helpful professor logo

45 Research Problem Examples & Inspiration

research problems examples and definition, explained below

A research problem is an issue of concern that is the catalyst for your research. It demonstrates why the research problem needs to take place in the first place.

Generally, you will write your research problem as a clear, concise, and focused statement that identifies an issue or gap in current knowledge that requires investigation.

The problem will likely also guide the direction and purpose of a study. Depending on the problem, you will identify a suitable methodology that will help address the problem and bring solutions to light.

Research Problem Examples

In the following examples, I’ll present some problems worth addressing, and some suggested theoretical frameworks and research methodologies that might fit with the study. Note, however, that these aren’t the only ways to approach the problems. Keep an open mind and consult with your dissertation supervisor!

chris

Psychology Problems

1. Social Media and Self-Esteem: “How does prolonged exposure to social media platforms influence the self-esteem of adolescents?”

  • Theoretical Framework : Social Comparison Theory
  • Methodology : Longitudinal study tracking adolescents’ social media usage and self-esteem measures over time, combined with qualitative interviews.

2. Sleep and Cognitive Performance: “How does sleep quality and duration impact cognitive performance in adults?”

  • Theoretical Framework : Cognitive Psychology
  • Methodology : Experimental design with controlled sleep conditions, followed by cognitive tests. Participant sleep patterns can also be monitored using actigraphy.

3. Childhood Trauma and Adult Relationships: “How does unresolved childhood trauma influence attachment styles and relationship dynamics in adulthood?

  • Theoretical Framework : Attachment Theory
  • Methodology : Mixed methods, combining quantitative measures of attachment styles with qualitative in-depth interviews exploring past trauma and current relationship dynamics.

4. Mindfulness and Stress Reduction: “How effective is mindfulness meditation in reducing perceived stress and physiological markers of stress in working professionals?”

  • Theoretical Framework : Humanist Psychology
  • Methodology : Randomized controlled trial comparing a group practicing mindfulness meditation to a control group, measuring both self-reported stress and physiological markers (e.g., cortisol levels).

5. Implicit Bias and Decision Making: “To what extent do implicit biases influence decision-making processes in hiring practices?

  • Theoretical Framework : Cognitive Dissonance Theory
  • Methodology : Experimental design using Implicit Association Tests (IAT) to measure implicit biases, followed by simulated hiring tasks to observe decision-making behaviors.

6. Emotional Regulation and Academic Performance: “How does the ability to regulate emotions impact academic performance in college students?”

  • Theoretical Framework : Cognitive Theory of Emotion
  • Methodology : Quantitative surveys measuring emotional regulation strategies, combined with academic performance metrics (e.g., GPA).

7. Nature Exposure and Mental Well-being: “Does regular exposure to natural environments improve mental well-being and reduce symptoms of anxiety and depression?”

  • Theoretical Framework : Biophilia Hypothesis
  • Methodology : Longitudinal study comparing mental health measures of individuals with regular nature exposure to those without, possibly using ecological momentary assessment for real-time data collection.

8. Video Games and Cognitive Skills: “How do action video games influence cognitive skills such as attention, spatial reasoning, and problem-solving?”

  • Theoretical Framework : Cognitive Load Theory
  • Methodology : Experimental design with pre- and post-tests, comparing cognitive skills of participants before and after a period of action video game play.

9. Parenting Styles and Child Resilience: “How do different parenting styles influence the development of resilience in children facing adversities?”

  • Theoretical Framework : Baumrind’s Parenting Styles Inventory
  • Methodology : Mixed methods, combining quantitative measures of resilience and parenting styles with qualitative interviews exploring children’s experiences and perceptions.

10. Memory and Aging: “How does the aging process impact episodic memory , and what strategies can mitigate age-related memory decline?

  • Theoretical Framework : Information Processing Theory
  • Methodology : Cross-sectional study comparing episodic memory performance across different age groups, combined with interventions like memory training or mnemonic strategies to assess potential improvements.

Education Problems

11. Equity and Access : “How do socioeconomic factors influence students’ access to quality education, and what interventions can bridge the gap?

  • Theoretical Framework : Critical Pedagogy
  • Methodology : Mixed methods, combining quantitative data on student outcomes with qualitative interviews and focus groups with students, parents, and educators.

12. Digital Divide : How does the lack of access to technology and the internet affect remote learning outcomes, and how can this divide be addressed?

  • Theoretical Framework : Social Construction of Technology Theory
  • Methodology : Survey research to gather data on access to technology, followed by case studies in selected areas.

13. Teacher Efficacy : “What factors contribute to teacher self-efficacy, and how does it impact student achievement?”

  • Theoretical Framework : Bandura’s Self-Efficacy Theory
  • Methodology : Quantitative surveys to measure teacher self-efficacy, combined with qualitative interviews to explore factors affecting it.

14. Curriculum Relevance : “How can curricula be made more relevant to diverse student populations, incorporating cultural and local contexts?”

  • Theoretical Framework : Sociocultural Theory
  • Methodology : Content analysis of curricula, combined with focus groups with students and teachers.

15. Special Education : “What are the most effective instructional strategies for students with specific learning disabilities?

  • Theoretical Framework : Social Learning Theory
  • Methodology : Experimental design comparing different instructional strategies, with pre- and post-tests to measure student achievement.

16. Dropout Rates : “What factors contribute to high school dropout rates, and what interventions can help retain students?”

  • Methodology : Longitudinal study tracking students over time, combined with interviews with dropouts.

17. Bilingual Education : “How does bilingual education impact cognitive development and academic achievement?

  • Methodology : Comparative study of students in bilingual vs. monolingual programs, using standardized tests and qualitative interviews.

18. Classroom Management: “What reward strategies are most effective in managing diverse classrooms and promoting a positive learning environment?

  • Theoretical Framework : Behaviorism (e.g., Skinner’s Operant Conditioning)
  • Methodology : Observational research in classrooms , combined with teacher interviews.

19. Standardized Testing : “How do standardized tests affect student motivation, learning, and curriculum design?”

  • Theoretical Framework : Critical Theory
  • Methodology : Quantitative analysis of test scores and student outcomes, combined with qualitative interviews with educators and students.

20. STEM Education : “What methods can be employed to increase interest and proficiency in STEM (Science, Technology, Engineering, and Mathematics) fields among underrepresented student groups?”

  • Theoretical Framework : Constructivist Learning Theory
  • Methodology : Experimental design comparing different instructional methods, with pre- and post-tests.

21. Social-Emotional Learning : “How can social-emotional learning be effectively integrated into the curriculum, and what are its impacts on student well-being and academic outcomes?”

  • Theoretical Framework : Goleman’s Emotional Intelligence Theory
  • Methodology : Mixed methods, combining quantitative measures of student well-being with qualitative interviews.

22. Parental Involvement : “How does parental involvement influence student achievement, and what strategies can schools use to increase it?”

  • Theoretical Framework : Reggio Emilia’s Model (Community Engagement Focus)
  • Methodology : Survey research with parents and teachers, combined with case studies in selected schools.

23. Early Childhood Education : “What are the long-term impacts of quality early childhood education on academic and life outcomes?”

  • Theoretical Framework : Erikson’s Stages of Psychosocial Development
  • Methodology : Longitudinal study comparing students with and without early childhood education, combined with observational research.

24. Teacher Training and Professional Development : “How can teacher training programs be improved to address the evolving needs of the 21st-century classroom?”

  • Theoretical Framework : Adult Learning Theory (Andragogy)
  • Methodology : Pre- and post-assessments of teacher competencies, combined with focus groups.

25. Educational Technology : “How can technology be effectively integrated into the classroom to enhance learning, and what are the potential drawbacks or challenges?”

  • Theoretical Framework : Technological Pedagogical Content Knowledge (TPACK)
  • Methodology : Experimental design comparing classrooms with and without specific technologies, combined with teacher and student interviews.

Sociology Problems

26. Urbanization and Social Ties: “How does rapid urbanization impact the strength and nature of social ties in communities?”

  • Theoretical Framework : Structural Functionalism
  • Methodology : Mixed methods, combining quantitative surveys on social ties with qualitative interviews in urbanizing areas.

27. Gender Roles in Modern Families: “How have traditional gender roles evolved in families with dual-income households?”

  • Theoretical Framework : Gender Schema Theory
  • Methodology : Qualitative interviews with dual-income families, combined with historical data analysis.

28. Social Media and Collective Behavior: “How does social media influence collective behaviors and the formation of social movements?”

  • Theoretical Framework : Emergent Norm Theory
  • Methodology : Content analysis of social media platforms, combined with quantitative surveys on participation in social movements.

29. Education and Social Mobility: “To what extent does access to quality education influence social mobility in socioeconomically diverse settings?”

  • Methodology : Longitudinal study tracking educational access and subsequent socioeconomic status, combined with qualitative interviews.

30. Religion and Social Cohesion: “How do religious beliefs and practices contribute to social cohesion in multicultural societies?”

  • Methodology : Quantitative surveys on religious beliefs and perceptions of social cohesion, combined with ethnographic studies.

31. Consumer Culture and Identity Formation: “How does consumer culture influence individual identity formation and personal values?”

  • Theoretical Framework : Social Identity Theory
  • Methodology : Mixed methods, combining content analysis of advertising with qualitative interviews on identity and values.

32. Migration and Cultural Assimilation: “How do migrants negotiate cultural assimilation and preservation of their original cultural identities in their host countries?”

  • Theoretical Framework : Post-Structuralism
  • Methodology : Qualitative interviews with migrants, combined with observational studies in multicultural communities.

33. Social Networks and Mental Health: “How do social networks, both online and offline, impact mental health and well-being?”

  • Theoretical Framework : Social Network Theory
  • Methodology : Quantitative surveys assessing social network characteristics and mental health metrics, combined with qualitative interviews.

34. Crime, Deviance, and Social Control: “How do societal norms and values shape definitions of crime and deviance, and how are these definitions enforced?”

  • Theoretical Framework : Labeling Theory
  • Methodology : Content analysis of legal documents and media, combined with ethnographic studies in diverse communities.

35. Technology and Social Interaction: “How has the proliferation of digital technology influenced face-to-face social interactions and community building?”

  • Theoretical Framework : Technological Determinism
  • Methodology : Mixed methods, combining quantitative surveys on technology use with qualitative observations of social interactions in various settings.

Nursing Problems

36. Patient Communication and Recovery: “How does effective nurse-patient communication influence patient recovery rates and overall satisfaction with care?”

  • Methodology : Quantitative surveys assessing patient satisfaction and recovery metrics, combined with observational studies on nurse-patient interactions.

37. Stress Management in Nursing: “What are the primary sources of occupational stress for nurses, and how can they be effectively managed to prevent burnout?”

  • Methodology : Mixed methods, combining quantitative measures of stress and burnout with qualitative interviews exploring personal experiences and coping mechanisms.

38. Hand Hygiene Compliance: “How effective are different interventions in improving hand hygiene compliance among nursing staff, and what are the barriers to consistent hand hygiene?”

  • Methodology : Experimental design comparing hand hygiene rates before and after specific interventions, combined with focus groups to understand barriers.

39. Nurse-Patient Ratios and Patient Outcomes: “How do nurse-patient ratios impact patient outcomes, including recovery rates, complications, and hospital readmissions?”

  • Methodology : Quantitative study analyzing patient outcomes in relation to staffing levels, possibly using retrospective chart reviews.

40. Continuing Education and Clinical Competence: “How does regular continuing education influence clinical competence and confidence among nurses?”

  • Methodology : Longitudinal study tracking nurses’ clinical skills and confidence over time as they engage in continuing education, combined with patient outcome measures to assess potential impacts on care quality.

Communication Studies Problems

41. Media Representation and Public Perception: “How does media representation of minority groups influence public perceptions and biases?”

  • Theoretical Framework : Cultivation Theory
  • Methodology : Content analysis of media representations combined with quantitative surveys assessing public perceptions and attitudes.

42. Digital Communication and Relationship Building: “How has the rise of digital communication platforms impacted the way individuals build and maintain personal relationships?”

  • Theoretical Framework : Social Penetration Theory
  • Methodology : Mixed methods, combining quantitative surveys on digital communication habits with qualitative interviews exploring personal relationship dynamics.

43. Crisis Communication Effectiveness: “What strategies are most effective in managing public relations during organizational crises, and how do they influence public trust?”

  • Theoretical Framework : Situational Crisis Communication Theory (SCCT)
  • Methodology : Case study analysis of past organizational crises, assessing communication strategies used and subsequent public trust metrics.

44. Nonverbal Cues in Virtual Communication: “How do nonverbal cues, such as facial expressions and gestures, influence message interpretation in virtual communication platforms?”

  • Theoretical Framework : Social Semiotics
  • Methodology : Experimental design using video conferencing tools, analyzing participants’ interpretations of messages with varying nonverbal cues.

45. Influence of Social Media on Political Engagement: “How does exposure to political content on social media platforms influence individuals’ political engagement and activism?”

  • Theoretical Framework : Uses and Gratifications Theory
  • Methodology : Quantitative surveys assessing social media habits and political engagement levels, combined with content analysis of political posts on popular platforms.

Before you Go: Tips and Tricks for Writing a Research Problem

This is an incredibly stressful time for research students. The research problem is going to lock you into a specific line of inquiry for the rest of your studies.

So, here’s what I tend to suggest to my students:

  • Start with something you find intellectually stimulating – Too many students choose projects because they think it hasn’t been studies or they’ve found a research gap. Don’t over-estimate the importance of finding a research gap. There are gaps in every line of inquiry. For now, just find a topic you think you can really sink your teeth into and will enjoy learning about.
  • Take 5 ideas to your supervisor – Approach your research supervisor, professor, lecturer, TA, our course leader with 5 research problem ideas and run each by them. The supervisor will have valuable insights that you didn’t consider that will help you narrow-down and refine your problem even more.
  • Trust your supervisor – The supervisor-student relationship is often very strained and stressful. While of course this is your project, your supervisor knows the internal politics and conventions of academic research. The depth of knowledge about how to navigate academia and get you out the other end with your degree is invaluable. Don’t underestimate their advice.

I’ve got a full article on all my tips and tricks for doing research projects right here – I recommend reading it:

  • 9 Tips on How to Choose a Dissertation Topic

Chris

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 5 Top Tips for Succeeding at University
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 50 Durable Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 100 Consumer Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 30 Globalization Pros and Cons

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Problem – Examples, Types and Guide

Research Problem – Examples, Types and Guide

Table of Contents

Research Problem

Research Problem

Definition:

Research problem is a specific and well-defined issue or question that a researcher seeks to investigate through research. It is the starting point of any research project, as it sets the direction, scope, and purpose of the study.

Types of Research Problems

Types of Research Problems are as follows:

Descriptive problems

These problems involve describing or documenting a particular phenomenon, event, or situation. For example, a researcher might investigate the demographics of a particular population, such as their age, gender, income, and education.

Exploratory problems

These problems are designed to explore a particular topic or issue in depth, often with the goal of generating new ideas or hypotheses. For example, a researcher might explore the factors that contribute to job satisfaction among employees in a particular industry.

Explanatory Problems

These problems seek to explain why a particular phenomenon or event occurs, and they typically involve testing hypotheses or theories. For example, a researcher might investigate the relationship between exercise and mental health, with the goal of determining whether exercise has a causal effect on mental health.

Predictive Problems

These problems involve making predictions or forecasts about future events or trends. For example, a researcher might investigate the factors that predict future success in a particular field or industry.

Evaluative Problems

These problems involve assessing the effectiveness of a particular intervention, program, or policy. For example, a researcher might evaluate the impact of a new teaching method on student learning outcomes.

How to Define a Research Problem

Defining a research problem involves identifying a specific question or issue that a researcher seeks to address through a research study. Here are the steps to follow when defining a research problem:

  • Identify a broad research topic : Start by identifying a broad topic that you are interested in researching. This could be based on your personal interests, observations, or gaps in the existing literature.
  • Conduct a literature review : Once you have identified a broad topic, conduct a thorough literature review to identify the current state of knowledge in the field. This will help you identify gaps or inconsistencies in the existing research that can be addressed through your study.
  • Refine the research question: Based on the gaps or inconsistencies identified in the literature review, refine your research question to a specific, clear, and well-defined problem statement. Your research question should be feasible, relevant, and important to the field of study.
  • Develop a hypothesis: Based on the research question, develop a hypothesis that states the expected relationship between variables.
  • Define the scope and limitations: Clearly define the scope and limitations of your research problem. This will help you focus your study and ensure that your research objectives are achievable.
  • Get feedback: Get feedback from your advisor or colleagues to ensure that your research problem is clear, feasible, and relevant to the field of study.

Components of a Research Problem

The components of a research problem typically include the following:

  • Topic : The general subject or area of interest that the research will explore.
  • Research Question : A clear and specific question that the research seeks to answer or investigate.
  • Objective : A statement that describes the purpose of the research, what it aims to achieve, and the expected outcomes.
  • Hypothesis : An educated guess or prediction about the relationship between variables, which is tested during the research.
  • Variables : The factors or elements that are being studied, measured, or manipulated in the research.
  • Methodology : The overall approach and methods that will be used to conduct the research.
  • Scope and Limitations : A description of the boundaries and parameters of the research, including what will be included and excluded, and any potential constraints or limitations.
  • Significance: A statement that explains the potential value or impact of the research, its contribution to the field of study, and how it will add to the existing knowledge.

Research Problem Examples

Following are some Research Problem Examples:

Research Problem Examples in Psychology are as follows:

  • Exploring the impact of social media on adolescent mental health.
  • Investigating the effectiveness of cognitive-behavioral therapy for treating anxiety disorders.
  • Studying the impact of prenatal stress on child development outcomes.
  • Analyzing the factors that contribute to addiction and relapse in substance abuse treatment.
  • Examining the impact of personality traits on romantic relationships.

Research Problem Examples in Sociology are as follows:

  • Investigating the relationship between social support and mental health outcomes in marginalized communities.
  • Studying the impact of globalization on labor markets and employment opportunities.
  • Analyzing the causes and consequences of gentrification in urban neighborhoods.
  • Investigating the impact of family structure on social mobility and economic outcomes.
  • Examining the effects of social capital on community development and resilience.

Research Problem Examples in Economics are as follows:

  • Studying the effects of trade policies on economic growth and development.
  • Analyzing the impact of automation and artificial intelligence on labor markets and employment opportunities.
  • Investigating the factors that contribute to economic inequality and poverty.
  • Examining the impact of fiscal and monetary policies on inflation and economic stability.
  • Studying the relationship between education and economic outcomes, such as income and employment.

Political Science

Research Problem Examples in Political Science are as follows:

  • Analyzing the causes and consequences of political polarization and partisan behavior.
  • Investigating the impact of social movements on political change and policymaking.
  • Studying the role of media and communication in shaping public opinion and political discourse.
  • Examining the effectiveness of electoral systems in promoting democratic governance and representation.
  • Investigating the impact of international organizations and agreements on global governance and security.

Environmental Science

Research Problem Examples in Environmental Science are as follows:

  • Studying the impact of air pollution on human health and well-being.
  • Investigating the effects of deforestation on climate change and biodiversity loss.
  • Analyzing the impact of ocean acidification on marine ecosystems and food webs.
  • Studying the relationship between urban development and ecological resilience.
  • Examining the effectiveness of environmental policies and regulations in promoting sustainability and conservation.

Research Problem Examples in Education are as follows:

  • Investigating the impact of teacher training and professional development on student learning outcomes.
  • Studying the effectiveness of technology-enhanced learning in promoting student engagement and achievement.
  • Analyzing the factors that contribute to achievement gaps and educational inequality.
  • Examining the impact of parental involvement on student motivation and achievement.
  • Studying the effectiveness of alternative educational models, such as homeschooling and online learning.

Research Problem Examples in History are as follows:

  • Analyzing the social and economic factors that contributed to the rise and fall of ancient civilizations.
  • Investigating the impact of colonialism on indigenous societies and cultures.
  • Studying the role of religion in shaping political and social movements throughout history.
  • Analyzing the impact of the Industrial Revolution on economic and social structures.
  • Examining the causes and consequences of global conflicts, such as World War I and II.

Research Problem Examples in Business are as follows:

  • Studying the impact of corporate social responsibility on brand reputation and consumer behavior.
  • Investigating the effectiveness of leadership development programs in improving organizational performance and employee satisfaction.
  • Analyzing the factors that contribute to successful entrepreneurship and small business development.
  • Examining the impact of mergers and acquisitions on market competition and consumer welfare.
  • Studying the effectiveness of marketing strategies and advertising campaigns in promoting brand awareness and sales.

Research Problem Example for Students

An Example of a Research Problem for Students could be:

“How does social media usage affect the academic performance of high school students?”

This research problem is specific, measurable, and relevant. It is specific because it focuses on a particular area of interest, which is the impact of social media on academic performance. It is measurable because the researcher can collect data on social media usage and academic performance to evaluate the relationship between the two variables. It is relevant because it addresses a current and important issue that affects high school students.

To conduct research on this problem, the researcher could use various methods, such as surveys, interviews, and statistical analysis of academic records. The results of the study could provide insights into the relationship between social media usage and academic performance, which could help educators and parents develop effective strategies for managing social media use among students.

Another example of a research problem for students:

“Does participation in extracurricular activities impact the academic performance of middle school students?”

This research problem is also specific, measurable, and relevant. It is specific because it focuses on a particular type of activity, extracurricular activities, and its impact on academic performance. It is measurable because the researcher can collect data on students’ participation in extracurricular activities and their academic performance to evaluate the relationship between the two variables. It is relevant because extracurricular activities are an essential part of the middle school experience, and their impact on academic performance is a topic of interest to educators and parents.

To conduct research on this problem, the researcher could use surveys, interviews, and academic records analysis. The results of the study could provide insights into the relationship between extracurricular activities and academic performance, which could help educators and parents make informed decisions about the types of activities that are most beneficial for middle school students.

Applications of Research Problem

Applications of Research Problem are as follows:

  • Academic research: Research problems are used to guide academic research in various fields, including social sciences, natural sciences, humanities, and engineering. Researchers use research problems to identify gaps in knowledge, address theoretical or practical problems, and explore new areas of study.
  • Business research : Research problems are used to guide business research, including market research, consumer behavior research, and organizational research. Researchers use research problems to identify business challenges, explore opportunities, and develop strategies for business growth and success.
  • Healthcare research : Research problems are used to guide healthcare research, including medical research, clinical research, and health services research. Researchers use research problems to identify healthcare challenges, develop new treatments and interventions, and improve healthcare delivery and outcomes.
  • Public policy research : Research problems are used to guide public policy research, including policy analysis, program evaluation, and policy development. Researchers use research problems to identify social issues, assess the effectiveness of existing policies and programs, and develop new policies and programs to address societal challenges.
  • Environmental research : Research problems are used to guide environmental research, including environmental science, ecology, and environmental management. Researchers use research problems to identify environmental challenges, assess the impact of human activities on the environment, and develop sustainable solutions to protect the environment.

Purpose of Research Problems

The purpose of research problems is to identify an area of study that requires further investigation and to formulate a clear, concise and specific research question. A research problem defines the specific issue or problem that needs to be addressed and serves as the foundation for the research project.

Identifying a research problem is important because it helps to establish the direction of the research and sets the stage for the research design, methods, and analysis. It also ensures that the research is relevant and contributes to the existing body of knowledge in the field.

A well-formulated research problem should:

  • Clearly define the specific issue or problem that needs to be investigated
  • Be specific and narrow enough to be manageable in terms of time, resources, and scope
  • Be relevant to the field of study and contribute to the existing body of knowledge
  • Be feasible and realistic in terms of available data, resources, and research methods
  • Be interesting and intellectually stimulating for the researcher and potential readers or audiences.

Characteristics of Research Problem

The characteristics of a research problem refer to the specific features that a problem must possess to qualify as a suitable research topic. Some of the key characteristics of a research problem are:

  • Clarity : A research problem should be clearly defined and stated in a way that it is easily understood by the researcher and other readers. The problem should be specific, unambiguous, and easy to comprehend.
  • Relevance : A research problem should be relevant to the field of study, and it should contribute to the existing body of knowledge. The problem should address a gap in knowledge, a theoretical or practical problem, or a real-world issue that requires further investigation.
  • Feasibility : A research problem should be feasible in terms of the availability of data, resources, and research methods. It should be realistic and practical to conduct the study within the available time, budget, and resources.
  • Novelty : A research problem should be novel or original in some way. It should represent a new or innovative perspective on an existing problem, or it should explore a new area of study or apply an existing theory to a new context.
  • Importance : A research problem should be important or significant in terms of its potential impact on the field or society. It should have the potential to produce new knowledge, advance existing theories, or address a pressing societal issue.
  • Manageability : A research problem should be manageable in terms of its scope and complexity. It should be specific enough to be investigated within the available time and resources, and it should be broad enough to provide meaningful results.

Advantages of Research Problem

The advantages of a well-defined research problem are as follows:

  • Focus : A research problem provides a clear and focused direction for the research study. It ensures that the study stays on track and does not deviate from the research question.
  • Clarity : A research problem provides clarity and specificity to the research question. It ensures that the research is not too broad or too narrow and that the research objectives are clearly defined.
  • Relevance : A research problem ensures that the research study is relevant to the field of study and contributes to the existing body of knowledge. It addresses gaps in knowledge, theoretical or practical problems, or real-world issues that require further investigation.
  • Feasibility : A research problem ensures that the research study is feasible in terms of the availability of data, resources, and research methods. It ensures that the research is realistic and practical to conduct within the available time, budget, and resources.
  • Novelty : A research problem ensures that the research study is original and innovative. It represents a new or unique perspective on an existing problem, explores a new area of study, or applies an existing theory to a new context.
  • Importance : A research problem ensures that the research study is important and significant in terms of its potential impact on the field or society. It has the potential to produce new knowledge, advance existing theories, or address a pressing societal issue.
  • Rigor : A research problem ensures that the research study is rigorous and follows established research methods and practices. It ensures that the research is conducted in a systematic, objective, and unbiased manner.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

StatAnalytica

200+ Experimental Quantitative Research Topics For STEM Students In 2023

Experimental Quantitative Research Topics For Stem Students

STEM means Science, Technology, Engineering, and Math, which is not the only stuff we learn in school. It is like a treasure chest of skills that help students become great problem solvers, ready to tackle the real world’s challenges.

In this blog, we are here to explore the world of Research Topics for STEM Students. We will break down what STEM really means and why it is so important for students. In addition, we will give you the lowdown on how to pick a fascinating research topic. We will explain a list of 200+ Experimental Quantitative Research Topics For STEM Students.

And when it comes to writing a research title, we will guide you step by step. So, stay with us as we unlock the exciting world of STEM research – it is not just about grades; it is about growing smarter, more confident, and happier along the way.

What Is STEM?

Table of Contents

STEM is Science, Technology, Engineering, and Mathematics. It is a way of talking about things like learning, jobs, and activities related to these four important subjects. Science is about understanding the world around us, technology is about using tools and machines to solve problems, engineering is about designing and building things, and mathematics is about numbers and solving problems with them. STEM helps us explore, discover, and create cool stuff that makes our world better and more exciting.

Why STEM Research Is Important?

STEM research is important because it helps us learn new things about the world and solve problems. When scientists, engineers, and mathematicians study these subjects, they can discover cures for diseases, create new technology that makes life easier, and build things that help us live better. It is like a big puzzle where we put together pieces of knowledge to make our world safer, healthier, and more fun.

  • STEM research leads to new discoveries and solutions.
  • It helps find cures for diseases.
  • STEM technology makes life easier.
  • Engineers build things that improve our lives.
  • Mathematics helps us understand and solve complex problems.

How to Choose a Topic for STEM Research Paper

Here are some steps to choose a topic for STEM Research Paper:

Step 1: Identify Your Interests

Think about what you like and what excites you in science, technology, engineering, or math. It could be something you learned in school, saw in the news, or experienced in your daily life. Choosing a topic you’re passionate about makes the research process more enjoyable.

Step 2: Research Existing Topics

Look up different STEM research areas online, in books, or at your library. See what scientists and experts are studying. This can give you ideas and help you understand what’s already known in your chosen field.

Step 3: Consider Real-World Problems

Think about the problems you see around you. Are there issues in your community or the world that STEM can help solve? Choosing a topic that addresses a real-world problem can make your research impactful.

Step 4: Talk to Teachers and Mentors

Discuss your interests with your teachers, professors, or mentors. They can offer guidance and suggest topics that align with your skills and goals. They may also provide resources and support for your research.

Step 5: Narrow Down Your Topic

Once you have some ideas, narrow them down to a specific research question or project. Make sure it’s not too broad or too narrow. You want a topic that you can explore in depth within the scope of your research paper.

Here we will discuss 200+ Experimental Quantitative Research Topics For STEM Students: 

Qualitative Research Topics for STEM Students:

Qualitative research focuses on exploring and understanding phenomena through non-numerical data and subjective experiences. Here are 10 qualitative research topics for STEM students:

  • Exploring the experiences of female STEM students in overcoming gender bias in academia.
  • Understanding the perceptions of teachers regarding the integration of technology in STEM education.
  • Investigating the motivations and challenges of STEM educators in underprivileged schools.
  • Exploring the attitudes and beliefs of parents towards STEM education for their children.
  • Analyzing the impact of collaborative learning on student engagement in STEM subjects.
  • Investigating the experiences of STEM professionals in bridging the gap between academia and industry.
  • Understanding the cultural factors influencing STEM career choices among minority students.
  • Exploring the role of mentorship in the career development of STEM graduates.
  • Analyzing the perceptions of students towards the ethics of emerging STEM technologies like AI and CRISPR.
  • Investigating the emotional well-being and stress levels of STEM students during their academic journey.

Easy Experimental Research Topics for STEM Students:

These experimental research topics are relatively straightforward and suitable for STEM students who are new to research:

  •  Measuring the effect of different light wavelengths on plant growth.
  •  Investigating the relationship between exercise and heart rate in various age groups.
  •  Testing the effectiveness of different insulating materials in conserving heat.
  •  Examining the impact of pH levels on the rate of chemical reactions.
  •  Studying the behavior of magnets in different temperature conditions.
  •  Investigating the effect of different concentrations of a substance on bacterial growth.
  •  Testing the efficiency of various sunscreen brands in blocking UV radiation.
  •  Measuring the impact of music genres on concentration and productivity.
  •  Examining the correlation between the angle of a ramp and the speed of a rolling object.
  •  Investigating the relationship between the number of blades on a wind turbine and energy output.

Research Topics for STEM Students in the Philippines:

These research topics are tailored for STEM students in the Philippines:

  •  Assessing the impact of climate change on the biodiversity of coral reefs in the Philippines.
  •  Studying the potential of indigenous plants in the Philippines for medicinal purposes.
  •  Investigating the feasibility of harnessing renewable energy sources like solar and wind in rural Filipino communities.
  •  Analyzing the water quality and pollution levels in major rivers and lakes in the Philippines.
  •  Exploring sustainable agricultural practices for small-scale farmers in the Philippines.
  •  Assessing the prevalence and impact of dengue fever outbreaks in urban areas of the Philippines.
  •  Investigating the challenges and opportunities of STEM education in remote Filipino islands.
  •  Studying the impact of typhoons and natural disasters on infrastructure resilience in the Philippines.
  •  Analyzing the genetic diversity of endemic species in the Philippine rainforests.
  •  Assessing the effectiveness of disaster preparedness programs in Philippine communities.

Read More 

  • Frontend Project Ideas
  • Business Intelligence Projects For Beginners

Good Research Topics for STEM Students:

These research topics are considered good because they offer interesting avenues for investigation and learning:

  •  Developing a low-cost and efficient water purification system for rural communities.
  •  Investigating the potential use of CRISPR-Cas9 for gene therapy in genetic disorders.
  •  Studying the applications of blockchain technology in securing medical records.
  •  Analyzing the impact of 3D printing on customized prosthetics for amputees.
  •  Exploring the use of artificial intelligence in predicting and preventing forest fires.
  •  Investigating the effects of microplastic pollution on aquatic ecosystems.
  •  Analyzing the use of drones in monitoring and managing agricultural crops.
  •  Studying the potential of quantum computing in solving complex optimization problems.
  •  Investigating the development of biodegradable materials for sustainable packaging.
  •  Exploring the ethical implications of gene editing in humans.

Unique Research Topics for STEM Students:

Unique research topics can provide STEM students with the opportunity to explore unconventional and innovative ideas. Here are 10 unique research topics for STEM students:

  •  Investigating the use of bioluminescent organisms for sustainable lighting solutions.
  •  Studying the potential of using spider silk proteins for advanced materials in engineering.
  •  Exploring the application of quantum entanglement for secure communication in the field of cryptography.
  •  Analyzing the feasibility of harnessing geothermal energy from underwater volcanoes.
  •  Investigating the use of CRISPR-Cas12 for rapid and cost-effective disease diagnostics.
  •  Studying the interaction between artificial intelligence and human creativity in art and music generation.
  •  Exploring the development of edible packaging materials to reduce plastic waste.
  •  Investigating the impact of microgravity on cellular behavior and tissue regeneration in space.
  •  Analyzing the potential of using sound waves to detect and combat invasive species in aquatic ecosystems.
  •  Studying the use of biotechnology in reviving extinct species, such as the woolly mammoth.

Experimental Research Topics for STEM Students in the Philippines

Research topics for STEM students in the Philippines can address specific regional challenges and opportunities. Here are 10 experimental research topics for STEM students in the Philippines:

  •  Assessing the effectiveness of locally sourced materials for disaster-resilient housing construction in typhoon-prone areas.
  •  Investigating the utilization of indigenous plants for natural remedies in Filipino traditional medicine.
  •  Studying the impact of volcanic soil on crop growth and agriculture in volcanic regions of the Philippines.
  •  Analyzing the water quality and purification methods in remote island communities.
  •  Exploring the feasibility of using bamboo as a sustainable construction material in the Philippines.
  •  Investigating the potential of using solar stills for freshwater production in water-scarce regions.
  •  Studying the effects of climate change on the migration patterns of bird species in the Philippines.
  •  Analyzing the growth and sustainability of coral reefs in marine protected areas.
  •  Investigating the utilization of coconut waste for biofuel production.
  •  Studying the biodiversity and conservation efforts in the Tubbataha Reefs Natural Park.

Capstone Research Topics for STEM Students in the Philippines:

Capstone research projects are often more comprehensive and can address real-world issues. Here are 10 capstone research topics for STEM students in the Philippines:

  •  Designing a low-cost and sustainable sanitation system for informal settlements in urban Manila.
  •  Developing a mobile app for monitoring and reporting natural disasters in the Philippines.
  •  Assessing the impact of climate change on the availability and quality of drinking water in Philippine cities.
  •  Designing an efficient traffic management system to address congestion in major Filipino cities.
  •  Analyzing the health implications of air pollution in densely populated urban areas of the Philippines.
  •  Developing a renewable energy microgrid for off-grid communities in the archipelago.
  •  Assessing the feasibility of using unmanned aerial vehicles (drones) for agricultural monitoring in rural Philippines.
  •  Designing a low-cost and sustainable aquaponics system for urban agriculture.
  •  Investigating the potential of vertical farming to address food security in densely populated urban areas.
  •  Developing a disaster-resilient housing prototype suitable for typhoon-prone regions.

Experimental Quantitative Research Topics for STEM Students:

Experimental quantitative research involves the collection and analysis of numerical data to conclude. Here are 10 Experimental Quantitative Research Topics For STEM Students interested in experimental quantitative research:

  •  Examining the impact of different fertilizers on crop yield in agriculture.
  •  Investigating the relationship between exercise and heart rate among different age groups.
  •  Analyzing the effect of varying light intensities on photosynthesis in plants.
  •  Studying the efficiency of various insulation materials in reducing building heat loss.
  •  Investigating the relationship between pH levels and the rate of corrosion in metals.
  •  Analyzing the impact of different concentrations of pollutants on aquatic ecosystems.
  •  Examining the effectiveness of different antibiotics on bacterial growth.
  •  Trying to figure out how temperature affects how thick liquids are.
  •  Finding out if there is a link between the amount of pollution in the air and lung illnesses in cities.
  •  Analyzing the efficiency of solar panels in converting sunlight into electricity under varying conditions.

Descriptive Research Topics for STEM Students

Descriptive research aims to provide a detailed account or description of a phenomenon. Here are 10 topics for STEM students interested in descriptive research:

  •  Describing the physical characteristics and behavior of a newly discovered species of marine life.
  •  Documenting the geological features and formations of a particular region.
  •  Creating a detailed inventory of plant species in a specific ecosystem.
  •  Describing the properties and behavior of a new synthetic polymer.
  •  Documenting the daily weather patterns and climate trends in a particular area.
  •  Providing a comprehensive analysis of the energy consumption patterns in a city.
  •  Describing the structural components and functions of a newly developed medical device.
  •  Documenting the characteristics and usage of traditional construction materials in a region.
  •  Providing a detailed account of the microbiome in a specific environmental niche.
  •  Describing the life cycle and behavior of a rare insect species.

Research Topics for STEM Students in the Pandemic:

The COVID-19 pandemic has raised many research opportunities for STEM students. Here are 10 research topics related to pandemics:

  •  Analyzing the effectiveness of various personal protective equipment (PPE) in preventing the spread of respiratory viruses.
  •  Studying the impact of lockdown measures on air quality and pollution levels in urban areas.
  •  Investigating the psychological effects of quarantine and social isolation on mental health.
  •  Analyzing the genomic variation of the SARS-CoV-2 virus and its implications for vaccine development.
  •  Studying the efficacy of different disinfection methods on various surfaces.
  •  Investigating the role of contact tracing apps in tracking & controlling the spread of infectious diseases.
  •  Analyzing the economic impact of the pandemic on different industries and sectors.
  •  Studying the effectiveness of remote learning in STEM education during lockdowns.
  •  Investigating the social disparities in healthcare access during a pandemic.
  • Analyzing the ethical considerations surrounding vaccine distribution and prioritization.

Research Topics for STEM Students Middle School

Research topics for middle school STEM students should be engaging and suitable for their age group. Here are 10 research topics:

  • Investigating the growth patterns of different types of mold on various food items.
  • Studying the negative effects of music on plant growth and development.
  • Analyzing the relationship between the shape of a paper airplane and its flight distance.
  • Investigating the properties of different materials in making effective insulators for hot and cold beverages.
  • Studying the effect of salt on the buoyancy of different objects in water.
  • Analyzing the behavior of magnets when exposed to different temperatures.
  • Investigating the factors that affect the rate of ice melting in different environments.
  • Studying the impact of color on the absorption of heat by various surfaces.
  • Analyzing the growth of crystals in different types of solutions.
  • Investigating the effectiveness of different natural repellents against common pests like mosquitoes.

Technology Research Topics for STEM Students

Technology is at the forefront of STEM fields. Here are 10 research topics for STEM students interested in technology:

  • Developing and optimizing algorithms for autonomous drone navigation in complex environments.
  • Exploring the use of blockchain technology for enhancing the security and transparency of supply chains.
  • Investigating the applications of virtual reality (VR) and augmented reality (AR) in medical training and surgery simulations.
  • Studying the potential of 3D printing for creating personalized prosthetics and orthopedic implants.
  • Analyzing the ethical and privacy implications of facial recognition technology in public spaces.
  • Investigating the development of quantum computing algorithms for solving complex optimization problems.
  • Explaining the use of machine learning and AI in predicting and mitigating the impact of natural disasters.
  • Studying the advancement of brain-computer interfaces for assisting individuals with
  • disabilities.
  • Analyzing the role of wearable technology in monitoring and improving personal health and wellness.
  • Investigating the use of robotics in disaster response and search and rescue operations.

Scientific Research Topics for STEM Students

Scientific research encompasses a wide range of topics. Here are 10 research topics for STEM students focusing on scientific exploration:

  • Investigating the behavior of subatomic particles in high-energy particle accelerators.
  • Studying the ecological impact of invasive species on native ecosystems.
  • Analyzing the genetics of antibiotic resistance in bacteria and its implications for healthcare.
  • Exploring the physics of gravitational waves and their detection through advanced interferometry.
  • Investigating the neurobiology of memory formation and retention in the human brain.
  • Studying the biodiversity and adaptation of extremophiles in harsh environments.
  • Analyzing the chemistry of deep-sea hydrothermal vents and their potential for life beyond Earth.
  • Exploring the properties of superconductors and their applications in technology.
  • Investigating the mechanisms of stem cell differentiation for regenerative medicine.
  • Studying the dynamics of climate change and its impact on global ecosystems.

Interesting Research Topics for STEM Students:

Engaging and intriguing research topics can foster a passion for STEM. Here are 10 interesting research topics for STEM students:

  • Exploring the science behind the formation of auroras and their cultural significance.
  • Investigating the mysteries of dark matter and dark energy in the universe.
  • Studying the psychology of decision-making in high-pressure situations, such as sports or
  • emergencies.
  • Analyzing the impact of social media on interpersonal relationships and mental health.
  • Exploring the potential for using genetic modification to create disease-resistant crops.
  • Investigating the cognitive processes involved in solving complex puzzles and riddles.
  • Studying the history and evolution of cryptography and encryption methods.
  • Analyzing the physics of time travel and its theoretical possibilities.
  • Exploring the role of Artificial Intelligence  in creating art and music.
  • Investigating the science of happiness and well-being, including factors contributing to life satisfaction.

Practical Research Topics for STEM Students

Practical research often leads to real-world solutions. Here are 10 practical research topics for STEM students:

  • Developing an affordable and sustainable water purification system for rural communities.
  • Designing a low-cost, energy-efficient home heating and cooling system.
  • Investigating strategies for reducing food waste in the supply chain and households.
  • Studying the effectiveness of eco-friendly pest control methods in agriculture.
  • Analyzing the impact of renewable energy integration on the stability of power grids.
  • Developing a smartphone app for early detection of common medical conditions.
  • Investigating the feasibility of vertical farming for urban food production.
  • Designing a system for recycling and upcycling electronic waste.
  • Studying the environmental benefits of green roofs and their potential for urban heat island mitigation.
  • Analyzing the efficiency of alternative transportation methods in reducing carbon emissions.

Experimental Research Topics for STEM Students About Plants

Plants offer a rich field for experimental research. Here are 10 experimental research topics about plants for STEM students:

  • Investigating the effect of different light wavelengths on plant growth and photosynthesis.
  • Studying the impact of various fertilizers and nutrient solutions on crop yield.
  • Analyzing the response of plants to different types and concentrations of plant hormones.
  • Investigating the role of mycorrhizal in enhancing nutrient uptake in plants.
  • Studying the effects of drought stress and water scarcity on plant physiology and adaptation mechanisms.
  • Analyzing the influence of soil pH on plant nutrient availability and growth.
  • Investigating the chemical signaling and defense mechanisms of plants against herbivores.
  • Studying the impact of environmental pollutants on plant health and genetic diversity.
  • Analyzing the role of plant secondary metabolites in pharmaceutical and agricultural applications.
  • Investigating the interactions between plants and beneficial microorganisms in the rhizosphere.

Qualitative Research Topics for STEM Students in the Philippines

Qualitative research in the Philippines can address local issues and cultural contexts. Here are 10 qualitative research topics for STEM students in the Philippines:

  • Exploring indigenous knowledge and practices in sustainable agriculture in Filipino communities.
  • Studying the perceptions and experiences of Filipino fishermen in coping with climate change impacts.
  • Analyzing the cultural significance and traditional uses of medicinal plants in indigenous Filipino communities.
  • Investigating the barriers and facilitators of STEM education access in remote Philippine islands.
  • Exploring the role of traditional Filipino architecture in natural disaster resilience.
  • Studying the impact of indigenous farming methods on soil conservation and fertility.
  • Analyzing the cultural and environmental significance of mangroves in coastal Filipino regions.
  • Investigating the knowledge and practices of Filipino healers in treating common ailments.
  • Exploring the cultural heritage and conservation efforts of the Ifugao rice terraces.
  • Studying the perceptions and practices of Filipino communities in preserving marine biodiversity.

Science Research Topics for STEM Students

Science offers a diverse range of research avenues. Here are 10 science research topics for STEM students:

  • Investigating the potential of gene editing techniques like CRISPR-Cas9 in curing genetic diseases.
  • Studying the ecological impacts of species reintroduction programs on local ecosystems.
  • Analyzing the effects of microplastic pollution on aquatic food webs and ecosystems.
  • Investigating the link between air pollution and respiratory health in urban populations.
  • Studying the role of epigenetics in the inheritance of acquired traits in organisms.
  • Analyzing the physiology and adaptations of extremophiles in extreme environments on Earth.
  • Investigating the genetics of longevity and factors influencing human lifespan.
  • Studying the behavioral ecology and communication strategies of social insects.
  • Analyzing the effects of deforestation on global climate patterns and biodiversity loss.
  • Investigating the potential of synthetic biology in creating bioengineered organisms for beneficial applications.

Correlational Research Topics for STEM Students

Correlational research focuses on relationships between variables. Here are 10 correlational research topics for STEM students:

  • Analyzing the correlation between dietary habits and the incidence of chronic diseases.
  • Studying the relationship between exercise frequency and mental health outcomes.
  • Investigating the correlation between socioeconomic status and access to quality healthcare.
  • Analyzing the link between social media usage and self-esteem in adolescents.
  • Studying the correlation between academic performance and sleep duration among students.
  • Investigating the relationship between environmental factors and the prevalence of allergies.
  • Analyzing the correlation between technology use and attention span in children.
  • Studying how environmental factors are related to the frequency of allergies.
  • Investigating the link between parental involvement in education and student achievement.
  • Analyzing the correlation between temperature fluctuations and wildlife migration patterns.

Quantitative Research Topics for STEM Students in the Philippines

Quantitative research in the Philippines can address specific regional issues. Here are 10 quantitative research topics for STEM students in the Philippines

  • Analyzing the impact of typhoons on coastal erosion rates in the Philippines.
  • Studying the quantitative effects of land use change on watershed hydrology in Filipino regions.
  • Investigating the quantitative relationship between deforestation and habitat loss for endangered species.
  • Analyzing the quantitative patterns of marine biodiversity in Philippine coral reef ecosystems.
  • Studying the quantitative assessment of water quality in major Philippine rivers and lakes.
  • Investigating the quantitative analysis of renewable energy potential in specific Philippine provinces.
  • Analyzing the quantitative impacts of agricultural practices on soil health and fertility.
  • Studying the quantitative effectiveness of mangrove restoration in coastal protection in the Philippines.
  • Investigating the quantitative evaluation of indigenous agricultural practices for sustainability.
  • Analyzing the quantitative patterns of air pollution and its health impacts in urban Filipino areas.

Things That Must Keep In Mind While Writing Quantitative Research Title 

Here are few things that must be keep in mind while writing quantitative research tile:

1. Be Clear and Precise

Make sure your research title is clear and says exactly what your study is about. People should easily understand the topic and goals of your research by reading the title.

2. Use Important Words

Include words that are crucial to your research, like the main subjects, who you’re studying, and how you’re doing your research. This helps others find your work and understand what it’s about.

3. Avoid Confusing Words

Stay away from words that might confuse people. Your title should be easy to grasp, even if someone isn’t an expert in your field.

4. Show Your Research Approach

Tell readers what kind of research you did, like experiments or surveys. This gives them a hint about how you conducted your study.

5. Match Your Title with Your Research Questions

Make sure your title matches the questions you’re trying to answer in your research. It should give a sneak peek into what your study is all about and keep you on the right track as you work on it.

STEM students, addressing what STEM is and why research matters in this field. It offered an extensive list of research topics , including experimental, qualitative, and regional options, catering to various academic levels and interests. Whether you’re a middle school student or pursuing advanced studies, these topics offer a wealth of ideas. The key takeaway is to choose a topic that resonates with your passion and aligns with your goals, ensuring a successful journey in STEM research. Choose the best Experimental Quantitative Research Topics For Stem Students today!

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • How to Write a Problem Statement | Guide & Examples

How to Write a Problem Statement | Guide & Examples

Published on November 6, 2022 by Shona McCombes and Tegan George. Revised on November 20, 2023.

A problem statement is a concise and concrete summary of the research problem you seek to address. It should:

  • Contextualize the problem. What do we already know?
  • Describe the exact issue your research will address. What do we still need to know?
  • Show the relevance of the problem. Why do we need to know more about this?
  • Set the objectives of the research. What will you do to find out more?

Table of contents

When should you write a problem statement, step 1: contextualize the problem, step 2: show why it matters, step 3: set your aims and objectives.

Problem statement example

Other interesting articles

Frequently asked questions about problem statements.

There are various situations in which you might have to write a problem statement.

In the business world, writing a problem statement is often the first step in kicking off an improvement project. In this case, the problem statement is usually a stand-alone document.

In academic research, writing a problem statement can help you contextualize and understand the significance of your research problem. It is often several paragraphs long, and serves as the basis for your research proposal . Alternatively, it can be condensed into just a few sentences in your introduction .

A problem statement looks different depending on whether you’re dealing with a practical, real-world problem or a theoretical issue. Regardless, all problem statements follow a similar process.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

The problem statement should frame your research problem, giving some background on what is already known.

Practical research problems

For practical research, focus on the concrete details of the situation:

  • Where and when does the problem arise?
  • Who does the problem affect?
  • What attempts have been made to solve the problem?

Theoretical research problems

For theoretical research, think about the scientific, social, geographical and/or historical background:

  • What is already known about the problem?
  • Is the problem limited to a certain time period or geographical area?
  • How has the problem been defined and debated in the scholarly literature?

The problem statement should also address the relevance of the research. Why is it important that the problem is addressed?

Don’t worry, this doesn’t mean you have to do something groundbreaking or world-changing. It’s more important that the problem is researchable, feasible, and clearly addresses a relevant issue in your field.

Practical research is directly relevant to a specific problem that affects an organization, institution, social group, or society more broadly. To make it clear why your research problem matters, you can ask yourself:

  • What will happen if the problem is not solved?
  • Who will feel the consequences?
  • Does the problem have wider relevance? Are similar issues found in other contexts?

Sometimes theoretical issues have clear practical consequences, but sometimes their relevance is less immediately obvious. To identify why the problem matters, ask:

  • How will resolving the problem advance understanding of the topic?
  • What benefits will it have for future research?
  • Does the problem have direct or indirect consequences for society?

Finally, the problem statement should frame how you intend to address the problem. Your goal here should not be to find a conclusive solution, but rather to propose more effective approaches to tackling or understanding it.

The research aim is the overall purpose of your research. It is generally written in the infinitive form:

  • The aim of this study is to determine …
  • This project aims to explore …
  • This research aims to investigate …

The research objectives are the concrete steps you will take to achieve the aim:

  • Qualitative methods will be used to identify …
  • This work will use surveys to collect …
  • Using statistical analysis, the research will measure …

The aims and objectives should lead directly to your research questions.

Learn how to formulate research questions

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

research problem example for students science

You can use these steps to write your own problem statement, like the example below.

Step 1: Contextualize the problem A family-owned shoe manufacturer has been in business in New England for several generations, employing thousands of local workers in a variety of roles, from assembly to supply-chain to customer service and retail. Employee tenure in the past always had an upward trend, with the average employee staying at the company for 10+ years. However, in the past decade, the trend has reversed, with some employees lasting only a few months, and others leaving abruptly after many years.

Step 2: Show why it matters As the perceived loyalty of their employees has long been a source of pride for the company, they employed an outside consultant firm to see why there was so much turnover. The firm focused on the new hires, concluding that a rival shoe company located in the next town offered higher hourly wages and better “perks”, such as pizza parties. They claimed this was what was leading employees to switch. However, to gain a fuller understanding of why the turnover persists even after the consultant study, in-depth qualitative research focused on long-term employees is also needed. Focusing on why established workers leave can help develop a more telling reason why turnover is so high, rather than just due to salaries. It can also potentially identify points of change or conflict in the company’s culture that may cause workers to leave.

Step 3: Set your aims and objectives This project aims to better understand why established workers choose to leave the company. Qualitative methods such as surveys and interviews will be conducted comparing the views of those who have worked 10+ years at the company and chose to stay, compared with those who chose to leave.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Once you’ve decided on your research objectives , you need to explain them in your paper, at the end of your problem statement .

Keep your research objectives clear and concise, and use appropriate verbs to accurately convey the work that you will carry out for each one.

I will compare …

All research questions should be:

  • Focused on a single problem or issue
  • Researchable using primary and/or secondary sources
  • Feasible to answer within the timeframe and practical constraints
  • Specific enough to answer thoroughly
  • Complex enough to develop the answer over the space of a paper or thesis
  • Relevant to your field of study and/or society more broadly

Writing Strong Research Questions

Research objectives describe what you intend your research project to accomplish.

They summarize the approach and purpose of the project and help to focus your research.

Your objectives should appear in the introduction of your research paper , at the end of your problem statement .

Your research objectives indicate how you’ll try to address your research problem and should be specific:

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. & George, T. (2023, November 20). How to Write a Problem Statement | Guide & Examples. Scribbr. Retrieved April 4, 2024, from https://www.scribbr.com/research-process/problem-statement/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to choose a dissertation topic | 8 steps to follow, how to define a research problem | ideas & examples, writing strong research questions | criteria & examples, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

80+ Science Research Paper Topics Ideas For Students

Scientist stirring the flask

Essay writing or writing dissertation is an integral part of education at any level, middle school, high school, or college. Some of the most common essays are on science research topics, and they are also quite interesting. However, choosing research paper topics isn’t as straightforward as you’d like. You’ll need to carry out a survey on and draw inspiration from several scientific research topics before finally choosing one. Choosing science topics, especially if they are argumentative essay topics , to write about can be a frustrating task, especially when science is a pretty wide subject. If you need inspiration on interesting science topics, we’ll give you some science research paper ideas. But, first, let’s talk about how to choose the best science research paper topics – it makes things easier.

What Are Some Science Topics You Can Write About?

Interesting science research topics, ideas of science research topics for high school students, science research topics for college students, science research topics for middle school, scientific research question examples, science presentation ideas, cool science topics to research, ideas of scientific topics for research on nanotechnology, fascinating ideas for science research projects, interesting science topics for high school research papers, tips for choosing science research topics.

Being a very broad subject, students often find choosing a science topic for a research paper difficult. However, the secret is knowing what scientific research questions will make for a good paper, and what people will want to read. So, when choosing science topics for papers, here are tips you can follow to make the task easier.

  • Choose cool science topics you’re interested in and that’ll interest your readers.
  • Search online for research question examples science for ideas on what your paper should be about.
  • Avoid choosing too-broad research topics for high school, to ensure your work is well detailed.
  • Consider contemporary scientific research questions concerning recent happenings; they can be fun to write
  • Read your notes and online academic papers for inspiration on good science research paper topics.
  • Choose simple but highly informative research topics for high school students.
  • Choose good science topics you have some knowledge of and can confidently talk about.
  • Learn how to choose science topics for high school to make things easier.
  • Be familiar with the dos and don’ts of choosing scientific research paper topics.
  • Choose a scientific topic for research papers that has enough accessible information.

The Dos and Don’ts of Choosing Science Topics

Knowing the dos and don’ts of choosing a science title helps you select a good topic and ultimately write an outstanding paper. So, when searching for science topics for presentations,

  • Do understand that there are different topics in science you can research on;
  • Do read extensively for science research paper ideas; it helps you know what to write about;
  • Don’t include words like “Research of” or “Study of” in your chosen science topics to research;
  • Don’t choose high school science research paper topics with scanty or inaccessible information available;
  • Do check online for interesting science research ideas on how to write your paper;
  • Feel free to ask your instructor, colleagues, or seniors for scientific research ideas.

When searching for interesting science topics or social media research topics related to science to writing on, you will find different ones on different subjects, which can be confusing. You can follow the tips we listed for choosing science-related topics for a research paper. Meanwhile, here are some science paper topics you can use if none is forthcoming.

  • Is there a move for the Covid-19 vaccine?
  • What “flattening the curve” means
  • Molecular evidence of humans interbreeding with Neanderthals
  • Impact of cardio exercise on heart health
  • The importance of exploring the solar system
  • Can a comet strike the earth?
  • The Hubble Space Telescope
  • Top ten chemistry careers
  • Acid rain effect aquatic plants’ growth
  • Room color and human behavior
  • How can plants grow in pots?
  • Water’s surface tension weight capacity
  • What does the paleo diet mean?
  • Is Pluto still a planet?
  • The future of commercial space flight
  • Do you inherit fingerprint patterns?
  • Ways in which handwashing prevents the spread of the Covid-19 virus
  • Molecular biological research on rare genetic disorders impact on understanding cancer
  • Do men pass on genetic abnormalities to their posterity as they age?
  • How can men’s exercise affect the traits they pass on to their children?
  • Is there really life on Mars; has there ever been?
  • Ways of solving the problem of junk space
  • The importance of Dark Matter
  • Black holes
  • Different ways to keep ice from defrosting
  • Are pet hairs harmful to the human body?
  • Some of the germs you’ve seen in your school
  • The effect of music on your assimilation ability
  • The types of food dogs prefer the best
  • Good hygienic practices for keeping clean
  • Foods that develop molds the fastest
  • How different body parts aid the effective functioning of the system
  • Do worms in the soil really affect plant growth and how?
  • Can light brightness make plants grow well?
  • What kinds of fertilizers work best, chemical or natural?
  • Can mice (or any animal of your choice) learn?
  • How can age affect the human reaction?
  • Why does water boil faster when put in salt?
  • Can food affect the heart, how?
  • Can background noise interfere with learning and assimilation?
  • Can Higgs Boson destroy the universe?
  • Effects of sunspots on man
  • Should humans live in space?
  • The most important technological innovations in medicinal chemistry in recent years
  • The danger of chemicals emitted from pharmaceutical companies
  • The importance of big data and bioinformatics to chemical research
  • The sugar chemistry behind making candy
  • Biomacromolecules
  • Trends in India’s medicinal chemistry research
  • Nuclear fusion
  • Reproduction in mammals
  • How do fish mate?
  • How useful are science museums in teaching science?
  • Why do birds have beautiful feathers?
  • The safety of offshore drilling
  • The importance of climate change legislation
  • Hydraulic fracking’s negative effects
  • Uses of microelectronics
  • Nanotechnology in medicine
  • Nanotechnology for cancer treatment
  • Can nanofibers repair brain injuries?
  • Effect of nanomedicine on human lifespan
  • Nanomaterial
  • How nanotechnology helps in patient diagnosis
  • How to reduce antibiotic use in agriculture
  • The ethics of stem cell research
  • The best leukemia treatment
  • Gene therapy
  • Causes of skin cancer
  • Colonoscopy testing on colon cancer
  • Why eliminating malaria is difficult
  • The possibility of predicting the next pandemic
  • Do childhood vaccines prevent diseases?
  • How cells shield the body against diseases
  • Should wild animals interact with humans?
  • Are self-driving cars good?
  • Regulating sugar use
  • Different types of headaches
  • Can migraine cause death?
  • The ideal weight for living long

Feel free to choose from this scientific research topics list for your science research paper. There are many things to research where science is concerned, including stem research topics , among others. There is no shortage of scientific topics to research and choosing the best one gets easy when you know how to. If you’ve chosen a topic and you need help writing on them, you can contact our professional writing service. We have a team of experts who can write on any science topic and ensure you meet your deadline.

Leave a Reply Cancel reply

Enago Academy

Research Problem Statement — Find out how to write an impactful one!

' src=

Table of Contents

What Is a Research Problem Statement?

A research problem statement is a clear, concise, and specific statement that describes the issue or problem that the research project addresses. It should be written in a way that is easily understandable to both experts and non-experts in the field.

To write a research problem statement, you should:

  • Identify the general area of interest: Start by identifying the general area of research that interests you.
  • Define the specific problem: Narrow down the general area of interest to a specific problem or issue.
  • Explain the significance of the problem: Provide context for the problem by explaining why it is important to study and what gap in current knowledge or understanding it fills.
  • Provide a clear and concise statement: State the problem in a clear and concise manner, making sure to use language that is easily understood by your intended audience.
  • Use a scientific and objective tone: The problem statement should be written in a neutral and objective tone, avoiding any subjective language and personal bias .

An Example of a Research Problem Statement

“The increasing prevalence of obesity in children is a growing public health concern. Despite the availability of information on healthy eating and physical activity, many children are still not engaging in healthy lifestyle behaviors. The problem this study addresses is the lack of understanding of the barriers and facilitators to healthy lifestyle behaviors in children.”

When to Write a Problem Statement in Research?

A research problem statement should be written at the beginning of the research process, before any data collection or analysis takes place. This is because the statement sets the foundation for the entire research project by clearly defining the problem that the research is trying to address.

Writing a problem statement early in the research process helps to guide the research design and methodology , and ensures that the research is focused on addressing the specific problem at hand. It also helps to ensure that the research is relevant and addresses a gap in current knowledge or understanding.

In addition, a well-written problem statement effectively communicates the purpose and significance of the research to potential funders, collaborators, and other stakeholders. It also generates interest and support for the research project.

It’s also important to note that, during the research process, the statement can be refined or updated as new information is discovered or as the research progresses. This is normal and it’s a good idea to revise the statement as needed to ensure that it remains clear and concise and that it accurately reflects the current focus of the research project.

What Does a Research Problem Statement Include?

A research problem statement typically includes the following elements:

1. The research topic:

The general area of interest or field of study that the research project addresses.

2. The specific problem or issue:

A clear and concise statement of the problem or issue that the research project aims to address.

3. The significance of the problem:

A discussion of why the problem is important and what gap in current knowledge or understanding it fills.

4. The research questions:

A set of questions that the research project aims to answer, in order to address the problem or issue.

5. The research objectives:

A set of specific and measurable objectives that the research project aims to achieve.

6. The scope of the research:

A description of the specific population, setting, or context that the research project will focus on.

7. The theoretical framework:

A discussion of the theoretical concepts and principles that inform the research project.

8. The research design:

A description of the research methodologies that will be used to collect and analyze data in order to address the research questions and objectives.

It’s important to note that the problem statement is usually brief and concise, typically a few sentences or a short paragraph. But it should provide enough information to convey the main idea of the research project.

Important Features of Research Problem Statement

The problem statement should be clear and easy to understand. Write it in a way that is accessible to both experts and non-experts in the field.

2. Specificity

The statement should be specific and clearly define the problem or issue that the research project aims to address. It should be narrow enough to be manageable, but broad enough to be of interest to others in the field.

3. Significance

The statement should explain why the problem is important and what gap in current knowledge or understanding it fills. It should provide context for the research project and help to justify its importance.

4. Relevance

The statement should be relevant to the field of study and address an issue that is currently of concern to researchers.

5. Research questions

The statement should include a set of research questions that the research project aims to answer in order to address the problem or issue.

6. Research objectives

The statement should include a set of specific and measurable objectives that the research project aims to achieve.

The statement should define the specific population, setting, or context that the research project will focus on.

8. Theoretical framework

The statement should provide an overview of the theoretical concepts and principles that inform the research project.

9. Research design

The statement should provide an overview of the research methodologies. This will be useful collect and analyze data in order to address the research questions and objectives.

Difference Between a Thesis Statement and a Problem Statement

A thesis statement and a problem statement are related but distinct elements of a research project.

A thesis statement is a statement that summarizes the central argument or claim of a research paper or essay. It presents the main idea of the paper and sets the direction for the rest of the content. It’s usually located at the end of the introduction, and it’s often one sentence.

A problem statement, on the other hand, is a statement that describes a specific problem or issue that the research project aims to address. It sets the foundation for the entire research project by clearly defining the research problem. It is usually located at the beginning of a research paper or proposal, and is of one or a few paragraphs.

In summary, a thesis statement is a summary of the main point or key argument of the research paper. A problem statement describes the specific issue that the research project aims to address. A thesis statement is more focused on the final outcome of the research. While a problem statement is focused on the current state of knowledge and the gap in understanding that the research project aims to fill.

In Conclusion

A problem statement is a critical component of the research project, as it provides a clear and concise roadmap for the research, and helps to ensure that the research is well-designed and addresses a significant and relevant issue.

We hope this blog has clarified your doubts and confusion associated with research problem statement and helps you write an effective statement for your research project!

' src=

comprehensive contents. thanks!

Very good writing and easy to understand

WOW..its easy to understand…

This has opened up my mind, Systematically outlined steps.

Wow I’ve gained Alot from this!

WOW…This was much helpful.

Good and straightforward explanations with ease of understanding for all the students and teachers alike.

Beautiful work

I enjoy and understand every bit of the explanations on each topic. Kudos to the team.

Rate this article Cancel Reply

Your email address will not be published.

research problem example for students science

Enago Academy's Most Popular Articles

7 Step Guide for Optimizing Impactful Research Process

  • Publishing Research
  • Reporting Research

How to Optimize Your Research Process: A step-by-step guide

For researchers across disciplines, the path to uncovering novel findings and insights is often filled…

Launch of "Sony Women in Technology Award with Nature"

  • Industry News
  • Trending Now

Breaking Barriers: Sony and Nature unveil “Women in Technology Award”

Sony Group Corporation and the prestigious scientific journal Nature have collaborated to launch the inaugural…

Guide to Adhere Good Research Practice (FREE CHECKLIST)

Achieving Research Excellence: Checklist for good research practices

Academia is built on the foundation of trustworthy and high-quality research, supported by the pillars…

Gender Bias in Science Funding

  • Diversity and Inclusion

The Silent Struggle: Confronting gender bias in science funding

In the 1990s, Dr. Katalin Kariko’s pioneering mRNA research seemed destined for obscurity, doomed by…

ResearchSummary

  • Promoting Research

Plain Language Summary — Communicating your research to bridge the academic-lay gap

Science can be complex, but does that mean it should not be accessible to the…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Research Recommendations – Guiding policy-makers for evidence-based decision making

Demystifying the Role of Confounding Variables in Research

research problem example for students science

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

research problem example for students science

What should universities' stance be on AI tools in research and academic writing?

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • The Research Problem/Question
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

A research problem is a definite or clear expression [statement] about an area of concern, a condition to be improved upon, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or within existing practice that points to a need for meaningful understanding and deliberate investigation. A research problem does not state how to do something, offer a vague or broad proposition, or present a value question. In the social and behavioral sciences, studies are most often framed around examining a problem that needs to be understood and resolved in order to improve society and the human condition.

Bryman, Alan. “The Research Question in Social Research: What is its Role?” International Journal of Social Research Methodology 10 (2007): 5-20; Guba, Egon G., and Yvonna S. Lincoln. “Competing Paradigms in Qualitative Research.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, editors. (Thousand Oaks, CA: Sage, 1994), pp. 105-117; Pardede, Parlindungan. “Identifying and Formulating the Research Problem." Research in ELT: Module 4 (October 2018): 1-13; Li, Yanmei, and Sumei Zhang. "Identifying the Research Problem." In Applied Research Methods in Urban and Regional Planning . (Cham, Switzerland: Springer International Publishing, 2022), pp. 13-21.

Importance of...

The purpose of a problem statement is to:

  • Introduce the reader to the importance of the topic being studied . The reader is oriented to the significance of the study.
  • Anchors the research questions, hypotheses, or assumptions to follow . It offers a concise statement about the purpose of your paper.
  • Place the topic into a particular context that defines the parameters of what is to be investigated.
  • Provide the framework for reporting the results and indicates what is probably necessary to conduct the study and explain how the findings will present this information.

In the social sciences, the research problem establishes the means by which you must answer the "So What?" question. This declarative question refers to a research problem surviving the relevancy test [the quality of a measurement procedure that provides repeatability and accuracy]. Note that answering the "So What?" question requires a commitment on your part to not only show that you have reviewed the literature, but that you have thoroughly considered the significance of the research problem and its implications applied to creating new knowledge and understanding or informing practice.

To survive the "So What" question, problem statements should possess the following attributes:

  • Clarity and precision [a well-written statement does not make sweeping generalizations and irresponsible pronouncements; it also does include unspecific determinates like "very" or "giant"],
  • Demonstrate a researchable topic or issue [i.e., feasibility of conducting the study is based upon access to information that can be effectively acquired, gathered, interpreted, synthesized, and understood],
  • Identification of what would be studied, while avoiding the use of value-laden words and terms,
  • Identification of an overarching question or small set of questions accompanied by key factors or variables,
  • Identification of key concepts and terms,
  • Articulation of the study's conceptual boundaries or parameters or limitations,
  • Some generalizability in regards to applicability and bringing results into general use,
  • Conveyance of the study's importance, benefits, and justification [i.e., regardless of the type of research, it is important to demonstrate that the research is not trivial],
  • Does not have unnecessary jargon or overly complex sentence constructions; and,
  • Conveyance of more than the mere gathering of descriptive data providing only a snapshot of the issue or phenomenon under investigation.

Bryman, Alan. “The Research Question in Social Research: What is its Role?” International Journal of Social Research Methodology 10 (2007): 5-20; Brown, Perry J., Allen Dyer, and Ross S. Whaley. "Recreation Research—So What?" Journal of Leisure Research 5 (1973): 16-24; Castellanos, Susie. Critical Writing and Thinking. The Writing Center. Dean of the College. Brown University; Ellis, Timothy J. and Yair Levy Nova. "Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem." Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); Thesis and Purpose Statements. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements. The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements. The Writing Lab and The OWL. Purdue University; Selwyn, Neil. "‘So What?’…A Question that Every Journal Article Needs to Answer." Learning, Media, and Technology 39 (2014): 1-5; Shoket, Mohd. "Research Problem: Identification and Formulation." International Journal of Research 1 (May 2014): 512-518.

Structure and Writing Style

I.  Types and Content

There are four general conceptualizations of a research problem in the social sciences:

  • Casuist Research Problem -- this type of problem relates to the determination of right and wrong in questions of conduct or conscience by analyzing moral dilemmas through the application of general rules and the careful distinction of special cases.
  • Difference Research Problem -- typically asks the question, “Is there a difference between two or more groups or treatments?” This type of problem statement is used when the researcher compares or contrasts two or more phenomena. This a common approach to defining a problem in the clinical social sciences or behavioral sciences.
  • Descriptive Research Problem -- typically asks the question, "what is...?" with the underlying purpose to describe the significance of a situation, state, or existence of a specific phenomenon. This problem is often associated with revealing hidden or understudied issues.
  • Relational Research Problem -- suggests a relationship of some sort between two or more variables to be investigated. The underlying purpose is to investigate specific qualities or characteristics that may be connected in some way.

A problem statement in the social sciences should contain :

  • A lead-in that helps ensure the reader will maintain interest over the study,
  • A declaration of originality [e.g., mentioning a knowledge void or a lack of clarity about a topic that will be revealed in the literature review of prior research],
  • An indication of the central focus of the study [establishing the boundaries of analysis], and
  • An explanation of the study's significance or the benefits to be derived from investigating the research problem.

NOTE :   A statement describing the research problem of your paper should not be viewed as a thesis statement that you may be familiar with from high school. Given the content listed above, a description of the research problem is usually a short paragraph in length.

II.  Sources of Problems for Investigation

The identification of a problem to study can be challenging, not because there's a lack of issues that could be investigated, but due to the challenge of formulating an academically relevant and researchable problem which is unique and does not simply duplicate the work of others. To facilitate how you might select a problem from which to build a research study, consider these sources of inspiration:

Deductions from Theory This relates to deductions made from social philosophy or generalizations embodied in life and in society that the researcher is familiar with. These deductions from human behavior are then placed within an empirical frame of reference through research. From a theory, the researcher can formulate a research problem or hypothesis stating the expected findings in certain empirical situations. The research asks the question: “What relationship between variables will be observed if theory aptly summarizes the state of affairs?” One can then design and carry out a systematic investigation to assess whether empirical data confirm or reject the hypothesis, and hence, the theory.

Interdisciplinary Perspectives Identifying a problem that forms the basis for a research study can come from academic movements and scholarship originating in disciplines outside of your primary area of study. This can be an intellectually stimulating exercise. A review of pertinent literature should include examining research from related disciplines that can reveal new avenues of exploration and analysis. An interdisciplinary approach to selecting a research problem offers an opportunity to construct a more comprehensive understanding of a very complex issue that any single discipline may be able to provide.

Interviewing Practitioners The identification of research problems about particular topics can arise from formal interviews or informal discussions with practitioners who provide insight into new directions for future research and how to make research findings more relevant to practice. Discussions with experts in the field, such as, teachers, social workers, health care providers, lawyers, business leaders, etc., offers the chance to identify practical, “real world” problems that may be understudied or ignored within academic circles. This approach also provides some practical knowledge which may help in the process of designing and conducting your study.

Personal Experience Don't undervalue your everyday experiences or encounters as worthwhile problems for investigation. Think critically about your own experiences and/or frustrations with an issue facing society or related to your community, your neighborhood, your family, or your personal life. This can be derived, for example, from deliberate observations of certain relationships for which there is no clear explanation or witnessing an event that appears harmful to a person or group or that is out of the ordinary.

Relevant Literature The selection of a research problem can be derived from a thorough review of pertinent research associated with your overall area of interest. This may reveal where gaps exist in understanding a topic or where an issue has been understudied. Research may be conducted to: 1) fill such gaps in knowledge; 2) evaluate if the methodologies employed in prior studies can be adapted to solve other problems; or, 3) determine if a similar study could be conducted in a different subject area or applied in a different context or to different study sample [i.e., different setting or different group of people]. Also, authors frequently conclude their studies by noting implications for further research; read the conclusion of pertinent studies because statements about further research can be a valuable source for identifying new problems to investigate. The fact that a researcher has identified a topic worthy of further exploration validates the fact it is worth pursuing.

III.  What Makes a Good Research Statement?

A good problem statement begins by introducing the broad area in which your research is centered, gradually leading the reader to the more specific issues you are investigating. The statement need not be lengthy, but a good research problem should incorporate the following features:

1.  Compelling Topic The problem chosen should be one that motivates you to address it but simple curiosity is not a good enough reason to pursue a research study because this does not indicate significance. The problem that you choose to explore must be important to you, but it must also be viewed as important by your readers and to a the larger academic and/or social community that could be impacted by the results of your study. 2.  Supports Multiple Perspectives The problem must be phrased in a way that avoids dichotomies and instead supports the generation and exploration of multiple perspectives. A general rule of thumb in the social sciences is that a good research problem is one that would generate a variety of viewpoints from a composite audience made up of reasonable people. 3.  Researchability This isn't a real word but it represents an important aspect of creating a good research statement. It seems a bit obvious, but you don't want to find yourself in the midst of investigating a complex research project and realize that you don't have enough prior research to draw from for your analysis. There's nothing inherently wrong with original research, but you must choose research problems that can be supported, in some way, by the resources available to you. If you are not sure if something is researchable, don't assume that it isn't if you don't find information right away--seek help from a librarian !

NOTE:   Do not confuse a research problem with a research topic. A topic is something to read and obtain information about, whereas a problem is something to be solved or framed as a question raised for inquiry, consideration, or solution, or explained as a source of perplexity, distress, or vexation. In short, a research topic is something to be understood; a research problem is something that needs to be investigated.

IV.  Asking Analytical Questions about the Research Problem

Research problems in the social and behavioral sciences are often analyzed around critical questions that must be investigated. These questions can be explicitly listed in the introduction [i.e., "This study addresses three research questions about women's psychological recovery from domestic abuse in multi-generational home settings..."], or, the questions are implied in the text as specific areas of study related to the research problem. Explicitly listing your research questions at the end of your introduction can help in designing a clear roadmap of what you plan to address in your study, whereas, implicitly integrating them into the text of the introduction allows you to create a more compelling narrative around the key issues under investigation. Either approach is appropriate.

The number of questions you attempt to address should be based on the complexity of the problem you are investigating and what areas of inquiry you find most critical to study. Practical considerations, such as, the length of the paper you are writing or the availability of resources to analyze the issue can also factor in how many questions to ask. In general, however, there should be no more than four research questions underpinning a single research problem.

Given this, well-developed analytical questions can focus on any of the following:

  • Highlights a genuine dilemma, area of ambiguity, or point of confusion about a topic open to interpretation by your readers;
  • Yields an answer that is unexpected and not obvious rather than inevitable and self-evident;
  • Provokes meaningful thought or discussion;
  • Raises the visibility of the key ideas or concepts that may be understudied or hidden;
  • Suggests the need for complex analysis or argument rather than a basic description or summary; and,
  • Offers a specific path of inquiry that avoids eliciting generalizations about the problem.

NOTE:   Questions of how and why concerning a research problem often require more analysis than questions about who, what, where, and when. You should still ask yourself these latter questions, however. Thinking introspectively about the who, what, where, and when of a research problem can help ensure that you have thoroughly considered all aspects of the problem under investigation and helps define the scope of the study in relation to the problem.

V.  Mistakes to Avoid

Beware of circular reasoning! Do not state the research problem as simply the absence of the thing you are suggesting. For example, if you propose the following, "The problem in this community is that there is no hospital," this only leads to a research problem where:

  • The need is for a hospital
  • The objective is to create a hospital
  • The method is to plan for building a hospital, and
  • The evaluation is to measure if there is a hospital or not.

This is an example of a research problem that fails the "So What?" test . In this example, the problem does not reveal the relevance of why you are investigating the fact there is no hospital in the community [e.g., perhaps there's a hospital in the community ten miles away]; it does not elucidate the significance of why one should study the fact there is no hospital in the community [e.g., that hospital in the community ten miles away has no emergency room]; the research problem does not offer an intellectual pathway towards adding new knowledge or clarifying prior knowledge [e.g., the county in which there is no hospital already conducted a study about the need for a hospital, but it was conducted ten years ago]; and, the problem does not offer meaningful outcomes that lead to recommendations that can be generalized for other situations or that could suggest areas for further research [e.g., the challenges of building a new hospital serves as a case study for other communities].

Alvesson, Mats and Jörgen Sandberg. “Generating Research Questions Through Problematization.” Academy of Management Review 36 (April 2011): 247-271 ; Choosing and Refining Topics. Writing@CSU. Colorado State University; D'Souza, Victor S. "Use of Induction and Deduction in Research in Social Sciences: An Illustration." Journal of the Indian Law Institute 24 (1982): 655-661; Ellis, Timothy J. and Yair Levy Nova. "Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem." Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); How to Write a Research Question. The Writing Center. George Mason University; Invention: Developing a Thesis Statement. The Reading/Writing Center. Hunter College; Problem Statements PowerPoint Presentation. The Writing Lab and The OWL. Purdue University; Procter, Margaret. Using Thesis Statements. University College Writing Centre. University of Toronto; Shoket, Mohd. "Research Problem: Identification and Formulation." International Journal of Research 1 (May 2014): 512-518; Trochim, William M.K. Problem Formulation. Research Methods Knowledge Base. 2006; Thesis and Purpose Statements. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements. The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements. The Writing Lab and The OWL. Purdue University; Pardede, Parlindungan. “Identifying and Formulating the Research Problem." Research in ELT: Module 4 (October 2018): 1-13; Walk, Kerry. Asking an Analytical Question. [Class handout or worksheet]. Princeton University; White, Patrick. Developing Research Questions: A Guide for Social Scientists . New York: Palgrave McMillan, 2009; Li, Yanmei, and Sumei Zhang. "Identifying the Research Problem." In Applied Research Methods in Urban and Regional Planning . (Cham, Switzerland: Springer International Publishing, 2022), pp. 13-21.

  • << Previous: Background Information
  • Next: Theoretical Framework >>
  • Last Updated: Apr 4, 2024 11:06 AM
  • URL: https://libguides.usc.edu/writingguide

Elsevier QRcode Wechat

  • Research Process

What is a Problem Statement? [with examples]

  • 5 minute read
  • 905.9K views

Table of Contents

The statement of the problem is one of the first things that a colleague or potential client will read. With the vastness of the information available at one’s fingertips in the online9 world, your work may have just a few seconds to draw in a reader to take a deeper look at your proposal before moving on to the next option. It explains quickly to the reader, the problem at hand, the need for research, and how you intend to do it.

A strong, clear description of the problem that drew you to your research has to be straightforward, easy to read and, most important, relevant. Why do you care about this problem? How can solving this problem impact the world? The problem statement is your opportunity to explain why you care and what you propose to do in the way of researching the problem.

A problem statement is an explanation in research that describes the issue that is in need of study . What problem is the research attempting to address? Having a Problem Statement allows the reader to quickly understand the purpose and intent of the research. The importance of writing your research proposal cannot be stressed enough. Check for more information on Writing a Scientific Research Project Proposal .

It is expected to be brief and concise , and should not include the findings of the research or detailed data . The average length of a research statement is generally about one page . It is going to define the problem, which can be thought of as a gap in the information base. There may be several solutions to this gap or lack of information, but that is not the concern of the problem statement. Its purpose is to summarize the current information and where a lack of knowledge may be presenting a problem that needs to be investigated .

The purpose of the problem statement is to identify the issue that is a concern and focus it in a way that allows it to be studied in a systematic way . It defines the problem and proposes a way to research a solution, or demonstrates why further information is needed in order for a solution to become possible.

What is Included in a Problem Statement?

Besides identifying the gap of understanding or the weakness of necessary data, it is important to explain the significance of this lack.

-How will your research contribute to the existing knowledge base in your field of study?

-How is it significant?

-Why does it matter?

Not all problems have only one solution so demonstrating the need for additional research can also be included in your problem statement. Once you identify the problem and the need for a solution, or for further study, then you can show how you intend to collect the needed data and present it.

How to Write a Statement of Problem in Research Proposal

It is helpful to begin with your goal. What do you see as the achievable goal if the problem you outline is solved? How will the proposed research theoretically change anything? What are the potential outcomes?

Then you can discuss how the problem prevents the ability to reach your realistic and achievable solution. It is what stands in the way of changing an issue for the better. Talk about the present state of affairs and how the problem impacts a person’s life, for example.

It’s helpful at this point to generally layout the present knowledge and understanding of the subject at hand, before then describing the gaps of knowledge that are currently in need of study. Your problem statement is a proposed solution to address one of these gaps.

A good problem statement will also layout the repercussions of leaving the problem as it currently stands. What is the significance of not addressing this problem? What are the possible future outcomes?

Example of Problem Statement in Research Proposal

If, for example , you intended to research the effect of vitamin D supplementation on the immune system , you would begin with a review of the current knowledge of vitamin D’s known function in relation to the immune system and how a deficiency of it impacts a person’s defenses.

You would describe the ideal environment in the body when there is a sufficient level of vitamin D. Then, begin to identify the problems associated with vitamin D deficiency and the difficulty of raising the level through supplementation, along with the consequences of that deficiency. Here you are beginning to identify the problem of a common deficiency and the current difficulty of increasing the level of vitamin D in the blood.

At this stage, you may begin to identify the problem and narrow it down in a way that is practical to a research project. Perhaps you are proposing a novel way of introducing Vitamin D in a way that allows for better absorption by the gut, or in a combination with another product that increases its level in the blood.

Describe the way your research in this area will contribute to the knowledge base on how to increase levels of vitamin D in a specific group of subjects, perhaps menopausal women with breast cancer. The research proposal is then described in practical terms.

How to write a problem statement in research?

Problem statements differ depending on the type and topic of research and vary between a few sentences to a few paragraphs.

However, the problem statement should not drag on needlessly. Despite the absence of a fixed format, a good research problem statement usually consists of three main parts:

Context: This section explains the background for your research. It identifies the problem and describes an ideal scenario that could exist in the absence of the problem. It also includes any past attempts and shortcomings at solving the problem.

Significance: This section defines how the problem prevents the ideal scenario from being achieved, including its negative impacts on the society or field of research. It should include who will be the most affected by a solution to the problem, the relevance of the study that you are proposing, and how it can contribute to the existing body of research.

Solution: This section describes the aim and objectives of your research, and your solution to overcome the problem. Finally, it need not focus on the perfect solution, but rather on addressing a realistic goal to move closer to the ideal scenario.

Here is a cheat sheet to help you with formulating a good problem statement.

1. Begin with a clear indication that the problem statement is going to be discussed next. You can start with a generic sentence like, “The problem that this study addresses…” This will inform your readers of what to expect next.

2. Next, mention the consequences of not solving the problem . You can touch upon who is or will be affected if the problem continues, and how.

3. Conclude with indicating the type of research /information that is needed to solve the problem. Be sure to reference authors who may have suggested the necessity of such research.

This will then directly lead to your proposed research objective and workplan and how that is expected to solve the problem i.e., close the research gap.

Language Editing Plus

Elsevier Language Editing Plus service will provide you with a thorough language review of your thesis, article or presentation. It offers review of logic and flow, reference checks, document formatting, a customized cover letter and more.

What is and How to Write a Good Hypothesis in Research?

  • Manuscript Preparation

What is and How to Write a Good Hypothesis in Research?

How to Use Tables and Figures effectively in Research Papers

How to Use Tables and Figures effectively in Research Papers

You may also like.

what is a descriptive research design

Descriptive Research Design and Its Myriad Uses

Doctor doing a Biomedical Research Paper

Five Common Mistakes to Avoid When Writing a Biomedical Research Paper

research problem example for students science

Making Technical Writing in Environmental Engineering Accessible

Risks of AI-assisted Academic Writing

To Err is Not Human: The Dangers of AI-assisted Academic Writing

Importance-of-Data-Collection

When Data Speak, Listen: Importance of Data Collection and Analysis Methods

choosing the Right Research Methodology

Choosing the Right Research Methodology: A Guide for Researchers

Why is data validation important in research

Why is data validation important in research?

Writing a good review article

Writing a good review article

Input your search keywords and press Enter.

research problem example for students science

Online Plagiarism Checker For Academic Writing

Start Plagiarism Check

Online Proofreading for Your Academic Writing

Get it proofread now

Online Printing & Binding Services for Students

Configure binding now

  • Academic essay overview
  • The writing process
  • Structuring academic essays
  • Types of academic essays
  • Academic writing overview
  • Sentence structure
  • Academic writing process
  • Improving your academic writing
  • Titles and headings
  • APA style overview
  • APA citation & referencing
  • APA structure & sections
  • Citation & referencing
  • Structure and sections
  • APA examples overview
  • Commonly used citations
  • Other examples
  • British English vs. American English
  • Chicago style overview
  • Chicago citation & referencing
  • Chicago structure & sections
  • Chicago style examples
  • Citing sources overview
  • Citation format
  • Citation examples
  • College essay overview
  • Application
  • How to write a college essay
  • Types of college essays
  • Commonly confused words
  • Definitions
  • Dissertation overview
  • Dissertation structure & sections
  • Dissertation writing process
  • Graduate school overview
  • Application & admission
  • Study abroad
  • Harvard referencing overview
  • Language rules overview
  • Grammatical rules & structures
  • Parts of speech
  • Punctuation
  • Methodology overview
  • Analyzing data
  • Experiments
  • Observations
  • Inductive vs. Deductive
  • Qualitative vs. Quantitative
  • Types of validity
  • Types of reliability
  • Sampling methods
  • Theories & Concepts
  • Types of research studies
  • Types of variables
  • MLA style overview
  • MLA examples
  • MLA citation & referencing
  • MLA structure & sections
  • Plagiarism overview
  • Plagiarism checker
  • Types of plagiarism
  • Printing production overview
  • Research bias overview
  • Types of research bias
  • Research paper structure & sections
  • Types of research papers
  • Research process overview
  • Problem statement
  • Research proposal
  • Research topic
  • Statistics overview
  • Levels of measurment
  • Measures of central tendency
  • Hypothesis testing
  • Parameters & test statistics
  • Types of distributions
  • Correlation
  • Effect size
  • Hypothesis testing assumptions
  • Types of ANOVAs
  • Types of chi-square
  • Statistical data
  • Statistical models
  • Measures of variability
  • Spelling mistakes
  • Tips overview
  • Academic writing tips
  • Dissertation tips
  • Sources tips
  • Working with sources overview
  • Evaluating sources
  • Finding sources
  • Including sources
  • Types of sources

Your Step to Success

Online Printing & Binding

Research Problem – Explanation & Examples

How do you like this article cancel reply.

Save my name, email, and website in this browser for the next time I comment.

Research-problem-Definition

A research problem sets the course of investigation in any research process . It can probe practical issues with the aim of suggesting modifications, or scrutinize theoretical quandaries to augment the current understanding in a discipline.

In this article, we delve into the crucial role of a research problem in the research process, as well as offer guidance on how to properly articulate it to steer your research endeavors.

Inhaltsverzeichnis

  • 1 Research Problem – In a Nutshell
  • 2 Definition: Research problem
  • 3 Why is the research problem important?
  • 4 Step 1: Finding a general research problem area
  • 5 Step 2: Narrowing down the research problem
  • 6 Example of a research problem

Research Problem – In a Nutshell

  • A research problem is an issue that raises concern about a particular topic.
  • Researchers formulate research problems by examining other literature on the topic and assessing the significance and relevance of the problem.
  • Creating a research problem involves an overview of a broad problem area and then narrowing it down to the specifics by creating a framework for the topic.
  • General problem areas used in formulating research problems include workplace and theoretical research.

Definition: Research problem

A research problem is a specific challenge or knowledge gap that sets the foundation for research. It is the primary statement about a topic in a field of study, and the findings from a research undertaking provide solutions to the research problem.

The research problem is the defining statement that informs the sources and methodologies to be applied to find and recommend proposals for the area of contention.

Why is the research problem important?

Research should adopt a precise approach for analysis to be relevant and applicable in a real-world context. Researchers can pick any area of study, and in most cases, the topic in question will have a broad scope; a well-formulated problem forms the basis of a strong research paper which illustrates a clear focus.

Writing a research problem is the first step in planning for a research paper, and a well-structured problem prevents a runaway project that lacks a clear direction.

Step 1: Finding a general research problem area

Your primary goal should be to find gaps and meaningful ways your research project offers a solution to a problem or broadens the knowledge bank in the field.

A good approach is to read and hold discussions about the topic , identify areas with insufficient information, highlight areas of contention and form more in-depth conclusions in under-researched areas.

Workplace research

You can carry out workplace research using a practical approach . This aims to identify a problem by analyzing reports, engaging with people in the organization or field of interest, and examining previous research. Some pointers include:

  • Efficiency and performance-related issues within an organization.
  • Areas or processes that can be improved in the organization.
  • Matters of concern among professionals in the field of study.
  • Challenges faced by identifiable groups in society.
  • Crime in a particular region has been decreasing compared to the rest of the country.
  • Stores in one location of a chain have been reporting lower sales in contrast with others in other parts of the country.
  • One subsidiary of a company is experiencing high staff turnover, affecting the group’s bottom line.

In theoretical research , researchers aim to offer new insights which contribute to the larger knowledge body in the field rather than proposing change. You can formulate a problem by studying recent studies, debates, and theories to identify gaps. Identifying a research problem in theoretical research may examine the following:

  • A context or phenomenon that has not been extensively studied.
  • A contrast between two or more thought patterns.
  • A position that is not clearly understood.
  • A bothersome scenario or question that remains unsolved.

Theoretical problems don’t focus on solving a practical problem but have practical implications in their field. Many theoretical frameworks offer a guide to other practical and applied research scenarios.

  • The relationship between genetics and mental issues in adulthood is not clearly understood.
  • The effects of racial differences in long-term relationships are yet to be investigated in the modern dating scene.
  • Social scientists disagree on the impact of neocolonialism on the socio-economic conditions of black people.

Step 2: Narrowing down the research problem

After identifying a general problem area, you need to zero in on the specific aspect you want to analyze further in the context of your research.

The problem can be narrowed down using the following criteria to create a relevant problem whose solutions adequately answer the research questions . Some questions you can ask to understand the contextual framework of the research problem include:

Significance

Evaluating the significance of a research problem is a necessary step for identifying issues that contribute to the solution of an issue. There are several ways of determining the significance of a research problem. The following questions can help you to evaluate the significance and relevance of a proposed research problem:

  • Which area, group or time do you plan to situate your study?
  • What attributes will you examine?
  • What is the repercussion of not solving the problem?
  • Who stands to benefit if the problem is resolved?

Example of a research problem

A fashion retail chain is attempting to increase the number of visitors to its stores, but the management is unaware of the measures to achieve this.

To improve its sales and compete with other chains, the chain requires research into ways of increasing traffic in its stores.

By narrowing down the research problem, you can create the problem statement , hypothesis , and relevant research questions .

What is an example of a research problem?

There has been an upward trend in the immigration of professionals from other countries to the UK. Research is needed to determine the likely causes and effects.

How do you formulate a research problem?

Begin by examining available sources and previous research on your topic of interest. You can narrow down the scope from the literature or observable phenomenon and focus on under-researched areas.

How can you determine the significance of a research problem?

Investigate the specific aspects you would like to investigate. Furthermore, you can determine the consequences of the problem remaining unresolved and the biggest beneficiaries if a solution is found.

What is the context in a research problem?

Context refers to the nature of the problem. It entails studying existing work on the issue, who is affected by it, and the proposed solutions.

We use cookies on our website. Some of them are essential, while others help us to improve this website and your experience.

  • External Media

Individual Privacy Preferences

Cookie Details Privacy Policy Imprint

Here you will find an overview of all cookies used. You can give your consent to whole categories or display further information and select certain cookies.

Accept all Save

Essential cookies enable basic functions and are necessary for the proper function of the website.

Show Cookie Information Hide Cookie Information

Statistics cookies collect information anonymously. This information helps us to understand how our visitors use our website.

Content from video platforms and social media platforms is blocked by default. If External Media cookies are accepted, access to those contents no longer requires manual consent.

Privacy Policy Imprint

Study Site Homepage

  • Request new password
  • Create a new account

The Essential Guide to Doing Your Research Project

Student resources.

Examples of Student Research Projects

research problem example for students science

Filed under:

The 7 biggest problems facing science, according to 270 scientists

Share this story.

  • Share this on Facebook
  • Share this on Twitter
  • Share this on Reddit
  • Share All sharing options

Share All sharing options for: The 7 biggest problems facing science, according to 270 scientists

"Science, I had come to learn, is as political, competitive, and fierce a career as you can find, full of the temptation to find easy paths." — Paul Kalanithi, neurosurgeon and writer (1977–2015)

Science is in big trouble. Or so we’re told.

In the past several years, many scientists have become afflicted with a serious case of doubt — doubt in the very institution of science.

Explore the biggest challenges facing science, and how we can fix them:

  • Academia has a huge money problem
  • Too many studies are poorly designed
  • Replicating results is crucial — and rare
  • Peer review is broken
  • Too much science is locked behind paywalls
  • Science is poorly communicated
  • Life as a young academic is incredibly stressful

Conclusion:

  • Science is not doomed

As reporters covering medicine, psychology, climate change, and other areas of research, we wanted to understand this epidemic of doubt. So we sent scientists a survey asking this simple question: If you could change one thing about how science works today, what would it be and why?

We heard back from 270 scientists all over the world, including graduate students, senior professors, laboratory heads, and Fields Medalists . They told us that, in a variety of ways, their careers are being hijacked by perverse incentives. The result is bad science.

The scientific process, in its ideal form, is elegant: Ask a question, set up an objective test, and get an answer. Repeat. Science is rarely practiced to that ideal. But Copernicus believed in that ideal. So did the rocket scientists behind the moon landing.

But nowadays, our respondents told us, the process is riddled with conflict. Scientists say they’re forced to prioritize self-preservation over pursuing the best questions and uncovering meaningful truths.

"I feel torn between asking questions that I know will lead to statistical significance and asking questions that matter," says Kathryn Bradshaw, a 27-year-old graduate student of counseling at the University of North Dakota.

Today, scientists' success often isn't measured by the quality of their questions or the rigor of their methods. It's instead measured by how much grant money they win, the number of studies they publish, and how they spin their findings to appeal to the public.

Scientists often learn more from studies that fail. But failed studies can mean career death. So instead, they’re incentivized to generate positive results they can publish. And the phrase "publish or perish" hangs over nearly every decision. It’s a nagging whisper, like a Jedi’s path to the dark side.

"Over time the most successful people will be those who can best exploit the system," Paul Smaldino, a cognitive science professor at University of California Merced, says.

To Smaldino, the selection pressures in science have favored less-than-ideal research: "As long as things like publication quantity, and publishing flashy results in fancy journals are incentivized, and people who can do that are rewarded … they’ll be successful, and pass on their successful methods to others."

Many scientists have had enough.  They want to break this cycle of perverse incentives and rewards. They are going through a period of introspection, hopeful that the end result will yield stronger scientific institutions . In our survey and interviews, they offered a wide variety of ideas for improving the scientific process and bringing it closer to its ideal form.

Before we jump in, some caveats to keep in mind: Our survey was not a scientific poll. For one, the respondents disproportionately hailed from the biomedical and social sciences and English-speaking communities.

Many of the responses did, however, vividly illustrate the challenges and perverse incentives that scientists across fields face. And they are a valuable starting point for a deeper look at dysfunction in science today.

The place to begin is right where the perverse incentives first start to creep in: the money.

research problem example for students science

(1) Academia has a huge money problem

To do most any kind of research, scientists need money: to run studies, to subsidize lab equipment, to pay their assistants and even their own salaries. Our respondents told us that getting — and sustaining — that funding is a perennial obstacle.

Their gripe isn’t just with the quantity, which, in many fields, is shrinking. It’s the way money is handed out that puts pressure on labs to publish a lot of papers, breeds conflicts of interest, and encourages scientists to overhype their work.

In the United States, academic researchers in the sciences generally cannot rely on university funding alone to pay for their salaries, assistants, and lab costs. Instead, they have to seek outside grants. "In many cases the expectations were and often still are that faculty should cover at least 75 percent of the salary on grants," writes John Chatham, a professor of medicine studying cardiovascular disease at University of Alabama at Birmingham.

Grants also usually expire after three or so years, which pushes scientists away from long-term projects. Yet as John Pooley, a neurobiology postdoc at the University of Bristol, points out, the biggest discoveries usually take decades to uncover and are unlikely to occur under short-term funding schemes.

Outside grants are also in increasingly short supply. In the US, the largest source of funding is the federal government, and that pool of money has been plateauing for years, while young scientists enter the workforce at a faster rate than older scientists retire.

research problem example for students science

Take the National Institutes of Health, a major funding source. Its budget rose at a fast clip through the 1990s, stalled in the 2000s, and then dipped with sequestration budget cuts in 2013. All the while, rising costs for conducting science meant that each NIH dollar purchased less and less. Last year, Congress approved the biggest NIH spending hike in a decade . But it won’t erase the shortfall.

The consequences are striking: In 2000, more than 30 percent of NIH grant applications got approved. Today, it’s closer to 17 percent. "It's because of what's happened in the last 12 years that young scientists in particular are feeling such a squeeze," NIH Director Francis Collins said at the Milken Global Conference in May.

research problem example for students science

Truly novel research takes longer to produce, and it doesn’t always pay off. A National Bureau of Economic Research working paper found that, on the whole, truly unconventional papers tend to be less consistently cited in the literature. So scientists and funders increasingly shy away from them, preferring short-turnaround, safer papers. But everyone suffers from that: the NBER report found that novel papers also occasionally lead to big hits that inspire high-impact, follow-up studies.

"I think because you have to publish to keep your job and keep funding agencies happy, there are a lot of (mediocre) scientific papers out there ... with not much new science presented," writes Kaitlyn Suski, a chemistry and atmospheric science postdoc at Colorado State University.

Another worry: When independent, government, or university funding sources dry up, scientists may feel compelled to turn to industry or interest groups eager to generate studies to support their agendas.

Finally, all of this grant writing is a huge time suck, taking resources away from the actual scientific work. Tyler Josephson, an engineering graduate student at the University of Delaware, writes that many professors he knows spend 50 percent of their time writing grant proposals. "Imagine," he asks, "what they could do with more time to devote to teaching and research?"

It’s easy to see how these problems in funding kick off a vicious cycle. To be more competitive for grants, scientists have to have published work. To have published work, they need positive (i.e.,  statistically significant ) results. That puts pressure on scientists to pick "safe" topics that will yield a publishable conclusion — or, worse, may bias their research toward significant results.

"When funding and pay structures are stacked against academic scientists," writes Alison Bernstein, a neuroscience postdoc at Emory University, "these problems are all exacerbated."

Fixes for science's funding woes

Right now there are arguably too many researchers chasing too few grants. Or, as a 2014 piece in the Proceedings of the National Academy of Sciences put it: "The current system is in perpetual disequilibrium, because it will inevitably generate an ever-increasing supply of scientists vying for a finite set of research resources and employment opportunities."

"As it stands, too much of the research funding is going to too few of the researchers," writes Gordon Pennycook, a PhD candidate in cognitive psychology at the University of Waterloo. "This creates a culture that rewards fast, sexy (and probably wrong) results."

One straightforward way to ameliorate these problems would be for governments to simply increase the amount of money available for science. (Or, more controversially, decrease the number of PhDs, but we’ll get to that later.) If Congress boosted funding for the NIH and National Science Foundation, that would take some of the competitive pressure off researchers.

But that only goes so far. Funding will always be finite, and researchers will never get blank checks to fund the risky science projects of their dreams. So other reforms will also prove necessary.

One suggestion: Bring more stability and predictability into the funding process. "The NIH and NSF budgets are subject to changing congressional whims that make it impossible for agencies (and researchers) to make long term plans and commitments," M. Paul Murphy, a neurobiology professor at the University of Kentucky, writes. "The obvious solution is to simply make [scientific funding] a stable program, with an annual rate of increase tied in some manner to inflation."

Another idea would be to change how grants are awarded: Foundations and agencies could fund specific people and labs for a period of time rather than individual project proposals. (The Howard Hughes Medical Institute already does this.) A system like this would give scientists greater freedom to take risks with their work.

Alternatively, researchers in the journal mBio recently called for a lottery-style system. Proposals would be measured on their merits, but then a computer would randomly choose which get funded.

"Although we recognize that some scientists will cringe at the thought of allocating funds by lottery," the authors of the mBio piece write, "the available evidence suggests that the system is already in essence a lottery without the benefits of being random." Pure randomness would at least reduce some of the perverse incentives at play in jockeying for money.

There are also some ideas out there to minimize conflicts of interest from industry funding. Recently, in PLOS Medicine , Stanford epidemiologist John Ioannidis suggested that pharmaceutical companies ought to pool the money they use to fund drug research, to be allocated to scientists who then have no exchange with industry during study design and execution. This way, scientists could still get funding for work crucial for drug approvals — but without the pressures that can skew results.

These solutions are by no means complete, and they may not make sense for every scientific discipline. The daily incentives facing biomedical scientists to bring new drugs to market are different from the incentives facing geologists trying to map out new rock layers. But based on our survey, funding appears to be at the root of many of the problems facing scientists, and it’s one that deserves more careful discussion.

research problem example for students science

(2) Too many studies are poorly designed. Blame bad incentives.

Scientists are ultimately judged by the research they publish. And the pressure to publish pushes scientists to come up with splashy results, of the sort that get them into prestigious journals. "Exciting, novel results are more publishable than other kinds," says Brian Nosek , who co-founded the Center for Open Science at the University of Virginia.

The problem here is that truly groundbreaking findings simply don’t occur very often, which means scientists face pressure to game their studies so they turn out to be a little more "revolutionary." (Caveat: Many of the respondents who focused on this particular issue hailed from the biomedical and social sciences.)

Some of this bias can creep into decisions that are made early on: choosing whether or not to randomize participants, including a control group for comparison, or controlling for certain confounding factors but not others. (Read more on study design particulars  here .)

Many of our survey respondents noted that perverse incentives can also push scientists to cut corners in how they analyze their data.

"I have incredible amounts of stress that maybe once I finish analyzing the data, it will not look significant enough for me to defend," writes Jess Kautz, a PhD student at the University of Arizona. "And if I get back mediocre results, there's going to be incredible pressure to present it as a good result so they can get me out the door. At this moment, with all this in my mind, it is making me wonder whether I could give an intellectually honest assessment of my own work."

Increasingly, meta-researchers (who conduct research on research) are realizing that scientists often do find little ways to hype up their own results — and they’re not always doing it consciously. Among the most famous examples is a technique called "p-hacking," in which researchers test their data against many hypotheses and only report those that have statistically significant results.

In a recent study , which tracked the misuse of p-values in biomedical journals, meta-researchers found "an epidemic" of statistical significance: 96 percent of the papers that included a p-value in their abstracts boasted statistically significant results.

That seems awfully suspicious. It suggests the biomedical community has been chasing statistical significance, potentially giving dubious results the appearance of validity through techniques like p-hacking — or simply suppressing important results that don't look significant enough. Fewer studies share effect sizes (which arguably gives a better indication of how meaningful a result might be) or discuss measures of uncertainty.

"The current system has done too much to reward results," says Joseph Hilgard, a postdoctoral research fellow at the Annenberg Public Policy Center. "This causes a conflict of interest: The scientist is in charge of evaluating the hypothesis, but the scientist also desperately wants the hypothesis to be true."

The consequences are staggering. An estimated $200 billion — or the equivalent of 85 percent of global spending on research — is routinely wasted on poorly designed and redundant studies, according to meta-researchers who have analyzed inefficiencies in research. We know that as much as 30 percent of the most influential original medical research papers later turn out to be wrong or exaggerated.

Fixes for poor study design

Our respondents suggested that the two key ways to encourage stronger study design — and discourage positive results chasing — would involve rethinking the rewards system and building more transparency into the research process.

"I would make rewards based on the rigor of the research methods, rather than the outcome of the research," writes Simine Vazire, a journal editor and a social psychology professor at UC Davis. "Grants, publications, jobs, awards, and even media coverage should be based more on how good the study design and methods were, rather than whether the result was significant or surprising."

Likewise, Cambridge mathematician Tim Gowers argues that researchers should get recognition for advancing science broadly through informal idea sharing — rather than only getting credit for what they publish.

"We’ve gotten used to working away in private and then producing a sort of polished document in the form of a journal article," Gowers said. "This tends to hide a lot of the thought process that went into making the discoveries. I'd like attitudes to change so people focus less on the race to be first to prove a particular theorem, or in science to make a particular discovery, and more on other ways of contributing to the furthering of the subject."

When it comes to published results, meanwhile, many of our respondents wanted to see more journals put a greater emphasis on rigorous methods and processes rather than splashy results.

"I think the one thing that would have the biggest impact is removing publication bias: judging papers by the quality of questions, quality of method, and soundness of analyses, but not on the results themselves," writes Michael Inzlicht , a University of Toronto psychology and neuroscience professor.

Some journals are already embracing this sort of research. PLOS One , for example, makes a point of accepting negative studies (in which a scientist conducts a careful experiment and finds nothing) for publication, as does the aptly named Journal of Negative Results in Biomedicine .

More transparency would also help, writes Daniel Simons, a professor of psychology at the University of Illinois. Here’s one example: ClinicalTrials.gov , a site run by the NIH, allows researchers to register their study design and methods ahead of time and then publicly record their progress. That makes it more difficult for scientists to hide experiments that didn’t produce the results they wanted. (The site now holds information for more than 180,000 studies in 180 countries.)

Similarly, the AllTrials campaign is pushing for every clinical trial (past, present, and future) around the world to be registered, with the full methods and results reported. Some drug companies and universities have created portals that allow researchers to access raw data from their trials.

The key is for this sort of transparency to become the norm rather than a laudable outlier.

(3) Replicating results is crucial. But scientists rarely do it.

Replication is another foundational concept in science. Researchers take an older study that they want to test and then try to reproduce it to see if the findings hold up.

Testing, validating, retesting — it's all part of a slow and grinding process to arrive at some semblance of scientific truth. But this doesn't happen as often as it should, our respondents said. Scientists face few incentives to engage in the slog of replication. And even when they attempt to replicate a study, they often find they can’t do so . Increasingly it’s being called a "crisis of irreproducibility."

The stats bear this out: A 2015 study looked at 83 highly cited studies that claimed to feature effective psychiatric treatments. Only 16 had ever been successfully replicated. Another 16 were contradicted by follow-up attempts, and 11 were found to have substantially smaller effects the second time around. Meanwhile, nearly half of the studies (40) had never been subject to replication at all.

More recently, a landmark study published in the journal Science demonstrated that only a fraction of recent findings in top psychology journals could be replicated. This is happening in other fields too, says Ivan Oransky, one of the founders of the blog Retraction Watch , which tracks scientific retractions.

As for the underlying causes, our survey respondents pointed to a couple of problems. First, scientists have very few incentives to even try replication. Jon-Patrick Allem, a social scientist at the Keck School of Medicine of USC, noted that funding agencies prefer to support projects that find new information instead of confirming old results.

Journals are also reluctant to publish replication studies unless "they contradict earlier findings or conclusions," Allem writes. The result is to discourage scientists from checking each other's work. "Novel information trumps stronger evidence, which sets the parameters for working scientists."

The second problem is that many studies can be difficult to replicate. Sometimes their methods are too opaque. Sometimes the original studies had too few participants to produce a replicable answer. And sometimes, as we saw in the previous section, the study is simply poorly designed or outright wrong.

Again, this goes back to incentives: When researchers have to publish frequently and chase positive results, there’s less time to conduct high-quality studies with well-articulated methods.

Fixes for underreplication

Scientists need more carrots to entice them to pursue replication in the first place. As it stands, researchers are encouraged to publish new and positive results and to allow negative results to linger in their laptops or file drawers.

This has plagued science with a problem called "publication bias" — not all studies that are conducted actually get published in journals, and the ones that do tend to have positive and dramatic conclusions.

If institutions started to reward tenure positions or make hires based on the quality of a researcher’s body of work, instead of quantity, this might encourage more replication and discourage positive results chasing.

"The key that needs to change is performance review," writes Christopher Wynder, a former assistant professor at McMaster University. "It affects reproducibility because there is little value in confirming another lab's results and trying to publish the findings."

The next step would be to make replication of studies easier. This could include more robust sharing of methods in published research papers. "It would be great to have stronger norms about being more detailed with the methods," says University of Virginia’s Brian Nosek.

He also suggested more regularly adding supplements at the end of papers that get into the procedural nitty-gritty, to help anyone wanting to repeat an experiment.  "If I can rapidly get up to speed, I have a much better chance of approximating the results," he said.

Nosek has detailed other potential fixes that might help with replication — all part of his work at the Center for Open Science .

A greater degree of transparency and data sharing would enable replications, said Stanford’s John Ioannidis. Too often, anyone trying to replicate a study must chase down the original investigators for details about how the experiment was conducted.

"It is better to do this in an organized fashion with buy-in from all leading investigators in a scientific discipline," he explained, "rather than have to try to find the investigator in each case and ask him or her in detective-work fashion about details, data, and methods that are otherwise unavailable."

Researchers could also make use of new tools , such as open source software that tracks every version of a data set, so that they can share their data more easily and have transparency built into their workflow.

Some of our respondents suggested that scientists engage in replication prior to publication. "Before you put an exploratory idea out in the literature and have people take the time to read it, you owe it to the field to try to replicate your own findings," says John Sakaluk, a social psychologist at the University of Victoria.

For example, he has argued, psychologists could conduct small experiments with a handful of participants to form ideas and generate hypotheses. But they would then need to conduct bigger experiments, with more participants, to replicate and confirm those hypotheses before releasing them into the world. "In doing so,"  Sakaluk says, "the rest of us can have more confidence that this is something we might want to [incorporate] into our own research."

research problem example for students science

(4) Peer review is broken

Peer review is meant to weed out junk science before it reaches publication. Yet over and over again in our survey, respondents told us this process fails. It was one of the parts of the scientific machinery to elicit the most rage among the researchers we heard from.

Normally, peer review works like this: A researcher submits an article for publication in a journal. If the journal accepts the article for review, it's sent off to peers in the same field for constructive criticism and eventual publication — or rejection. (The level of anonymity varies; some journals have double-blind reviews, while others have moved to triple-blind review, where the authors, editors, and reviewers don’t know who one another are.)

It sounds like a reasonable system. But numerous studies and systematic reviews have shown that peer review doesn’t reliably prevent poor-quality science from being published.

The process frequently fails to detect fraud or other problems with manuscripts, which isn't all that surprising when you consider researchers aren't paid or otherwise rewarded for the time they spend reviewing manuscripts. They do it out of a sense of duty — to contribute to their area of research and help advance science.

But this means it's not always easy to find the best people to peer-review manuscripts in their field, that harried researchers delay doing the work (leading to publication delays of up to two years), and that when they finally do sit down to peer-review an article they might be rushed and miss errors in studies.

"The issue is that most referees simply don't review papers carefully enough, which results in the publishing of incorrect papers, papers with gaps, and simply unreadable papers," says Joel Fish, an assistant professor of mathematics at the University of Massachusetts Boston. "This ends up being a large problem for younger researchers to enter the field, since that means they have to ask around to figure out which papers are solid and which are not."

That's not to mention the problem of peer review bullying. Since the default in the process is that editors and peer reviewers know who the authors are (but authors don’t know who the reviews are), biases against researchers or institutions can creep in, opening the opportunity for rude, rushed, and otherwise unhelpful comments. (Just check out the popular #SixWordPeerReview hashtag on Twitter).

These issues were not lost on our survey respondents, who said peer review amounts to a broken system, which punishes scientists and diminishes the quality of publications. They want to not only overhaul the peer review process but also change how it's conceptualized.

Fixes for peer review

On the question of editorial bias and transparency, our respondents were surprisingly divided. Several suggested that all journals should move toward double-blinded peer review, whereby reviewers can't see the names or affiliations of the person they're reviewing and publication authors don't know who reviewed them. The main goal here was to reduce bias.

"We know that scientists make biased decisions based on unconscious stereotyping," writes Pacific Northwest National Lab postdoc Timothy Duignan. "So rather than judging a paper by the gender, ethnicity, country, or institutional status of an author — which I believe happens a lot at the moment — it should be judged by its quality independent of those things."

Yet others thought that more transparency, rather than less, was the answer: "While we correctly advocate for the highest level of transparency in publishing, we still have most reviews that are blinded, and I cannot know who is reviewing me," writes Lamberto Manzoli, a professor of epidemiology and public health at the University of Chieti, in Italy. "Too many times we see very low quality reviews, and we cannot understand whether it is a problem of scarce knowledge or conflict of interest."

Perhaps there is a middle ground. For example,  e Life , a new  open access journal that is rapidly rising in impact factor, runs a collaborative peer review process. Editors and peer reviewers work together on each submission to create a consolidated list of comments about a paper. The author can then reply to what the group saw as the most important issues, rather than facing the biases and whims of individual reviewers. (Oddly, this process is faster — eLife takes less time to accept papers than Nature or Cell.)

Still, those are mostly incremental fixes. Other respondents argued that we might need to radically rethink the entire process of peer review from the ground up.

"The current peer review process embraces a concept that a paper is final," says Nosek. "The review process is [a form of] certification, and that a paper is done." But science doesn't work that way. Science is an evolving process, and truth is provisional. So, Nosek said, science must "move away from the embrace of definitiveness of publication."

Some respondents wanted to think of peer review as more of a continuous process, in which studies are repeatedly and transparently updated and republished as new feedback changes them — much like Wikipedia entries. This would require some sort of expert crowdsourcing.

"The scientific publishing field — particularly in the biological sciences — acts like there is no internet," says Lakshmi Jayashankar, a senior scientific reviewer with the federal government. "The paper peer review takes forever, and this hurts the scientists who are trying to put their results quickly into the public domain."

One possible model already exists in mathematics and physics, where there is a long tradition of "pre-printing" articles. Studies are posted on an open website called  arXiv.org , often before being peer-reviewed and published in journals. There, the articles are sorted and commented on by a community of moderators, providing another chance to filter problems before they make it to peer review.

"Posting preprints would allow scientific crowdsourcing to increase the number of errors that are caught, since traditional peer-reviewers cannot be expected to be experts in every sub-discipline," writes Scott Hartman, a paleobiology PhD student at the University of Wisconsin.

And even after an article is published, researchers think the peer review process shouldn't stop. They want to see more "post-publication" peer review on the web, so that academics can critique and comment on articles after they've been published. Sites like PubPeer and F1000Research have already popped up to facilitate that kind of post-publication feedback.

"We do this a couple of times a year at conferences," writes Becky Clarkson, a geriatric medicine researcher at the University of Pittsburgh. "We could do this every day on the internet."

The bottom line is that traditional peer review has never worked as well as we imagine it to — and it’s ripe for serious disruption.

research problem example for students science

(5) Too much science is locked behind paywalls

After a study has been funded, conducted, and peer-reviewed, there's still the question of getting it out so that others can read and understand its results.

Over and over, our respondents expressed dissatisfaction with how scientific research gets disseminated. Too much is locked away in paywalled journals, difficult and costly to access, they said. Some respondents also criticized the publication process itself for being too slow, bogging down the pace of research.

On the access question, a number of scientists argued that academic research should be free for all to read. They chafed against the current model, in which for-profit publishers put journals behind pricey paywalls.

A single article in Science will set you back $30; a year-long subscription to Cell will cost $279. Elsevier publishes 2,000 journals that can cost up to $10,000 or $20,000 a year for a subscription.

Many US institutions pay those journal fees for their employees, but not all scientists (or other curious readers) are so lucky. In a recent issue of Science , journalist John Bohannon described the plight of a PhD candidate at a top university in Iran. He calculated that the student would have to spend $1,000 a week just to read the papers he needed.

As Michael Eisen, a biologist at UC Berkeley and co-founder of the Public Library of Science (or PLOS ) , put it , scientific journals are trying to hold on to the profits of the print era in the age of the internet.  Subscription prices have continued to climb, as a handful of big publishers (like Elsevier) have bought up more and more journals, creating mini knowledge fiefdoms.

"Large, publicly owned publishing companies make huge profits off of scientists by publishing our science and then selling it back to the university libraries at a massive profit (which primarily benefits stockholders)," Corina Logan, an animal behavior researcher at the University of Cambridge, noted. "It is not in the best interest of the society, the scientists, the public, or the research." (In 2014, Elsevier reported a profit margin of nearly 40 percent and revenues close to $3 billion.)

"It seems wrong to me that taxpayers pay for research at government labs and universities but do not usually have access to the results of these studies, since they are behind paywalls of peer-reviewed journals," added Melinda Simon, a postdoc microfluidics researcher at Lawrence Livermore National Lab.

Fixes for closed science

Many of our respondents urged their peers to publish in open access journals (along the lines of PeerJ or PLOS Biology ). But there’s an inherent tension here. Career advancement can often depend on publishing in the most prestigious journals, like Science or Nature , which still have paywalls.

There's also the question of how best to finance a wholesale transition to open access. After all, journals can never be entirely free. Someone has to pay for the editorial staff, maintaining the website, and so on. Right now, open access journals typically charge fees to those submitting papers, putting the burden on scientists who are already struggling for funding.

One radical step would be to abolish for-profit publishers altogether and move toward a nonprofit model. "For journals I could imagine that scientific associations run those themselves," suggested Johannes Breuer, a postdoctoral researcher in media psychology at the University of Cologne. "If they go for online only, the costs for web hosting, copy-editing, and advertising (if needed) can be easily paid out of membership fees."

As a model, Cambridge’s Tim Gowers has launched an online mathematics journal called Discrete Analysis . The nonprofit venture is owned and published by a team of scholars, it has no publisher middlemen, and access will be completely free for all.

Until wholesale reform happens, however, many scientists are going a much simpler route: illegally pirating papers.

Bohannon reported that millions of researchers around the world now use Sci-Hub , a site set up by Alexandra Elbakyan, a Russia-based neuroscientist, that illegally hosts more than 50 million academic papers. "As a devout pirate," Elbakyan told us, "I think that copyright should be abolished."

One respondent had an even more radical suggestion: that we abolish the existing peer-reviewed journal system altogether and simply publish everything online as soon as it’s done.

"Research should be made available online immediately, and be judged by peers online rather than having to go through the whole formatting, submitting, reviewing, rewriting, reformatting, resubmitting, etc etc etc that can takes years," writes Bruno Dagnino, formerly of the Netherlands Institute for Neuroscience. "One format, one platform. Judge by the whole community, with no delays."

A few scientists have been taking steps in this direction. Rachel Harding, a genetic researcher at the University of Toronto, has set up a website called Lab Scribbles , where she publishes her lab notes on the structure of huntingtin proteins in real time, posting data as well as summaries of her breakthroughs and failures. The idea is to help share information with other researchers working on similar issues, so that labs can avoid needless overlap and learn from each other's mistakes.

Not everyone might agree with approaches this radical; critics worry that too much sharing might encourage scientific free riding. Still, the common theme in our survey was transparency. Science is currently too opaque, research too difficult to share. That needs to change.

(6) Science is poorly communicated to the public

"If I could change one thing about science, I would change the way it is communicated to the public by scientists, by journalists, and by celebrities," writes Clare Malone, a postdoctoral researcher in a cancer genetics lab at Brigham and Women's Hospital.

She wasn't alone. Quite a few respondents in our survey expressed frustration at how science gets relayed to the public. They were distressed by the fact that so many laypeople hold on to completely unscientific ideas or have a crude view of how science works.

fixing science 3

They have a point. Science journalism is often full of exaggerated, conflicting, or outright misleading claims. If you ever want to see a perfect example of this, check out "Kill or Cure," a site where Paul Battley meticulously documents all the times the Daily Mail reported that various items — from antacids to yogurt — either cause cancer, prevent cancer, or sometimes do both.

Sometimes bad stories are peddled by university press shops. In 2015, the University of Maryland issued a press release claiming that a single brand of chocolate milk could improve concussion recovery. It was an absurd case of science hype.

Indeed, one review in BMJ found that one-third of university press releases contained either exaggerated claims of causation (when the study itself only suggested correlation), unwarranted implications about animal studies for people, or unfounded health advice.

But not everyone blamed the media and publicists alone. Other respondents pointed out that scientists themselves often oversell their work, even if it's preliminary, because funding is competitive and everyone wants to portray their work as big and important and game-changing.

"You have this toxic dynamic where journalists and scientists enable each other in a way that massively inflates the certainty and generality of how scientific findings are communicated and the promises that are made to the public," writes Daniel Molden, an associate professor of psychology at Northwestern University. "When these findings prove to be less certain and the promises are not realized, this just further erodes the respect that scientists get and further fuels scientists desire for appreciation."

Fixes for better science communication

Opinions differed on how to improve this sorry state of affairs — some pointed to the media, some to press offices, others to scientists themselves.

Plenty of our respondents wished that more science journalists would move away from hyping single studies. Instead, they said, reporters ought to put new research findings in context, and pay more attention to the rigor of a study's methodology than to the splashiness of the end results.

"On a given subject, there are often dozens of studies that examine the issue," writes Brian Stacy of the US Department of Agriculture. "It is very rare for a single study to conclusively resolve an important research question, but many times the results of a study are reported as if they do."

But it’s not just reporters who will need to shape up. The "toxic dynamic" of journalists, academic press offices, and scientists enabling one another to hype research can be tough to change, and many of our respondents pointed out that there were no easy fixes — though recognition was an important first step.

Some suggested the creation of credible referees that could rigorously distill the strengths and weaknesses of research. (Some variations of this are starting to pop up: The Genetic Expert News Service solicits outside experts to weigh in on big new studies in genetics and biotechnology.) Other respondents suggested that making research free to all might help tamp down media misrepresentations.

Still other respondents noted that scientists themselves should spend more time learning how to communicate with the public — a skill that tends to be under-rewarded in the current system.

"Being able to explain your work to a non-scientific audience is just as important as publishing in a peer-reviewed journal, in my opinion, but currently the incentive structure has no place for engaging the public," writes Crystal Steltenpohl, a graduate assistant at DePaul University.

Reducing the perverse incentives around scientific research itself could also help reduce overhype.  "If we reward research based on how noteworthy the results are, this will create pressure to exaggerate the results (through exploiting flexibility in data analysis, misrepresenting results, or outright fraud)," writes UC Davis's Simine Vazire. "We should reward research based on how rigorous the methods and design are."

Or perhaps we should focus on improving science literacy. Jeremy Johnson, a project coordinator at the Broad Institute, argued that bolstering science education could help ameliorate a lot of these problems. "Science literacy should be a top priority for our educational policy," he said, "not an elective."

(7) Life as a young academic is incredibly stressful

When we asked researchers what they’d fix about science, many talked about the scientific process itself, about study design or peer review. These responses often came from tenured scientists who loved their jobs but wanted to make the broader scientific project even better.

But on the flip side, we heard from a number of researchers — many of them graduate students or postdocs — who were genuinely passionate about research but found the day-to-day experience of being a scientist grueling and unrewarding. Their comments deserve a section of their own.

Today, many tenured scientists and research labs depend on small armies of graduate students and postdoctoral researchers to perform their experiments and conduct data analysis.

These grad students and postdocs are often the primary authors on many studies. In a number of fields, such as the biomedical sciences, a postdoc position is a prerequisite before a researcher can get a faculty-level position at a university.

This entire system sits at the heart of modern-day science. (A new card game called Lab Wars pokes fun at these dynamics.)

But these low-level research jobs can be a grind. Postdocs typically work long hours and are relatively low-paid for their level of education — salaries are frequently pegged to stipends set by NIH National Research Service Award grants, which start at $43,692 and rise to $47,268 in year three.

Postdocs tend to be hired on for one to three years at a time, and in many institutions they are considered contractors, limiting their workplace protections. We heard repeatedly about extremely long hours and limited family leave benefits.

"Oftentimes this is problematic for individuals in their late 20s and early to mid-30s who have PhDs and who may be starting families while also balancing a demanding job that pays poorly," wrote one postdoc, who asked for anonymity.

This lack of flexibility tends to disproportionately affect women — especially women planning to have families — which helps contribute to gender inequalities in research. ( A 2012 paper found that female job applicants in academia are judged more harshly and are offered less money than males.) "There is very little support for female scientists and early-career scientists," noted another postdoc.

"There is very little long-term financial security in today's climate, very little assurance where the next paycheck will come from," wrote William Kenkel, a postdoctoral researcher in neuroendocrinology at Indiana University. "Since receiving my PhD in 2012, I left Chicago and moved to Boston for a post-doc, then in 2015 I left Boston for a second post-doc in Indiana. In a year or two, I will move again for a faculty job, and that's if I'm lucky. Imagine trying to build a life like that."

This strain can also adversely affect the research that young scientists do. "Contracts are too short term," noted another researcher. "It discourages rigorous research as it is difficult to obtain enough results for a paper (and hence progress) in two to three years. The constant stress drives otherwise talented and intelligent people out of science also."

Because universities produce so many PhDs but have way fewer faculty jobs available, many of these postdoc researchers have limited career prospects. Some of them end up staying stuck in postdoc positions for five or 10 years or more.

"In the biomedical sciences," wrote the first postdoc quoted above, "each available faculty position receives applications from hundreds or thousands of applicants, putting immense pressure on postdocs to publish frequently and in high impact journals to be competitive enough to attain those positions."

Many young researchers pointed out that PhD programs do fairly little to train people for careers outside of academia. "Too many [PhD] students are graduating for a limited number of professor positions with minimal training for careers outside of academic research," noted Don Gibson, a PhD candidate studying plant genetics at UC Davis.

Laura Weingartner, a graduate researcher in evolutionary ecology at Indiana University, agreed: "Few universities (specifically the faculty advisors) know how to train students for anything other than academia, which leaves many students hopeless when, inevitably, there are no jobs in academia for them."

Add it up and it's not surprising that we heard plenty of comments about anxiety and depression among both graduate students and postdocs. "There is a high level of depression among PhD students," writes Gibson. "Long hours, limited career prospects, and low wages contribute to this emotion."

A 2015 study at the University of California Berkeley found that 47 percent of PhD students surveyed could be considered depressed. The reasons for this are complex and can't be solved overnight. Pursuing academic research is already an arduous, anxiety-ridden task that's bound to take a toll on mental health.

But as Jennifer Walker explored recently at Quartz, many PhD students also feel isolated and unsupported, exacerbating those issues.

Fixes to keep young scientists in science

We heard plenty of concrete suggestions. Graduate schools could offer more generous family leave policies and child care for graduate students. They could also increase the number of female applicants they accept in order to balance out the gender disparity.

But some respondents also noted that workplace issues for grad students and postdocs were inseparable from some of the fundamental issues facing science that we discussed earlier. The fact that university faculty and research labs face immense pressure to publish — but have limited funding — makes it highly attractive to rely on low-paid postdocs.

"There is little incentive for universities to create jobs for their graduates or to cap the number of PhDs that are produced," writes Weingartner. "Young researchers are highly trained but relatively inexpensive sources of labor for faculty."

Some respondents also pointed to the mismatch between the number of PhDs produced each year and the number of academic jobs available.

A recent feature by Julie Gould in Nature explored a number of ideas for revamping the PhD system. One idea is to split the PhD into two programs: one for vocational careers and one for academic careers. The former would better train and equip graduates to find jobs outside academia.

This is hardly an exhaustive list. The core point underlying all these suggestions, however, was that universities and research labs need to do a better job of supporting the next generation of researchers. Indeed, that's arguably just as important as addressing problems with the scientific process itself. Young scientists, after all, are by definition the future of science.

Weingartner concluded with a sentiment we saw all too frequently: "Many creative, hard-working, and/or underrepresented scientists are edged out of science because of these issues. Not every student or university will have all of these unfortunate experiences, but they’re pretty common. There are a lot of young, disillusioned scientists out there now who are expecting to leave research."

Science needs to correct its greatest weaknesses

Science is not doomed.

For better or worse, it still works. Look no further than the novel vaccines to prevent Ebola, the discovery of gravitational waves , or new treatments for stubborn diseases. And it’s getting better in many ways. See the work of meta -researchers who study and evaluate research — a field that has gained prominence over the past 20 years.

More from this feature

We asked hundreds of scientists what they’d change about science. Here are 33 of our favorite responses.

But science is conducted by fallible humans, and it hasn’t been human-proofed to protect against all our foibles. The scientific revolution began just 500 years ago. Only over the past 100 has science become professionalized. There is still room to figure out how best to remove biases and align incentives.

To that end, here are some broad suggestions:

One: Science has to acknowledge and address its money problem. Science is enormously valuable and deserves ample funding. But the way incentives are set up can distort research.

Right now, small studies with bold results that can be quickly turned around and published in journals are disproportionately rewarded. By contrast, there are fewer incentives to conduct research that tackles important questions with robustly designed studies over long periods of time. Solving this won’t be easy, but it is at the root of many of the issues discussed above.

Two: Science needs to celebrate and reward failure. Accepting that we can learn more from dead ends in research and studies that failed would alleviate the "publish or perish" cycle. It would make scientists more confident in designing robust tests and not just convenient ones, in sharing their data and explaining their failed tests to peers, and in using those null results to form the basis of a career (instead of chasing those all-too-rare breakthroughs).

Three: Science has to be more transparent. Scientists need to publish the methods and findings more fully, and share their raw data in ways that are easily accessible and digestible for those who may want to reanalyze or replicate their findings.

There will always be waste and mediocre research, but as Stanford’s Ioannidis explains in a recent paper , a lack of transparency creates excess waste and diminishes the usefulness of too much research.

Again and again, we also heard from researchers, particularly in social sciences, who felt that their cognitive biases in their own work, influenced by pressures to publish and advance their careers, caused science to go off the rails. If more human-proofing and de-biasing were built into the process — through stronger peer review, cleaner and more consistent funding, and more transparency and data sharing — some of these biases could be mitigated.

These fixes will take time, grinding along incrementally — much like the scientific process itself. But the gains humans have made so far using even imperfect scientific methods would have been unimaginable 500 years ago. The gains from improving the process could prove just as staggering, if not more so.

Correction: An earlier version of this story misstated Noah Grand's title. At the time of the survey he was a lecturer in sociology at UCLA, not a professor.

Will you help keep Vox free for all?

At Vox, we believe that clarity is power, and that power shouldn’t only be available to those who can afford to pay. That’s why we keep our work free. Millions rely on Vox’s clear, high-quality journalism to understand the forces shaping today’s world. Support our mission and help keep Vox free for all by making a financial contribution to Vox today.

We accept credit card, Apple Pay, and Google Pay. You can also contribute via

research problem example for students science

“Equivalent to having 50 Super Bowls”: The staggering — and lucrative — scale of eclipse tourism

She’s been chasing solar eclipses for three decades. what’s she after, everything you need to know about the 2024 solar eclipse, sign up for the newsletter today, explained, thanks for signing up.

Check your inbox for a welcome email.

Oops. Something went wrong. Please enter a valid email and try again.

The Library Is Open

The Wallace building is now open to the public. More information on services available.

  • RIT Libraries
  • Social/Behavioral Sciences Research Guide

Identifying a Research Problem

This InfoGuide assists students starting their research proposal and literature review.

  • Introduction
  • Research Process
  • Types of Research Methodology
  • Data Collection Methods
  • Anatomy of a Scholarly Article
  • Finding a topic
  • Problem Statement
  • Research Question
  • Research Design
  • Search Strategies
  • Psychology Database Limiters
  • Literature Review Search
  • Annotated Bibliography
  • Writing a Literature Review
  • Writing a Research Proposal

A  research problem  is a specific issue or gap in existing knowledge that you aim to address in your research. You may look for practical problems aimed at contributing to change or theoretical problems aimed at expanding knowledge.

Some research will do both of these things, but usually, the research problem focuses on one or the other. The research problem you choose depends on your broad  topic  of interest and the  type of research  you think will fit best.

This section helps you identify and refine a research problem. When writing your  research proposal  or  introduction , formulate it as a  problem statement  and/or  research questions .

Research Problems Steps

Why is the research problem important?

Having an interesting topic isn’t a strong enough basis for academic research. Without a well-defined research problem, you will likely end up with an unfocused and unmanageable project.

You might end up repeating what other people have already said, trying to say too much, or doing research without a clear purpose and justification. You need a clear problem to research that contributes new and relevant insights.

Whether planning your  thesis , starting a  research paper , or writing a  research proposal , the research problem is the first step towards knowing exactly what you’ll do and why.

Identify a broad problem area As you read about your topic, look for under-explored aspects or areas of concern, conflict, or controversy. Your goal is to find a gap that your research project can fill.

Practical research problems If you are doing practical research, you can identify a problem by reading reports, following up on previous research, or talking to people who work in the relevant field or organization. You might look for:

  • Issues with performance or efficiency
  • Processes that could be improved
  • Areas of concern among practitioners
  • Difficulties faced by specific groups of people Examples of practical research problems
  • Voter turnout in New England has been decreasing, in contrast to the rest of the country.
  • The HR department of a local chain of restaurants has a high staff turnover rate.

A non-profit organization faces a funding gap that means some of its programs will have to be cut

Theoretical research problems If you are doing theoretical research, you can identify a research problem by reading existing research, theory, and debates on your topic to find a gap in what is currently known about it. You might look for:

  • A phenomenon or context that has not been closely studied
  • A contradiction between two or more perspectives
  • A situation or relationship that is not well understood
  • A troubling question that has yet to be resolved Examples of theoretical research problems
  • The effects of long-term Vitamin D deficiency on cardiovascular health are not well understood.
  • The relationship between gender, race, and income inequality has yet to be closely studied in the context of the millennial gig economy
  • Historians of Scottish nationalism disagree about the role of the British Empire in developing Scotland’s national identity.

Learn more about the problem Next, you have to find out what is already known about the problem and pinpoint the exact aspect that your research will address. Context and background

  • Who does the problem affect?
  • Is it a newly-discovered problem, or a well-established one?
  • What research has already been done?
  • What, if any, solutions have been proposed?
  • What are the current debates about the problem? What is missing from these debates?

Specificity and relevance

  • What particular place, time, and/or group of people will you focus on?
  • What aspects will you not be able to tackle?
  • What will the consequences be if the problem is not resolved Example of a specific research problem A local non-profit organization that alleviates food insecurity has always fundraised from its existing support base. It lacks an understanding of how best to target potential new donors. To continue its work, the organization requires research into more effective fundraising strategies.

Once you have narrowed down your research problem, the next step is to formulate a  problem statement , as well as your  research questions  or  hypotheses .

  • << Previous: Finding a topic
  • Next: Problem Statement >>

Edit this Guide

Log into Dashboard

Use of RIT resources is reserved for current RIT students, faculty and staff for academic and teaching purposes only. Please contact your librarian with any questions.

Facebook icon

Help is Available

research problem example for students science

Email a Librarian

A librarian is available by e-mail at [email protected]

Meet with a Librarian

Call reference desk voicemail.

A librarian is available by phone at (585) 475-2563 or on Skype at llll

Or, call (585) 475-2563 to leave a voicemail with the reference desk during normal business hours .

Chat with a Librarian

Social/behavioral sciences research guide infoguide url.

https://infoguides.rit.edu/researchguide

Use the box below to email yourself a link to this guide

Sacred Heart University Library

Organizing Academic Research Papers: The Research Problem/Question

  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Executive Summary
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tertiary Sources
  • What Is Scholarly vs. Popular?
  • Qualitative Methods
  • Quantitative Methods
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Annotated Bibliography
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • How to Manage Group Projects
  • Multiple Book Review Essay
  • Reviewing Collected Essays
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Research Proposal
  • Acknowledgements

A research problem is a statement about an area of concern, a condition to be improved, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or in practice that points to the need for meaningful understanding and deliberate investigation. In some social science disciplines the research problem is typically posed in the form of a question. A research problem does not state how to do something, offer a vague or broad proposition, or present a value question.

Importance of...

The purpose of a problem statement is to:

  • Introduce the reader to the importance of the topic being studied . The reader is oriented to the significance of the study and the research questions or hypotheses to follow.
  • Places the problem into a particular context that defines the parameters of what is to be investigated.
  • Provides the framework for reporting the results and indicates what is probably necessary to conduct the study and explain how the findings will present this information.

In the social sciences, the research problem establishes the means by which you must answer the "So What?" question. The "So What?" question refers to a research problem surviving the relevancy test [the quality of a measurement procedure that provides repeatability and accuracy]. Note that answering the "So What" question requires a commitment on your part to not only show that you have researched the material, but that you have thought about its significance.

To survive the "So What" question, problem statements should possess the following attributes:

  • Clarity and precision [a well-written statement does not make sweeping generalizations and irresponsible statements],
  • Identification of what would be studied, while avoiding the use of value-laden words and terms,
  • Identification of an overarching question and key factors or variables,
  • Identification of key concepts and terms,
  • Articulation of the study's boundaries or parameters,
  • Some generalizability in regards to applicability and bringing results into general use,
  • Conveyance of the study's importance, benefits, and justification [regardless of the type of research, it is important to address the “so what” question by demonstrating that the research is not trivial],
  • Does not have unnecessary jargon; and,
  • Conveyance of more than the mere gathering of descriptive data providing only a snapshot of the issue or phenomenon under investigation.

Castellanos, Susie. Critical Writing and Thinking . The Writing Center. Dean of the College. Brown University; Ellis, Timothy J. and Yair Levy Nova Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem. Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); Thesis and Purpose Statements . The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements . The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements . The Writing Lab and The OWL. Purdue University.  

Structure and Writing Style

I.  Types and Content

There are four general conceptualizations of a research problem in the social sciences:

  • Casuist Research Problem -- this type of problem relates to the determination of right and wrong in questions of conduct or conscience by analyzing moral dilemmas through the application of general rules and the careful distinction of special cases.
  • Difference Research Problem -- typically asks the question, “Is there a difference between two or more groups or treatments?” This type of problem statement is used when the researcher compares or contrasts two or more phenomena.
  • Descriptive Research Problem -- typically asks the question, "what is...?" with the underlying purpose to describe a situation, state, or existence of a specific phenomenon.
  • Relational Research Problem -- suggests a relationship of some sort between two or more variables to be investigated. The underlying purpose is to investigate qualities/characteristics that are connected in some way.

A problem statement in the social sciences should contain :

  • A lead-in that helps ensure the reader will maintain interest over the study
  • A declaration of originality [e.g., mentioning a knowledge void, which would be supported by the literature review]
  • An indication of the central focus of the study, and
  • An explanation of the study's significance or the benefits to be derived from an investigating the problem.

II.  Sources of Problems for Investigation

Identifying a problem to study can be challenging, not because there is a lack of issues that could be investigated, but due to pursuing a goal of formulating a socially relevant and researchable problem statement that is unique and does not simply duplicate the work of others. To facilitate how you might select a problem from which to build a research study, consider these three broad sources of inspiration:

Deductions from Theory This relates to deductions made from social philosophy or generalizations embodied in life in society that the researcher is familiar with. These deductions from human behavior are then fitted within an empirical frame of reference through research. From a theory, the research can formulate a research problem or hypothesis stating the expected findings in certain empirical situations. The research asks the question: “What relationship between variables will be observed if theory aptly summarizes the state of affairs?” One can then design and carry out a systematic investigation to assess whether empirical data confirm or reject the hypothesis and hence the theory.

Interdisciplinary Perspectives Identifying a problem that forms the basis for a research study can come from academic movements and scholarship originating in disciplines outside of your primary area of study. A review of pertinent literature should include examining research from related disciplines, which can expose you to new avenues of exploration and analysis. An interdisciplinary approach to selecting a research problem offers an opportunity to construct a more comprehensive understanding of a very complex issue than any single discipline might provide.

Interviewing Practitioners The identification of research problems about particular topics can arise from formal or informal discussions with practitioners who provide insight into new directions for future research and how to make research findings increasingly relevant to practice. Discussions with experts in the field, such as, teachers, social workers, health care providers, etc., offers the chance to identify practical, “real worl” problems that may be understudied or ignored within academic circles. This approach also provides some practical knowledge which may help in the process of designing and conducting your study.

Personal Experience Your everyday experiences can give rise to worthwhile problems for investigation. Think critically about your own experiences and/or frustrations with an issue facing society, your community, or in your neighborhood. This can be derived, for example, from deliberate observations of certain relationships for which there is no clear explanation or witnessing an event that appears harmful to a person or group or that is out of the ordinary.

Relevant Literature The selection of a research problem can often be derived from an extensive and thorough review of pertinent research associated with your overall area of interest. This may reveal where gaps remain in our understanding of a topic. Research may be conducted to: 1) fill such gaps in knowledge; 2) evaluate if the methodologies employed in prior studies can be adapted to solve other problems; or, 3) determine if a similar study could be conducted in a different subject area or applied to different study sample [i.e., different groups of people]. Also, authors frequently conclude their studies by noting implications for further research; this can also be a valuable source of problems to investigate.

III.  What Makes a Good Research Statement?

A good problem statement begins by introducing the broad area in which your research is centered and then gradually leads the reader to the more narrow questions you are posing. The statement need not be lengthy but a good research problem should incorporate the following features:

Compelling topic Simple curiosity is not a good enough reason to pursue a research study. The problem that you choose to explore must be important to you and to a larger community you share. The problem chosen must be one that motivates you to address it. Supports multiple perspectives The problem most be phrased in a way that avoids dichotomies and instead supports the generation and exploration of multiple perspectives. A general rule of thumb is that a good research problem is one that would generate a variety of viewpoints from a composite audience made up of reasonable people. Researchable It seems a bit obvious, but you don't want to find yourself in the midst of investigating a complex  research project and realize that you don't have much to draw on for your research. Choose research problems that can be supported by the resources available to you. Not sure? Seek out help  from a librarian!

NOTE:   Do not confuse a research problem with a research topic. A topic is something to read and obtain information about whereas a problem is something to solve or framed as a question that must be answered.

IV.  Mistakes to Avoid

Beware of circular reasoning . Don’t state that the research problem as simply the absence of the thing you are suggesting. For example, if you propose, "The problem in this community is that it has no hospital."

This only leads to a research problem where:

  • The need is for a hospital
  • The objective is to create a hospital
  • The method is to plan for building a hospital, and
  • The evaluation is to measure if there is a hospital or not.

This is an example of a research problem that fails the "so what?" test because it does not reveal the relevance of why you are investigating the problem of having no hospital in the community [e.g., there's a hospital in the community ten miles away] and because the research problem does not elucidate the significance of why one should study the fact that no hospital exists in the community [e.g., that hospital in the community ten miles away has no emergency room].

Choosing and Refining Topics . Writing@CSU. Colorado State University; Ellis, Timothy J. and Yair Levy Nova Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem. Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); How to Write a Research Question . The Writing Center. George Mason University; Invention: Developing a Thesis Statement . The Reading/Writing Center. Hunter College; Problem Statements PowerPoint Presentation . The Writing Lab and The OWL. Purdue University; Procter, Margaret. Using Thesis Statements . University College Writing Centre. University of Toronto; Trochim, William M.K. Problem Formulation . Research Methods Knowledge Base. 2006; Thesis and Purpose Statements . The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements . The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements . The Writing Lab and The OWL. Purdue University.

  • << Previous: Background Information
  • Next: Theoretical Framework >>
  • Last Updated: Jul 18, 2023 11:58 AM
  • URL: https://library.sacredheart.edu/c.php?g=29803
  • QuickSearch
  • Library Catalog
  • Databases A-Z
  • Publication Finder
  • Course Reserves
  • Citation Linker
  • Digital Commons
  • Our Website

Research Support

  • Ask a Librarian
  • Appointments
  • Interlibrary Loan (ILL)
  • Research Guides
  • Databases by Subject
  • Citation Help

Using the Library

  • Reserve a Group Study Room
  • Renew Books
  • Honors Study Rooms
  • Off-Campus Access
  • Library Policies
  • Library Technology

User Information

  • Grad Students
  • Online Students
  • COVID-19 Updates
  • Staff Directory
  • News & Announcements
  • Library Newsletter

My Accounts

  • Interlibrary Loan
  • Staff Site Login

Sacred Heart University

FIND US ON  

Book cover

Issues and Challenges in Science Education Research pp 1–4 Cite as

Issues and Challenges in Science Education Research

  • Kim Chwee Daniel Tan 3 &
  • Mijung Kim 4  
  • First Online: 01 January 2012

2082 Accesses

2 Citations

Rapid advances in science and technology and continuous changes in the world greatly impact the lives of children and youths and, hence, their ways of experiencing and interacting phenomena in the world and people around them. These changes challenge science educators to rethink the epistemology and pedagogy in science classrooms today as the practice of science education needs to be proactive and relevant to students in their everyday world and prepare them for life in the present and in the future.

  • Pedagogical Content Knowledge
  • Teacher Professional Development
  • Science Teacher Education
  • Science Education Research
  • Early Childhood Teacher

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Davis, B. (2004). Invention of teaching: A genealogy . Mahwah/London: Lawrence Erlbaum Association Publishers.

Google Scholar  

Hodson, D. (2003). Time for action: Science education for an alternative future. International Journal of Science Education, 25 (6), 645–670.

Article   Google Scholar  

Kolsto, S. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85 (3), 291–310.

Latour, B. (1987). Science in action . Cambridge: Harvard University Press.

Millar, R., Leach, J., Osborne, J., & Ratcliffe, M. (2006). Research and practice in education. In R. Millar, J. Leach, J. Osborne, & M. Ratcliffe (Eds.), Improving subject teaching: Lessons from research in science education (pp. 3–23). London: Routledge.

Miller, J. D. (2004). Public understanding of, and attitude toward, scientific research: What we know and what we need to know. Public Understanding of Science, 13 , 273–294.

Treagust, D. F. (1995). Diagnostic assessment of students’ science knowledge. In S. M. Glynn & R. Duit (Eds.), Learning science in the schools: Research reforming practice (pp. 327–346). Mahwah: Lawrence Erlbaum Associates.

Varela, F., Thompson, E., & Rosch, E. (2000). The embodied mind: Cognitive science and human experience . Cambridge: The MIT press.

Download references

Author information

Authors and affiliations.

Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore

Kim Chwee Daniel Tan

Curriculum and Instruction, University of Victoria, Victoria, BC, Canada

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Kim Chwee Daniel Tan .

Editor information

Editors and affiliations.

, Natural Sciences & Science Education, National Institute of Education, Nanyang Walk 1, Singapore, 637616, Singapore

, Dept of Curriculum and Instruction, University of Victoria, Victoria, V8W 2Y2, British Columbia, Canada

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter.

Tan, K.C.D., Kim, M. (2012). Issues and Challenges in Science Education Research. In: Tan, K., Kim, M. (eds) Issues and Challenges in Science Education Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3980-2_1

Download citation

DOI : https://doi.org/10.1007/978-94-007-3980-2_1

Published : 03 April 2012

Publisher Name : Springer, Dordrecht

Print ISBN : 978-94-007-3979-6

Online ISBN : 978-94-007-3980-2

eBook Packages : Humanities, Social Sciences and Law Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • BOOK REVIEW
  • 29 March 2024

The great rewiring: is social media really behind an epidemic of teenage mental illness?

  • Candice L. Odgers 0

Candice L. Odgers is the associate dean for research and a professor of psychological science and informatics at the University of California, Irvine. She also co-leads international networks on child development for both the Canadian Institute for Advanced Research in Toronto and the Jacobs Foundation based in Zurich, Switzerland.

You can also search for this author in PubMed   Google Scholar

You have full access to this article via your institution.

A teenage girl lies on the bed in her room lightened with orange and teal neon lights and watches a movie on her mobile phone.

Social-media platforms aren’t always social. Credit: Getty

The Anxious Generation: How the Great Rewiring of Childhood is Causing an Epidemic of Mental Illness Jonathan Haidt Allen Lane (2024)

Two things need to be said after reading The Anxious Generation . First, this book is going to sell a lot of copies, because Jonathan Haidt is telling a scary story about children’s development that many parents are primed to believe. Second, the book’s repeated suggestion that digital technologies are rewiring our children’s brains and causing an epidemic of mental illness is not supported by science. Worse, the bold proposal that social media is to blame might distract us from effectively responding to the real causes of the current mental-health crisis in young people.

Haidt asserts that the great rewiring of children’s brains has taken place by “designing a firehose of addictive content that entered through kids’ eyes and ears”. And that “by displacing physical play and in-person socializing, these companies have rewired childhood and changed human development on an almost unimaginable scale”. Such serious claims require serious evidence.

research problem example for students science

Collection: Promoting youth mental health

Haidt supplies graphs throughout the book showing that digital-technology use and adolescent mental-health problems are rising together. On the first day of the graduate statistics class I teach, I draw similar lines on a board that seem to connect two disparate phenomena, and ask the students what they think is happening. Within minutes, the students usually begin telling elaborate stories about how the two phenomena are related, even describing how one could cause the other. The plots presented throughout this book will be useful in teaching my students the fundamentals of causal inference, and how to avoid making up stories by simply looking at trend lines.

Hundreds of researchers, myself included, have searched for the kind of large effects suggested by Haidt. Our efforts have produced a mix of no, small and mixed associations. Most data are correlative. When associations over time are found, they suggest not that social-media use predicts or causes depression, but that young people who already have mental-health problems use such platforms more often or in different ways from their healthy peers 1 .

These are not just our data or my opinion. Several meta-analyses and systematic reviews converge on the same message 2 – 5 . An analysis done in 72 countries shows no consistent or measurable associations between well-being and the roll-out of social media globally 6 . Moreover, findings from the Adolescent Brain Cognitive Development study, the largest long-term study of adolescent brain development in the United States, has found no evidence of drastic changes associated with digital-technology use 7 . Haidt, a social psychologist at New York University, is a gifted storyteller, but his tale is currently one searching for evidence.

Of course, our current understanding is incomplete, and more research is always needed. As a psychologist who has studied children’s and adolescents’ mental health for the past 20 years and tracked their well-being and digital-technology use, I appreciate the frustration and desire for simple answers. As a parent of adolescents, I would also like to identify a simple source for the sadness and pain that this generation is reporting.

A complex problem

There are, unfortunately, no simple answers. The onset and development of mental disorders, such as anxiety and depression, are driven by a complex set of genetic and environmental factors. Suicide rates among people in most age groups have been increasing steadily for the past 20 years in the United States. Researchers cite access to guns, exposure to violence, structural discrimination and racism, sexism and sexual abuse, the opioid epidemic, economic hardship and social isolation as leading contributors 8 .

research problem example for students science

How social media affects teen mental health: a missing link

The current generation of adolescents was raised in the aftermath of the great recession of 2008. Haidt suggests that the resulting deprivation cannot be a factor, because unemployment has gone down. But analyses of the differential impacts of economic shocks have shown that families in the bottom 20% of the income distribution continue to experience harm 9 . In the United States, close to one in six children live below the poverty line while also growing up at the time of an opioid crisis, school shootings and increasing unrest because of racial and sexual discrimination and violence.

The good news is that more young people are talking openly about their symptoms and mental-health struggles than ever before. The bad news is that insufficient services are available to address their needs. In the United States, there is, on average, one school psychologist for every 1,119 students 10 .

Haidt’s work on emotion, culture and morality has been influential; and, in fairness, he admits that he is no specialist in clinical psychology, child development or media studies. In previous books, he has used the analogy of an elephant and its rider to argue how our gut reactions (the elephant) can drag along our rational minds (the rider). Subsequent research has shown how easy it is to pick out evidence to support our initial gut reactions to an issue. That we should question assumptions that we think are true carefully is a lesson from Haidt’s own work. Everyone used to ‘know’ that the world was flat. The falsification of previous assumptions by testing them against data can prevent us from being the rider dragged along by the elephant.

A generation in crisis

Two things can be independently true about social media. First, that there is no evidence that using these platforms is rewiring children’s brains or driving an epidemic of mental illness. Second, that considerable reforms to these platforms are required, given how much time young people spend on them. Many of Haidt’s solutions for parents, adolescents, educators and big technology firms are reasonable, including stricter content-moderation policies and requiring companies to take user age into account when designing platforms and algorithms. Others, such as age-based restrictions and bans on mobile devices, are unlikely to be effective in practice — or worse, could backfire given what we know about adolescent behaviour.

A third truth is that we have a generation in crisis and in desperate need of the best of what science and evidence-based solutions can offer. Unfortunately, our time is being spent telling stories that are unsupported by research and that do little to support young people who need, and deserve, more.

Nature 628 , 29-30 (2024)

doi: https://doi.org/10.1038/d41586-024-00902-2

Heffer, T., Good, M., Daly, O., MacDonell, E. & Willoughby, T. Clin. Psychol. Sci. 7 , 462–470 (2019).

Article   Google Scholar  

Hancock, J., Liu, S. X., Luo, M. & Mieczkowski, H. Preprint at SSRN https://doi.org/10.2139/ssrn.4053961 (2022).

Odgers, C. L. & Jensen, M. R. J. Child Psychol. Psychiatry 61 , 336–348 (2020).

Article   PubMed   Google Scholar  

Orben, A. Soc . Psychiatry Psychiatr. Epidemiol. 55 , 407–414 (2020).

Valkenburg, P. M., Meier, A. & Beyens, I. Curr. Opin. Psychol. 44 , 58–68 (2022).

Vuorre, M. & Przybylski, A. K. R. Sci. Open Sci. 10 , 221451 (2023).

Miller, J., Mills, K. L., Vuorre, M., Orben, A. & Przybylski, A. K. Cortex 169 , 290–308 (2023).

Martínez-Alés, G., Jiang, T., Keyes, K. M. & Gradus, J. L. Annu. Rev. Publ. Health 43 , 99–116 (2022).

Danziger, S. Ann. Am. Acad. Pol. Soc. Sci. 650 , 6–24 (2013).

US Department of Education. State Nonfiscal Public Elementary/Secondary Education Survey 2022–2023 (National Center for Education Statistics, 2024).

Google Scholar  

Download references

Competing Interests

The author declares no competing interests.

Related Articles

research problem example for students science

  • Public health

Why loneliness is bad for your health

Why loneliness is bad for your health

News Feature 03 APR 24

Adopt universal standards for study adaptation to boost health, education and social-science research

Correspondence 02 APR 24

Allow researchers with caring responsibilities ‘promotion pauses’ to make research more equitable

Circulating myeloid-derived MMP8 in stress susceptibility and depression

Circulating myeloid-derived MMP8 in stress susceptibility and depression

Article 07 FEB 24

Only 0.5% of neuroscience studies look at women’s health. Here’s how to change that

Only 0.5% of neuroscience studies look at women’s health. Here’s how to change that

World View 21 NOV 23

Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb

Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb

Article 18 OCT 23

Abortion-pill challenge provokes doubt from US Supreme Court

Abortion-pill challenge provokes doubt from US Supreme Court

News 26 MAR 24

The future of at-home molecular testing

The future of at-home molecular testing

Outlook 21 MAR 24

Global Scientist Interdisciplinary Forum & Recruitment

Southern University of Science and Technology, School of Medicine

Shenzhen, Guangdong, China

research problem example for students science

Research Associate - Neuroscience and Respiratory Physiology

Houston, Texas (US)

Baylor College of Medicine (BCM)

research problem example for students science

Histology Laboratory Manager

Postdoctoral scholar - research-pediatrics.

Memphis, Tennessee

The University of Tennessee Health Science Center (UTHSC)

research problem example for students science

Postdoctoral Scholar

Postdoctoral Scholar - PHAST Investigate Novel Roles of Linear Deubiquitinase Otulin In NeuroDegenerato

Memphis, Tennessee (US)

research problem example for students science

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Read our research on: Gun Policy | International Conflict | Election 2024

Regions & Countries

3. problems students are facing at public k-12 schools.

We asked teachers about how students are doing at their school. Overall, many teachers hold negative views about students’ academic performance and behavior.

  • 48% say the academic performance of most students at their school is fair or poor; a third say it’s good and only 17% say it’s excellent or very good.
  • 49% say students’ behavior at their school is fair or poor; 35% say it’s good and 13% rate it as excellent or very good.

Teachers in elementary, middle and high schools give similar answers when asked about students’ academic performance. But when it comes to students’ behavior, elementary and middle school teachers are more likely than high school teachers to say it’s fair or poor (51% and 54%, respectively, vs. 43%).

A horizontal stacked bar chart showing that many teachers hold negative views about students’ academic performance and behavior.

Teachers from high-poverty schools are more likely than those in medium- and low-poverty schools to say the academic performance and behavior of most students at their school are fair or poor.

The differences between high- and low-poverty schools are particularly striking. Most teachers from high-poverty schools say the academic performance (73%) and behavior (64%) of most students at their school are fair or poor. Much smaller shares of teachers from low-poverty schools say the same (27% for academic performance and 37% for behavior).

In turn, teachers from low-poverty schools are far more likely than those from high-poverty schools to say the academic performance and behavior of most students at their school are excellent or very good.

Lasting impact of the COVID-19 pandemic

A horizontal stacked bar chart showing that most teachers say the pandemic has had a lasting negative impact on students’ behavior, academic performance and emotional well-being.

Among those who have been teaching for at least a year, about eight-in-ten teachers say the lasting impact of the pandemic on students’ behavior, academic performance and emotional well-being has been very or somewhat negative. This includes about a third or more saying that the lasting impact has been very negative in each area.

Shares ranging from 11% to 15% of teachers say the pandemic has had no lasting impact on these aspects of students’ lives, or that the impact has been neither positive nor negative. Only about 5% say that the pandemic has had a positive lasting impact on these things.

A smaller majority of teachers (55%) say the pandemic has had a negative impact on the way parents interact with teachers, with 18% saying its lasting impact has been very negative.

These results are mostly consistent across teachers of different grade levels and school poverty levels.

Major problems at school

When we asked teachers about a range of problems that may affect students who attend their school, the following issues top the list:

  • Poverty (53% say this is a major problem at their school)
  • Chronic absenteeism – that is, students missing a substantial number of school days (49%)
  • Anxiety and depression (48%)

One-in-five say bullying is a major problem among students at their school. Smaller shares of teachers point to drug use (14%), school fights (12%), alcohol use (4%) and gangs (3%).

Differences by school level

A bar chart showing that high school teachers more likely to say chronic absenteeism, anxiety and depression are major problems.

Similar shares of teachers across grade levels say poverty is a major problem at their school, but other problems are more common in middle or high schools:

  • 61% of high school teachers say chronic absenteeism is a major problem at their school, compared with 43% of elementary school teachers and 46% of middle school teachers.
  • 69% of high school teachers and 57% of middle school teachers say anxiety and depression are a major problem, compared with 29% of elementary school teachers.
  • 34% of middle school teachers say bullying is a major problem, compared with 13% of elementary school teachers and 21% of high school teachers.

Not surprisingly, drug use, school fights, alcohol use and gangs are more likely to be viewed as major problems by secondary school teachers than by those teaching in elementary schools.

Differences by poverty level

A dot plot showing that majorities of teachers in medium- and high-poverty schools say chronic absenteeism is a major problem.

Teachers’ views on problems students face at their school also vary by school poverty level.

Majorities of teachers in high- and medium-poverty schools say chronic absenteeism is a major problem where they teach (66% and 58%, respectively). A much smaller share of teachers in low-poverty schools say this (34%).

Bullying, school fights and gangs are viewed as major problems by larger shares of teachers in high-poverty schools than in medium- and low-poverty schools.

When it comes to anxiety and depression, a slightly larger share of teachers in low-poverty schools (51%) than in high-poverty schools (44%) say these are a major problem among students where they teach.  

Discipline practices

A pie chart showing that a majority of teachers say discipline practices at their school are mild.

About two-thirds of teachers (66%) say that the current discipline practices at their school are very or somewhat mild – including 27% who say they’re very mild. Only 2% say the discipline practices at their school are very or somewhat harsh, while 31% say they are neither harsh nor mild.

We also asked teachers about the amount of influence different groups have when it comes to determining discipline practices at their school.

  • 67% say teachers themselves don’t have enough influence. Very few (2%) say teachers have too much influence, and 29% say their influence is about right.

A diverging bar chart showing that two-thirds of teachers say they don’t have enough influence over discipline practices at their school.

  • 31% of teachers say school administrators don’t have enough influence, 22% say they have too much, and 45% say their influence is about right.
  • On balance, teachers are more likely to say parents, their state government and the local school board have too much influence rather than not enough influence in determining discipline practices at their school. Still, substantial shares say these groups have about the right amount of influence.

Teachers from low- and medium-poverty schools (46% each) are more likely than those in high-poverty schools (36%) to say parents have too much influence over discipline practices.

In turn, teachers from high-poverty schools (34%) are more likely than those from low- and medium-poverty schools (17% and 18%, respectively) to say that parents don’t have enough influence.

Social Trends Monthly Newsletter

Sign up to to receive a monthly digest of the Center's latest research on the attitudes and behaviors of Americans in key realms of daily life

Report Materials

Table of contents, ‘back to school’ means anytime from late july to after labor day, depending on where in the u.s. you live, among many u.s. children, reading for fun has become less common, federal data shows, most european students learn english in school, for u.s. teens today, summer means more schooling and less leisure time than in the past, about one-in-six u.s. teachers work second jobs – and not just in the summer, most popular.

About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of The Pew Charitable Trusts .

IMAGES

  1. 45 Research Problem Examples & Inspiration (2024)

    research problem example for students science

  2. Research Problem Statement Examples : FREE 9+ Problem Statement Samples

    research problem example for students science

  3. 13+ SAMPLE Research Problem Statement in PDF

    research problem example for students science

  4. Research Problem Statement Examples

    research problem example for students science

  5. Selection of a Research Problem Presentation

    research problem example for students science

  6. Research Problem Statement Examples

    research problem example for students science

VIDEO

  1. Chemistry ने इसबार भी अपनी AUKAAT दिखा दी !! 😭 || Science Exam Reaction #PW #Shorts #Class10Board

  2. How to choose a research topic for a dissertation or thesis? (as a PhD or master's degree student)

  3. RESEARCH PROBLEM IDENTIFICATION

  4. Common problems in experiments

  5. What are the components of a research problem?

  6. Criteria Of Good Research

COMMENTS

  1. 45 Research Problem Examples & Inspiration (2024)

    45 Research Problem Examples & Inspiration. A research problem is an issue of concern that is the catalyst for your research. It demonstrates why the research problem needs to take place in the first place. Generally, you will write your research problem as a clear, concise, and focused statement that identifies an issue or gap in current ...

  2. Research Problem

    Environmental Science. Research Problem Examples in Environmental Science are as follows: Studying the impact of air pollution on human health and well-being. Investigating the effects of deforestation on climate change and biodiversity loss. ... An Example of a Research Problem for Students could be:

  3. 100 Science Topics for Research Papers

    Science papers are interesting to write and easy to research because there are so many current and reputable journals online. Start by browsing through the STEM research topics below, which are written in the form of prompts. Then, look at some of the linked articles at the end for further ideas.

  4. How to Define a Research Problem

    A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge. Some research will do both of these things, but usually the research problem focuses on one or the other.

  5. What is a Research Problem? Characteristics, Types, and Examples

    Characteristics, Types, and Examples. August 22, 2023 Sunaina Singh. Knowing the basics of defining a research problem is instrumental in formulating a research inquiry. A research problem is a gap in existing knowledge, a contradiction in an established theory, or a real-world challenge that a researcher aims to address in their research.

  6. 55 Brilliant Research Topics For STEM Students

    There are several science research topics for STEM students. Below are some possible quantitative research topics for STEM students. A study of protease inhibitor and how it operates. A study of how men's exercise impacts DNA traits passed to children. A study of the future of commercial space flight.

  7. 200+ Experimental Quantitative Research Topics For Stem Students

    Here are 10 practical research topics for STEM students: Developing an affordable and sustainable water purification system for rural communities. Designing a low-cost, energy-efficient home heating and cooling system. Investigating strategies for reducing food waste in the supply chain and households.

  8. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  9. How to Write a Problem Statement

    Step 3: Set your aims and objectives. Finally, the problem statement should frame how you intend to address the problem. Your goal here should not be to find a conclusive solution, but rather to propose more effective approaches to tackling or understanding it. The research aim is the overall purpose of your research.

  10. 80 Science Research Paper Topics Ideas in 2023

    80+ Science Research Paper Topics Ideas For Students. Essay writing or writing dissertation is an integral part of education at any level, middle school, high school, or college. Some of the most common essays are on science research topics, and they are also quite interesting. However, choosing research paper topics isn't as straightforward ...

  11. PDF Identifying a Research Problem and Question, and Searching Relevant

    skills, which prevent the students from identifying the words in math problems. The student also might not understand or correctly interpret essential vocabulary. As another example, when students do not hand in homework assignments or par - ticipate in class, some might be inclined to think that the students are not motivated.

  12. How to Write a Research Problem Statement

    A research problem statement typically includes the following elements: 1. The research topic: The general area of interest or field of study that the research project addresses. 2. The specific problem or issue: A clear and concise statement of the problem or issue that the research project aims to address. 3.

  13. The Research Problem/Question

    This is an example of a research problem that fails the "So What?" ... A Guide for Novice Researchers on the Development of a Research-Worthy Problem." Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); How to Write a Research Question. The Writing Center.

  14. What is a Problem Statement? [with examples]

    1. Begin with a clear indication that the problem statement is going to be discussed next. You can start with a generic sentence like, "The problem that this study addresses…". This will inform your readers of what to expect next. 2. Next, mention the consequences of not solving the problem.

  15. Research Problem ~ Explanation & Examples

    Research Problem - In a Nutshell. A research problem is an issue that raises concern about a particular topic. Researchers formulate research problems by examining other literature on the topic and assessing the significance and relevance of the problem.; Creating a research problem involves an overview of a broad problem area and then narrowing it down to the specifics by creating a ...

  16. Examples of Student Research Projects

    Research Proposals including Research Plans ; Coming Up With a Research Question; Getting Ethics Approval; Struggling with a Literature Review; Qualitative, Quantitative or Mixed-Methods ; Data Collection; Working with Primary Data ; Using the Internet for Research; Data Management; Writing Up Your Research ; Preparing for the Research Project

  17. The 7 biggest problems facing science, according to 270 scientists

    The 7 biggest problems facing science, according to 270 scientists. By Julia Belluz, Brad Plumer, and Brian Resnick Updated Sep 7, 2016, 10:13am EDT. "Science, I had come to learn, is as political ...

  18. Investigative Research Projects for Students in Science: The State of

    School science education typically aims to prepare some students to become scientists, while concurrently educating all students in science and about science (Claussen & Osborne, 2013; Hofstein & Lunetta, 2004; Osborne & Dillon, 2008).For example, in England, especially for older students, the current science National Curriculum for 5-16-year-olds is framed as providing a platform for future ...

  19. PDF An Action Research in Science: Providing Metacognitive Support to ...

    Student-teacher discourses refer to whether or not students discuss their science learning process with their teacher. Research findings suggest that most student-teacher discussions are often about the consequences of learning and less on the processes involved (Thomas, 2006). It is essential that regular discussions

  20. Identifying a Research Problem

    A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may look for practical problems aimed at contributing to change or theoretical problems aimed at expanding knowledge. Some research will do both of these things, but usually, the research problem focuses on one or the other.

  21. The Research Problem/Question

    A research problem is a statement about an area of concern, a condition to be improved, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or in practice that points to the need for meaningful understanding and deliberate investigation. In some social science disciplines the research problem is typically posed in the form of a question.

  22. Issues and Challenges in Science Education Research

    The notion of science-in-the-making suggests the importance of questions in science education and research such as what and how to teach science in order to build better world to dwell in. The practice of science education needs to be proactive and relevant to the contexts that we live in today so that students are better prepared for the ...

  23. (PDF) Common Problems in a Science Classroom

    PDF | On Nov 18, 2017, Hazel Coleen Canencia Samonte and others published Common Problems in a Science Classroom | Find, read and cite all the research you need on ResearchGate

  24. The great rewiring: is social media really behind an epidemic of

    A generation in crisis. Two things can be independently true about social media. First, that there is no evidence that using these platforms is rewiring children's brains or driving an epidemic ...

  25. America's students are falling behind. Here's how to reimagine the

    It's a familiar refrain: "America's students are falling behind.". Academic progress stalled during the pandemic and has yet to recover. But historic declines in test scores and growing achievement gaps are just part of the problem. Youth mental health issues surged; behavioral problems increased; and more teachers left the profession ...

  26. Problems students are facing at public K-12 schools

    Major problems at school. When we asked teachers about a range of problems that may affect students who attend their school, the following issues top the list: Poverty (53% say this is a major problem at their school) Chronic absenteeism - that is, students missing a substantial number of school days (49%) Anxiety and depression (48%) One-in ...