Research Paper

29 December 2023

last updated

A research paper is a product of seeking information, analysis, human thinking, and time. Basically, when scholars want to get answers to questions, they start to search for information to expand, use, approve, or deny findings. In simple words, research papers are results of processes by considering writing works and following specific requirements. Besides, scientists research and expand many theories, developing social or technological aspects of human science. However, in order to write relevant papers, they need to know a definition of the research, structure, characteristics, and types.

Definition of What Is a Research Paper and Its Meaning

A research paper is a common assignment. It comes to a situation when students, scholars, and scientists need to answer specific questions by using sources. Basically, a research paper is one of the types of papers where scholars analyze questions or topics , look for secondary sources , and write papers on defined themes. For example, if an assignment is to write a research paper on some causes of global warming or any other topic, a person must write a research proposal on it, analyzing important points and credible sources . Although essays focus on personal knowledge, writing a research paper means analyzing sources by following academic standards. Moreover, scientists must meet the structure of research papers. Therefore, writers need to analyze their research paper topics , start to research, cover key aspects, process credible articles, and organize final studies properly.

The Structure of a Research Work

The structure of research papers depends on assignment requirements. In fact, when students get their assignments and instructions, they need to analyze specific research questions or topics, find reliable sources , and write final works. Basically, the structure of research papers consists of the abstract , outline , introduction , literature review , methodology, results , discussion, recommendations, limitations, conclusion , acknowledgments , and references. However, students may not include some of these sections because of assigned instructions that they have and specific types of research papers. For instance, if instructions of papers do not suppose to conduct real experiments, the methodology section can be skipped because of the data’s absence. In turn, the structure of the final work consists of:

research paper

Join our satisfied customers who have received perfect papers from Wr1ter Team.

🔸 The First Part of a Research Study

Abstract or an executive summary means the first section of a research paper that provides the study’s purpose, research questions or suggestions, main findings with conclusions. Moreover, this paragraph of about 150 words should be written when the whole work is finished already. Hence, abstract sections should describe key aspects of studies, including discussions about the relevance of findings.

Outline serves as a clear map of the structure of a research study.

Introduction provides the main information on problem statements, the indication of methodology, important findings, and principal conclusion. Basically, this section of a research paper covers rationales behind the work or background research, explanation of the importance, defending its relevance, a brief description of experimental designs, defined research questions, hypotheses, or key aspects.

🔸 Literature Review and Research or Experiment

Literature Review is needed for the analysis of past studies or scholarly articles to be familiar with research questions or topics. Hence, this section summarizes and synthesizes arguments and ideas from scholarly sources without adding new contributions. In turn, this part is organized around arguments or ideas, not sources.

Methodology or Materials and Methods covers explanations of research designs. Basically, techniques for gathering information and other aspects related to experiments must be described in a research paper. For instance, students and scholars document all specialized materials and general procedures. In this case, individuals may use some or all of the methods in further studies or judge the scientific merit of the work. Moreover, scientists should explain how they are going to conduct their experiments.

Results mean the gained information or data after the research or experiment. Basically, scholars should present and illustrate their findings. Moreover, this section may include tables or figures.

🔸 Analysis of Findings

Discussion is a section of a research paper where scientists review the information in the introduction part, evaluate gained results, or compare it with past studies. In particular, students and scholars interpret gained data or findings in appropriate depth. For example, if results differ from expectations at the beginning, scientists should explain why that may have happened. However, if results agree with rationales, scientists should describe theories that the evidence is supported.

Recommendations take its roots from a discussion section where scholars propose potential solutions or new ideas based on obtained results in a research paper. In this case, if scientists have any recommendations on how to improve this research so that other scholars can use evidence in further studies, they must write what they think in this section.

Limitations mean a consideration of research weaknesses and results to get new directions. For instance, if researchers found any limitations of studies that could affect experiments, scholars must not use such knowledge because of the same mistakes. Moreover, scientists should avoid contradicting results, and, even more, they must write it in this section.

🔸 The Final Part of a Conducted Research

Conclusion includes final claims of a research paper based on findings. Basically, this section covers final thoughts and the summary of the whole work. Moreover, this section may be used instead of limitations and recommendations that would be too small by themselves. In this case, scientists do not need to use headings for recommendations and limitations. Also, check out conclusion examples .

Acknowledgments or Appendix may take different forms, from paragraphs to charts. In this section, scholars include additional information on a research paper.

References mean a section where students, scholars, or scientists provide all used sources by following the format and academic rules.

Research Characteristics

Any type of work must meet some standards. By considering a research paper, this work must be written accordingly. In this case, the main characteristics of research papers are the length, style, format, and sources. Firstly, the length of research work defines the number of needed sources to analyze. Then, the style must be formal and covers impersonal and inclusive language. In turn, the format means academic standards of how to organize final works, including its structure and norms. Finally, sources and their number define works as research papers because of the volume of analyzed information. Hence, these characteristics must be considered while writing research papers.

Types of Research Papers

In general, the length of assignments can be different because of instructions. For example, there are two main types of research papers, such as typical and serious works. Firstly, a typical research paper may include definitive, argumentative, interpretive, and other works. In this case, typical papers are from 2 to 10 pages, where students analyze research questions or specific topics. Then, a serious research study is the expanded version of typical works. In turn, the length of such a paper is more than 10 pages. Basically, such works cover a serious analysis with many sources. Therefore, typical and serious works are two types of research papers.

Typical Research Papers

Basically, typical research works depend on assignments, the number of sources, and the paper’s length. So, a typical research paper is usually a long essay with the analyzed evidence. For example, students in high school and colleges get such assignments to learn how to research and analyze topics. In this case, they do not need to conduct serious experiments with the analysis and calculation of data. Moreover, students must use the Internet or libraries in searching for credible secondary sources to find potential answers to specific questions. As a result, students gather information on topics and learn how to take defined sides, present unique positions, or explain new directions. Hence, typical research papers require an analysis of primary and secondary sources without serious experiments or data.

Serious Research Studies

Although long papers require a lot of time for finding and analyzing credible sources, real experiments are an integral part of research work. Firstly, scholars at universities need to analyze the information from past studies to expand or disapprove of researched topics. Then, if scholars want to prove specific positions or ideas, they must get real evidence. In this case, experiments can be surveys, calculations, or other types of data that scholars do personally. Moreover, a dissertation is a typical serious research paper that young scientists write based on the research analysis of topics, data from conducted experiments, and conclusions at the end of work. Thus, serious research papers are studies that take a lot of time, analysis of sources with gained data, and interpretation of results.

What Is a Research Paper?

  • An Introduction to Punctuation

Olivia Valdes was the Associate Editorial Director for ThoughtCo. She worked with Dotdash Meredith from 2017 to 2021.

research paper and their definition

  • B.A., American Studies, Yale University

A research paper is a common form of academic writing . Research papers require students and academics to locate information about a topic (that is, to conduct research ), take a stand on that topic, and provide support (or evidence) for that position in an organized report.

The term research paper may also refer to a scholarly article that contains the results of original research or an evaluation of research conducted by others. Most scholarly articles must undergo a process of peer review before they can be accepted for publication in an academic journal.

Define Your Research Question

The first step in writing a research paper is defining your research question . Has your instructor assigned a specific topic? If so, great—you've got this step covered. If not, review the guidelines of the assignment. Your instructor has likely provided several general subjects for your consideration. Your research paper should focus on a specific angle on one of these subjects. Spend some time mulling over your options before deciding which one you'd like to explore more deeply.

Try to choose a research question that interests you. The research process is time-consuming, and you'll be significantly more motivated if you have a genuine desire to learn more about the topic. You should also consider whether you have access to all of the resources necessary to conduct thorough research on your topic, such as primary and secondary sources .

Create a Research Strategy 

Approach the research process systematically by creating a research strategy. First, review your library's website. What resources are available? Where will you find them? Do any resources require a special process to gain access? Start gathering those resources—especially those that may be difficult to access—as soon as possible.

Second, make an appointment with a reference librarian . A reference librarian is nothing short of a research superhero. He or she will listen to your research question, offer suggestions for how to focus your research, and direct you toward valuable sources that directly relate to your topic.

Evaluate Sources

Now that you've gathered a wide array of sources, it's time to evaluate them. First, consider the reliability of the information. Where is the information coming from? What is the origin of the source? Second, assess the  relevance  of the information. How does this information relate to your research question? Does it support, refute, or add context to your position? How does it relate to the other sources you'll be using in your paper? Once you have determined that your sources are both reliable and relevant, you can proceed confidently to the writing phase. 

Why Write Research Papers? 

The research process is one of the most taxing academic tasks you'll be asked to complete. Luckily, the value of writing a research paper goes beyond that A+ you hope to receive. Here are just some of the benefits of research papers. 

  • Learning Scholarly Conventions:  Writing a research paper is a crash course in the stylistic conventions of scholarly writing. During the research and writing process, you'll learn how to document your research, cite sources appropriately, format an academic paper, maintain an academic tone, and more.
  • Organizing Information: In a way, research is nothing more than a massive organizational project. The information available to you is near-infinite, and it's your job to review that information, narrow it down, categorize it, and present it in a clear, relevant format. This process requires attention to detail and major brainpower.
  • Managing Time: Research papers put your time management  skills to the test. Every step of the research and writing process takes time, and it's up to you to set aside the time you'll need to complete each step of the task. Maximize your efficiency by creating a research schedule and inserting blocks of "research time" into your calendar as soon as you receive the assignment. 
  • Exploring Your Chosen Subject:  We couldn't forget the best part of research papers—learning about something that truly excites you. No matter what topic you choose, you're bound to come away from the research process with new ideas and countless nuggets of fascinating information. 

The best research papers are the result of genuine interest and a thorough research process. With these ideas in mind, go forth and research. Welcome to the scholarly conversation!

  • What Is a Literature Review?
  • How to Narrow the Research Topic for Your Paper
  • 10 Places to Research Your Paper
  • How to Write a Research Paper That Earns an A
  • What Is a Senior Thesis?
  • Research in Essays and Reports
  • Documentation in Reports and Research Papers
  • An Introduction to Academic Writing
  • How to Organize Research Notes
  • Writing an Annotated Bibliography for a Paper
  • Why Archaeology Topics Are Great Options for Research Papers
  • What Is a Bibliography?
  • 5 Steps to Writing a Position Paper
  • Abstract Writing for Sociology
  • How to Develop a Research Paper Timeline
  • Writing a Paper about an Environmental Issue
  • Search This Site All UCSD Sites Faculty/Staff Search Term
  • Contact & Directions
  • Climate Statement
  • Cognitive Behavioral Neuroscience
  • Cognitive Psychology
  • Developmental Psychology
  • Social Psychology
  • Adjunct Faculty
  • Non-Senate Instructors
  • Researchers
  • Psychology Grads
  • Affiliated Grads
  • New and Prospective Students
  • Honors Program
  • Experiential Learning
  • Programs & Events
  • Psi Chi / Psychology Club
  • Prospective PhD Students
  • Current PhD Students
  • Area Brown Bags
  • Colloquium Series
  • Anderson Distinguished Lecture Series
  • Speaker Videos
  • Undergraduate Program
  • Academic and Writing Resources

Writing Research Papers

  • Research Paper Structure

Whether you are writing a B.S. Degree Research Paper or completing a research report for a Psychology course, it is highly likely that you will need to organize your research paper in accordance with American Psychological Association (APA) guidelines.  Here we discuss the structure of research papers according to APA style.

Major Sections of a Research Paper in APA Style

A complete research paper in APA style that is reporting on experimental research will typically contain a Title page, Abstract, Introduction, Methods, Results, Discussion, and References sections. 1  Many will also contain Figures and Tables and some will have an Appendix or Appendices.  These sections are detailed as follows (for a more in-depth guide, please refer to " How to Write a Research Paper in APA Style ”, a comprehensive guide developed by Prof. Emma Geller). 2

What is this paper called and who wrote it? – the first page of the paper; this includes the name of the paper, a “running head”, authors, and institutional affiliation of the authors.  The institutional affiliation is usually listed in an Author Note that is placed towards the bottom of the title page.  In some cases, the Author Note also contains an acknowledgment of any funding support and of any individuals that assisted with the research project.

One-paragraph summary of the entire study – typically no more than 250 words in length (and in many cases it is well shorter than that), the Abstract provides an overview of the study.

Introduction

What is the topic and why is it worth studying? – the first major section of text in the paper, the Introduction commonly describes the topic under investigation, summarizes or discusses relevant prior research (for related details, please see the Writing Literature Reviews section of this website), identifies unresolved issues that the current research will address, and provides an overview of the research that is to be described in greater detail in the sections to follow.

What did you do? – a section which details how the research was performed.  It typically features a description of the participants/subjects that were involved, the study design, the materials that were used, and the study procedure.  If there were multiple experiments, then each experiment may require a separate Methods section.  A rule of thumb is that the Methods section should be sufficiently detailed for another researcher to duplicate your research.

What did you find? – a section which describes the data that was collected and the results of any statistical tests that were performed.  It may also be prefaced by a description of the analysis procedure that was used. If there were multiple experiments, then each experiment may require a separate Results section.

What is the significance of your results? – the final major section of text in the paper.  The Discussion commonly features a summary of the results that were obtained in the study, describes how those results address the topic under investigation and/or the issues that the research was designed to address, and may expand upon the implications of those findings.  Limitations and directions for future research are also commonly addressed.

List of articles and any books cited – an alphabetized list of the sources that are cited in the paper (by last name of the first author of each source).  Each reference should follow specific APA guidelines regarding author names, dates, article titles, journal titles, journal volume numbers, page numbers, book publishers, publisher locations, websites, and so on (for more information, please see the Citing References in APA Style page of this website).

Tables and Figures

Graphs and data (optional in some cases) – depending on the type of research being performed, there may be Tables and/or Figures (however, in some cases, there may be neither).  In APA style, each Table and each Figure is placed on a separate page and all Tables and Figures are included after the References.   Tables are included first, followed by Figures.   However, for some journals and undergraduate research papers (such as the B.S. Research Paper or Honors Thesis), Tables and Figures may be embedded in the text (depending on the instructor’s or editor’s policies; for more details, see "Deviations from APA Style" below).

Supplementary information (optional) – in some cases, additional information that is not critical to understanding the research paper, such as a list of experiment stimuli, details of a secondary analysis, or programming code, is provided.  This is often placed in an Appendix.

Variations of Research Papers in APA Style

Although the major sections described above are common to most research papers written in APA style, there are variations on that pattern.  These variations include: 

  • Literature reviews – when a paper is reviewing prior published research and not presenting new empirical research itself (such as in a review article, and particularly a qualitative review), then the authors may forgo any Methods and Results sections. Instead, there is a different structure such as an Introduction section followed by sections for each of the different aspects of the body of research being reviewed, and then perhaps a Discussion section. 
  • Multi-experiment papers – when there are multiple experiments, it is common to follow the Introduction with an Experiment 1 section, itself containing Methods, Results, and Discussion subsections. Then there is an Experiment 2 section with a similar structure, an Experiment 3 section with a similar structure, and so on until all experiments are covered.  Towards the end of the paper there is a General Discussion section followed by References.  Additionally, in multi-experiment papers, it is common for the Results and Discussion subsections for individual experiments to be combined into single “Results and Discussion” sections.

Departures from APA Style

In some cases, official APA style might not be followed (however, be sure to check with your editor, instructor, or other sources before deviating from standards of the Publication Manual of the American Psychological Association).  Such deviations may include:

  • Placement of Tables and Figures  – in some cases, to make reading through the paper easier, Tables and/or Figures are embedded in the text (for example, having a bar graph placed in the relevant Results section). The embedding of Tables and/or Figures in the text is one of the most common deviations from APA style (and is commonly allowed in B.S. Degree Research Papers and Honors Theses; however you should check with your instructor, supervisor, or editor first). 
  • Incomplete research – sometimes a B.S. Degree Research Paper in this department is written about research that is currently being planned or is in progress. In those circumstances, sometimes only an Introduction and Methods section, followed by References, is included (that is, in cases where the research itself has not formally begun).  In other cases, preliminary results are presented and noted as such in the Results section (such as in cases where the study is underway but not complete), and the Discussion section includes caveats about the in-progress nature of the research.  Again, you should check with your instructor, supervisor, or editor first.
  • Class assignments – in some classes in this department, an assignment must be written in APA style but is not exactly a traditional research paper (for instance, a student asked to write about an article that they read, and to write that report in APA style). In that case, the structure of the paper might approximate the typical sections of a research paper in APA style, but not entirely.  You should check with your instructor for further guidelines.

Workshops and Downloadable Resources

  • For in-person discussion of the process of writing research papers, please consider attending this department’s “Writing Research Papers” workshop (for dates and times, please check the undergraduate workshops calendar).

Downloadable Resources

  • How to Write APA Style Research Papers (a comprehensive guide) [ PDF ]
  • Tips for Writing APA Style Research Papers (a brief summary) [ PDF ]
  • Example APA Style Research Paper (for B.S. Degree – empirical research) [ PDF ]
  • Example APA Style Research Paper (for B.S. Degree – literature review) [ PDF ]

Further Resources

How-To Videos     

  • Writing Research Paper Videos

APA Journal Article Reporting Guidelines

  • Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M., & Rao, S. M. (2018). Journal article reporting standards for quantitative research in psychology: The APA Publications and Communications Board task force report . American Psychologist , 73 (1), 3.
  • Levitt, H. M., Bamberg, M., Creswell, J. W., Frost, D. M., Josselson, R., & Suárez-Orozco, C. (2018). Journal article reporting standards for qualitative primary, qualitative meta-analytic, and mixed methods research in psychology: The APA Publications and Communications Board task force report . American Psychologist , 73 (1), 26.  

External Resources

  • Formatting APA Style Papers in Microsoft Word
  • How to Write an APA Style Research Paper from Hamilton University
  • WikiHow Guide to Writing APA Research Papers
  • Sample APA Formatted Paper with Comments
  • Sample APA Formatted Paper
  • Tips for Writing a Paper in APA Style

1 VandenBos, G. R. (Ed). (2010). Publication manual of the American Psychological Association (6th ed.) (pp. 41-60).  Washington, DC: American Psychological Association.

2 geller, e. (2018).  how to write an apa-style research report . [instructional materials]. , prepared by s. c. pan for ucsd psychology.

Back to top  

  • Formatting Research Papers
  • Using Databases and Finding References
  • What Types of References Are Appropriate?
  • Evaluating References and Taking Notes
  • Citing References
  • Writing a Literature Review
  • Writing Process and Revising
  • Improving Scientific Writing
  • Academic Integrity and Avoiding Plagiarism
  • Writing Research Papers Videos

Reference management. Clean and simple.

Types of research papers

research paper and their definition

Analytical research paper

Argumentative or persuasive paper, definition paper, compare and contrast paper, cause and effect paper, interpretative paper, experimental research paper, survey research paper, frequently asked questions about the different types of research papers, related articles.

There are multiple different types of research papers. It is important to know which type of research paper is required for your assignment, as each type of research paper requires different preparation. Below is a list of the most common types of research papers.

➡️ Read more:  What is a research paper?

In an analytical research paper you:

  • pose a question
  • collect relevant data from other researchers
  • analyze their different viewpoints

You focus on the findings and conclusions of other researchers and then make a personal conclusion about the topic. It is important to stay neutral and not show your own negative or positive position on the matter.

The argumentative paper presents two sides of a controversial issue in one paper. It is aimed at getting the reader on the side of your point of view.

You should include and cite findings and arguments of different researchers on both sides of the issue, but then favor one side over the other and try to persuade the reader of your side. Your arguments should not be too emotional though, they still need to be supported with logical facts and statistical data.

Tip: Avoid expressing too much emotion in a persuasive paper.

The definition paper solely describes facts or objective arguments without using any personal emotion or opinion of the author. Its only purpose is to provide information. You should include facts from a variety of sources, but leave those facts unanalyzed.

Compare and contrast papers are used to analyze the difference between two:

Make sure to sufficiently describe both sides in the paper, and then move on to comparing and contrasting both thesis and supporting one.

Cause and effect papers are usually the first types of research papers that high school and college students write. They trace probable or expected results from a specific action and answer the main questions "Why?" and "What?", which reflect effects and causes.

In business and education fields, cause and effect papers will help trace a range of results that could arise from a particular action or situation.

An interpretative paper requires you to use knowledge that you have gained from a particular case study, for example a legal situation in law studies. You need to write the paper based on an established theoretical framework and use valid supporting data to back up your statement and conclusion.

This type of research paper basically describes a particular experiment in detail. It is common in fields like:

Experiments are aimed to explain a certain outcome or phenomenon with certain actions. You need to describe your experiment with supporting data and then analyze it sufficiently.

This research paper demands the conduction of a survey that includes asking questions to respondents. The conductor of the survey then collects all the information from the survey and analyzes it to present it in the research paper.

➡️ Ready to start your research paper? Take a look at our guide on how to start a research paper .

In an analytical research paper, you pose a question and then collect relevant data from other researchers to analyze their different viewpoints. You focus on the findings and conclusions of other researchers and then make a personal conclusion about the topic.

The definition paper solely describes facts or objective arguments without using any personal emotion or opinion of the author. Its only purpose is to provide information.

Cause and effect papers are usually the first types of research papers that high school and college students are confronted with. The answer questions like "Why?" and "What?", which reflect effects and causes. In business and education fields, cause and effect papers will help trace a range of results that could arise from a particular action or situation.

This type of research paper describes a particular experiment in detail. It is common in fields like biology, chemistry or physics. Experiments are aimed to explain a certain outcome or phenomenon with certain actions.

research paper and their definition

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Paper Format – Types, Examples and Templates

Research Paper Format – Types, Examples and Templates

Table of Contents

Research Paper Formats

Research paper format is an essential aspect of academic writing that plays a crucial role in the communication of research findings . The format of a research paper depends on various factors such as the discipline, style guide, and purpose of the research. It includes guidelines for the structure, citation style, referencing , and other elements of the paper that contribute to its overall presentation and coherence. Adhering to the appropriate research paper format is vital for ensuring that the research is accurately and effectively communicated to the intended audience. In this era of information, it is essential to understand the different research paper formats and their guidelines to communicate research effectively, accurately, and with the required level of detail. This post aims to provide an overview of some of the common research paper formats used in academic writing.

Research Paper Formats

Research Paper Formats are as follows:

  • APA (American Psychological Association) format
  • MLA (Modern Language Association) format
  • Chicago/Turabian style
  • IEEE (Institute of Electrical and Electronics Engineers) format
  • AMA (American Medical Association) style
  • Harvard style
  • Vancouver style
  • ACS (American Chemical Society) style
  • ASA (American Sociological Association) style
  • APSA (American Political Science Association) style

APA (American Psychological Association) Format

Here is a general APA format for a research paper:

  • Title Page: The title page should include the title of your paper, your name, and your institutional affiliation. It should also include a running head, which is a shortened version of the title, and a page number in the upper right-hand corner.
  • Abstract : The abstract is a brief summary of your paper, typically 150-250 words. It should include the purpose of your research, the main findings, and any implications or conclusions that can be drawn.
  • Introduction: The introduction should provide background information on your topic, state the purpose of your research, and present your research question or hypothesis. It should also include a brief literature review that discusses previous research on your topic.
  • Methods: The methods section should describe the procedures you used to collect and analyze your data. It should include information on the participants, the materials and instruments used, and the statistical analyses performed.
  • Results: The results section should present the findings of your research in a clear and concise manner. Use tables and figures to help illustrate your results.
  • Discussion : The discussion section should interpret your results and relate them back to your research question or hypothesis. It should also discuss the implications of your findings and any limitations of your study.
  • References : The references section should include a list of all sources cited in your paper. Follow APA formatting guidelines for your citations and references.

Some additional tips for formatting your APA research paper:

  • Use 12-point Times New Roman font throughout the paper.
  • Double-space all text, including the references.
  • Use 1-inch margins on all sides of the page.
  • Indent the first line of each paragraph by 0.5 inches.
  • Use a hanging indent for the references (the first line should be flush with the left margin, and all subsequent lines should be indented).
  • Number all pages, including the title page and references page, in the upper right-hand corner.

APA Research Paper Format Template

APA Research Paper Format Template is as follows:

Title Page:

  • Title of the paper
  • Author’s name
  • Institutional affiliation
  • A brief summary of the main points of the paper, including the research question, methods, findings, and conclusions. The abstract should be no more than 250 words.

Introduction:

  • Background information on the topic of the research paper
  • Research question or hypothesis
  • Significance of the study
  • Overview of the research methods and design
  • Brief summary of the main findings
  • Participants: description of the sample population, including the number of participants and their characteristics (age, gender, ethnicity, etc.)
  • Materials: description of any materials used in the study (e.g., survey questions, experimental apparatus)
  • Procedure: detailed description of the steps taken to conduct the study
  • Presentation of the findings of the study, including statistical analyses if applicable
  • Tables and figures may be included to illustrate the results

Discussion:

  • Interpretation of the results in light of the research question and hypothesis
  • Implications of the study for the field
  • Limitations of the study
  • Suggestions for future research

References:

  • A list of all sources cited in the paper, in APA format

Formatting guidelines:

  • Double-spaced
  • 12-point font (Times New Roman or Arial)
  • 1-inch margins on all sides
  • Page numbers in the top right corner
  • Headings and subheadings should be used to organize the paper
  • The first line of each paragraph should be indented
  • Quotations of 40 or more words should be set off in a block quote with no quotation marks
  • In-text citations should include the author’s last name and year of publication (e.g., Smith, 2019)

APA Research Paper Format Example

APA Research Paper Format Example is as follows:

The Effects of Social Media on Mental Health

University of XYZ

This study examines the relationship between social media use and mental health among college students. Data was collected through a survey of 500 students at the University of XYZ. Results suggest that social media use is significantly related to symptoms of depression and anxiety, and that the negative effects of social media are greater among frequent users.

Social media has become an increasingly important aspect of modern life, especially among young adults. While social media can have many positive effects, such as connecting people across distances and sharing information, there is growing concern about its impact on mental health. This study aims to examine the relationship between social media use and mental health among college students.

Participants: Participants were 500 college students at the University of XYZ, recruited through online advertisements and flyers posted on campus. Participants ranged in age from 18 to 25, with a mean age of 20.5 years. The sample was 60% female, 40% male, and 5% identified as non-binary or gender non-conforming.

Data was collected through an online survey administered through Qualtrics. The survey consisted of several measures, including the Patient Health Questionnaire-9 (PHQ-9) for depression symptoms, the Generalized Anxiety Disorder-7 (GAD-7) for anxiety symptoms, and questions about social media use.

Procedure :

Participants were asked to complete the online survey at their convenience. The survey took approximately 20-30 minutes to complete. Data was analyzed using descriptive statistics, correlations, and multiple regression analysis.

Results indicated that social media use was significantly related to symptoms of depression (r = .32, p < .001) and anxiety (r = .29, p < .001). Regression analysis indicated that frequency of social media use was a significant predictor of both depression symptoms (β = .24, p < .001) and anxiety symptoms (β = .20, p < .001), even when controlling for age, gender, and other relevant factors.

The results of this study suggest that social media use is associated with symptoms of depression and anxiety among college students. The negative effects of social media are greater among frequent users. These findings have important implications for mental health professionals and educators, who should consider addressing the potential negative effects of social media use in their work with young adults.

References :

References should be listed in alphabetical order according to the author’s last name. For example:

  • Chou, H. T. G., & Edge, N. (2012). “They are happier and having better lives than I am”: The impact of using Facebook on perceptions of others’ lives. Cyberpsychology, Behavior, and Social Networking, 15(2), 117-121.
  • Twenge, J. M., Joiner, T. E., Rogers, M. L., & Martin, G. N. (2018). Increases in depressive symptoms, suicide-related outcomes, and suicide rates among U.S. adolescents after 2010 and links to increased new media screen time. Clinical Psychological Science, 6(1), 3-17.

Note: This is just a sample Example do not use this in your assignment.

MLA (Modern Language Association) Format

MLA (Modern Language Association) Format is as follows:

  • Page Layout : Use 8.5 x 11-inch white paper, with 1-inch margins on all sides. The font should be 12-point Times New Roman or a similar serif font.
  • Heading and Title : The first page of your research paper should include a heading and a title. The heading should include your name, your instructor’s name, the course title, and the date. The title should be centered and in title case (capitalizing the first letter of each important word).
  • In-Text Citations : Use parenthetical citations to indicate the source of your information. The citation should include the author’s last name and the page number(s) of the source. For example: (Smith 23).
  • Works Cited Page : At the end of your paper, include a Works Cited page that lists all the sources you used in your research. Each entry should include the author’s name, the title of the work, the publication information, and the medium of publication.
  • Formatting Quotations : Use double quotation marks for short quotations and block quotations for longer quotations. Indent the entire quotation five spaces from the left margin.
  • Formatting the Body : Use a clear and readable font and double-space your text throughout. The first line of each paragraph should be indented one-half inch from the left margin.

MLA Research Paper Template

MLA Research Paper Format Template is as follows:

  • Use 8.5 x 11 inch white paper.
  • Use a 12-point font, such as Times New Roman.
  • Use double-spacing throughout the entire paper, including the title page and works cited page.
  • Set the margins to 1 inch on all sides.
  • Use page numbers in the upper right corner, beginning with the first page of text.
  • Include a centered title for the research paper, using title case (capitalizing the first letter of each important word).
  • Include your name, instructor’s name, course name, and date in the upper left corner, double-spaced.

In-Text Citations

  • When quoting or paraphrasing information from sources, include an in-text citation within the text of your paper.
  • Use the author’s last name and the page number in parentheses at the end of the sentence, before the punctuation mark.
  • If the author’s name is mentioned in the sentence, only include the page number in parentheses.

Works Cited Page

  • List all sources cited in alphabetical order by the author’s last name.
  • Each entry should include the author’s name, title of the work, publication information, and medium of publication.
  • Use italics for book and journal titles, and quotation marks for article and chapter titles.
  • For online sources, include the date of access and the URL.

Here is an example of how the first page of a research paper in MLA format should look:

Headings and Subheadings

  • Use headings and subheadings to organize your paper and make it easier to read.
  • Use numerals to number your headings and subheadings (e.g. 1, 2, 3), and capitalize the first letter of each word.
  • The main heading should be centered and in boldface type, while subheadings should be left-aligned and in italics.
  • Use only one space after each period or punctuation mark.
  • Use quotation marks to indicate direct quotes from a source.
  • If the quote is more than four lines, format it as a block quote, indented one inch from the left margin and without quotation marks.
  • Use ellipses (…) to indicate omitted words from a quote, and brackets ([…]) to indicate added words.

Works Cited Examples

  • Book: Last Name, First Name. Title of Book. Publisher, Publication Year.
  • Journal Article: Last Name, First Name. “Title of Article.” Title of Journal, volume number, issue number, publication date, page numbers.
  • Website: Last Name, First Name. “Title of Webpage.” Title of Website, publication date, URL. Accessed date.

Here is an example of how a works cited entry for a book should look:

Smith, John. The Art of Writing Research Papers. Penguin, 2021.

MLA Research Paper Example

MLA Research Paper Format Example is as follows:

Your Professor’s Name

Course Name and Number

Date (in Day Month Year format)

Word Count (not including title page or Works Cited)

Title: The Impact of Video Games on Aggression Levels

Video games have become a popular form of entertainment among people of all ages. However, the impact of video games on aggression levels has been a subject of debate among scholars and researchers. While some argue that video games promote aggression and violent behavior, others argue that there is no clear link between video games and aggression levels. This research paper aims to explore the impact of video games on aggression levels among young adults.

Background:

The debate on the impact of video games on aggression levels has been ongoing for several years. According to the American Psychological Association, exposure to violent media, including video games, can increase aggression levels in children and adolescents. However, some researchers argue that there is no clear evidence to support this claim. Several studies have been conducted to examine the impact of video games on aggression levels, but the results have been mixed.

Methodology:

This research paper used a quantitative research approach to examine the impact of video games on aggression levels among young adults. A sample of 100 young adults between the ages of 18 and 25 was selected for the study. The participants were asked to complete a questionnaire that measured their aggression levels and their video game habits.

The results of the study showed that there was a significant correlation between video game habits and aggression levels among young adults. The participants who reported playing violent video games for more than 5 hours per week had higher aggression levels than those who played less than 5 hours per week. The study also found that male participants were more likely to play violent video games and had higher aggression levels than female participants.

The findings of this study support the claim that video games can increase aggression levels among young adults. However, it is important to note that the study only examined the impact of video games on aggression levels and did not take into account other factors that may contribute to aggressive behavior. It is also important to note that not all video games promote violence and aggression, and some games may have a positive impact on cognitive and social skills.

Conclusion :

In conclusion, this research paper provides evidence to support the claim that video games can increase aggression levels among young adults. However, it is important to conduct further research to examine the impact of video games on other aspects of behavior and to explore the potential benefits of video games. Parents and educators should be aware of the potential impact of video games on aggression levels and should encourage young adults to engage in a variety of activities that promote cognitive and social skills.

Works Cited:

  • American Psychological Association. (2017). Violent Video Games: Myths, Facts, and Unanswered Questions. Retrieved from https://www.apa.org/news/press/releases/2017/08/violent-video-games
  • Ferguson, C. J. (2015). Do Angry Birds make for angry children? A meta-analysis of video game influences on children’s and adolescents’ aggression, mental health, prosocial behavior, and academic performance. Perspectives on Psychological Science, 10(5), 646-666.
  • Gentile, D. A., Swing, E. L., Lim, C. G., & Khoo, A. (2012). Video game playing, attention problems, and impulsiveness: Evidence of bidirectional causality. Psychology of Popular Media Culture, 1(1), 62-70.
  • Greitemeyer, T. (2014). Effects of prosocial video games on prosocial behavior. Journal of Personality and Social Psychology, 106(4), 530-548.

Chicago/Turabian Style

Chicago/Turabian Formate is as follows:

  • Margins : Use 1-inch margins on all sides of the paper.
  • Font : Use a readable font such as Times New Roman or Arial, and use a 12-point font size.
  • Page numbering : Number all pages in the upper right-hand corner, beginning with the first page of text. Use Arabic numerals.
  • Title page: Include a title page with the title of the paper, your name, course title and number, instructor’s name, and the date. The title should be centered on the page and in title case (capitalize the first letter of each word).
  • Headings: Use headings to organize your paper. The first level of headings should be centered and in boldface or italics. The second level of headings should be left-aligned and in boldface or italics. Use as many levels of headings as necessary to organize your paper.
  • In-text citations : Use footnotes or endnotes to cite sources within the text of your paper. The first citation for each source should be a full citation, and subsequent citations can be shortened. Use superscript numbers to indicate footnotes or endnotes.
  • Bibliography : Include a bibliography at the end of your paper, listing all sources cited in your paper. The bibliography should be in alphabetical order by the author’s last name, and each entry should include the author’s name, title of the work, publication information, and date of publication.
  • Formatting of quotations: Use block quotations for quotations that are longer than four lines. Indent the entire quotation one inch from the left margin, and do not use quotation marks. Single-space the quotation, and double-space between paragraphs.
  • Tables and figures: Use tables and figures to present data and illustrations. Number each table and figure sequentially, and provide a brief title for each. Place tables and figures as close as possible to the text that refers to them.
  • Spelling and grammar : Use correct spelling and grammar throughout your paper. Proofread carefully for errors.

Chicago/Turabian Research Paper Template

Chicago/Turabian Research Paper Template is as folows:

Title of Paper

Name of Student

Professor’s Name

I. Introduction

A. Background Information

B. Research Question

C. Thesis Statement

II. Literature Review

A. Overview of Existing Literature

B. Analysis of Key Literature

C. Identification of Gaps in Literature

III. Methodology

A. Research Design

B. Data Collection

C. Data Analysis

IV. Results

A. Presentation of Findings

B. Analysis of Findings

C. Discussion of Implications

V. Conclusion

A. Summary of Findings

B. Implications for Future Research

C. Conclusion

VI. References

A. Bibliography

B. In-Text Citations

VII. Appendices (if necessary)

A. Data Tables

C. Additional Supporting Materials

Chicago/Turabian Research Paper Example

Title: The Impact of Social Media on Political Engagement

Name: John Smith

Class: POLS 101

Professor: Dr. Jane Doe

Date: April 8, 2023

I. Introduction:

Social media has become an integral part of our daily lives. People use social media platforms like Facebook, Twitter, and Instagram to connect with friends and family, share their opinions, and stay informed about current events. With the rise of social media, there has been a growing interest in understanding its impact on various aspects of society, including political engagement. In this paper, I will examine the relationship between social media use and political engagement, specifically focusing on how social media influences political participation and political attitudes.

II. Literature Review:

There is a growing body of literature on the impact of social media on political engagement. Some scholars argue that social media has a positive effect on political participation by providing new channels for political communication and mobilization (Delli Carpini & Keeter, 1996; Putnam, 2000). Others, however, suggest that social media can have a negative impact on political engagement by creating filter bubbles that reinforce existing beliefs and discourage political dialogue (Pariser, 2011; Sunstein, 2001).

III. Methodology:

To examine the relationship between social media use and political engagement, I conducted a survey of 500 college students. The survey included questions about social media use, political participation, and political attitudes. The data was analyzed using descriptive statistics and regression analysis.

Iv. Results:

The results of the survey indicate that social media use is positively associated with political participation. Specifically, respondents who reported using social media to discuss politics were more likely to have participated in a political campaign, attended a political rally, or contacted a political representative. Additionally, social media use was found to be associated with more positive attitudes towards political engagement, such as increased trust in government and belief in the effectiveness of political action.

V. Conclusion:

The findings of this study suggest that social media has a positive impact on political engagement, by providing new opportunities for political communication and mobilization. However, there is also a need for caution, as social media can also create filter bubbles that reinforce existing beliefs and discourage political dialogue. Future research should continue to explore the complex relationship between social media and political engagement, and develop strategies to harness the potential benefits of social media while mitigating its potential negative effects.

Vii. References:

  • Delli Carpini, M. X., & Keeter, S. (1996). What Americans know about politics and why it matters. Yale University Press.
  • Pariser, E. (2011). The filter bubble: What the Internet is hiding from you. Penguin.
  • Putnam, R. D. (2000). Bowling alone: The collapse and revival of American community. Simon & Schuster.
  • Sunstein, C. R. (2001). Republic.com. Princeton University Press.

IEEE (Institute of Electrical and Electronics Engineers) Format

IEEE (Institute of Electrical and Electronics Engineers) Research Paper Format is as follows:

  • Title : A concise and informative title that accurately reflects the content of the paper.
  • Abstract : A brief summary of the paper, typically no more than 250 words, that includes the purpose of the study, the methods used, the key findings, and the main conclusions.
  • Introduction : An overview of the background, context, and motivation for the research, including a clear statement of the problem being addressed and the objectives of the study.
  • Literature review: A critical analysis of the relevant research and scholarship on the topic, including a discussion of any gaps or limitations in the existing literature.
  • Methodology : A detailed description of the methods used to collect and analyze data, including any experiments or simulations, data collection instruments or procedures, and statistical analyses.
  • Results : A clear and concise presentation of the findings, including any relevant tables, graphs, or figures.
  • Discussion : A detailed interpretation of the results, including a comparison of the findings with previous research, a discussion of the implications of the results, and any recommendations for future research.
  • Conclusion : A summary of the key findings and main conclusions of the study.
  • References : A list of all sources cited in the paper, formatted according to IEEE guidelines.

In addition to these elements, an IEEE research paper should also follow certain formatting guidelines, including using 12-point font, double-spaced text, and numbered headings and subheadings. Additionally, any tables, figures, or equations should be clearly labeled and referenced in the text.

AMA (American Medical Association) Style

AMA (American Medical Association) Style Research Paper Format:

  • Title Page: This page includes the title of the paper, the author’s name, institutional affiliation, and any acknowledgments or disclaimers.
  • Abstract: The abstract is a brief summary of the paper that outlines the purpose, methods, results, and conclusions of the study. It is typically limited to 250 words or less.
  • Introduction: The introduction provides a background of the research problem, defines the research question, and outlines the objectives and hypotheses of the study.
  • Methods: The methods section describes the research design, participants, procedures, and instruments used to collect and analyze data.
  • Results: The results section presents the findings of the study in a clear and concise manner, using graphs, tables, and charts where appropriate.
  • Discussion: The discussion section interprets the results, explains their significance, and relates them to previous research in the field.
  • Conclusion: The conclusion summarizes the main points of the paper, discusses the implications of the findings, and suggests future research directions.
  • References: The reference list includes all sources cited in the paper, listed in alphabetical order by author’s last name.

In addition to these sections, the AMA format requires that authors follow specific guidelines for citing sources in the text and formatting their references. The AMA style uses a superscript number system for in-text citations and provides specific formats for different types of sources, such as books, journal articles, and websites.

Harvard Style

Harvard Style Research Paper format is as follows:

  • Title page: This should include the title of your paper, your name, the name of your institution, and the date of submission.
  • Abstract : This is a brief summary of your paper, usually no more than 250 words. It should outline the main points of your research and highlight your findings.
  • Introduction : This section should introduce your research topic, provide background information, and outline your research question or thesis statement.
  • Literature review: This section should review the relevant literature on your topic, including previous research studies, academic articles, and other sources.
  • Methodology : This section should describe the methods you used to conduct your research, including any data collection methods, research instruments, and sampling techniques.
  • Results : This section should present your findings in a clear and concise manner, using tables, graphs, and other visual aids if necessary.
  • Discussion : This section should interpret your findings and relate them to the broader research question or thesis statement. You should also discuss the implications of your research and suggest areas for future study.
  • Conclusion : This section should summarize your main findings and provide a final statement on the significance of your research.
  • References : This is a list of all the sources you cited in your paper, presented in alphabetical order by author name. Each citation should include the author’s name, the title of the source, the publication date, and other relevant information.

In addition to these sections, a Harvard Style research paper may also include a table of contents, appendices, and other supplementary materials as needed. It is important to follow the specific formatting guidelines provided by your instructor or academic institution when preparing your research paper in Harvard Style.

Vancouver Style

Vancouver Style Research Paper format is as follows:

The Vancouver citation style is commonly used in the biomedical sciences and is known for its use of numbered references. Here is a basic format for a research paper using the Vancouver citation style:

  • Title page: Include the title of your paper, your name, the name of your institution, and the date.
  • Abstract : This is a brief summary of your research paper, usually no more than 250 words.
  • Introduction : Provide some background information on your topic and state the purpose of your research.
  • Methods : Describe the methods you used to conduct your research, including the study design, data collection, and statistical analysis.
  • Results : Present your findings in a clear and concise manner, using tables and figures as needed.
  • Discussion : Interpret your results and explain their significance. Also, discuss any limitations of your study and suggest directions for future research.
  • References : List all of the sources you cited in your paper in numerical order. Each reference should include the author’s name, the title of the article or book, the name of the journal or publisher, the year of publication, and the page numbers.

ACS (American Chemical Society) Style

ACS (American Chemical Society) Style Research Paper format is as follows:

The American Chemical Society (ACS) Style is a citation style commonly used in chemistry and related fields. When formatting a research paper in ACS Style, here are some guidelines to follow:

  • Paper Size and Margins : Use standard 8.5″ x 11″ paper with 1-inch margins on all sides.
  • Font: Use a 12-point serif font (such as Times New Roman) for the main text. The title should be in bold and a larger font size.
  • Title Page : The title page should include the title of the paper, the authors’ names and affiliations, and the date of submission. The title should be centered on the page and written in bold font. The authors’ names should be centered below the title, followed by their affiliations and the date.
  • Abstract : The abstract should be a brief summary of the paper, no more than 250 words. It should be on a separate page and include the title of the paper, the authors’ names and affiliations, and the text of the abstract.
  • Main Text : The main text should be organized into sections with headings that clearly indicate the content of each section. The introduction should provide background information and state the research question or hypothesis. The methods section should describe the procedures used in the study. The results section should present the findings of the study, and the discussion section should interpret the results and provide conclusions.
  • References: Use the ACS Style guide to format the references cited in the paper. In-text citations should be numbered sequentially throughout the text and listed in numerical order at the end of the paper.
  • Figures and Tables: Figures and tables should be numbered sequentially and referenced in the text. Each should have a descriptive caption that explains its content. Figures should be submitted in a high-quality electronic format.
  • Supporting Information: Additional information such as data, graphs, and videos may be included as supporting information. This should be included in a separate file and referenced in the main text.
  • Acknowledgments : Acknowledge any funding sources or individuals who contributed to the research.

ASA (American Sociological Association) Style

ASA (American Sociological Association) Style Research Paper format is as follows:

  • Title Page: The title page of an ASA style research paper should include the title of the paper, the author’s name, and the institutional affiliation. The title should be centered and should be in title case (the first letter of each major word should be capitalized).
  • Abstract: An abstract is a brief summary of the paper that should appear on a separate page immediately following the title page. The abstract should be no more than 200 words in length and should summarize the main points of the paper.
  • Main Body: The main body of the paper should begin on a new page following the abstract page. The paper should be double-spaced, with 1-inch margins on all sides, and should be written in 12-point Times New Roman font. The main body of the paper should include an introduction, a literature review, a methodology section, results, and a discussion.
  • References : The reference section should appear on a separate page at the end of the paper. All sources cited in the paper should be listed in alphabetical order by the author’s last name. Each reference should include the author’s name, the title of the work, the publication information, and the date of publication.
  • Appendices : Appendices are optional and should only be included if they contain information that is relevant to the study but too lengthy to be included in the main body of the paper. If you include appendices, each one should be labeled with a letter (e.g., Appendix A, Appendix B, etc.) and should be referenced in the main body of the paper.

APSA (American Political Science Association) Style

APSA (American Political Science Association) Style Research Paper format is as follows:

  • Title Page: The title page should include the title of the paper, the author’s name, the name of the course or instructor, and the date.
  • Abstract : An abstract is typically not required in APSA style papers, but if one is included, it should be brief and summarize the main points of the paper.
  • Introduction : The introduction should provide an overview of the research topic, the research question, and the main argument or thesis of the paper.
  • Literature Review : The literature review should summarize the existing research on the topic and provide a context for the research question.
  • Methods : The methods section should describe the research methods used in the paper, including data collection and analysis.
  • Results : The results section should present the findings of the research.
  • Discussion : The discussion section should interpret the results and connect them back to the research question and argument.
  • Conclusion : The conclusion should summarize the main findings and implications of the research.
  • References : The reference list should include all sources cited in the paper, formatted according to APSA style guidelines.

In-text citations in APSA style use parenthetical citation, which includes the author’s last name, publication year, and page number(s) if applicable. For example, (Smith 2010, 25).

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Delimitations

Delimitations in Research – Types, Examples and...

Research Design

Research Design – Types, Methods and Examples

Research Paper Title

Research Paper Title – Writing Guide and Example

Research Paper Introduction

Research Paper Introduction – Writing Guide and...

Research Paper Conclusion

Research Paper Conclusion – Writing Guide and...

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

Genre and the Research Paper

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

This handout provides detailed information about how to write research papers including discussing research papers as a genre, choosing topics, and finding sources.

Research: What it is.

A research paper is the culmination and final product of an involved process of research, critical thinking, source evaluation, organization, and composition. It is, perhaps, helpful to think of the research paper as a living thing, which grows and changes as the student explores, interprets, and evaluates sources related to a specific topic. Primary and secondary sources are the heart of a research paper, and provide its nourishment; without the support of and interaction with these sources, the research paper would morph into a different genre of writing (e.g., an encyclopedic article). The research paper serves not only to further the field in which it is written, but also to provide the student with an exceptional opportunity to increase her knowledge in that field. It is also possible to identify a research paper by what it is not.

Research: What it is not.

A research paper is not simply an informed summary of a topic by means of primary and secondary sources. It is neither a book report nor an opinion piece nor an expository essay consisting solely of one's interpretation of a text nor an overview of a particular topic. Instead, it is a genre that requires one to spend time investigating and evaluating sources with the intent to offer interpretations of the texts, and not unconscious regurgitations of those sources. The goal of a research paper is not to inform the reader what others have to say about a topic, but to draw on what others have to say about a topic and engage the sources in order to thoughtfully offer a unique perspective on the issue at hand. This is accomplished through two major types of research papers.

Two major types of research papers.

Argumentative research paper:

The argumentative research paper consists of an introduction in which the writer clearly introduces the topic and informs his audience exactly which stance he intends to take; this stance is often identified as the thesis statement . An important goal of the argumentative research paper is persuasion, which means the topic chosen should be debatable or controversial. For example, it would be difficult for a student to successfully argue in favor of the following stance.

Perhaps 25 years ago this topic would have been debatable; however, today, it is assumed that smoking cigarettes is, indeed, harmful to one's health. A better thesis would be the following.

In this sentence, the writer is not challenging the current accepted stance that both firsthand and secondhand cigarette smoke is dangerous; rather, she is positing that the social acceptance of the latter over the former is indicative of a cultural double-standard of sorts. The student would support this thesis throughout her paper by means of both primary and secondary sources, with the intent to persuade her audience that her particular interpretation of the situation is viable.

Analytical research paper:

The analytical research paper often begins with the student asking a question (a.k.a. a research question) on which he has taken no stance. Such a paper is often an exercise in exploration and evaluation. For example, perhaps one is interested in the Old English poem Beowulf . He has read the poem intently and desires to offer a fresh reading of the poem to the academic community. His question may be as follows.

His research may lead him to the following conclusion.

Though his topic may be debatable and controversial, it is not the student's intent to persuade the audience that his ideas are right while those of others are wrong. Instead, his goal is to offer a critical interpretation of primary and secondary sources throughout the paper--sources that should, ultimately, buttress his particular analysis of the topic. The following is an example of what his thesis statement may look like once he has completed his research.

This statement does not negate the traditional readings of Beowulf ; instead, it offers a fresh and detailed reading of the poem that will be supported by the student's research.

It is typically not until the student has begun the writing process that his thesis statement begins to take solid form. In fact, the thesis statement in an analytical paper is often more fluid than the thesis in an argumentative paper. Such is one of the benefits of approaching the topic without a predetermined stance.

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

Book cover

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

15k Accesses

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

research paper and their definition

  • Master Your Homework
  • Do My Homework

Research Paper and Article: What’s the Difference?

Research Papers and Articles are distinct types of academic writing, but they share many of the same qualities. This article seeks to elucidate the differences between a research paper and an article while also highlighting some common elements shared by both. It will be argued that although there is some overlap between these two forms of scholarly communication, research papers tend to have a more substantial emphasis on data collection and analysis than articles do. In addition, it will be demonstrated how each type has its own unique purpose in terms of disseminating information about particular topics or fields of study. Finally, best practices for utilizing either form for optimal results will be discussed as well as how researchers should go about selecting which one suits their needs best.

1. Introduction to Research Papers and Articles

2. the definition of a research paper, 3. distinguishing characteristics of a research paper, 4. the definition of an article, 5. distinguishing characteristics of an article, 6. understanding the difference between a research paper and an article, 7. conclusion.

What is a Research Paper?

A research paper is an extended written work that presents and supports a thesis, or argument. It delves into the details of existing knowledge on the topic, including both primary sources (directly related to the subject) and secondary sources (related information used as evidence). Research papers often involve analysis from an academic perspective—one backed up with facts, figures, personal opinions, and other forms of supporting material.

What are Research Articles?

Research articles are typically shorter pieces of writing than full-length research papers. They may focus on one specific aspect of the topic or contain some preliminary findings based upon their own original research efforts in order to present new ideas for further study. Unlike lengthy research papers which require extensive background reading before any meaningful conclusions can be drawn from them; many short form articles do not need this level of depth in order to provide interesting insights into a given field.

A research paper is an in-depth academic writing that requires the author to have a thorough knowledge of the subject at hand. It often contains research conducted by a student or group, and it is used to demonstrate their understanding of said topic. In most cases, this type of work will be written with data from primary sources such as interviews or surveys.

Structural Specifications

A research paper has a distinct structure that needs to be respected in order for it to pass the test of scholarly review. This includes having an introduction, body and conclusion sections, all organized logically. Additionally, there should also be headings and subheadings throughout the text. It is crucial that each section clearly states its purpose while also building on any previous points made – ultimately leading up to answering the initial question posed at the beginning of the paper.

Article vs Paper

Understanding the Different Kinds of Written Pieces In order to craft a comprehensive and thoughtful piece of writing, it is essential that one understands the difference between various forms of written pieces. The two main types are research papers and articles, which have distinct features separating them from one another.

  • Research paper: A scholarly work typically required for completion of an undergraduate or graduate degree.
  • Research article: A document containing original findings in a given field.

The primary difference between these two formats lies in their purpose. Research papers often delve into historical contexts as well as theoretical concepts; they may also serve as repositories for acquired data sets pertaining to current topics or events in academia.

On the other hand, research articles focus primarily on exploring new ideas within disciplines such as science and medicine. They tend to be more concise than longer form works such as dissertations; however, both draw heavily upon factual evidence presented through detailed analysis or empirical experimentation. In this way, each type serves its own unique purpose while providing critical information towards better understanding relevant topics across many subject areas.

While reading any text, it is important to know the distinguishing characteristics of the article. A research paper and a research article are both valuable works that help inform readers about various topics or issues; however, they differ in terms of purpose, structure and audience.

  • Research Paper : The primary purpose of this type of work is to explain an issue through detailed analysis from a variety of perspectives. Research papers use long blocks of text which include arguments supported by evidence gathered from sources such as published books or journals. Additionally, they often have footnotes or citations embedded within them.
  • Research Article : This type written work usually takes less time than a research paper due its smaller size (e.g., 2000-3000 words). It has clear objectives for writing up results regarding new methods/techniques developed for solving problems related to science/technology etc.; hence uses technical language rather than storytelling style like narrative pieces do.

The research paper and the research article can seem like similar documents, however there are key differences to consider when examining them.

  • Research Paper:

Whereas a traditional research paper may explore multiple avenues regarding one particular field or area of study, an article will instead focus solely on one aspect at hand – which could range from discussing current trends surrounding technological advancements to summarizing literature review findings related to behavioral studies conducted over extended periods of time. As such, articles tend to have narrower scopes while papers allow authors greater leeway due to their lengthier formats and higher degree levels associated with them.

Final Reflection The research presented in this paper has revealed that technology can greatly improve the learning experience. Technology-enhanced instruction offers a range of advantages, including improved student engagement and an ability to tailor teaching to individual students’ needs. However, it is important for educators to recognize that there are challenges associated with introducing tech into the classroom. Properly assessing how best to incorporate new technologies requires time and resources from both instructors and institutions alike.

Technology-infused lessons have great potential for enhancing educational outcomes, but only when implemented thoughtfully and deliberately. Educators must take into account factors such as costs associated with implementing or maintaining technological solutions; technical support infrastructure; availability of professional development opportunities; contextual variables specific to their classrooms (e.g., access disparities); content knowledge related to using appropriate tools effectively in different subject areas; alignment between instruction objectives/assessments/technology use; sufficient instructional preparation strategies prior introduction of digital media components across multiple grade levels curriculum standards etc.. This will ensure greater success within the classroom environment via incorporating current technologies alongside traditional approaches found successful over many generations now past.

Overall, technology integration presents tremendous potential for improving teaching practices while also providing students better opportunities for reaching long term academic goals than ever before without utilizing advances available today–allowing them easier paths towards more diverse successes later on in life irrespective one’s location geographically speaking be they close by or further abroad . It remains up still though ultimately upon us all–educators at every level globally whether directly involved presently or seeking those who already working along these lines willing capable going above beyond expected norms from fellow colleagues–as well society entire–to help realize full capabilities modern age holds whenever possible each given chance arises come our way through innovation applied nowadays moving forward continually despite any odds imposed once beforehand against us never fully yielding nor wavering trying no matter what justifiably so deserves future we aim build far brighter much grander scale imaginable arguably could dream create surely intending construct sustaining legacy regardless anyone else’s opinion right wrong even if alone knows why worth taking doing ultimate efforts needed effectuating lasting impacts felt everyone concerned after gone leaving end impressions indelibly marked those remain serve testament integrity conviction carried out job done successfully accordance plan initially laid forth accurately faithfully followed adhere expectations set agreed assured kept fixed focus mind’s eye view foresight completing task moment arrives due date determined arrive consequently utmost importance placed assignments taken seriously ensuring relevant requirements meet met satisfactorily overall satisfactory rating received satisfaction ones entrusting project results depend deliverables supplied highly esteemed pleased finish thank you

In conclusion, it is clear that there are distinct differences between a research paper and an article. Research papers tend to be longer than articles and involve more in-depth analysis of the topic at hand. Articles typically focus on one specific aspect or point while research papers investigate several different perspectives within the given subject matter. Furthermore, both types of writing use evidence from sources to support their arguments but differ in terms of formatting requirements as well as content organization structure. It is important for authors to understand these distinctions when determining which type of written work best suits their needs.

research paper and their definition

The Plagiarism Checker Online For Your Academic Work

Start Plagiarism Check

Editing & Proofreading for Your Research Paper

Get it proofread now

Online Printing & Binding with Free Express Delivery

Configure binding now

  • Academic essay overview
  • The writing process
  • Structuring academic essays
  • Types of academic essays
  • Academic writing overview
  • Sentence structure
  • Academic writing process
  • Improving your academic writing
  • Titles and headings
  • APA style overview
  • APA citation & referencing
  • APA structure & sections
  • Citation & referencing
  • Structure and sections
  • APA examples overview
  • Commonly used citations
  • Other examples
  • British English vs. American English
  • Chicago style overview
  • Chicago citation & referencing
  • Chicago structure & sections
  • Chicago style examples
  • Citing sources overview
  • Citation format
  • Citation examples
  • College essay overview
  • Application
  • How to write a college essay
  • Types of college essays
  • Commonly confused words
  • Definitions
  • Dissertation overview
  • Dissertation structure & sections
  • Dissertation writing process
  • Graduate school overview
  • Application & admission
  • Study abroad
  • Master degree
  • Harvard referencing overview
  • Language rules overview
  • Grammatical rules & structures
  • Parts of speech
  • Punctuation
  • Methodology overview
  • Analyzing data
  • Experiments
  • Observations
  • Inductive vs. Deductive
  • Qualitative vs. Quantitative
  • Types of validity
  • Types of reliability
  • Sampling methods
  • Theories & Concepts
  • Types of research studies
  • Types of variables
  • MLA style overview
  • MLA examples
  • MLA citation & referencing
  • MLA structure & sections
  • Plagiarism overview
  • Plagiarism checker
  • Types of plagiarism
  • Printing production overview
  • Research bias overview
  • Types of research bias
  • Example sections
  • Types of research papers
  • Research process overview
  • Problem statement
  • Research proposal
  • Research topic
  • Statistics overview
  • Levels of measurment
  • Frequency distribution
  • Measures of central tendency
  • Measures of variability
  • Hypothesis testing
  • Parameters & test statistics
  • Types of distributions
  • Correlation
  • Effect size
  • Hypothesis testing assumptions
  • Types of ANOVAs
  • Types of chi-square
  • Statistical data
  • Statistical models
  • Spelling mistakes
  • Tips overview
  • Academic writing tips
  • Dissertation tips
  • Sources tips
  • Working with sources overview
  • Evaluating sources
  • Finding sources
  • Including sources
  • Types of sources

Your Step to Success

Plagiarism Check within 10min

Printing & Binding with 3D Live Preview

Parts of a Research Paper

How do you like this article cancel reply.

Save my name, email, and website in this browser for the next time I comment.

Parts-of-a-Research-Paper-3-350x233-1

Inhaltsverzeichnis

  • 1 Parts of a Research Paper: Definition
  • 3 Research Paper Structure
  • 4 Research Paper Examples
  • 5 Research Paper APA Formatting
  • 6 In a Nutshell

Parts of a Research Paper: Definition

The point of having specifically defined parts of a research paper is not to make your life as a student harder. In fact, it’s very much the opposite. The different parts of a research paper have been established to provide a structure that can be consistently used to make your research projects easier, as well as helping you follow the proper scientific methodology.

This will help guide your writing process so you can focus on key elements one at a time. It will also provide a valuable outline that you can rely on to effectively structure your assignment. Having a solid structure will make your research paper easier to understand, and it will also prepare you for a possible future as a researcher, since all modern science is created around similar precepts.

Have you been struggling with your academic homework lately, especially where it concerns all the different parts of a research paper? This is actually a very common situation, so we have prepared this article to outline all the key parts of a research paper and explain what you must focus as you go through each one of the various parts of a research paper; read the following sections and you should have a clearer idea of how to tackle your next research paper effectively.

  • ✓ Post a picture on Instagram
  • ✓ Get the most likes on your picture
  • ✓ Receive up to $300 cash back

What are the main parts of a research paper?

There are eight main parts in a research paper :

  • Title (cover page)

Introduction

  • Literature review
  • Research methodology
  • Data analysis
  • Reference page

If you stick to this structure, your end product will be a concise, well-organized research paper.

Do you have to follow the exact research paper structure?

Yes, and failing to do so will likely impact your grade very negatively. It’s very important to write your research paper according to the structure given on this article. Follow your research paper outline   to avoid a messy structure. Different types of academic papers have very particular structures. For example, the structure required for a literature review is very different to the structure required for a scientific research paper.

What if I'm having trouble with certain parts of a research paper?

If you’re having problems with some parts of a research paper, it will be useful to look at some examples of finished research papers in a similar field of study, so you will have a better idea of the elements you need to include. Read a step-by-step guide for writing a research paper, or take a look at the section towards the end of this article for some research paper examples. Perhaps you’re just lacking inspiration!

Is there a special formatting you need to use when citing sources?

Making adequate citations to back up your research is a key consideration in almost every part of a research paper. There are various formatting conventions and referencing styles that should be followed as specified in your assignment. The most common is APA formatting, but you could also be required to use MLA formatting. Your professor or supervisor should tell you which one you need to use.

What should I do once I have my research paper outlined?

If you have created your research paper outline, then you’re ready to start writing. Remember, the first copy will be a draft, so don’t leave it until the last minute to begin writing. Check out some tips for overcoming writer’s block if you’re having trouble getting started.

Research Paper Structure

There are 8 parts of a research paper that you should go through in this order:

The very first page in your research paper should be used to identify its title, along with your name, the date of your assignment, and your learning institution. Additional elements may be required according to the specifications of your instructors, so it’s a good idea to check with them to make sure you feature all the required information in the right order. You will usually be provided with a template or checklist of some kind that you can refer to when writing your cover page .

This is the very beginning of your research paper, where you are expected to provide your thesis statement ; this is simply a summary of what you’re setting out to accomplish with your research project, including the problems you’re looking to scrutinize and any solutions or recommendations that you anticipate beforehand.

Literature Review

This part of a research paper is supposed to provide the theoretical framework that you elaborated during your research. You will be expected to present the sources you have studied while preparing for the work ahead, and these sources should be credible from an academic standpoint (including educational books, peer-reviewed journals, and other relevant publications). You must make sure to include the name of the relevant authors you’ve studied and add a properly formatted citation that explicitly points to their works you have analyzed, including the publication year (see the section below on APA style citations ).

Research Methodology

Different parts of a research paper have different aims, and here you need to point out the exact methods you have used in the course of your research work. Typical methods can range from direct observation to laboratory experiments, or statistical evaluations. Whatever your chosen methods are, you will need to explicitly point them out in this section.

Data Analysis

While all the parts of a research paper are important, this section is probably the most crucial from a practical standpoint. Out of all the parts of a research paper, here you will be expected to analyze the data you have obtained in the course of your research. This is where you get your chance to really shine, by introducing new data that may contribute to building up on the collective understanding of the topics you have researched. At this point, you’re not expected to analyze your data yet (that will be done in the subsequent parts of a research paper), but simply to present it objectively.

From all the parts of a research paper, this is the one where you’re expected to actually analyze the data you have gathered while researching. This analysis should align with your previously stated methodology, and it should both point out any implications suggested by your data that might be relevant to different fields of study, as well as any shortcomings in your approach that would allow you to improve you results if you were to repeat the same type of research.

As you conclude your research paper, you should succinctly reiterate your thesis statement along with your methodology and analyzed data – by drawing all these elements together you will reach the purpose of your research, so all that is left is to point out your conclusions in a clear manner.

Reference Page

The very last section of your research paper is a reference page where you should collect the academic sources along with all the publications you consulted, while fleshing out your research project. You should make sure to list all these references according to the citation format specified by your instructor; there are various formats now in use, such as MLA, Harvard and APA, which although similar rely on different citation styles that must be consistently and carefully observed.

how-to-write-a-research-paper-printing-binding

Paper printing & binding

You are already done writing your research paper and need a high quality printing & binding service? Then you are right to choose BachelorPrint! Check out our 24-hour online printing service. For more information click the button below :

Research Paper Examples

When you’re still learning about the various parts that make up a research paper, it can be useful to go through some examples of actual research papers from your exact field of study. This is probably the best way to fully grasp what is the purpose of all the different parts.

We can’t provide you universal examples of all the parts of a research paper, since some of these parts can be very different depending on your field of study.

To get a clear sense of what you should cover in each part of your paper, we recommend you to find some successful research papers in a similar field of study. Often, you may be able to refer to studies you have gathered during the initial literature review.

There are also some templates online that may be useful to look at when you’re just getting started, and trying to grasp the exact requirements for each part in your research paper:

Research Paper APA Formatting

When you write a research paper for college, you will have to make sure to add relevant citation to back up your major claims. Only by building up on the work of established authors will you be able to reach valuable conclusions that can be taken seriously on a academic context. This process may seem burdensome at first, but it’s one of the essential parts of a research paper.

The essence of a citation is simply to point out where you learned about the concepts and ideas that make up all the parts of a research paper. This is absolutely essential, both to substantiate your points and to allow other researchers to look into those sources in cause they want to learn more about some aspects of your assignment, or dig deeper into specific parts of a research paper.

There are several citation styles in modern use, and APA citation is probably the most common and widespread; you must follow this convention precisely when adding citations to the relevant part of a research paper. Here is how you should format a citation according to the APA style.

In a Nutshell

  • There are eight different parts of a research paper that you will have to go through in this specific order.
  • Make sure to focus on the different parts of a research paper one at a time, and you’ll find it can actually make the writing process much easier.
  • Producing a research paper can be a very daunting task unless you have a solid plan of action; that is exactly why most modern learning institutions now demand students to observe all these parts of a research paper.
  • These guidelines are not meant to make student’s lives harder, but actually to help them stay focused and produce articulate and thoughtful research that could make an impact in their fields of study.

We use cookies on our website. Some of them are essential, while others help us to improve this website and your experience.

  • External Media

Individual Privacy Preferences

Cookie Details Privacy Policy Imprint

Here you will find an overview of all cookies used. You can give your consent to whole categories or display further information and select certain cookies.

Accept all Save

Essential cookies enable basic functions and are necessary for the proper function of the website.

Show Cookie Information Hide Cookie Information

Statistics cookies collect information anonymously. This information helps us to understand how our visitors use our website.

Content from video platforms and social media platforms is blocked by default. If External Media cookies are accepted, access to those contents no longer requires manual consent.

Privacy Policy Imprint

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

Glossary of research terms.

  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

This glossary is intended to assist you in understanding commonly used terms and concepts when reading, interpreting, and evaluating scholarly research. Also included are common words and phrases defined within the context of how they apply to research in the social and behavioral sciences.

  • Acculturation -- refers to the process of adapting to another culture, particularly in reference to blending in with the majority population [e.g., an immigrant adopting American customs]. However, acculturation also implies that both cultures add something to one another, but still remain distinct groups unto themselves.
  • Accuracy -- a term used in survey research to refer to the match between the target population and the sample.
  • Affective Measures -- procedures or devices used to obtain quantified descriptions of an individual's feelings, emotional states, or dispositions.
  • Aggregate -- a total created from smaller units. For instance, the population of a county is an aggregate of the populations of the cities, rural areas, etc. that comprise the county. As a verb, it refers to total data from smaller units into a large unit.
  • Anonymity -- a research condition in which no one, including the researcher, knows the identities of research participants.
  • Baseline -- a control measurement carried out before an experimental treatment.
  • Behaviorism -- school of psychological thought concerned with the observable, tangible, objective facts of behavior, rather than with subjective phenomena such as thoughts, emotions, or impulses. Contemporary behaviorism also emphasizes the study of mental states such as feelings and fantasies to the extent that they can be directly observed and measured.
  • Beliefs -- ideas, doctrines, tenets, etc. that are accepted as true on grounds which are not immediately susceptible to rigorous proof.
  • Benchmarking -- systematically measuring and comparing the operations and outcomes of organizations, systems, processes, etc., against agreed upon "best-in-class" frames of reference.
  • Bias -- a loss of balance and accuracy in the use of research methods. It can appear in research via the sampling frame, random sampling, or non-response. It can also occur at other stages in research, such as while interviewing, in the design of questions, or in the way data are analyzed and presented. Bias means that the research findings will not be representative of, or generalizable to, a wider population.
  • Case Study -- the collection and presentation of detailed information about a particular participant or small group, frequently including data derived from the subjects themselves.
  • Causal Hypothesis -- a statement hypothesizing that the independent variable affects the dependent variable in some way.
  • Causal Relationship -- the relationship established that shows that an independent variable, and nothing else, causes a change in a dependent variable. It also establishes how much of a change is shown in the dependent variable.
  • Causality -- the relation between cause and effect.
  • Central Tendency -- any way of describing or characterizing typical, average, or common values in some distribution.
  • Chi-square Analysis -- a common non-parametric statistical test which compares an expected proportion or ratio to an actual proportion or ratio.
  • Claim -- a statement, similar to a hypothesis, which is made in response to the research question and that is affirmed with evidence based on research.
  • Classification -- ordering of related phenomena into categories, groups, or systems according to characteristics or attributes.
  • Cluster Analysis -- a method of statistical analysis where data that share a common trait are grouped together. The data is collected in a way that allows the data collector to group data according to certain characteristics.
  • Cohort Analysis -- group by group analytic treatment of individuals having a statistical factor in common to each group. Group members share a particular characteristic [e.g., born in a given year] or a common experience [e.g., entering a college at a given time].
  • Confidentiality -- a research condition in which no one except the researcher(s) knows the identities of the participants in a study. It refers to the treatment of information that a participant has disclosed to the researcher in a relationship of trust and with the expectation that it will not be revealed to others in ways that violate the original consent agreement, unless permission is granted by the participant.
  • Confirmability Objectivity -- the findings of the study could be confirmed by another person conducting the same study.
  • Construct -- refers to any of the following: something that exists theoretically but is not directly observable; a concept developed [constructed] for describing relations among phenomena or for other research purposes; or, a theoretical definition in which concepts are defined in terms of other concepts. For example, intelligence cannot be directly observed or measured; it is a construct.
  • Construct Validity -- seeks an agreement between a theoretical concept and a specific measuring device, such as observation.
  • Constructivism -- the idea that reality is socially constructed. It is the view that reality cannot be understood outside of the way humans interact and that the idea that knowledge is constructed, not discovered. Constructivists believe that learning is more active and self-directed than either behaviorism or cognitive theory would postulate.
  • Content Analysis -- the systematic, objective, and quantitative description of the manifest or latent content of print or nonprint communications.
  • Context Sensitivity -- awareness by a qualitative researcher of factors such as values and beliefs that influence cultural behaviors.
  • Control Group -- the group in an experimental design that receives either no treatment or a different treatment from the experimental group. This group can thus be compared to the experimental group.
  • Controlled Experiment -- an experimental design with two or more randomly selected groups [an experimental group and control group] in which the researcher controls or introduces the independent variable and measures the dependent variable at least two times [pre- and post-test measurements].
  • Correlation -- a common statistical analysis, usually abbreviated as r, that measures the degree of relationship between pairs of interval variables in a sample. The range of correlation is from -1.00 to zero to +1.00. Also, a non-cause and effect relationship between two variables.
  • Covariate -- a product of the correlation of two related variables times their standard deviations. Used in true experiments to measure the difference of treatment between them.
  • Credibility -- a researcher's ability to demonstrate that the object of a study is accurately identified and described based on the way in which the study was conducted.
  • Critical Theory -- an evaluative approach to social science research, associated with Germany's neo-Marxist “Frankfurt School,” that aims to criticize as well as analyze society, opposing the political orthodoxy of modern communism. Its goal is to promote human emancipatory forces and to expose ideas and systems that impede them.
  • Data -- factual information [as measurements or statistics] used as a basis for reasoning, discussion, or calculation.
  • Data Mining -- the process of analyzing data from different perspectives and summarizing it into useful information, often to discover patterns and/or systematic relationships among variables.
  • Data Quality -- this is the degree to which the collected data [results of measurement or observation] meet the standards of quality to be considered valid [trustworthy] and  reliable [dependable].
  • Deductive -- a form of reasoning in which conclusions are formulated about particulars from general or universal premises.
  • Dependability -- being able to account for changes in the design of the study and the changing conditions surrounding what was studied.
  • Dependent Variable -- a variable that varies due, at least in part, to the impact of the independent variable. In other words, its value “depends” on the value of the independent variable. For example, in the variables “gender” and “academic major,” academic major is the dependent variable, meaning that your major cannot determine whether you are male or female, but your gender might indirectly lead you to favor one major over another.
  • Deviation -- the distance between the mean and a particular data point in a given distribution.
  • Discourse Community -- a community of scholars and researchers in a given field who respond to and communicate to each other through published articles in the community's journals and presentations at conventions. All members of the discourse community adhere to certain conventions for the presentation of their theories and research.
  • Discrete Variable -- a variable that is measured solely in whole units, such as, gender and number of siblings.
  • Distribution -- the range of values of a particular variable.
  • Effect Size -- the amount of change in a dependent variable that can be attributed to manipulations of the independent variable. A large effect size exists when the value of the dependent variable is strongly influenced by the independent variable. It is the mean difference on a variable between experimental and control groups divided by the standard deviation on that variable of the pooled groups or of the control group alone.
  • Emancipatory Research -- research is conducted on and with people from marginalized groups or communities. It is led by a researcher or research team who is either an indigenous or external insider; is interpreted within intellectual frameworks of that group; and, is conducted largely for the purpose of empowering members of that community and improving services for them. It also engages members of the community as co-constructors or validators of knowledge.
  • Empirical Research -- the process of developing systematized knowledge gained from observations that are formulated to support insights and generalizations about the phenomena being researched.
  • Epistemology -- concerns knowledge construction; asks what constitutes knowledge and how knowledge is validated.
  • Ethnography -- method to study groups and/or cultures over a period of time. The goal of this type of research is to comprehend the particular group/culture through immersion into the culture or group. Research is completed through various methods but, since the researcher is immersed within the group for an extended period of time, more detailed information is usually collected during the research.
  • Expectancy Effect -- any unconscious or conscious cues that convey to the participant in a study how the researcher wants them to respond. Expecting someone to behave in a particular way has been shown to promote the expected behavior. Expectancy effects can be minimized by using standardized interactions with subjects, automated data-gathering methods, and double blind protocols.
  • External Validity -- the extent to which the results of a study are generalizable or transferable.
  • Factor Analysis -- a statistical test that explores relationships among data. The test explores which variables in a data set are most related to each other. In a carefully constructed survey, for example, factor analysis can yield information on patterns of responses, not simply data on a single response. Larger tendencies may then be interpreted, indicating behavior trends rather than simply responses to specific questions.
  • Field Studies -- academic or other investigative studies undertaken in a natural setting, rather than in laboratories, classrooms, or other structured environments.
  • Focus Groups -- small, roundtable discussion groups charged with examining specific topics or problems, including possible options or solutions. Focus groups usually consist of 4-12 participants, guided by moderators to keep the discussion flowing and to collect and report the results.
  • Framework -- the structure and support that may be used as both the launching point and the on-going guidelines for investigating a research problem.
  • Generalizability -- the extent to which research findings and conclusions conducted on a specific study to groups or situations can be applied to the population at large.
  • Grey Literature -- research produced by organizations outside of commercial and academic publishing that publish materials, such as, working papers, research reports, and briefing papers.
  • Grounded Theory -- practice of developing other theories that emerge from observing a group. Theories are grounded in the group's observable experiences, but researchers add their own insight into why those experiences exist.
  • Group Behavior -- behaviors of a group as a whole, as well as the behavior of an individual as influenced by his or her membership in a group.
  • Hypothesis -- a tentative explanation based on theory to predict a causal relationship between variables.
  • Independent Variable -- the conditions of an experiment that are systematically manipulated by the researcher. A variable that is not impacted by the dependent variable, and that itself impacts the dependent variable. In the earlier example of "gender" and "academic major," (see Dependent Variable) gender is the independent variable.
  • Individualism -- a theory or policy having primary regard for the liberty, rights, or independent actions of individuals.
  • Inductive -- a form of reasoning in which a generalized conclusion is formulated from particular instances.
  • Inductive Analysis -- a form of analysis based on inductive reasoning; a researcher using inductive analysis starts with answers, but formulates questions throughout the research process.
  • Insiderness -- a concept in qualitative research that refers to the degree to which a researcher has access to and an understanding of persons, places, or things within a group or community based on being a member of that group or community.
  • Internal Consistency -- the extent to which all questions or items assess the same characteristic, skill, or quality.
  • Internal Validity -- the rigor with which the study was conducted [e.g., the study's design, the care taken to conduct measurements, and decisions concerning what was and was not measured]. It is also the extent to which the designers of a study have taken into account alternative explanations for any causal relationships they explore. In studies that do not explore causal relationships, only the first of these definitions should be considered when assessing internal validity.
  • Life History -- a record of an event/events in a respondent's life told [written down, but increasingly audio or video recorded] by the respondent from his/her own perspective in his/her own words. A life history is different from a "research story" in that it covers a longer time span, perhaps a complete life, or a significant period in a life.
  • Margin of Error -- the permittable or acceptable deviation from the target or a specific value. The allowance for slight error or miscalculation or changing circumstances in a study.
  • Measurement -- process of obtaining a numerical description of the extent to which persons, organizations, or things possess specified characteristics.
  • Meta-Analysis -- an analysis combining the results of several studies that address a set of related hypotheses.
  • Methodology -- a theory or analysis of how research does and should proceed.
  • Methods -- systematic approaches to the conduct of an operation or process. It includes steps of procedure, application of techniques, systems of reasoning or analysis, and the modes of inquiry employed by a discipline.
  • Mixed-Methods -- a research approach that uses two or more methods from both the quantitative and qualitative research categories. It is also referred to as blended methods, combined methods, or methodological triangulation.
  • Modeling -- the creation of a physical or computer analogy to understand a particular phenomenon. Modeling helps in estimating the relative magnitude of various factors involved in a phenomenon. A successful model can be shown to account for unexpected behavior that has been observed, to predict certain behaviors, which can then be tested experimentally, and to demonstrate that a given theory cannot account for certain phenomenon.
  • Models -- representations of objects, principles, processes, or ideas often used for imitation or emulation.
  • Naturalistic Observation -- observation of behaviors and events in natural settings without experimental manipulation or other forms of interference.
  • Norm -- the norm in statistics is the average or usual performance. For example, students usually complete their high school graduation requirements when they are 18 years old. Even though some students graduate when they are younger or older, the norm is that any given student will graduate when he or she is 18 years old.
  • Null Hypothesis -- the proposition, to be tested statistically, that the experimental intervention has "no effect," meaning that the treatment and control groups will not differ as a result of the intervention. Investigators usually hope that the data will demonstrate some effect from the intervention, thus allowing the investigator to reject the null hypothesis.
  • Ontology -- a discipline of philosophy that explores the science of what is, the kinds and structures of objects, properties, events, processes, and relations in every area of reality.
  • Panel Study -- a longitudinal study in which a group of individuals is interviewed at intervals over a period of time.
  • Participant -- individuals whose physiological and/or behavioral characteristics and responses are the object of study in a research project.
  • Peer-Review -- the process in which the author of a book, article, or other type of publication submits his or her work to experts in the field for critical evaluation, usually prior to publication. This is standard procedure in publishing scholarly research.
  • Phenomenology -- a qualitative research approach concerned with understanding certain group behaviors from that group's point of view.
  • Philosophy -- critical examination of the grounds for fundamental beliefs and analysis of the basic concepts, doctrines, or practices that express such beliefs.
  • Phonology -- the study of the ways in which speech sounds form systems and patterns in language.
  • Policy -- governing principles that serve as guidelines or rules for decision making and action in a given area.
  • Policy Analysis -- systematic study of the nature, rationale, cost, impact, effectiveness, implications, etc., of existing or alternative policies, using the theories and methodologies of relevant social science disciplines.
  • Population -- the target group under investigation. The population is the entire set under consideration. Samples are drawn from populations.
  • Position Papers -- statements of official or organizational viewpoints, often recommending a particular course of action or response to a situation.
  • Positivism -- a doctrine in the philosophy of science, positivism argues that science can only deal with observable entities known directly to experience. The positivist aims to construct general laws, or theories, which express relationships between phenomena. Observation and experiment is used to show whether the phenomena fit the theory.
  • Predictive Measurement -- use of tests, inventories, or other measures to determine or estimate future events, conditions, outcomes, or trends.
  • Principal Investigator -- the scientist or scholar with primary responsibility for the design and conduct of a research project.
  • Probability -- the chance that a phenomenon will occur randomly. As a statistical measure, it is shown as p [the "p" factor].
  • Questionnaire -- structured sets of questions on specified subjects that are used to gather information, attitudes, or opinions.
  • Random Sampling -- a process used in research to draw a sample of a population strictly by chance, yielding no discernible pattern beyond chance. Random sampling can be accomplished by first numbering the population, then selecting the sample according to a table of random numbers or using a random-number computer generator. The sample is said to be random because there is no regular or discernible pattern or order. Random sample selection is used under the assumption that sufficiently large samples assigned randomly will exhibit a distribution comparable to that of the population from which the sample is drawn. The random assignment of participants increases the probability that differences observed between participant groups are the result of the experimental intervention.
  • Reliability -- the degree to which a measure yields consistent results. If the measuring instrument [e.g., survey] is reliable, then administering it to similar groups would yield similar results. Reliability is a prerequisite for validity. An unreliable indicator cannot produce trustworthy results.
  • Representative Sample -- sample in which the participants closely match the characteristics of the population, and thus, all segments of the population are represented in the sample. A representative sample allows results to be generalized from the sample to the population.
  • Rigor -- degree to which research methods are scrupulously and meticulously carried out in order to recognize important influences occurring in an experimental study.
  • Sample -- the population researched in a particular study. Usually, attempts are made to select a "sample population" that is considered representative of groups of people to whom results will be generalized or transferred. In studies that use inferential statistics to analyze results or which are designed to be generalizable, sample size is critical, generally the larger the number in the sample, the higher the likelihood of a representative distribution of the population.
  • Sampling Error -- the degree to which the results from the sample deviate from those that would be obtained from the entire population, because of random error in the selection of respondent and the corresponding reduction in reliability.
  • Saturation -- a situation in which data analysis begins to reveal repetition and redundancy and when new data tend to confirm existing findings rather than expand upon them.
  • Semantics -- the relationship between symbols and meaning in a linguistic system. Also, the cuing system that connects what is written in the text to what is stored in the reader's prior knowledge.
  • Social Theories -- theories about the structure, organization, and functioning of human societies.
  • Sociolinguistics -- the study of language in society and, more specifically, the study of language varieties, their functions, and their speakers.
  • Standard Deviation -- a measure of variation that indicates the typical distance between the scores of a distribution and the mean; it is determined by taking the square root of the average of the squared deviations in a given distribution. It can be used to indicate the proportion of data within certain ranges of scale values when the distribution conforms closely to the normal curve.
  • Statistical Analysis -- application of statistical processes and theory to the compilation, presentation, discussion, and interpretation of numerical data.
  • Statistical Bias -- characteristics of an experimental or sampling design, or the mathematical treatment of data, that systematically affects the results of a study so as to produce incorrect, unjustified, or inappropriate inferences or conclusions.
  • Statistical Significance -- the probability that the difference between the outcomes of the control and experimental group are great enough that it is unlikely due solely to chance. The probability that the null hypothesis can be rejected at a predetermined significance level [0.05 or 0.01].
  • Statistical Tests -- researchers use statistical tests to make quantitative decisions about whether a study's data indicate a significant effect from the intervention and allow the researcher to reject the null hypothesis. That is, statistical tests show whether the differences between the outcomes of the control and experimental groups are great enough to be statistically significant. If differences are found to be statistically significant, it means that the probability [likelihood] that these differences occurred solely due to chance is relatively low. Most researchers agree that a significance value of .05 or less [i.e., there is a 95% probability that the differences are real] sufficiently determines significance.
  • Subcultures -- ethnic, regional, economic, or social groups exhibiting characteristic patterns of behavior sufficient to distinguish them from the larger society to which they belong.
  • Testing -- the act of gathering and processing information about individuals' ability, skill, understanding, or knowledge under controlled conditions.
  • Theory -- a general explanation about a specific behavior or set of events that is based on known principles and serves to organize related events in a meaningful way. A theory is not as specific as a hypothesis.
  • Treatment -- the stimulus given to a dependent variable.
  • Trend Samples -- method of sampling different groups of people at different points in time from the same population.
  • Triangulation -- a multi-method or pluralistic approach, using different methods in order to focus on the research topic from different viewpoints and to produce a multi-faceted set of data. Also used to check the validity of findings from any one method.
  • Unit of Analysis -- the basic observable entity or phenomenon being analyzed by a study and for which data are collected in the form of variables.
  • Validity -- the degree to which a study accurately reflects or assesses the specific concept that the researcher is attempting to measure. A method can be reliable, consistently measuring the same thing, but not valid.
  • Variable -- any characteristic or trait that can vary from one person to another [race, gender, academic major] or for one person over time [age, political beliefs].
  • Weighted Scores -- scores in which the components are modified by different multipliers to reflect their relative importance.
  • White Paper -- an authoritative report that often states the position or philosophy about a social, political, or other subject, or a general explanation of an architecture, framework, or product technology written by a group of researchers. A white paper seeks to contain unbiased information and analysis regarding a business or policy problem that the researchers may be facing.

Elliot, Mark, Fairweather, Ian, Olsen, Wendy Kay, and Pampaka, Maria. A Dictionary of Social Research Methods. Oxford, UK: Oxford University Press, 2016; Free Social Science Dictionary. Socialsciencedictionary.com [2008]. Glossary. Institutional Review Board. Colorado College; Glossary of Key Terms. Writing@CSU. Colorado State University; Glossary A-Z. Education.com; Glossary of Research Terms. Research Mindedness Virtual Learning Resource. Centre for Human Servive Technology. University of Southampton; Miller, Robert L. and Brewer, John D. The A-Z of Social Research: A Dictionary of Key Social Science Research Concepts London: SAGE, 2003; Jupp, Victor. The SAGE Dictionary of Social and Cultural Research Methods . London: Sage, 2006.

  • << Previous: Independent and Dependent Variables
  • Next: 1. Choosing a Research Problem >>
  • Last Updated: Apr 16, 2024 10:20 AM
  • URL: https://libguides.usc.edu/writingguide

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Research Design | Types, Guide & Examples

What Is a Research Design | Types, Guide & Examples

Published on June 7, 2021 by Shona McCombes . Revised on November 20, 2023 by Pritha Bhandari.

A research design is a strategy for answering your   research question  using empirical data. Creating a research design means making decisions about:

  • Your overall research objectives and approach
  • Whether you’ll rely on primary research or secondary research
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research objectives and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, other interesting articles, frequently asked questions about research design.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities—start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed-methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism. Run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types.

  • Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships
  • Descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analyzing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study—plants, animals, organizations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

  • Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalize your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study , your aim is to deeply understand a specific context, not to generalize to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question .

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviors, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews .

Observation methods

Observational studies allow you to collect data unobtrusively, observing characteristics, behaviors or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what kinds of data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected—for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

research paper and their definition

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are high in reliability and validity.

Operationalization

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalization means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in—for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced, while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method , you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample—by mail, online, by phone, or in person?

If you’re using a probability sampling method , it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method , how will you avoid research bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organizing and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymize and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well-organized will save time when it comes to analyzing it. It can also help other researchers validate and add to your findings (high replicability ).

On its own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyze the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarize your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarize your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analyzing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Research Design | Types, Guide & Examples. Scribbr. Retrieved April 17, 2024, from https://www.scribbr.com/methodology/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, guide to experimental design | overview, steps, & examples, how to write a research proposal | examples & templates, ethical considerations in research | types & examples, what is your plagiarism score.

IMAGES

  1. Research Paper: Definition, Structure, Characteristics, and Types

    research paper and their definition

  2. MEANING OF RESEARCH PAPER.docx

    research paper and their definition

  3. How to Write a Research Paper ()

    research paper and their definition

  4. General form of a research paper

    research paper and their definition

  5. PPT

    research paper and their definition

  6. College essay: Definition of a research paper

    research paper and their definition

VIDEO

  1. Difference between Research paper and a review. Which one is more important?

  2. What is a Research

  3. How To Start A Research Paper? #research #journal #article #thesis #phd

  4. Understanding "Retrospective Study" in Research

  5. What is a Research Question?

  6. What is Research And Definition Of Research

COMMENTS

  1. Research Paper

    Research Paper. Definition: Research Paper is a written document that presents the author's original research, analysis, and interpretation of a specific topic or issue. ... For publication: Researchers often write research papers to publish their findings in academic journals or to present their work at academic conferences. Publishing ...

  2. Research Paper: Definition, Structure, Characteristics, and Types

    Research Paper. A research paper is a product of seeking information, analysis, human thinking, and time. Basically, when scholars want to get answers to questions, they start to search for information to expand, use, approve, or deny findings. In simple words, research papers are results of processes by considering writing works and following ...

  3. What is a research paper?

    Definition. A research paper is a paper that makes an argument about a topic based on research and analysis. Any paper requiring the writer to research a particular topic is a research paper. Unlike essays, which are often based largely on opinion and are written from the author's point of view, research papers are based in fact.

  4. What Is a Research Paper?

    A research paper is a common form of academic writing. Research papers require students and academics to locate information about a topic (that is, to conduct research ), take a stand on that topic, and provide support (or evidence) for that position in an organized report. The term research paper may also refer to a scholarly article that ...

  5. Research Paper Structure

    A complete research paper in APA style that is reporting on experimental research will typically contain a Title page, Abstract, Introduction, Methods, Results, Discussion, and References sections. 1 Many will also contain Figures and Tables and some will have an Appendix or Appendices. These sections are detailed as follows (for a more in ...

  6. How to Write a Research Paper

    Choose a research paper topic. There are many ways to generate an idea for a research paper, from brainstorming with pen and paper to talking it through with a fellow student or professor.. You can try free writing, which involves taking a broad topic and writing continuously for two or three minutes to identify absolutely anything relevant that could be interesting.

  7. The Ultimate Guide to Writing a Research Paper

    A research paper is a piece of academic writing that analyzes, evaluates, or interprets a single topic with empirical evidence and statistical data. When will I need to write a research paper in college? Many college courses use research papers to test a student's knowledge of a particular topic or their research skills in general.

  8. What are the different types of research papers?

    Experimental research paper. This type of research paper basically describes a particular experiment in detail. It is common in fields like: biology. chemistry. physics. Experiments are aimed to explain a certain outcome or phenomenon with certain actions. You need to describe your experiment with supporting data and then analyze it sufficiently.

  9. Research Paper Format

    Research paper format is an essential aspect of academic writing that plays a crucial role in the communication of research findings.The format of a research paper depends on various factors such as the discipline, style guide, and purpose of the research. It includes guidelines for the structure, citation style, referencing, and other elements of the paper that contribute to its overall ...

  10. Writing a Research Paper Introduction

    Step 1: Introduce your topic. Step 2: Describe the background. Step 3: Establish your research problem. Step 4: Specify your objective (s) Step 5: Map out your paper. Research paper introduction examples. Frequently asked questions about the research paper introduction.

  11. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  12. Genre and the Research Paper

    Research: What it is. A research paper is the culmination and final product of an involved process of research, critical thinking, source evaluation, organization, and composition. It is, perhaps, helpful to think of the research paper as a living thing, which grows and changes as the student explores, interprets, and evaluates sources related ...

  13. Organizing Your Social Sciences Research Paper

    A theoretical framework consists of concepts and, together with their definitions and reference to relevant scholarly literature, existing theory that is used for your particular study. The theoretical framework must demonstrate an understanding of theories and concepts that are relevant to the topic of your research paper and that relate to ...

  14. PDF What is a Research Paper?

    Research papers constitute their own genre and are qualitatively different from other forms of writing such as fiction, policy statements, personal journals, and news articles. ... Theories used in a research paper by definition come out of, and relate back to, existing bodies of academic literature. In general good theses develop from your own ...

  15. What Is Research, and Why Do People Do It?

    According to the dictionary definition, you were doing research. Recall your high school assignments asking you to "research" a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some "original" sources. Often, the teacher referred to your product as a "research paper."

  16. Research Paper

    Definition & Meaning. A research paper in academic writing is an assignment with a basis on the author's extensive research on a particular topic. In the scientific field, a research paper is a piece of writing a scientist creates to share their original research on a topic. You can also use it to review the research others have done on a topic.

  17. Research Paper and Article: What's the Difference?

    2. The Definition of a Research Paper. A research paper is an in-depth academic writing that requires the author to have a thorough knowledge of the subject at hand. It often contains research conducted by a student or group, and it is used to demonstrate their understanding of said topic.

  18. Parts of a Research Paper

    This part of a research paper is supposed to provide the theoretical framework that you elaborated during your research. You will be expected to present the sources you have studied while preparing for the work ahead, and these sources should be credible from an academic standpoint (including educational books, peer-reviewed journals, and other relevant publications).

  19. What Is Qualitative Research?

    Qualitative research involves collecting and analyzing non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences. It can be used to gather in-depth insights into a problem or generate new ideas for research. Qualitative research is the opposite of quantitative research, which involves collecting and ...

  20. Organizing Your Social Sciences Research Paper

    Grey Literature-- research produced by organizations outside of commercial and academic publishing that publish materials, such as, working papers, research reports, and briefing papers. Grounded Theory-- practice of developing other theories that emerge from observing a group. Theories are grounded in the group's observable experiences, but ...

  21. PDF Glossary of Key Terms in Educational Research

    research terminologies in educational research. It provides definitions of many of the terms used in the guidebooks to conducting qualitative, quantitative, and mixed methods of research. The terms are arranged in alphabetical order. Abstract A brief summary of a research project and its findings. A summary of a study that

  22. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  23. PDF CHAPTER 1 The Selection of a Research Approach

    approaches for their research. In writing about worldviews, a proposal might include a section that addresses the following: • The philosophical worldview being used by the researcher • A definition of basic ideas of that worldview • An individual's worldview drawn on research experiences, training, or cultural environment