Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)

nature of problem solving definition

Search form

nature of problem solving definition

  • Table of Contents
  • Troubleshooting Guide
  • A Model for Getting Started
  • Justice Action Toolkit
  • Best Change Processes
  • Databases of Best Practices
  • Online Courses
  • Ask an Advisor
  • Subscribe to eNewsletter
  • Community Stories
  • YouTube Channel
  • About the Tool Box
  • How to Use the Tool Box
  • Privacy Statement
  • Workstation/Check Box Sign-In
  • Online Training Courses
  • Capacity Building Training
  • Training Curriculum - Order Now
  • Community Check Box Evaluation System
  • Build Your Toolbox
  • Facilitation of Community Processes
  • Community Health Assessment and Planning
  • Section 3. Defining and Analyzing the Problem

Chapter 17 Sections

  • Section 1. An Introduction to the Problem-Solving Process
  • Section 2. Thinking Critically
  • Section 4. Analyzing Root Causes of Problems: The "But Why?" Technique
  • Section 5. Addressing Social Determinants of Health and Development
  • Section 6. Generating and Choosing Solutions
  • Section 7. Putting Your Solution into Practice
  • Main Section

The nature of problems

Clarifying the problem, deciding to solve the problem, analyzing the problem.

We've all had our share of problems - more than enough, if you come right down to it. So it's easy to think that this section, on defining and analyzing the problem, is unnecessary. "I know what the problem is," you think. "I just don't know what to do about it."

Not so fast! A poorly defined problem - or a problem whose nuances you don't completely understand - is much more difficult to solve than a problem you have clearly defined and analyzed. The way a problem is worded and understood has a huge impact on the number, quality, and type of proposed solutions.

In this section, we'll begin with the basics, focusing primarily on four things. First, we'll consider the nature of problems in general, and then, more specifically, on clarifying and defining the problem you are working on. Then, we'll talk about whether or not you really want to solve the problem, or whether you are better off leaving it alone. Finally, we'll talk about how to do an in-depth analysis of the problem.

So, what is a problem? It can be a lot of things. We know in our gut when there is a problem, whether or not we can easily put it into words. Maybe you feel uncomfortable in a given place, but you're not sure why. A problem might be just the feeling that something is wrong and should be corrected. You might feel some sense of distress, or of injustice.

Stated most simply, a problem is the difference between what is , and what might or should be . "No child should go to bed hungry, but one-quarter of all children do in this country," is a clear, potent problem statement. Another example might be, "Communication in our office is not very clear." In this instance, the explanation of "what might or should be" is simply alluded to.

As these problems illustrate, some problems are more serious than others; the problem of child hunger is a much more severe problem than the fact that the new youth center has no exercise equipment, although both are problems that can and should be addressed. Generally, problems that affect groups of people - children, teenage mothers, the mentally ill, the poor - can at least be addressed and in many cases lessened using the process outlined in this Chapter.

Although your organization may have chosen to tackle a seemingly insurmountable problem, the process you will use to solve it is not complex. It does, however, take time, both to formulate and to fully analyze the problem. Most people underestimate the work they need to do here and the time they'll need to spend. But this is the legwork, the foundation on which you'll lay effective solutions. This isn't the time to take shortcuts.

Three basic concepts make up the core of this chapter: clarifying, deciding, and analyzing. Let's look at each in turn.

If you are having a problem-solving meeting, then you already understand that something isn't quite right - or maybe it's bigger than that; you understand that something is very, very wrong. This is your beginning, and of course, it makes most sense to...

  • Start with what you know . When group members walk through the door at the beginning of the meeting, what do they think about the situation? There are a variety of different ways to garner this information. People can be asked in advance to write down what they know about the problem. Or the facilitator can lead a brainstorming session to try to bring out the greatest number of ideas. Remember that a good facilitator will draw out everyone's opinions, not only those of the more vocal participants.
  • Decide what information is missing . Information is the key to effective decision making. If you are fighting child hunger, do you know which children are hungry? When are they hungry - all the time, or especially at the end of the month, when the money has run out? If that's the case, your problem statement might be, "Children in our community are often hungry at the end of the month because their parents' paychecks are used up too early."
Compare this problem statement on child hunger to the one given in "The nature of problems" above. How might solutions for the two problems be different?
  • Facts (15% of the children in our community don't get enough to eat.)
  • Inference (A significant percentage of children in our community are probably malnourished/significantly underweight.)
  • Speculation (Many of the hungry children probably live in the poorer neighborhoods in town.)
  • Opinion (I think the reason children go hungry is because their parents spend all of their money on cigarettes.)

When you are gathering information, you will probably hear all four types of information, and all can be important. Speculation and opinion can be especially important in gauging public opinion. If public opinion on your issue is based on faulty assumptions, part of your solution strategy will probably include some sort of informational campaign.

For example, perhaps your coalition is campaigning against the death penalty, and you find that most people incorrectly believe that the death penalty deters violent crime. As part of your campaign, therefore, you will probably want to make it clear to the public that it simply isn't true.

Where and how do you find this information? It depends on what you want to know. You can review surveys, interviews, the library and the internet.

  • Define the problem in terms of needs, and not solutions. If you define the problem in terms of possible solutions, you're closing the door to other, possibly more effective solutions. "Violent crime in our neighborhood is unacceptably high," offers space for many more possible solutions than, "We need more police patrols," or, "More citizens should have guns to protect themselves."
  • Define the problem as one everyone shares; avoid assigning blame for the problem. This is particularly important if different people (or groups) with a history of bad relations need to be working together to solve the problem. Teachers may be frustrated with high truancy rates, but blaming students uniquely for problems at school is sure to alienate students from helping to solve the problem.

You can define the problem in several ways; The facilitator can write a problem statement on the board, and everyone can give feedback on it, until the statement has developed into something everyone is pleased with, or you can accept someone else's definition of the problem, or use it as a starting point, modifying it to fit your needs.

After you have defined the problem, ask if everyone understands the terminology being used. Define the key terms of your problem statement, even if you think everyone understands them.

The Hispanic Health Coalition, has come up with the problem statement "Teen pregnancy is a problem in our community." That seems pretty clear, doesn't it? But let's examine the word "community" for a moment. You may have one person who defines community as "the city you live in," a second who defines it as, "this neighborhood" and a third who considers "our community" to mean Hispanics.

At this point, you have already spent a fair amount of time on the problem at hand, and naturally, you want to see it taken care of. Before you go any further, however, it's important to look critically at the problem and decide if you really want to focus your efforts on it. You might decide that right now isn't the best time to try to fix it. Maybe your coalition has been weakened by bad press, and chance of success right now is slim. Or perhaps solving the problem right now would force you to neglect another important agency goal. Or perhaps this problem would be more appropriately handled by another existing agency or organization.

You and your group need to make a conscious choice that you really do want to attack the problem. Many different factors should be a part of your decision. These include:

Importance . In judging the importance of the issue, keep in mind the f easibility . Even if you have decided that the problem really is important, and worth solving, will you be able to solve it, or at least significantly improve the situation? The bottom line: Decide if the good you can do will be worth the effort it takes. Are you the best people to solve the problem? Is someone else better suited to the task?

For example, perhaps your organization is interested in youth issues, and you have recently come to understand that teens aren't participating in community events mostly because they don't know about them. A monthly newsletter, given out at the high schools, could take care of this fairly easily. Unfortunately, you don't have much publishing equipment. You do have an old computer and a desktop printer, and you could type something up, but it's really not your forte. A better solution might be to work to find writing, design and/or printing professionals who would donate their time and/or equipment to create a newsletter that is more exciting, and that students would be more likely to want to read.

Negative impacts . If you do succeed in bringing about the solution you are working on, what are the possible consequences? If you succeed in having safety measures implemented at a local factory, how much will it cost? Where will the factory get that money? Will they cut salaries, or lay off some of their workers?

Even if there are some unwanted results, you may well decide that the benefits outweigh the negatives. As when you're taking medication, you'll put up with the side effects to cure the disease. But be sure you go into the process with your eyes open to the real costs of solving the problem at hand.

Choosing among problems

You might have many obstacles you'd like to see removed. In fact, it's probably a pretty rare community group that doesn't have a laundry list of problems they would like to resolve, given enough time and resources. So how do you decide which to start with?

A simple suggestion might be to list all of the problems you are facing, and whether or not they meet the criteria listed above (importance, feasibility, et cetera). It's hard to assign numerical values for something like this, because for each situation, one of the criteria may strongly outweigh the others. However, just having all of the information in front of the group can help the actual decision making a much easier task.

Now that the group has defined the problem and agreed that they want to work towards a solution, it's time to thoroughly analyze the problem. You started to do this when you gathered information to define the problem, but now, it's time to pay more attention to details and make sure everyone fully understands the problem.

Answer all of the question words.

The facilitator can take group members through a process of understanding every aspect of the problem by answering the "question words" - what, why, who, when, and how much. This process might include the following types of questions:

What is the problem? You already have your problem statement, so this part is more or less done. But it's important to review your work at this point.

Why does the problem exist? There should be agreement among meeting participants as to why the problem exists to begin with. If there isn't, consider trying one of the following techniques.

  • The "but why" technique. This simple exercise can be done easily with a large group, or even on your own. Write the problem statement, and ask participants, "Why does this problem exist?" Write down the answer given, and ask, "But why does (the answer) occur?"
"Children often fall asleep in class," But why? "Because they have no energy." But why? "Because they don't eat breakfast." But why?

Continue down the line until participants can comfortably agree on the root cause of the problem . Agreement is essential here; if people don't even agree about the source of the problem, an effective solution may well be out of reach.

  • Start with the definition you penned above.
  • Draw a line down the center of the paper. Or, if you are working with a large group of people who cannot easily see what you are writing, use two pieces.
  • On the top of one sheet/side, write "Restraining Forces."
  • On the other sheet/side, write, "Driving Forces."
  • Under "Restraining Forces," list all of the reasons you can think of that keep the situation the same; why the status quo is the way it is. As with all brainstorming sessions, this should be a "free for all;" no idea is too "far out" to be suggested and written down.
  • In the same manner, under "Driving Forces," list all of the forces that are pushing the situation to change.
  • When all of the ideas have been written down, group members can edit them as they see fit and compile a list of the important factors that are causing the situation.

Clearly, these two exercises are meant for different times. The "but why" technique is most effective when the facilitator (or the group as a whole) decides that the problem hasn't been looked at deeply enough and that the group's understanding is somewhat superficial. The force field analysis, on the other hand, can be used when people are worried that important elements of the problem haven't been noticed -- that you're not looking at the whole picture.

Who is causing the problem, and who is affected by it? A simple brainstorming session is an excellent way to determine this.

When did the problem first occur, or when did it become significant? Is this a new problem or an old one? Knowing this can give you added understanding of why the problem is occurring now. Also, the longer a problem has existed, the more entrenched it has become, and the more difficult it will be to solve. People often get used to things the way they are and resist change, even when it's a change for the better.

How much , or to what extent, is this problem occurring? How many people are affected by the problem? How significant is it? Here, you should revisit the questions on importance you looked at when you were defining the problem. This serves as a brief refresher and gives you a complete analysis from which you can work.

If time permits, you might want to summarize your analysis on a single sheet of paper for participants before moving on to generating solutions, the next step in the process. That way, members will have something to refer back to during later stages in the work.

Also, after you have finished this analysis, the facilitator should ask for agreement from the group. Have people's perceptions of the problem changed significantly? At this point, check back and make sure that everyone still wants to work together to solve the problem.

The first step in any effective problem-solving process may be the most important. Take your time to develop a critical definition, and let this definition, and the analysis that follows, guide you through the process. You're now ready to go on to generating and choosing solutions, which are the next steps in the problem-solving process, and the focus of the following section.

Print Resources

Avery, M., Auvine, B., Streibel, B., & Weiss, L. (1981). A handbook for consensus decision making: Building united judgement . Cambridge, MA: Center for Conflict Resolution.

Dale, D., & Mitiguy, N. Planning, for a change: A citizen's guide to creative planning and program development .

Dashiell, K. (1990). Managing meetings for collaboration and consensus . Honolulu, HI: Neighborhood Justice Center of Honolulu, Inc.

Interaction Associates (1987). Facilitator institute . San Francisco, CA: Author.

Lawson, L., Donant, F., & Lawson, J. (1982). Lead on! The complete handbook for group leaders . San Luis Obispo, CA: Impact Publishers.

Meacham, W. (1980). Human development training manual . Austin, TX: Human Development Training.

Morrison, E. (1994). Leadership skills: Developing volunteers for organizational success . Tucson, AZ: Fisher Books.  

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

nature of problem solving definition

Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.

nature of problem solving definition

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

loading

How it works

For Business

Join Mind Tools

Article • 7 min read

What Is Problem Solving?

By the Mind Tools Content Team

nature of problem solving definition

We all spend a lot of our time solving problems, both at work and in our personal lives.

Some problems are small, and we can quickly sort them out ourselves. But others are complex challenges that take collaboration, creativity, and a considerable amount of effort to solve.

At work, the types of problems we face depend largely on the organizations we're in and the jobs we do. A manager in a cleaning company, for example, might spend their day untangling staffing issues, resolving client complaints, and sorting out problems with equipment and supplies. An aircraft designer, on the other hand, might be grappling with a problem about aerodynamics, or trying to work out why a new safety feature isn't working. Meanwhile, a politician might be exploring solutions to racial injustice or climate change.

But whatever issues we face, there are some common ways to tackle them effectively. And we can all boost our confidence and ability to succeed by building a strong set of problem-solving skills.

Mind Tools offers a large collection of resources to help you do just that!

How Well Do You Solve Problems?

Start by taking an honest look at your existing skills. What's your current approach to solving problems, and how well is it working? Our quiz, How Good Is Your Problem Solving? lets you analyze your abilities, and signposts ways to address any areas of weakness.

Define Every Problem

The first step in solving a problem is understanding what that problem actually is. You need to be sure that you're dealing with the real problem – not its symptoms. For example, if performance in your department is substandard, you might think that the problem lies with the individuals submitting work. However, if you look a bit deeper, the real issue might be a general lack of training, or an unreasonable workload across the team.

Tools like 5 Whys , Appreciation and Root Cause Analysis get you asking the right questions, and help you to work through the layers of a problem to uncover what's really going on.

However, defining a problem doesn't mean deciding how to solve it straightaway. It's important to look at the issue from a variety of perspectives. If you commit yourself too early, you can end up with a short-sighted solution. The CATWOE checklist provides a powerful reminder to look at many elements that may contribute to the problem, keeping you open to a variety of possible solutions.

Understanding Complexity

As you define your problem, you'll often discover just how complicated it is. There are likely several interrelated issues involved. That's why it's important to have ways to visualize, simplify and make sense of this tangled mess!

Affinity Diagrams are great for organizing many different pieces of information into common themes, and for understanding the relationships between them.

Another popular tool is the Cause-and-Effect Diagram . To generate viable solutions, you need a solid understanding of what's causing the problem.

When your problem occurs within a business process, creating a Flow Chart , Swim Lane Diagram or a Systems Diagram will help you to see how various activities and inputs fit together. This may well highlight a missing element or bottleneck that's causing your problem.

Quite often, what seems to be a single problem turns out to be a whole series of problems. The Drill Down technique prompts you to split your problem into smaller, more manageable parts.

General Problem-Solving Tools

When you understand the problem in front of you, you’re ready to start solving it. With your definition to guide you, you can generate several possible solutions, choose the best one, then put it into action. That's the four-step approach at the heart of good problem solving.

There are various problem-solving styles to use. For example:

  • Constructive Controversy is a way of widening perspectives and energizing discussions.
  • Inductive Reasoning makes the most of people’s experiences and know-how, and can speed up solution finding.
  • Means-End Analysis can bring extra clarity to your thinking, and kick-start the process of implementing solutions.

Specific Problem-Solving Systems

Some particularly complicated or important problems call for a more comprehensive process. Again, Mind Tools has a range of approaches to try, including:

  • Simplex , which involves an eight-stage process: problem finding, fact finding, defining the problem, idea finding, selecting and evaluating, planning, selling the idea, and acting. These steps build upon the basic, four-step process described above, and they create a cycle of problem finding and solving that will continually improve your organization.
  • Appreciative Inquiry , which is a uniquely positive way of solving problems by examining what's working well in the areas surrounding them.
  • Soft Systems Methodology , which takes you through four stages to uncover more details about what's creating your problem, and then define actions that will improve the situation.

Further Problem-Solving Strategies

Good problem solving requires a number of other skills – all of which are covered by Mind Tools.

For example, we have a large section of resources to improve your Creativity , so that you come up with a range of possible solutions.

By strengthening your Decision Making , you'll be better at evaluating the options, selecting the best ones, then choosing how to implement them.

And our Project Management collection has valuable advice for strengthening the whole problem-solving process. The resources there will help you to make effective changes – and then keep them working long term.

Problems are an inescapable part of life, both in and out of work. So we can all benefit from having strong problem-solving skills.

It's important to understand your current approach to problem solving, and to know where and how to improve.

Define every problem you encounter – and understand its complexity, rather than trying to solve it too soon.

There's a range of general problem-solving approaches, helping you to generate possible answers, choose the best ones, and then implement your solution.

Some complicated or serious problems require more specific problem-solving systems, especially when they relate to business processes.

By boosting your creativity, decision-making and project-management skills, you’ll become even better at solving all the problems you face.

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

Infographic

Creative Problem Solving Infographic

Infographic Transcript

Creative Problem Solving

Finding Innovative Solutions to Challenges

Add comment

Comments (0)

Be the first to comment!

nature of problem solving definition

Try Mind Tools for FREE

Get unlimited access to all our career-boosting content and member benefits with our 7-day free trial.

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Newest Releases

Article a4edmqj

What Is Gibbs' Reflective Cycle?

Article acd2ru2

Team Briefings

Mind Tools Store

About Mind Tools Content

Discover something new today

Onboarding with steps.

Helping New Employees to Thrive

NEW! Pain Points Podcast - Perfectionism

Why Am I Such a Perfectionist?

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

An overview of process design.

A Introduction to What Is Involved in Process Design and Some Fundamental Design Types

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

problem solving definition

Problem Solving Skills for the Digital Age

Lucid Content

Reading time: about 6 min

Let’s face it: Things don’t always go according to plan. Systems fail, wires get crossed, projects fall apart.

Problems are an inevitable part of life and work. They’re also an opportunity to think critically and find solutions. But knowing how to get to the root of unexpected situations or challenges can mean the difference between moving forward and spinning your wheels.

Here, we’ll break down the key elements of problem solving, some effective problem solving approaches, and a few effective tools to help you arrive at solutions more quickly.

So, what is problem solving?

Broadly defined, problem solving is the process of finding solutions to difficult or complex issues. But you already knew that. Understanding problem solving frameworks, however, requires a deeper dive.

Think about a recent problem you faced. Maybe it was an interpersonal issue. Or it could have been a major creative challenge you needed to solve for a client at work. How did you feel as you approached the issue? Stressed? Confused? Optimistic? Most importantly, which problem solving techniques did you use to tackle the situation head-on? How did you organize thoughts to arrive at the best possible solution?

Solve your problem-solving problem  

Here’s the good news: Good problem solving skills can be learned. By its nature, problem solving doesn’t adhere to a clear set of do’s and don’ts—it requires flexibility, communication, and adaptation. However, most problems you face, at work or in life, can be tackled using four basic steps.

First, you must define the problem . This step sounds obvious, but often, you can notice that something is amiss in a project or process without really knowing where the core problem lies. The most challenging part of the problem solving process is uncovering where the problem originated.

Second, you work to generate alternatives to address the problem directly. This should be a collaborative process to ensure you’re considering every angle of the issue.

Third, you evaluate and test potential solutions to your problem. This step helps you fully understand the complexity of the issue and arrive at the best possible solution.

Finally, fourth, you select and implement the solution that best addresses the problem.

Following this basic four-step process will help you approach every problem you encounter with the same rigorous critical and strategic thinking process, recognize commonalities in new problems, and avoid repeating past mistakes.

In addition to these basic problem solving skills, there are several best practices that you should incorporate. These problem solving approaches can help you think more critically and creatively about any problem:

You may not feel like you have the right expertise to resolve a specific problem. Don’t let that stop you from tackling it. The best problem solvers become students of the problem at hand. Even if you don’t have particular expertise on a topic, your unique experience and perspective can lend itself to creative solutions.

Challenge the status quo

Standard problem solving methodologies and problem solving frameworks are a good starting point. But don’t be afraid to challenge assumptions and push boundaries. Good problem solvers find ways to apply existing best practices into innovative problem solving approaches.

Think broadly about and visualize the issue

Sometimes it’s hard to see a problem, even if it’s right in front of you. Clear answers could be buried in rows of spreadsheet data or lost in miscommunication. Use visualization as a problem solving tool to break down problems to their core elements. Visuals can help you see bottlenecks in the context of the whole process and more clearly organize your thoughts as you define the problem.  

Hypothesize, test, and try again

It might be cliche, but there’s truth in the old adage that 99% of inspiration is perspiration. The best problem solvers ask why, test, fail, and ask why again. Whether it takes one or 1,000 iterations to solve a problem, the important part—and the part that everyone remembers—is the solution.

Consider other viewpoints

Today’s problems are more complex, more difficult to solve, and they often involve multiple disciplines. They require group expertise and knowledge. Being open to others’ expertise increases your ability to be a great problem solver. Great solutions come from integrating your ideas with those of others to find a better solution. Excellent problem solvers build networks and know how to collaborate with other people and teams. They are skilled in bringing people together and sharing knowledge and information.

4 effective problem solving tools

As you work through the problem solving steps, try these tools to better define the issue and find the appropriate solution.

Root cause analysis

Similar to pulling weeds from your garden, if you don’t get to the root of the problem, it’s bound to come back. A root cause analysis helps you figure out the root cause behind any disruption or problem, so you can take steps to correct the problem from recurring. The root cause analysis process involves defining the problem, collecting data, and identifying causal factors to pinpoint root causes and arrive at a solution.

root cause analysis example table

Less structured than other more traditional problem solving methods, the 5 Whys is simply what it sounds like: asking why over and over to get to the root of an obstacle or setback. This technique encourages an open dialogue that can trigger new ideas about a problem, whether done individually or with a group. Each why piggybacks off the answer to the previous why. Get started with the template below—both flowcharts and fishbone diagrams can also help you track your answers to the 5 Whys.

5 Whys analysis

Brainstorming

A meeting of the minds, a brain dump, a mind meld, a jam session. Whatever you call it, collaborative brainstorming can help surface previously unseen issues, root causes, and alternative solutions. Create and share a mind map with your team members to fuel your brainstorming session.

Gap analysis

Sometimes you don’t know where the problem is until you determine where it isn’t. Gap filling helps you analyze inadequacies that are preventing you from reaching an optimized state or end goal. For example, a content gap analysis can help a content marketer determine where holes exist in messaging or the customer experience. Gap analysis is especially helpful when it comes to problem solving because it requires you to find workable solutions. A SWOT analysis chart that looks at a problem through the lens of strengths, opportunities, opportunities, and threats can be a helpful problem solving framework as you start your analysis.

SWOT analysis

A better way to problem solve

Beyond these practical tips and tools, there are myriad methodical and creative approaches to move a project forward or resolve a conflict. The right approach will depend on the scope of the issue and your desired outcome.

Depending on the problem, Lucidchart offers several templates and diagrams that could help you identify the cause of the issue and map out a plan to resolve it.  Learn more about how Lucidchart can help you take control of your problem solving process .

Lucidchart, a cloud-based intelligent diagramming application, is a core component of Lucid Software's Visual Collaboration Suite. This intuitive, cloud-based solution empowers teams to collaborate in real-time to build flowcharts, mockups, UML diagrams, customer journey maps, and more. Lucidchart propels teams forward to build the future faster. Lucid is proud to serve top businesses around the world, including customers such as Google, GE, and NBC Universal, and 99% of the Fortune 500. Lucid partners with industry leaders, including Google, Atlassian, and Microsoft. Since its founding, Lucid has received numerous awards for its products, business, and workplace culture. For more information, visit lucidchart.com.

Related articles

nature of problem solving definition

Sometimes you're faced with challenges that traditional problem solving can't fix. Creative problem solving encourages you to find new, creative ways of thinking that can help you overcome the issue at hand more quickly.

nature of problem solving definition

Root cause analysis refers to any problem-solving method used to trace an issue back to its origin. Learn how to complete a root cause analysis—we've even included templates to get you started.

Bring your bright ideas to life.

or continue with

  • Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical Literature
  • Classical Reception
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Archaeology
  • Greek and Roman Papyrology
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Agriculture
  • History of Education
  • History of Emotions
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Variation
  • Language Families
  • Language Evolution
  • Language Reference
  • Language Acquisition
  • Lexicography
  • Linguistic Theories
  • Linguistic Typology
  • Linguistic Anthropology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Modernism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Culture
  • Music and Media
  • Music and Religion
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Science
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Society
  • Law and Politics
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Clinical Neuroscience
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Oncology
  • Medical Toxicology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Medical Ethics
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Games
  • Computer Security
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Neuroscience
  • Cognitive Psychology
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business History
  • Business Ethics
  • Business Strategy
  • Business and Technology
  • Business and Government
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Methodology
  • Economic History
  • Economic Systems
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Theory
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Politics and Law
  • Public Policy
  • Public Administration
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Cognitive Psychology

  • < Previous chapter
  • Next chapter >

The Oxford Handbook of Cognitive Psychology

48 Problem Solving

Department of Psychological and Brain Sciences, University of California, Santa Barbara

  • Published: 03 June 2013
  • Cite Icon Cite
  • Permissions Icon Permissions

Problem solving refers to cognitive processing directed at achieving a goal when the problem solver does not initially know a solution method. A problem exists when someone has a goal but does not know how to achieve it. Problems can be classified as routine or nonroutine, and as well defined or ill defined. The major cognitive processes in problem solving are representing, planning, executing, and monitoring. The major kinds of knowledge required for problem solving are facts, concepts, procedures, strategies, and beliefs. Classic theoretical approaches to the study of problem solving are associationism, Gestalt, and information processing. Current issues and suggested future issues include decision making, intelligence and creativity, teaching of thinking skills, expert problem solving, analogical reasoning, mathematical and scientific thinking, everyday thinking, and the cognitive neuroscience of problem solving. Common themes concern the domain specificity of problem solving and a focus on problem solving in authentic contexts.

The study of problem solving begins with defining problem solving, problem, and problem types. This introduction to problem solving is rounded out with an examination of cognitive processes in problem solving, the role of knowledge in problem solving, and historical approaches to the study of problem solving.

Definition of Problem Solving

Problem solving refers to cognitive processing directed at achieving a goal for which the problem solver does not initially know a solution method. This definition consists of four major elements (Mayer, 1992 ; Mayer & Wittrock, 2006 ):

Cognitive —Problem solving occurs within the problem solver’s cognitive system and can only be inferred indirectly from the problem solver’s behavior (including biological changes, introspections, and actions during problem solving). Process —Problem solving involves mental computations in which some operation is applied to a mental representation, sometimes resulting in the creation of a new mental representation. Directed —Problem solving is aimed at achieving a goal. Personal —Problem solving depends on the existing knowledge of the problem solver so that what is a problem for one problem solver may not be a problem for someone who already knows a solution method.

The definition is broad enough to include a wide array of cognitive activities such as deciding which apartment to rent, figuring out how to use a cell phone interface, playing a game of chess, making a medical diagnosis, finding the answer to an arithmetic word problem, or writing a chapter for a handbook. Problem solving is pervasive in human life and is crucial for human survival. Although this chapter focuses on problem solving in humans, problem solving also occurs in nonhuman animals and in intelligent machines.

How is problem solving related to other forms of high-level cognition processing, such as thinking and reasoning? Thinking refers to cognitive processing in individuals but includes both directed thinking (which corresponds to the definition of problem solving) and undirected thinking such as daydreaming (which does not correspond to the definition of problem solving). Thus, problem solving is a type of thinking (i.e., directed thinking).

Reasoning refers to problem solving within specific classes of problems, such as deductive reasoning or inductive reasoning. In deductive reasoning, the reasoner is given premises and must derive a conclusion by applying the rules of logic. For example, given that “A is greater than B” and “B is greater than C,” a reasoner can conclude that “A is greater than C.” In inductive reasoning, the reasoner is given (or has experienced) a collection of examples or instances and must infer a rule. For example, given that X, C, and V are in the “yes” group and x, c, and v are in the “no” group, the reasoning may conclude that B is in “yes” group because it is in uppercase format. Thus, reasoning is a type of problem solving.

Definition of Problem

A problem occurs when someone has a goal but does not know to achieve it. This definition is consistent with how the Gestalt psychologist Karl Duncker ( 1945 , p. 1) defined a problem in his classic monograph, On Problem Solving : “A problem arises when a living creature has a goal but does not know how this goal is to be reached.” However, today researchers recognize that the definition should be extended to include problem solving by intelligent machines. This definition can be clarified using an information processing approach by noting that a problem occurs when a situation is in the given state, the problem solver wants the situation to be in the goal state, and there is no obvious way to move from the given state to the goal state (Newell & Simon, 1972 ). Accordingly, the three main elements in describing a problem are the given state (i.e., the current state of the situation), the goal state (i.e., the desired state of the situation), and the set of allowable operators (i.e., the actions the problem solver is allowed to take). The definition of “problem” is broad enough to include the situation confronting a physician who wishes to make a diagnosis on the basis of preliminary tests and a patient examination, as well as a beginning physics student trying to solve a complex physics problem.

Types of Problems

It is customary in the problem-solving literature to make a distinction between routine and nonroutine problems. Routine problems are problems that are so familiar to the problem solver that the problem solver knows a solution method. For example, for most adults, “What is 365 divided by 12?” is a routine problem because they already know the procedure for long division. Nonroutine problems are so unfamiliar to the problem solver that the problem solver does not know a solution method. For example, figuring out the best way to set up a funding campaign for a nonprofit charity is a nonroutine problem for most volunteers. Technically, routine problems do not meet the definition of problem because the problem solver has a goal but knows how to achieve it. Much research on problem solving has focused on routine problems, although most interesting problems in life are nonroutine.

Another customary distinction is between well-defined and ill-defined problems. Well-defined problems have a clearly specified given state, goal state, and legal operators. Examples include arithmetic computation problems or games such as checkers or tic-tac-toe. Ill-defined problems have a poorly specified given state, goal state, or legal operators, or a combination of poorly defined features. Examples include solving the problem of global warming or finding a life partner. Although, ill-defined problems are more challenging, much research in problem solving has focused on well-defined problems.

Cognitive Processes in Problem Solving

The process of problem solving can be broken down into two main phases: problem representation , in which the problem solver builds a mental representation of the problem situation, and problem solution , in which the problem solver works to produce a solution. The major subprocess in problem representation is representing , which involves building a situation model —that is, a mental representation of the situation described in the problem. The major subprocesses in problem solution are planning , which involves devising a plan for how to solve the problem; executing , which involves carrying out the plan; and monitoring , which involves evaluating and adjusting one’s problem solving.

For example, given an arithmetic word problem such as “Alice has three marbles. Sarah has two more marbles than Alice. How many marbles does Sarah have?” the process of representing involves building a situation model in which Alice has a set of marbles, there is set of marbles for the difference between the two girls, and Sarah has a set of marbles that consists of Alice’s marbles and the difference set. In the planning process, the problem solver sets a goal of adding 3 and 2. In the executing process, the problem solver carries out the computation, yielding an answer of 5. In the monitoring process, the problem solver looks over what was done and concludes that 5 is a reasonable answer. In most complex problem-solving episodes, the four cognitive processes may not occur in linear order, but rather may interact with one another. Although some research focuses mainly on the execution process, problem solvers may tend to have more difficulty with the processes of representing, planning, and monitoring.

Knowledge for Problem Solving

An important theme in problem-solving research is that problem-solving proficiency on any task depends on the learner’s knowledge (Anderson et al., 2001 ; Mayer, 1992 ). Five kinds of knowledge are as follows:

Facts —factual knowledge about the characteristics of elements in the world, such as “Sacramento is the capital of California” Concepts —conceptual knowledge, including categories, schemas, or models, such as knowing the difference between plants and animals or knowing how a battery works Procedures —procedural knowledge of step-by-step processes, such as how to carry out long-division computations Strategies —strategic knowledge of general methods such as breaking a problem into parts or thinking of a related problem Beliefs —attitudinal knowledge about how one’s cognitive processing works such as thinking, “I’m good at this”

Although some research focuses mainly on the role of facts and procedures in problem solving, complex problem solving also depends on the problem solver’s concepts, strategies, and beliefs (Mayer, 1992 ).

Historical Approaches to Problem Solving

Psychological research on problem solving began in the early 1900s, as an outgrowth of mental philosophy (Humphrey, 1963 ; Mandler & Mandler, 1964 ). Throughout the 20th century four theoretical approaches developed: early conceptions, associationism, Gestalt psychology, and information processing.

Early Conceptions

The start of psychology as a science can be set at 1879—the year Wilhelm Wundt opened the first world’s psychology laboratory in Leipzig, Germany, and sought to train the world’s first cohort of experimental psychologists. Instead of relying solely on philosophical speculations about how the human mind works, Wundt sought to apply the methods of experimental science to issues addressed in mental philosophy. His theoretical approach became structuralism —the analysis of consciousness into its basic elements.

Wundt’s main contribution to the study of problem solving, however, was to call for its banishment. According to Wundt, complex cognitive processing was too complicated to be studied by experimental methods, so “nothing can be discovered in such experiments” (Wundt, 1911/1973 ). Despite his admonishments, however, a group of his former students began studying thinking mainly in Wurzburg, Germany. Using the method of introspection, subjects were asked to describe their thought process as they solved word association problems, such as finding the superordinate of “newspaper” (e.g., an answer is “publication”). Although the Wurzburg group—as they came to be called—did not produce a new theoretical approach, they found empirical evidence that challenged some of the key assumptions of mental philosophy. For example, Aristotle had proclaimed that all thinking involves mental imagery, but the Wurzburg group was able to find empirical evidence for imageless thought .

Associationism

The first major theoretical approach to take hold in the scientific study of problem solving was associationism —the idea that the cognitive representations in the mind consist of ideas and links between them and that cognitive processing in the mind involves following a chain of associations from one idea to the next (Mandler & Mandler, 1964 ; Mayer, 1992 ). For example, in a classic study, E. L. Thorndike ( 1911 ) placed a hungry cat in what he called a puzzle box—a wooden crate in which pulling a loop of string that hung from overhead would open a trap door to allow the cat to escape to a bowl of food outside the crate. Thorndike placed the cat in the puzzle box once a day for several weeks. On the first day, the cat engaged in many extraneous behaviors such as pouncing against the wall, pushing its paws through the slats, and meowing, but on successive days the number of extraneous behaviors tended to decrease. Overall, the time required to get out of the puzzle box decreased over the course of the experiment, indicating the cat was learning how to escape.

Thorndike’s explanation for how the cat learned to solve the puzzle box problem is based on an associationist view: The cat begins with a habit family hierarchy —a set of potential responses (e.g., pouncing, thrusting, meowing, etc.) all associated with the same stimulus (i.e., being hungry and confined) and ordered in terms of strength of association. When placed in the puzzle box, the cat executes its strongest response (e.g., perhaps pouncing against the wall), but when it fails, the strength of the association is weakened, and so on for each unsuccessful action. Eventually, the cat gets down to what was initially a weak response—waving its paw in the air—but when that response leads to accidentally pulling the string and getting out, it is strengthened. Over the course of many trials, the ineffective responses become weak and the successful response becomes strong. Thorndike refers to this process as the law of effect : Responses that lead to dissatisfaction become less associated with the situation and responses that lead to satisfaction become more associated with the situation. According to Thorndike’s associationist view, solving a problem is simply a matter of trial and error and accidental success. A major challenge to assocationist theory concerns the nature of transfer—that is, where does a problem solver find a creative solution that has never been performed before? Associationist conceptions of cognition can be seen in current research, including neural networks, connectionist models, and parallel distributed processing models (Rogers & McClelland, 2004 ).

Gestalt Psychology

The Gestalt approach to problem solving developed in the 1930s and 1940s as a counterbalance to the associationist approach. According to the Gestalt approach, cognitive representations consist of coherent structures (rather than individual associations) and the cognitive process of problem solving involves building a coherent structure (rather than strengthening and weakening of associations). For example, in a classic study, Kohler ( 1925 ) placed a hungry ape in a play yard that contained several empty shipping crates and a banana attached overhead but out of reach. Based on observing the ape in this situation, Kohler noted that the ape did not randomly try responses until one worked—as suggested by Thorndike’s associationist view. Instead, the ape stood under the banana, looked up at it, looked at the crates, and then in a flash of insight stacked the crates under the bananas as a ladder, and walked up the steps in order to reach the banana.

According to Kohler, the ape experienced a sudden visual reorganization in which the elements in the situation fit together in a way to solve the problem; that is, the crates could become a ladder that reduces the distance to the banana. Kohler referred to the underlying mechanism as insight —literally seeing into the structure of the situation. A major challenge of Gestalt theory is its lack of precision; for example, naming a process (i.e., insight) is not the same as explaining how it works. Gestalt conceptions can be seen in modern research on mental models and schemas (Gentner & Stevens, 1983 ).

Information Processing

The information processing approach to problem solving developed in the 1960s and 1970s and was based on the influence of the computer metaphor—the idea that humans are processors of information (Mayer, 2009 ). According to the information processing approach, problem solving involves a series of mental computations—each of which consists of applying a process to a mental representation (such as comparing two elements to determine whether they differ).

In their classic book, Human Problem Solving , Newell and Simon ( 1972 ) proposed that problem solving involved a problem space and search heuristics . A problem space is a mental representation of the initial state of the problem, the goal state of the problem, and all possible intervening states (based on applying allowable operators). Search heuristics are strategies for moving through the problem space from the given to the goal state. Newell and Simon focused on means-ends analysis , in which the problem solver continually sets goals and finds moves to accomplish goals.

Newell and Simon used computer simulation as a research method to test their conception of human problem solving. First, they asked human problem solvers to think aloud as they solved various problems such as logic problems, chess, and cryptarithmetic problems. Then, based on an information processing analysis, Newell and Simon created computer programs that solved these problems. In comparing the solution behavior of humans and computers, they found high similarity, suggesting that the computer programs were solving problems using the same thought processes as humans.

An important advantage of the information processing approach is that problem solving can be described with great clarity—as a computer program. An important limitation of the information processing approach is that it is most useful for describing problem solving for well-defined problems rather than ill-defined problems. The information processing conception of cognition lives on as a keystone of today’s cognitive science (Mayer, 2009 ).

Classic Issues in Problem Solving

Three classic issues in research on problem solving concern the nature of transfer (suggested by the associationist approach), the nature of insight (suggested by the Gestalt approach), and the role of problem-solving heuristics (suggested by the information processing approach).

Transfer refers to the effects of prior learning on new learning (or new problem solving). Positive transfer occurs when learning A helps someone learn B. Negative transfer occurs when learning A hinders someone from learning B. Neutral transfer occurs when learning A has no effect on learning B. Positive transfer is a central goal of education, but research shows that people often do not transfer what they learned to solving problems in new contexts (Mayer, 1992 ; Singley & Anderson, 1989 ).

Three conceptions of the mechanisms underlying transfer are specific transfer , general transfer , and specific transfer of general principles . Specific transfer refers to the idea that learning A will help someone learn B only if A and B have specific elements in common. For example, learning Spanish may help someone learn Latin because some of the vocabulary words are similar and the verb conjugation rules are similar. General transfer refers to the idea that learning A can help someone learn B even they have nothing specifically in common but A helps improve the learner’s mind in general. For example, learning Latin may help people learn “proper habits of mind” so they are better able to learn completely unrelated subjects as well. Specific transfer of general principles is the idea that learning A will help someone learn B if the same general principle or solution method is required for both even if the specific elements are different.

In a classic study, Thorndike and Woodworth ( 1901 ) found that students who learned Latin did not subsequently learn bookkeeping any better than students who had not learned Latin. They interpreted this finding as evidence for specific transfer—learning A did not transfer to learning B because A and B did not have specific elements in common. Modern research on problem-solving transfer continues to show that people often do not demonstrate general transfer (Mayer, 1992 ). However, it is possible to teach people a general strategy for solving a problem, so that when they see a new problem in a different context they are able to apply the strategy to the new problem (Judd, 1908 ; Mayer, 2008 )—so there is also research support for the idea of specific transfer of general principles.

Insight refers to a change in a problem solver’s mind from not knowing how to solve a problem to knowing how to solve it (Mayer, 1995 ; Metcalfe & Wiebe, 1987 ). In short, where does the idea for a creative solution come from? A central goal of problem-solving research is to determine the mechanisms underlying insight.

The search for insight has led to five major (but not mutually exclusive) explanatory mechanisms—insight as completing a schema, insight as suddenly reorganizing visual information, insight as reformulation of a problem, insight as removing mental blocks, and insight as finding a problem analog (Mayer, 1995 ). Completing a schema is exemplified in a study by Selz (Fridja & de Groot, 1982 ), in which people were asked to think aloud as they solved word association problems such as “What is the superordinate for newspaper?” To solve the problem, people sometimes thought of a coordinate, such as “magazine,” and then searched for a superordinate category that subsumed both terms, such as “publication.” According to Selz, finding a solution involved building a schema that consisted of a superordinate and two subordinate categories.

Reorganizing visual information is reflected in Kohler’s ( 1925 ) study described in a previous section in which a hungry ape figured out how to stack boxes as a ladder to reach a banana hanging above. According to Kohler, the ape looked around the yard and found the solution in a flash of insight by mentally seeing how the parts could be rearranged to accomplish the goal.

Reformulating a problem is reflected in a classic study by Duncker ( 1945 ) in which people are asked to think aloud as they solve the tumor problem—how can you destroy a tumor in a patient without destroying surrounding healthy tissue by using rays that at sufficient intensity will destroy any tissue in their path? In analyzing the thinking-aloud protocols—that is, transcripts of what the problem solvers said—Duncker concluded that people reformulated the goal in various ways (e.g., avoid contact with healthy tissue, immunize healthy tissue, have ray be weak in healthy tissue) until they hit upon a productive formulation that led to the solution (i.e., concentrating many weak rays on the tumor).

Removing mental blocks is reflected in classic studies by Duncker ( 1945 ) in which solving a problem involved thinking of a novel use for an object, and by Luchins ( 1942 ) in which solving a problem involved not using a procedure that had worked well on previous problems. Finding a problem analog is reflected in classic research by Wertheimer ( 1959 ) in which learning to find the area of a parallelogram is supported by the insight that one could cut off the triangle on one side and place it on the other side to form a rectangle—so a parallelogram is really a rectangle in disguise. The search for insight along each of these five lines continues in current problem-solving research.

Heuristics are problem-solving strategies, that is, general approaches to how to solve problems. Newell and Simon ( 1972 ) suggested three general problem-solving heuristics for moving from a given state to a goal state: random trial and error , hill climbing , and means-ends analysis . Random trial and error involves randomly selecting a legal move and applying it to create a new problem state, and repeating that process until the goal state is reached. Random trial and error may work for simple problems but is not efficient for complex ones. Hill climbing involves selecting the legal move that moves the problem solver closer to the goal state. Hill climbing will not work for problems in which the problem solver must take a move that temporarily moves away from the goal as is required in many problems.

Means-ends analysis involves creating goals and seeking moves that can accomplish the goal. If a goal cannot be directly accomplished, a subgoal is created to remove one or more obstacles. Newell and Simon ( 1972 ) successfully used means-ends analysis as the search heuristic in a computer program aimed at general problem solving, that is, solving a diverse collection of problems. However, people may also use specific heuristics that are designed to work for specific problem-solving situations (Gigerenzer, Todd, & ABC Research Group, 1999 ; Kahneman & Tversky, 1984 ).

Current and Future Issues in Problem Solving

Eight current issues in problem solving involve decision making, intelligence and creativity, teaching of thinking skills, expert problem solving, analogical reasoning, mathematical and scientific problem solving, everyday thinking, and the cognitive neuroscience of problem solving.

Decision Making

Decision making refers to the cognitive processing involved in choosing between two or more alternatives (Baron, 2000 ; Markman & Medin, 2002 ). For example, a decision-making task may involve choosing between getting $240 for sure or having a 25% change of getting $1000. According to economic theories such as expected value theory, people should chose the second option, which is worth $250 (i.e., .25 x $1000) rather than the first option, which is worth $240 (1.00 x $240), but psychological research shows that most people prefer the first option (Kahneman & Tversky, 1984 ).

Research on decision making has generated three classes of theories (Markman & Medin, 2002 ): descriptive theories, such as prospect theory (Kahneman & Tversky), which are based on the ideas that people prefer to overweight the cost of a loss and tend to overestimate small probabilities; heuristic theories, which are based on the idea that people use a collection of short-cut strategies such as the availability heuristic (Gigerenzer et al., 1999 ; Kahneman & Tversky, 2000 ); and constructive theories, such as mental accounting (Kahneman & Tversky, 2000 ), in which people build a narrative to justify their choices to themselves. Future research is needed to examine decision making in more realistic settings.

Intelligence and Creativity

Although researchers do not have complete consensus on the definition of intelligence (Sternberg, 1990 ), it is reasonable to view intelligence as the ability to learn or adapt to new situations. Fluid intelligence refers to the potential to solve problems without any relevant knowledge, whereas crystallized intelligence refers to the potential to solve problems based on relevant prior knowledge (Sternberg & Gregorenko, 2003 ). As people gain more experience in a field, their problem-solving performance depends more on crystallized intelligence (i.e., domain knowledge) than on fluid intelligence (i.e., general ability) (Sternberg & Gregorenko, 2003 ). The ability to monitor and manage one’s cognitive processing during problem solving—which can be called metacognition —is an important aspect of intelligence (Sternberg, 1990 ). Research is needed to pinpoint the knowledge that is needed to support intelligent performance on problem-solving tasks.

Creativity refers to the ability to generate ideas that are original (i.e., other people do not think of the same idea) and functional (i.e., the idea works; Sternberg, 1999 ). Creativity is often measured using tests of divergent thinking —that is, generating as many solutions as possible for a problem (Guilford, 1967 ). For example, the uses test asks people to list as many uses as they can think of for a brick. Creativity is different from intelligence, and it is at the heart of creative problem solving—generating a novel solution to a problem that the problem solver has never seen before. An important research question concerns whether creative problem solving depends on specific knowledge or creativity ability in general.

Teaching of Thinking Skills

How can people learn to be better problem solvers? Mayer ( 2008 ) proposes four questions concerning teaching of thinking skills:

What to teach —Successful programs attempt to teach small component skills (such as how to generate and evaluate hypotheses) rather than improve the mind as a single monolithic skill (Covington, Crutchfield, Davies, & Olton, 1974 ). How to teach —Successful programs focus on modeling the process of problem solving rather than solely reinforcing the product of problem solving (Bloom & Broder, 1950 ). Where to teach —Successful programs teach problem-solving skills within the specific context they will be used rather than within a general course on how to solve problems (Nickerson, 1999 ). When to teach —Successful programs teaching higher order skills early rather than waiting until lower order skills are completely mastered (Tharp & Gallimore, 1988 ).

Overall, research on teaching of thinking skills points to the domain specificity of problem solving; that is, successful problem solving depends on the problem solver having domain knowledge that is relevant to the problem-solving task.

Expert Problem Solving

Research on expertise is concerned with differences between how experts and novices solve problems (Ericsson, Feltovich, & Hoffman, 2006 ). Expertise can be defined in terms of time (e.g., 10 years of concentrated experience in a field), performance (e.g., earning a perfect score on an assessment), or recognition (e.g., receiving a Nobel Prize or becoming Grand Master in chess). For example, in classic research conducted in the 1940s, de Groot ( 1965 ) found that chess experts did not have better general memory than chess novices, but they did have better domain-specific memory for the arrangement of chess pieces on the board. Chase and Simon ( 1973 ) replicated this result in a better controlled experiment. An explanation is that experts have developed schemas that allow them to chunk collections of pieces into a single configuration.

In another landmark study, Larkin et al. ( 1980 ) compared how experts (e.g., physics professors) and novices (e.g., first-year physics students) solved textbook physics problems about motion. Experts tended to work forward from the given information to the goal, whereas novices tended to work backward from the goal to the givens using a means-ends analysis strategy. Experts tended to store their knowledge in an integrated way, whereas novices tended to store their knowledge in isolated fragments. In another study, Chi, Feltovich, and Glaser ( 1981 ) found that experts tended to focus on the underlying physics concepts (such as conservation of energy), whereas novices tended to focus on the surface features of the problem (such as inclined planes or springs). Overall, research on expertise is useful in pinpointing what experts know that is different from what novices know. An important theme is that experts rely on domain-specific knowledge rather than solely general cognitive ability.

Analogical Reasoning

Analogical reasoning occurs when people solve one problem by using their knowledge about another problem (Holyoak, 2005 ). For example, suppose a problem solver learns how to solve a problem in one context using one solution method and then is given a problem in another context that requires the same solution method. In this case, the problem solver must recognize that the new problem has structural similarity to the old problem (i.e., it may be solved by the same method), even though they do not have surface similarity (i.e., the cover stories are different). Three steps in analogical reasoning are recognizing —seeing that a new problem is similar to a previously solved problem; abstracting —finding the general method used to solve the old problem; and mapping —using that general method to solve the new problem.

Research on analogical reasoning shows that people often do not recognize that a new problem can be solved by the same method as a previously solved problem (Holyoak, 2005 ). However, research also shows that successful analogical transfer to a new problem is more likely when the problem solver has experience with two old problems that have the same underlying structural features (i.e., they are solved by the same principle) but different surface features (i.e., they have different cover stories) (Holyoak, 2005 ). This finding is consistent with the idea of specific transfer of general principles as described in the section on “Transfer.”

Mathematical and Scientific Problem Solving

Research on mathematical problem solving suggests that five kinds of knowledge are needed to solve arithmetic word problems (Mayer, 2008 ):

Factual knowledge —knowledge about the characteristics of problem elements, such as knowing that there are 100 cents in a dollar Schematic knowledge —knowledge of problem types, such as being able to recognize time-rate-distance problems Strategic knowledge —knowledge of general methods, such as how to break a problem into parts Procedural knowledge —knowledge of processes, such as how to carry our arithmetic operations Attitudinal knowledge —beliefs about one’s mathematical problem-solving ability, such as thinking, “I am good at this”

People generally possess adequate procedural knowledge but may have difficulty in solving mathematics problems because they lack factual, schematic, strategic, or attitudinal knowledge (Mayer, 2008 ). Research is needed to pinpoint the role of domain knowledge in mathematical problem solving.

Research on scientific problem solving shows that people harbor misconceptions, such as believing that a force is needed to keep an object in motion (McCloskey, 1983 ). Learning to solve science problems involves conceptual change, in which the problem solver comes to recognize that previous conceptions are wrong (Mayer, 2008 ). Students can be taught to engage in scientific reasoning such as hypothesis testing through direct instruction in how to control for variables (Chen & Klahr, 1999 ). A central theme of research on scientific problem solving concerns the role of domain knowledge.

Everyday Thinking

Everyday thinking refers to problem solving in the context of one’s life outside of school. For example, children who are street vendors tend to use different procedures for solving arithmetic problems when they are working on the streets than when they are in school (Nunes, Schlieman, & Carraher, 1993 ). This line of research highlights the role of situated cognition —the idea that thinking always is shaped by the physical and social context in which it occurs (Robbins & Aydede, 2009 ). Research is needed to determine how people solve problems in authentic contexts.

Cognitive Neuroscience of Problem Solving

The cognitive neuroscience of problem solving is concerned with the brain activity that occurs during problem solving. For example, using fMRI brain imaging methodology, Goel ( 2005 ) found that people used the language areas of the brain to solve logical reasoning problems presented in sentences (e.g., “All dogs are pets…”) and used the spatial areas of the brain to solve logical reasoning problems presented in abstract letters (e.g., “All D are P…”). Cognitive neuroscience holds the potential to make unique contributions to the study of problem solving.

Problem solving has always been a topic at the fringe of cognitive psychology—too complicated to study intensively but too important to completely ignore. Problem solving—especially in realistic environments—is messy in comparison to studying elementary processes in cognition. The field remains fragmented in the sense that topics such as decision making, reasoning, intelligence, expertise, mathematical problem solving, everyday thinking, and the like are considered to be separate topics, each with its own separate literature. Yet some recurring themes are the role of domain-specific knowledge in problem solving and the advantages of studying problem solving in authentic contexts.

Future Directions

Some important issues for future research include the three classic issues examined in this chapter—the nature of problem-solving transfer (i.e., How are people able to use what they know about previous problem solving to help them in new problem solving?), the nature of insight (e.g., What is the mechanism by which a creative solution is constructed?), and heuristics (e.g., What are some teachable strategies for problem solving?). In addition, future research in problem solving should continue to pinpoint the role of domain-specific knowledge in problem solving, the nature of cognitive ability in problem solving, how to help people develop proficiency in solving problems, and how to provide aids for problem solving.

Anderson L. W. , Krathwohl D. R. , Airasian P. W. , Cruikshank K. A. , Mayer R. E. , Pintrich P. R. , Raths, J., & Wittrock M. C. ( 2001 ). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. New York : Longman.

Baron J. ( 2000 ). Thinking and deciding (3rd ed.). New York : Cambridge University Press.

Google Scholar

Google Preview

Bloom B. S. , & Broder B. J. ( 1950 ). Problem-solving processes of college students: An exploratory investigation. Chicago : University of Chicago Press.

Chase W. G. , & Simon H. A. ( 1973 ). Perception in chess.   Cognitive Psychology, 4, 55–81.

Chen Z. , & Klahr D. ( 1999 ). All other things being equal: Acquisition and transfer of the control of variable strategy . Child Development, 70, 1098–1120.

Chi M. T. H. , Feltovich P. J. , & Glaser R. ( 1981 ). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

Covington M. V. , Crutchfield R. S. , Davies L. B. , & Olton R. M. ( 1974 ). The productive thinking program. Columbus, OH : Merrill.

de Groot A. D. ( 1965 ). Thought and choice in chess. The Hague, The Netherlands : Mouton.

Duncker K. ( 1945 ). On problem solving.   Psychological Monographs, 58 (3) (Whole No. 270).

Ericsson K. A. , Feltovich P. J. , & Hoffman R. R. (Eds.). ( 2006 ). The Cambridge handbook of expertise and expert performance. New York : Cambridge University Press.

Fridja N. H. , & de Groot A. D. ( 1982 ). Otto Selz: His contribution to psychology. The Hague, The Netherlands : Mouton.

Gentner D. , & Stevens A. L. (Eds.). ( 1983 ). Mental models. Hillsdale, NJ : Erlbaum.

Gigerenzer G. , Todd P. M. , & ABC Research Group (Eds.). ( 1999 ). Simple heuristics that make us smart. Oxford, England : Oxford University Press.

Goel V. ( 2005 ). Cognitive neuroscience of deductive reasoning. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 475–492). New York : Cambridge University Press.

Guilford J. P. ( 1967 ). The nature of human intelligence. New York : McGraw-Hill.

Holyoak K. J. ( 2005 ). Analogy. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 117–142). New York : Cambridge University Press.

Humphrey G. ( 1963 ). Thinking: An introduction to experimental psychology. New York : Wiley.

Judd C. H. ( 1908 ). The relation of special training and general intelligence. Educational Review, 36, 28–42.

Kahneman D. , & Tversky A. ( 1984 ). Choices, values, and frames. American Psychologist, 39, 341–350.

Kahneman D. , & Tversky A. (Eds.). ( 2000 ). Choices, values, and frames. New York : Cambridge University Press.

Kohler W. ( 1925 ). The mentality of apes. New York : Liveright.

Larkin J. H. , McDermott J. , Simon D. P. , & Simon H. A. ( 1980 ). Expert and novice performance in solving physics problems. Science, 208, 1335–1342.

Luchins A. ( 1942 ). Mechanization in problem solving.   Psychological Monographs, 54 (6) (Whole No. 248).

Mandler J. M. , & Mandler G. ( 1964 ). Thinking from associationism to Gestalt. New York : Wiley.

Markman A. B. , & Medin D. L. ( 2002 ). Decision making. In D. Medin (Ed.), Stevens’ handbook of experimental psychology, Vol. 2. Memory and cognitive processes (2nd ed., pp. 413–466). New York : Wiley.

Mayer R. E. ( 1992 ). Thinking, problem solving, cognition (2nd ed). New York : Freeman.

Mayer R. E. ( 1995 ). The search for insight: Grappling with Gestalt psychology’s unanswered questions. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 3–32). Cambridge, MA : MIT Press.

Mayer R. E. ( 2008 ). Learning and instruction. Upper Saddle River, NJ : Merrill Prentice Hall.

Mayer R. E. ( 2009 ). Information processing. In T. L. Good (Ed.), 21st century education: A reference handbook (pp. 168–174). Thousand Oaks, CA : Sage.

Mayer R. E. , & Wittrock M. C. ( 2006 ). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ : Erlbaum.

McCloskey M. ( 1983 ). Intuitive physics.   Scientific American, 248 (4), 122–130.

Metcalfe J. , & Wiebe D. ( 1987 ). Intuition in insight and non-insight problem solving. Memory and Cognition, 15, 238–246.

Newell A. , & Simon H. A. ( 1972 ). Human problem solving. Englewood Cliffs, NJ : Prentice-Hall.

Nickerson R. S. ( 1999 ). Enhancing creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 392–430). New York : Cambridge University Press.

Nunes T. , Schliemann A. D. , & Carraher D. W , ( 1993 ). Street mathematics and school mathematics. Cambridge, England : Cambridge University Press.

Robbins P. , & Aydede M. (Eds.). ( 2009 ). The Cambridge handbook of situated cognition. New York : Cambridge University Press.

Rogers T. T. , & McClelland J. L. ( 2004 ). Semantic cognition: A parallel distributed processing approach. Cambridge, MA : MIT Press.

Singley M. K. , & Anderson J. R. ( 1989 ). The transfer of cognitive skill. Cambridge, MA : Harvard University Press.

Sternberg R. J. ( 1990 ). Metaphors of mind: Conceptions of the nature of intelligence. New York : Cambridge University Press.

Sternberg R. J. ( 1999 ). Handbook of creativity. New York : Cambridge University Press.

Sternberg R. J. , & Gregorenko E. L. (Eds.). ( 2003 ). The psychology of abilities, competencies, and expertise. New York : Cambridge University Press.

Tharp R. G. , & Gallimore R. ( 1988 ). Rousing minds to life: Teaching, learning, and schooling in social context. New York : Cambridge University Press.

Thorndike E. L. ( 1911 ). Animal intelligence. New York: Hafner.

Thorndike E. L. , & Woodworth R. S. ( 1901 ). The influence of improvement in one mental function upon the efficiency of other functions. Psychological Review, 8, 247–261.

Wertheimer M. ( 1959 ). Productive thinking. New York : Harper and Collins.

Wundt W. ( 1973 ). An introduction to experimental psychology. New York : Arno Press. (Original work published in 1911).

Further Reading

Baron, J. ( 2008 ). Thinking and deciding (4th ed). New York: Cambridge University Press.

Duncker, K. ( 1945 ). On problem solving. Psychological Monographs , 58(3) (Whole No. 270).

Holyoak, K. J. , & Morrison, R. G. ( 2005 ). The Cambridge handbook of thinking and reasoning . New York: Cambridge University Press.

Mayer, R. E. , & Wittrock, M. C. ( 2006 ). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ: Erlbaum.

Sternberg, R. J. , & Ben-Zeev, T. ( 2001 ). Complex cognition: The psychology of human thought . New York: Oxford University Press.

Weisberg, R. W. ( 2006 ). Creativity . New York: Wiley.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Are You Solving the Right Problem?

  • Dwayne Spradlin

Most firms aren’t, and that undermines their innovation efforts.

Reprint: R1209F

The rigor with which a problem is defined is the most important factor in finding a good solution. Many organizations, however, are not proficient at articulating their problems and identifying which ones are crucial to their strategies.

They may even be trying to solve the wrong problems—missing opportunities and wasting resources in the process. The key is to ask the right questions.

The author describes a process that his firm, InnoCentive, has used to help clients define and articulate business, technical, social, and policy challenges and then present them to an online community of more than 250,000 solvers. The four-step process consists of asking a series of questions and using the answers to create a problem statement that will elicit novel ideas from an array of experts.

  • Establish the need for a solution. What is the basic need? Who will benefit from a solution?
  • Justify the need. Why should your organization attempt to solve this problem? Is it aligned with your strategy? If a solution is found, who will implement it?
  • Contextualize the problem. What have you and others already tried? Are there internal and external constraints to implementing a solution?
  • Write the problem statement. What requirements must a solution meet? What language should you use to describe the problem? How will you evaluate solutions and measure success?

EnterpriseWorks/VITA, a nonprofit organization, used this process to find a low-cost, lightweight, and convenient product that expands access to clean drinking water in the developing world.

“If I were given one hour to save the planet, I would spend 59 minutes defining the problem and one minute resolving it,” Albert Einstein said.

nature of problem solving definition

  • DS Dwayne Spradlin is the president and CEO of InnoCentive , an online marketplace that connects organizations with freelance problem solvers in a multitude of fields. He is a coauthor, with Alpheus Bingham, of The Open Innovation Marketplace: Creating Value in the Challenge Driven Enterprise (FT Press, 2011).

Partner Center

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Problem solving articles from across Nature Portfolio

Problem solving is the mental process of analyzing a situation, learning what options are available, and then choosing the alternative that will result in the desired outcome or some other selected goal.

Latest Research and Reviews

nature of problem solving definition

States of epistemic curiosity interfere with memory for incidental scholastic facts

  • Nicole E. Keller
  • Carola Salvi
  • Joseph E. Dunsmoor

nature of problem solving definition

Neurocognitive responses to spatial design behaviors and tools among interior architecture students: a pilot study

  • Yaren Şekerci
  • Mehmet Uğur Kahraman
  • Sevgi Şengül Ayan

nature of problem solving definition

Association of executive function with suicidality based on resting-state functional connectivity in young adults with subthreshold depression

  • Je-Yeon Yun
  • Soo-Hee Choi
  • Joon Hwan Jang

nature of problem solving definition

Spatially embedded recurrent neural networks reveal widespread links between structural and functional neuroscience findings

A fundamental question in neuroscience is what are the constraints that shape the structural and functional organization of the brain. By bringing biological cost constraints into the optimization process of artificial neural networks, Achterberg, Akarca and colleagues uncover the joint principle underlying a large set of neuroscientific findings.

  • Jascha Achterberg
  • Danyal Akarca
  • Duncan E. Astle

nature of problem solving definition

Reverse effect of home-use binaural beats brain stimulation

  • Michal Klichowski
  • Andrzej Wicher
  • Roman Golebiewski

nature of problem solving definition

Effect of situation similarity on younger and older adults’ episodic simulation of helping behaviours

  • A. Dawn Ryan
  • Ronald Smitko
  • Karen L. Campbell

Advertisement

News and Comment

Reliable social switch.

The macaque homologue of the dorsal medial prefrontal cortex tracks the reliability of social information and determines whether this information is used to guide choices during decision making.

  • Jake Rogers

nature of problem solving definition

DishBrain plays Pong and promises more

An in vitro biological system of cultured brain cells has learned to play Pong. This feat opens up an avenue towards the convergence of biological and machine intelligence.

  • Joshua Goldwag

nature of problem solving definition

Tinkering with tools leads to more success

  • Teresa Schubert

nature of problem solving definition

Parallel processing of alternative approaches

Neuronal activity in the secondary motor cortex of mice engaged in a foraging task simultaneously represents multiple alternative decision-making strategies.

  • Katherine Whalley

Teaching of 21st century skills needs to be informed by psychological research

The technological advancements and globalization of the 21st century require a broad set of skills beyond traditional subjects such as mathematics, reading, and science. Research in psychological science should inform best practice and evidence-based recommendations for teaching these skills.

  • Samuel Greiff
  • Francesca Borgonovi

Simulated brain solves problems

Quick links.

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

nature of problem solving definition

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Perspect Med Educ
  • v.6(1); 2017 Feb

Logo of pmeded

From problem solving to problem definition: scrutinizing the complex nature of clinical practice

Sayra cristancho.

1 Centre for Education Research & Innovation, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada

Lorelei Lingard

Glenn regehr.

2 Centre for Health Education Scholarship, Faculty of Medicine, University of British Columbia, Vancouver, Canada

In medical education, we have tended to present problems as being singular, stable, and solvable. Problem solving has, therefore, drawn much of medical education researchers’ attention. This focus has been important but it is limited in terms of preparing clinicians to deal with the complexity of the 21st century healthcare system in which they will provide team-based care for patients with complex medical illness. In this paper, we use the Soft Systems Engineering principles to introduce the idea that in complex, team-based situations, problems usually involve divergent views and evolve with multiple solution iterations. As such we need to shift the conversation from (1) problem solving to problem definition, and (2) from a problem definition derived exclusively at the level of the individual to a definition derived at the level of the situation in which the problem is manifested. Embracing such a focus on problem definition will enable us to advocate for novel educational practices that will equip trainees to effectively manage the problems they will encounter in complex, team-based healthcare.

Problem solving has been one of the central areas of exploration for researchers studying medical expertise. This work has revealed some important insights into how medical experts grapple with addressing relatively stable, well-defined problems. However, in focusing on problems that are singular, stable, and solvable, these insights might have limited value in preparing clinicians to deal with the complexity of the 21st century healthcare system in which they will provide team-based care for patients with complex medical illness [ 1 ]. In the medical education literature, this concern is gaining recent attention as researchers begin to challenge taken-for-granted assumptions about clinical reasoning activities, such as diagnosis [ 2 ]. When activities such as diagnosis or treatment planning are framed as ongoing processes of meaning making, problem solving can no longer be thought of merely as converging on the correct solution. Consider the following example, derived from a research interview with a senior general surgeon:

Dr. Smith was scheduled to operate on a gentleman with a pelvic exoneration that required removing all the organs within the pelvis. Chemotherapy prior to surgery would likely increase the success of surgery. The patient was assessed by the oncologist who decided not to provide chemotherapy before the operation because the oncologist thought the patient was ‘not reliable’ . To determine what to do, Dr. Smith engaged in a series of conversations with the nurse, the social worker, the oncologist and a more senior colleague. Dr. Smith felt very strongly that ‘treating someone with less than the standard of care’ was inappropriate. Yet, the oncologist continued to resist. As the day of the surgery approached, Dr. Smith gathered support from the rest of the team members involved and essentially ‘ tricked the oncologist’ by admitting the patient to the hospital in advance. With this decision, Dr. Smith presented a new situation to the oncologist saying ‘ok, well, now he’s in hospital, he’s very reliable; he’s not going anywhere … now you can treat him’ . The oncologist reframed his concern, remarking back to the surgeon that ‘sometimes what is good for this patient may not necessarily be good for society’ . Notwithstanding this stance, the oncologist acknowledged that since the patient was already in the hospital, he had to fulfil his professional responsibility of providing chemotherapy. As this treatment was taking place, Dr. Smith felt ‘somewhat morally conflicted because I get what the oncologist is worried about …’. He now reported viewing the situation as ‘teetering’ between doing the right thing for one patient and imposing a significant cost on the system. In describing the shifting context that defined his efforts to help this patient, he characterized the situation as being one of making judgments like a rock climber: ‘very, very slow, inching your way … that feels like a solid hand-hold, ok, I’ll take that … or that doesn’t seem like it’s gonna go, so maybe I’ll try a different strategy, and often what you do at a certain moment in time, opens up what you can see at another moment … I think it’s like being in a constant evolution of finding your place.’

What does this story reveal about the nature of problem solving in every day clinical practice? First, there was not a single problem in play here, but rather a constellation of problems defined differently from different perspectives. For example, from the surgeon’s perspective the question of whether the patient should receive chemotherapy was an issue of pursuing optimal care for a successful outcome, whereas from the oncologist‘s perspective, it was an issue of whether the treatment could be successfully enacted given the patient’s unreliability. Second, in the eyes of the surgeon (and the oncologist), the problem was not stable, but rather constantly evolving over time. Dr. Smith started with a procedural problem (operating on a patient that required removing all organs within the pelvis and identifying chemotherapy as needed to maximize success), which shifted into a care access problem (convincing the oncologist that treating the patient with chemotherapy prior to surgery was the most appropriate action), then became a team dynamics problem (convincing others of the need to admit the patient and tricking the oncologist). Finally, it evolved into a moral problem (the dilemma of doing the right thing for the patient vs. the cost imposed on the system), one imposed by the oncologist’s efforts to respond to his own shifting definition of the problem. Thus, what on the surface appears to be a single central problem of care for the patient is in fact a constantly evolving constellation of problems: it looks different depending on whose point of view we take, and on which point in time we emphasize during the process. The complexity in this team interaction is, therefore, not only, or even primarily, one of problem solving – it is also one of problem defining.

This story of everyday, incremental problem solving and iterative problem definition is the sort that occurs regularly in healthcare, and it illustrates the fluidity of problems. In Dr. Smith’s story the issue of reframing problems was made explicit as he told the story during his interview, but in everyday practice most likely it happens largely tacitly as clinicians balance their various priorities [ 3 ]. Whether explicit or tacit, however, team members learn from such experiences. The next time this senior surgeon and oncologist interact regarding pre-surgical chemotherapy, each will make inferences about the other’s definition of the clinical problem based on this experience and adapt their behaviour accordingly. The surgeon might, for example, admit the patient before consulting with the oncologist, both in an attempt to manage the problem definition and its solution. Thus, through experience, clinicians become savvy definers of problems just as they become savvy solvers of problems. Yet such sophisticated considerations are seldom articulated, and when the pre-emptive solution is enacted the problem does not manifest. Thus, the complexity and multifaceted nature of the underlying problem definition is hidden (perhaps, over repeated enactments, even from the physician himself).

Such examples challenge the conventional premise that problems are singular and stable, and that they can be ‘solved’ once and for all. A singular, stable definition and permanent solution of problems may hold in simple healthcare situations (e. g., a child with a minor ear infection brought to the family physician), but in complex, team-based situations like the one above, these premises are regularly challenged. Because different stakeholders may well approach the same issue differently, the major challenge lies not just in agreeing how to solve the problem, but in appreciating exactly what the problem is at any given moment in time.

If we acknowledge that clinical problem definition is not simple and straightforward, but multifaceted, evolving and iterative, then we require a new language for talking about problem solving . A number of other disciplines have grappled with this issue [ 4 ], and one that has developed a useful language is SSE [ 5 – 8 ]. Elsewhere we have discussed the implications of SSE in relation to other domains such as resilience [ 9 ] and learning [ 10 ]. For the purposes of this paper, we are exploring the value of SSE for reconsidering the construction of problem solving in the medical education literature. One of many concepts that Soft Systems Engineering posits [ 11 – 13 ] is the idea that because real-life problems usually involve divergent views and evolve with multiple solution iterations, the focus needs to shift in two ways. First, it needs to shift from problem solving to problem definition . Second, it needs to shift from a problem definition derived exclusively at the level of the individual to a definition derived at the level of the situation or system in which the problem is manifested [ 11 ].

SSE offers a vocabulary for making these shifts possible. First, SSE identifies the perspectives that are involved in a problem situation: who are the stakeholders in the problem and from what orientation does each define it? In the story above, different team members held different and conflicting perspectives on how to treat this particular patient prior to surgery. While the oncologist struggled with the idea of providing chemotherapy prior to the operation, the surgeon struggled with the consequences of admitting the patient earlier to the hospital. Second, SSE moves beyond a consideration of each isolated perspective to examine the interactions among them [ 11 – 13 ]. Although we might potentially interpret these differing perspectives as just a set of individual problems, in fact, these interacting perspectives collectively shape and reshape the situation in which each individual is enacting his or her part [ 14 , 15 ].

In the surgery story, the interactions among the surgeon’s and the oncologist’s perspectives resulted in a series of redefinitions of the problem for the surgeon: from attending to the procedural steps, to attending to the team dynamics, to attending to the moral dilemma. Thus, under the SSE approach, the construction of the situation becomes a cyclical process: the dynamic nature of the various perspectives a single team member holds and the interactions with other team members’ perspectives reshapes the situation, which in turn influences every team member’s understanding. As a research approach, SSE therefore enables us to ask questions such as:

  • What are all the relevant perspectives for the definition of a problem? In the story above these included both the surgeon and the oncologist, but might also have included those of the nurses, social workers, hospital administrators, and patient. As the surgeon told it, these perspectives seemed to align with his, but it would be important to ask as an open question.
  • How do those perspectives interact with one another to iteratively define the problem? The surgery story showed at least three redefinitions of the problem caused by the interactions among perspectives.
  • How do new behaviours emerge as a consequence of those interactions and in response to the constantly changing nature of the problem? The surgeon-oncologist interaction depicted in the story might result in the surgeon implementing workarounds next time he faces a similar situation with the same oncologist.

Daily clinical problems are dynamic challenges defined multiply by individuals distributed across the system. Adopting an SSE lens can help us conceptualize a ‘problem’ not as singular and static, but as an entity that evolves, adapts and emerges across interactions and across time. Consistent with other recent innovations in medical education [ 4 ], we suggest that embracing a focus on the complexities of problem definition can enable novel educational practices that will equip trainees to effectively manage the problems they are likely to encounter in complex, team-based healthcare.

Biographies

is assistant professor at the Department of Surgery and Scientist, Centre for Education Research & Innovation, Western University, Canada. Her research programme investigates the organizational, social and personal factors that determine the evolution of complex clinical situations. Towards this end, she follows Qualitative and Systems Engineering approaches to research.

is the director of CERI. Her research programme investigates the nature of communication on inter-professional healthcare teams, including the operating room, the intensive care unit, and the internal medicine ward. She is particularly interested in how communication patterns influence patient safety and shapes the professional identity of novices.

is professor at the Department of Surgery and associate director of the Centre for Health Education Scholarship, University of British Columbia, Canada. His collaborative research programme utilizes a variety of quantitative and qualitative methodologies to explore the development, maintenance, enactment and assessment of both clinical expertise and professional identity.

  • To save this word, you'll need to log in. Log In

problem-solving

Definition of problem-solving

Examples of problem-solving in a sentence.

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'problem-solving.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Dictionary Entries Near problem-solving

Cite this entry.

“Problem-solving.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/problem-solving. Accessed 23 Apr. 2024.

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

Commonly misspelled words, how to use em dashes (—), en dashes (–) , and hyphens (-), absent letters that are heard anyway, how to use accents and diacritical marks, on 'biweekly' and 'bimonthly', popular in wordplay, the words of the week - apr. 19, 10 words from taylor swift songs (merriam's version), a great big list of bread words, 9 superb owl words, 10 words for lesser-known games and sports, games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

Book cover

Encyclopedia of the Sciences of Learning pp 2683–2686 Cite as

Problem Typology

  • David H. Jonassen 2  
  • Reference work entry

689 Accesses

1 Citations

10 Altmetric

Learning outcomes ; Learning taxonomy ; Problem solving

Traditional models of problem solving, known as phase models (e.g., Bransford and Stein 1984 ), suggest that all problems can be solved if we (1) identify the problem, (2) generate alternative solutions, (3) evaluate those solutions, (4) implement the chosen solution, and (5) evaluate the effectiveness of the solution. However, problems and problem solving vary in several ways, including the skills and abilities of the problem solver, the nature of the problem itself, the context in which the problem occurs, and the way the problem is represented to the problem solver (Jonassen 2007 ). In this chapter, I describe how problems themselves vary.

Foremost among these differences is the continuum (see Fig.  1 ) between well-structured and ill-structured problems (Jonassen 1997 , 2000 ; Voss and Post 1988 ). Most problems encountered in formal education are well-structured problems. Well-structured problems typically present...

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Bransford, J., & Stein, B. S. (1984). The IDEAL problem solver: A guide for improving thinking, learning, and creativity . New York: WH Freeman.

Google Scholar  

Greeno, J. (1980). Trends in the theory of knowledge fro problem solving. In D. T. Tuma & F. Reif (Eds.), Problem solving and education: Issues in teaching and research (pp. 9–23). Hillsdale: Lawrence Erlbaum.

Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal of Educational Psychology, 87 , 18–32.

Article   Google Scholar  

Jonassen, D. H. (1997). Instructional design model for well-structured and ill-structured problem-solving learning outcomes. Educational Technology Research and Development, 45 (1), 65–95.

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48 (4), 63–85.

Jonassen, D. H., & Hung, W. (2006). Learning to troubleshoot: A new theory-based design architecture. Educational Psychology Review, 18 , 77–114.

Jonassen, D. H. (2007). What makes scientific problems difficult? In D. H. Jonassen (Ed.), Learning to solve complex, scientific problems (pp. 3–23). Mahwah: Lawrence Erlbaum.

Jonassen, D. H., & Hung, W. (2008) All problems are not equal: Implications for PBL. Interdisciplinary Journal of Problem-Based Learning, 2 (2), 6–28.

Jonassen, D. H. (2011). Learning to solve probvlems: A handbook for designing problem-solving learning environments . New York: Routledge.

Meacham, J. A., & Emont, N. C. (1989). The interpersonal basis of everyday problem solving. In J. D. Sinnott (Ed.), Everyday problem solving: Theory and applications (pp. 7–23). New York: Praeger.

Rich, B. (1960). Schaum’s principles of and problems of elementary algebra . New York: Schaum’s.

Voss, J. F., & Post, T. A. (1988). On the solving of ill-structured problems. In M. T. H. Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise . Hillsdale: Lawrence Erlbaum.

Wilson, J. W., Fernandez, M. L., & Hadaway, N. (2005). Mathematical problem solving. Retrieved 9/22/05 from http://jwilson.coe.uga .

Wood, P. K. (1983). Inquiring systems and problem structure: Implications for cognitive development. Human Development, 26 , 249–265.

Woods, D. R., Hrymak, A. N., Marshall, R. R., Wood, P. E., Crowe, C. M., Hoffman, T. W., Wright, J. D., Taylor, P. A., Woodhouse, K. A., & Bouchard, C. G. K. (1997). Developing problem-solving skills: The McMaster problem solving program. Journal of Engineering Education, 86 (2), 75–92.

Download references

Author information

Authors and affiliations.

School of Information Science and Learning Technologies, University of Missouri, 221C Townsend Hall, 65211, Columbia, MO, USA

Dr. David H. Jonassen

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to David H. Jonassen .

Editor information

Editors and affiliations.

Faculty of Economics and Behavioral Sciences, Department of Education, University of Freiburg, 79085, Freiburg, Germany

Norbert M. Seel

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry.

Jonassen, D.H. (2012). Problem Typology. In: Seel, N.M. (eds) Encyclopedia of the Sciences of Learning. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1428-6_209

Download citation

DOI : https://doi.org/10.1007/978-1-4419-1428-6_209

Publisher Name : Springer, Boston, MA

Print ISBN : 978-1-4419-1427-9

Online ISBN : 978-1-4419-1428-6

eBook Packages : Humanities, Social Sciences and Law

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Teach Educator

Mastering Problem-Solving Skills: Definition and Examples

Problem-solving skills – introduction.

Problem-solving skills are fundamental abilities that enable individuals to tackle complex challenges, overcome obstacles, and devise effective solutions. These skills are invaluable across various domains, from personal life to professional endeavors. As they empower individuals to analyze situations critically and implement strategies to achieve desired outcomes.

Definition of Problem-Solving Skills

Problem-solving skills encompass a range of cognitive processes and techniques aimed at identifying, analyzing, and resolving problems. These skills involve the application of logical reasoning, creativity, critical thinking, and decision-making to address issues and make sound judgments.

Understanding the Problem

Before attempting to solve a problem, it is essential to fully comprehend its nature and scope. This involves identifying the underlying issues, determining the goals to be achieved, and clarifying any constraints or limitations that may affect the solution.

Example: In a business context, understanding a decline in sales requires analyzing market trends. Customer feedback, and internal factors such as product quality and pricing strategies.

Analyzing Options

Once the problem is defined, individuals need to explore various solutions or approaches to address it. This stage involves brainstorming ideas, evaluating alternatives, and considering the potential outcomes of each option.

Example: When faced with a budget shortfall, a project manager may analyze different cost-cutting measures. Such as renegotiating contracts, reducing non-essential expenses, or reallocating resources.

Implementing Solutions

After selecting the most viable solution, the next step is implementing it effectively. This often requires planning, organization, and coordination to execute the chosen approach and monitor its progress toward achieving the desired results.

Example: To improve customer satisfaction, a restaurant manager may introduce a new training program for staff, streamline service processes, and solicit feedback from patrons to assess the impact of the changes.

Evaluating Results

Once the solution has been implemented, it is crucial to evaluate its effectiveness and identify any unforeseen consequences or areas for improvement. This feedback loop allows individuals to refine their problem-solving strategies and learn from their experiences.

Example: A teacher who introduces a new teaching method in the classroom may assess student performance, gather feedback from students and colleagues, and adjust the approach based on the observed outcomes.

Continuous Improvement

Problem-solving skills are not static but evolve through practice and experience. Individuals can enhance their abilities by seeking feedback, learning from failures, and continuously challenging themselves to solve increasingly complex problems.

Example: A software developer may regularly participate in coding challenges, attend workshops on emerging technologies, and collaborate with peers to stay updated and sharpen their programming skills.

In conclusion, problem-solving skills are essential competencies that enable individuals to navigate challenges, innovate solutions, and achieve their goals effectively. By understanding the problem, analyzing options, implementing solutions, evaluating results, and continuously improving. Individuals can develop mastery in problem-solving across diverse contexts. These skills benefit individuals in their personal and professional lives and contribute to the advancement of society as a whole.

Leave a Reply Cancel reply

Teach educator.

A "Teach Educator" is a specialized role focusing on training and empowering other teachers. This professional is dedicated to enhancing educators' skills through the latest teaching techniques, innovative technologies, and educational research. They conduct workshops, seminars, and coaching, promoting professional development within academic settings.

By improving teaching standards and fostering a culture of continuous learning among educators, Teach Educators ensure that classroom challenges are met with advanced strategies, leading to more effective teaching and richer student learning experiences.

Privacy Policy

Live Sports Score

Editor's Choice

Recent Post

How to Apply Online for TOSS Admission in 2024-compressed

How to Apply Online for TOSS Admission in 2024 – Latest

April 23, 2024

AIOU Announced Free Admission in Class 9th and 10th - Apply Now (2)-compressed

AIOU Announced Free Admission in Class 9th and 10th  – Apply Now

Multiple-Choice Questions (New Update)-compressed

Multiple-Choice Questions (New Update)

© 2023 Teach Educator

Privacy policy

Discover more from Teach Educator

Subscribe now to keep reading and get access to the full archive.

Type your email…

Continue reading

IMAGES

  1. why is problem solving important in learning

    nature of problem solving definition

  2. What Is Problem-Solving? Steps, Processes, Exercises to do it Right

    nature of problem solving definition

  3. PPT

    nature of problem solving definition

  4. Problem-Solving Strategies: Definition and 5 Techniques to Try

    nature of problem solving definition

  5. what is the meaning of the problem solving

    nature of problem solving definition

  6. 7 Steps to Improve Your Problem Solving Skills

    nature of problem solving definition

VIDEO

  1. Lesson 1. Problem Solving: Definition and Process

  2. 20 PROBLEM SOLVING DEFINITION AND STEPS

  3. Nature of Planning

  4. Problem solving

  5. The Jungle Bunch Fixes Pollution

  6. Problem Meaning

COMMENTS

  1. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  2. The Nature of Problem Solving

    Using Research to Inspire 21st Century Learning. Solving non-routine problems is a key competence in a world full of changes, uncertainty and surprise where we strive to achieve so many ambitious goals. But the world is also full of solutions because of the extraordinary competences of humans who search for and find them.

  3. What is Problem Solving? (Steps, Techniques, Examples)

    Definition and Importance. Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional ...

  4. What is Problem Solving? A Complete Guide

    Problem Solving refers to the cognitive process of identifying, analysing, and resolving a challenge or obstacle. It involves using logical reasoning, critical thinking, and creativity to find effective solutions. It requires an in-depth analysis to solve problems in many situations, whether simple everyday problems or complex issues.

  5. Section 3. Defining and Analyzing the Problem

    Learn how to determine the nature of the problem, clarify the problem, decide to solve the problem, ... The first step in any effective problem-solving process may be the most important. Take your time to develop a critical definition, and let this definition, and the analysis that follows, guide you through the process. ...

  6. (PDF) The Nature of Problem Solving: Using Research to Inspire 21st

    Problem solving is at the heart of this, the capacity of an indi vidual to engage in. cognitive processing to understand and resolve prob lem situations where a method of solution is. not ...

  7. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  8. What Is Problem Solving?

    The first step in solving a problem is understanding what that problem actually is. You need to be sure that you're dealing with the real problem - not its symptoms. For example, if performance in your department is substandard, you might think that the problem lies with the individuals submitting work. However, if you look a bit deeper, the ...

  9. Problem Solving

    Nature of Problem. Problem solving has many meanings from many different perspectives. From an information-processing perspective, problem solving consists of sets of initial states, goals states, and path constraints (Wood 1983).Solving a problem is finding a path through the problem space that starts with initial states passing along paths that satisfy the path constraints and ends in the ...

  10. The Nature of Problem Solving

    The Nature of Problem Solving presents the background and the main ideas behind the development of the PISA 2012 assessment of problem solving, as well as results from research collaborations that originated within the group of experts who guided the development of this assessment. It illustrates the past, present and future of problem-solving ...

  11. Problem Solving Definition and Methodology

    Solve your problem-solving problem Here's the good news: Good problem solving skills can be learned. By its nature, problem solving doesn't adhere to a clear set of do's and don'ts—it requires flexibility, communication, and adaptation. However, most problems you face, at work or in life, can be tackled using four basic steps.

  12. Problem Solving

    Problem solving refers to cognitive processing directed at achieving a goal when the problem solver does not initially know a solution method. A problem exists when someone has a goal but does not know how to achieve it. Problems can be classified as routine or nonroutine, and as well defined or ill defined.

  13. Problem-Solving

    Problem solving involves a set of complex cognitive processes that require thinking and reasoning. A problem occurs when there is a goal that needs to be reached and there is not a clear path to achieving the goal (Mayer 2013).Problems can range in terms of type, complexity, strategy use, domain, and other factors that affect the content and the context of the problem or its solution.

  14. Are You Solving the Right Problem?

    Are You Solving the Right Problem? Summary. The rigor with which a problem is defined is the most important factor in finding a good solution. Many organizations, however, are not proficient at ...

  15. Problems: Definition, Types, and Evidence

    The nature of human problem solving has been studied by psychologists over the past hundred years. Beginning with the early experimental work of the Gestalt psychologists in Germany, and continuing through the 1960s and early 1970s, research on problem solving typically operated with relatively simple laboratory problems, such as Duncker's famous "X-ray" problem and Ewert and Lambert's ...

  16. Problem solving

    Problem solving articles from across Nature Portfolio. Atom; RSS Feed; Definition. Problem solving is the mental process of analyzing a situation, learning what options are available, and then ...

  17. From problem solving to problem definition: scrutinizing the complex

    This story of everyday, incremental problem solving and iterative problem definition is the sort that occurs regularly in healthcare, and it illustrates the fluidity of problems. In Dr. Smith's story the issue of reframing problems was made explicit as he told the story during his interview, but in everyday practice most likely it happens ...

  18. (PDF) Theory of Problem Solving

    solving that change the problematic situation and can have an influe nce on the solving process. The resolution of the problem can be described as a state characterized as the removal ...

  19. Problem-solving Definition & Meaning

    The meaning of PROBLEM-SOLVING is the process or act of finding a solution to a problem. How to use problem-solving in a sentence.

  20. Problem Typology

    Definition. Traditional models of problem solving, known as phase models (e.g., Bransford and Stein 1984 ), suggest that all problems can be solved if we (1) identify the problem, (2) generate alternative solutions, (3) evaluate those solutions, (4) implement the chosen solution, and (5) evaluate the effectiveness of the solution.

  21. PDF What Is Problem-solving Ability? Carmen M. Laterell Abstract

    The definition of problem solving implied by this - 7 - sentence does not indicate that the situation must be nonroutine for the student. But, for the remaining grade levels, the authors return to the idea of problem solving as involving problems ... nonroutine nature of the problem. These additional criteria are: the solution path should be ...

  22. PDF UNIT 1 NATURE OF PROBLEM SOLVING Nature of Problem Solving

    1.4.1 The Stages of Problem Solving. The situation that prevails at the beginning of the problem solving task is the initial state. The system then moves through a series of different, intermediate states, designed to lead to the goal. When the goal is achieved, the system is said to have attained the goal state.

  23. Mastering Problem-Solving Skills: Definition and Examples

    Definition of Problem-Solving Skills. Problem-solving skills encompass a range of cognitive processes and techniques aimed at identifying, analyzing, and resolving problems. ... it is essential to fully comprehend its nature and scope. This involves identifying the underlying issues, determining the goals to be achieved, and clarifying any ...