Clinical Trials

Type 2 diabetes.

Displaying 96 studies

The purpose of this study is to identify changes to the metabolome (range of chemicals produced in the body) and microbiome (intestine microbe environment) that are unique to Roux-en-Y gastric bypass surgery and assess the associated effect on the metabolism of patients with type 2 diabetes.

The purpose of this study is to evaluate the impact of a digital storytelling intervention derived through a community-based participatory research (CBPR) approach on type 2 diabetes mellitus (T2D) outcomes among Hispanic adults with poorly controlled type 2 diabetes mellitus (T2D) in primary care settings through a randomized clinical trial.

The purpose of this study is to assess the impact of a whole food plant-based diet on blood sugar control in diabetic patients versus a control group on the American Diabetics Association diet before having a total hip, knee, or shoulder replacement surgery.

The purpose of  this study is to learn more about if the medication, Entresto, could help the function of the heart and kidneys.

The primary aim of this study is to compare the outcome measures of adult ECH type 2 diabetes patients who were referred to onsite pharmacist services for management of their diabetes to similar patients who were not referred for pharmacy service management of their diabetes. A secondary aim of the study is to assess the Kasson providers’ satisfaction level and estimated pharmacy service referral frequency to their patients. A tertiary aim of the study is to compare the hospitalization rates of type 2 diabetes rates who were referred to onsite pharmacist services for management of their diabetes to similar patients ...

To explore the feasibility of conducting a family centered wellness coaching program for patients at high risk for developing diabetes, in a primary care setting.

To determine engagement patterns.

To describe characteristics of families who are likely to participate.

To identify barriers/limitations to family centered wellness coaching.

To assess whether a family centered 8 week wellness coaching intervention for primary care patients at high risk for diabetes will improve self-care behaviors as measured by self-reported changes in physical activity level and food choices.

This study is being done to understand metformin's mechanisms of action regarding glucose production, protein metabolism, and mitochondrial function.

The purpose of this study is to assess the effectiveness of Revita® DMR for improving HbA1c to ≤ 7% without the need of insulin in subjects with T2D compared to sham and to assess the effectiveness of DMR versus Sham on improvement in Glycemic, Hepatic and Cardiovascular endpoints.

The purpose of this study is to evaluate 6 weeks of home use of the Control-IQ automated insulin delivery system in individuals with type 2 diabetes.

This study will evaluate whether bile acids are able to increase insulin sensitivity and enhance glycemic control in T2DM patients, as well as exploring the mechanisms that enhance glycemic control. These observations will provide the preliminary data for proposing future therapeutic as well as further mechanistic studies of the role of bile acids in the control of glycemia in T2DM.

The purpose of this study is to determine if Inpatient Stress Hyperglycemia is an indicator of future risk of developing type 2 Diabetes Mellitus.

The purpose of this study is to assess the effectiveness of a digital storytelling intervention derived through a community based participatory research (CBPR) approach on self-management of type 2 diabetes (T2D) among Somali adults. 

The GRADE Study is a pragmatic, unmasked clinical trial that will compare commonly used diabetes medications, when combined with metformin, on glycemia-lowering effectiveness and patient-centered outcomes.

The overall goal of this proposal is to determine the effects of acute hyperglycemia and its modulation by Glucagon-like Peptide-1 (GLP-1) on myocardial perfusion in type 2 diabetes (DM). This study plan utilizes myocardial contrast echocardiography (MCE) to explore a) the effects of acute hyperglycemia on myocardial perfusion and coronary flow reserve in individuals with and without DM; and b) the effects of GLP-1 on myocardial perfusion and coronary flow reserve during euglycemia and hyperglycemia in DM. The investigators will recruit individuals with and without DM matched for age, gender and degree of obesity. The investigators will measure myocardial perfusion ...

The purpose of this study is to test the hypothesis that patients with T2DM will have greater deterioration in BMSi and in cortical porosity over 3 yrs as compared to sex- and age-matched non-diabetic controls; and identify the circulating hormonal (e.g., estradiol [E2], testosterone [T]) and biochemical (e.g., bone turnover markers, AGEs) determinants of changes in these key parameters of bone quality, and evaluate the possible relationship between existing diabetic complications and skeletal deterioration over time in the T2DM patients.

The purpose of this study is to determine the effect of endogenous GLP-1 secretion on islet function in people with Typr 2 Diabetes Mellitus (T2DM).

GLP-1 is a hormone made by the body that promotes the production of insulin in response to eating. However, there is increasing evidence that this hormone might help support the body’s ability to produce insulin when diabetes develops. 

The purpose of this study is to assess whether psyllium is more effective in lowering fasting blood sugar and HbA1c, and to evaluate the effect of psyllium compared to wheat dextrin on the following laboratory markers:  LDL-C, inflammatory markers such as ceramides and hsCRP, and branch chain amino acids which predict Diabetes Mellitus (DM).

This trial is a multi-center, adaptive, randomized, double-blind, placebo- and active- controlled, parallel group, phase 2 study in subjects with Type 2 Diabetes Mellitus to evaluate the effect of TTP399 on HbA1c following administration for 6 months.

The purpose of this study is to find the inheritable changes in genetic makeup that are related to the development of type 2 diabetes in Latino families.

The objective of this early feasibility study is to assess the feasibility and preliminary safety of the Endogenex Divice for endoscopic duodenal mucosal regeneration in patients with type 2 diabetes (T2D) inadequately controlled on 2-3 non-insulin glucose-lowering medications. 

This mixed methods study aims to answer the question: "What is the work of being a patient with type 2 diabetes mellitus?" .

The purpose of this study is to assess penile length pre- and post-completion of RestoreX® traction therapy compared to control groups (no treatment) among men with type II diabetes.

This observational study is conducted to determine how the duodenal layer thicknesses (mucosa, submucosa, and muscularis) vary with several factors in patients with and without type 2 diabetes.

The purpose of this study is to evaluate if breathing pure oxygen overnight affects insulin sensitivity in participants with diabetes.   

The purpose of this study is to determine the impact of patient decision aids compared to usual care on measures of patient involvement in decision-making, diabetes care processes, medication adherence, glycemic and cardiovascular risk factor control, and use of resources in nonurban practices in the Midwestern United States.

The purpose of this study is to estimate the risk of diabetes related complications after total pancreatectomy.  We will contact long term survivors after total pancreatectomy to obtain data regarding diabetes related end organ complications.

The purpose of this study is to understand nighttime glucose regulation in humans and find if the pattern is different in people with Type 2 diabetes

The study is being undertaken to understand how a gastric bypass can affect a subject's diabetes even prior to their losing significant amounts of weight. The hypothesis of this study is that increased glucagon-like peptide-1 (GLP-1) secretion explains the amelioration in insulin secretion after Roux-en-Y Gastric Bypass (RYGB) surgery.

The study purpose is to understand patients’ with the diagnosis of Diabetes Mellitus type 1 or 2 perception of the care they receive in the Diabetes clinic or Diabetes technology clinic at Mayo Clinic and to explore and to identify the healthcare system components patients consider important to be part of the comprehensive regenerative care in the clinical setting.

However, before we can implement structural changes or design interventions to promote comprehensive regenerative care in clinical practice, we first need to characterize those regenerative practices occurring today, patients expectations, perceptions and experiences about comprehensive regenerative care and determine the ...

The investigators will determine whether people with high muscle mitochondrial capacity produce higher amount of reactive oxygen species (ROS) on consuming high fat /high glycemic diet and thus exhibit elevated cellular oxidative damage. The investigators previously found that Asian Indian immigrants have high mitochondrial capacity in spite of severe insulin resistance. Somalians are another new immigrant population with rapidly increasing prevalence of diabetes. Both of these groups traditionally consume low caloric density diets, and the investigators hypothesize that when these groups are exposed to high-calorie Western diets, they exhibit increased oxidative stress, oxidative damage, and insulin resistance. The investigators will ...

The purpose of this research is to find out how genetic variations in GLP1R, alters insulin secretion, in the fasting state and when blood sugars levels are elevated. Results from this study may help us identify therapies to prevent or reverse type 2 diabetes mellitus.

It is unknown how patient preferences and values impact the comparative effectiveness of second-line medications for Type 2 diabetes (T2D). The purpose of this study is to elicit patient preferences toward various treatment outcomes (e.g., hospitalization, kidney disease) using a participatory ranking exercise, use these rankings to generate individually weighted composite outcomes, and estimate patient-centered treatment effects of four different second-line T2D medications that reflect the patient's value for each outcome. 

The purpose of this mixed-methods study is to deploy the tenets of Health and Wellness Coaching (HWC) through a program called BeWell360 model , tailored to the needs of Healthcare Workers (HCWs) as patients living with poorly-controlled Type 2 Diabetes (T2D). The objective of this study is to pilot-test this novel, scalable, and sustainable BeWell360 model that is embedded and integrated as part of primary care for Mayo Clinic Employees within Mayo Clinic Florida who are identified as patients li)ving with poorly-controlled T2D. 

To determine if the EndoBarrier safely and effectively improves glycemic control in obese subjects with type 2 diabetes.

The purpose of this study is to assess key characteristics of bone quality, specifically material strength and porosity, in patients who have type 2 diabetes. These patients are at an unexplained increased risk for fractures and there is an urgent need to refine clinical assessment for this risk.

Can QBSAfe be implemented in a clinical practice setting and improve quality of life, reduce treatment burden and hypoglycemia among older, complex patients with type 2 diabetes?

Questionnaire administered to diabetic patients in primary care practice (La Crosse Mayo Family Medicine Residency /Family Health Clinic) to assess patient’s diabetic knowledge. Retrospective chart review will also be done to assess objective diabetic control based on most recent hemoglobin A1c.    

This research study is being done to develop educational materials that will help patients and clinicians talk about diabetes treatment and management options.

Muscle insulin resistance is a hallmark of upper body obesity (UBO) and Type 2 diabetes (T2DM). It is unknown whether muscle free fatty acid (FFA) availability or intramyocellular fatty acid trafficking is responsible for muscle insulin resistance, although it has been shown that raising FFA with Intralipid can cause muscle insulin resistance within 4 hours. We do not understand to what extent the incorporation of FFA into ceramides or diacylglycerols (DG) affect insulin signaling and muscle glucose uptake. We propose to alter the profile and concentrations of FFA of healthy, non-obese adults using an overnight, intra-duodenal palm oil infusion vs. ...

The objectives of this study are to identify circulating extracellular vesicle (EV)-derived protein and RNA signatures associated with Type 2 Diabetes (T2D), and to identify changes in circulating EV cargo in patients whose T2D resolves after sleeve gastrectomy (SG) or Roux-en-Y gastric bypass (RYGB).

The purpose of this study evaluates a subset of people with isolated Impaired Fasting Glucose with Normal Glucose Tolerance (i.e., IFG/NGT) believed to have normal β-cell function in response to a glucose challenge, suggesting that – at least in this subset of prediabetes – fasting glucose is regulated independently of glucose in the postprandial period. To some extent this is borne out by genetic association studies which have identified loci that affect fasting glucose but not glucose tolerance and vice-versa.

Assessment of glucose metabolism and liver fat after 12 week dietary intervention in pre diabetes subjects. Subjects will be randomized to either high fat (olive oil supplemented),high carb/high fiber (beans supplemented) and high carb/low fiber diets. Glucose metabolism will be assessed by labeled oral glucose tolerance test and liver fat by magnetic resonance spectroscopy pre randomization and at 8 and 12 week after starting dietary intervention.

To study the effect of an ileocolonic formulation of ox bile extract on insulin sensitivity, postprandial glycemia and incretin levels, gastric emptying, body weight and fasting serum FGF-19 (fibroblast growth factor) levels in overweight or obese type 2 diabetic subjects on therapy with DPP4 (dipeptidyl peptidase-4) inhibitors (e.g. sitagliptin) alone or in combination with metformin.

The purpose of this study is to evaluate whether or not a 6 month supply (1 meal//day) of healthy food choices readily available in the patient's home and self management training including understanding of how foods impact diabetes, improved food choices and how to prepare those foods, improve glucose control.  In addition, it will evaluate whether or not there will be lasting behavior change modification after the program.

The purpose of this study is to compare the rate of progression from prediabetes at 4 months to frank diabetes at 12 months (as defined by increase in HbA1C or fasting BS to diabetic range based on the ADA criteria) after transplantation in kidney transplant recipients on Exenatide SR + SOC vs. standard-of-care alone.

The purpose of this study is to learn more about how the body stores dietary fat. Medical research has shown that fat stored in different parts of the body can affect the risk for diabetes, heart disease and other major health conditions.

The purpose of this study is to see why the ability of fat cells to respond to insulin is different depending on body shape and how fat tissue inflammation is involved.

The purpose of this study is to determine the mechanism(s) by which common bariatric surgical procedures alter carbohydrate metabolism. Understanding these mechanisms may ultimately lead to the development of new interventions for the prevention and treatment of type 2 diabetes and obesity.

A research study to enhance clinical discussion between patients and pharmacists using a shared decision making tool for type 2 diabetes or usual care.

While the potential clinical uses of pulsed electromagnetic field therapy (PEMF) are extensive, we are focusing on the potential benefits of PEMF on vascular health. We are targeting, the pre diabetic - metabolic syndrome population, a group with high prevalence in the American population. This population tends to be overweight, low fitness, high blood pressure, high triglycerides and borderline high blood glucose.

This is a study to evaluate a new Point of Care test for blood glucose monitoring.

This protocol is being conducted to determine the mechanisms responsible for insulin resistance, obesity and type 2 diabetes.

The purpose of this study is to assess the effects of a nighttime rise in cortisol on the body's glucose production in type 2 diabetes.

The goal of this study is to evaluate a new format for delivery of a culturally tailored digital storytelling intervention by incorporating a facilitated group discussion following the videos, for management of type II diabetes in Latino communities.

The purpose of this study is to determine the metabolic effects of Colesevelam, particularly for the ability to lower blood sugar after a meal in type 2 diabetics, in order to develop a better understanding of it's potential role in the treatment of obesity.

The purpose of this study is to test whether markers of cellular aging and the SASP are elevated in subjects with obesity and further increased in patients with obesity and Type 2 Diabetes Mellitus (T2DM) and to relate markers of cellular aging (senescence) and the SASP to skeletal parameters (DXA, HRpQCT, bone turnover markers) in each of these groups.

Integration of Diabetes Prevention Program (DPP) and Diabetes Self Management Program (DSMP) into WellConnect.

The purpose of this study is to improve our understanding of why gastrointestinal symptoms occur in diabetes mellitus patients and identify new treatment(s) in the future.  

These symptoms are often distressing and may impair glycemic control. We do not understand how diabetes mellitus affects the GI tracy. In 45 patients undergoing sleeve gastrectomy, we plan to compare the cellular composition of circulating peripheral mononuclear cells, stomach immune cells, and interstitial cells of Cajal in the stomach. 

Muscle insulin resistance is a hallmark of upper body obesity (UBO) and Type 2 diabetes (T2DM), whereas lower body obesity (LBO) is characterized by near-normal insulin sensitivity. It is unknown whether muscle free fatty acid (FFA) availability or intramyocellular fatty acid trafficking differs between different obesity phenotypes. Likewise, we do not understand to what extent the incorporation of FFA into ceramides or diacylglycerols (DG) affect insulin signaling and muscle glucose uptake. By measuring muscle FFA storage into intramyocellular triglyceride, intramyocellular fatty acid trafficking, activation of the insulin signaling pathway and glucose disposal rates we will provide the first integrated examination ...

The goal of this study is to evaluate the presence of podocytes (special cells in the kidney that prevent protein loss) in the urine in patients with diabetes or glomerulonephritis (inflammation in the kidneys). Loss of podocyte in the urine may be an earlier sign of kidney injury (before protein loss) and the goal of this study is to evaluate the association between protein in the urine and podocytes in the urine.

Muscle insulin resistance is a hallmark of upper body obesity (UBO) and Type 2 diabetes (T2DM). It is unknown whether muscle free fatty acid (FFA) availability or intramyocellular fatty acid trafficking is responsible for the abnormal response to insulin. Likewise, we do not understand to what extent the incorporation of FFA into ceramides or diacylglycerols (DG) affect insulin signaling and muscle glucose uptake. We will measure muscle FFA storage into intramyocellular triglyceride, intramyocellular fatty acid trafficking, activation of the insulin signaling pathway and glucose disposal rates under both saline control (high overnight FFA) and after an overnight infusion of intravenous ...

Using stem cell derived intestinal epithelial cultures (enteroids) derived from obese (BMI> 30) patients and non-obese and metabolically normal patients (either post-bariatric surgery (BS) or BS-naïve with BMI < 25), dietary glucose absorption was measured. We identified that enteroids from obese patients were characterized by glucose hyper-absorption (~ 5 fold) compared to non-obese patients. Significant upregulation of major intestinal sugar transporters, including SGLT1, GLU2 and GLUT5 was responsible for hyper-absorptive phenotype and their pharmacologic inhibition significantly decreased glucose absorption. Importantly, we observed that enteroids from post-BS non-obese patients exhibited low dietary glucose absorption, indicating that altered glucose absorption ...

The purpose of this study is to create a prospective cohort of subjects with increased probability of being diagnosed with pancreatic cancer and then screen this cohort for pancreatic cancer

The purpose of this study is to evaluate the effects of multiple dose regimens of RM-131 on vomiting episodes, stomach emptying and stomach paralysis symptoms in patients with Type 1 and Type 2 diabetes and gastroparesis.

The purpose of this study is assess the feasibility, effectiveness, and acceptability of Diabetes-REM (Rescue, Engagement, and Management), a comprehensive community paramedic (CP) program to improve diabetes self-management among adults in Southeast Minnesota (SEMN) treated for servere hypoglycemia by the Mayo Clinic Ambulance Services (MCAS).

The purpose of this study is to determine if a blood test called "pancreatic polypeptide" can help distinguish between patients with diabetes mellitus with and without pancreatic cancer.

Women with gestational diabetes mellitus (GDM) are likely to have insulin resistance that persists long after pregnancy, resulting in greater risk of developing type 2 diabetes mellitus (T2DM). The study will compare women with and without a previous diagnosis of GDM to determine if women with a history of GDM have abnormal fatty acid metabolism, specifically impaired adipose tissue lipolysis. The study will aim to determine whether women with a history of GDM have impaired pancreatic β-cell function. The study will determine whether women with a history of GDM have tissue specific defects in insulin action, and also identify the effect of a ...

The purpose of this study is to evaluate the effectiveness and safety of brolucizumab vs. aflibercept in the treatment of patients with visual impairment due to diabetic macular edema (DME).

Although vitreous hemorrhage (VH) from proliferative diabetic retinopathy (PDR) can cause acute and dramatic vision loss for patients with diabetes, there is no current, evidence-based clinical guidance as to what treatment method is most likely to provide the best visual outcomes once intervention is desired. Intravitreous anti-vascular endothelial growth factor (anti-VEGF) therapy alone or vitrectomy combined with intraoperative PRP each provide the opportunity to stabilize or regress retinal neovascularization. However, clinical trials are lacking to elucidate the relative time frame of visual recovery or final visual outcome in prompt vitrectomy compared with initial anti-VEGF treatment. The Diabetic Retinopathy Clinical Research ...

The purpose of this study is to demonstrate feasibility of dynamic 11C-ER176 PET imaging to identify macrophage-driven immune dysregulation in gastric muscle of patients with DG. Non-invasive quantitative assessment with PET can significantly add to our diagnostic armamentarium for patients with diabetic gastroenteropathy.

The purpose of this study is to assess the safety and tolerability of intra-arterially delivered mesenchymal stem/stromal cells (MSC) to a single kidney in one of two fixed doses at two time points in patients with progressive diabetic kidney disease. 

Diabetic kidney disease, also known as diabetic nephropathy, is the most common cause of chronic kidney disease and end-stage kidney failure requiring dialysis or kidney transplantation.  Regenerative, cell-based therapy applying MSCs holds promise to delay the progression of kidney disease in individuals with diabetes mellitus.  Our clinical trial will use MSCs processed from each study participant to test the ...

The purpose of this study is to look at how participants' daily life is affected by their heart failure. The study will also look at the change in participants' body weight. This study will compare the effect of semaglutide (a new medicine) compared to "dummy" medicine on body weight and heart failure symptoms. Participants will either get semaglutide or "dummy" medicine, which treatment participants get is decided by chance. Participants will need to take 1 injection once a week. 

This study aims to measure the percentage of time spent in hyperglycemia in patients on insulin therapy and evaluate diabetes related patient reported outcomes in kidney transplant recipients with type 2 diabetes. It also aimes to evaluate immunosuppression related patient reported outcomes in kidney transplant recipients with type 2 diabetes.

The purpose of this study is to evaluate whether or not semaglutide can slow down the growth and worsening of chronic kidney disease in people with type 2 diabetes. Participants will receive semaglutide (active medicine) or placebo ('dummy medicine'). This is known as participants' study medicine - which treatment participants get is decided by chance. Semaglutide is a medicine, doctors can prescribe in some countries for the treatment of type 2 diabetes. Participants will get the study medicine in a pen. Participants will use the pen to inject the medicine in a skin fold once a week. The study will close when ...

The objectives of this study are to evaluate the safety of IW-9179 in patients with diabetic gastroparesis (DGP) and the effect of treatment on the cardinal symptoms of DGP.

The purpose of this study is to understand why patients with indigestion, with or without diabetes, have gastrointestinal symptoms and, in particular, to understand where the symptoms are related to increased sensitivity to nutrients.Subsequently, look at the effects of Ondansetron on these patients' symptoms.

The purpose of this study is to evaluate the safety, tolerability, pharmacokinetics, and exploratory effectiveness of nimacimab in patients with diabetic gastroparesis.

The purpose of this study is to prospectively assemble a cohort of subjects >50 and ≤85 years of age with New-onset Diabetes (NOD):

  • Estimate the probability of pancreatic ductal adenocarcinoma (PDAC) in the NOD Cohort;
  • Establish a biobank of clinically annotated biospecimens including a reference set of biospecimens from pre-symptomatic PDAC and control new-onset type 2 diabetes mellitus (DM) subjects;
  • Facilitate validation of emerging tests for identifying NOD subjects at high risk for having PDAC using the reference set; and
  • Provide a platform for development of an interventional protocol for early detection of sporadic PDAC ...

The purpose of this study is to demonstrate the performance of the Guardian™ Sensor (3) with an advanced algorithm in subjects age 2 - 80 years, for the span of 170 hours (7 days).

The primary purpose of this study is to evaluate the impact of dapagliflozin, as compared with placebo, on heart failure, disease specific biomarkers, symptoms, health status and quality of life in patients with type 2 diabetes or prediabetes and chronic heart failure with preserved systolic function.

The purpose of this study is to look at the relationship of patient-centered education, the Electronic Medical Record (patient portal) and the use of digital photography to improve the practice of routine foot care and reduce the number of foot ulcers/wounds in patients with diabetes.

Diabetes mellitus is a common condition which is defined by persistently high blood sugar levels. This is a frequent problem that is most commonly due to type 2 diabetes. However, it is now recognized that a small portion of the population with diabetes have an underlying problem with their pancreas, such as chronic pancreatitis or pancreatic cancer, as the cause of their diabetes. Currently, there is no test to identify the small number of patients who have diabetes caused by a primary problem with their pancreas.

The goal of this study is to develop a test to distinguish these ...

The primary purpose of this study is to prospectively assess symptoms of bloating (severity, prevalence) in patients with diabetic gastroparesis.

The purpose of this study is to track the treatment burden experienced by patients living with Type 2 Diabetes Mellitus (T2DM) experience as they work to manage their illness in the context of social distancing measures. 

To promote social distancing during the COVID-19 pandemic, health care institutions around the world have rapidly expanded their use of telemedicine to replace in-office appointments where possible.1 For patients with diabetes, who spend considerable time and energy engaging with various components of the health care system,2,3 this unexpected and abrupt transition to virtual health care may signal significant changes to ...

The purpose of this study is to evaluate the safety and efficacy of oral Pyridorin 300 mg BID in reducing the rate of progression of nephropathy due to type 2 diabetes mellitus.

The purpose of this study is to evaluate the effect of Aramchol as compared to placebo on NASH resolution, fibrosis improvement and clinical outcomes related to progression of liver disease (fibrosis stages 2-3 who are overweight or obese and have prediabetes or type 2 diabetes).

The purpose of this study is to evaluate the ability of appropriately-trained family physicians to screen for and identify Diabetic Retinopathy using retinal camera and, secondarily, to describe patients’ perception of the convenience and cost-effectiveness of retinal imaging.

The primary purpose of this study is to evaluate the impact of dapagliflozin, as compared with placebo, on heart failure disease-specific biomarkers, symptoms, health status, and quality of life in patients who have type 2 diabetes and chronic heart failure with reduced systolic function.

Hypothesis: We hypothesize that patients from the Family Medicine Department at Mayo Clinic Florida who participate in RPM will have significantly reduced emergency room visits, hospitalizations, and hospital contacts.  

Aims, purpose, or objectives: In this study, we will compare the RPM group to a control group that does not receive RPM. The primary objective is to determine if there are significant group differences in emergency room visits, hospitalizations, outpatient primary care visits, outpatient specialty care visits, and hospital contacts (inbound patient portal messages and phone calls). The secondary objective is to determine if there are ...

The purpose of this research is to determine if CGM (continuous glucose monitors) used in the hospital in patients with COVID-19 and diabetes treated with insulin will be as accurate as POC (point of care) glucose monitors. Also if found to be accurate, CGM reading data will be used together with POC glucometers to dose insulin therapy.

The purpose of this study is to evaluate the effect of fenofibrate compared with placebo for prevention of diabetic retinopathy (DR) worsening or center-involved diabetic macular edema (CI-DME) with vision loss through 4 years of follow-up in participants with mild to moderately severe non-proliferative DR (NPDR) and no CI-DME at baseline.

The purpose of this study is to assess painful diabetic peripheral neuropathy after high-frequency spinal cord stimulation.

The purpose of this study is to examine the evolution of diabetic kindey injury over an extended period in a group of subjects who previously completed a clinical trial which assessed the ability of losartan to protect the kidney from injury in early diabetic kidney disease. We will also explore the relationship between diabetic kidney disease and other diabetes complications, including neuropathy and retinopathy.

The purpose of this study is to evaluate the effietiveness of remdesivir (RDV) in reducing the rate of of all-cause medically attended visits (MAVs; medical visits attended in person by the participant and a health care professional) or death in non-hospitalized participants with early stage coronavirus disease 2019 (COVID-19) and to evaluate the safety of RDV administered in an outpatient setting.

Mayo Clinic Footer

  • Request Appointment
  • About Mayo Clinic
  • About This Site

Legal Conditions and Terms

  • Terms and Conditions
  • Privacy Policy
  • Notice of Privacy Practices
  • Notice of Nondiscrimination
  • Manage Cookies

Advertising

Mayo Clinic is a nonprofit organization and proceeds from Web advertising help support our mission. Mayo Clinic does not endorse any of the third party products and services advertised.

  • Advertising and sponsorship policy
  • Advertising and sponsorship opportunities

Reprint Permissions

A single copy of these materials may be reprinted for noncommercial personal use only. "Mayo," "Mayo Clinic," "MayoClinic.org," "Mayo Clinic Healthy Living," and the triple-shield Mayo Clinic logo are trademarks of Mayo Foundation for Medical Education and Research.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Type 2 diabetes articles from across Nature Portfolio

Type 2 diabetes mellitus, the most frequent subtype of diabetes, is a disease characterized by high levels of blood glucose (hyperglycaemia). It arises from a resistance to and relative deficiency of the pancreatic β-cell hormone insulin.

Latest Research and Reviews

diabetes type 2 research studies

Urinary non-albumin protein-creatinine ratio is an independent predictor of mortality in patients with type 2 diabetes: a retrospective cohort study

  • Yu-Cheng Cheng

diabetes type 2 research studies

The proteomic profile is altered but not repaired after bariatric surgery in type 2 diabetes pigs

  • Karolina Ferenc
  • Michał Marcinkowski
  • Romuald Zabielski

diabetes type 2 research studies

Galectin-3 impairs calcium transients and β-cell function

Galectin-3, mainly produced and secreted by macrophages, is elevated in diabetes. Here, the authors show that galectin-3 directly interacts with voltage-gated channel auxiliary subunit gamma 1 (CACNG1) and blocks calcium transients and subsequent insulin secretion.

  • Pingping Li

diabetes type 2 research studies

Effectiveness of DialBetesPlus, a self-management support system for diabetic kidney disease: Randomized controlled trial

  • Mitsuhiko Nara
  • Kazuhiko Ohe

diabetes type 2 research studies

Applications of SGLT2 inhibitors beyond glycaemic control

Here, the authors discuss the beneficial effects of sodium–glucose cotransporter 2 (SGLT2) inhibitors for a range of clinical outcomes beyond glucose lowering, including kidney and cardiovascular protection. They also discuss the need for implementation and adherence initiatives to help translate the benefits of these agents into real-world clinical outcomes.

  • Daniel V. O’Hara
  • Carolyn S. P. Lam
  • Meg J. Jardine

diabetes type 2 research studies

Folic acid supplementation on inflammation and homocysteine in type 2 diabetes mellitus: systematic review and meta-analysis of randomized controlled trials

  • Kabelo Mokgalaboni
  • Given. R. Mashaba
  • Sogolo. L. Lebelo

Advertisement

News and Comment

Response to comment on “credibility of chat-gpt in the assessment of obesity in type 2 diabetes according to the guidelines”.

  • Tugba Barlas
  • Alev Eroglu Altinova
  • Fusun Balos Toruner

diabetes type 2 research studies

Macrophage vesicles in antidiabetic drug action

Thiazolidinediones (TZDs) are potent insulin-sensitizing drugs, but their use is accompanied by adverse side-effects. Rohm et al. now report that TZD-stimulated macrophages release miR-690-containing vesicles that improve insulin sensitization and bypass unwanted side-effects.

  • Rinke Stienstra
  • Eric Kalkhoven

diabetes type 2 research studies

Metformin acts through appetite-suppressing metabolite: Lac-Phe

  • Shimona Starling

Slowly progressive insulin-dependent diabetes mellitus in type 1 diabetes endotype 2

  • Tetsuro Kobayashi
  • Takashi Kadowaki

diabetes type 2 research studies

Metformin induces a Lac-Phe gut–brain signalling axis

The mechanism by which metformin affects food intake remains controversial. Now, two studies link metformin treatment with the induction of the appetite-suppressing metabolite N -lactoyl-phenylalanine, which is produced by the intestine.

  • Tara TeSlaa

diabetes type 2 research studies

Low-calorie diets for people with isolated impaired fasting glucose

Thirunavukkarasu et al. discuss how standard lifestyle interventions prove ineffective in preventing type 2 diabetes in individuals with isolated impaired fasting glucose, a highly prevalent prediabetes phenotype globally. They propose low-calorie diets as a promising strategy for diabetes prevention in this high-risk population.

  • Sathish Thirunavukkarasu
  • Jonathan E. Shaw

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

diabetes type 2 research studies

Featured Topics

Featured series.

A series of random questions answered by Harvard experts.

Explore the Gazette

Read the latest.

Christina Warinner speaking.

Got milk? Does it give you problems?

Full body portrait of Molly F. Przeworski.

Cancer risk, wine preference, and your genes

Doctor holding endoscope.

Excited about new diet drug? This procedure seems better choice.

“When my son was diagnosed [with Type 1], I knew nothing about diabetes. I changed my research focus, thinking, as any parent would, ‘What am I going to do about this?’” says Douglas Melton.

Kris Snibbe/Harvard Staff Photographer

Breakthrough within reach for diabetes scientist and patients nearest to his heart

Harvard Correspondent

100 years after discovery of insulin, replacement therapy represents ‘a new kind of medicine,’ says Stem Cell Institute co-director Douglas Melton, whose children inspired his research

When Vertex Pharmaceuticals announced last month that its investigational stem-cell-derived replacement therapy was, in conjunction with immunosuppressive therapy, helping the first patient in a Phase 1/2 clinical trial robustly reproduce his or her own fully differentiated pancreatic islet cells, the cells that produce insulin, the news was hailed as a potential breakthrough for the treatment of Type 1 diabetes. For Harvard Stem Cell Institute Co-Director and Xander University Professor Douglas Melton, whose lab pioneered the science behind the therapy, the trial marked the most recent turning point in a decades-long effort to understand and treat the disease. In a conversation with the Gazette, Melton discussed the science behind the advance, the challenges ahead, and the personal side of his research. The interview was edited for clarity and length.

Douglas Melton

GAZETTE: What is the significance of the Vertex trial?

MELTON: The first major change in the treatment of Type 1 diabetes was probably the discovery of insulin in 1920. Now it’s 100 years later and if this works, it’s going to change the medical treatment for people with diabetes. Instead of injecting insulin, patients will get cells that will be their own insulin factories. It’s a new kind of medicine.

GAZETTE: Would you walk us through the approach?

MELTON: Nearly two decades ago we had the idea that we could use embryonic stem cells to make functional pancreatic islets for diabetics. When we first started, we had to try to figure out how the islets in a person’s pancreas replenished. Blood, for example, is replenished routinely by a blood stem cell. So, if you go give blood at a blood drive, your body makes more blood. But we showed in mice that that is not true for the pancreatic islets. Once they’re removed or killed, the adult body has no capacity to make new ones.

So the first important “a-ha” moment was to demonstrate that there was no capacity in an adult to make new islets. That moved us to another source of new material: stem cells. The next important thing, after we overcame the political issues surrounding the use of embryonic stem cells, was to ask: Can we direct the differentiation of stem cells and make them become beta cells? That problem took much longer than I expected — I told my wife it would take five years, but it took closer to 15. The project benefited enormously from undergraduates, graduate students, and postdocs. None of them were here for 15 years of course, but they all worked on different steps.

GAZETTE: What role did the Harvard Stem Cell Institute play?

MELTON: This work absolutely could not have been done using conventional support from the National Institutes of Health. First of all, NIH grants came with severe restrictions and secondly, a long-term project like this doesn’t easily map to the initial grant support they give for a one- to three-year project. I am forever grateful and feel fortunate to have been at a private institution where philanthropy, through the HSCI, wasn’t just helpful, it made all the difference.

I am exceptionally grateful as well to former Harvard President Larry Summers and Steve Hyman, director of the Stanley Center for Psychiatric Research at the Broad Institute, who supported the creation of the HSCI, which was formed specifically with the idea to explore the potential of pluripotency stem cells for discovering questions about how development works, how cells are made in our body, and hopefully for finding new treatments or cures for disease. This may be one of the first examples where it’s come to fruition. At the time, the use of embryonic stem cells was quite controversial, and Steve and Larry said that this was precisely the kind of science they wanted to support.

GAZETTE: You were fundamental in starting the Department of Stem Cell and Regenerative Biology. Can you tell us about that?

MELTON: David Scadden and I helped start the department, which lives in two Schools: Harvard Medical School and the Faculty of Arts and Science. This speaks to the unusual formation and intention of the department. I’ve talked a lot about diabetes and islets, but think about all the other tissues and diseases that people suffer from. There are faculty and students in the department working on the heart, nerves, muscle, brain, and other tissues — on all aspects of how the development of a cell and a tissue affects who we are and the course of disease. The department is an exciting one because it’s exploring experimental questions such as: How do you regenerate a limb? The department was founded with the idea that not only should you ask and answer questions about nature, but that one can do so with the intention that the results lead to new treatments for disease. It is a kind of applied biology department.

GAZETTE: This pancreatic islet work was patented by Harvard and then licensed to your biotech company, Semma, which was acquired by Vertex. Can you explain how this reflects your personal connection to the research?

MELTON: Semma is named for my two children, Sam and Emma. Both are now adults, and both have Type 1 diabetes. My son was 6 months old when he was diagnosed. And that’s when I changed my research plan. And my daughter, who’s four years older than my son, became diabetic about 10 years later, when she was 14.

When my son was diagnosed, I knew nothing about diabetes and had been working on how frogs develop. I changed my research focus, thinking, as any parent would, “What am I going to do about this?” Again, I come back to the flexibility of Harvard. Nobody said, “Why are you changing your research plan?”

GAZETTE: What’s next?

MELTON: The stem-cell-derived replacement therapy cells that have been put into this first patient were provided with a class of drugs called immunosuppressants, which depress the patient’s immune system. They have to do this because these cells were not taken from that patient, and so they are not recognized as “self.” Without immunosuppressants, they would be rejected. We want to find a way to make cells by genetic engineering that are not recognized as foreign.

I think this is a solvable problem. Why? When a woman has a baby, that baby has two sets of genes. It has genes from the egg, from the mother, which would be recognized as “self,” but it also has genes from the father, which would be “non-self.” Why does the mother’s body not reject the fetus? If we can figure that out, it will help inform our thinking about what genes to change in our stem cell-derived islets so that they could go into any person. This would be relevant not just to diabetes, but to any cells you wanted to transplant for liver or even heart transplants. It could mean no longer having to worry about immunosuppression.

Share this article

You might like.

Biomolecular archaeologist looks at why most of world’s population has trouble digesting beverage that helped shape civilization

Full body portrait of Molly F. Przeworski.

Biologist separates reality of science from the claims of profiling firms

Doctor holding endoscope.

Study finds minimally invasive treatment more cost-effective over time, brings greater weight loss

Epic science inside a cubic millimeter of brain

Researchers publish largest-ever dataset of neural connections

How far has COVID set back students?

An economist, a policy expert, and a teacher explain why learning losses are worse than many parents realize

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Entire Site
  • Research & Funding
  • Health Information
  • About NIDDK
  • Research Areas

Diabetes

Diabetes affects an estimated 38.4 million people in the United States and is the eighth leading cause of death.  Diabetes is characterized by the body’s inability to produce and/or respond appropriately to insulin.  These defects result in persistent elevation of blood glucose levels and other metabolic abnormalities, which in turn lead to the development of disease complications, such as heart disease and stroke, blindness, kidney failure, and lower limb amputation. In addition to increasing the risk for these complications, diabetes also doubles the risk for many forms of cancer, some forms of dementia, hearing loss, erectile dysfunction, urinary incontinence, and many other common diseases.

  • Type 1 diabetes affects approximately 6 percent of adults and the majority of children and youth with diagnosed diabetes.
  • Type 2 diabetes is the most common form of the disease, accounting for about 90 to 94 percent of diagnosed diabetes cases in U.S. adults. Type 2 diabetes is also increasingly being diagnosed in children and adolescents, and disproportionately affects individuals from racial and ethnic minority populations.
  • Prediabetes affects an estimated 97.6 million adults in the United States. Individuals with prediabetes are at high risk of developing type 2 diabetes.
  • Gestational diabetes affects a significant proportion of pregnant persons. In addition to placing the pregnant person and their child at risk for complications during childbirth, gestational diabetes increases their future risk for type 2 diabetes.

The NIDDK supports basic, clinical, and translational research to combat diabetes and its associated complications. For example, NIDDK-supported researchers are:

  • studying genetic and environmental factors that contribute to the development and progression of diabetes;
  • identifying ways to improve diabetes health equity and reduce diabetes health disparities ;
  • studying ways to preserve insulin-producing cells of the pancreas;
  • identifying new methods to improve blood glucose monitoring and insulin delivery in type 1 diabetes;
  • examining behavioral approaches to prevent type 2 diabetes and to enhance diabetes self-management;
  • conducting clinical trials testing new prevention and treatment strategies for diabetes and its complications; and
  • uncovering the fundamental cellular and molecular pathways underlying development of diabetes and its complications to develop new and more personalized approaches to prevention and management.

The NIDDK also administers the Special Statutory Funding Program for Type 1 Diabetes Research, which is a special appropriation dedicated to supporting research on type 1 diabetes and its complications. More information on the Program and the research it supports is available on the Type 1 Diabetes Research Special Statutory Funding Program website .

In addition, NIDDK has congressional authorization for the National Diabetes Information Clearinghouse , which provides services via the NIDDK Health Information Center. NIDDK responds to questions and provides health information about diabetes to people with diabetes and to their families, health professionals, and the public.

Research Updates and News

  • Bariatric surgery provides long-term blood glucose control, type 2 diabetes remission
  • Celebrating the 50th Anniversary of Diabetes Research Centers
  • Diabetes in America now available
  • Islet Transplantation for Treating Difficult-to-Manage Type 1 Diabetes in Adults
  • The Special Diabetes Program: 25 Years of Advancing Type 1 Diabetes Research

View More News Items

Select Landmark Studies

  • Diabetes Prevention Program (DPP)
  • Blood Glucose Control Studies for Type 1 Diabetes: DCCT and EDIC

To achieve its mission, NIDDK supports, conducts, coordinates, and plans research. NIDDK also provides data and samples from NIDDK-funded studies and explains research findings to health professionals and the public.

Support Research

NIDDK invests in basic, clinical and translational research and training at colleges, universities and other institutions.

  • Bioengineering, Biotechnology, and Imaging as applied to Diabetes, Metabolic, and Endocrine Diseases
  • Clinical Research in Type 1 Diabetes
  • Clinical Research in Type 2 Diabetes
  • Diabetes and Metabolism HIV/AIDS
  • Diabetes Genetics and Genomics
  • Diabetes, Endocrine, and Metabolic Disease Translational Research
  • Diabetes: Treatment, Prevention, and Complications

Conduct Research

NIDDK investigators conduct biomedical research and training in the Institute's laboratories and clinical facilities in Maryland and Arizona.

  • Diabetes, Endocrinology, and Obesity Branch
  • Laboratory of Biochemistry and Genetics
  • Laboratory of Biological Modeling
  • Laboratory of Bioorganic Chemistry
  • Laboratory of Cell and Molecular Biology

Coordinate & Plan Research

NIDDK takes multiple approaches to research planning and priority setting.

Meetings & Workshops

There are no upcoming related meetings or workshops at this time.

Strategic Plans & Reports

  • Diabetes in America
  • NIDDK Strategic Plan for Research
  • Diabetes in America, 3rd Edition
  • Special Statutory Funding Program for Type 1 Diabetes Research: Progress Report
  • Special Statutory Funding Program for Type 1 Diabetes Research: Evaluation Report

Provide Access to Research Resources

NIDDK makes publicly supported resources, data sets, and studies available to researchers.

Provide Health Information

NIDDK provides patient education information, practice tools for diagnosis and treatment, and statistics.

  • Diabetes Statistics
  • Health Information about Diabetes
  • Diabetes Discoveries & Practice Blog
  • Diabetes for Health Professionals
  • Advanced Health Information Search

Masks Strongly Recommended but Not Required in Maryland, Starting Immediately

Due to the downward trend in respiratory viruses in Maryland, masking is no longer required but remains strongly recommended in Johns Hopkins Medicine clinical locations in Maryland. Read more .

  • Vaccines  
  • Masking Guidelines
  • Visitor Guidelines  

New Research Sheds Light on Cause of Type 2 Diabetes

Matthew N. Poy, Ph.D., Johns Hopkins All Children's Hospital

St. Petersburg, Fla. – September 12, 2023 – Scientists at Johns Hopkins All Children’s Hospital, along with an international team of researchers, are shedding new light on the causes of Type 2 diabetes. The new research, published in the journal Nature Communications , offers a potential strategy for developing new therapies that could restore dysfunctional pancreatic beta-cells or, perhaps, even prevent Type 2 diabetes from developing.

The new study shows that the beta-cells of Type 2 diabetes patients are deficient in a cell trafficking protein called “phosphatidylinositol transfer protein alpha” (or PITPNA), which can promote the formation of “little packages,” or intracellular granules containing insulin. These structures facilitate processing and maturation of insulin “cargo.” By restoring PITPNA in the Type 2 deficient beta-cells, production of insulin granule is restored and this reverses many of the deficiencies associated with beta-cell failure and Type 2 diabetes.

Researchers say it’s important to understand how specific genes regulate pancreatic beta-cell function, including those that mediate insulin granule production and maturation like PITPNA to provide therapeutic options for people.

Matthew Poy, Ph.D. , an associate professor of Medicine and Biological Chemistry in the Johns Hopkins University School of Medicine and leader of the Johns Hopkins All Children’s team within the  Institute for Fundamental Biomedical Research , was lead researcher on the study. He adds that follow-up work is now focused on whether PITPNA can enhance the functionality of stem-cell-derived pancreatic beta-cells. Since stem cell-based therapies are still in their relatively early stages of clinical development, it appears a great deal of the potential of this approach remains untapped. Poy believes that increasing levels of PITPNA in stem cell-derived beta-cells is an approach that could enhance the ability to produce and release mature insulin prior to transplantation in diabetic subjects.

“Our dream is that increasing PITPNA could improve the efficacy and potency of beta-like stem cells,” Poy says. “This is where our research is heading, but we have to discover whether the capacity of these undifferentiated stem cells that can be converted into many different cell types can be optimized — and to what level — to be converted into healthy insulin producing beta-cells. The goal would be to find a cure for type 2 diabetes.”

Read more about this groundbreaking research.

This study was funded through grants from the  Johns Hopkins All Children’s Foundation , the  National Institute of Health, the Robert A. Welch Foundation, the Helmholtz Gemeinschaft , the European Foundation for the Study of Diabetes, the  Swedish Science Council , the  NovoNordisk Foundation  and the  Deutsche Forschungsgemeinschaft .     About Johns Hopkins All Children’s Hospital Johns Hopkins All Children’s Hospital in St. Petersburg is a leader in children’s health care, combining a legacy of compassionate care focused solely on children since 1926 with the innovation and experience of one of the world’s leading health care systems. The 259-bed teaching hospital, stands at the forefront of discovery, leading innovative research to cure and prevent childhood diseases while training the next generation of pediatric experts. With a network of Johns Hopkins All Children’s Outpatient Care centers and collaborative care provided by All Children’s Specialty Physicians at regional hospitals, Johns Hopkins All Children’s brings care closer to home. Johns Hopkins All Children’s Hospital consistently keeps the patient and family at the center of care while continuing to expand its mission in treatment, research, education and advocacy. For more information, visit HopkinsAllChildrens.org .

Clinical Trials

A clinical trial is a way to carefully test a new drug or device in patients before it is approved by the FDA to be used in the general public. Clinical trials are an important step in our being able to have new treatments for diabetes and other conditions.

The American Diabetes Association is currently a partner providing support for the following clinical studies and initiatives:

TrialNet Type 1 Diabetes TrialNet is an international network of researchers who are exploring ways to prevent, delay and reverse the progression of type 1 diabetes.

GRADE GRADE is a comparative effectiveness study looking at what medications work best at lowering blood sugar levels in patients who are newly diagnosed with diabetes.

RISE The Restoring Insulin Secretion study (RISE) includes 3 studies examining whether aggressive glucose lowering will lead to recovery of pancreas function in those with prediabetes and early type 2 diabetes.

D2d The goal of the Vitamin D and type 2 diabetes (D2d) study is to determine whether vitamin D supplementation is safe and effective in delaying the onset of type 2 diabetes in people at risk for the disease, and to gain a better understanding of how vitamin D affects glucose metabolism.

Accelerating Medicines Partnership The Accelerating Medicines Partnership (AMP) is a bold new venture between the NIH, non-profit organizations and biopharmaceutical companies to transform the current model for developing new diagnostics and treatments. By jointly identifying and validating promising biological targets of disease, the partnership strives to increase the number of new diagnostics and therapies for patients and reduce the time and cost of developing them.

FNIH Biomarkers Consortium The Biomarkers Consortium is a public-private biomedical research partnership managed by the Foundation for the National Institutes of Health that endeavors to discover, develop, and qualify biological markers (biomarkers) to support new drug development, preventive medicine, and medical diagnostics.

Clinical trials links and resources

By policy, the American Diabetes Association does not list or promote specific clinical trials other than the trials above in which it is a formal collaborator. This policy also applies to patient surveys. There are far too many trials and surveys being conducted at any given time for the Association to be able to evaluate them on an individual basis. However, the following resources from the Food and Drug Administration and the National Institutes of Health provide more information about clinical trials and how to determine which trials are being conducted in a location near you.

ClinicalTrials.gov A registry and results database of federally and privately supported clinical trials conducted in the United States and around the world. ClinicalTrials.gov gives you information about a trial's purpose, who may participate, locations and phone numbers for more details.

National Institutes of Health (NIH) The National Institutes of Health (NIH), a part of the U.S. Department of Health and Human Services, is the nation's medical research agency—making important discoveries that improve health and save lives.

Food and Drug Administration (FDA) FDA is responsible for protecting the public health by assuring the safety, efficacy and security of human and veterinary drugs, biological products, medical devices, our nation's food supply, cosmetics, and products that emit radiation.

Centers for Medicare and Medicaid Service: Clinical Trials Coverage (CMS)

diabetes type 2 research studies

Donate Today and Change Lives!

  • See us on facebook
  • See us on twitter
  • See us on youtube
  • See us on linkedin
  • See us on instagram

‘Smart speaker’ shows potential for better self-management of Type 2 diabetes

A new study led by Stanford Medicine indicates that an AI app can help Type 2 diabetic patients manage their blood glucose levels.

January 19, 2024 - By Laurie Flynn

smart speaker

Stanford Medicine researchers found that a smart speaker helped Type 2 diabetes patients better control their blood sugar levels.  Jhon

Type 2 diabetes patients have access to an assortment of digital health tools, including mobile apps for iPhones and remote patient monitoring devices, all of which help them manage their blood glycemic levels. They can test at home, usually with a glucometer, then communicate that data to their care team via an app or web portal, by calling on the phone, or by waiting for an appointment. 

But these monitoring tools assume a level of comfort with technology and sometimes math proficiency that many patients don’t have. And they all require something in short supply: clinicians.

Now, researchers from Stanford Medicine have created a voice-based artificial intelligence application that runs on a device already familiar to tens of millions of Americans: a “smart speaker,” commonly used to play music and check the weather. The app tells patients the correct insulin dose without requiring them to contact their doctor’s office or wait for an appointment.

“People simply don’t have that much access to care,” said Ashwin Nayak , MD, a clinical assistant professor of medicine. “We want to empower patients to do it themselves.” Nayak is a first author of the paper based on the study, which was published last month in JAMA Network Open . Sharif Vakili , MD, is also a first author.

Participants in a randomized trial who used the system achieved optimal blood glucose levels far faster than the control group; they were also better about taking the prescribed amount of insulin at the time they were supposed to.

In addition, they reported lower levels of emotional distress related to their diabetes.

test

Ashwin Nayak

Most patients with Type 2 diabetes don’t benefit from the continuous glucose monitors or insulin pumps commonly used by patients with Type 1 diabetes. Insulin pumps supply a constant amount of insulin to address insulin deficiency, in which the cells that should be producing insulin fail to do so. Type 2 diabetics, in contrast, have insulin resistance, so their need for insulin tends to be less consistent.

Small study shows results

The study followed 32 individuals with Type 2 diabetes who were all taking insulin and struggling to achieve healthy blood glucose levels. Half of those received a speaker preloaded with the voice-based artificial intelligence software created by the research team. Each participant’s insulin protocol — including starting insulin dose, fasting blood glucose range goal and insulin dose instructions — was included in the software on their device.

Participants assigned to the AI group were instructed to check in each day using the phrase, “Check in with clinical trial,” which triggered a conversation in which the participant reported clinical data, such as recent insulin use and fasting blood glucose reading. At the end of the conversation, the software provided updated instructions by responding, for example, “OK, keep doing what you’re doing,” or “Up your dose” by a specified amount. The platform goes beyond remote monitoring by enabling remote patient intervention for the first time, the researchers said.

Participants randomized to the standard of care group also received a smart speaker, which was set up with daily reminders to complete their log but did not contain the app. Those patients monitored their blood glucose levels as they were accustomed to and reported the data to their providers online or by phone. If they required a change in dose, their medical provider contacted them.

Kevin Schulman

Kevin Schulman

Though the trial sample size was small, the impact was dramatic. Over the eight-week study period, 81% of patients in the group who used the app achieved glycemic control of their diabetes compared with 25% of patients who received traditional care. Patients in the trial managed by the AI had their insulin dose adjusted more frequently and needed far fewer doctor’s appointments to get their diabetes under control.

The voice-activated device has great potential to improve access, usability and convenience, especially for older patients with Type 2 diabetes, the researchers said.

“Patients don’t have tools to navigate the system and deal with the complexity of their treatments,” said Kevin Schulman , MD, professor of medicine and co-director of Stanford’s Clinical Excellence Research Center, who led the study. “If we want to meet people where they are we’re going to need to technology to help us. With this approach, AI and voice interface are coming together to try to solve a huge problem.”

The system used in the trial was programmed in English, but the system can easily be adjusted for speakers of other languages, researchers said. The app can also be programmed to monitor the patient’s response to other diabetes medications they’re taking, in addition to insulin. Researchers anticipate it could be used to monitor other chronic diseases as well.

Stanford CERC funded the study. Nayak and coauthor Sharif Vakili have founded UpDoc, a Palo Alto-based company to market a commercial platform based on remote patient intervention.

  • Laurie Flynn Laurie Flynn is communications manager at the Clinical Excellence Research Center.

About Stanford Medicine

Stanford Medicine is an integrated academic health system comprising the Stanford School of Medicine and adult and pediatric health care delivery systems. Together, they harness the full potential of biomedicine through collaborative research, education and clinical care for patients. For more information, please visit med.stanford.edu .

Hope amid crisis

Psychiatry’s new frontiers

Stanford Medicine magazine: Mental health

Association of dietary nutrient intake with type 2 diabetes: A Mendelian randomization study

Affiliation.

  • 1 Shandong University of Traditional Chinese Medicine, Jinan, China.
  • PMID: 38728475
  • PMCID: PMC11081547
  • DOI: 10.1097/MD.0000000000038090

Observational research suggests that the evidence linking dietary nutrient intake (encompassing minerals, vitamins, amino acids, and unsaturated fatty acids) to type 2 diabetes (T2D) is both inconsistent and limited. This study aims to explore the potential causal relationship between dietary nutrients and T2D. Causal estimation utilized Mendelian randomization techniques. Single nucleotide polymorphisms linked to dietary nutrients were identified from existing genome-wide association studies and used as instrumental variables. Genome-wide association studies data pertinent to T2D were sourced from the DIMANTE consortium and the FinnGen database. Techniques including inverse variance weighting (IVW), weighted mode, weighted median, and Mendelian randomization-Egger were employed for causal inference, complemented by sensitivity analysis. Genetically predicted higher phenylalanine (IVW: odds ratio = 1.10 95% confidence interval 1.04-1.17, P = 1.5 × 10-3, q_pval = 3.4 × 10-2) and dihomo-gamma-linolenic acid (IVW: odds ratio = 1.001 95% confidence interval 1.0006-1.003, P = 3.7 × 10-3, q_pval = 4.1 × 10-2) levels were directly associated with T2D risk. Conversely, no causal relationships between other nutrients and T2D were established. We hypothesize that phenylalanine and dihomo-gamma-linolenic acid contribute to the pathogenesis of T2D. Clinically, the use of foods with high phenylalanine content may pose potential risks for patients with a heightened risk of T2D. Our study provides evidence supporting a causal link between dietary nutrient intake and the development of T2D.

Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.

  • Diabetes Mellitus, Type 2* / epidemiology
  • Diabetes Mellitus, Type 2* / genetics
  • Diet / adverse effects
  • Genome-Wide Association Study*
  • Mendelian Randomization Analysis* / methods
  • Phenylalanine / blood
  • Polymorphism, Single Nucleotide*
  • Phenylalanine
  • U.S. Department of Health & Human Services

National Institutes of Health (NIH) - Turning Discovery into Health

  • Virtual Tour
  • Staff Directory
  • En Español

You are here

News releases.

News Release

Tuesday, November 14, 2023

Chronic sleep deficiency increases insulin resistance in women, especially postmenopausal women

Findings highlight insufficient sleep as a modifiable risk factor for type 2 diabetes.

Chronic insufficient sleep can increase insulin resistance in otherwise healthy women, with more marked effects in postmenopausal women, according to a study funded by the National Institutes of Health. The findings, published in Diabetes Care , highlight the importance of adequate sleep in minimizing the risk for type 2 diabetes, which can develop when the body fails to effectively use a key hormone, insulin, to maintain healthy blood sugar levels.

“Women report poorer sleep than men, so understanding how sleep disturbances impact their health across the lifespan is critical, especially for postmenopausal women,” said Marishka Brown, Ph.D., director of the National Center on Sleep Disorder Research at the National Heart, Lung, and Blood Institute (NHLBI), which co-funded the study with the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), both part of NIH.

Previous studies have shown that sleep restriction can elevate risk for conditions such as cardiovascular disease, hypertension, and disordered glucose metabolism, which can lead to insulin resistance and type 2 diabetes. However, many of those studies were done only in men or focused on short-term, severe sleep restriction.

The current study enrolled only women and sought to determine if a prolonged, mild restriction of sleep – a reduction of just 1.5 hours each night – increased women’s blood glucose and insulin levels. Insulin helps regulate glucose in the body, and when the body’s cells build resistance to insulin, they become less able to use it effectively and can cause a person’s risk for prediabetes and type 2 diabetes to rise dramatically.

For the study, researchers recruited 40 women, aged 20-75, who had healthy sleep patterns (at least 7-9 hours per night), normal fasting glucose levels, but had elevated risks for cardiometabolic disease due to having overweight or obesity or a family history of type 2 diabetes, increased lipid in the blood, or cardiovascular disease. 

To establish a baseline for the study, women wore a sensor on their wrists to record their sleep and determine their typical sleep patterns for two weeks and kept nightly sleep logs. The women then completed two six-week study phases in a random order – one where they continued to follow their healthy sleep patterns, and one where sleep was restricted. In between they took a six-week break to recalibrate.

During the adequate sleep phase, participants maintained their typical bed and wake times. On average, they slept for 7.5 hours per night. In the sleep restriction phase, participants delayed their bedtime by 1.5 hours per night, while maintaining their typical waketime. During this phase, they slept 6.2 hours per night, which reflects the average sleep duration of U.S. adults with insufficient sleep. At the beginning and end of each study phase, participants completed an oral glucose tolerance test to measure glucose and insulin blood levels, along with an MRI scan to measure body composition.

The researchers found that restricting sleep to 6.2 hours or less per night over six weeks increased insulin resistance by 14.8% among both pre- and postmenopausal women, with more severe effects for postmenopausal women – as high as 20.1%. In premenopausal women, they found that fasting insulin levels rose in response to sleep restriction, while levels of both fasting insulin and fasting glucose tended to increase in postmenopausal women.

“What we’re seeing is that more insulin is needed to normalize glucose levels in the women under conditions of sleep restriction, and even then, the insulin may not have been doing enough to counteract rising blood glucose levels of postmenopausal women,” said Marie-Pierre St-Onge, Ph.D., associate professor of nutritional medicine and director of the Center of Excellence for Sleep and Circadian Research at Columbia University Vagelos College of Physicians and Surgeons, New York City, and senior author on the study. “If that's sustained over time, it is possible that prolonged insufficient sleep among individuals with prediabetes could accelerate the progression to type 2 diabetes.”

The researchers also looked at whether changes in body weight explained the changes they saw in insulin and glucose levels, as people tend to eat more in sleep-restricted states. However, they found that effects on insulin resistance were largely independent of changes in body weight, and once the women started sleeping their typical 7-9 hours per night again, the insulin and glucose levels returned to normal.

“This study provides new insight into the health effects of even small sleep deficits in women across all stages of adulthood and racial and ethnic backgrounds,” said Corinne Silva, Ph.D., Program Director in the Division of Diabetes, Endocrinology, & Metabolic Diseases at NIDDK. “Researchers are planning additional studies to further understand how sleep deficiency affects metabolism in men and women, as well as explore sleep interventions as a tool in type 2 diabetes prevention efforts.”

Funding: This study received funding from NHLBI (R01HL128226, R35HL155670, T32HL007343, R01HL106041, R01HL137234) and NIDDK (R01DK128154, R01DK128154, P30DK063608, R01DK128154), with clinical trial support from the National Center for Advancing Translational Sciences (NCATS; UL1TR001873).

About the National Heart, Lung, and Blood Institute (NHLBI): NHLBI is the global leader in conducting and supporting research in heart, lung, and blood diseases and sleep disorders that advances scientific knowledge, improves public health, and saves lives. For more information, visit https://www.nhlbi.nih.gov .

About the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK): The NIDDK, a component of the National Institutes of Health (NIH), conducts and supports research on diabetes and other endocrine and metabolic diseases; digestive diseases, nutrition and obesity; and kidney, urologic and hematologic diseases. Spanning the full spectrum of medicine and afflicting people of all ages and ethnic groups, these diseases encompass some of the most common, severe, and disabling conditions affecting Americans. For more information about the NIDDK and its programs, see www.niddk.nih.gov .

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov .

NIH…Turning Discovery Into Health ®

Zuraikat FM,  et al . Chronic Insufficient Sleep in Women Impairs Insulin Sensitivity Independent of Adiposity Changes: Results of a Randomized Trial.  Diabetes Care . 2023.  https://doi.org/10.2337/dc23-1156

Connect with Us

  • More Social Media from NIH
  • Open access
  • Published: 13 May 2024

Patient medication management, understanding and adherence during the transition from hospital to outpatient care - a qualitative longitudinal study in polymorbid patients with type 2 diabetes

  • Léa Solh Dost   ORCID: orcid.org/0000-0001-5767-1305 1 , 2 ,
  • Giacomo Gastaldi   ORCID: orcid.org/0000-0001-6327-7451 3 &
  • Marie P. Schneider   ORCID: orcid.org/0000-0002-7557-9278 1 , 2  

BMC Health Services Research volume  24 , Article number:  620 ( 2024 ) Cite this article

Metrics details

Continuity of care is under great pressure during the transition from hospital to outpatient care. Medication changes during hospitalization may be poorly communicated and understood, compromising patient safety during the transition from hospital to home. The main aims of this study were to investigate the perspectives of patients with type 2 diabetes and multimorbidities on their medications from hospital discharge to outpatient care, and their healthcare journey through the outpatient healthcare system. In this article, we present the results focusing on patients’ perspectives of their medications from hospital to two months after discharge.

Patients with type 2 diabetes, with at least two comorbidities and who returned home after discharge, were recruited during their hospitalization. A descriptive qualitative longitudinal research approach was adopted, with four in-depth semi-structured interviews per participant over a period of two months after discharge. Interviews were based on semi-structured guides, transcribed verbatim, and a thematic analysis was conducted.

Twenty-one participants were included from October 2020 to July 2021. Seventy-five interviews were conducted. Three main themes were identified: (A) Medication management, (B) Medication understanding, and (C) Medication adherence, during three periods: (1) Hospitalization, (2) Care transition, and (3) Outpatient care. Participants had varying levels of need for medication information and involvement in medication management during hospitalization and in outpatient care. The transition from hospital to autonomous medication management was difficult for most participants, who quickly returned to their routines with some participants experiencing difficulties in medication adherence.

Conclusions

The transition from hospital to outpatient care is a challenging process during which discharged patients are vulnerable and are willing to take steps to better manage, understand, and adhere to their medications. The resulting tension between patients’ difficulties with their medications and lack of standardized healthcare support calls for interprofessional guidelines to better address patients’ needs, increase their safety, and standardize physicians’, pharmacists’, and nurses’ roles and responsibilities.

Peer Review reports

Introduction

Continuity of patient care is characterized as the collaborative engagement between the patient and their physician-led care team in the ongoing management of healthcare, with the mutual objective of delivering high-quality and cost-effective medical care [ 1 ]. Continuity of care is under great pressure during the transition of care from hospital to outpatient care, with a risk of compromising patients’ safety [ 2 , 3 ]. The early post-discharge period is a high-risk and fragile transition: once discharged, one in five patients experience at least one adverse event during the first three weeks following discharge, and more than half of these adverse events are drug-related [ 4 , 5 ]. A retrospective study examining all discharged patients showed that adverse drug events (ADEs) account for up to 20% of 30-day hospital emergency readmissions [ 6 ]. During hospitalization, patients’ medications are generally modified, with an average of nearly four medication changes per patient [ 7 ]. Information regarding medications such as medication changes, the expected effect, side effects, and instructions for use are frequently poorly communicated to patients during hospitalization and at discharge [ 8 , 9 , 10 , 11 ]. Between 20 and 60% of discharged patients lack knowledge of their medications [ 12 , 13 ]. Consideration of patients’ needs and their active engagement in decision-making during hospitalization regarding their medications are often lacking [ 11 , 14 , 15 ]. This can lead to unsafe discharge and contribute to medication adherence difficulties, such as non-implementation of newly prescribed medications [ 16 , 17 ].

Patients with multiple comorbidities and polypharmacy are at higher risk of ADE [ 18 ]. Type 2 diabetes is one of the chronic health conditions most frequently associated with comorbidities and patients with type 2 diabetes often lack care continuum [ 19 , 20 , 21 ]. The prevalence of patients hospitalized with type 2 diabetes can exceed 40% [ 22 ] and these patients are at higher risk for readmission due to their comorbidities and their medications, such as insulin and oral hypoglycemic agents [ 23 , 24 , 25 ].

Interventions and strategies to improve patient care and safety at transition have shown mixed results worldwide in reducing cost, rehospitalization, ADE, and non-adherence [ 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 ]. However, interventions that are patient-centered, with a patient follow-up and led by interprofessional healthcare teams showed promising results [ 34 , 35 , 36 ]. Most of these interventions have not been implemented routinely due to the extensive time to translate research into practice and the lack of hybrid implementation studies [ 37 , 38 , 39 , 40 , 41 ]. In addition, patient-reported outcomes and perspectives have rarely been considered, yet patients’ involvement is essential for seamless and integrated care [ 42 , 43 ]. Interprofessional collaboration in which patients are full members of the interprofessional team, is still in its infancy in outpatient care [ 44 ]. Barriers and facilitators regarding medications at the transition of care have been explored in multiple qualitative studies at one given time in a given setting (e.g., at discharge, one-month post-discharge) [ 8 , 45 , 46 , 47 , 48 ]. However, few studies have adopted a holistic methodology from the hospital to the outpatient setting to explore changes in patients’ perspectives over time [ 49 , 50 , 51 ]. Finally, little is known about whether, how, and when patients return to their daily routine following hospitalization and the impact of hospitalization weeks after discharge.

In Switzerland, continuity of care after hospital discharge is still poorly documented, both in terms of contextual analysis and interventional studies, and is mainly conducted in the hospital setting [ 31 , 35 , 52 , 53 , 54 , 55 , 56 ]. The first step of an implementation science approach is to perform a contextual analysis to set up effective interventions adapted to patients’ needs and aligned to healthcare professionals’ activities in a specific context [ 41 , 57 ]. Therefore, the main aims of this study were to investigate the perspectives of patients with type 2 diabetes and multimorbidities on their medications from hospital discharge to outpatient care, and on their healthcare journey through the outpatient healthcare system. In this article, we present the results focusing on patients’ perspectives of their medications from hospital to two months after discharge.

Study design

This qualitative longitudinal study, conducted from October 2020 to July 2021, used a qualitative descriptive methodology through four consecutive in-depth semi-structured interviews per participant at three, 10-, 30- and 60-days post-discharge, as illustrated in Fig.  1 . Longitudinal qualitative research is characterized by qualitative data collection at different points in time and focuses on temporality, such as time and change [ 58 , 59 ]. Qualitative descriptive studies aim to explore and describe the depth and complexity of human experiences or phenomena [ 60 , 61 , 62 ]. We focused our qualitative study on the 60 first days after discharge as this period is considered highly vulnerable and because studies often use 30- or 60-days readmission as an outcome measure [ 5 , 63 ].

This qualitative study follows the Consolidated Criteria for Reporting Qualitative Research (COREQ). Ethics committee approval was sought and granted by the Cantonal Research Ethics Commission, Geneva (CCER) (2020 − 01779).

Recruitment took place during participants’ hospitalization in the general internal medicine divisions at the Geneva University Hospitals in the canton of Geneva (500 000 inhabitants), Switzerland. Interviews took place at participants’ homes, in a private office at the University of Geneva, by telephone or by secure video call, according to participants’ preference. Informal caregivers could also participate alongside the participants.

figure 1

Study flowchart

Researcher characteristics

All the researchers were trained in qualitative studies. The diabetologist and researcher (GG) who enrolled the patients in the study was involved directly or indirectly (advice asked to the Geneva University Hospital diabetes team of which he was a part) for most participants’ care during hospitalization. LS (Ph.D. student and community pharmacist) was unknown to participants and presented herself during hospitalization as a “researcher” and not as a healthcare professional to avoid any risk of influencing participants’ answers. This study was not interventional, and the interviewer (LS) invited participants to contact a healthcare professional for any questions related to their medication or medical issues.

Population and sampling strategy

Patients with type 2 diabetes were chosen as an example population to describe polypharmacy patients as these patients usually have several health issues and polypharmacy [ 20 , 22 , 25 ]. Inclusions criteria for the study were: adult patients with type 2 diabetes, with at least two other comorbidities, hospitalized for at least three days in a general internal medicine ward, with a minimum of one medication change during hospital stay, and who self-managed their medications once discharged home. Exclusion criteria were patients not reachable by telephone following discharge, unable to give consent (patients with schizophrenia, dementia, brain damage, or drug/alcohol misuse), and who could not communicate in French. A purposive sampling methodology was applied aiming to include participants with different ages, genders, types, and numbers of health conditions by listing participants’ characteristics in a double-entry table, available in Supplementary Material 1 , until thematic saturation was reached. Thematic saturation was considered achieved when no new code or theme emerged and new data repeated previously coded information [ 64 ]. The participants were identified if they were hospitalized in the ward dedicated to diabetes care or when the diabetes team was contacted for advice. The senior ward physician (GG) screened eligible patients and the interviewer (LS) obtained written consent before hospital discharge.

Data collection and instruments

Sociodemographic (age, gender, educational level, living arrangement) and clinical characteristics (reason for hospitalization, date of admission, health conditions, diabetes diagnosis, medications before and during hospitalization) were collected by interviewing participants before their discharge and by extracting participants’ data from electronic hospital files by GG and LS. Participants’ pharmacies were contacted with the participant’s consent to obtain medication records from the last three months if information regarding medications before hospitalization was missing in the hospital files.

Semi-structured interview guides for each interview (at three, 10-, 30- and 60-days post-discharge) were developed based on different theories and components of health behavior and medication adherence: the World Health Organization’s (WHO) five dimensions for adherence, the Information-Motivation-Behavioral skills model and the Social Cognitive Theory [ 65 , 66 , 67 ]. Each interview explored participants’ itinerary in the healthcare system and their perspectives on their medications. Regarding medications, the following themes were mentioned at each interview: changes in medications, patients’ understanding and implication; information on their medications, self-management of their medications, and patients’ medication adherence. Other aspects were mentioned in specific interviews: patients’ hospitalization and experience on their return home (interview 1), motivation (interviews 2 and 4), and patient’s feedback on the past two months (interview 4). Interview guides translated from French are available in Supplementary Material 2 . The participants completed self-reported and self-administrated questionnaires at different interviews to obtain descriptive information on different factors that may affect medication management and adherence: self-report questionnaires on quality of life (EQ-5D-5 L) [ 68 ], literacy (Schooling-Opinion-Support questionnaire) [ 69 ], medication adherence (Adherence Visual Analogue Scale, A-VAS) [ 70 ] and Belief in Medication Questionnaire (BMQ) [ 71 ] were administered to each participant at the end of selected interviews to address the different factors that may affect medication management and adherence as well as to determine a trend of determinants over time. The BMQ contains two subscores: Specific-Necessity and Specific-Concerns, addressing respectively their perceived needs for their medications, and their concerns about adverse consequences associated with taking their medication [ 72 ].

Data management

Informed consent forms, including consent to obtain health data, were securely stored in a private office at the University of Geneva. The participants’ identification key was protected by a password known only by MS and LS. Confidentiality was guaranteed by pseudonymization of participants’ information and audio-recordings were destroyed once analyzed. Sociodemographic and clinical characteristics, medication changes, and answers to questionnaires were securely collected by electronic case report forms (eCRFs) on RedCap®. Interviews were double audio-recorded and field notes were taken during interviews. Recorded interviews were manually transcribed verbatim in MAXQDA® (2018.2) by research assistants and LS and transcripts were validated for accuracy by LS. A random sample of 20% of questionnaires was checked for accuracy for the transcription from the paper questionnaires to the eCRFs. Recorded sequences with no link to the discussed topics were not transcribed and this was noted in the transcripts.

Data analysis

A descriptive statistical analysis of sociodemographic, clinical characteristics and self-reported questionnaire data was carried out. A thematic analysis of transcripts was performed, as described by Braun and Clarke [ 73 ], by following six steps: raw data was read, text segments related to the study objectives were identified, text segments to create new categories were identified, similar or redundant categories were reduced and a model that integrated all significant categories was created. The analysis was conducted in parallel with patient enrolment to ensure data saturation. To ensure the validity of the coding method, transcripts were double coded independently and discussed by the research team until similar themes were obtained. The research group developed and validated an analysis grid, with which LS coded systematically the transcriptions and met regularly with the research team to discuss questions on data analysis and to ensure the quality of coding. The analysis was carried out in French, and the verbatims of interest cited in the manuscript were translated and validated by a native English-speaking researcher to preserve the meaning.

In this analysis, we used the term “healthcare professionals” when more than one profession could be involved in participants’ medication management. Otherwise, when a specific healthcare professional was involved, we used the designated profession (e.g. physicians, pharmacists).

Patient and public involvement

During the development phase of the study, interview guides and questionnaires were reviewed for clarity and validity and adapted by two patient partners, with multiple health conditions and who experienced previously a hospital discharge. They are part of the HUG Patients Partners + 3P platform for research and patient and public involvement.

Interviews and participants’ descriptions

A total of 75 interviews were conducted with 21 participants. In total, 31 patients were contacted, seven refused to participate (four at the project presentation and three at consent), two did not enter the selection criteria at discharge and one was unreachable after discharge. Among the 21 participants, 15 participated in all interviews, four in three interviews, one in two interviews, and one in one interview, due to scheduling constraints. Details regarding interviews and participants characteristics are presented in Tables  1 and 2 .

The median length of time between hospital discharge and interviews 1,2,3 and 4 was 5 (IQR: 4–7), 14 (13-20), 35 (22-38), and 63 days (61-68), respectively. On average, by comparing medications at hospital admission and discharge, a median of 7 medication changes (IQR: 6–9, range:2;17) occurred per participant during hospitalization and a median of 7 changes (5–12) during the two months following discharge. Details regarding participants’ medications are described in Table  3 .

Patient self-reported adherence over the past week for their three most challenging medications are available in Supplementary Material 3 .

Qualitative analysis

We defined care transition as the period from discharge until the first medical appointment post-discharge, and outpatient care as the period starting after the first medical appointment. Data was organized into three key themes (A. Medication management, B. Medication understanding, and C. Medication adherence) divided into subthemes at three time points (1. Hospitalization, 2. Care transition and 3. Outpatient care). Figure  2 summarizes and illustrates the themes and subthemes with their influencing factors as bullet points.

figure 2

Participants’ medication management, understanding and adherence during hospitalization, care transition and outpatient care

A. Medication management

A.1 medication management during hospitalization: medication management by hospital staff.

Medications during hospitalization were mainly managed by hospital healthcare professionals (i.e. nurses and physicians) with varying degrees of patient involvement: “At the hospital, they prepared the medications for me. […] I didn’t even know what the packages looked like.” Participant 22; interview 1 (P22.1) Some participants reported having therapeutic education sessions with specialized nurses and physicians, such as the explanation and demonstration of insulin injection and glucose monitoring. A patient reported that he was given the choice of several treatments and was involved in shared decision-making. Other participants had an active role in managing and optimizing dosages, such as rapid insulin, due to prior knowledge and use of medications before hospitalization.

A.2 Medication management at transition: obtaining the medication and initiating self-management

Once discharged, some participants had difficulties obtaining their medications at the pharmacy because some medications were not stored and had to be ordered, delaying medication initiation. To counter this problem upstream, a few participants were provided a 24-to-48-hour supply of medications at discharge. It was sometimes requested by the patient or suggested by the healthcare professionals but was not systematic. The transition from medication management by hospital staff to self-management was exhausting for most participants who were faced with a large amount of new information and changes in their medications: “ When I was in the hospital, I didn’t even realize all the changes. When I came back home, I took away the old medication packages and got out the new ones. And then I thought : « my God, all this…I didn’t know I had all these changes » ” P2.1 Written documentation, such as the discharge prescription or dosage labels on medication packages, was helpful in managing their medication at home. Most participants used weekly pill organizers to manage their medications, which were either already used before hospitalization or were introduced post-discharge. The help of a family caregiver in managing and obtaining medications was reported as a facilitator.

A.3 Medication management in outpatient care: daily self-management and medication burden

A couple of days or weeks after discharge, most participants had acquired a routine so that medication management was less demanding, but the medication burden varied depending on the participants. For some, medication management became a simple action well implemented in their routine (“It has become automatic” , P23.4), while for others, the number of medications and the fact that the medications reminded them of the disease was a heavy burden to bear on a daily basis (“ During the first few days after getting out of the hospital, I thought I was going to do everything right. In the end, well [laughs] it’s complicated. I ended up not always taking the medication, not monitoring the blood sugar” P12.2) To support medication self-management, some participants had written documentation such as treatment plans, medication lists, and pictures of their medication packages on their phones. Some participants had difficulties obtaining medications weeks after discharge as discharge prescriptions were not renewable and participants did not see their physician in time. Others had to visit multiple physicians to have their prescriptions updated. A few participants were faced with prescription or dispensing errors, such as prescribing or dispensing the wrong dosage, which affected medication management and decreased trust in healthcare professionals. In most cases, according to participants, the pharmacy staff worked in an interprofessional collaboration with physicians to provide new and updated prescriptions.

B. Medication understanding

B.1 medication understanding during hospitalization: new information and instructions.

The amount of information received during hospitalization varied considerably among participants with some reporting having received too much, while others saying they received too little information regarding medication changes, the reason for changes, or for introducing new medications: “They told me I had to take this medication all my life, but they didn’t tell me what the effects were or why I was taking it.” P5.3

Hospitalization was seen by some participants as a vulnerable and tiring period during which they were less receptive to information. Information and explanations were generally given verbally, making it complicated for most participants to recall it. Some participants reported that hospital staff was attentive to their needs for information and used communication techniques such as teach-back (a way of checking understanding by asking participants to say in their own words what they need to know or do about their health or medications). Some participants were willing to be proactive in the understanding of their medications while others were more passive, had no specific needs for information, and did not see how they could be engaged more.

B.2 Medication understanding at transition: facing medication changes

At hospital discharge, the most challenging difficulty for participants was to understand the changes made regarding their medications. For newly diagnosed participants, the addition of new medications was more difficult to understand, whereas, for experienced participants, changes in known medications such as dosage modification, changes within a therapeutic class, and generic substitutions were the most difficult to understand. Not having been informed about changes caused confusion and misunderstanding. Therefore, medication reconciliation done by the patient was time-consuming, especially for participants with multiple medications: “ They didn’t tell me at all that they had changed my treatment completely. They just told me : « We’ve changed a few things. But it was the whole treatment ». ” P2.3 Written information, such as the discharge prescription, the discharge report (brief letter summarizing information about the hospitalization, given to the patient at discharge), or the label on the medication box (written by the pharmacist with instructions on dosage) helped them find or recall information about their medications and diagnoses. However, technical terms were used in hospital documentations and were not always understandable. For example, this participant said: “ On the prescription of valsartan, they wrote: ‘resume in the morning once profile…’[once hypertension profile allows]… I don’t know what that means.” P8.1 In addition, some documents were incomplete, as mentioned by a patient who did not have the insulin dosage mentioned on the hospital prescription. Some participants sought help from healthcare professionals, such as pharmacists, hospital physicians, or general practitioners a few days after discharge to review medications, answer questions, or obtain additional information.

B.3 Medication understanding in the outpatient care: concerns and knowledge

Weeks after discharge, most participants had concerns about the long-term use of their medications, their usefulness, and the possible risk of interactions or side effects. Some participants also reported having some lack of knowledge regarding indications, names, or how the medication worked: “I don’t even know what Brilique® [ticagrelor, antiplatelet agent] is for. It’s for blood pressure, isn’t it?. I don’t know.” P11.4 According to participants, the main reasons for the lack of understanding were the lack of information at the time of prescribing and the large number of medications, making it difficult to search for information and remember it. Participants sought information from different healthcare professionals or by themselves, on package inserts, through the internet, or from family and friends. Others reported having had all the information needed or were not interested in having more information. In addition, participants with low medication literacy, such as non-native speakers or elderly people, struggled more with medication understanding and sought help from family caregivers or healthcare professionals, even weeks after discharge: “ I don’t understand French very well […] [The doctor] explained it very quickly…[…] I didn’t understand everything he was saying” P16.2

C. Medication adherence

C.2 medication adherence at transition: adopting new behaviors.

Medication adherence was not mentioned as a concern during hospitalization and a few participants reported difficulties in medication initiation once back home: “I have an injection of Lantus® [insulin] in the morning, but obviously, the first day [after discharge], I forgot to do it because I was not used to it.” P23.1 Participants had to quickly adopt new behaviors in the first few days after discharge, especially for participants with few medications pre-hospitalization. The use of weekly pill organizers, alarms and specific storage space were reported as facilitators to support adherence. One patient did not initiate one of his medications because he did not understand the medication indication, and another patient took her old medications because she was used to them. Moreover, most participants experienced their hospitalization as a turning point, a time when they focused on their health, thought about the importance of their medications, and discussed any new lifestyle or dietary measures that might be implemented.

C.3 Medication adherence in outpatient care: ongoing medication adherence

More medication adherence difficulties appeared a few weeks after hospital discharge when most participants reported nonadherence behaviors, such as difficulties implementing the dosage regimen, or intentionally discontinuing the medication and modifying the medication regimen on their initiative. Determinants positively influencing medication adherence were the establishment of a routine; organizing medications in weekly pill-organizers; organizing pocket doses (medications for a short period that participants take with them when away from home); seeking support from family caregivers; using alarm clocks; and using specific storage places. Reasons for nonadherence were changes in daily routine; intake times that were not convenient for the patient; the large number of medications; and poor knowledge of the medication or side effects. Healthcare professionals’ assistance for medication management, such as the help of home nurses or pharmacists for the preparation of weekly pill-organizers, was requested by participants or offered by healthcare professionals to support medication adherence: “ I needed [a home nurse] to put my pills in the pillbox. […] I felt really weak […] and I was making mistakes. So, I’m very happy [the doctor] offered me [home care]. […] I have so many medications.” P22.3 Some participants who experienced prehospitalization non-adherence were more aware of their non-adherence and implemented strategies, such as modifying the timing of intake: “I said to my doctor : « I forget one time out of two […], can I take them in the morning? » We looked it up and yes, I can take it in the morning.” P11.2 In contrast, some participants were still struggling with adherence difficulties that they had before hospitalization. Motivations for taking medications two months after discharge were to improve health, avoid complications, reduce symptoms, reduce the number of medications in the future or out of obligation: “ I force myself to take them because I want to get to the end of my diabetes, I want to reduce the number of pills as much as possible.” P14.2 After a few weeks post-hospitalization, for some participants, health and illness were no longer the priority because of other life imperatives (e.g., family or financial situation).

This longitudinal study provided a multi-faceted representation of how patients manage, understand, and adhere to their medications from hospital discharge to two months after discharge. Our findings highlighted the varying degree of participants’ involvement in managing their medications during their hospitalization, the individualized needs for information during and after hospitalization, the complicated transition from hospital to autonomous medication management, the adaptation of daily routines around medication once back home, and the adherence difficulties that surfaced in the outpatient care, with nonadherence prior to hospitalization being an indicator of the behavior after discharge. Finally, our results confirmed the lack of continuity in care and showed the lack of patient care standardization experienced by the participants during the transition from hospital to outpatient care.

This in-depth analysis of patients’ experiences reinforces common challenges identified in the existing literature such as the lack of personalized information [ 9 , 10 , 11 ], loss of autonomy during hospitalization [ 14 , 74 , 75 ], difficulties in obtaining medication at discharge [ 11 , 45 , 76 ] and challenges in understanding treatment modifications and generics substitution [ 11 , 32 , 77 , 78 ]. Some of these studies were conducted during patients’ hospitalization [ 10 , 75 , 79 ] or up to 12 months after discharge [ 80 , 81 ], but most studies focused on the few days following hospital discharge [ 9 , 11 , 14 , 82 ]. Qualitative studies on medications at transition often focused on a specific topic, such as medication information, or a specific moment in time, and often included healthcare professionals, which muted patients’ voices [ 9 , 10 , 11 , 47 , 49 ]. Our qualitative longitudinal methodology was interested in capturing the temporal dynamics, in-depth narratives, and contextual nuances of patients’ medication experiences during transitions of care [ 59 , 83 ]. This approach provided a comprehensive understanding of how patients’ perspectives and behaviors evolved over time, offering insights into the complex interactions of medication management, understanding and adherence, and turning points within their medication journeys. A qualitative longitudinal design was used by Fylan et al. to underline patients’ resilience in medication management during and after discharge, by Brandberg et al. to show the dynamic process of self-management during the 4 weeks post-discharge and by Lawton et al. to examine how patients with type 2 diabetes perceived their care after discharge over a period of four years [ 49 , 50 , 51 ]. Our study focused on the first two months following hospitalization and future studies should focus on following discharged and at-risk patients over a longer period, as “transitions of care do not comprise linear trajectories of patients’ movements, with a starting and finishing point. Instead, they are endless loops of movements” [ 47 ].

Our results provide a particularly thorough description of how participants move from a state of total dependency during hospitalization regarding their medication management to a sudden and complete autonomy after hospital discharge impacting medication management, understanding, and adherence in the first days after discharge for some participants. Several qualitative studies have described the lack of shared decision-making and the loss of patient autonomy during hospitalization, which had an impact on self-management and created conflicts with healthcare professionals [ 75 , 81 , 84 ]. Our study also highlights nuanced patient experiences, including varying levels of patient needs, involvement, and proactivity during hospitalization and outpatient care, and our results contribute to capturing different perspectives that contrast with some literature that often portrays patients as more passive recipients of care [ 14 , 15 , 74 , 75 ]. Shared decision-making and proactive medication are key elements as they contribute to a smoother transition and better outcomes for patients post-discharge [ 85 , 86 , 87 ].

Consistent with the literature, the study identifies some challenges in medication initiation post-discharge [ 16 , 17 , 88 ] but our results also describe how daily routine rapidly takes over, either solidifying adherence behavior or generating barriers to medication adherence. Participants’ nonadherence prior to hospitalization was a factor influencing participants’ adherence post-hospitalization and this association should be further investigated, as literature showed that hospitalized patients have high scores of non-adherence [ 89 ]. Mortel et al. showed that more than 20% of discharged patients stopped their medications earlier than agreed with the physician and 25% adapted their medication intake [ 90 ]. Furthermore, patients who self-managed their medications had a lower perception of the necessity of their medication than patients who received help, which could negatively impact medication adherence [ 91 ]. Although participants in our study had high BMQ scores for necessity and lower scores for concerns, some participants expressed doubts about the need for their medications and a lack of motivation a few weeks after discharge. Targeted pharmacy interventions for newly prescribed medications have been shown to improve medication adherence, and hospital discharge is an opportune moment to implement this service [ 92 , 93 ].

Many medication changes were made during the transition of care (a median number of 7 changes during hospitalization and 7 changes during the two months after discharge), especially medication additions during hospitalization and interruptions after hospitalization. While medication changes during hospitalization are well described, the many changes following discharge are less discussed [ 7 , 94 ]. A Danish study showed that approximately 65% of changes made during hospitalization were accepted by primary healthcare professionals but only 43% of new medications initiated during hospitalization were continued after discharge [ 95 ]. The numerous changes after discharge may be caused by unnecessary intensification of medications during hospitalization, delayed discharge letters, lack of standardized procedures, miscommunication, patient self-management difficulties, or in response to an acute situation [ 96 , 97 , 98 ]. During the transition of care, in our study, both new and experienced participants were faced with difficulties in managing and understanding medication changes, either for newly prescribed medication or changes in previous medications. Such difficulties corroborate the findings of the literature [ 9 , 10 , 47 ] and our results showed that the lack of understanding during hospitalization led to participants having questions about their medications, even weeks after discharge. Particular attention should be given to patients’ understanding of medication changes jointly by physicians, nurses and pharmacists during the transition of care and in the months that follow as medications are likely to undergo as many changes as during hospitalization.

Implication for practice and future research

The patients’ perspectives in this study showed, at a system level, that there was a lack of standardization in healthcare professional practices regarding medication dispensing and follow-up. For now, in Switzerland, there are no official guidelines on medication prescription and dispensation during the transition of care although some international guidelines have been developed for outpatient healthcare professionals [ 3 , 99 , 100 , 101 , 102 ]. Here are some suggestions for improvement arising from our results. Patients should be included as partners and healthcare professionals should systematically assess (i) previous medication adherence, (ii) patients’ desired level of involvement and (iii) their needs for information during hospitalization. Hospital discharge processes should be routinely implemented to standardize hospital discharge preparation, medication prescribing, and dispensing. Discharge from the hospital should be planned with community pharmacies to ensure that all medications are available and, if necessary, doses of medications should be supplied by the hospital to bridge the gap. A partnership with outpatient healthcare professionals, such as general practitioners, community pharmacists, and homecare nurses, should be set up for effective asynchronous interprofessional collaboration to consolidate patients’ medication management, knowledge, and adherence, as well as to monitor signs of deterioration or adverse drug events.

Future research should consolidate our first attempt to develop a framework to better characterize medication at the transition of care, using Fig. 2   as a starting point. Contextualized interventions, co-designed by health professionals, patients and stakeholders, should be tested in a hybrid implementation study to test the implementation and effectiveness of the intervention for the health system [ 103 ].

Limitations

This study has some limitations. First, the transcripts were validated for accuracy by the interviewer but not by a third party, which could have increased the robustness of the transcription. Nevertheless, the interviewer followed all methodological recommendations for transcription. Second, patient inclusion took place during the COVID-19 pandemic, which may have had an impact on patient care and the availability of healthcare professionals. Third, we cannot guarantee the accuracy of some participants’ medication history before hospitalization, even though we contacted the participants’ main pharmacy, as participants could have gone to different pharmacies to obtain their medications. Fourth, our findings may not be generalizable to other populations and other healthcare systems because some issues may be specific to multimorbid patients with type 2 diabetes or to the Swiss healthcare setting. Nevertheless, issues encountered by our participants regarding their medications correlate with findings in the literature. Fifth, only 15 out of 21 participants took part in all the interviews, but most participants took part in at least three interviews and data saturation was reached. Lastly, by its qualitative and longitudinal design, it is possible that the discussion during interviews and participants’ reflections between interviews influenced participants’ management, knowledge, and adherence, even though this study was observational, and no advice or recommendations were given by the interviewer during interviews.

Discharged patients are willing to take steps to better manage, understand, and adhere to their medications, yet they are also faced with difficulties in the hospital and outpatient care. Furthermore, extensive changes in medications not only occur during hospitalization but also during the two months following hospital discharge, for which healthcare professionals should give particular attention. The different degrees of patients’ involvement, needs and resources should be carefully considered to enable them to better manage, understand and adhere to their medications. At a system level, patients’ experiences revealed a lack of standardization of medication practices during the transition of care. The healthcare system should provide the ecosystem needed for healthcare professionals responsible for or involved in the management of patients’ medications during the hospital stay, discharge, and outpatient care to standardize their practices while considering the patient as an active partner.

Data availability

The anonymized quantitative survey datasets and the qualitative codes are available in French from the corresponding author on reasonable request.

Abbreviations

adverse drug events

Adherence Visual Analogue Scale

Belief in Medication Questionnaire

Consolidated Criteria for Reporting Qualitative Research

case report form

standard deviation

World Health Organization

American Academy of Family Physician. Continuity of Care, Definition of 2020. Accessed 10 July 2022 https://www.aafp.org/about/policies/all/continuity-of-care-definition.html

Kripalani S, LeFevre F, Phillips CO, Williams MV, Basaviah P, Baker DW. Deficits in communication and information transfer between hospital-based and primary care physicians: implications for patient safety and continuity of care. JAMA. 2007;297(8):831–41.

Article   CAS   PubMed   Google Scholar  

World Health Organization (WHO). Medication Safety in Transitions of Care. 2019.

Forster AJ, Murff HJ, Peterson JF, Gandhi TK, Bates DW. The incidence and severity of adverse events affecting patients after discharge from the hospital. Ann Intern Med. 2003;138(3):161–7.

Article   PubMed   Google Scholar  

Krumholz HM. Post-hospital syndrome–an acquired, transient condition of generalized risk. N Engl J Med. 2013;368(2):100–2.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Banholzer S, Dunkelmann L, Haschke M, Derungs A, Exadaktylos A, Krähenbühl S, et al. Retrospective analysis of adverse drug reactions leading to short-term emergency hospital readmission. Swiss Med Wkly. 2021;151:w20400.

Blozik E, Signorell A, Reich O. How does hospitalization affect continuity of drug therapy: an exploratory study. Ther Clin Risk Manag. 2016;12:1277–83.

Article   PubMed   PubMed Central   Google Scholar  

Allen J, Hutchinson AM, Brown R, Livingston PM. User experience and care for older people transitioning from hospital to home: patients’ and carers’ perspectives. Health Expect. 2018;21(2):518–27.

Daliri S, Bekker CL, Buurman BM, Scholte Op Reimer WJM, van den Bemt BJF, Karapinar-Çarkit F. Barriers and facilitators with medication use during the transition from hospital to home: a qualitative study among patients. BMC Health Serv Res. 2019;19(1):204.

Bekker CL, Mohsenian Naghani S, Natsch S, Wartenberg NS, van den Bemt BJF. Information needs and patient perceptions of the quality of medication information available in hospitals: a mixed method study. Int J Clin Pharm. 2020;42(6):1396–404.

Foulon V, Wuyts J, Desplenter F, Spinewine A, Lacour V, Paulus D, et al. Problems in continuity of medication management upon transition between primary and secondary care: patients’ and professionals’ experiences. Acta Clin Belgica: Int J Clin Lab Med. 2019;74(4):263–71.

Article   Google Scholar  

Micheli P, Kossovsky MP, Gerstel E, Louis-Simonet M, Sigaud P, Perneger TV, et al. Patients’ knowledge of drug treatments after hospitalisation: the key role of information. Swiss Med Wkly. 2007;137(43–44):614–20.

PubMed   Google Scholar  

Ziaeian B, Araujo KL, Van Ness PH, Horwitz LI. Medication reconciliation accuracy and patient understanding of intended medication changes on hospital discharge. J Gen Intern Med. 2012;27(11):1513–20.

Allen J, Hutchinson AM, Brown R, Livingston PM. User experience and care integration in Transitional Care for older people from hospital to home: a Meta-synthesis. Qual Health Res. 2016;27(1):24–36.

Mackridge AJ, Rodgers R, Lee D, Morecroft CW, Krska J. Cross-sectional survey of patients’ need for information and support with medicines after discharge from hospital. Int J Pharm Pract. 2018;26(5):433–41.

Mulhem E, Lick D, Varughese J, Barton E, Ripley T, Haveman J. Adherence to medications after hospital discharge in the elderly. Int J Family Med. 2013;2013:901845.

Fallis BA, Dhalla IA, Klemensberg J, Bell CM. Primary medication non-adherence after discharge from a general internal medicine service. PLoS ONE. 2013;8(5):e61735.

Zhou L, Rupa AP. Categorization and association analysis of risk factors for adverse drug events. Eur J Clin Pharmacol. 2018;74(4):389–404.

Moreau-Gruet F. La multimorbidité chez les personnes de 50 ans et plus. Résultats basés sur l’enqête SHARE (Survey of Health, Ageing and Retirement in Europe. Obsan Bulletin 4/2013. 2013(Neuchâtel: OBservatoire suisse de la santé).

Iglay K, Hannachi H, Joseph Howie P, Xu J, Li X, Engel SS, et al. Prevalence and co-prevalence of comorbidities among patients with type 2 diabetes mellitus. Curr Med Res Opin. 2016;32(7):1243–52.

Sibounheuang P, Olson PS, Kittiboonyakun P. Patients’ and healthcare providers’ perspectives on diabetes management: a systematic review of qualitative studies. Res Social Adm Pharm. 2020;16(7):854–74.

Müller-Wieland D, Merkel M, Hamann A, Siegel E, Ottillinger B, Woker R, et al. Survey to estimate the prevalence of type 2 diabetes mellitus in hospital patients in Germany by systematic HbA1c measurement upon admission. Int J Clin Pract. 2018;72(12):e13273.

Blanc AL, Fumeaux T, Stirnemann J, Dupuis Lozeron E, Ourhamoune A, Desmeules J, et al. Development of a predictive score for potentially avoidable hospital readmissions for general internal medicine patients. PLoS ONE. 2019;14(7):e0219348.

Hansen LO, Greenwald JL, Budnitz T, Howell E, Halasyamani L, Maynard G, et al. Project BOOST: effectiveness of a multihospital effort to reduce rehospitalization. J Hosp Med. 2013;8(8):421–7.

Khalid JM, Raluy-Callado M, Curtis BH, Boye KS, Maguire A, Reaney M. Rates and risk of hospitalisation among patients with type 2 diabetes: retrospective cohort study using the UK General Practice Research Database linked to English Hospital Episode statistics. Int J Clin Pract. 2014;68(1):40–8.

Lussier ME, Evans HJ, Wright EA, Gionfriddo MR. The impact of community pharmacist involvement on transitions of care: a systematic review and meta-analysis. J Am Pharm Assoc. 2020;60(1):153–.

van der Heijden A, de Bruijne MC, Nijpels G, Hugtenburg JG. Cost-effectiveness of a clinical medication review in vulnerable older patients at hospital discharge, a randomized controlled trial. Int J Clin Pharm. 2019;41(4):963–71.

Bingham J, Campbell P, Schussel K, Taylor AM, Boesen K, Harrington A, et al. The Discharge Companion Program: an interprofessional collaboration in Transitional Care Model Delivery. Pharm (Basel). 2019;7(2):68.

Google Scholar  

Farris KB, Carter BL, Xu Y, Dawson JD, Shelsky C, Weetman DB, et al. Effect of a care transition intervention by pharmacists: an RCT. BMC Health Serv Res. 2014;14:406.

Meslot C, Gauchet A, Hagger MS, Chatzisarantis N, Lehmann A, Allenet B. A Randomised Controlled Trial to test the effectiveness of planning strategies to improve Medication Adherence in patients with Cardiovascular Disease. Appl Psychol Health Well Being. 2017;9(1):106–29.

Garnier A, Rouiller N, Gachoud D, Nachar C, Voirol P, Griesser AC, et al. Effectiveness of a transition plan at discharge of patients hospitalized with heart failure: a before-and-after study. ESC Heart Fail. 2018;5(4):657–67.

Daliri S, Bekker CL, Buurman BM, Scholte Op Reimer WJM, van den Bemt BJF, Karapinar-Çarkit F. Medication management during transitions from hospital to home: a focus group study with hospital and primary healthcare providers in the Netherlands. Int J Clin Pharm. 2020.

Hansen LO, Young RS, Hinami K, Leung A, Williams MV. Interventions to reduce 30-day rehospitalization: a systematic review. Ann Intern Med. 2011;155(8):520–8.

Leppin AL, Gionfriddo MR, Kessler M, Brito JP, Mair FS, Gallacher K, et al. Preventing 30-day hospital readmissions: a systematic review and meta-analysis of randomized trials. JAMA Intern Med. 2014;174(7):1095–107.

Donzé J, John G, Genné D, Mancinetti M, Gouveia A, Méan M et al. Effects of a Multimodal Transitional Care Intervention in patients at high risk of readmission: the TARGET-READ Randomized Clinical Trial. JAMA Intern Med. 2023.

Rodrigues CR, Harrington AR, Murdock N, Holmes JT, Borzadek EZ, Calabro K, et al. Effect of pharmacy-supported transition-of-care interventions on 30-Day readmissions: a systematic review and Meta-analysis. Ann Pharmacother. 2017;51(10):866–89.

Lam MYY, Dodds LJ, Corlett SA. Engaging patients to access the community pharmacy medicine review service after discharge from hospital: a cross-sectional study in England. Int J Clin Pharm. 2019;41(4):1110–7.

Hossain LN, Fernandez-Llimos F, Luckett T, Moullin JC, Durks D, Franco-Trigo L, et al. Qualitative meta-synthesis of barriers and facilitators that influence the implementation of community pharmacy services: perspectives of patients, nurses and general medical practitioners. BMJ Open. 2017;7(9):e015471.

En-Nasery-de Heer S, Uitvlugt EB, Bet PM, van den Bemt BJF, Alai A, van den Bemt P et al. Implementation of a pharmacist-led transitional pharmaceutical care programme: process evaluation of medication actions to reduce hospital admissions through a collaboration between Community and Hospital pharmacists (MARCH). J Clin Pharm Ther. 2022.

Morris ZS, Wooding S, Grant J. The answer is 17 years, what is the question: understanding time lags in translational research. J R Soc Med. 2011;104(12):510–20.

De Geest S, Zúñiga F, Brunkert T, Deschodt M, Zullig LL, Wyss K, et al. Powering Swiss health care for the future: implementation science to bridge the valley of death. Swiss Med Wkly. 2020;150:w20323.

Noonan VK, Lyddiatt A, Ware P, Jaglal SB, Riopelle RJ, Bingham CO 3, et al. Montreal Accord on patient-reported outcomes (PROs) use series - paper 3: patient-reported outcomes can facilitate shared decision-making and guide self-management. J Clin Epidemiol. 2017;89:125–35.

Hesselink G, Schoonhoven L, Barach P, Spijker A, Gademan P, Kalkman C, et al. Improving patient handovers from hospital to primary care: a systematic review. Ann Intern Med. 2012;157(6):417–28.

(OFSP) Interprofessionnalité dans le domaine de la santé Soins ambulatoire. Accessed 4 January 2024. https://www.bag.admin.ch/bag/fr/home/strategie-und-politik/nationale-gesundheitspolitik/foerderprogramme-der-fachkraefteinitiative-plus/foerderprogramme-interprofessionalitaet.html

Mitchell SE, Laurens V, Weigel GM, Hirschman KB, Scott AM, Nguyen HQ, et al. Care transitions from patient and caregiver perspectives. Ann Fam Med. 2018;16(3):225–31.

Davoody N, Koch S, Krakau I, Hägglund M. Post-discharge stroke patients’ information needs as input to proposing patient-centred eHealth services. BMC Med Inf Decis Mak. 2016;16:66.

Ozavci G, Bucknall T, Woodward-Kron R, Hughes C, Jorm C, Joseph K, et al. A systematic review of older patients’ experiences and perceptions of communication about managing medication across transitions of care. Res Social Adm Pharm. 2021;17(2):273–91.

Fylan B, Armitage G, Naylor D, Blenkinsopp A. A qualitative study of patient involvement in medicines management after hospital discharge: an under-recognised source of systems resilience. BMJ Qual Saf. 2018;27(7):539–46.

Fylan B, Marques I, Ismail H, Breen L, Gardner P, Armitage G, et al. Gaps, traps, bridges and props: a mixed-methods study of resilience in the medicines management system for patients with heart failure at hospital discharge. BMJ Open. 2019;9(2):e023440.

Brandberg C, Ekstedt M, Flink M. Self-management challenges following hospital discharge for patients with multimorbidity: a longitudinal qualitative study of a motivational interviewing intervention. BMJ Open. 2021;11(7):e046896.

Lawton J, Rankin D, Peel E, Douglas M. Patients’ perceptions and experiences of transitions in diabetes care: a longitudinal qualitative study. Health Expect. 2009;12(2):138–48.

Mabire C, Bachnick S, Ausserhofer D, Simon M. Patient readiness for hospital discharge and its relationship to discharge preparation and structural factors: a cross-sectional study. Int J Nurs Stud. 2019;90:13–20.

Meyers DC, Durlak JA, Wandersman A. The quality implementation framework: a synthesis of critical steps in the implementation process. Am J Community Psychol. 2012;50(3–4):462–80.

Meyer-Massetti C, Hofstetter V, Hedinger-Grogg B, Meier CR, Guglielmo BJ. Medication-related problems during transfer from hospital to home care: baseline data from Switzerland. Int J Clin Pharm. 2018;40(6):1614–20.

Neeman M, Dobrinas M, Maurer S, Tagan D, Sautebin A, Blanc AL, et al. Transition of care: a set of pharmaceutical interventions improves hospital discharge prescriptions from an internal medicine ward. Eur J Intern Med. 2017;38:30–7.

Geese F, Schmitt KU. Interprofessional Collaboration in Complex Patient Care Transition: a qualitative multi-perspective analysis. Healthc (Basel). 2023;11(3).

Craig P, Dieppe P, Macintyre S, Michie S, Nazareth I, Petticrew M. Developing and evaluating complex interventions: the new Medical Research Council guidance. Int J Nurs Stud. 2013;50(5):587–92.

Thomson R, Plumridge L, Holland J, Editorial. Int J Soc Res Methodol. 2003;6(3):185–7.

Audulv Å, Hall EOC, Kneck Å, Westergren T, Fegran L, Pedersen MK, et al. Qualitative longitudinal research in health research: a method study. BMC Med Res Methodol. 2022;22(1):255.

Kim H, Sefcik JS, Bradway C. Characteristics of qualitative descriptive studies: a systematic review. Res Nurs Health. 2017;40(1):23–42.

Sandelowski M. Whatever happened to qualitative description? Res Nurs Health. 2000;23(4):334–40.

Bradshaw C, Atkinson S, Doody O. Employing a qualitative description Approach in Health Care Research. Glob Qual Nurs Res. 2017;4:2333393617742282.

PubMed   PubMed Central   Google Scholar  

Bellone JM, Barner JC, Lopez DA. Postdischarge interventions by pharmacists and impact on hospital readmission rates. J Am Pharm Assoc (2003). 2012;52(3):358–62.

Hennink MM, Kaiser BN, Marconi VC. Code saturation versus meaning saturation: how many interviews are Enough? Qual Health Res. 2016;27(4):591–608.

World Health Organization. Adherence to long-term therapies: evidence for action. 2003.

Fisher JD, Fisher WA, Amico KR, Harman JJ. An information-motivation-behavioral skills model of adherence to antiretroviral therapy. Health Psychol. 2006;25(4):462–73.

Bandura A. Health promotion from the perspective of social cognitive theory. Psychol Health. 1998;13(4):623–49.

ShiftEUROQOL Research FOndation EQ 5D Instruments. Accessed 30 July 2022 https://euroqol.org/eq-5d-instruments/sample-demo/

Jeppesen KM, Coyle JD, Miser WF. Screening questions to predict limited health literacy: a cross-sectional study of patients with diabetes mellitus. Ann Fam Med. 2009;7(1):24–31.

Giordano TP, Guzman D, Clark R, Charlebois ED, Bangsberg DR. Measuring adherence to antiretroviral therapy in a diverse population using a visual analogue scale. HIV Clin Trials. 2004;5(2):74–9.

Horne R, Weinman J, Hankins M. The beliefs about medicines questionnaire: the development and evaluation of a new method for assessing the cognitive representation of medication. Psychol Health. 1999;14(1):1–24.

Horne R, Chapman SC, Parham R, Freemantle N, Forbes A, Cooper V. Understanding patients’ adherence-related beliefs about medicines prescribed for long-term conditions: a meta-analytic review of the necessity-concerns Framework. PLoS ONE. 2013;8(12):e80633.

Braun V, Clarke V. Using thematic analysis in psychology. Qualitative Res Psychol. 2006;3(2):77–101.

Waibel S, Henao D, Aller M-B, Vargas I, Vázquez M-L. What do we know about patients’ perceptions of continuity of care? A meta-synthesis of qualitative studies. Int J Qual Health Care. 2011;24(1):39–48.

Rognan SE, Jørgensen MJ, Mathiesen L, Druedahl LC, Lie HB, Bengtsson K, et al. The way you talk, do I have a choice?’ Patient narratives of medication decision-making during hospitalization. Int J Qualitative Stud Health Well-being. 2023;18(1):2250084.

Michel B, Hemery M, Rybarczyk-Vigouret MC, Wehrle P, Beck M. Drug-dispensing problems community pharmacists face when patients are discharged from hospitals: a study about 537 prescriptions in Alsace. Int J Qual Health Care. 2016;28(6):779–84.

Bruhwiler LD, Hersberger KE, Lutters M. Hospital discharge: what are the problems, information needs and objectives of community pharmacists? A mixed method approach. Pharm Pract (Granada). 2017;15(3):1046.

Knight DA, Thompson D, Mathie E, Dickinson A. Seamless care? Just a list would have helped!’ Older people and their carer’s experiences of support with medication on discharge home from hospital. Health Expect. 2013;16(3):277–91.

Gualandi R, Masella C, Viglione D, Tartaglini D. Exploring the hospital patient journey: what does the patient experience? PLoS ONE. 2019;14(12):e0224899.

Norberg H, Håkansson Lindqvist M, Gustafsson M. Older individuals’ experiences of Medication Management and Care after Discharge from Hospital: an interview study. Patient Prefer Adherence. 2023;17:781–92.

Jones KC, Austad K, Silver S, Cordova-Ramos EG, Fantasia KL, Perez DC, et al. Patient perspectives of the hospital discharge process: a qualitative study. J Patient Exp. 2023;10:23743735231171564.

Hesselink G, Flink M, Olsson M, Barach P, Dudzik-Urbaniak E, Orrego C, et al. Are patients discharged with care? A qualitative study of perceptions and experiences of patients, family members and care providers. BMJ Qual Saf. 2012;21(Suppl 1):i39–49.

Murray SA, Kendall M, Carduff E, Worth A, Harris FM, Lloyd A, et al. Use of serial qualitative interviews to understand patients’ evolving experiences and needs. BMJ. 2009;339:b3702.

Berger ZD, Boss EF, Beach MC. Communication behaviors and patient autonomy in hospital care: a qualitative study. Patient Educ Couns. 2017;100(8):1473–81.

Davis RE, Jacklin R, Sevdalis N, Vincent CA. Patient involvement in patient safety: what factors influence patient participation and engagement? Health Expect. 2007;10(3):259–67.

Greene J, Hibbard JH. Why does patient activation matter? An examination of the relationships between patient activation and health-related outcomes. J Gen Intern Med. 2012;27(5):520–6.

Mitchell SE, Gardiner PM, Sadikova E, Martin JM, Jack BW, Hibbard JH, et al. Patient activation and 30-day post-discharge hospital utilization. J Gen Intern Med. 2014;29(2):349–55.

Weir DL, Motulsky A, Abrahamowicz M, Lee TC, Morgan S, Buckeridge DL, et al. Failure to follow medication changes made at hospital discharge is associated with adverse events in 30 days. Health Serv Res. 2020;55(4):512–23.

Kripalani S, Goggins K, Nwosu S, Schildcrout J, Mixon AS, McNaughton C, et al. Medication nonadherence before hospitalization for Acute Cardiac events. J Health Commun. 2015;20(Suppl 2):34–42.

Mortelmans L, De Baetselier E, Goossens E, Dilles T. What happens after Hospital Discharge? Deficiencies in Medication Management encountered by geriatric patients with polypharmacy. Int J Environ Res Public Health. 2021;18(13).

Mortelmans L, Goossens E, Dilles T. Beliefs about medication after hospital discharge in geriatric patients with polypharmacy. Geriatr Nurs. 2022;43:280–7.

Bandiera C, Ribaut J, Dima AL, Allemann SS, Molesworth K, Kalumiya K et al. Swiss Priority setting on implementing Medication Adherence interventions as Part of the European ENABLE COST action. Int J Public Health. 2022;67.

Elliott R, Boyd M, Nde S. at e. Supporting adherence for people starting a new medication for a long-term condition through community pharmacies: a pragmaticrandomised controlled trial of the New Medicine Service. 2015.

Grimmsmann T, Schwabe U, Himmel W. The influence of hospitalisation on drug prescription in primary care–a large-scale follow-up study. Eur J Clin Pharmacol. 2007;63(8):783–90.

Larsen MD, Rosholm JU, Hallas J. The influence of comprehensive geriatric assessment on drug therapy in elderly patients. Eur J Clin Pharmacol. 2014;70(2):233–9.

Viktil KK, Blix HS, Eek AK, Davies MN, Moger TA, Reikvam A. How are drug regimen changes during hospitalisation handled after discharge: a cohort study. BMJ Open. 2012;2(6):e001461.

Strehlau AG, Larsen MD, Søndergaard J, Almarsdóttir AB, Rosholm J-U. General practitioners’ continuation and acceptance of medication changes at sectorial transitions of geriatric patients - a qualitative interview study. BMC Fam Pract. 2018;19(1):168.

Anderson TS, Lee S, Jing B, Fung K, Ngo S, Silvestrini M, et al. Prevalence of diabetes medication intensifications in older adults discharged from US Veterans Health Administration Hospitals. JAMA Netw Open. 2020;3(3):e201511.

Royal Pharmaceutical Society. Keeping patients safewhen they transfer between care providers– getting the medicines right June 2012. Accessed 27 October 2023 https://www.rpharms.com/Portals/0/RPS%20document%20library/Open%20access/Publications/Keeping%20patients%20safe%20transfer%20of%20care%20report.pdf

International Pharmaceutical Federation (FIP). Medicines reconciliation: A toolkit for pharmacists. Accessed 23 September 2023 https://www.fip.org/file/4949

Californian Pharmacist Assiociation Transitions of Care Resource Guide. https://cdn.ymaws.com/www.cshp.org/resource/resmgr/Files/Practice-Policy/For_Pharmacists/transitions_of_care_final_10.pdf

Royal Collegue of Physicians. Medication safety at hospital discharge: Improvement guide and resource. Accessed 18 September 2023 https://www.rcplondon.ac.uk/file/33421/download

Douglas N, Campbell W, Hinckley J. Implementation science: buzzword or game changer. J Speech Lang Hear Res. 2015;58.

Download references

Acknowledgements

The authors would like to thank all the patients who took part in this study. We would also like to thank the Geneva University Hospitals Patients Partners + 3P platform as well as Mrs. Tourane Corbière and Mr. Joël Mermoud, patient partners, who reviewed interview guides for clarity and significance. We would like to thank Samuel Fabbi, Vitcoryavarman Koh, and Pierre Repiton for the transcriptions of the audio recordings.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Open access funding provided by University of Geneva

Author information

Authors and affiliations.

School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland

Léa Solh Dost & Marie P. Schneider

Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland

Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland

Giacomo Gastaldi

You can also search for this author in PubMed   Google Scholar

Contributions

LS, GG, and MS conceptualized and designed the study. LS and GG screened and recruited participants. LS conducted the interviews. LS, GG, and MS performed data analysis and interpretation. LS drafted the manuscript and LS and MS worked on the different versions. MS and GG approved the final manuscript.

Corresponding authors

Correspondence to Léa Solh Dost or Marie P. Schneider .

Ethics declarations

Ethics approval and consent to participate.

Ethics approval was sought and granted by the Cantonal Research Ethics Commission, Geneva (CCER) (2020 − 01779), and informed consent to participate was obtained from all participants.

Consent for publication

Informed consent for publication was obtained from all participants.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary material 2, supplementary material 3, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Solh Dost, L., Gastaldi, G. & Schneider, M. Patient medication management, understanding and adherence during the transition from hospital to outpatient care - a qualitative longitudinal study in polymorbid patients with type 2 diabetes. BMC Health Serv Res 24 , 620 (2024). https://doi.org/10.1186/s12913-024-10784-9

Download citation

Received : 28 June 2023

Accepted : 26 February 2024

Published : 13 May 2024

DOI : https://doi.org/10.1186/s12913-024-10784-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Continuity of care
  • Transition of care
  • Patient discharge
  • Medication management
  • Medication adherence
  • Qualitative research
  • Longitudinal studies
  • Patient-centered care
  • Interprofessional collaboration
  • Type 2 diabetes

BMC Health Services Research

ISSN: 1472-6963

diabetes type 2 research studies

  • Review article
  • Open access
  • Published: 10 May 2024

Metformin mitigates dementia risk among individuals with type 2 diabetes

  • Nicholas Aderinto 1 ,
  • Gbolahan Olatunji 2 ,
  • Emmanuel Kokori 2 ,
  • Praise Fawehinmi 3 ,
  • Abdulrahmon Moradeyo 1 ,
  • Stephen Igwe 2 ,
  • Rebecca Ojabo 4 ,
  • Badrudeen Olalekan Alabi 2 ,
  • Emmanuel Chuka Okafor 4 ,
  • Damilola Ologbe 5 ,
  • Ayobami Olafimihan 6 &
  • David B. Olawade 7  

Clinical Diabetes and Endocrinology volume  10 , Article number:  10 ( 2024 ) Cite this article

167 Accesses

Metrics details

This mini-narrative review explores the relationship between diabetes and dementia, focusing on the potential mitigating role of metformin in reducing cognitive decline among individuals with type 2 diabetes. The interplay of factors such as glycemic control, diabetic complications, and lifestyle influences characterises diabetes-related dementia. This review emphasises the significance of comprehensive diabetes management in addressing the heightened risk of dementia in this population. Methodologically, the review synthesises evidence from 23 studies retrieved through searches on PubMed, Embase, Google Scholar, and Scopus. Current evidence suggests a predominantly positive association between metformin use and a reduced risk of dementia in individuals with diabetes. However, the review shows the complex nature of these outcomes, revealing variations in results in some studies. These discrepancies show the importance of exploring dose–response relationships, long-term effects, and demographic diversity to unravel the complexities of metformin's impact on cognitive health. Limitations in the existing body of research, including methodological disparities and confounding variables, necessitate refined approaches in future studies. Large-scale prospective longitudinal studies and randomised controlled trials focusing specifically on cognitive effects are recommended. Propensity score matching and exploration of molecular mechanisms can enhance the validity of findings in clinical practice. From a clinical perspective, metformin can serve as a potential adjunctive therapy for individuals with diabetes at risk of cognitive decline.

Introduction

Diabetes-related dementia is a significant concern due to the increased risk of dementia in individuals with type 2 diabetes [ 1 ]. The relationship between diabetes and dementia is complex and multifaceted [ 1 ]. Studies have shown that both low and high HbA1C levels are associated with an increased risk of dementia in individuals with diabetes, indicating a non-linear relationship [ 1 , 2 ]. Additionally, uncontrolled diabetes has been linked to an elevated risk of Alzheimer's disease, highlighting the importance of glycemic control in mitigating dementia risk [ 3 ]. Furthermore, severe diabetic retinal disease has been identified as a potential risk factor for dementia in individuals with type 2 diabetes, emphasising the need for comprehensive management of diabetic complications to reduce the likelihood of developing dementia [ 4 ].

The impact of lifestyle factors on diabetes-related dementia has also been investigated, with studies suggesting that a combination of healthy lifestyle factors is associated with a reduced risk of dementia in patients with type 2 diabetes [ 5 ]. However, the aetiology of diabetes-related dementia remains unclear, and it has been proposed that dementia in diabetic patients should be regarded as an independent disease, distinct from Alzheimer's disease and vascular dementia, due to its unique pathophysiological characteristics related to diabetes [ 6 , 7 , 8 ].

The investigation into metformin as a potential mitigating agent for dementia risk among individuals with diabetes is grounded in the expanding body of evidence highlighting its plausible neuroprotective role [ 9 ]. Metformin's potential as a neuroprotective agent has been linked to its ability to lower mortality and age-related diseases independently of its impact on diabetes control [ 10 , 11 , 12 , 13 , 14 ]. Empirical evidence suggests that metformin might mitigate dementia risk by reducing oxidative stress, inflammation, and apoptosis and countering the deleterious effects of advanced glycosylation end products produced during hyperglycemia [ 10 , 11 ]. These collective findings show metformin's potential not only in diabetes management but also in addressing neurological disorders. This study aims to review the current evidence for metformin as a mitigating agent for dementia risk among individuals with diabetes.

Methodology

We searched PubMed, Embase, Google Scholar and Scopus to conduct this narrative review see Table  1 . We formulated a database search strategy based on keywords such as "diabetes," "diabetes mellitus," "diabetes mellitus, Type 2", "metformin," "biguanides," "metformin benefits," "anti-diabetic medications," "memory," "cognition," "cognitive-impairment," "amnestic mild cognitive impairment," "Alzheimer's disease," "Parkinson's disease," and "dementia." We also used other texts selected based on the existing literature and/or obtained from related bibliographies, combined using Boolean operators as follows: ((dementia) OR (cognitive-impairment) OR (cognitive function) OR (neurodegenerative diseases)) AND ((metformin) OR (anti-diabetic drugs)). Furthermore, we manually searched relevant articles cited within the retrieved studies to avoid omitting important research articles.

We only considered articles that a) presented results in English, b) had full text available, and c) specifically assessed dementia risk in patients with diabetes who were on metformin therapy. On the other hand, we excluded studies with a) missing data, b) articles that did not focus on metformin use in type 2 diabetes mellitus, c) studies performed on patients with significant neurological, psychiatric disease or cancer, and d) studies performed in vitro or animal models. We limited the study scope to randomised controlled trials, retrospective cohort studies, prospective observational studies, comparator studies, and case–control studies but excluded books, letters, editorials, conferences, and commentaries.

During the data extraction process, we evaluated the study characteristics such as the publication type, year, study design, study focus, sample size, and the number of positive and negative outcomes. It is important to note that we focused on the probable benefit of metformin in mitigating dementia risk among individuals with diabetes despite the controversial nature of the topic.

Current evidence in existing literature

Our review identified 23 studies, including sample sizes ranging from 305 to 446,105 participants see Table  2 . A majority of these studies, 17 out of the 23 [ 10 , 11 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 ], reported positive outcomes regarding the relationship between metformin use and dementia risk in individuals with diabetes. Metformin is the preferred first-line drug for the treatment of type 2 diabetes mellitus [ 9 ]. It can be safely administered with other antidiabetic drugs and has been demonstrated to reduce insulin resistance and improve glycaemic control [ 9 ]. However, a review of clinical trials paints a mixed picture of the connection between the use of metformin and the incidence of dementia among patients with diabetes.

The findings of observational studies examining the possible link between metformin and dementia risk have been inconclusive. Eleven (57.9%) of the 19 analysed publications had positive results, proving that metformin may help lower the risk of dementia [ 10 , 11 , 13 , 14 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 27 ]. Five articles (26.3%) had an elevated risk [ 25 , 26 , 28 , 29 , 30 ], whereas three (15.8%) provided a condition for decreased risk [ 15 , 16 , 17 ]. A retrospective cohort study by Chin-Hsiao Tseng indicated a lower risk when metformin was used with other medications, such as acarbose and pioglitazone [ 18 ]. At the end of a 6-month follow-up study, a significant difference in cognitive performance compared to baseline in frail women treated with extended-release metformin (p: 0.007) was observed [ 27 ]. Huang et al. highlighted the protective benefits of metformin when used at a low dose [ 16 ]. At the same time, Huang et al. reported higher doses of metformin with a higher intensity showed no protective role against dementia [ 16 ]. However, cohort studies by Yi-Chun Kuan showed mixed results. They raised questions because they linked long-term metformin use to a higher risk of dementia from all causes, including vascular disease and Alzheimer's disease [ 28 , 32 ]. Scherrer et al. showed that the effects of metformin vary in different subpopulations, indicating a lower risk in some individuals (> 50 years) [ 21 ].

Furthermore, the results from I-Shiang Tzeng raise questions about the possibility that metformin and DPP-4 inhibitor combination therapy alleviated the risk of dementia [ 26 ]. These varied results highlight the complex nature of the connection between dementia and metformin use and highlight the need for additional studies, especially examining dose–response interactions, long-term effects, and demographic diversity to offer a more thorough understanding. Among the notable findings is a study conducted by Chin-Hsiao Tseng in 2019, which indicated a reduction in the risk of dementia associated with metformin, particularly in the female population [ 18 ]. Furthermore, the use of a combination of three drugs (Metformin, acarbose, pioglitazone) was associated with the lowest risk of dementia, as highlighted in the same study [ 18 ]. Additionally, a study by Yonghwan Kim et al. demonstrated a dose–response relationship, revealing that Metformin use in an elderly population with diabetes mellitus contributed to a reduction in dementia risk [ 19 ]. However, a retrospective cohort study by Ariela R. Orkaby et al. in 2017 suggested that metformin was associated with a lower risk of subsequent dementia compared to sulfonylurea use in veterans aged 75 years and older [ 13 ]. Notably, a lower risk was also observed in a subset of younger veterans who maintained an HbA1C value of 7% and exhibited good renal function [ 13 ]. In the 2015 study by Kwang-pil Ko et al., a comprehensive evaluation of metformin's efficacy in modulating physical and mental profiles was undertaken, revealing favourable outcomes [ 22 ]. Specifically, within the age group of 65 to 74 years, metformin demonstrated a statistically significant association with a reduced risk of dementia across various racial categories. However, a distinctive pattern emerged among patients aged 75 years and older, as metformin exhibited no statistically significant association with dementia within this older demographic [ 23 ].

Theoretically, antidiabetic drugs designed to ameliorate insulin resistance within the brain hold promise in preventing Alzheimer's disease or dementia [ 18 , 31 ]. In a study involving 17,200 new users of metformin, a lower risk of dementia was reported in a subset of younger veterans exhibiting HbA1C values ≥ 7%, those with good renal function, and individuals of white ethnicity [ 13 ]. In a study conducted, T2DM compared with no medication, sulfonylureas alone reduced the HR from 1 to 0.85 (0.71–1.01), metformin alone to 0.76 (0.58–0.98), while with combined oral therapy, the HR was 0.65 (0.56–0.74) [ 20 ]. Adjustments included cerebrovascular diseases so that non-stroke-related dementias were found to be decreased in DM with sulfonylurea and metformin therapy. T2DM increases the risk of dementia more than 2-fold.

Elevated blood glucose levels pose a potential threat to cerebral function, contributing to an elevated risk of dementia in individuals with diabetes [ 19 , 31 ]. The link between diabetes and dementia is likely multifactorial, involving mechanisms such as inflammation, oxidative stress, atherosclerosis, amyloid-β deposition, brain insulin resistance accompanied by hyperinsulinemia, advanced glycation end-products (AGEs), and dysregulation of lipid metabolism [ 20 , 33 ]. Metformin, recognised as the primary first-line therapy for type 2 diabetes mellitus, operates by curbing hepatic gluconeogenesis and augmenting muscular glucose uptake by activating 5'-adenosine monophosphate-activated protein kinase (AMPK) [ 21 ]. Beyond its glucose-lowering effects, metformin has demonstrated additional benefits in individuals with type 2 diabetes, including reducing the risk of atherosclerotic events, protection against certain cancers, and an anti-ageing effect [ 20 ].

The potential neuroprotective effects of metformin are suggested to stem from its capacity to inhibit inflammatory responses and enhance cognitive function [ 16 ]. Apolipoprotein E (APOE), a crucial protein in lipid transport and brain injury repair, is implicated in Alzheimer's disease risk [ 21 ]. Specific APOE gene polymorphisms, particularly the ε4 allele, elevate the risk of AD, while the ε2 allele is associated with reduced risk [ 10 ]. The APOE ε4 allele is also linked to an increased risk of cerebral amyloid angiopathy and age-related cognitive decline. A recent study hinted at an association between metformin use and a faster decline in delayed memory among carriers of the APOE ε4 allele, prompting the need for further research to elucidate the potential influence of APOE ε4 genotype on the therapeutic effects of metformin [ 29 ].

Limitations and future directions

Existing studies on metformin’s involvement in reducing dementia risk in patients with diabetes have significant limitations that should be considered. First, many studies have methodological variances, such as differences in study design, sample size, and outcome measures. This variation makes obtaining standardised results difficult and direct comparisons between investigations difficult. Furthermore, the heterogeneity within the examined groups, which includes age and diabetes duration, complicates interpretation and restricts the generalizability of the findings. Most observational studies failed to address bias or did not address it clearly, making the evidence less efficient. Another significant issue is the possibility of confounding variables influencing the outcomes. Factors such as genetic predisposition, lifestyle decisions, and concurrent pharmaceutical use may all impact cognitive performance independent of metformin, making it difficult to assign observed effects to medication alone. Furthermore, contradictions in studies are exacerbated by differences in the definitions of dementia and cognitive decline between studies.

Future studies should target certain areas to address these constraints and to increase understanding. Large-scale, well-designed, prospective longitudinal studies with long follow-up periods can provide stronger data and aid in determining causation. In addition, randomised controlled trials (RCTs) focusing only on the cognitive effects of metformin would provide more control over confounding factors. Subgroup analyses within the diabetic population, considering variables such as age, sex, and diabetes management details, would help better understand the influence of metformin on various patient groups. Applying propensity score matching, or at the very least, a match for age, sex, and health status, will improve data validity by lowering baseline variability and, if possible, investigate the relationship between metformin usage, B-12 vitamin levels, and dementia. To inform clinical practice, it is critical to investigate dose–response relationships and optimal dosages for potential cognitive benefits.

Furthermore, a thorough examination of the molecular mechanisms underlying the influence of metformin on cognitive performance is required. This knowledge can guide focused therapies and identify individuals most benefit from metformin therapy. Future research should prioritise uniform study designs, investigate specific demographic subgroups, and explore molecular causes to improve the reliability and usefulness of the findings in clinical practice.

Implications for clinical practice

Clinically, the favourable results observed in multiple studies imply that metformin may be a feasible alternative for people with diabetes, particularly for those at risk of cognitive loss see Fig.  1 .

figure 1

Metformin in dementia risk in type 2 diabetes

Healthcare practitioners should inform patients about the potential cognitive benefits in addition to glycemic control. However, care is advised owing to inconsistent findings and potential issues, such as the variation in the metformin outcome, increased risk of vitamin B-12 insufficiency, and identified risk with certain combinations, emphasising the importance of tailored treatment programs and regular cognitive monitoring. A multidisciplinary approach that combines endocrinologists, neurologists, and senior experts is required to address the complicated connection between diabetes control and cognitive health. Senior experts such as diabetologists are key in tailoring diabetes treatment plans to achieve optimal glycemic control [ 34 ]. In addition, it is essential also to involve psychologists and occupational therapists. These professionals play pivotal roles in the identification, comprehensive assessment, and rehabilitation processes associated with dementia [ 35 ]. They collaborate closely to develop tailored interventions that address cognitive deficits and consider the individual's emotional and functional aspects [ 36 ]. This collaborative effort ensures a more personalised approach to patient care.

At the public health level, awareness programs should be launched to educate diabetic patients about the potential cognitive consequences of metformin and the significance of making informed decisions. Comprehensive studies investigating dose–response connections, long-term consequences, and population-specific effects should receive research funding. Public health guidelines must be revised to reflect increasing evidence, giving healthcare practitioners clear advice on using metformin in diabetes management taking both glycaemic control and cognitive outcomes into account. Policymakers should consider these findings when developing diabetes management policies and public health initiatives to ensure that possible cognitive effects are integrated into broader healthcare programs.

Limitations and strengths of review

The review provides clear implications for clinical practice, suggesting that metformin may be a feasible adjunctive therapy for individuals with diabetes at risk of cognitive decline. The multidisciplinary approach recommended for navigating the complex relationship between diabetes control and cognitive health enhances the practicality of the review's recommendations. Also, the review identifies varied outcomes across studies, emphasising the complexity of the relationship between metformin use and dementia risk. This acknowledgement of diverse findings encourages a more cautious interpretation and highlights the need for further research. However, the included studies exhibit methodological disparities, including differences in study design, sample size, and outcome measures. This variation makes it challenging to obtain standardised results and directly compare findings between investigations.

The body of evidence exploring metformin's role in mitigating dementia risk among individuals with diabetes presents a complex yet promising landscape. The interplay between diabetes and dementia shows the importance of glycemic control and comprehensive management of diabetic complications in reducing the likelihood of cognitive decline. This mini-narrative review reveals a spectrum of outcomes regarding the potential connection between metformin use and dementia risk in patients with diabetes. While a majority of studies suggest a positive association between metformin use and a reduced risk of dementia, the complex nature of these findings prompts a cautious interpretation. Dose–response interactions, long-term effects, and demographic diversity emerge as critical factors requiring further investigation to understand metformin's impact on cognitive health. Noteworthy variations in outcomes across studies highlight the need for standardised methodologies and robust study designs in future research endeavours.

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Abbreviations

Advanced Glycosylation End Products

Alzheimer's Disease

5'-Adenosine Monophosphate-Activated Protein Kinase

Apolipoprotein E

Vitamin B-12

Epsilon 2 (APOE gene polymorphism)

Epsilon 4 (APOE gene polymorphism)

Hemoglobin A1c

Hazard Ratio

Randomized Controlled Trials

Type 2 Diabetes Mellitus

Crane PK, Walker R, Hubbard RA, Li G, Nathan DM, Zheng H, et al. Glucose levels and risk of dementia. N Engl J Med. 2013;369:540–8. https://doi.org/10.1056/NEJMoa1215740 .

Article   CAS   PubMed   PubMed Central   Google Scholar  

Geijselaers SLC, Sep SJS, Stehouwer CDA, Biessels GJ. Glucose regulation, cognition, and brain MRI in type 2 diabetes: a systematic review. Lancet Diabetes Endocrinol. 2015;3:75–89. https://doi.org/10.1016/S2213-8587(14)70148-2 .

Article   CAS   PubMed   Google Scholar  

Xu WL, von Strauss E, Qiu CX, Winblad B, Fratiglioni L. Uncontrolled diabetes increases the risk of Alzheimer’s disease: a population-based cohort study. Diabetologia. 2009;52:1031–9. https://doi.org/10.1007/s00125-009-1323-x .

Exalto LG, Biessels GJ, Karter AJ, Huang ES, Quesenberry CP, Whitmer RA. Severe Diabetic retinal disease and dementia risk in type 2 diabetes. J Alzheimer’s Dis. 2014;42:S109–17. https://doi.org/10.3233/JAD-132570 .

Article   Google Scholar  

Wang B, Wang N, Sun Y, Tan X, Zhang J, Lu Y. Association of combined healthy lifestyle factors with incident dementia in patients with type 2 diabetes. Neurology. 2022;99:E2336–45. https://doi.org/10.1212/WNL.0000000000201231 .

Tsugawa A, Ogawa Y, Takenoshita N, Kaneko Y, Hatanaka H, Jaime E, et al. Decreased muscle strength and quality in diabetes-related dementia. Dement Geriatr Cogn Dis Extra. 2017;7:454–62. https://doi.org/10.1159/000485177 .

Article   PubMed   PubMed Central   Google Scholar  

Hanyu H, Hirose D, Fukasawa R, Hatanaka H, Namioka N, Sakurai H. Guidelines for the clinical diagnosis of diabetes mellitus-related dementia. J Am Geriatr Soc. 2015;63:1721–3. https://doi.org/10.1111/jgs.13581 .

Article   PubMed   Google Scholar  

Mayeda ER, Karter AJ, Huang ES, Moffet HH, Haan MN, Whitmer RA. Racial/ethnic differences in dementia risk among older type 2 diabetic patients: the diabetes and aging study. Diabetes Care. 2014;37:1009–15. https://doi.org/10.2337/dc13-0215 .

Campbell JM, Stephenson MD, de Courten B, Chapman I, Bellman SM, Aromataris E. Metformin use associated with reduced risk of dementia in patients with diabetes: a systematic review and meta-analysis. J Alzheimer’s Dis. 2018;65:1225–36. https://doi.org/10.3233/JAD-180263 .

Wium-Andersen IK, Osler M, Jørgensen MB, Rungby J, Wium-Andersen MK. Antidiabetic medication and risk of dementia in patients with type 2 diabetes: a nested case–control study. Eur J Endocrinol. 2019;181:499–507. https://doi.org/10.1530/EJE-19-0259 .

Hsu CC, Wahlqvist ML, Lee MS, Tsai HN. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis. 2011;24(3):485–93. https://doi.org/10.3233/JAD-2011-101524 .

Article   CAS   Google Scholar  

Campbell JM, Bellman SM, Stephenson MD, Lisy K. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: a systematic review and meta-analysis. Ageing Res Rev. 2017;40:31–44. https://doi.org/10.1016/j.arr.2017.08.003 .

Orkaby AR, Cho K, Cormack J, Gagnon DR, Driver JA. Metformin vs sulfonylurea use and risk of dementia in US veterans aged ≥65 years with diabetes. Neurology. 2017;89:1877–85. https://doi.org/10.1212/WNL.0000000000004586 .

Samaras K, Makkar S, Crawford JD, Kochan NA, Wen W, Draper B, et al. Metformin use is associated with slowed cognitive decline and reduced incident dementia in older adults with type 2 diabetes: the sydney memory and ageing study. Diabetes Care. 2020;43:2691–701. https://doi.org/10.2337/DC20-0892 .

Ng TP, Feng L, Yap KB, Lee TS, Tan CH, Winblad B. Long-term metformin usage and cognitive function among older adults with diabetes. J Alzheimer’s Dis. 2014;41:61–8. https://doi.org/10.3233/JAD-131901 .

Huang K-H, Tsai Y-F, Lee CB, Gau S-Y, Tsai T-H, Chung N-J, et al. The correlation between metformin use and incident dementia in patients with new-onset diabetes mellitus: a population-based study. J Pers Med. 2023;13:738. https://doi.org/10.3390/jpm13050738 .

Luchsinger JA, Perez T, Chang H, Mehta P, Steffener J, Pradabhan G, et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial. J Alzheimer’s Dis. 2016;51:501–14. https://doi.org/10.3233/JAD-150493 .

Tseng C-H. Dementia risk in type 2 diabetes patients: acarbose use and its joint effects with metformin and pioglitazone. Aging Dis. 2020;11:658.

Kim Y, Kim H-S, Lee J, Kim Y-S, You H-S, Bae Y-J, et al. Metformin use in elderly population with diabetes reduced the risk of dementia in a dose-dependent manner, based on the Korean NHIS-HEALS cohort. Diabetes Res Clin Pract. 2020;170:108496. https://doi.org/10.1016/j.diabres.2020.108496 .

Chin-Hsiao T. Metformin and the Risk of Dementia in Type 2 Diabetes Patients. Aging Dis. 2019;10(1):37–48. https://doi.org/10.14336/AD.2017.1202 .

Scherrer JF, Salas J, Floyd JS, Farr SA, Morley JE, Dublin S. Metformin and sulfonylurea use and risk of incident dementia. Mayo Clin Proc. 2019;94:1444–56. https://doi.org/10.1016/j.mayocp.2019.01.004 .

Ko K-P, Ma SH, Yang J-J, Hwang Y, Ahn C, Cho Y-M, et al. Metformin intervention in obese non-diabetic patients with breast cancer: phase II randomized, double-blind, placebo-controlled trial. Breast Cancer Res Treat. 2015;153:361–70. https://doi.org/10.1007/s10549-015-3519-8 .

Scherrer JF, Morley JE, Salas J, Floyd JS, Farr SA, Dublin S. Association between metformin initiation and incident dementia among African American and white veterans health administration patients. Ann Fam Med. 2019;17:352–62. https://doi.org/10.1370/afm.2415 .

Newby D, Linden AB, Fernandes M, Molero Y, Winchester L, Sproviero W, Ghose U, Li QS, Launer LJ, Duijn CMV, Nevado-Holgado AJ. Comparative effect of metformin versus sulfonylureas with dementia and Parkinson's disease risk in US patients over 50 with type 2 diabetes mellitus. BMJ Open Diabetes Res Care. 2022;10(5):e003036. https://doi.org/10.1136/bmjdrc-2022-003036 .

de Jager J, Kooy A, Lehert P, Wulffele MG, van der Kolk J, Bets D, et al. Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: randomised placebo controlled trial. BMJ. 2010;340:c2181–c2181. https://doi.org/10.1136/bmj.c2181 .

Tzeng I-S, Hsieh T-H. Collocation of metformin and dipeptidyl peptidase-4 inhibitor is associated with increased risk of diabetes-related vascular dementia: a single hospital study in Northern Taiwan. Expert Opin Investig Drugs. 2023;32:171–6. https://doi.org/10.1080/13543784.2023.2178417 .

Mone P, Martinelli G, Lucariello A, Leo AL, Marro A, De Gennaro S, Marzocco S, Moriello D, Frullone S, Cobellis L, Santulli G. Extended-release metformin improves cognitive impairment in frail older women with hypertension and diabetes: preliminary results from the LEOPARDESS Study. Cardiovasc Diabetol. 2023;22(1):94. https://doi.org/10.1186/s12933-023-01817-4 .

Kuan Y-C, Huang K-W, Lin C-L, Hu C-J, Kao C-H. Effects of metformin exposure on neurodegenerative diseases in elderly patients with type 2 diabetes mellitus. Prog Neuro-Psychopharmacol Biol Psychiatry. 2017;79:77–83. https://doi.org/10.1016/j.pnpbp.2017.06.002 .

Xue Y, Xie X. The association between metformin use and risk of developing severe dementia among ad patients with type 2 diabetes. Biomedicines. 2023;11:2935. https://doi.org/10.3390/biomedicines11112935 .

Luchsinger JA, Ma Y, Christophi CA, Florez H, Golden SH, Hazuda H, et al. Metformin, lifestyle intervention, and cognition in the diabetes prevention program outcomes study. Diabetes Care. 2017;40:958–65. https://doi.org/10.2337/dc16-2376 .

Zhou C, Peng B, Qin Z, Zhu W, Guo C. Metformin attenuates LPS-induced neuronal injury and cognitive impairments by blocking NF-κB pathway. BMC Neurosci. 2021;22(1):73. https://doi.org/10.1186/s12868-021-00678-5 .

Rabieipoor S, Zare M, Ettcheto M, Camins A, Javan M. Metformin restores cognitive dysfunction and histopathological deficits in an animal model of sporadic Alzheimer’s disease. Heliyon. 2023;9(7):e17873. https://doi.org/10.1016/j.heliyon.2023.e17873 .

Ji S, Wang L, Li L. Effect of metformin on short-term high-fat diet-induced weight gain and anxiety-like behavior and the gut microbiota. Front Endocrinol. 2019;10:704. https://doi.org/10.3389/fendo.2019.00704 .

Tong PC, Chan SC, Chan WB, Ho KK, Leung GT, Lo SH, Mak GY, Tse TS. Consensus statements from the diabetologists & endocrinologists alliance for the management of people with hypertension and type 2 diabetes mellitus. J Clin Med. 2023;12(10):3403. https://doi.org/10.3390/jcm12103403 .

Sridhar GR. On psychology and psychiatry in diabetes. Indian J Endocrinol Metab. 2020;24(5):387–95. https://doi.org/10.4103/ijem.IJEM_188_20 .

Aderinto N, Olatunji G, Abdulbasit M, Ashinze P, Faturoti O, Ajagbe A, Ukoaka B, Aboderin G. The impact of diabetes in cognitive impairment: a review of current evidence and prospects for future investigations. Medicine. 2023;102(43):e35557. https://doi.org/10.1097/MD.0000000000035557 .

Download references

Acknowledgements

No funding was received for this study.

Author information

Authors and affiliations.

Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

Nicholas Aderinto & Abdulrahmon Moradeyo

Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria

Gbolahan Olatunji, Emmanuel Kokori, Stephen Igwe & Badrudeen Olalekan Alabi

Southern Illinois University Edwardsville, Edwardsville, IL, USA

Praise Fawehinmi

Afe Babalola University, Ado-Ekiti, Ado, Nigeria

Rebecca Ojabo & Emmanuel Chuka Okafor

William Harvey Hospital, Ashford, UK

Damilola Ologbe

John H. Stroger Jr Hospital of Cook County, Chicago, IL, USA

Ayobami Olafimihan

Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, UK

David B. Olawade

You can also search for this author in PubMed   Google Scholar

Contributions

NA conceptualised the study; All authors were involved in the literature review; GO & EK extracted the data from the reviewed studies; All authors wrote the final and first drafts. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nicholas Aderinto .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Aderinto, N., Olatunji, G., Kokori, E. et al. Metformin mitigates dementia risk among individuals with type 2 diabetes. Clin Diabetes Endocrinol 10 , 10 (2024). https://doi.org/10.1186/s40842-024-00168-7

Download citation

Received : 26 December 2023

Accepted : 18 January 2024

Published : 10 May 2024

DOI : https://doi.org/10.1186/s40842-024-00168-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Diabetes Mellitus
  • Cognitive impairment

Clinical Diabetes and Endocrinology

ISSN: 2055-8260

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

diabetes type 2 research studies

IMAGES

  1. (PDF) Research of Type 2 Diabetes Patients’ Problem Areas and Affecting

    diabetes type 2 research studies

  2. (PDF) A Case Study and Meta-Analysis of Type 2 Diabetes Research

    diabetes type 2 research studies

  3. (PDF) Dietary factors and diabetes-related health outcomes in patients

    diabetes type 2 research studies

  4. Type 2 Diabetes Concept Map and Study Guide

    diabetes type 2 research studies

  5. Surveys Find Adults with Type 2 Diabetes Are More Willing to Take

    diabetes type 2 research studies

  6. New Perspectives into the Molecular Pathogenesis and Treatment of Type

    diabetes type 2 research studies

VIDEO

  1. Signs of type 2 diabetes

  2. Type 2 Diabetes Myths DEBUNKED

  3. Short and easy to understand: type 2 diabetes early detection and prevention

  4. What's new in Diabetes Research?

  5. I have diabetes type 2

COMMENTS

  1. Type 2 Diabetes Clinical Trials

    A Comparative Effectiveness Study of Major Glycemia-lowering Medications for Treatment of Type 2 Diabetes Rochester, MN. The GRADE Study is a pragmatic, unmasked clinical trial that will compare commonly used diabetes medications, when combined with metformin, on glycemia-lowering effectiveness and patient-centered outcomes.

  2. Overview of Clinical Trials on Type 2 Diabetes Mellitus: A

    The American Diabetes Association and the International Diabetes Federation emphasized that diabetes prevention should be the focus of future research. 29, 30 Previous studies demonstrated that lifestyle intervention and health education implementation may delay the onset of diabetes in high-risk persons. 31-33 Therefore, additional research ...

  3. Glycemia Reduction in Type 2 Diabetes

    Methods. In this trial involving participants with type 2 diabetes of less than 10 years' duration who were receiving metformin and had glycated hemoglobin levels of 6.8 to 8.5%, we compared the ...

  4. Clinical Trials for Diabetes

    The Glycemia Reduction Approaches in Diabetes: A Comparative Effectiveness Study is following more than 5,000 people across the country who have type 2 diabetes to find out which combination of two diabetes medicines is best for blood glucose, also called blood sugar, management; has the fewest side effects; and is the most helpful for overall ...

  5. Trends in Diabetes Treatment and Control in U.S. Adults, 1999-2018

    However, type 2 diabetes makes up more than 90% of diagnosed diabetes cases in the United States. 35 Thus, our findings largely reflect risk-factor treatment and control in those with type 2 diabetes.

  6. Clinical Research in Type 2 Diabetes

    NIDDK Program Staff. Henry B. Burch, M.D. Clinical studies utilizing existing digital health technology for the prevention and treatment of type 2 diabetes, clinical and basic science studies involving non-neoplastic disorders of the thyroid, clinical studies involving medical and novel dietary treatment of type 2 diabetes.

  7. Type 2 diabetes

    Type 2 diabetes mellitus, the most frequent subtype of diabetes, is a disease characterized by high levels of blood glucose (hyperglycaemia). It arises from a resistance to and relative deficiency ...

  8. Type 2 Diabetes Research At-a-Glance

    The ADA is committed to continuing progress in the fight against type 2 diabetes by funding research, including support for potential new treatments, a better understating of genetic factors, addressing disparities, and more. ... This study has the potential to guide and improve policies impacting low-income minorities with diabetes. In ...

  9. Type 2 diabetes

    Type 2 diabetes accounts for nearly 90% of the approximately 537 million cases of diabetes worldwide. The number affected is increasing rapidly with alarming trends in children and young adults (up to age 40 years). Early detection and proactive management are crucial for prevention and mitigation of microvascular and macrovascular complications and mortality burden. Access to novel therapies ...

  10. Association of risk factors with type 2 diabetes: A systematic review

    The relevant studies have to meet the following inclusion criteria: 1) published in the English language, 2) prospective cohort or cross-sectional study, 3) type 2 diabetes as a specified risk, 4) one of its risk factors, 5) findings in terms of Odds Ratio (OR), Risk Ratio/Relative Risk (RR), or Hazard Ratio (HR), and the corresponding 95% ...

  11. Clinical Research on Type 2 Diabetes: A Promising and Multifaceted

    The chronic complications of type 2 diabetes are a major cause of mortality and disability worldwide [ 1, 2 ]. Clinical research is the main way to gain knowledge about long-term diabetic complications and reduce the burden of diabetes. This allows for designing effective programs for screening and follow-up and fine-targeted therapeutic ...

  12. Recent Advances

    In a study published this year, Dr. Snell-Bergeon found that menopause increased risk markers for heart disease in women with type 1 diabetes more than women without diabetes. Research has led to improved treatments and significant gains in life expectancy for people with diabetes and, as a result, many more women are reaching the age of menopause.

  13. Harvard diabetes researcher details science behind potential

    Both are now adults, and both have Type 1 diabetes. My son was 6 months old when he was diagnosed. And that's when I changed my research plan. And my daughter, who's four years older than my son, became diabetic about 10 years later, when she was 14. When my son was diagnosed, I knew nothing about diabetes and had been working on how frogs ...

  14. Diabetes

    Type 2 diabetes is the most common form of the disease, accounting for about 90 to 94 percent of diagnosed diabetes cases in U.S. adults. ... NIDDK also provides data and samples from NIDDK-funded studies and explains research findings to health professionals and the public. Support Research. NIDDK invests in basic, clinical and translational ...

  15. New Research Sheds Light on Cause of Type 2 Diabetes

    The new research, published in the journal Nature Communications, offers a potential strategy for developing new therapies that could restore dysfunctional pancreatic beta-cells or, perhaps, even prevent Type 2 diabetes from developing. The new study shows that the beta-cells of Type 2 diabetes patients are deficient in a cell trafficking ...

  16. Diabetes Type 2 Research

    Xiaowei (Sherry) Yan. Dr. Yan is a data scientist and biostatistician. She specializes in methodology development and the application of advanced analytics using EHR. Review the latest Diabetes Type 2 research at Sutter Health's world-class research institutes. See current studies, clinical trials, publications and more.

  17. UCSD Diabetes Type 2 Clinical Trials for 2024

    Time-Restricted Eating for Type II Diabetes: TRE-T2D. open to eligible people ages 18-70. This is a randomized clinical trial to assess the feasibility and efficacy of time-restricted eating (TRE) to improve glucose regulation and cardiovascular health of participants with type 2 diabetes mellitus (T2DM). Participants will be randomized….

  18. Landmark study sheds new light on the heterogeneity of type 2 diabetes

    Analysis of type 2 diabetes heterogeneity with a tree-like representation: insights from the prospective German Diabetes Study and the LURIC cohort. The Lancet Diabetes & Endocrinology . doi.org ...

  19. Clinical Trials

    The American Diabetes Association is currently a partner providing support for the following clinical studies and initiatives: TrialNet Type 1 Diabetes TrialNet is an international network of researchers who are exploring ways to prevent, delay and reverse the progression of type 1 diabetes. GRADE

  20. New Aspects of Diabetes Research and Therapeutic Development

    I. Introduction. Diabetes mellitus, a metabolic disease defined by elevated fasting blood glucose levels due to insufficient insulin production, has reached epidemic proportions worldwide (World Health Organization, 2020).Type 1 and type 2 diabetes (T1D and T2D, respectively) make up the majority of diabetes cases with T1D characterized by autoimmune destruction of the insulin-producing ...

  21. 'Smart speaker' shows potential for better self-management of Type 2

    The study followed 32 individuals with Type 2 diabetes who were all taking insulin and struggling to achieve healthy blood glucose levels. Half of those received a speaker preloaded with the voice-based artificial intelligence software created by the research team.

  22. Impact of Gender on Chronic Complications in Participants With Type 2

    1 Introduction. According to the International Diabetes Federation (IDF), the prevalence of diabetes in 20- to 79-year-olds was 10.5% or 536.6 million people worldwide in 2021, causing the healthcare system to spend 966 billion USD on controlling diabetes [].By 2045, this number will increase to 12.2% or 783.2 million, and expenses will likely rise to 1054 billion USD [].

  23. Association of dietary nutrient intake with type 2 diabetes: A

    Abstract. Observational research suggests that the evidence linking dietary nutrient intake (encompassing minerals, vitamins, amino acids, and unsaturated fatty acids) to type 2 diabetes (T2D) is both inconsistent and limited. This study aims to explore the potential causal relationship between dietary nutrients and T2D.

  24. Impact of sarcopenic obesity on heart failure in people with type 2

    Impact of sarcopenic obesity on heart failure in people with type 2 diabetes and the role of metabolism and inflammation: a prospective cohort study ... UK Biobank has approval from the North West Multi-Centre Research Ethics Committee as a Research Tissue Bank approval in 2011 and is renewed every 5 years, which allowed researchers to use data ...

  25. Chronic sleep deficiency increases insulin resistance in women

    Insulin helps regulate glucose in the body, and when the body's cells build resistance to insulin, they become less able to use it effectively and can cause a person's risk for prediabetes and type 2 diabetes to rise dramatically. For the study, researchers recruited 40 women, aged 20-75, who had healthy sleep patterns (at least 7-9 hours ...

  26. Reversing Type 2 Diabetes: A Narrative Review of the Evidence

    Abstract. Background: Type 2 diabetes (T2D) has long been identified as an incurable chronic disease based on traditional means of treatment. Research now exists that suggests reversal is possible through other means that have only recently been embraced in the guidelines. This narrative review examines the evidence for T2D reversal using each ...

  27. Patient medication management, understanding and adherence during the

    Continuity of care is under great pressure during the transition from hospital to outpatient care. Medication changes during hospitalization may be poorly communicated and understood, compromising patient safety during the transition from hospital to home. The main aims of this study were to investigate the perspectives of patients with type 2 diabetes and multimorbidities on their medications ...

  28. Metformin mitigates dementia risk among individuals with type 2 diabetes

    Diabetes-related dementia is a significant concern due to the increased risk of dementia in individuals with type 2 diabetes [].The relationship between diabetes and dementia is complex and multifaceted [].Studies have shown that both low and high HbA1C levels are associated with an increased risk of dementia in individuals with diabetes, indicating a non-linear relationship [1, 2].

  29. Prevention of Type 2 Diabetes by Lifestyle Changes: A Systematic Review

    Prevention of type 2 diabetes (T2D) is a great challenge worldwide. The aim of this evidence synthesis was to summarize the available evidence in order to update the European Association for the Study of Diabetes (EASD) clinical practice guidelines for nutrition therapy. We conducted a systematic review and, where appropriate, meta-analyses of ...