The origins and uses of regression analysis

Cite this chapter.

what is regression analysis in research pdf

3171 Accesses

Statistical techniques are tools that enable us to answer questions about possible patterns in empirical data. It is not surprising, then, to learn that many important techniques of statistical analysis were developed by scientists who were interested in answering very specific empirical questions. So it was with regression analysis. The history of this particular statistical technique can be traced back to late nineteenth-century England and the pursuits of a gentleman scientist, Francis Galton. Galton was born into a wealthy family that produced more than its share of geniuses; he and Charles Darwin, the famous biologist, were first cousins. During his lifetime, Galton studied everything from fingerprint classification to meteorology, but he gained widespread recognition primarily for his work on inheritance. His most important insight came to him while he was studying the inheritance of one of the most obvious of all human characteristics: height. In order to understand how the characteristic of height was passed from one generation to the next, Galton collected data on the heights of individuals and the heights of their parents. After constructing frequency tables that classified these individuals both by their height and by the average height of their parents, Galton came to the unremarkable conclusion that tall people usually had tall parents and short people usually had short parents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Unable to display preview.  Download preview PDF.

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Plenum Press, New York

About this chapter

(1997). The origins and uses of regression analysis. In: Understanding Regression Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-25657-3_1

Download citation

DOI : https://doi.org/10.1007/978-0-585-25657-3_1

Publisher Name : Springer, Boston, MA

Print ISBN : 978-0-306-45648-0

Online ISBN : 978-0-585-25657-3

eBook Packages : Springer Book Archive

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Published: 31 January 2022

The clinician’s guide to interpreting a regression analysis

  • Sofia Bzovsky 1 ,
  • Mark R. Phillips   ORCID: orcid.org/0000-0003-0923-261X 2 ,
  • Robyn H. Guymer   ORCID: orcid.org/0000-0002-9441-4356 3 , 4 ,
  • Charles C. Wykoff 5 , 6 ,
  • Lehana Thabane   ORCID: orcid.org/0000-0003-0355-9734 2 , 7 ,
  • Mohit Bhandari   ORCID: orcid.org/0000-0001-9608-4808 1 , 2 &
  • Varun Chaudhary   ORCID: orcid.org/0000-0002-9988-4146 1 , 2

on behalf of the R.E.T.I.N.A. study group

Eye volume  36 ,  pages 1715–1717 ( 2022 ) Cite this article

20k Accesses

9 Citations

1 Altmetric

Metrics details

  • Outcomes research

Introduction

When researchers are conducting clinical studies to investigate factors associated with, or treatments for disease and conditions to improve patient care and clinical practice, statistical evaluation of the data is often necessary. Regression analysis is an important statistical method that is commonly used to determine the relationship between several factors and disease outcomes or to identify relevant prognostic factors for diseases [ 1 ].

This editorial will acquaint readers with the basic principles of and an approach to interpreting results from two types of regression analyses widely used in ophthalmology: linear, and logistic regression.

Linear regression analysis

Linear regression is used to quantify a linear relationship or association between a continuous response/outcome variable or dependent variable with at least one independent or explanatory variable by fitting a linear equation to observed data [ 1 ]. The variable that the equation solves for, which is the outcome or response of interest, is called the dependent variable [ 1 ]. The variable that is used to explain the value of the dependent variable is called the predictor, explanatory, or independent variable [ 1 ].

In a linear regression model, the dependent variable must be continuous (e.g. intraocular pressure or visual acuity), whereas, the independent variable may be either continuous (e.g. age), binary (e.g. sex), categorical (e.g. age-related macular degeneration stage or diabetic retinopathy severity scale score), or a combination of these [ 1 ].

When investigating the effect or association of a single independent variable on a continuous dependent variable, this type of analysis is called a simple linear regression [ 2 ]. In many circumstances though, a single independent variable may not be enough to adequately explain the dependent variable. Often it is necessary to control for confounders and in these situations, one can perform a multivariable linear regression to study the effect or association with multiple independent variables on the dependent variable [ 1 , 2 ]. When incorporating numerous independent variables, the regression model estimates the effect or contribution of each independent variable while holding the values of all other independent variables constant [ 3 ].

When interpreting the results of a linear regression, there are a few key outputs for each independent variable included in the model:

Estimated regression coefficient—The estimated regression coefficient indicates the direction and strength of the relationship or association between the independent and dependent variables [ 4 ]. Specifically, the regression coefficient describes the change in the dependent variable for each one-unit change in the independent variable, if continuous [ 4 ]. For instance, if examining the relationship between a continuous predictor variable and intra-ocular pressure (dependent variable), a regression coefficient of 2 means that for every one-unit increase in the predictor, there is a two-unit increase in intra-ocular pressure. If the independent variable is binary or categorical, then the one-unit change represents switching from one category to the reference category [ 4 ]. For instance, if examining the relationship between a binary predictor variable, such as sex, where ‘female’ is set as the reference category, and intra-ocular pressure (dependent variable), a regression coefficient of 2 means that, on average, males have an intra-ocular pressure that is 2 mm Hg higher than females.

Confidence Interval (CI)—The CI, typically set at 95%, is a measure of the precision of the coefficient estimate of the independent variable [ 4 ]. A large CI indicates a low level of precision, whereas a small CI indicates a higher precision [ 5 ].

P value—The p value for the regression coefficient indicates whether the relationship between the independent and dependent variables is statistically significant [ 6 ].

Logistic regression analysis

As with linear regression, logistic regression is used to estimate the association between one or more independent variables with a dependent variable [ 7 ]. However, the distinguishing feature in logistic regression is that the dependent variable (outcome) must be binary (or dichotomous), meaning that the variable can only take two different values or levels, such as ‘1 versus 0’ or ‘yes versus no’ [ 2 , 7 ]. The effect size of predictor variables on the dependent variable is best explained using an odds ratio (OR) [ 2 ]. ORs are used to compare the relative odds of the occurrence of the outcome of interest, given exposure to the variable of interest [ 5 ]. An OR equal to 1 means that the odds of the event in one group are the same as the odds of the event in another group; there is no difference [ 8 ]. An OR > 1 implies that one group has a higher odds of having the event compared with the reference group, whereas an OR < 1 means that one group has a lower odds of having an event compared with the reference group [ 8 ]. When interpreting the results of a logistic regression, the key outputs include the OR, CI, and p-value for each independent variable included in the model.

Clinical example

Sen et al. investigated the association between several factors (independent variables) and visual acuity outcomes (dependent variable) in patients receiving anti-vascular endothelial growth factor therapy for macular oedema (DMO) by means of both linear and logistic regression [ 9 ]. Multivariable linear regression demonstrated that age (Estimate −0.33, 95% CI − 0.48 to −0.19, p  < 0.001) was significantly associated with best-corrected visual acuity (BCVA) at 100 weeks at alpha = 0.05 significance level [ 9 ]. The regression coefficient of −0.33 means that the BCVA at 100 weeks decreases by 0.33 with each additional year of older age.

Multivariable logistic regression also demonstrated that age and ellipsoid zone status were statistically significant associated with achieving a BCVA letter score >70 letters at 100 weeks at the alpha = 0.05 significance level. Patients ≥75 years of age were at a decreased odds of achieving a BCVA letter score >70 letters at 100 weeks compared to those <50 years of age, since the OR is less than 1 (OR 0.96, 95% CI 0.94 to 0.98, p  = 0.001) [ 9 ]. Similarly, patients between the ages of 50–74 years were also at a decreased odds of achieving a BCVA letter score >70 letters at 100 weeks compared to those <50 years of age, since the OR is less than 1 (OR 0.15, 95% CI 0.04 to 0.48, p  = 0.001) [ 9 ]. As well, those with a not intact ellipsoid zone were at a decreased odds of achieving a BCVA letter score >70 letters at 100 weeks compared to those with an intact ellipsoid zone (OR 0.20, 95% CI 0.07 to 0.56; p  = 0.002). On the other hand, patients with an ungradable/questionable ellipsoid zone were at an increased odds of achieving a BCVA letter score >70 letters at 100 weeks compared to those with an intact ellipsoid zone, since the OR is greater than 1 (OR 2.26, 95% CI 1.14 to 4.48; p  = 0.02) [ 9 ].

The narrower the CI, the more precise the estimate is; and the smaller the p value (relative to alpha = 0.05), the greater the evidence against the null hypothesis of no effect or association.

Simply put, linear and logistic regression are useful tools for appreciating the relationship between predictor/explanatory and outcome variables for continuous and dichotomous outcomes, respectively, that can be applied in clinical practice, such as to gain an understanding of risk factors associated with a disease of interest.

Schneider A, Hommel G, Blettner M. Linear Regression. Anal Dtsch Ärztebl Int. 2010;107:776–82.

Google Scholar  

Bender R. Introduction to the use of regression models in epidemiology. In: Verma M, editor. Cancer epidemiology. Methods in molecular biology. Humana Press; 2009:179–95.

Schober P, Vetter TR. Confounding in observational research. Anesth Analg. 2020;130:635.

Article   Google Scholar  

Schober P, Vetter TR. Linear regression in medical research. Anesth Analg. 2021;132:108–9.

Szumilas M. Explaining odds ratios. J Can Acad Child Adolesc Psychiatry. 2010;19:227–9.

Thiese MS, Ronna B, Ott U. P value interpretations and considerations. J Thorac Dis. 2016;8:E928–31.

Schober P, Vetter TR. Logistic regression in medical research. Anesth Analg. 2021;132:365–6.

Zabor EC, Reddy CA, Tendulkar RD, Patil S. Logistic regression in clinical studies. Int J Radiat Oncol Biol Phys. 2022;112:271–7.

Sen P, Gurudas S, Ramu J, Patrao N, Chandra S, Rasheed R, et al. Predictors of visual acuity outcomes after anti-vascular endothelial growth factor treatment for macular edema secondary to central retinal vein occlusion. Ophthalmol Retin. 2021;5:1115–24.

Download references

R.E.T.I.N.A. study group

Varun Chaudhary 1,2 , Mohit Bhandari 1,2 , Charles C. Wykoff 5,6 , Sobha Sivaprasad 8 , Lehana Thabane 2,7 , Peter Kaiser 9 , David Sarraf 10 , Sophie J. Bakri 11 , Sunir J. Garg 12 , Rishi P. Singh 13,14 , Frank G. Holz 15 , Tien Y. Wong 16,17 , and Robyn H. Guymer 3,4

Author information

Authors and affiliations.

Department of Surgery, McMaster University, Hamilton, ON, Canada

Sofia Bzovsky, Mohit Bhandari & Varun Chaudhary

Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada

Mark R. Phillips, Lehana Thabane, Mohit Bhandari & Varun Chaudhary

Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia

Robyn H. Guymer

Department of Surgery, (Ophthalmology), The University of Melbourne, Melbourne, VIC, Australia

Retina Consultants of Texas (Retina Consultants of America), Houston, TX, USA

Charles C. Wykoff

Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA

Biostatistics Unit, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada

Lehana Thabane

NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK

Sobha Sivaprasad

Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA

Peter Kaiser

Retinal Disorders and Ophthalmic Genetics, Stein Eye Institute, University of California, Los Angeles, CA, USA

David Sarraf

Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA

Sophie J. Bakri

The Retina Service at Wills Eye Hospital, Philadelphia, PA, USA

Sunir J. Garg

Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA

Rishi P. Singh

Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA

Department of Ophthalmology, University of Bonn, Bonn, Germany

Frank G. Holz

Singapore Eye Research Institute, Singapore, Singapore

Tien Y. Wong

Singapore National Eye Centre, Duke-NUD Medical School, Singapore, Singapore

You can also search for this author in PubMed   Google Scholar

  • Varun Chaudhary
  • , Mohit Bhandari
  • , Charles C. Wykoff
  • , Sobha Sivaprasad
  • , Lehana Thabane
  • , Peter Kaiser
  • , David Sarraf
  • , Sophie J. Bakri
  • , Sunir J. Garg
  • , Rishi P. Singh
  • , Frank G. Holz
  • , Tien Y. Wong
  •  & Robyn H. Guymer

Contributions

SB was responsible for writing, critical review and feedback on manuscript. MRP was responsible for conception of idea, critical review and feedback on manuscript. RHG was responsible for critical review and feedback on manuscript. CCW was responsible for critical review and feedback on manuscript. LT was responsible for critical review and feedback on manuscript. MB was responsible for conception of idea, critical review and feedback on manuscript. VC was responsible for conception of idea, critical review and feedback on manuscript.

Corresponding author

Correspondence to Varun Chaudhary .

Ethics declarations

Competing interests.

SB: Nothing to disclose. MRP: Nothing to disclose. RHG: Advisory boards: Bayer, Novartis, Apellis, Roche, Genentech Inc.—unrelated to this study. CCW: Consultant: Acuela, Adverum Biotechnologies, Inc, Aerpio, Alimera Sciences, Allegro Ophthalmics, LLC, Allergan, Apellis Pharmaceuticals, Bayer AG, Chengdu Kanghong Pharmaceuticals Group Co, Ltd, Clearside Biomedical, DORC (Dutch Ophthalmic Research Center), EyePoint Pharmaceuticals, Gentech/Roche, GyroscopeTx, IVERIC bio, Kodiak Sciences Inc, Novartis AG, ONL Therapeutics, Oxurion NV, PolyPhotonix, Recens Medical, Regeron Pharmaceuticals, Inc, REGENXBIO Inc, Santen Pharmaceutical Co, Ltd, and Takeda Pharmaceutical Company Limited; Research funds: Adverum Biotechnologies, Inc, Aerie Pharmaceuticals, Inc, Aerpio, Alimera Sciences, Allergan, Apellis Pharmaceuticals, Chengdu Kanghong Pharmaceutical Group Co, Ltd, Clearside Biomedical, Gemini Therapeutics, Genentech/Roche, Graybug Vision, Inc, GyroscopeTx, Ionis Pharmaceuticals, IVERIC bio, Kodiak Sciences Inc, Neurotech LLC, Novartis AG, Opthea, Outlook Therapeutics, Inc, Recens Medical, Regeneron Pharmaceuticals, Inc, REGENXBIO Inc, Samsung Pharm Co, Ltd, Santen Pharmaceutical Co, Ltd, and Xbrane Biopharma AB—unrelated to this study. LT: Nothing to disclose. MB: Research funds: Pendopharm, Bioventus, Acumed—unrelated to this study. VC: Advisory Board Member: Alcon, Roche, Bayer, Novartis; Grants: Bayer, Novartis—unrelated to this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Bzovsky, S., Phillips, M.R., Guymer, R.H. et al. The clinician’s guide to interpreting a regression analysis. Eye 36 , 1715–1717 (2022). https://doi.org/10.1038/s41433-022-01949-z

Download citation

Received : 08 January 2022

Revised : 17 January 2022

Accepted : 18 January 2022

Published : 31 January 2022

Issue Date : September 2022

DOI : https://doi.org/10.1038/s41433-022-01949-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Factors affecting patient satisfaction at a plastic surgery outpatient department at a tertiary centre in south africa.

  • Chrysis Sofianos

BMC Health Services Research (2023)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

what is regression analysis in research pdf

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • Write for Us
  • BMJ Journals More You are viewing from: Google Indexer

You are here

  • Volume 24, Issue 4
  • Understanding and interpreting regression analysis
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • http://orcid.org/0000-0002-7839-8130 Parveen Ali 1 , 2 ,
  • http://orcid.org/0000-0003-0157-5319 Ahtisham Younas 3 , 4
  • 1 School of Nursing and Midwifery , University of Sheffield , Sheffield , South Yorkshire , UK
  • 2 Sheffiled University Interpersonal Violence Research Group , The University of Sheffiled SEAS , Sheffield , UK
  • 3 Faculty of Nursing , Memorial University of Newfoundland , St. John's , Newfoundland and Labrador , Canada
  • 4 Swat College of Nursing , Mingora, Swat , Pakistan
  • Correspondence to Ahtisham Younas, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada; ay6133{at}mun.ca

https://doi.org/10.1136/ebnurs-2021-103425

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

  • statistics & research methods

Introduction

A nurse educator is interested in finding out the academic and non-academic predictors of success in nursing students. Given the complexity of educational and clinical learning environments, demographic, clinical and academic factors (age, gender, previous educational training, personal stressors, learning demands, motivation, assignment workload, etc) influencing nursing students’ success, she was able to list various potential factors contributing towards success relatively easily. Nevertheless, not all of the identified factors will be plausible predictors of increased success. Therefore, she could use a powerful statistical procedure called regression analysis to identify whether the likelihood of increased success is influenced by factors such as age, stressors, learning demands, motivation and education.

What is regression?

Purposes of regression analysis.

Regression analysis has four primary purposes: description, estimation, prediction and control. 1 , 2 By description, regression can explain the relationship between dependent and independent variables. Estimation means that by using the observed values of independent variables, the value of dependent variable can be estimated. 2 Regression analysis can be useful for predicting the outcomes and changes in dependent variables based on the relationships of dependent and independent variables. Finally, regression enables in controlling the effect of one or more independent variables while investigating the relationship of one independent variable with the dependent variable. 1

Types of regression analyses

There are commonly three types of regression analyses, namely, linear, logistic and multiple regression. The differences among these types are outlined in table 1 in terms of their purpose, nature of dependent and independent variables, underlying assumptions, and nature of curve. 1 , 3 However, more detailed discussion for linear regression is presented as follows.

  • View inline

Comparison of linear, logistic and multiple regression

Linear regression and interpretation

Linear regression analysis involves examining the relationship between one independent and dependent variable. Statistically, the relationship between one independent variable (x) and a dependent variable (y) is expressed as: y= β 0 + β 1 x+ε. In this equation, β 0 is the y intercept and refers to the estimated value of y when x is equal to 0. The coefficient β 1 is the regression coefficient and denotes that the estimated increase in the dependent variable for every unit increase in the independent variable. The symbol ε is a random error component and signifies imprecision of regression indicating that, in actual practice, the independent variables are cannot perfectly predict the change in any dependent variable. 1 Multiple linear regression follows the same logic as univariate linear regression except (a) multiple regression, there are more than one independent variable and (b) there should be non-collinearity among the independent variables.

Factors affecting regression

Linear and multiple regression analyses are affected by factors, namely, sample size, missing data and the nature of sample. 2

Small sample size may only demonstrate connections among variables with strong relationship. Therefore, sample size must be chosen based on the number of independent variables and expect strength of relationship.

Many missing values in the data set may affect the sample size. Therefore, all the missing values should be adequately dealt with before conducting regression analyses.

The subsamples within the larger sample may mask the actual effect of independent and dependent variables. Therefore, if subsamples are predefined, a regression within the sample could be used to detect true relationships. Otherwise, the analysis should be undertaken on the whole sample.

Building on her research interest mentioned in the beginning, let us consider a study by Ali and Naylor. 4 They were interested in identifying the academic and non-academic factors which predict the academic success of nursing diploma students. This purpose is consistent with one of the above-mentioned purposes of regression analysis (ie, prediction). Ali and Naylor’s chosen academic independent variables were preadmission qualification, previous academic performance and school type and the non-academic variables were age, gender, marital status and time gap. To achieve their purpose, they collected data from 628 nursing students between the age range of 15–34 years. They used both linear and multiple regression analyses to identify the predictors of student success. For analysis, they examined the relationship of academic and non-academic variables across different years of study and noted that academic factors accounted for 36.6%, 44.3% and 50.4% variability in academic success of students in year 1, year 2 and year 3, respectively. 4

Ali and Naylor presented the relationship among these variables using scatter plots, which are commonly used graphs for data display in regression analysis—see examples of various scatter plots in figure 1 . 4 In a scatter plot, the clustering of the dots denoted the strength of relationship, whereas the direction indicates the nature of relationships among variables as positive (ie, increase in one variable results in an increase in the other) and negative (ie, increase in one variable results in decrease in the other).

  • Download figure
  • Open in new tab
  • Download powerpoint

An Example of Scatter Plot for Regression.

Table 2 presents the results of regression analysis for academic and non-academic variables for year 4 students’ success. The significant predictors of student success are denoted with a significant p value. For every, significant predictor, the beta value indicates the percentage increase in students’ academic success with one unit increase in the variable.

Regression model for the final year students (N=343)

Conclusions

Regression analysis is a powerful and useful statistical procedure with many implications for nursing research. It enables researchers to describe, predict and estimate the relationships and draw plausible conclusions about the interrelated variables in relation to any studied phenomena. Regression also allows for controlling one or more variables when researchers are interested in examining the relationship among specific variables. Some of the key considerations are presented that may be useful for researchers undertaking regression analysis. While planning and conducting regression analysis, researchers should consider the type and number of dependent and independent variables as well as the nature and size of sample. Choosing a wrong type of regression analysis with small sample may result in erroneous conclusions about the studied phenomenon.

Ethics statements

Patient consent for publication.

Not required.

  • Montgomery DC ,
  • Schneider A ,

Twitter @parveenazamali, @@Ahtisham04

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Provenance and peer review Commissioned; internally peer reviewed.

Read the full text or download the PDF:

Research-Methodology

Regression Analysis

Regression analysis is a quantitative research method which is used when the study involves modelling and analysing several variables, where the relationship includes a dependent variable and one or more independent variables. In simple terms, regression analysis is a quantitative method used to test the nature of relationships between a dependent variable and one or more independent variables.

The basic form of regression models includes unknown parameters (β), independent variables (X), and the dependent variable (Y).

Regression model, basically, specifies the relation of dependent variable (Y) to a function combination of independent variables (X) and unknown parameters (β)

                                    Y  ≈  f (X, β)   

Regression equation can be used to predict the values of ‘y’, if the value of ‘x’ is given, and both ‘y’ and ‘x’ are the two sets of measures of a sample size of ‘n’. The formulae for regression equation would be

Regression analysis

Do not be intimidated by visual complexity of correlation and regression formulae above. You don’t have to apply the formula manually, and correlation and regression analyses can be run with the application of popular analytical software such as Microsoft Excel, Microsoft Access, SPSS and others.

Linear regression analysis is based on the following set of assumptions:

1. Assumption of linearity . There is a linear relationship between dependent and independent variables.

2. Assumption of homoscedasticity . Data values for dependent and independent variables have equal variances.

3. Assumption of absence of collinearity or multicollinearity . There is no correlation between two or more independent variables.

4. Assumption of normal distribution . The data for the independent variables and dependent variable are normally distributed

My e-book,  The Ultimate Guide to Writing a Dissertation in Business Studies: a step by step assistance  offers practical assistance to complete a dissertation with minimum or no stress. The e-book covers all stages of writing a dissertation starting from the selection to the research area to submitting the completed version of the work within the deadline. John Dudovskiy

Regression analysis

IMAGES

  1. Regression analysis: What it means and how to interpret the outcome

    what is regression analysis in research pdf

  2. Regression Analysis: The Ultimate Guide

    what is regression analysis in research pdf

  3. Regression Analysis

    what is regression analysis in research pdf

  4. PPT

    what is regression analysis in research pdf

  5. What is regression analysis?

    what is regression analysis in research pdf

  6. (PDF) Linear Regression Analysis Part 14 of a Series on Evaluation of

    what is regression analysis in research pdf

VIDEO

  1. REGRESSION ANALYSIS IN ACADEMIC RESEARCH

  2. 3. Regression Analysis

  3. Regression Analysis, Simple Regression (Intro) -Chapter 5

  4. 14. Simple Regression Analysis 1

  5. REGRESSION ANALYSIS

  6. Fundamentals of Regression Analysis

COMMENTS

  1. (PDF) Regression Analysis

    7.1 Introduction. Regression analysis is one of the most fr equently used tools in market resear ch. In its. simplest form, regression analys is allows market researchers to analyze rela tionships ...

  2. PDF Understanding and interpreting regression analysis

    Linear regression and interpretation. Linear regression analysis involves examining the rela-tionship between one independent and dependent vari-able. Statistically, the relationship between one inde-pendent variable (x) and a dependent variable (y) is expressed as: y= β 0+ β 1x+ε. In this equation, β. 0 is the y intercept and refers to the ...

  3. Handbook of Regression Analysis

    gression analysis. The reader should be familiar with the basic terminol-ogy and should have been exposed to basic regression techniques and con-cepts, at least at the level of simple (one-predictor) linear regression. We also assume that the user has access to a computer with an adequate regression package.

  4. Regression Analysis

    The aim of linear regression analysis is to estimate the coefficients of the regression equation b 0 and b k (k∈K) so that the sum of the squared residuals (i.e., the sum over all squared differences between the observed values of the i th observation of y i and the corresponding predicted values \( {\hat{y}}_i \)) is minimized.The lower part of Fig. 1 illustrates this approach, which is ...

  5. PDF INTRODUCTION TO REGRESSION ANALYSIS

    That is, e y y . 1⁄4 ð¶ = Þ=ð¶ xk= xkÞ Consider calculating the elasticity of x1 in the general regression model given by Eq. (1.1). According to the definition of elasticity, this is given by ex1 1⁄4 ð¶y =¶x1Þð x1=y b1ð x1=y b1. Notice that the marginal effect is constant whereas the Þ 1⁄4 Þ 61⁄4 elasticity is not.

  6. PDF Author: Brenda Gunderson, Ph.D., 2015

    Stat 250 Gunderson Lecture Notes 11: Regression Analysis. The invalid assumption that correlation implies cause is probably among the two or three most serious and common errors of human reasoning. Describing and assessing the significance of relationships between variables is very important in research.

  7. PDF Regression Analysis

    7. Validate estimated regression equation. We will examine these steps with the assumption that purpose of model is already been decided and we need to perform remaining steps. Decision about Independent Variables Here are some suggestion for variable(s) to be included in regression analysis as independent variables. • Based on theory.

  8. Regression Analysis: Theory, Methods, and Applications

    Download book PDF. Regression Analysis Download book PDF. Overview Authors: Ashish Sen 0, ... including the social sciences, engineering, medical research and business. Of the various methods of performing regression, least squares is the most widely used. In fact, linear least squares regression is by far the most widely used of any ...

  9. PDF REGRESSION ANALYSIS

    focus on linear regression analysis, which includes a discussion of . r. 2, the coefficient of determina-tion. You'll see that . r. 2. is, in fact, a PRE statistic, just like lambda and gamma. Lastly, we will revisit measures appropriate for mixed types of variables. PEARSON'S . r: A MEASURE APPROPRIATE FOR INTERVAL/RATIO VARIABLES

  10. PDF The Origins and Uses of Regression Analysis

    regression analysis also allows us to use independent variables, like gender, that are categorical rather than continuous variables. Consequently, multiple regression analysis can perform tasks associ- ated with other statistical techniques, such as analysis of variance and analysis of covariance, that employ categorical independent variables. ...

  11. PDF Chapter 9 Simple Linear Regression

    Simple Linear Regression An analysis appropriate for a quantitative outcome and a single quantitative ex-planatory variable. 9.1 The model behind linear regression When we are examining the relationship between a quantitative outcome and a single quantitative explanatory variable, simple linear regression is the most com-

  12. PDF Understanding & Interpreting Regression Analysis

    The estimated mean weight of newborn adults males not on the experimental treat-ment is 169.9 pounds (95% CI: 159.5.2 to 180.2 pounds) ∗ The intercept corresponds to the mean weight for the group defined where all pre-dictors are equal to zero. non experimental treatment (TRT=0) newborns (AGE=0) men (FEM=0)

  13. The clinician's guide to interpreting a regression analysis

    Download PDF. Download PDF. Editorial; Published: ... Regression analysis is an important statistical method that is commonly used to determine the ... Linear regression in medical research ...

  14. PDF Regression

    regression analysis. A regression line is a straight line that describes how a response variable y changes as an explanatory variable x changes. A regression line can be used to predict the value of y for a given value of x. Regression analysis identifies a regression line. The regression line shows how much and in what direction the response

  15. (PDF) Regression Analysis

    Linear regression analysis is one of the most important statistical methods. It examines the linear relationship between a dependent variable (also called an intrinsic, explanatory, response, or ...

  16. PDF Multiple Regression Analysis

    5A.4.1 Research Problems Suggesting a Regression Approach If the research problem is expressed in a form that either specifies or implies prediction, multiple regression analysis becomes a viable candidate for the design. Here are some examples of research objectives that imply a regression design:

  17. [PDF] Handbook of Regression Analysis

    The purpose of the Handbook of Regression Analysis is to provide a practical, one-stop reference on regression analysis, and it is intended to be a comprehensive collection of the theory, methods, and applications of regression methods. A Comprehensive Account for Data Analysts of the Methods and Applications of Regression Analysis. Written by two established experts in the field, the purpose ...

  18. Understanding and interpreting regression analysis

    Linear regression analysis involves examining the relationship between one independent and dependent variable. Statistically, the relationship between one independent variable (x) and a dependent variable (y) is expressed as: y= β 0 + β 1 x+ε. In this equation, β 0 is the y intercept and refers to the estimated value of y when x is equal to 0.

  19. An Introduction to Regression Analysis

    Regression analysis is a statistical tool for the investigation of re-lationships between variables. Usually, the investigator seeks to ascertain the causal eVect of one variable upon another—the e Vect of a price increase upon demand, for example, or the e Vect of changes in the money supply upon the in Xation rate.

  20. PDF MATH 3P82 REGRESSION ANALYSIS Lecture Notes

    1. a linear function of x (i.e. y = a + b x) - simple (univariate) linear regression, 2. a linear function of x1, x2, ... xk - multiple (multivariate) linear regression, 3. a polynomial function of x - polynomial regression, 4. any other type of function, with one or more parameters (e.g. nonlinear regression.

  21. SAGE Research Methods: Find resources to answer your research methods

    Learn how to apply regression analysis to various fields and interpret the results with this concise and accessible book from SAGE Publications.

  22. Regression Analysis

    Regression analysis is a quantitative research method which is used when the study involves modelling and analysing several variables, where the relationship includes a dependent variable and one or more independent variables. In simple terms, regression analysis is a quantitative method used to test the nature of relationships between a dependent variable and one or more independent variables.

  23. PDF Introduction to linear regression analysis 4th edition student

    In the domain of digital literature, burstiness is not just about variety but also the joy of discovery. introduction to linear regression analysis 4th edition student excels in this dance of discoveries. Regular updates ensure that the content landscape is ever-changing, introducing readers to new authors, genres, and perspectives.