relevant to your organization and use it to develop actionable insights that will propel you forward.

Modern software accelerate the application of text analytics. Thanks to the combination of machine learning and intelligent algorithms, you can perform advanced analytical processes such as sentiment analysis. This technique allows you to understand the intentions and emotions of a text, for example, if it's positive, negative, or neutral, and then give it a score depending on certain factors and categories that are relevant to your brand. Sentiment analysis is often used to monitor brand and product reputation and to understand how successful your customer experience is. To learn more about the topic check out this insightful article .

By analyzing data from various word-based sources, including product reviews, articles, social media communications, and survey responses, you will gain invaluable insights into your audience, as well as their needs, preferences, and pain points. This will allow you to create campaigns, services, and communications that meet your prospects’ needs on a personal level, growing your audience while boosting customer retention. There are various other “sub-methods” that are an extension of text analysis. Each of them serves a more specific purpose and we will look at them in detail next. 

13. Content Analysis

This is a straightforward and very popular method that examines the presence and frequency of certain words, concepts, and subjects in different content formats such as text, image, audio, or video. For example, the number of times the name of a celebrity is mentioned on social media or online tabloids. It does this by coding text data that is later categorized and tabulated in a way that can provide valuable insights, making it the perfect mix of quantitative and qualitative analysis.

There are two types of content analysis. The first one is the conceptual analysis which focuses on explicit data, for instance, the number of times a concept or word is mentioned in a piece of content. The second one is relational analysis, which focuses on the relationship between different concepts or words and how they are connected within a specific context. 

Content analysis is often used by marketers to measure brand reputation and customer behavior. For example, by analyzing customer reviews. It can also be used to analyze customer interviews and find directions for new product development. It is also important to note, that in order to extract the maximum potential out of this analysis method, it is necessary to have a clearly defined research question. 

14. Thematic Analysis

Very similar to content analysis, thematic analysis also helps in identifying and interpreting patterns in qualitative data with the main difference being that the first one can also be applied to quantitative analysis. The thematic method analyzes large pieces of text data such as focus group transcripts or interviews and groups them into themes or categories that come up frequently within the text. It is a great method when trying to figure out peoples view’s and opinions about a certain topic. For example, if you are a brand that cares about sustainability, you can do a survey of your customers to analyze their views and opinions about sustainability and how they apply it to their lives. You can also analyze customer service calls transcripts to find common issues and improve your service. 

Thematic analysis is a very subjective technique that relies on the researcher’s judgment. Therefore,  to avoid biases, it has 6 steps that include familiarization, coding, generating themes, reviewing themes, defining and naming themes, and writing up. It is also important to note that, because it is a flexible approach, the data can be interpreted in multiple ways and it can be hard to select what data is more important to emphasize. 

15. Narrative Analysis 

A bit more complex in nature than the two previous ones, narrative analysis is used to explore the meaning behind the stories that people tell and most importantly, how they tell them. By looking into the words that people use to describe a situation you can extract valuable conclusions about their perspective on a specific topic. Common sources for narrative data include autobiographies, family stories, opinion pieces, and testimonials, among others. 

From a business perspective, narrative analysis can be useful to analyze customer behaviors and feelings towards a specific product, service, feature, or others. It provides unique and deep insights that can be extremely valuable. However, it has some drawbacks.  

The biggest weakness of this method is that the sample sizes are usually very small due to the complexity and time-consuming nature of the collection of narrative data. Plus, the way a subject tells a story will be significantly influenced by his or her specific experiences, making it very hard to replicate in a subsequent study. 

16. Discourse Analysis

Discourse analysis is used to understand the meaning behind any type of written, verbal, or symbolic discourse based on its political, social, or cultural context. It mixes the analysis of languages and situations together. This means that the way the content is constructed and the meaning behind it is significantly influenced by the culture and society it takes place in. For example, if you are analyzing political speeches you need to consider different context elements such as the politician's background, the current political context of the country, the audience to which the speech is directed, and so on. 

From a business point of view, discourse analysis is a great market research tool. It allows marketers to understand how the norms and ideas of the specific market work and how their customers relate to those ideas. It can be very useful to build a brand mission or develop a unique tone of voice. 

17. Grounded Theory Analysis

Traditionally, researchers decide on a method and hypothesis and start to collect the data to prove that hypothesis. The grounded theory is the only method that doesn’t require an initial research question or hypothesis as its value lies in the generation of new theories. With the grounded theory method, you can go into the analysis process with an open mind and explore the data to generate new theories through tests and revisions. In fact, it is not necessary to collect the data and then start to analyze it. Researchers usually start to find valuable insights as they are gathering the data. 

All of these elements make grounded theory a very valuable method as theories are fully backed by data instead of initial assumptions. It is a great technique to analyze poorly researched topics or find the causes behind specific company outcomes. For example, product managers and marketers might use the grounded theory to find the causes of high levels of customer churn and look into customer surveys and reviews to develop new theories about the causes. 

How To Analyze Data? Top 17 Data Analysis Techniques To Apply

17 top data analysis techniques by datapine

Now that we’ve answered the questions “what is data analysis’”, why is it important, and covered the different data analysis types, it’s time to dig deeper into how to perform your analysis by working through these 17 essential techniques.

1. Collaborate your needs

Before you begin analyzing or drilling down into any techniques, it’s crucial to sit down collaboratively with all key stakeholders within your organization, decide on your primary campaign or strategic goals, and gain a fundamental understanding of the types of insights that will best benefit your progress or provide you with the level of vision you need to evolve your organization.

2. Establish your questions

Once you’ve outlined your core objectives, you should consider which questions will need answering to help you achieve your mission. This is one of the most important techniques as it will shape the very foundations of your success.

To help you ask the right things and ensure your data works for you, you have to ask the right data analysis questions .

3. Data democratization

After giving your data analytics methodology some real direction, and knowing which questions need answering to extract optimum value from the information available to your organization, you should continue with democratization.

Data democratization is an action that aims to connect data from various sources efficiently and quickly so that anyone in your organization can access it at any given moment. You can extract data in text, images, videos, numbers, or any other format. And then perform cross-database analysis to achieve more advanced insights to share with the rest of the company interactively.  

Once you have decided on your most valuable sources, you need to take all of this into a structured format to start collecting your insights. For this purpose, datapine offers an easy all-in-one data connectors feature to integrate all your internal and external sources and manage them at your will. Additionally, datapine’s end-to-end solution automatically updates your data, allowing you to save time and focus on performing the right analysis to grow your company.

data connectors from datapine

4. Think of governance 

When collecting data in a business or research context you always need to think about security and privacy. With data breaches becoming a topic of concern for businesses, the need to protect your client's or subject’s sensitive information becomes critical. 

To ensure that all this is taken care of, you need to think of a data governance strategy. According to Gartner , this concept refers to “ the specification of decision rights and an accountability framework to ensure the appropriate behavior in the valuation, creation, consumption, and control of data and analytics .” In simpler words, data governance is a collection of processes, roles, and policies, that ensure the efficient use of data while still achieving the main company goals. It ensures that clear roles are in place for who can access the information and how they can access it. In time, this not only ensures that sensitive information is protected but also allows for an efficient analysis as a whole. 

5. Clean your data

After harvesting from so many sources you will be left with a vast amount of information that can be overwhelming to deal with. At the same time, you can be faced with incorrect data that can be misleading to your analysis. The smartest thing you can do to avoid dealing with this in the future is to clean the data. This is fundamental before visualizing it, as it will ensure that the insights you extract from it are correct.

There are many things that you need to look for in the cleaning process. The most important one is to eliminate any duplicate observations; this usually appears when using multiple internal and external sources of information. You can also add any missing codes, fix empty fields, and eliminate incorrectly formatted data.

Another usual form of cleaning is done with text data. As we mentioned earlier, most companies today analyze customer reviews, social media comments, questionnaires, and several other text inputs. In order for algorithms to detect patterns, text data needs to be revised to avoid invalid characters or any syntax or spelling errors. 

Most importantly, the aim of cleaning is to prevent you from arriving at false conclusions that can damage your company in the long run. By using clean data, you will also help BI solutions to interact better with your information and create better reports for your organization.

6. Set your KPIs

Once you’ve set your sources, cleaned your data, and established clear-cut questions you want your insights to answer, you need to set a host of key performance indicators (KPIs) that will help you track, measure, and shape your progress in a number of key areas.

KPIs are critical to both qualitative and quantitative analysis research. This is one of the primary methods of data analysis you certainly shouldn’t overlook.

To help you set the best possible KPIs for your initiatives and activities, here is an example of a relevant logistics KPI : transportation-related costs. If you want to see more go explore our collection of key performance indicator examples .

Transportation costs logistics KPIs

7. Omit useless data

Having bestowed your data analysis tools and techniques with true purpose and defined your mission, you should explore the raw data you’ve collected from all sources and use your KPIs as a reference for chopping out any information you deem to be useless.

Trimming the informational fat is one of the most crucial methods of analysis as it will allow you to focus your analytical efforts and squeeze every drop of value from the remaining ‘lean’ information.

Any stats, facts, figures, or metrics that don’t align with your business goals or fit with your KPI management strategies should be eliminated from the equation.

8. Build a data management roadmap

While, at this point, this particular step is optional (you will have already gained a wealth of insight and formed a fairly sound strategy by now), creating a data governance roadmap will help your data analysis methods and techniques become successful on a more sustainable basis. These roadmaps, if developed properly, are also built so they can be tweaked and scaled over time.

Invest ample time in developing a roadmap that will help you store, manage, and handle your data internally, and you will make your analysis techniques all the more fluid and functional – one of the most powerful types of data analysis methods available today.

9. Integrate technology

There are many ways to analyze data, but one of the most vital aspects of analytical success in a business context is integrating the right decision support software and technology.

Robust analysis platforms will not only allow you to pull critical data from your most valuable sources while working with dynamic KPIs that will offer you actionable insights; it will also present them in a digestible, visual, interactive format from one central, live dashboard . A data methodology you can count on.

By integrating the right technology within your data analysis methodology, you’ll avoid fragmenting your insights, saving you time and effort while allowing you to enjoy the maximum value from your business’s most valuable insights.

For a look at the power of software for the purpose of analysis and to enhance your methods of analyzing, glance over our selection of dashboard examples .

10. Answer your questions

By considering each of the above efforts, working with the right technology, and fostering a cohesive internal culture where everyone buys into the different ways to analyze data as well as the power of digital intelligence, you will swiftly start to answer your most burning business questions. Arguably, the best way to make your data concepts accessible across the organization is through data visualization.

11. Visualize your data

Online data visualization is a powerful tool as it lets you tell a story with your metrics, allowing users across the organization to extract meaningful insights that aid business evolution – and it covers all the different ways to analyze data.

The purpose of analyzing is to make your entire organization more informed and intelligent, and with the right platform or dashboard, this is simpler than you think, as demonstrated by our marketing dashboard .

An executive dashboard example showcasing high-level marketing KPIs such as cost per lead, MQL, SQL, and cost per customer.

This visual, dynamic, and interactive online dashboard is a data analysis example designed to give Chief Marketing Officers (CMO) an overview of relevant metrics to help them understand if they achieved their monthly goals.

In detail, this example generated with a modern dashboard creator displays interactive charts for monthly revenues, costs, net income, and net income per customer; all of them are compared with the previous month so that you can understand how the data fluctuated. In addition, it shows a detailed summary of the number of users, customers, SQLs, and MQLs per month to visualize the whole picture and extract relevant insights or trends for your marketing reports .

The CMO dashboard is perfect for c-level management as it can help them monitor the strategic outcome of their marketing efforts and make data-driven decisions that can benefit the company exponentially.

12. Be careful with the interpretation

We already dedicated an entire post to data interpretation as it is a fundamental part of the process of data analysis. It gives meaning to the analytical information and aims to drive a concise conclusion from the analysis results. Since most of the time companies are dealing with data from many different sources, the interpretation stage needs to be done carefully and properly in order to avoid misinterpretations. 

To help you through the process, here we list three common practices that you need to avoid at all costs when looking at your data:

  • Correlation vs. causation: The human brain is formatted to find patterns. This behavior leads to one of the most common mistakes when performing interpretation: confusing correlation with causation. Although these two aspects can exist simultaneously, it is not correct to assume that because two things happened together, one provoked the other. A piece of advice to avoid falling into this mistake is never to trust just intuition, trust the data. If there is no objective evidence of causation, then always stick to correlation. 
  • Confirmation bias: This phenomenon describes the tendency to select and interpret only the data necessary to prove one hypothesis, often ignoring the elements that might disprove it. Even if it's not done on purpose, confirmation bias can represent a real problem, as excluding relevant information can lead to false conclusions and, therefore, bad business decisions. To avoid it, always try to disprove your hypothesis instead of proving it, share your analysis with other team members, and avoid drawing any conclusions before the entire analytical project is finalized.
  • Statistical significance: To put it in short words, statistical significance helps analysts understand if a result is actually accurate or if it happened because of a sampling error or pure chance. The level of statistical significance needed might depend on the sample size and the industry being analyzed. In any case, ignoring the significance of a result when it might influence decision-making can be a huge mistake.

13. Build a narrative

Now, we’re going to look at how you can bring all of these elements together in a way that will benefit your business - starting with a little something called data storytelling.

The human brain responds incredibly well to strong stories or narratives. Once you’ve cleansed, shaped, and visualized your most invaluable data using various BI dashboard tools , you should strive to tell a story - one with a clear-cut beginning, middle, and end.

By doing so, you will make your analytical efforts more accessible, digestible, and universal, empowering more people within your organization to use your discoveries to their actionable advantage.

14. Consider autonomous technology

Autonomous technologies, such as artificial intelligence (AI) and machine learning (ML), play a significant role in the advancement of understanding how to analyze data more effectively.

Gartner predicts that by the end of this year, 80% of emerging technologies will be developed with AI foundations. This is a testament to the ever-growing power and value of autonomous technologies.

At the moment, these technologies are revolutionizing the analysis industry. Some examples that we mentioned earlier are neural networks, intelligent alarms, and sentiment analysis.

15. Share the load

If you work with the right tools and dashboards, you will be able to present your metrics in a digestible, value-driven format, allowing almost everyone in the organization to connect with and use relevant data to their advantage.

Modern dashboards consolidate data from various sources, providing access to a wealth of insights in one centralized location, no matter if you need to monitor recruitment metrics or generate reports that need to be sent across numerous departments. Moreover, these cutting-edge tools offer access to dashboards from a multitude of devices, meaning that everyone within the business can connect with practical insights remotely - and share the load.

Once everyone is able to work with a data-driven mindset, you will catalyze the success of your business in ways you never thought possible. And when it comes to knowing how to analyze data, this kind of collaborative approach is essential.

16. Data analysis tools

In order to perform high-quality analysis of data, it is fundamental to use tools and software that will ensure the best results. Here we leave you a small summary of four fundamental categories of data analysis tools for your organization.

  • Business Intelligence: BI tools allow you to process significant amounts of data from several sources in any format. Through this, you can not only analyze and monitor your data to extract relevant insights but also create interactive reports and dashboards to visualize your KPIs and use them for your company's good. datapine is an amazing online BI software that is focused on delivering powerful online analysis features that are accessible to beginner and advanced users. Like this, it offers a full-service solution that includes cutting-edge analysis of data, KPIs visualization, live dashboards, reporting, and artificial intelligence technologies to predict trends and minimize risk.
  • Statistical analysis: These tools are usually designed for scientists, statisticians, market researchers, and mathematicians, as they allow them to perform complex statistical analyses with methods like regression analysis, predictive analysis, and statistical modeling. A good tool to perform this type of analysis is R-Studio as it offers a powerful data modeling and hypothesis testing feature that can cover both academic and general data analysis. This tool is one of the favorite ones in the industry, due to its capability for data cleaning, data reduction, and performing advanced analysis with several statistical methods. Another relevant tool to mention is SPSS from IBM. The software offers advanced statistical analysis for users of all skill levels. Thanks to a vast library of machine learning algorithms, text analysis, and a hypothesis testing approach it can help your company find relevant insights to drive better decisions. SPSS also works as a cloud service that enables you to run it anywhere.
  • SQL Consoles: SQL is a programming language often used to handle structured data in relational databases. Tools like these are popular among data scientists as they are extremely effective in unlocking these databases' value. Undoubtedly, one of the most used SQL software in the market is MySQL Workbench . This tool offers several features such as a visual tool for database modeling and monitoring, complete SQL optimization, administration tools, and visual performance dashboards to keep track of KPIs.
  • Data Visualization: These tools are used to represent your data through charts, graphs, and maps that allow you to find patterns and trends in the data. datapine's already mentioned BI platform also offers a wealth of powerful online data visualization tools with several benefits. Some of them include: delivering compelling data-driven presentations to share with your entire company, the ability to see your data online with any device wherever you are, an interactive dashboard design feature that enables you to showcase your results in an interactive and understandable way, and to perform online self-service reports that can be used simultaneously with several other people to enhance team productivity.

17. Refine your process constantly 

Last is a step that might seem obvious to some people, but it can be easily ignored if you think you are done. Once you have extracted the needed results, you should always take a retrospective look at your project and think about what you can improve. As you saw throughout this long list of techniques, data analysis is a complex process that requires constant refinement. For this reason, you should always go one step further and keep improving. 

Quality Criteria For Data Analysis

So far we’ve covered a list of methods and techniques that should help you perform efficient data analysis. But how do you measure the quality and validity of your results? This is done with the help of some science quality criteria. Here we will go into a more theoretical area that is critical to understanding the fundamentals of statistical analysis in science. However, you should also be aware of these steps in a business context, as they will allow you to assess the quality of your results in the correct way. Let’s dig in. 

  • Internal validity: The results of a survey are internally valid if they measure what they are supposed to measure and thus provide credible results. In other words , internal validity measures the trustworthiness of the results and how they can be affected by factors such as the research design, operational definitions, how the variables are measured, and more. For instance, imagine you are doing an interview to ask people if they brush their teeth two times a day. While most of them will answer yes, you can still notice that their answers correspond to what is socially acceptable, which is to brush your teeth at least twice a day. In this case, you can’t be 100% sure if respondents actually brush their teeth twice a day or if they just say that they do, therefore, the internal validity of this interview is very low. 
  • External validity: Essentially, external validity refers to the extent to which the results of your research can be applied to a broader context. It basically aims to prove that the findings of a study can be applied in the real world. If the research can be applied to other settings, individuals, and times, then the external validity is high. 
  • Reliability : If your research is reliable, it means that it can be reproduced. If your measurement were repeated under the same conditions, it would produce similar results. This means that your measuring instrument consistently produces reliable results. For example, imagine a doctor building a symptoms questionnaire to detect a specific disease in a patient. Then, various other doctors use this questionnaire but end up diagnosing the same patient with a different condition. This means the questionnaire is not reliable in detecting the initial disease. Another important note here is that in order for your research to be reliable, it also needs to be objective. If the results of a study are the same, independent of who assesses them or interprets them, the study can be considered reliable. Let’s see the objectivity criteria in more detail now. 
  • Objectivity: In data science, objectivity means that the researcher needs to stay fully objective when it comes to its analysis. The results of a study need to be affected by objective criteria and not by the beliefs, personality, or values of the researcher. Objectivity needs to be ensured when you are gathering the data, for example, when interviewing individuals, the questions need to be asked in a way that doesn't influence the results. Paired with this, objectivity also needs to be thought of when interpreting the data. If different researchers reach the same conclusions, then the study is objective. For this last point, you can set predefined criteria to interpret the results to ensure all researchers follow the same steps. 

The discussed quality criteria cover mostly potential influences in a quantitative context. Analysis in qualitative research has by default additional subjective influences that must be controlled in a different way. Therefore, there are other quality criteria for this kind of research such as credibility, transferability, dependability, and confirmability. You can see each of them more in detail on this resource . 

Data Analysis Limitations & Barriers

Analyzing data is not an easy task. As you’ve seen throughout this post, there are many steps and techniques that you need to apply in order to extract useful information from your research. While a well-performed analysis can bring various benefits to your organization it doesn't come without limitations. In this section, we will discuss some of the main barriers you might encounter when conducting an analysis. Let’s see them more in detail. 

  • Lack of clear goals: No matter how good your data or analysis might be if you don’t have clear goals or a hypothesis the process might be worthless. While we mentioned some methods that don’t require a predefined hypothesis, it is always better to enter the analytical process with some clear guidelines of what you are expecting to get out of it, especially in a business context in which data is utilized to support important strategic decisions. 
  • Objectivity: Arguably one of the biggest barriers when it comes to data analysis in research is to stay objective. When trying to prove a hypothesis, researchers might find themselves, intentionally or unintentionally, directing the results toward an outcome that they want. To avoid this, always question your assumptions and avoid confusing facts with opinions. You can also show your findings to a research partner or external person to confirm that your results are objective. 
  • Data representation: A fundamental part of the analytical procedure is the way you represent your data. You can use various graphs and charts to represent your findings, but not all of them will work for all purposes. Choosing the wrong visual can not only damage your analysis but can mislead your audience, therefore, it is important to understand when to use each type of data depending on your analytical goals. Our complete guide on the types of graphs and charts lists 20 different visuals with examples of when to use them. 
  • Flawed correlation : Misleading statistics can significantly damage your research. We’ve already pointed out a few interpretation issues previously in the post, but it is an important barrier that we can't avoid addressing here as well. Flawed correlations occur when two variables appear related to each other but they are not. Confusing correlations with causation can lead to a wrong interpretation of results which can lead to building wrong strategies and loss of resources, therefore, it is very important to identify the different interpretation mistakes and avoid them. 
  • Sample size: A very common barrier to a reliable and efficient analysis process is the sample size. In order for the results to be trustworthy, the sample size should be representative of what you are analyzing. For example, imagine you have a company of 1000 employees and you ask the question “do you like working here?” to 50 employees of which 49 say yes, which means 95%. Now, imagine you ask the same question to the 1000 employees and 950 say yes, which also means 95%. Saying that 95% of employees like working in the company when the sample size was only 50 is not a representative or trustworthy conclusion. The significance of the results is way more accurate when surveying a bigger sample size.   
  • Privacy concerns: In some cases, data collection can be subjected to privacy regulations. Businesses gather all kinds of information from their customers from purchasing behaviors to addresses and phone numbers. If this falls into the wrong hands due to a breach, it can affect the security and confidentiality of your clients. To avoid this issue, you need to collect only the data that is needed for your research and, if you are using sensitive facts, make it anonymous so customers are protected. The misuse of customer data can severely damage a business's reputation, so it is important to keep an eye on privacy. 
  • Lack of communication between teams : When it comes to performing data analysis on a business level, it is very likely that each department and team will have different goals and strategies. However, they are all working for the same common goal of helping the business run smoothly and keep growing. When teams are not connected and communicating with each other, it can directly affect the way general strategies are built. To avoid these issues, tools such as data dashboards enable teams to stay connected through data in a visually appealing way. 
  • Innumeracy : Businesses are working with data more and more every day. While there are many BI tools available to perform effective analysis, data literacy is still a constant barrier. Not all employees know how to apply analysis techniques or extract insights from them. To prevent this from happening, you can implement different training opportunities that will prepare every relevant user to deal with data. 

Key Data Analysis Skills

As you've learned throughout this lengthy guide, analyzing data is a complex task that requires a lot of knowledge and skills. That said, thanks to the rise of self-service tools the process is way more accessible and agile than it once was. Regardless, there are still some key skills that are valuable to have when working with data, we list the most important ones below.

  • Critical and statistical thinking: To successfully analyze data you need to be creative and think out of the box. Yes, that might sound like a weird statement considering that data is often tight to facts. However, a great level of critical thinking is required to uncover connections, come up with a valuable hypothesis, and extract conclusions that go a step further from the surface. This, of course, needs to be complemented by statistical thinking and an understanding of numbers. 
  • Data cleaning: Anyone who has ever worked with data before will tell you that the cleaning and preparation process accounts for 80% of a data analyst's work, therefore, the skill is fundamental. But not just that, not cleaning the data adequately can also significantly damage the analysis which can lead to poor decision-making in a business scenario. While there are multiple tools that automate the cleaning process and eliminate the possibility of human error, it is still a valuable skill to dominate. 
  • Data visualization: Visuals make the information easier to understand and analyze, not only for professional users but especially for non-technical ones. Having the necessary skills to not only choose the right chart type but know when to apply it correctly is key. This also means being able to design visually compelling charts that make the data exploration process more efficient. 
  • SQL: The Structured Query Language or SQL is a programming language used to communicate with databases. It is fundamental knowledge as it enables you to update, manipulate, and organize data from relational databases which are the most common databases used by companies. It is fairly easy to learn and one of the most valuable skills when it comes to data analysis. 
  • Communication skills: This is a skill that is especially valuable in a business environment. Being able to clearly communicate analytical outcomes to colleagues is incredibly important, especially when the information you are trying to convey is complex for non-technical people. This applies to in-person communication as well as written format, for example, when generating a dashboard or report. While this might be considered a “soft” skill compared to the other ones we mentioned, it should not be ignored as you most likely will need to share analytical findings with others no matter the context. 

Data Analysis In The Big Data Environment

Big data is invaluable to today’s businesses, and by using different methods for data analysis, it’s possible to view your data in a way that can help you turn insight into positive action.

To inspire your efforts and put the importance of big data into context, here are some insights that you should know:

  • By 2026 the industry of big data is expected to be worth approximately $273.4 billion.
  • 94% of enterprises say that analyzing data is important for their growth and digital transformation. 
  • Companies that exploit the full potential of their data can increase their operating margins by 60% .
  • We already told you the benefits of Artificial Intelligence through this article. This industry's financial impact is expected to grow up to $40 billion by 2025.

Data analysis concepts may come in many forms, but fundamentally, any solid methodology will help to make your business more streamlined, cohesive, insightful, and successful than ever before.

Key Takeaways From Data Analysis 

As we reach the end of our data analysis journey, we leave a small summary of the main methods and techniques to perform excellent analysis and grow your business.

17 Essential Types of Data Analysis Methods:

  • Cluster analysis
  • Cohort analysis
  • Regression analysis
  • Factor analysis
  • Neural Networks
  • Data Mining
  • Text analysis
  • Time series analysis
  • Decision trees
  • Conjoint analysis 
  • Correspondence Analysis
  • Multidimensional Scaling 
  • Content analysis 
  • Thematic analysis
  • Narrative analysis 
  • Grounded theory analysis
  • Discourse analysis 

Top 17 Data Analysis Techniques:

  • Collaborate your needs
  • Establish your questions
  • Data democratization
  • Think of data governance 
  • Clean your data
  • Set your KPIs
  • Omit useless data
  • Build a data management roadmap
  • Integrate technology
  • Answer your questions
  • Visualize your data
  • Interpretation of data
  • Consider autonomous technology
  • Build a narrative
  • Share the load
  • Data Analysis tools
  • Refine your process constantly 

We’ve pondered the data analysis definition and drilled down into the practical applications of data-centric analytics, and one thing is clear: by taking measures to arrange your data and making your metrics work for you, it’s possible to transform raw information into action - the kind of that will push your business to the next level.

Yes, good data analytics techniques result in enhanced business intelligence (BI). To help you understand this notion in more detail, read our exploration of business intelligence reporting .

And, if you’re ready to perform your own analysis, drill down into your facts and figures while interacting with your data on astonishing visuals, you can try our software for a free, 14-day trial .

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 22 April 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

how to write data analysis in research

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

About 1 in 5 U.S. teens who’ve heard of ChatGPT have used it for schoolwork

(Maskot/Getty Images)

Roughly one-in-five teenagers who have heard of ChatGPT say they have used it to help them do their schoolwork, according to a new Pew Research Center survey of U.S. teens ages 13 to 17. With a majority of teens having heard of ChatGPT, that amounts to 13% of all U.S. teens who have used the generative artificial intelligence (AI) chatbot in their schoolwork.

A bar chart showing that, among teens who know of ChatGPT, 19% say they’ve used it for schoolwork.

Teens in higher grade levels are particularly likely to have used the chatbot to help them with schoolwork. About one-quarter of 11th and 12th graders who have heard of ChatGPT say they have done this. This share drops to 17% among 9th and 10th graders and 12% among 7th and 8th graders.

There is no significant difference between teen boys and girls who have used ChatGPT in this way.

The introduction of ChatGPT last year has led to much discussion about its role in schools , especially whether schools should integrate the new technology into the classroom or ban it .

Pew Research Center conducted this analysis to understand American teens’ use and understanding of ChatGPT in the school setting.

The Center conducted an online survey of 1,453 U.S. teens from Sept. 26 to Oct. 23, 2023, via Ipsos. Ipsos recruited the teens via their parents, who were part of its KnowledgePanel . The KnowledgePanel is a probability-based web panel recruited primarily through national, random sampling of residential addresses. The survey was weighted to be representative of U.S. teens ages 13 to 17 who live with their parents by age, gender, race and ethnicity, household income, and other categories.

This research was reviewed and approved by an external institutional review board (IRB), Advarra, an independent committee of experts specializing in helping to protect the rights of research participants.

Here are the  questions used for this analysis , along with responses, and its  methodology .

Teens’ awareness of ChatGPT

Overall, two-thirds of U.S. teens say they have heard of ChatGPT, including 23% who have heard a lot about it. But awareness varies by race and ethnicity, as well as by household income:

A horizontal stacked bar chart showing that most teens have heard of ChatGPT, but awareness varies by race and ethnicity, household income.

  • 72% of White teens say they’ve heard at least a little about ChatGPT, compared with 63% of Hispanic teens and 56% of Black teens.
  • 75% of teens living in households that make $75,000 or more annually have heard of ChatGPT. Much smaller shares in households with incomes between $30,000 and $74,999 (58%) and less than $30,000 (41%) say the same.

Teens who are more aware of ChatGPT are more likely to use it for schoolwork. Roughly a third of teens who have heard a lot about ChatGPT (36%) have used it for schoolwork, far higher than the 10% among those who have heard a little about it.

When do teens think it’s OK for students to use ChatGPT?

For teens, whether it is – or is not – acceptable for students to use ChatGPT depends on what it is being used for.

There is a fair amount of support for using the chatbot to explore a topic. Roughly seven-in-ten teens who have heard of ChatGPT say it’s acceptable to use when they are researching something new, while 13% say it is not acceptable.

A diverging bar chart showing that many teens say it’s acceptable to use ChatGPT for research; few say it’s OK to use it for writing essays.

However, there is much less support for using ChatGPT to do the work itself. Just one-in-five teens who have heard of ChatGPT say it’s acceptable to use it to write essays, while 57% say it is not acceptable. And 39% say it’s acceptable to use ChatGPT to solve math problems, while a similar share of teens (36%) say it’s not acceptable.

Some teens are uncertain about whether it’s acceptable to use ChatGPT for these tasks. Between 18% and 24% say they aren’t sure whether these are acceptable use cases for ChatGPT.

Those who have heard a lot about ChatGPT are more likely than those who have only heard a little about it to say it’s acceptable to use the chatbot to research topics, solve math problems and write essays. For instance, 54% of teens who have heard a lot about ChatGPT say it’s acceptable to use it to solve math problems, compared with 32% among those who have heard a little about it.

Note: Here are the  questions used for this analysis , along with responses, and its  methodology .

  • Artificial Intelligence
  • Technology Adoption
  • Teens & Tech

Olivia Sidoti's photo

Olivia Sidoti is a research assistant focusing on internet and technology research at Pew Research Center

Jeffrey Gottfried's photo

Jeffrey Gottfried is an associate director focusing on internet and technology research at Pew Research Center

Many Americans think generative AI programs should credit the sources they rely on

Americans’ use of chatgpt is ticking up, but few trust its election information, q&a: how we used large language models to identify guests on popular podcasts, striking findings from 2023, what the data says about americans’ views of artificial intelligence, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Malays Fam Physician
  • v.3(1); 2008

Data Analysis in Qualitative Research: A Brief Guide to Using Nvivo

MSc, PhD, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

Qualitative data is often subjective, rich, and consists of in-depth information normally presented in the form of words. Analysing qualitative data entails reading a large amount of transcripts looking for similarities or differences, and subsequently finding themes and developing categories. Traditionally, researchers ‘cut and paste’ and use coloured pens to categorise data. Recently, the use of software specifically designed for qualitative data management greatly reduces technical sophistication and eases the laborious task, thus making the process relatively easier. A number of computer software packages has been developed to mechanise this ‘coding’ process as well as to search and retrieve data. This paper illustrates the ways in which NVivo can be used in the qualitative data analysis process. The basic features and primary tools of NVivo which assist qualitative researchers in managing and analysing their data are described.

QUALITATIVE RESEARCH IN MEDICINE

Qualitative research has seen an increased popularity in the last two decades and is becoming widely accepted across a wide range of medical and health disciplines, including health services research, health technology assessment, nursing, and allied health. 1 There has also been a corresponding rise in the reporting of qualitative research studies in medical and health related journals. 2

The increasing popularity of qualitative methods is a result of failure of quantitative methods to provide insight into in-depth information about the attitudes, beliefs, motives, or behaviours of people, for example in understanding the emotions, perceptions and actions of people who suffer from a medical condition. Qualitative methods explore the perspective and meaning of experiences, seek insight and identify the social structures or processes that explain people”s behavioural meaning. 1 , 3 Most importantly, qualitative research relies on extensive interaction with the people being studied, and often allows researchers to uncover unexpected or unanticipated information, which is not possible in the quantitative methods. In medical research, it is particularly useful, for example, in a health behaviour study whereby health or education policies can be effectively developed if reasons for behaviours are clearly understood when observed or investigated using qualitative methods. 4

ANALYSING QUALITATIVE DATA

Qualitative research yields mainly unstructured text-based data. These textual data could be interview transcripts, observation notes, diary entries, or medical and nursing records. In some cases, qualitative data can also include pictorial display, audio or video clips (e.g. audio and visual recordings of patients, radiology film, and surgery videos), or other multimedia materials. Data analysis is the part of qualitative research that most distinctively differentiates from quantitative research methods. It is not a technical exercise as in quantitative methods, but more of a dynamic, intuitive and creative process of inductive reasoning, thinking and theorising. 5 In contrast to quantitative research, which uses statistical methods, qualitative research focuses on the exploration of values, meanings, beliefs, thoughts, experiences, and feelings characteristic of the phenomenon under investigation. 6

Data analysis in qualitative research is defined as the process of systematically searching and arranging the interview transcripts, observation notes, or other non-textual materials that the researcher accumulates to increase the understanding of the phenomenon. 7 The process of analysing qualitative data predominantly involves coding or categorising the data. Basically it involves making sense of huge amounts of data by reducing the volume of raw information, followed by identifying significant patterns, and finally drawing meaning from data and subsequently building a logical chain of evidence. 8

Coding or categorising the data is the most important stage in the qualitative data analysis process. Coding and data analysis are not synonymous, though coding is a crucial aspect of the qualitative data analysis process. Coding merely involves subdividing the huge amount of raw information or data, and subsequently assigning them into categories. 9 In simple terms, codes are tags or labels for allocating identified themes or topics from the data compiled in the study. Traditionally, coding was done manually, with the use of coloured pens to categorise data, and subsequently cutting and sorting the data. Given the advancement of software technology, electronic methods of coding data are increasingly used by qualitative researchers.

Nevertheless, the computer does not do the analysis for the researchers. Users still have to create the categories, code, decide what to collate, identify the patterns and draw meaning from the data. The use of computer software in qualitative data analysis is limited due to the nature of qualitative research itself in terms of the complexity of its unstructured data, the richness of the data and the way in which findings and theories emerge from the data. 10 The programme merely takes over the marking, cutting, and sorting tasks that qualitative researchers used to do with a pair of scissors, paper and note cards. It helps to maximise efficiency and speed up the process of grouping data according to categories and retrieving coded themes. Ultimately, the researcher still has to synthesise the data and interpret the meanings that were extracted from the data. Therefore, the use of computers in qualitative analysis merely made organisation, reduction and storage of data more efficient and manageable. The qualitative data analysis process is illustrated in Figure 1 .

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g001.jpg

Qualitative data analysis flowchart

USING NVIVO IN QUALITATIVE DATA ANALYSIS

NVivo is one of the computer-assisted qualitative data analysis softwares (CAQDAS) developed by QSR International (Melbourne, Australia), the world’s largest qualitative research software developer. This software allows for qualitative inquiry beyond coding, sorting and retrieval of data. It was also designed to integrate coding with qualitative linking, shaping and modelling. The following sections discuss the fundamentals of the NVivo software (version 2.0) and illustrates the primary tools in NVivo which assist qualitative researchers in managing their data.

Key features of NVivo

To work with NVivo, first and foremost, the researcher has to create a Project to hold the data or study information. Once a project is created, the Project pad appears ( Figure 2 ). The project pad of NVivo has two main menus: Document browser and Node browser . In any project in NVivo, the researcher can create and explore documents and nodes, when the data is browsed, linked and coded. Both document and node browsers have an Attribute feature, which helps researchers to refer the characteristics of the data such as age, gender, marital status, ethnicity, etc.

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g002.jpg

Project pad with documents tab selected

The document browser is the main work space for coding documents ( Figure 3 ). Documents in NVivo can be created inside the NVivo project or imported from MS Word or WordPad in a rich text (.rtf) format into the project. It can also be imported as a plain text file (.txt) from any word processor. Transcripts of interview data and observation notes are examples of documents that can be saved as individual documents in NVivo. In the document browser all the documents can be viewed in a database with short descriptions of each document.

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g003.jpg

Document browser with coder and coding stripe activated

NVivo is also designed to allow the researcher to place a Hyperlink to other files (for example audio, video and image files, web pages, etc.) in the documents to capture conceptual links which are observed during the analysis. The readers can click on it and be taken to another part of the same document, or a separate file. A hyperlink is very much like a footnote.

The second menu is Node explorer ( Figure 4 ), which represents categories throughout the data. The codes are saved within the NVivo database as nodes. Nodes created in NVivo are equivalent to sticky notes that the researcher places on the document to indicate that a particular passage belongs to a certain theme or topic. Unlike sticky notes, the nodes in NVivo are retrievable, easily organised, and give flexibility to the researcher to either create, delete, alter or merge at any stage. There are two most common types of node: tree nodes (codes that are organised in a hierarchical structure) and free nodes (free standing and not associated with a structured framework of themes or concepts). Once the coding process is complete, the researcher can browse the nodes. To view all the quotes on a particular Node, select the particular node on the Node Explorer and click the Browse button ( Figure 5 ).

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g004.jpg

Node explorer with a tree node highlighted

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g005.jpg

Browsing a node

Coding in NVivo using Coder

Coding is done in the document browser. Coding involves the desegregation of textual data into segments, examining the data similarities and differences, and grouping together conceptually similar data in the respective nodes. 11 The organised list of nodes will appear with a click on the Coder button at the bottom of document browser window.

To code a segment of the text in a project document under a particular node, highlight the particular segment and drag the highlighted text to the desired node in the coder window ( Figure 3 ). The segments that have been coded to a particular node are highlighted in colours and nodes that have attached to a document turns bold. Multiple codes can be assigned to the same segment of text using the same process. Coding Stripes can be activated to view the quotes that are associated with the particular nodes. With the guide of highlighted text and coding stripes, the researcher can return to the data to do further coding or refine the coding.

Coding can be done with pre-constructed coding schemes where the nodes are first created using the Node explorer followed by coding using the coder. Alternatively, a bottom-up approach can be used where the researcher reads the documents and creates nodes when themes arise from the data as he or she codes.

Making and using memos

In analysing qualitative data, pieces of reflective thinking, ideas, theories, and concepts often emerge as the researcher reads through the data. NVivo allows the user the flexibility to record ideas about the research as they emerge in the Memos . Memos can be seen as add-on documents, treated as full status data and coded like any other documents. 12 Memos can be placed in a document or at a node. A memo itself can have memos (e.g. documents or nodes) linked to it, using DocLinks and NodeLinks .

Creating attributes

Attributes are characteristics (e.g. age, marital status, ethnicity, educational level, etc.) that the researcher associates with a document or node. Attributes have different values (for example, the values of the attribute for ethnicity are ‘Malay’, ‘Chinese’ and ‘Indian’). NVivo makes it possible to assign attributes to either document or node. Items in attributes can be added, removed or rearranged to help the researcher in making comparisons. Attributes are also integrated with the searching process; for example, linking the attributes to documents will enable the researcher to conduct searches pertaining to documents with specified characteristics ( Figure 6 ).

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g006.jpg

Document attribute explorer

Search operation

The three most useful types of searches in NVivo are Single item (text, node, or attribute value), Boolean and Proximity searches. Single item search is particularly important, for example, if researchers want to ensure that every mention of the word ‘cure’ has been coded under the ‘Curability of cervical cancer’ tree node. Every paragraph in which this word is used can be viewed. The results of the search can also be compiled into a single document in the node browser and by viewing the coding stripe. The researcher can check whether each of the resulting passages has been coded under a particular node. This is particularly useful for the researcher to further determine whether conducting further coding is necessary.

Boolean searches combine codes using the logical terms like ‘and’, ‘or’ and ‘not’. Common Boolean searches are ‘or’ (also referred to as ‘combination’ or ‘union’) and ‘and’ (also called ‘intersection’). For example, the researcher may wish to search for a node and an attributed value, such as ‘ever screened for cervical cancer’ and ‘primary educated’. Search results can be displayed in matrix form and it is possible for the researcher to perform quantitative interpretations or simple counts to provide useful summaries of some aspects of the analysis. 13 Proximity searches are used to find places where two items (e.g. text patterns, attribute values, nodes) appear near each other in the text.

Using models to show relationships

Models or visualisations are an essential way to describe and explore relationships in qualitative research. NVivo provides a Modeler designated for visual exploration and explanation of relationships between various nodes and documents. In Model Explorer, the researcher can create, label and connect ideas or concepts. NVivo allows the user to create a model over time and have any number of layers to track the progress of theory development to enable the researcher to examine the stages in the model-building over time ( Figure 7 ). Any documents, nodes or attributes can be placed in a model and clicking on the item will enable the researcher to inspect its properties.

An external file that holds a picture, illustration, etc.
Object name is MFP-03-14-g007.jpg

Model explorer showing the perceived risk factors of cervical cancer

NVivo has clear advantages and can greatly enhance research quality as outlined above. It can ease the laborious task of data analysis which would otherwise be performed manually. The software certainly removes the tremendous amount of manual tasks and allows more time for the researcher to explore trends, identify themes, and make conclusions. Ultimately, analysis of qualitative data is now more systematic and much easier. In addition, NVivo is ideal for researchers working in a team as the software has a Merge tool that enables researchers that work in separate teams to bring their work together into one project.

The NVivo software has been revolutionised and enhanced recently. The newly released NVivo 7 (released March 2006) and NVivo 8 (released March 2008) are even more sophisticated, flexible, and enable more fluid analysis. These new softwares come with a more user-friendly interface that resembles the Microsoft Windows XP applications. Furthermore, they have new data handling capacities such as to enable tables or images embedded in rich text files to be imported and coded as well. In addition, the user can also import and work on rich text files in character based languages such as Chinese or Arabic.

To sum up, qualitative research undoubtedly has been advanced greatly by the development of CAQDAS. The use of qualitative methods in medical and health care research is postulated to grow exponentially in years to come with the further development of CAQDAS.

More information about the NVivo software

Detailed information about NVivo’s functionality is available at http://www.qsrinternational.com . The website also carries information about the latest versions of NVivo. Free demonstrations and tutorials are available for download.

ACKNOWLEDGEMENT

The examples in this paper were adapted from the data of the study funded by the Ministry of Science, Technology and Environment, Malaysia under the Intensification of Research in Priority Areas (IRPA) 06-02-1032 PR0024/09-06.

TERMINOLOGY

Attributes : An attribute is a property of a node, case or document. It is equivalent to a variable in quantitative analysis. An attribute (e.g. ethnicity) may have several values (e.g. Malay, Chinese, Indian, etc.). Any particular node, case or document may be assigned one value for each attribute. Similarities within or differences between groups can be identified using attributes. Attribute Explorer displays a table of all attributes assigned to a document, node or set.

CAQDAS : Computer Aided Qualitative Data Analysis. The CAQDAS programme assists data management and supports coding processes. The software does not really analyse data, but rather supports the qualitative analysis process. NVivo is one of the CAQDAS programmes; others include NUDIST, ATLAS-ti, AQUAD, ETHNOGRAPH and MAXQDA.

Code : A term that represents an idea, theme, theory, dimension, characteristic, etc., of the data.

Coder : A tool used to code a passage of text in a document under a particular node. The coder can be accessed from the Document or Node Browser .

Coding : The action of identifying a passage of text in a document that exemplifies ideas or concepts and connecting it to a node that represents that idea or concept. Multiple codes can be assigned to the same segment of text in a document.

Coding stripes : Coloured vertical lines displayed at the right-hand pane of a Document ; each is named with title of the node at which the text is coded.

DataLinks : A tool for linking the information in a document or node to the information outside the project, or between project documents. DocLinks , NodeLinks and DataBite Links are all forms of DataLink .

Document : A document in an NVivo project is an editable rich text or plain text file. It may be a transcription of project data or it may be a summary of such data or memos, notes or passages written by the researcher. The text in a document can be coded, may be given values of document attributes and may be linked (via DataLinks ) to other related documents, annotations, or external computer files. The Document Explorer shows the list of all project documents.

Memo : A document containing the researcher”s commentary flagged (linked) on any text in a Document or Node. Any files (text, audio or video, or picture data) can be linked via MemoLink .

Model : NVivo models are made up of symbols, usually representing items in the project, which are joined by lines or arrows, designed to represent the relationship between key elements in a field of study. Models are constructed in the Modeller .

Node : Relevant passages in the project”s documents are coded at nodes. A Node represents a code, theme, or idea about the data in a project. Nodes can be kept as Free Nodes (without organisation) or may be organised hierarchically in Trees (of categories and subcategories). Free nodes are free-standing and are not associated to themes or concepts. Early on in the project, tentative ideas may be stored in the Free Nodes area. Free nodes can be kept in a simple list and can be moved to a logical place in the Tree Node when higher levels of categories are discovered. Nodes can be given values of attributes according to the features of what they represent, and can be grouped in sets. Nodes can be organised (created, edited) in Node Explorer (a window listing all the project nodes and node sets). The Node Browser displays the node”s coding and allow the researcher to change the coding.

Project : Collection of all the files, documents, codes, nodes, attributes, etc. associated with a research project. The Project pad is a window in NVivo when a project is open which gives access to all the main functions of the programme.

Sets : Sets in NVivo hold shortcuts to any nodes or documents, as a way of holding those items together without actually combining them. Sets are used primarily as a way of indicating items that in some way are related conceptually or theoretically. It provides different ways of sorting and managing data.

Tree Node : Nodes organised hierarchically into trees to catalogue categories and subcategories.

How to Write a Data Analyst Job Description: Important Skills and Role Responsibilities

Use these job description examples to guide your writing.

Bailey Reiners

The terms may sound similar, but data analysts , data engineers and data scientists are actually very different roles.

Here’s the simplified version: Data analysts are responsible for collecting, cleaning, analyzing and reporting data; meanwhile, data engineers create and maintain architectural systems for collecting, storing, analyzing and managing large quantities of raw data; and finally, data scientists handle data collection, analysis and visualization — and sometimes build things like machine learning models.

To write a stellar job description for data analysts — and attract top candidates — you’ll need to understand their role more specifically. That’s where this guide comes in.

Table of Contents

What Does a Data Analyst Do?

Types of data analyst jobs.

  • Data Analyst Skills 

Data Analyst Salary Information

Data analyst job description template.

Access our entire library of templates for your open roles.

Data analysts gather data across a business, analyze it and translate the results into non-technical language for team members of all backgrounds.

Data analysts are typically early in their careers and may be seeking their first job after completing a bachelor’s degree or gaining the equivalent professional experience. Common degrees include statistics, math, computer science, physics, finance, business administration, economics or a related field.

What Is a Data Analyst?

Data analysts may be responsible for building data models to organize important data for different teams across the business and for monitoring and handling data. With large quantities of data comes endless possibilities for mistakes, requiring data analysts to constantly be on the lookout for information that needs cleansing and updating.

In addition to gathering, analyzing and cleansing information, data analysts create business reports for teams and individuals across the business. They also help translate analytics into non-technical insights to help all teams make well-informed decisions based on empirical evidence.

As they progress in their careers, data analysts may continue their education and become data engineers and eventually data scientists.

There are many different careers and jobs that data analysts can hold. Some of the most common fields for data analysts to work in include healthcare, big data , market research, operations and intelligence. 

Let’s take a closer look at a few different types of data analyst jobs and what they do. 

1. Business Intelligence Analyst

The primary job of a business intelligence analyst is to extract valuable insights from company data. Someone in this role should be comfortable with SQL, analyzing data, as well as creating data models.

2. Marketing Analyst 

Marketing analysts help their team track the success of campaigns by using Google Analytics, custom reporting tools or other traffic analytics sites to determine the impact advertisements are making. Marketing analysts are key to marketing departments as they help understand what efforts are working and what advertisements to spend company money on. 

3. Transportation Logistics Specialist

Transportation logistics specialists can utilize a data analytics background in a variety of ways. This role relies heavily on the ability to identify efficient delivery routes for products and services. Someone in this role uses large datasets to eliminate transit bottlenecks. 

4. Operations Analyst 

An operations analyst’s primary job is to organize a company’s internal processes. This role focuses on general operations as well as internal reporting and product manufacturing and distribution. Operations analysts can work for nearly every type of business, including supermarket chains, delivery providers or even government agencies. 

5. Healthcare Analyst

Healthcare data analysts collect, organize and interpret data from sources like electronic health records, billing claims, cost reports and surveys. The purpose of this role is to assist healthcare providers in order to improve the quality of care, lower costs and improve patient experiences. Someone in this field might have duties like automating internal and external reports, creating data dashboards or being responsible for presenting information to hospital executives. 

Related Reading Data Analyst vs. Data Scientist: Similarities and Differences Explained

Data Analyst Skills

Data analysts employ a variety of soft and technical skills throughout their careers. Like many positions, having clear communication skills and the ability to present complex information is crucial to this role. Critical thinking skills are an essential part of many jobs, and data analysts are no exception. These soft skills are especially important to data analysts because they are often responsible for presenting data to stakeholders and other teams in ways that everyone can understand. 

Along with communication and critical thinking skills, data analysts will need to understand different visualization tools, coding languages and mathematical principles.

Top Data Analyst Skills

  • Data visualization
  • Data cleaning
  • Critical thinking
  • Communication

Coding Languages

Mastering coding languages like R and Python is important as they are standard in the industry. These languages also provide advanced analyses and predictive analytics on large data sets. Some coding languages data analysts need to know are: 

Data Visualization

A key element of a data analyst’s job is data visualization. Data visualization allows analysts to identify patterns and showcase their findings to stakeholders and other teams. This skill is crucial in shaping company decisions and roadmaps. Some data visualization tools that data analysts use include: 

  • Google Analytics & Google Tag Manager
  • Microsoft Power BI

Data analysts rely on databases to store, maintain and organize data. There are several types of database languages that analysts may need to learn early on in their career. SQL , one of the first database languages created in 1970, is still a standard for querying and handling data today. Some common database languages for data analysis include: 

  • Apache Cassandra

Data Warehouses

Data analysts use data warehouses to perform queries and analysis on historical data. The information contained in a data warehouse can include data such as application log files and transaction applications. These tools are useful to analysts because they consolidate large datasets from many sources. Often called a “single source of truth,” a data warehouse allows a company to improve decision making based on historical insights over time. Some types of data warehouses are: 

  • Amazon Redshift
  • Apache Hive
  • Microsoft Azure SQL Database
  • Oracle Database
  • Oracle Warehouse Builder
  • SAP NetWeaver Business Warehouse

Data Analyst Education Requirements

Although it may be possible to get a job in data analytics without a degree, having a bachelor’s degree can help candidates stand out and is often a requirement for many positions. Majoring in data analytics in an undergraduate program is a great place to start but not all universities offer this. Some alternative majors to look into include data science, computer science, applied mathematics or statistics. 

Whatever major you choose, taking courses on statistics, calculus and linear algebra will help you develop crucial skills for your career. Computer science courses with a focus on databases and statistical software will also provide a solid background to draw from. For those that have an idea of what field they’d like to work in, it’s always a good idea to take a course or two in a specific industry like healthcare or finance. 

Obtaining a master’s degree in analytics or a related field will open up more opportunities as well as senior positions. In fact, approximately 50 percent of professionals in the data science and analytics industry hold master’s degrees. Master’s degrees can help data analysts advance their visualization skills, understand how to use data in an ethical way and learn the best practices for data security. 

More on Job Descriptions How to Write a Job Description: Data Driven Results

To help determine what candidates expect, we’ve gathered average data analyst salary information from seven major hiring markets in the United States.

  • Austin, TX: $78,469
  • Boston, MA: $83,313
  • Chicago, IL: $78,462
  • Colorado: $77,359
  • Los Angeles, CA: $89,517
  • New York, NY: $86,392
  • Seattle, WA: $83,224

Below are some resources to help you write a job description that will attract candidates with the skills needed to be successful in their role. It includes a data analyst job description template for you to alter and customize so that it includes the necessary responsibilities and requirements while reflecting your unique company culture. 

Company Bio

Use this section to provide a high level overview of your company, culture, perks and benefits, career development opportunities and anything else that will get candidates excited about your company.

Responsibilities

  • Collaborate with various stakeholders and teams including product, engineering and finance.
  • Provide teams and stakeholders with actionable insights and analysis reports based on data to support decision making efforts.
  • Collect data from numerous data sources, clean data and analyze data to identify trends.
  • Build and analyze automated dataset dashboards to predict issues before they arise, identify bugs in data and resolve them.
  • Support individual team members by creating customizable tabular or visual reports with ad hoc reporting via SQL.
  • Communicate and present technical information with non-technical team members and stakeholders.

Requirements

  • Bachelor’s degree in computer science, mathematics, finance, economics, statistics or a related field.
  • [X] years experience working in technical data analysis, data science, data warehousing in [insert industry] or a related industry.
  • Experience with designing reports and dashboards on [insert tools].
  • Experience with [insert relevant databases].
  • Strong knowledge of [insert coding languages].
  • Excellent communication skills including written, verbal and presentation.

Recent Data + Analytics Articles

Too Much Data Is a Bad Thing. Choose Your Metrics Wisely, HR Teams.

AI Index Report

Welcome to the seventh edition of the AI Index report. The 2024 Index is our most comprehensive to date and arrives at an important moment when AI’s influence on society has never been more pronounced. This year, we have broadened our scope to more extensively cover essential trends such as technical advancements in AI, public perceptions of the technology, and the geopolitical dynamics surrounding its development. Featuring more original data than ever before, this edition introduces new estimates on AI training costs, detailed analyses of the responsible AI landscape, and an entirely new chapter dedicated to AI’s impact on science and medicine.

Read the 2024 AI Index Report

The AI Index report tracks, collates, distills, and visualizes data related to artificial intelligence (AI). Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the complex field of AI.

The AI Index is recognized globally as one of the most credible and authoritative sources for data and insights on artificial intelligence. Previous editions have been cited in major newspapers, including the The New York Times, Bloomberg, and The Guardian, have amassed hundreds of academic citations, and been referenced by high-level policymakers in the United States, the United Kingdom, and the European Union, among other places. This year’s edition surpasses all previous ones in size, scale, and scope, reflecting the growing significance that AI is coming to hold in all of our lives.

Steering Committee Co-Directors

Jack Clark

Ray Perrault

Steering committee members.

Erik Brynjolfsson

Erik Brynjolfsson

John Etchemendy

John Etchemendy

Katrina light

Katrina Ligett

Terah Lyons

Terah Lyons

James Manyika

James Manyika

Juan Carlos Niebles

Juan Carlos Niebles

Vanessa Parli

Vanessa Parli

Yoav Shoham

Yoav Shoham

Russell Wald

Russell Wald

Staff members.

Loredana Fattorini

Loredana Fattorini

Nestor Maslej

Nestor Maslej

Letter from the co-directors.

A decade ago, the best AI systems in the world were unable to classify objects in images at a human level. AI struggled with language comprehension and could not solve math problems. Today, AI systems routinely exceed human performance on standard benchmarks.

Progress accelerated in 2023. New state-of-the-art systems like GPT-4, Gemini, and Claude 3 are impressively multimodal: They can generate fluent text in dozens of languages, process audio, and even explain memes. As AI has improved, it has increasingly forced its way into our lives. Companies are racing to build AI-based products, and AI is increasingly being used by the general public. But current AI technology still has significant problems. It cannot reliably deal with facts, perform complex reasoning, or explain its conclusions.

AI faces two interrelated futures. First, technology continues to improve and is increasingly used, having major consequences for productivity and employment. It can be put to both good and bad uses. In the second future, the adoption of AI is constrained by the limitations of the technology. Regardless of which future unfolds, governments are increasingly concerned. They are stepping in to encourage the upside, such as funding university R&D and incentivizing private investment. Governments are also aiming to manage the potential downsides, such as impacts on employment, privacy concerns, misinformation, and intellectual property rights.

As AI rapidly evolves, the AI Index aims to help the AI community, policymakers, business leaders, journalists, and the general public navigate this complex landscape. It provides ongoing, objective snapshots tracking several key areas: technical progress in AI capabilities, the community and investments driving AI development and deployment, public opinion on current and potential future impacts, and policy measures taken to stimulate AI innovation while managing its risks and challenges. By comprehensively monitoring the AI ecosystem, the Index serves as an important resource for understanding this transformative technological force.

On the technical front, this year’s AI Index reports that the number of new large language models released worldwide in 2023 doubled over the previous year. Two-thirds were open-source, but the highest-performing models came from industry players with closed systems. Gemini Ultra became the first LLM to reach human-level performance on the Massive Multitask Language Understanding (MMLU) benchmark; performance on the benchmark has improved by 15 percentage points since last year. Additionally, GPT-4 achieved an impressive 0.97 mean win rate score on the comprehensive Holistic Evaluation of Language Models (HELM) benchmark, which includes MMLU among other evaluations.

Although global private investment in AI decreased for the second consecutive year, investment in generative AI skyrocketed. More Fortune 500 earnings calls mentioned AI than ever before, and new studies show that AI tangibly boosts worker productivity. On the policymaking front, global mentions of AI in legislative proceedings have never been higher. U.S. regulators passed more AI-related regulations in 2023 than ever before. Still, many expressed concerns about AI’s ability to generate deepfakes and impact elections. The public became more aware of AI, and studies suggest that they responded with nervousness.

Ray Perrault Co-director, AI Index

Our Supporting Partners

Supporting Partner Logos

Analytics & Research Partners

how to write data analysis in research

Stay up to date on the AI Index by subscribing to the  Stanford HAI newsletter.

IMAGES

  1. How to write data analysis in a research paper?

    how to write data analysis in research

  2. 6+ Data Analysis Report Templates

    how to write data analysis in research

  3. How to Write an Analysis Paper

    how to write data analysis in research

  4. Data Analysis in research methodology

    how to write data analysis in research

  5. A Step-by-Step Guide to the Data Analysis Process [2022]

    how to write data analysis in research

  6. Your Guide to Qualitative and Quantitative Data Analysis Methods

    how to write data analysis in research

VIDEO

  1. How to Assess the Quantitative Data Collected from Questionnaire

  2. How to interpret Reliability analysis results

  3. Writng a Data Analysis Chapter

  4. NVIVO 14 Training Day-13: Thematic & Content Analysis

  5. DATA ANALYSIS

  6. interpretation of data , analysis and thesis writing (Nta UGC net sociology)

COMMENTS

  1. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  2. A practical guide to data analysis in general literature reviews

    This article is a practical guide to conducting data analysis in general literature reviews. The general literature review is a synthesis and analysis of published research on a relevant clinical issue, and is a common format for academic theses at the bachelor's and master's levels in nursing, physiotherapy, occupational therapy, public health and other related fields.

  3. The Beginner's Guide to Statistical Analysis

    Learn how to write statistical hypotheses, plan your research design, collect data, summarize data, test hypotheses or make estimates, and interpret your results. Follow two research examples: a potential cause-and-effect relationship and a potential correlation between variables.

  4. PDF Structure of a Data Analysis Report

    - Data - Methods - Analysis - Results This format is very familiar to those who have written psych research papers. It often works well for a data analysis paper as well, though one problem with it is that the Methods section often sounds like a bit of a stretch: In a psych research paper the Methods section describes what you did to ...

  5. Quantitative Data Analysis Methods & Techniques 101

    Factor 1 - Data type. The first thing you need to consider is the type of data you've collected (or the type of data you will collect). By data types, I'm referring to the four levels of measurement - namely, nominal, ordinal, interval and ratio. If you're not familiar with this lingo, check out the video below.

  6. What Is Data Analysis? (With Examples)

    What Is Data Analysis? (With Examples) Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions. "It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts," Sherlock Holme's proclaims ...

  7. A Step-by-Step Guide to the Data Analysis Process

    Let's get started with step one. 1. Step one: Defining the question. The first step in any data analysis process is to define your objective. In data analytics jargon, this is sometimes called the 'problem statement'. Defining your objective means coming up with a hypothesis and figuring how to test it.

  8. How to write statistical analysis section in medical research

    Abstract. Reporting of statistical analysis is essential in any clinical and translational research study. However, medical research studies sometimes report statistical analysis that is either inappropriate or insufficient to attest to the accuracy and validity of findings and conclusions. Published works involving inaccurate statistical ...

  9. Data analysis write-ups

    When writing your report, organization will set you free. A good outline is: 1) overview of the problem, 2) your data and modeling approach, 3) the results of your data analysis (plots, numbers, etc), and 4) your substantive conclusions. 1) Overview. Describe the problem.

  10. How to Write a Results Section

    Here are a few best practices: Your results should always be written in the past tense. While the length of this section depends on how much data you collected and analyzed, it should be written as concisely as possible. Only include results that are directly relevant to answering your research questions.

  11. How to Write Data Analysis Reports in 9 Easy Steps

    Learn how to use data to evaluate your strategies and performance, and give recommendations for further steps and decisions. Follow the 9 steps to write a data analysis report, and see examples and tips from Databox.

  12. Qualitative Data Analysis: Step-by-Step Guide (Manual vs ...

    Step 1: Gather your qualitative data and conduct research (Conduct qualitative research) The first step of qualitative research is to do data collection. Put simply, data collection is gathering all of your data for analysis. A common situation is when qualitative data is spread across various sources.

  13. A Practical Guide to Writing Quantitative and Qualitative Research

    A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. ... of the study meant to address the problem posed in the research question.1 An excellent research question clarifies the research writing while facilitating understanding of the ...

  14. What is data analysis? Methods, techniques, types & how-to

    9. Integrate technology. There are many ways to analyze data, but one of the most vital aspects of analytical success in a business context is integrating the right decision support software and technology.. Robust analysis platforms will not only allow you to pull critical data from your most valuable sources while working with dynamic KPIs that will offer you actionable insights; it will ...

  15. PDF Essentials of Interpretative Phenomenological Analysis: Sample chapter

    detail the steps of the method, including the research team, sampling, biases and expectations, data collection, data analysis, and variations on the method. We also asked authors to provide tips for the research process and for writing a manuscript emerging from a study that used the method. Finally, we asked

  16. Data Collection

    Data Collection | Definition, Methods & Examples. Published on June 5, 2020 by Pritha Bhandari.Revised on June 21, 2023. Data collection is a systematic process of gathering observations or measurements. Whether you are performing research for business, governmental or academic purposes, data collection allows you to gain first-hand knowledge and original insights into your research problem.

  17. Research Design

    Table of contents. Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies.

  18. Basic statistical tools in research and data analysis

    Abstract. Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise ...

  19. Research Methodology

    Qualitative Research Methodology. This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

  20. Copilot Use Cases for Research

    Learn how to use Copilot for Microsoft 365 to enhance your research productivity and collaboration. In this recorded webinar session Microsoft's J im Warner, Nicholas Aquino, and Randall Ykema, show you how Copilot can help you with tasks such as literature review, data analysis, report writing, and more. You will also learn how Copilot can ...

  21. Use of ChatGPT for schoolwork among US teens

    ABOUT PEW RESEARCH CENTER Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions.

  22. Data Analysis in Qualitative Research: A Brief Guide to Using Nvivo

    Abstract. Qualitative data is often subjective, rich, and consists of in-depth information normally presented in the form of words. Analysing qualitative data entails reading a large amount of transcripts looking for similarities or differences, and subsequently finding themes and developing categories. Traditionally, researchers 'cut and ...

  23. Research Methods

    To analyze data collected in a statistically valid manner (e.g. from experiments, surveys, and observations). Meta-analysis. Quantitative. To statistically analyze the results of a large collection of studies. Can only be applied to studies that collected data in a statistically valid manner. Thematic analysis.

  24. Data Analyst Job Description: Examples & Template

    Some of the most common fields for data analysts to work in include healthcare, big data, market research, operations and intelligence. Let's take a closer look at a few different types of data analyst jobs and what they do. 1. Business Intelligence Analyst. The primary job of a business intelligence analyst is to extract valuable insights ...

  25. AI Index Report

    Mission. The AI Index report tracks, collates, distills, and visualizes data related to artificial intelligence (AI). Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the ...

  26. Zero-Day Exploitation of Unauthenticated Remote Code Execution

    Volexity would like to thank Palo Alto Networks for their partnership, cooperation, and rapid response to this critical issue. Their research can be found here. On April 10, 2024, Volexity identified zero-day exploitation of a vulnerability found within the GlobalProtect feature of Palo Alto Networks PAN-OS at one of its network security monitoring (NSM) customers.