U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Data Collection Methods | Step-by-Step Guide & Examples

Data Collection Methods | Step-by-Step Guide & Examples

Published on 4 May 2022 by Pritha Bhandari .

Data collection is a systematic process of gathering observations or measurements. Whether you are performing research for business, governmental, or academic purposes, data collection allows you to gain first-hand knowledge and original insights into your research problem .

While methods and aims may differ between fields, the overall process of data collection remains largely the same. Before you begin collecting data, you need to consider:

  • The  aim of the research
  • The type of data that you will collect
  • The methods and procedures you will use to collect, store, and process the data

To collect high-quality data that is relevant to your purposes, follow these four steps.

Table of contents

Step 1: define the aim of your research, step 2: choose your data collection method, step 3: plan your data collection procedures, step 4: collect the data, frequently asked questions about data collection.

Before you start the process of data collection, you need to identify exactly what you want to achieve. You can start by writing a problem statement : what is the practical or scientific issue that you want to address, and why does it matter?

Next, formulate one or more research questions that precisely define what you want to find out. Depending on your research questions, you might need to collect quantitative or qualitative data :

  • Quantitative data is expressed in numbers and graphs and is analysed through statistical methods .
  • Qualitative data is expressed in words and analysed through interpretations and categorisations.

If your aim is to test a hypothesis , measure something precisely, or gain large-scale statistical insights, collect quantitative data. If your aim is to explore ideas, understand experiences, or gain detailed insights into a specific context, collect qualitative data.

If you have several aims, you can use a mixed methods approach that collects both types of data.

  • Your first aim is to assess whether there are significant differences in perceptions of managers across different departments and office locations.
  • Your second aim is to gather meaningful feedback from employees to explore new ideas for how managers can improve.

Prevent plagiarism, run a free check.

Based on the data you want to collect, decide which method is best suited for your research.

  • Experimental research is primarily a quantitative method.
  • Interviews , focus groups , and ethnographies are qualitative methods.
  • Surveys , observations, archival research, and secondary data collection can be quantitative or qualitative methods.

Carefully consider what method you will use to gather data that helps you directly answer your research questions.

When you know which method(s) you are using, you need to plan exactly how you will implement them. What procedures will you follow to make accurate observations or measurements of the variables you are interested in?

For instance, if you’re conducting surveys or interviews, decide what form the questions will take; if you’re conducting an experiment, make decisions about your experimental design .

Operationalisation

Sometimes your variables can be measured directly: for example, you can collect data on the average age of employees simply by asking for dates of birth. However, often you’ll be interested in collecting data on more abstract concepts or variables that can’t be directly observed.

Operationalisation means turning abstract conceptual ideas into measurable observations. When planning how you will collect data, you need to translate the conceptual definition of what you want to study into the operational definition of what you will actually measure.

  • You ask managers to rate their own leadership skills on 5-point scales assessing the ability to delegate, decisiveness, and dependability.
  • You ask their direct employees to provide anonymous feedback on the managers regarding the same topics.

You may need to develop a sampling plan to obtain data systematically. This involves defining a population , the group you want to draw conclusions about, and a sample, the group you will actually collect data from.

Your sampling method will determine how you recruit participants or obtain measurements for your study. To decide on a sampling method you will need to consider factors like the required sample size, accessibility of the sample, and time frame of the data collection.

Standardising procedures

If multiple researchers are involved, write a detailed manual to standardise data collection procedures in your study.

This means laying out specific step-by-step instructions so that everyone in your research team collects data in a consistent way – for example, by conducting experiments under the same conditions and using objective criteria to record and categorise observations.

This helps ensure the reliability of your data, and you can also use it to replicate the study in the future.

Creating a data management plan

Before beginning data collection, you should also decide how you will organise and store your data.

  • If you are collecting data from people, you will likely need to anonymise and safeguard the data to prevent leaks of sensitive information (e.g. names or identity numbers).
  • If you are collecting data via interviews or pencil-and-paper formats, you will need to perform transcriptions or data entry in systematic ways to minimise distortion.
  • You can prevent loss of data by having an organisation system that is routinely backed up.

Finally, you can implement your chosen methods to measure or observe the variables you are interested in.

The closed-ended questions ask participants to rate their manager’s leadership skills on scales from 1 to 5. The data produced is numerical and can be statistically analysed for averages and patterns.

To ensure that high-quality data is recorded in a systematic way, here are some best practices:

  • Record all relevant information as and when you obtain data. For example, note down whether or how lab equipment is recalibrated during an experimental study.
  • Double-check manual data entry for errors.
  • If you collect quantitative data, you can assess the reliability and validity to get an indication of your data quality.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g., understanding the needs of your consumers or user testing your website).
  • You can control and standardise the process for high reliability and validity (e.g., choosing appropriate measurements and sampling methods ).

However, there are also some drawbacks: data collection can be time-consuming, labour-intensive, and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research , you also have to consider the internal and external validity of your experiment.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, May 04). Data Collection Methods | Step-by-Step Guide & Examples. Scribbr. Retrieved 30 May 2024, from https://www.scribbr.co.uk/research-methods/data-collection-guide/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, qualitative vs quantitative research | examples & methods, triangulation in research | guide, types, examples, what is a conceptual framework | tips & examples.

How to Research Guide

  • What is Research
  • Research Terms
  • Subject vs. Keyword
  • Crafting Searches
  • Primary, Secondary, & Tertiary
  • Credible Resources

Quantitative Research

What is quantitative research, purpose of quantitative research, how do i know if the study is a quantitative design what type is it, sample quantitative student paper, acknowledgment.

  • Qualitative Research
  • Qualitative vs. Quantitative
  • Scientific Method
  • Literature Review

Quantitative methodology is the dominant research framework in the social sciences. It refers to a set of strategies, techniques, and assumptions used to study psychological, social, and economic processes through the exploration of numeric patterns .

  • Quantitative research gathers a range of numeric data. Some of the numeric data is intrinsically quantitative (e.g. personal income), while in other cases the numeric structure is imposed (e.g. ‘On a scale from 1 to 10, how depressed did you feel last week?’).
  • The collection of quantitative information allows researchers to conduct simple to extremely sophisticated statistical analyses that aggregate the data (e.g. averages, percentages), show relationships among the data (e.g. ‘Students with lower grade point averages tend to score lower on a depression scale’) or compare across aggregated data (e.g. the USA has a higher gross domestic product than Spain).
  • Quantitative research includes methodologies such as questionnaires, structured observations, or experiments and stands in contrast to qualitative research. Qualitative research involves the collection and analysis of narratives and/or open-ended observations through methodologies such as interviews, focus groups, or ethnographies.

Source: The SAGE encyclopedia of action research (Vols. 1-2). London, : SAGE Publications Ltd doi: 10.4135/9781446294406

The purpose of quantitative research is to generate knowledge and create an understanding of the social world.

  • Quantitative research is used by social scientists, including communication researchers, to observe phenomena or occurrences affecting individuals. Social scientists are concerned with the study of people.
  • Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population.

Source: The SAGE encyclopedia of communication research methods;(Vols. 1-4). Thousand Oaks, CA: SAGE Publications, Inc doi: 10.4135/9781483381411<

Quantitative Research Designs: Descriptive non-experimental, Quasi-experimental, or Experimental?

  • Studies do not always explicitly state what kind of research design is being used.  You will need to know how to decipher which design type is used. 

The following video will help you determine the quantitative design type.

  • Quantitiative student paper From the American Psychological Association

This resource is adapted from the UTA Libraries, Quantitative and Qualitative Research Guide. Thank you to them for sharing their content, which may be reused and adapted under the Creative Commons Attribution-Share Alike license . 

BY NC creative commons license

  • << Previous: Types of Research
  • Next: Qualitative Research >>
  • Last Updated: Apr 26, 2024 11:31 AM
  • URL: https://davenport.libguides.com/research-how
  • Privacy Policy

Research Method

Home » Quantitative Data – Types, Methods and Examples

Quantitative Data – Types, Methods and Examples

Table of Contents

 Quantitative Data

Quantitative Data

Definition:

Quantitative data refers to numerical data that can be measured or counted. This type of data is often used in scientific research and is typically collected through methods such as surveys, experiments, and statistical analysis.

Quantitative Data Types

There are two main types of quantitative data: discrete and continuous.

  • Discrete data: Discrete data refers to numerical values that can only take on specific, distinct values. This type of data is typically represented as whole numbers and cannot be broken down into smaller units. Examples of discrete data include the number of students in a class, the number of cars in a parking lot, and the number of children in a family.
  • Continuous data: Continuous data refers to numerical values that can take on any value within a certain range or interval. This type of data is typically represented as decimal or fractional values and can be broken down into smaller units. Examples of continuous data include measurements of height, weight, temperature, and time.

Quantitative Data Collection Methods

There are several common methods for collecting quantitative data. Some of these methods include:

  • Surveys : Surveys involve asking a set of standardized questions to a large number of people. Surveys can be conducted in person, over the phone, via email or online, and can be used to collect data on a wide range of topics.
  • Experiments : Experiments involve manipulating one or more variables and observing the effects on a specific outcome. Experiments can be conducted in a controlled laboratory setting or in the real world.
  • Observational studies : Observational studies involve observing and collecting data on a specific phenomenon without intervening or manipulating any variables. Observational studies can be conducted in a natural setting or in a laboratory.
  • Secondary data analysis : Secondary data analysis involves using existing data that was collected for a different purpose to answer a new research question. This method can be cost-effective and efficient, but it is important to ensure that the data is appropriate for the research question being studied.
  • Physiological measures: Physiological measures involve collecting data on biological or physiological processes, such as heart rate, blood pressure, or brain activity.
  • Computerized tracking: Computerized tracking involves collecting data automatically from electronic sources, such as social media, online purchases, or website analytics.

Quantitative Data Analysis Methods

There are several methods for analyzing quantitative data, including:

  • Descriptive statistics: Descriptive statistics are used to summarize and describe the basic features of the data, such as the mean, median, mode, standard deviation, and range.
  • Inferential statistics : Inferential statistics are used to make generalizations about a population based on a sample of data. These methods include hypothesis testing, confidence intervals, and regression analysis.
  • Data visualization: Data visualization involves creating charts, graphs, and other visual representations of the data to help identify patterns and trends. Common types of data visualization include histograms, scatterplots, and bar charts.
  • Time series analysis: Time series analysis involves analyzing data that is collected over time to identify patterns and trends in the data.
  • Multivariate analysis : Multivariate analysis involves analyzing data with multiple variables to identify relationships between the variables.
  • Factor analysis : Factor analysis involves identifying underlying factors or dimensions that explain the variation in the data.
  • Cluster analysis: Cluster analysis involves identifying groups or clusters of observations that are similar to each other based on multiple variables.

Quantitative Data Formats

Quantitative data can be represented in different formats, depending on the nature of the data and the purpose of the analysis. Here are some common formats:

  • Tables : Tables are a common way to present quantitative data, particularly when the data involves multiple variables. Tables can be used to show the frequency or percentage of data in different categories or to display summary statistics.
  • Charts and graphs: Charts and graphs are useful for visualizing quantitative data and can be used to highlight patterns and trends in the data. Some common types of charts and graphs include line charts, bar charts, scatterplots, and pie charts.
  • Databases : Quantitative data can be stored in databases, which allow for easy sorting, filtering, and analysis of large amounts of data.
  • Spreadsheets : Spreadsheets can be used to organize and analyze quantitative data, particularly when the data is relatively small in size. Spreadsheets allow for calculations and data manipulation, as well as the creation of charts and graphs.
  • Statistical software : Statistical software, such as SPSS, R, and SAS, can be used to analyze quantitative data. These programs allow for more advanced statistical analyses and data modeling, as well as the creation of charts and graphs.

Quantitative Data Gathering Guide

Here is a basic guide for gathering quantitative data:

  • Define the research question: The first step in gathering quantitative data is to clearly define the research question. This will help determine the type of data to be collected, the sample size, and the methods of data analysis.
  • Choose the data collection method: Select the appropriate method for collecting data based on the research question and available resources. This could include surveys, experiments, observational studies, or other methods.
  • Determine the sample size: Determine the appropriate sample size for the research question. This will depend on the level of precision needed and the variability of the population being studied.
  • Develop the data collection instrument: Develop a questionnaire or survey instrument that will be used to collect the data. The instrument should be designed to gather the specific information needed to answer the research question.
  • Pilot test the data collection instrument : Before collecting data from the entire sample, pilot test the instrument on a small group to identify any potential problems or issues.
  • Collect the data: Collect the data from the selected sample using the chosen data collection method.
  • Clean and organize the data : Organize the data into a format that can be easily analyzed. This may involve checking for missing data, outliers, or errors.
  • Analyze the data: Analyze the data using appropriate statistical methods. This may involve descriptive statistics, inferential statistics, or other types of analysis.
  • Interpret the results: Interpret the results of the analysis in the context of the research question. Identify any patterns, trends, or relationships in the data and draw conclusions based on the findings.
  • Communicate the findings: Communicate the findings of the analysis in a clear and concise manner, using appropriate tables, graphs, and other visual aids as necessary. The results should be presented in a way that is accessible to the intended audience.

Examples of Quantitative Data

Here are some examples of quantitative data:

  • Height of a person (measured in inches or centimeters)
  • Weight of a person (measured in pounds or kilograms)
  • Temperature (measured in Fahrenheit or Celsius)
  • Age of a person (measured in years)
  • Number of cars sold in a month
  • Amount of rainfall in a specific area (measured in inches or millimeters)
  • Number of hours worked in a week
  • GPA (grade point average) of a student
  • Sales figures for a product
  • Time taken to complete a task.
  • Distance traveled (measured in miles or kilometers)
  • Speed of an object (measured in miles per hour or kilometers per hour)
  • Number of people attending an event
  • Price of a product (measured in dollars or other currency)
  • Blood pressure (measured in millimeters of mercury)
  • Amount of sugar in a food item (measured in grams)
  • Test scores (measured on a numerical scale)
  • Number of website visitors per day
  • Stock prices (measured in dollars)
  • Crime rates (measured by the number of crimes per 100,000 people)

Applications of Quantitative Data

Quantitative data has a wide range of applications across various fields, including:

  • Scientific research: Quantitative data is used extensively in scientific research to test hypotheses and draw conclusions. For example, in biology, researchers might use quantitative data to measure the growth rate of cells or the effectiveness of a drug treatment.
  • Business and economics: Quantitative data is used to analyze business and economic trends, forecast future performance, and make data-driven decisions. For example, a company might use quantitative data to analyze sales figures and customer demographics to determine which products are most popular among which segments of their customer base.
  • Education: Quantitative data is used in education to measure student performance, evaluate teaching methods, and identify areas where improvement is needed. For example, a teacher might use quantitative data to track the progress of their students over the course of a semester and adjust their teaching methods accordingly.
  • Public policy: Quantitative data is used in public policy to evaluate the effectiveness of policies and programs, identify areas where improvement is needed, and develop evidence-based solutions. For example, a government agency might use quantitative data to evaluate the impact of a social welfare program on poverty rates.
  • Healthcare : Quantitative data is used in healthcare to evaluate the effectiveness of medical treatments, track the spread of diseases, and identify risk factors for various health conditions. For example, a doctor might use quantitative data to monitor the blood pressure levels of their patients over time and adjust their treatment plan accordingly.

Purpose of Quantitative Data

The purpose of quantitative data is to provide a numerical representation of a phenomenon or observation. Quantitative data is used to measure and describe the characteristics of a population or sample, and to test hypotheses and draw conclusions based on statistical analysis. Some of the key purposes of quantitative data include:

  • Measuring and describing : Quantitative data is used to measure and describe the characteristics of a population or sample, such as age, income, or education level. This allows researchers to better understand the population they are studying.
  • Testing hypotheses: Quantitative data is often used to test hypotheses and theories by collecting numerical data and analyzing it using statistical methods. This can help researchers determine whether there is a statistically significant relationship between variables or whether there is support for a particular theory.
  • Making predictions : Quantitative data can be used to make predictions about future events or trends based on past data. This is often done through statistical modeling or time series analysis.
  • Evaluating programs and policies: Quantitative data is often used to evaluate the effectiveness of programs and policies. This can help policymakers and program managers identify areas where improvements can be made and make evidence-based decisions about future programs and policies.

When to use Quantitative Data

Quantitative data is appropriate to use when you want to collect and analyze numerical data that can be measured and analyzed using statistical methods. Here are some situations where quantitative data is typically used:

  • When you want to measure a characteristic or behavior : If you want to measure something like the height or weight of a population or the number of people who smoke, you would use quantitative data to collect this information.
  • When you want to compare groups: If you want to compare two or more groups, such as comparing the effectiveness of two different medical treatments, you would use quantitative data to collect and analyze the data.
  • When you want to test a hypothesis : If you have a hypothesis or theory that you want to test, you would use quantitative data to collect data that can be analyzed statistically to determine whether your hypothesis is supported by the data.
  • When you want to make predictions: If you want to make predictions about future trends or events, such as predicting sales for a new product, you would use quantitative data to collect and analyze data from past trends to make your prediction.
  • When you want to evaluate a program or policy : If you want to evaluate the effectiveness of a program or policy, you would use quantitative data to collect data about the program or policy and analyze it statistically to determine whether it has had the intended effect.

Characteristics of Quantitative Data

Quantitative data is characterized by several key features, including:

  • Numerical values : Quantitative data consists of numerical values that can be measured and counted. These values are often expressed in terms of units, such as dollars, centimeters, or kilograms.
  • Continuous or discrete : Quantitative data can be either continuous or discrete. Continuous data can take on any value within a certain range, while discrete data can only take on certain values.
  • Objective: Quantitative data is objective, meaning that it is not influenced by personal biases or opinions. It is based on empirical evidence that can be measured and analyzed using statistical methods.
  • Large sample size: Quantitative data is often collected from a large sample size in order to ensure that the results are statistically significant and representative of the population being studied.
  • Statistical analysis: Quantitative data is typically analyzed using statistical methods to determine patterns, relationships, and other characteristics of the data. This allows researchers to make more objective conclusions based on empirical evidence.
  • Precision : Quantitative data is often very precise, with measurements taken to multiple decimal points or significant figures. This precision allows for more accurate analysis and interpretation of the data.

Advantages of Quantitative Data

Some advantages of quantitative data are:

  • Objectivity : Quantitative data is usually objective because it is based on measurable and observable variables. This means that different people who collect the same data will generally get the same results.
  • Precision : Quantitative data provides precise measurements of variables. This means that it is easier to make comparisons and draw conclusions from quantitative data.
  • Replicability : Since quantitative data is based on objective measurements, it is often easier to replicate research studies using the same or similar data.
  • Generalizability : Quantitative data allows researchers to generalize findings to a larger population. This is because quantitative data is often collected using random sampling methods, which help to ensure that the data is representative of the population being studied.
  • Statistical analysis : Quantitative data can be analyzed using statistical methods, which allows researchers to test hypotheses and draw conclusions about the relationships between variables.
  • Efficiency : Quantitative data can often be collected quickly and efficiently using surveys or other standardized instruments, which makes it a cost-effective way to gather large amounts of data.

Limitations of Quantitative Data

Some Limitations of Quantitative Data are as follows:

  • Limited context: Quantitative data does not provide information about the context in which the data was collected. This can make it difficult to understand the meaning behind the numbers.
  • Limited depth: Quantitative data is often limited to predetermined variables and questions, which may not capture the complexity of the phenomenon being studied.
  • Difficulty in capturing qualitative aspects: Quantitative data is unable to capture the subjective experiences and qualitative aspects of human behavior, such as emotions, attitudes, and motivations.
  • Possibility of bias: The collection and interpretation of quantitative data can be influenced by biases, such as sampling bias, measurement bias, or researcher bias.
  • Simplification of complex phenomena: Quantitative data may oversimplify complex phenomena by reducing them to numerical measurements and statistical analyses.
  • Lack of flexibility: Quantitative data collection methods may not allow for changes or adaptations in the research process, which can limit the ability to respond to unexpected findings or new insights.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Primary Data

Primary Data – Types, Methods and Examples

Qualitative Data

Qualitative Data – Types, Methods and Examples

Research Data

Research Data – Types Methods and Examples

Secondary Data

Secondary Data – Types, Methods and Examples

Research Information

Information in Research – Types and Examples

APA Acredited Statistics Training

Quantitative Research: Examples of Research Questions and Solutions

Are you ready to embark on a journey into the world of quantitative research? Whether you’re a seasoned researcher or just beginning your academic journey, understanding how to formulate effective research questions is essential for conducting meaningful studies. In this blog post, we’ll explore examples of quantitative research questions across various disciplines and discuss how StatsCamp.org courses can provide the tools and support you need to overcome any challenges you may encounter along the way.

Understanding Quantitative Research Questions

Quantitative research involves collecting and analyzing numerical data to answer research questions and test hypotheses. These questions typically seek to understand the relationships between variables, predict outcomes, or compare groups. Let’s explore some examples of quantitative research questions across different fields:

Examples of quantitative research questions

  • What is the relationship between class size and student academic performance?
  • Does the use of technology in the classroom improve learning outcomes?
  • How does parental involvement affect student achievement?
  • What is the effect of a new drug treatment on reducing blood pressure?
  • Is there a correlation between physical activity levels and the risk of cardiovascular disease?
  • How does socioeconomic status influence access to healthcare services?
  • What factors influence consumer purchasing behavior?
  • Is there a relationship between advertising expenditure and sales revenue?
  • How do demographic variables affect brand loyalty?

Stats Camp: Your Solution to Mastering Quantitative Research Methodologies

At StatsCamp.org, we understand that navigating the complexities of quantitative research can be daunting. That’s why we offer a range of courses designed to equip you with the knowledge and skills you need to excel in your research endeavors. Whether you’re interested in learning about regression analysis, experimental design, or structural equation modeling, our experienced instructors are here to guide you every step of the way.

Bringing Your Own Data

One of the unique features of StatsCamp.org is the opportunity to bring your own data to the learning process. Our instructors provide personalized guidance and support to help you analyze your data effectively and overcome any roadblocks you may encounter. Whether you’re struggling with data cleaning, model specification, or interpretation of results, our team is here to help you succeed.

Courses Offered at StatsCamp.org

  • Latent Profile Analysis Course : Learn how to identify subgroups, or profiles, within a heterogeneous population based on patterns of responses to multiple observed variables.
  • Bayesian Statistics Course : A comprehensive introduction to Bayesian data analysis, a powerful statistical approach for inference and decision-making. Through a series of engaging lectures and hands-on exercises, participants will learn how to apply Bayesian methods to a wide range of research questions and data types.
  • Structural Equation Modeling (SEM) Course : Dive into advanced statistical techniques for modeling complex relationships among variables.
  • Multilevel Modeling Course : A in-depth exploration of this advanced statistical technique, designed to analyze data with nested structures or hierarchies. Whether you’re studying individuals within groups, schools within districts, or any other nested data structure, multilevel modeling provides the tools to account for the dependencies inherent in such data.

As you embark on your journey into quantitative research, remember that StatsCamp.org is here to support you every step of the way. Whether you’re formulating research questions, analyzing data, or interpreting results, our courses provide the knowledge and expertise you need to succeed. Join us today and unlock the power of quantitative research!

Follow Us On Social! Facebook | Instagram | X

Stats Camp Statistical Methods Training

933 San Mateo Blvd NE #500, Albuquerque, NM 87108

4414 82 nd Street #212-121 Lubbock, TX 79424

Monday – Friday: 9:00 AM – 5:00 PM

© Copyright 2003 - 2024 | All Rights Reserved Stats Camp Foundation 501(c)(3) Non-Profit Organization.

Logo for Boise State Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

3 Gathering and Analyzing Quantitative Data

Although the goal of any research study is to gather information to analyze, this process can be a little daunting. Hopefully, you’ve taken the time to plan your approach so that you have a clear plan for the type of information you’ll be gathering and the process by which you will assign meaning and glean an understanding about what you’ve collected. As was the case with designing your approach to your study, a systematic method by which you plan the analysis of your data will make your life a whole lot easier. This chapter will provide a basic overview of how to gather data and begin the analysis of those data with an overview of quantitative statistical approaches.

Chapter 3: Learning Objectives

As you work to understand how best to approach gathering and analyzing quantitative data you will:

  • Describe the methodology of developing measurement instruments to gather and quantify data
  • Discuss the factors that influence the coding process
  • Describe how relationships between dependent and independent variables influence selection of statistical approach
  • Compare questions of difference, association, and description
  • Identify both basic and complex statistical approaches specific to a research question

Basic Approaches to Gathering and Analyzing Quantitative Data

Developing or selecting measurement instruments.

There are several methods by which data can be gathered. These methods will be directed by the approach you’ve taken as well as the question you’re investigating. Methods by which data may be gathered include, but are not limited to:

  • Case or patient specific information
  • Questionnaires or surveys
  • Structured interviews
  • Observations
  • Standardized inventories

The method by which you will gather data is hugely important to the validity of your results. Ideally, a researcher would utilize established measurement tools which have been validated through consistent study. However, this is not always feasible. When you cannot utilize a validated instrument (e.g. a common questionnaire or scale) to measure variables in your specific sample, the instrument you either revise or develop should at least be pilot tested. Pilot testing is a procedure by which measurement tools or instruments are implemented on a small scale to evaluate the feasibility and identify adverse events in design prior to implementing the tool in a larger study.

Collecting Data

Again, the type and amount of data will depend on the approach you’ve selected. Regardless of this, however, all data will need to be checked to ensure that it is ‘clean’. This means removing duplicated responses or entries or other erroneous or inconsistent data that may impact your ability to analyze. Note: You should never change or alter data collected. Rather, if there are inconsistencies in how you expected the data to be collected, you must decide how to deal with those issues before moving forward.

Dealing with Data Collection Issues

You have asked respondents how well the training you provided met the objectives outlined at the beginning of the course using a likert scale (1=strongly disagree; 5= strongly agree). You have several respondents who encircled 4 and 5. You now have to decide what to do with this data. You have a few options:

  • Create a new category of scores using the average of 4+5 (9/2=4.5)
  • You can exclude all respondents who did this

Note: When designing questionnaires or surveys, it is essential to ensure that the questions are clear and concise by utilizing directive language such as, “Select the option most appropriate…”, or “Which ONE of the following”.

Data must then be transferred into a format where it can be sorted and analyzed. The most common approaches to this is to either input or export data to software such as Microsoft Excel (TM) or specialized statistical software such as Statistical Packages for the Social Sciences (SPSS) (TM) .

Data may be entered either manually or electronically imported to analysis software:

Example dataset in Microsoft Excel(TM) outlining data collected about patient diagnosis and variables including location, mortality, incidence of ventilator associated pneumonia, and tidal volume delivered following a diagnosis of ARDS

Coding may be thought of as the process of translating the information you’ve gathered such that variables can ‘talk’ to one another through analysis. This is done by numbers to the attributes, or layers, within a variable. There are a few rules governing how this is done:

  • Each coded level within a variable must be mutually exclusive: Only one value can be used to code each layer within a variable

Mutually Exclusive Coding

In our dataset example, patients may only be in one location, so you can code the each layer exclusively:

  • BDT-MICU (Coded as ‘1’)
  • BDT-SICU (Coded as ‘2’)
  • BMCMH-ICU (Coded as ‘3’)

Similarly, each diagnosis may be coded independently:

  • Sepsis (Coded as ‘1’)
  • Trauma (Coded as ‘2’)
  • Pneumonia (Coded as ‘3’)
  • Post-Op (Coded as ‘4’)

Addition of coding columns in dataset to designate mutually exclusive coding within a variable. Location and diagnosis can be coded exclusively because patients can only be in one location at one time and in this case, only have one diagnosis. Locations are coded as either 1, 2, or 3 and diagnoses as either 1, 2, 3, or 4.

There are instances wherein more than one response is indicated or where  there may be a designation within each variable. In these cases, each designation would need to have a separate code (e.g. ‘yes’/’no’). In our example, patients either have ventilator associated pneumonia (VAP), or they did not. Similarly, patients either died, or did not.  You will need to code each layer to indicate whether it was experienced:

  • VAP (yes= ‘1’, no= ‘0’)
  • Death (yes= ‘1’, no= ‘0’)

For those variables that have multiple layers and need to be designated as either occurring (e.g. 'yes') or not occurring (e.g. 'no'). In this example, mortality either occurs and is coded as 1, or does not and is coded as 0. Similarly, VAP either occurs and is coded as 1, or does not and is coded as 0.

2. For each variable entered, there must be a code assigned: Numeric codes need to be applied to all data entries, except for missing responses. In the case of missing data, leave the cell blank. Leaving the cell blank ensures that the item will be counted as ‘missing’ rather than associated with a different code. Depending on the software being used, designating missing data as ‘N/A’ may result in errors during analysis.

3. Coding needs to be consistent: As you make decisions about how to proceed with your data, it is imperative that your decisions are consistent across the entire data set. For example, if you decide that you will be excluding a participant with missing data, you must exclude all missing data.

4. Data relating to specific cases or responses must be organized: Each variable relating to a participant must be organized in a way which relates to that participant. For our example above, patients are indicated in column ‘A’. Subsequent columns are variables which relate to that patient; however, each piece of data relating to the specific patient is indicated in the row associated with that specific patient. This is important to ensure that data is correctly attributed during analyses.

5.  Variables need to be labeled appropriately: It’s common to need to abbreviate the names of variables. Do this in a way which helps you remain organized. If you want to keep the data one one sheet, you can simply add a coded column next to the original variable. Or, you can begin an entirely new spreadsheet of coded variables. Regardless of ;approach, you’ll need to keep a record of how you’ve changed variable names and assigned codes. Creating a codebook will help you recall which codes were assigned to which attributes so that you can correctly interpret analyses.

Creating a Codebook

Creating a codebook is imperative to ensuring you can correctly interpret the analyses you perform on the data

Example of codebook created in Microsoft Excel (TM) by adding a separate tab to your data file which clearly indicates how codes were assigned to your variables. This example provides a summary of the codes assigned in the example dataset

Selecting the Appropriate Statistical Method

In chapter 2, we discussed three types of general statistical approaches:

  • Experimental: Has an active independent variable. The purpose of the study is to manipulate the independent variable to evaluate the impact of that variable on the dependent variable; may experimental (randomized sampling) or quasi-experimental (sample not randomized)
  • Non-Experimental: Has an attribute independent variable rather than an active independent variable. The purpose of the study is to explore relationships among variables. Survey and observational research fit into this category.
  • Descriptive: Does not have an independent variable. The purpose of descriptive research is to describe a selected sample rather than make inferences about that sample to the population.

We also discussed five types of specific approaches:

  • Randomized experimental
  • Quasi-experimental
  • Comparative
  • Associational/Correlational
  •  Descriptive

If you recall, we underscored that the type of question central to your work guides the selection of your research approach. Similarly, the type of question you’re asking will help to guide your selection of appropriate statistical approaches to analyze the data you’ve collected. There are three main types of questions and it’s important to note that a research project may incorporate several different statistical approaches, depending on the type of question(s) asked.

Adding to the chart introduced in chapter two, information relating to the purpose of the research question, we can identify the next step in identifying the most appropriate statistical approach.

A continuation of the flowchart introduced in chapter two illustrating how to incorporate the type of question (difference, associational, or descriptive) that is being asked. Questions regarding differences should pursue an analysis using difference inferential statistics. Questions seeking to relate variables should be pursued using associational inferential statistics and questions that involve the description of a sample only should be quantified using descriptive statistics such as frequencies, measures of central tendency and variance.

Descriptive questions

Descriptive questions seek to describe a specific sample. Descriptive statistics include measures of central tendency and variability.

Examples of Descriptive Statistics

  • This is a description of the number of participants who fit into any one attribute or variable. This number may include the percentage of the sample that this number represents

Example of a frequency table representing a sample of the dataset above describing the frequency of diagnoses as both numbers and percentages

  • Mean= Average (sum of the measurements divided by the number of entries) of all numerical data included for a specific variable

Example of mean length of stay as calculated in excel. This is completed by first selecting a cell, then indicating that you'd like to apply the AVERAGE statistic. Then highlight the range of data to be included in the function and press enter.

  • Median= The middle number when numeric data are arranged in either ascending or descending order

Select the appropriate statistical function for MEDIAN, select the range of data to be included

  • Mode: The measurement that occurs most frequently in a set of data

Selecting the function MODE to identify the mode value of the data set and selecting the range to be included.

  • Standard deviation is the most common when the data is normally distributed

Delineation of the standard deviation for a data set is done by selecting a cell, indicating the statistical function from the menu, and pressing enter. The standard deviation of the scores included in this sample is 2.86

Questions of difference

Answers to these questions center on the comparison of groups and the difference between those groups. Randomized experimental, quasi-experimental, and comparative approaches support questions of difference and therefore, use similar statistical approaches. Questions of difference utilize difference inferential statistics because the goal is to compare groups’ average scores on a dependent variable.

The selection of either basic or complex difference statistics will depend on how many independent and/or independent variables you are comparing:

One dependent and/or independent variable

As we’ve discussed, understanding the relationships between or among your dependent and independent variable(s) is extremely important. If you identify only one dependent and/or independent variable, Gliner, Morgan and Leech (2017) indicate that there are a few considerations you’ll need to investigate:

  • Independent t-test : Used to compare means of independent samples or groups with one independent variable with two categories.
  • Paired t-test : Used to compare means of repeated measures within the same group with one independent variable with two categories.
  • One way ANOVA : Used to compare means of independent samples or groups with one independent variable that has two or more categories.
  • Repeated Measures ANOVA : Used to compare means of repeated measures or related samples with one independent variable that has two or more categories.
  • Mann-Whitney can be used to compare medians or ranks of groups with one independent variable that has two categories.
  • Wilcoxon or Sign test can be used to compare medians or ranks within groups which have one independent variable with two categories
  • Kruskal-Wallis can be used to compare medians or ranks of independent samples with one independent variable but that has two or more categories.
  • Friedman test can be used to compare medians or ranks for repeated measures or related samples with one independent variable that has two or more categories.
  • Chi Square or Fisher’s exact test can be used to compare counts within groups which have one independent variable with two categories. Chi square is a nonparametric test (used when sample is NOT normally distributed)
  • Mcnemar can be used to compare counts within groups which have one independent variable with two categories.
  • Chi Square can also be used to compare counts of independent samples with one independent variable but with that has two or more categories.
  • Cochran Q Test can be used to compare counts for repeated measures or related samples with one independent variable that has two or more categories.

More than one independent and/or dependent variable

The inclusion of more than one independent and/or dependent variable will require the use of fairly complex statistical tests such as:

  • Factorial ANOVA can be used to measure two or more independent variables between groups when you have one dependent variable; assuming normal distribution.
  • Factorial ANOVA with repeated measures can be used to explore means of groups that are related, have one dependent variable, and two or more independent variables
  • Log linear should only be used with a dependent variable is nominal and you are looking at differences between groups with more than two independent variables.
  • MANOVA can be used in when looking at differences between groups with several dependent variables and two or more independent variables.
  • MANOVA with repeated measures can be used in when looking at differences within a group and has several dependent variables as well as two or more independent variables.

Questions of association

Answers to these questions seek to identify whether there is an association or correlation between at least two variables. Associational inferential statistics can also be used to help predict associations between variables.

The selection of either basic or complex difference statistics will depend on how many independent variables are included in your work (Gliner, Morgan, & Leech, 2017):

Only one independent variable

  • Pearson r or Bivariate regression to investigate the relationship between two variables for the same subject
  • Spearman (Rho) or Kendall’s Tau can be used to explore the relationship between the ranks of two variables for the same subject
  • Phi or Cramer's V can be used to identify relationships between the counts of two variables for the same subject.

Several independent variables

One continuous dependent variable?

  • Multiple Regression : Used to predict the value of a variable based on the value of two or more other variables

One dichotomous dependent variable?

  • Discriminant analysis : Use with normally distributed independent variables
  • Logistic regression : Use when some independent variables are normal and some dichotomous or when ALL independent variables are dichotomous

Making it as easy as possible:

Although there are several factors that influence the selection of a statistical test, there are general questions you can ask to help guide your decision. We’ve covered several of those steps throughout this chapter; however, the figure below, adapted from Salkind and Frey (2020), can be thought of as a quick reference:

Flowchart summarizing how to approach general statistical selection. This flowchart is not all-inclusive; but rather guides the user to answer the major questions which will determine statistical approach.

Additional how-to:

Now that you understand the basic concepts of choosing a statistical approach, you will be able to move forward. Although there are several conditions specific to your work which will impact your choices, understanding the general approach and considerations is the focus of this text. Additional information about which statistical tests are most appropriate for your specific design, as well as information about how to perform and interpret specific statistics can be found here: Choosing the correct statistical test

Key Takeaways

  • Data must be collected systematically and prepared for analysis
  • Mutually exclusive
  • Numeric and applied to each entry
  • The statistical approach you select will be guided by the study approach you selected and the question you’re asking
  • Questions can either be of difference, association, or descriptive
  • There are both basic and complex statistical approaches for both questions of difference and association
  • You must understand the relationship between your dependent and independent variable(s) to identify the most appropriate statistical test
  • The selection of statistical approaches is not ‘one-size-fits all’ and requires specific attention to be paid to the variables specific to the work

Bhattacherjee, A. (2012). Social science research: Principles, methods, and practices. https://open.umn.edu/opentextbooks/textbooks/social-science-research-principles-methods-and-practices

Gliner, J.A., Morgan, G.A., & Leech, N.L. (2017). Research methods in applied settings: An integrated approach to design and analysis . Routledge

Salkind, N.J. & Frey, B.B. (2020). Statistics for people who think they hate statistics . Sage Publications

An initial study performed prior to implementing a large scale study to evaluate the feasibility of the approach on a larger scale

Compares means of at least two different samples or groups with one independent variables with two categories

Compare the means of the same group with two different data points (e.g. pre and post test scores).

Compares the means of different samples with one independent variable which has two or more categories.

Compares means of related or the same group with one independent variable that has two or more categories

Compares medians or ranks within groups which have one independent variable with two categories

Compares medians within a group that has one independent variable with two categories

Compares medians of different samples with one independent variable with two or more categories

Compares counts within groups with have one independent variable with two categories

Can be used when looking at differences either within or between groups with several dependent variables and two or more independent variables

Evaluates the relationship between two variables for the same subject

Explores relationship between ranks of two variables on the same subject

Identifies relationships between the counts of two variables with for the same subject

Used to predict the value of a variable based on the value of two or more other variables

Used to classify observations into non-overlapping groups, based on scores on one or more quantitative predictor variables

Uses a logistic function to model a binary dependent variable

Practical Research: A Basic Guide to Planning, Doing, and Writing Copyright © by megankoster. All Rights Reserved.

Share This Book

Banner Image

Quantitative and Qualitative Research

  • I NEED TO . . .

What is Quantitative Research?

  • What is Qualitative Research?
  • Quantitative vs Qualitative
  • Step 1: Accessing CINAHL
  • Step 2: Create a Keyword Search
  • Step 3: Create a Subject Heading Search
  • Step 4: Repeat Steps 1-3 for Second Concept
  • Step 5: Repeat Steps 1-3 for Quantitative Terms
  • Step 6: Combining All Searches
  • Step 7: Adding Limiters
  • Step 8: Save Your Search!
  • What Kind of Article is This?
  • More Research Help This link opens in a new window

Quantitative methodology is the dominant research framework in the social sciences. It refers to a set of strategies, techniques and assumptions used to study psychological, social and economic processes through the exploration of numeric patterns . Quantitative research gathers a range of numeric data. Some of the numeric data is intrinsically quantitative (e.g. personal income), while in other cases the numeric structure is  imposed (e.g. ‘On a scale from 1 to 10, how depressed did you feel last week?’). The collection of quantitative information allows researchers to conduct simple to extremely sophisticated statistical analyses that aggregate the data (e.g. averages, percentages), show relationships among the data (e.g. ‘Students with lower grade point averages tend to score lower on a depression scale’) or compare across aggregated data (e.g. the USA has a higher gross domestic product than Spain). Quantitative research includes methodologies such as questionnaires, structured observations or experiments and stands in contrast to qualitative research. Qualitative research involves the collection and analysis of narratives and/or open-ended observations through methodologies such as interviews, focus groups or ethnographies.

Coghlan, D., Brydon-Miller, M. (2014).  The SAGE encyclopedia of action research  (Vols. 1-2). London, : SAGE Publications Ltd doi: 10.4135/9781446294406

What is the purpose of quantitative research?

The purpose of quantitative research is to generate knowledge and create understanding about the social world. Quantitative research is used by social scientists, including communication researchers, to observe phenomena or occurrences affecting individuals. Social scientists are concerned with the study of people. Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population.

Allen, M. (2017).  The SAGE encyclopedia of communication research methods  (Vols. 1-4). Thousand Oaks, CA: SAGE Publications, Inc doi: 10.4135/9781483381411

How do I know if the study is a quantitative design?  What type of quantitative study is it?

Quantitative Research Designs: Descriptive non-experimental, Quasi-experimental or Experimental?

Studies do not always explicitly state what kind of research design is being used.  You will need to know how to decipher which design type is used.  The following video will help you determine the quantitative design type.

  • << Previous: I NEED TO . . .
  • Next: What is Qualitative Research? >>
  • Last Updated: May 13, 2024 12:01 PM
  • URL: https://libguides.uta.edu/quantitative_and_qualitative_research

University of Texas Arlington Libraries 702 Planetarium Place · Arlington, TX 76019 · 817-272-3000

  • Internet Privacy
  • Accessibility
  • Problems with a guide? Contact Us.

Root out friction in every digital experience, super-charge conversion rates, and optimize digital self-service

Uncover insights from any interaction, deliver AI-powered agent coaching, and reduce cost to serve

Increase revenue and loyalty with real-time insights and recommendations delivered to teams on the ground

Know how your people feel and empower managers to improve employee engagement, productivity, and retention

Take action in the moments that matter most along the employee journey and drive bottom line growth

Whatever they’re are saying, wherever they’re saying it, know exactly what’s going on with your people

Get faster, richer insights with qual and quant tools that make powerful market research available to everyone

Run concept tests, pricing studies, prototyping + more with fast, powerful studies designed by UX research experts

Track your brand performance 24/7 and act quickly to respond to opportunities and challenges in your market

Explore the platform powering Experience Management

  • Free Account
  • For Digital
  • For Customer Care
  • For Human Resources
  • For Researchers
  • Financial Services
  • All Industries

Popular Use Cases

  • Customer Experience
  • Employee Experience
  • Net Promoter Score
  • Voice of Customer
  • Customer Success Hub
  • Product Documentation
  • Training & Certification
  • XM Institute
  • Popular Resources
  • Customer Stories
  • Artificial Intelligence

Market Research

  • Partnerships
  • Marketplace

The annual gathering of the experience leaders at the world’s iconic brands building breakthrough business results, live in Salt Lake City.

  • English/AU & NZ
  • Español/Europa
  • Español/América Latina
  • Português Brasileiro
  • REQUEST DEMO
  • Experience Management
  • Qualitative Vs Quantitative Research

Try Qualtrics for free

Qualitative vs quantitative research.

13 min read You’ll use both quantitative and qualitative research methods to gather data in your research projects. So what do qualitative and quantitative mean exactly, and how can you best use them to gain the most accurate insights?

What is qualitative research?

Qualitative research is all about language, expression, body language and other forms of human communication. That covers words, meanings and understanding. Qualitative research is used to describe WHY. Why do people feel the way they do, why do they act in a certain way, what opinions do they have and what motivates them?

Qualitative data is used to understand phenomena – things that happen, situations that exist, and most importantly the meanings associated with them. It can help add a ‘why’ element to factual, objective data.

Qualitative research gives breadth, depth and context to questions, although its linguistic subtleties and subjectivity can mean that results are trickier to analyze than quantitative data.

This qualitative data is called unstructured data by researchers. This is because it has not traditionally had the type of structure that can be processed by computers, until today. It has, until recently at least, been exclusively accessible to human brains. And although our brains are highly sophisticated, they have limited processing power. What can help analyze this structured data to assist computers and the human brain?

Free eBook: Quantitative and qualitative research design

What is quantitative research?

Quantitative data refers to numerical information. Quantitative research gathers information that can be counted, measured, or rated numerically – AKA quantitative data. Scores, measurements, financial records, temperature charts and receipts or ledgers are all examples of quantitative data.

Quantitative data is often structured data, because it follows a consistent, predictable pattern that computers and calculating devices are able to process with ease. Humans can process it too, although we are now able to pass it over to machines to process on our behalf. This is partly what has made quantitative data so important historically, and why quantitative data – sometimes called ‘hard data’ – has dominated over qualitative data in fields like business, finance and economics.

It’s easy to ‘crunch the numbers’ of quantitative data and produce results visually in graphs, tables and on data analysis dashboards. Thanks to today’s abundance and accessibility of processing power, combined with our ability to store huge amounts of information, quantitative data has fuelled the Big Data phenomenon, putting quantitative methods and vast amounts of quantitative data at our fingertips.

As we’ve indicated, quantitative and qualitative data are entirely different and mutually exclusive categories. Here are a few of the differences between them.

1. Data collection

Data collection methods for quantitative data and qualitative data vary, but there are also some places where they overlap.

2. Data analysis

Quantitative data suits statistical analysis techniques like linear regression, T-tests and ANOVA. These are quite easy to automate, and large quantities of quantitative data can be analyzed quickly.

Analyzing qualitative data needs a higher degree of human judgement, since unlike quantitative data, non numerical data of a subjective nature has certain characteristics that inferential statistics can’t perceive. Working at a human scale has historically meant that qualitative data is lower in volume – although it can be richer in insights.

3. Strengths and weaknesses

When weighing up qualitative vs quantitative research, it’s largely a matter of choosing the method appropriate to your research goals. If you’re in the position of having to choose one method over another, it’s worth knowing the strengths and limitations of each, so that you know what to expect from your results.

Qualitative vs quantitative – the role of research questions

How do you know whether you need qualitative or quantitative research techniques? By finding out what kind of data you’re going to be collecting.

You’ll do this as you develop your research question, one of the first steps to any research program. It’s a single sentence that sums up the purpose of your research, who you’re going to gather data from, and what results you’re looking for.

As you formulate your question, you’ll get a sense of the sort of answer you’re working towards, and whether it will be expressed in numerical data or qualitative data.

For example, your research question might be “How often does a poor customer experience cause shoppers to abandon their shopping carts?” – this is a quantitative topic, as you’re looking for numerical values.

Or it might be “What is the emotional impact of a poor customer experience on regular customers in our supermarket?” This is a qualitative topic, concerned with thoughts and feelings and answered in personal, subjective ways that vary between respondents.

Here’s how to evaluate your research question and decide which method to use:

  • Qualitative research:

Use this if your goal is to understand something – experiences, problems, ideas.

For example, you may want to understand how poor experiences in a supermarket make your customers feel. You might carry out this research through focus groups or in depth interviews (IDI’s). For a larger scale research method you could start  by surveying supermarket loyalty card holders, asking open text questions, like “How would you describe your experience today?” or “What could be improved about your experience?” This research will provide context and understanding that quantitative research will not.

  • Quantitative research:

Use this if your goal is to test or confirm a hypothesis, or to study cause and effect relationships. For example, you want to find out what percentage of your returning customers are happy with the customer experience at your store. You can collect data to answer this via a survey.

For example, you could recruit 1,000 loyalty card holders as participants, asking them, “On a scale of 1-5, how happy are you with our store?” You can then make simple mathematical calculations to find the average score. The larger sample size will help make sure your results aren’t skewed by anomalous data or outliers, so you can draw conclusions with confidence.

Qualitative and quantitative research combined?

Do you always have to choose between qualitative or quantitative data?

Qualitative vs quantitative cluster chart

In some cases you can get the best of both worlds by combining both quantitative and qualitative data.You could use pre quantitative data to understand the landscape of your research. Here you can gain insights around a topic and propose a hypothesis. Then adopt a quantitative research method to test it out. Here you’ll discover where to focus your survey appropriately or to pre-test your survey, to ensure your questions are understood as you intended. Finally, using a round of qualitative research methods to bring your insights and story to life. This mixed methods approach is becoming increasingly popular with businesses who are looking for in depth insights.

For example, in the supermarket scenario we’ve described, you could start out with a qualitative data collection phase where you use focus groups and conduct interviews with customers. You might find suggestions in your qualitative data that customers would like to be able to buy children’s clothes in the store.

In response, the supermarket might pilot a children’s clothing range. Targeted quantitative research could then reveal whether or not those stores selling children’s clothes achieve higher customer satisfaction scores and a rise in profits for clothing.

Together, qualitative and quantitative data, combined with statistical analysis, have provided important insights about customer experience, and have proven the effectiveness of a solution to business problems.

Qualitative vs quantitative question types

As we’ve noted, surveys are one of the data collection methods suitable for both quantitative and qualitative research. Depending on the types of questions you choose to include, you can generate qualitative and quantitative data. Here we have summarized some of the survey question types you can use for each purpose.

Qualitative data survey questions

There are fewer survey question options for collecting qualitative data, since they all essentially do the same thing – provide the respondent with space to enter information in their own words. Qualitative research is not typically done with surveys alone, and researchers may use a mix of qualitative methods. As well as a survey, they might conduct in depth interviews, use observational studies or hold focus groups.

Open text ‘Other’ box (can be used with multiple choice questions)

Other text field

Text box (space for short written answer)

What is your favourite item on our drinks menu

Essay box (space for longer, more detailed written answers)

Tell us about your last visit to the café

Quantitative data survey questions

These questions will yield quantitative data – i.e. a numerical value.

Net Promoter Score (NPS)

On a scale of 1-10, how likely are you to recommend our café to other people?

Likert Scale

How would you rate the service in our café? Very dissatisfied to Very satisfied

Radio buttons (respondents choose just one option)

Which drink do you buy most often? Coffee, Tea, Hot Chocolate, Cola, Squash

Check boxes (respondents can choose multiple options)

On which days do you visit the cafe? Mon-Saturday

Sliding scale

Using the sliding scale, how much do you agree that we offer excellent service?

Star rating

Please rate the following aspects of our café: Service, Quality of food, Seating comfort, Location

Analyzing data (quantitative or qualitative) using technology

We are currently at an exciting point in the history of qualitative analysis. Digital analysis and other methods that were formerly exclusively used for quantitative data are now used for interpreting non numerical data too.

A rtificial intelligence programs can now be used to analyze open text, and turn qualitative data into structured and semi structured quantitative data that relates to qualitative data topics such as emotion and sentiment, opinion and experience.

Research that in the past would have meant qualitative researchers conducting time-intensive studies using analysis methods like thematic analysis can now be done in a very short space of time. This not only saves time and money, but opens up qualitative data analysis to a much wider range of businesses and organizations.

The most advanced tools can even be used for real-time statistical analysis, forecasting and prediction, making them a powerful asset for businesses.

Qualitative or quantitative – which is better for data analysis?

Historically, quantitative data was much easier to analyze than qualitative data. But as we’ve seen, modern technology is helping qualitative analysis to catch up, making it quicker and less labor-intensive than before.

That means the choice between qualitative and quantitative studies no longer needs to factor in ease of analysis, provided you have the right tools at your disposal. With an integrated platform like Qualtrics, which incorporates data collection, data cleaning, data coding and a powerful suite of analysis tools for both qualitative and quantitative data, you have a wide range of options at your fingertips.

Related resources

Qualitative research questions 11 min read, qualitative research design 12 min read, primary vs secondary research 14 min read, business research methods 12 min read, qualitative research interviews 11 min read, market intelligence 10 min read, marketing insights 11 min read, request demo.

Ready to learn more about Qualtrics?

research question gathers quantitative data

Yearly paid plans are up to 65% off for the spring sale. Limited time only! 🌸

  • Form Builder
  • Survey Maker
  • AI Form Generator
  • AI Survey Tool
  • AI Quiz Maker
  • Store Builder
  • WordPress Plugin

research question gathers quantitative data

HubSpot CRM

research question gathers quantitative data

Google Sheets

research question gathers quantitative data

Google Analytics

research question gathers quantitative data

Microsoft Excel

research question gathers quantitative data

  • Popular Forms
  • Job Application Form Template
  • Rental Application Form Template
  • Hotel Accommodation Form Template
  • Online Registration Form Template
  • Employment Application Form Template
  • Application Forms
  • Booking Forms
  • Consent Forms
  • Contact Forms
  • Donation Forms
  • Customer Satisfaction Surveys
  • Employee Satisfaction Surveys
  • Evaluation Surveys
  • Feedback Surveys
  • Market Research Surveys
  • Personality Quiz Template
  • Geography Quiz Template
  • Math Quiz Template
  • Science Quiz Template
  • Vocabulary Quiz Template

Try without registration Quick Start

Read engaging stories, how-to guides, learn about forms.app features.

Inspirational ready-to-use templates for getting started fast and powerful.

Spot-on guides on how to use forms.app and make the most out of it.

research question gathers quantitative data

See the technical measures we take and learn how we keep your data safe and secure.

  • Integrations
  • Help Center
  • Sign In Sign Up Free
  • Quantitative research questions: Types, tips & examples

Quantitative research questions: Types, tips & examples

Defne Çobanoğlu

Deciding on your next survey’s goal gives you a starting point as to what kind of questions you will use on your survey. And if you want to do concrete market research, give a data summary to your supervisors, or make informed decisions based on the data you collect, you should use quantitative survey questions.

In this article, we have gathered more than 100 survey question examples about gender, marketing, stress, psychology, academic performance, social media, and mental health to get you started. You can add these questions to your next research survey, or you can use them to get inspiration to write many more. Let us get started!

  • What is a quantitative research question?

The quantitative research question is a type of question where the person asking the question wants to obtain a numeric answer that will provide them with a tangible answer. It involves collecting objective, measurable data about a particular subject or topic, often through surveys, experiments, or other structured methods.

The definition of a quantitative research question

The definition of a quantitative research question

The data collected is typically numerical in nature, such as ratings, counts, measurements, or percentages . So, an answer to this type of question can be confidentially used when creating a quantitative analysis.

Quantitative vs. qualitative research questions

The main difference between quantitative and qualitative questions is what you want to achieve from the question and methods of data collection. Qualitative research focuses on exploring and understanding complex phenomena, experiences, and perspectives . And qualitative research questions aim to gather detailed descriptions and subjective experiences to gain insights.

On the other hand, quantitative research aims to answer questions that involve measuring and quantifying variables, examining relationships, and making statistical deductions. It mainly relies on structured data collection methods, such as surveys, experiments, observations, and existing datasets, in order to collect numerical data .

  • How to write a quantitative research question

If you want to obtain concrete data on a research topic, you should use quantitative research questions. They give you numerical answers such as ratings, measurements, counts, or percentages. That makes it easier to conclude a quantitative analysis. Therefore, use questions that will give you answers like; “three times a week”, “about 11”, “20% of the students”, etc. Here are some question starters to have in mind to give you quantitative research questions ideas:

  • How frequently?
  • What percentage?
  • To what extent?
  • What proportion?
  • On a scale of…

Here are some simple examples:

  • How often do you go to the gym in a week?
  • How much do you spend on groceries?
  • How many phone calls do you make a day?
  • Types of quantitative questions

When you try to get numerical answers, the only option is not the multiple-choice one. You can use different types of quantitative research questions to make the form more interesting, visually appealing, and detailed if you use a smart survey creator, such as forms.app, you can make use of its multiple smart form fields to build your form. Let us see what are some good options to use on your next survey.

Star rating:

It is a good way to ask people their opinions, and the survey takers can rate criteria based on different categories. Each star represents an equivalent numeric value, and they typically range from 1 to 5. Even if they are clicking on stars, you get numeric data in the end.

A star rating question example

A star rating question example

Opinion scale:

It is basically the same thing with the stars but instead, the survey takers rate criteria as numbers from 1-5 or 1-10. It is better to keep in mind the best way for this is using a 1-5 scale, with 5 being the best and 1 being the worst rating.

An opinion scale question example

An opinion scale question example

Picture selection:

Having people choose their opinions in a picture selection form is a good way to go. It is a good option to use when you are creating a survey for market research and such.

A picture selection question example

A picture selection question example

Multiple-choice:

When you ask people a question such as; “what are the reasons that negatively affect your mental health?” it is better to let them choose multiple reasons rather than a single one. You would not want to limit the target audience by making them choose only one thing on the list.

A multiple-choice question example

A multiple-choice question example

Selection matrix:

In this type of question, you can make multiple sentences, categories, and statements, and survey takers can answer them accordingly. They allow you to get the answers as one question rather than setting up multiple questions.

A selection matrix example

A selection matrix example

  • 100+ Quantitative research questions to ask in your research surveys

In your next survey, you can use any of the questions below, or you can create your own. If you use smart questions focused on a subject or aspect, it will make it easier for you to make an informed analysis at the end. Now, let us start with the first one:

Quantitative research questions about gender

A question example about quantitative research about gender

A question example about quantitative research about gender

Quantitative research questions about gender aim to gather numerical data to quantify and analyze gender-related patterns, differences, and associations. They focus on exploring gender-related issues and investigating gender influences on several aspects of life.

1 - What is the difference in average earnings between male and female employees in a specific industry?

2 - How does gender affect academic achievement in STEM subjects among high school students?

3 - What is the percentage of women in leadership positions in Fortune 500 companies?

4 - What is the impact of gender on access to and utilization of health services?

5 - What is the percentage of female students speaking in a classroom as opposed to male students?

6 - How does gender influence consumer preferences and purchasing behavior in the fashion industry?

7 - What are the gender differences in response to specific marketing strategies for a particular product?

8 - What is the correlation between gender and mental health outcomes in a specific population?

9 - How does gender influence the perception of work-life balance among working professionals?

10 - How often do you feel discriminated against in a work environment because of your gender?

11 - What is the effect of gender on smoking at the ages 14-18?

Quantitative research questions about stress

A question example about quantitative research about stress

A question example about quantitative research about stress

Research questions about stress aim to investigate different aspects of stress, its causes, and its consequences. Researchers can measure stress levels and examine the relationships between stress and other variables. Also, they can analyze patterns and trends associated with stress after collecting appropriate data.

12 - On a scale of 1 to 10, how often do you feel stressed?

13 - What is the prevalence of stress among college students?

14 - How does stress impact academic achievement among high school students?

15 - How does mindfulness meditation training impact stress levels in university students?

16 - What are the primary sources of work-related stress among employees?

17 - What is the relationship between stress levels and job performance among healthcare professionals?

18 - Who are the people in your life that cause you the most stress?

19 - In the last month, how often have you felt that you were unable to control important things in your life?

20 - How does workplace stress influence employee turnover rates in a specific organization?

21 - What is the correlation between stress levels and physical health in young people?

22 - What are the demographic factors (such as age, gender, or income) associated with higher levels of stress?

23 - What is the impact of stress on sleep quality and duration among adults?

24 - What are the stress levels experienced by parents of children with special needs compared to parents of typically developing children?

25 - What is the effectiveness of stress management interventions in reducing stress levels among individuals with chronic illnesses?

26 - What is the impact of daily meditation helping stress levels?

27 - What are the factors contributing to job-related stress among healthcare professionals in a specific specialty?

Quantitative research questions in Psychology

A question example about quantitative research in psychology

A question example about quantitative research in psychology

Quantitative research questions in psychology cover a range of psychological topics, including mental health, personality, behavior, and social dynamics. The aim of these questions is to collect quantitative data to examine relationships, assess the effectiveness of interventions, and identify factors associated with psychological events.

28 - What is the relationship between self-esteem and academic performance in high school students?

29 - How does exposure to violent media affect aggressive behavior in children?

30 - What is the prevalence of depression among college students?

31 - How is parental attachment style associated with the development of anxiety disorders in children?

32 - How many times a month should one use professional therapy?

33 - What are the factors influencing job satisfaction among employees in a specific industry?

34 - What are the predictors of job performance among healthcare professionals?

35 - Generally, at what age do children start getting psychological help?

36 - What is the effect of cognitive-behavioral therapy on reducing symptoms of post-traumatic stress disorder?

37 - How does the classroom environment affect academic motivation and achievement in elementary school students?

38 - What is the effectiveness of a cognitive training program in improving memory function in older adults?

39 - How do exercise frequency and intensity impact symptoms of anxiety and depression in individuals with diagnosed mental health conditions?

40 - What is the correlation between sleep duration and academic performance in college students?

41 - How does parental divorce during childhood impact the development of attachment styles in adulthood?

42 - What is the relationship between self-esteem and job satisfaction among working professionals?

43 - What are the predictors of eating disorder symptoms in adolescent females?

44 - At what age the teenage girls prone to depression?

45 - What is the correlation between young adults and suicide rates?

46 - What is the effect of a specific cognitive training program on improving cognitive functioning in elders?

47 - How does the presence of social support networks impact resilience levels in individuals who have experienced traumatic events?

48 - What are the effects of a specific therapeutic intervention on reducing symptoms of anxiety in individuals with a generalized anxiety disorder?

49 - What is the correlation between social media use and symptoms of depression in young adults?

50 - How does mindfulness meditation training influence stress levels in individuals with high-stress occupations?

51 - How does exposure to violent video games affect aggressive behavior in adolescents?

Quantitative research questions about mental health

A question example about quantitative research about mental health

A question example about quantitative research about mental health

Quantitative research questions about mental health focus on various aspects of mental health, including the prevalence of disorders, risk factors, treatment interventions, and the impact of lifestyle factors. 

52 - How does the frequency of social media use relate to levels of depressive symptoms in adolescents?

53 - What is the correlation between sleep quality and mental health outcomes in adults with diagnosed mental health conditions?

54 - What is the percentage of people diagnosed with anxiety disorder that has a college education?

55 - What kind of activities helps with your mental health?

56 - How many times a week do you spare time for your mental well-being?

57 - What is the effect of a specific psychotherapy intervention on reducing symptoms of depression?

58 - What are the factors determining treatment adherence in patients with schizophrenia?

59 - How do exercise frequency and intensity relate to anxiety levels?

60 - What is the relationship between social support and endurance in individuals with a history of trauma?

61 - How does stigma surrounding mental illness influence help-seeking behavior among college students?

62 - What is the prevalence of anxiety disorders among college students?

Quantitative research questions about social media

A question example about quantitative research about social media

A question example about quantitative research about social media

Quantitative research questions about social media try to explore various aspects of social media, including its impact on psychological well-being, behavior, relationships, and society. They aim to collect quantitative data to analyze relations, examine effects, and measure the influence of social media.

63 - How many times a day do you check your social media accounts?

64 - How much time do you spend on social media every day?

65 - How many social media accounts do you own?

66 - What is the correlation between social media engagement and academic performance in high school students?

67 - What are the most used social media accounts among teenagers?

68 - What is the psychological effect of social media accounts on young people?

69 - What is the relationship between social media use and self-esteem among adolescents?

70 - How does the frequency of social media use relate to levels of loneliness in young adults?

71 - How does exposure to idealized body images on social media impact body dissatisfaction in women?

72 - What are the predictors of problematic social media use among college students?

73 - How does social media use influence political attitudes and behaviors among young adults?

74 - What is the effect of social media advertising on consumer purchasing behavior and brand loyalty?

75 - What is the association between cyberbullying on social media and mental health outcomes among teenagers?

76 - How does social media use affect sleep quality and duration in adults?

77 - How does social media use impact interpersonal relationships and social support among individuals in long-distance relationships?

Quantitative research questions about academic performance

A question example about quantitative research about academic performance

A question example about quantitative research about academic performance

Quantitative research questions about academic performance focus on academic performance, the predictors, and the elements affecting it negatively and positively. They aim to collect quantitative data to figure out the relation between academic performance and the environment of the students and make informed decisions.

78 - What is the correlation between student attendance rates and academic achievement in a specific grade level?

79 - How does parental involvement in education relate to students' academic performance?

80 - What is the impact of classroom size on student academic outcomes?

81 - What are the predictors of academic success among undergraduate students in a specific major?

82 - How many times were you absent during the last semester?

83 - What is the correlation between student engagement in extracurricular activities and their academic performance?

84 - What is the effect of peer tutoring programs on student grades and test scores?

85 - How do student motivation and self-efficacy influence academic achievement in a specific academic setting?

86 - What is the relationship between study habits and academic performance among high school students?

87 - How does the implementation of a specific teaching methodology or instructional approach impact student achievement in a particular subject?

Quantitative research questions about marketing

A question example about quantitative research about marketing

A question example about quantitative research about marketing

Quantitative research questions about marketing explore various aspects of marketing, including advertising effectiveness, consumer behavior, branding, pricing, and customer satisfaction. They involve collecting quantitative data to analyze relationships and assess the impact of marketing strategies. 

88 - What is the correlation between advertising expenditure and sales revenue for a specific product?

89 - As a consumer, how often do you make purchasing decisions based on marketing exposure?

90 - What are the top 5 brands that stand out to you because of ads of their quality?

91 - How does brand loyalty relate to customer satisfaction and repeat purchase behavior?

92 - What is the impact of pricing strategies on consumer purchase intentions and price sensitivity?

93 - When making a purchase, how important is the packaging of the product to you?

94 - What is the effectiveness of different marketing channels (e.g., social media, television, email marketing) in reaching and engaging the target audience?

95 - How does product packaging design influence consumer perception and purchase decisions?

96 - What are the key factors influencing customer loyalty in the retail industry?

97 - What is the relationship between online customer reviews and purchase decisions in e-commerce?

98 - How do brand reputation and perception affect consumer trust and willingness to recommend a product or service?

99 - What are the channels you visit to ensure the quality of the product you will purchase?

100 - How does the personalization of marketing messages impact customer engagement and response rates?

101 - What is the effect of promotional offers (e.g., discounts, coupons) on consumer purchase behavior?

102 - What is the effect of ad placement on popular social media accounts on teenagers?

  • Tips for creating quantitative research questions

When you want to create your survey, you should be professional and collect the data systematically. That will help you have clear results. In order to achieve this: 

  • Use clear and unambiguous language
  • Avoid leading or biased questions 
  • Use different question types 
  • Keep the length of your survey at an appropriate level

After you create your survey in a systematic manner and use a competitive analysis framework to record your findings, you can achieve the concrete results you want. Also, always remember to obtain the necessary ethical approvals and informed consent required for your research study.

  • How to create a quantitative research survey

When you are creating your next survey, you can go old-fashion and write everything down on a piece of paper and try to get people to fill them out. However, there is a much easier option thanks to online survey tools. And a great survey maker you can use is forms.app. It has over 1000 ready-to-use templates, and each of them is as useful. Now, let us go through the steps to creating a quantitative survey using forms.app:

1 - Go to forms.app and log in to your account (or create one for free).

2 - Go to the dropdown menu and click on the templates option .

3 - Choose one of the survey templates and click on the “use template” button and customize it as much as you want by adding question fields and changing the visuals as much as you want.

4 - Or, you can decide on starting from scratch and build everything from the start in a matter of minutes.

5 - Save your changes, and by clicking on the “eye” icon on the upper left side of the page, see the final result.

6 - Copy the unique link and share it with your audience. If you want, you can also embed the survey on the page of your choosing.

  • Key points to take away

Creating a simple survey to collect numerical values to make informed and supported plans is very easy. It can be done with a simple and effective form creator, such as forms.app. It has many functional form fields and is also completely adjustable.

You can easily create your own research survey with the questions we have gathered for you. It should be mentioned that you should keep in mind to have a structured plan to go with. Because only then can you analyze your results effectively and repeat the research if it is needed.

Defne is a content writer at forms.app. She is also a translator specializing in literary translation. Defne loves reading, writing, and translating professionally and as a hobby. Her expertise lies in survey research, research methodologies, content writing, and translation.

  • Form Features
  • Data Collection

Table of Contents

Related posts.

10+ New member survey questions (+ free templates & tips)

10+ New member survey questions (+ free templates & tips)

What is exploratory research: Definition, types & examples

What is exploratory research: Definition, types & examples

Secrets revealed: 4 Awesome tips for creating a vocabulary quiz

Secrets revealed: 4 Awesome tips for creating a vocabulary quiz

forms.app Team

Data Analysis in Quantitative Research

  • Reference work entry
  • First Online: 13 January 2019
  • Cite this reference work entry

research question gathers quantitative data

  • Yong Moon Jung 2  

1831 Accesses

2 Citations

Quantitative data analysis serves as part of an essential process of evidence-making in health and social sciences. It is adopted for any types of research question and design whether it is descriptive, explanatory, or causal. However, compared with qualitative counterpart, quantitative data analysis has less flexibility. Conducting quantitative data analysis requires a prerequisite understanding of the statistical knowledge and skills. It also requires rigor in the choice of appropriate analysis model and the interpretation of the analysis outcomes. Basically, the choice of appropriate analysis techniques is determined by the type of research question and the nature of the data. In addition, different analysis techniques require different assumptions of data. This chapter provides introductory guides for readers to assist them with their informed decision-making in choosing the correct analysis models. To this end, it begins with discussion of the levels of measure: nominal, ordinal, and scale. Some commonly used analysis techniques in univariate, bivariate, and multivariate data analysis are presented for practical examples. Example analysis outcomes are produced by the use of SPSS (Statistical Package for Social Sciences).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Armstrong JS. Significance tests harm progress in forecasting. Int J Forecast. 2007;23(2):321–7.

Article   Google Scholar  

Babbie E. The practice of social research. 14th ed. Belmont: Cengage Learning; 2016.

Google Scholar  

Brockopp DY, Hastings-Tolsma MT. Fundamentals of nursing research. Boston: Jones & Bartlett; 2003.

Creswell JW. Research design: qualitative, quantitative, and mixed methods approaches. Thousand Oaks: Sage; 2014.

Fawcett J. The relationship of theory and research. Philadelphia: F. A. Davis; 1999.

Field A. Discovering statistics using IBM SPSS statistics. London: Sage; 2013.

Grove SK, Gray JR, Burns N. Understanding nursing research: building an evidence-based practice. 6th ed. St. Louis: Elsevier Saunders; 2015.

Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RD. Multivariate data analysis. Upper Saddle River: Pearson Prentice Hall; 2006.

Katz MH. Multivariable analysis: a practical guide for clinicians. Cambridge: Cambridge University Press; 2006.

Book   Google Scholar  

McHugh ML. Scientific inquiry. J Specialists Pediatr Nurs. 2007; 8 (1):35–7. Volume 8, Issue 1, Version of Record online: 22 FEB 2007

Pallant J. SPSS survival manual: a step by step guide to data analysis using IBM SPSS. Sydney: Allen & Unwin; 2016.

Polit DF, Beck CT. Nursing research: principles and methods. Philadelphia: Lippincott Williams & Wilkins; 2004.

Trochim WMK, Donnelly JP. Research methods knowledge base. 3rd ed. Mason: Thomson Custom Publishing; 2007.

Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics. Boston: Pearson Education.

Wells CS, Hin JM. Dealing with assumptions underlying statistical tests. Psychol Sch. 2007;44(5):495–502.

Download references

Author information

Authors and affiliations.

Centre for Business and Social Innovation, University of Technology Sydney, Ultimo, NSW, Australia

Yong Moon Jung

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Yong Moon Jung .

Editor information

Editors and affiliations.

School of Science and Health, Western Sydney University, Penrith, NSW, Australia

Pranee Liamputtong

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry.

Jung, Y.M. (2019). Data Analysis in Quantitative Research. In: Liamputtong, P. (eds) Handbook of Research Methods in Health Social Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-10-5251-4_109

Download citation

DOI : https://doi.org/10.1007/978-981-10-5251-4_109

Published : 13 January 2019

Publisher Name : Springer, Singapore

Print ISBN : 978-981-10-5250-7

Online ISBN : 978-981-10-5251-4

eBook Packages : Social Sciences Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Banner

HPR 073 Framework and Design in Health Care Studies: Apara Spring 2024

  • About Peer Reviewed Sources
  • Find Articles
  • Search Strategies
  • Web Resources
  • Citation: APA 7
  • Qualitative vs. Quantitative Research
  • Evidence Based Practice

Mixed Methods Research

As its name suggests, mixed methods research involves using elements of both quantitative and qualitative research methods. Using mixed methods, a researcher can more fully explore a research question and provide greater insight. 

Need to find quantitative or qualitative research?

The CINAHL and PsycINFO databases both allow for the application of filters that will yield results that are either qualitative or quantitative in nature. 

For detailed information about how to do that in CINAHL  or PsycINFO, visit the Quantitative and Qualitative LibGuide found here.   

What is Qualitative Research?

Quantitative research gathers data that can be measured numerically and analyzed mathematically. Quantitative research attempts to answer research questions through the quantification of data. 

Indicators of quantitative research include:

contains statistical analysis 

large sample size 

objective - little room to argue with the numbers 

types of research: descriptive studies, exploratory studies, experimental studies, explanatory studies, predictive studies, clinical trials 

Qualitative research is based upon data that is gathered by observation. Qualitative research articles will attempt to answer questions that cannot be measured by numbers but rather by perceived meaning. Qualitative research will likely include interviews, case studies, ethnography, or focus groups. 

Indicators of qualitative research include:

interviews or focus groups 

small sample size 

subjective - researchers are often interpreting meaning 

methods used: phenomenology, ethnography, grounded theory, historical method, case study 

Video: Empirical Studies: Qualitative vs. Quantitative

This video from usu libraries walks you through the differences between quantitative and qualitative research methods. (5:51 minutes) creative commons attribution license (reuse allowed)  https://youtu.be/rzcfma1l6ce.

  • << Previous: Citation: APA 7
  • Next: Evidence Based Practice >>
  • Last Updated: Mar 19, 2024 1:21 PM
  • URL: https://libguides.hofstra.edu/HPR073

Hofstra University

This site is compliant with the W3C-WAI Web Content Accessibility Guidelines HOFSTRA UNIVERSITY Hempstead, NY 11549-1000 (516) 463-6600 © 2000-2009 Hofstra University

  • A/B Monadic Test
  • A/B Pre-Roll Test
  • Key Driver Analysis
  • Multiple Implicit
  • Penalty Reward
  • Price Sensitivity
  • Segmentation
  • Single Implicit
  • Category Exploration
  • Competitive Landscape
  • Consumer Segmentation
  • Innovation & Renovation
  • Product Portfolio
  • Marketing Creatives
  • Advertising
  • Shelf Optimization
  • Performance Monitoring
  • Better Brand Health Tracking
  • Ad Tracking
  • Trend Tracking
  • Satisfaction Tracking
  • AI Insights
  • Case Studies

quantilope is the Consumer Intelligence Platform for all end-to-end research needs

What Are Quantitative Survey Questions? Types and Examples

diagonal green and purple lines with black background

Table of contents: 

  • Types of quantitative survey questions - with examples 
  • Quantitative question formats
  • How to write quantitative survey questions 
  • Examples of quantitative survey questions 

Leveraging quantilope for your quantitative survey 

In a quantitative research study brands will gather numeric data for most of their questions through formats like numerical scale questions or ranking questions. However, brands can also include some non-quantitative questions throughout their quantitative study - like open-ended questions, where respondents will type in their own feedback to a question prompt. Even so, open-ended answers can be numerically coded to sift through feedback easily (e.g. anyone who writes in 'Pepsi' in a soda study would be assigned the number '1', to look at Pepsi feedback as a whole).  One of the biggest benefits of using a quantitative research approach is that insights around a research topic can undergo statistical analysis; the same can’t be said for qualitative data like focus group feedback or interviews. Another major difference between quantitative and qualitative research methods is that quantitative surveys require respondents to choose from a limited number of choices in a close-ended question - generating clear, actionable takeaways. However, these distinct quantitative takeaways often pair well with freeform qualitative responses - making quant and qual a great team to use together.  The rest of this article focuses on quantitative research, taking a closer look at quantitative survey question types and question formats/layouts. 

Back to table of contents 

Types of dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139745">quantitative survey questions - with examples 

Quantitative questions come in many forms, each with different benefits depending on dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139784">your dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139740">market research objectives. Below we’ll explore some of these dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139745">quantitative dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139785">survey question dropdown#toggle" data-dropdown-menu-id-param="menu_term_281139785" data-dropdown-placement-param="top" data-term-id="281139785"> types, which are commonly used together in a single survey to keep things interesting for dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents . The style of questioning used during dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139739">quantitative dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139750">data dropdown#toggle" data-dropdown-menu-id-param="menu_term_281139750" data-dropdown-placement-param="top" data-term-id="281139750"> collection is important, as a good mix of the right types of questions will deliver rich data, limit dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondent fatigue, and optimize the dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139757">response rate . dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139742">Questionnaires should be enjoyable - and varying the dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139755">types of dropdown#toggle" data-dropdown-menu-id-param="menu_term_281139755" data-dropdown-placement-param="top" data-term-id="281139755">quantitative research dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139755"> questions used throughout your survey will help achieve that. 

Descriptive survey questions

dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139763">Descriptive research questions (also known as usage and attitude, or, U&A questions) seek a general indication or prediction about how a dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139773">group of people behaves or will behave, how that group is characterized, or how a group thinks.

For example, a business might want to know what portion of adult men shave, and how often they do so. To find this out, they will survey men (the dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139743">target audience ) and ask descriptive questions about their frequency of shaving (e.g. daily, a few times a week, once per week, and so on.) Each of these frequencies get assigned a numerical ‘code’ so that it’s simple to chart and analyze the data later on; daily might be assigned ‘5’, a few times a week might be assigned ‘4’, and so on. That way, brands can create charts using the ‘top two’ and ‘bottom two’ values in a descriptive question to view these metrics side by side.

Another business might want to know how important local transit issues are to residents, so dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139745">quantitative survey questions will allow dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents to indicate the degrees of opinion attached to various transit issues. Perhaps the transit business running this survey would use a sliding numeric scale to see how important a particular issue is.

Comparative survey questions

dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139782">Comparative research questions are concerned with comparing individuals or groups of people based on one or more variables. These questions might be posed when a business wants to find out which segment of its dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139743">target audience might be more profitable, or which types of products might appeal to different sets of consumers.

For example, a business might want to know how the popularity of its chocolate bars is spread out across its entire customer base (i.e. do women prefer a certain flavor? Are children drawn to candy bars by certain packaging attributes? etc.). Questions in this case will be designed to profile and ‘compare’ segments of the market.

Other businesses might be looking to compare coffee consumption among older and younger consumers (i.e. dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139741">demographic segments), the difference in smartphone usage between younger men and women, or how women from different regions differ in their approach to skincare.

Relationship-based survey questions

As the name suggests, relationship-based survey questions are concerned with the relationship between two or more variables within one or more dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139741">demographic groups. This might be a dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139759">causal link between one thing and the other - for example, the consumption of caffeine and dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents ’ reported energy levels throughout the day. In this case, a coffee or energy drink brand might be interested in how energy levels differ between those who drink their caffeinated line of beverages and those who drink decaf/non-caffeinated beverages.

Alternatively, it might be a case of two or more factors co-existing, without there necessarily being a dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139759">causal link - for example, a particular type of air freshener being more popular amongst a certain dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139741">demographic (maybe one that is controlled wirelessly via Bluetooth is more popular among younger homeowners than one that’s plugged into the wall with no controls). Knowing that millennials favor air fresheners which have options for swapping out scents and setting up schedules would be valuable information for new product development.

Advanced method survey questions

Aside from descriptive, comparative, and relationship-based survey questions, brands can opt to include advanced methodologies in their quantitative dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139742">questionnaire for richer depth. Though advanced methods are more complex in terms of the insights output, quantilope’s Consumer Intelligence Platform automates the setup and analysis of these methods so that researchers of any background or skillset can leverage them with ease.

With quantilope’s pre-programmed suite of 12 advanced methodologies , including MaxDiff , TURF , Implicit , and more, users can drag and drop any of these into a dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139742">questionnaire and customize for their own dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139740">market research objectives.

For example, consider a beverage company that’s looking to expand its flavor profiles. This brand would benefit from a MaxDiff which forces dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents to make tradeoff decisions between a set of flavors. A dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondent might say that coconut is their most-preferred flavor, and lime their least (when in a consideration set with strawberry), yet later on in the MaxDiff that same dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondent may say Strawberry is their most-preferred flavor (over black cherry and kiwi). While this is just one example of an advanced method, instantly you can see how much richer and more actionable these quantitative metrics become compared to a standard usage and attitude question .

Advanced methods can be used alongside descriptive, comparison, or relationship questions to add a new layer of context wherever a business sees fit. Back to table of contents 

Quantitative question formats  

So we’ve covered the kinds of dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139736">quantitative research questions you might want to answer using dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139740">market research , but how do these translate into the actual format of questions that you might include on your dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139742">questionnaire ?

Thinking ahead to your reporting process during your dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139742">questionnaire setup is actually quite important, as the available chart types differ among the types of questions asked; some question data is compatible with bar chart displays, others pie charts, others in trended line graphs, etc. Also consider how well the questions you’re asking will translate onto different devices that your dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents might be using to complete the survey (mobile, PC, or tablet).

Single Select questions

Single select questions are the simplest form of quantitative questioning, as dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents are asked to choose just one answer from a list of items, which tend to be ‘either/or’, ‘yes/no’, or ‘true/false’ questions. These questions are useful when you need to get a clear answer without any qualifying nuances.

yesno

Multi-select questions

Multi-select questions (aka, dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139767">multiple choice ) offer more flexibility for responses, allowing for a number of responses on a single question. dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">Respondents can be asked to ‘check all that apply’ or a cap can be applied (e.g. ‘select up to 3 choices’).

For example:

multiselect

Aside from asking text-based questions like the above examples, a brand could also use a single or multi-select question to ask respondents to select the image they prefer more (like different iterations of a logo design, packaging options, branding colors, etc.). 

dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139749">Likert dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139766">scale dropdown#toggle" data-dropdown-menu-id-param="menu_term_281139766" data-dropdown-placement-param="top" data-term-id="281139766"> questions

A dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139749">Likert scale   is widely used as a convenient and easy-to-interpret rating method. dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">Respondents find it easy to indicate their degree of feelings by selecting the response they most identify with.

likertscale

Slider scales

Slider scales are another good interactive way of formatting questions. They allow dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents to customize their level of feeling about a question, with a bit more variance and nuance allowed than a numeric scale:

logo slider scale example

One particularly common use of a slider scale in a dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139740">market dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139770">research dropdown#toggle" data-dropdown-menu-id-param="menu_term_281139770" data-dropdown-placement-param="top" data-term-id="281139770"> study is known as a NPS (Net Promoter Score) - a way to measure dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139775">customer experience and loyalty . A 0-10 scale is used to ask customers how likely they are to recommend a brand’s product or services to others. The NPS score is calculated by subtracting the percentage of ‘detractors’ (those who respond with a 0-6) from the percentage of promoters (those who respond with a 9-10). dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">Respondents who select 7-8 are known as ‘passives’.

For example: 

nps

Drag and drop questions

Drag-and-drop question formats are a more ‘gamified’ approach to survey capture as they ask dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents to do more than simply check boxes or slide a scale. Drag-and-drop question formats are great for ranking exercises - asking dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents to place answer options in a certain order by dragging with their mouse. For example, you could ask survey takers to put pizza toppings in order of preference by dragging options from a list of possible answers to a box displaying their personal preferences:

ranking poster

Matrix questions

Matrix   questions are a great way to consolidate a number of questions that ask for the same type of response (e.g. single select yes/no, true/false, or multi-select lists). They are mutually beneficial - making a survey look less daunting for the dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondent , and easier for a brand to set up than asking multiple separate questions.

Items in a matrix question are presented one by one, as respondents cycle through the pages selecting one answer for each coffee flavor shown. 

Untitled design (5)-1

While the above example shows a single-matrix question - meaning a respondent can only select one answer per element (in this case, coffee flavors), a matrix setup can also be used for multiple-choice questions - allowing respondents to choose multiple answers per element shown, or for rating questions - allowing respondents to assign a rating (e.g. 1-5) for a list of elements at once.  Back to table of contents 

How to write dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139745">quantitative survey questions  

We’ve reviewed the types of questions you might ask in a quantitative survey, and how you might format those questions, but now for the actual crafting of the content.

When considering which questions to include in your survey, you’ll first want to establish what your research goals are and how these relate to your business goals. For example, thinking about the three types of dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139745">quantitative survey questions explained above - descriptive, comparative, and relationship-based - which type (or which combination) will best meet your research needs? The questions you ask dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents may be phrased in similar ways no matter what kind of layout you leverage, but you should have a good idea of how you’ll want to analyze the results as that will make it much easier to correctly set up your survey.

Quantitative questions tend to start with words like ‘how much,’ ‘how often,’ ‘to what degree,’ ‘what do you think of,’ ‘which of the following’ - anything that establishes what consumers do or think and that can be assigned a numerical code or value. Be sure to also include ‘other’ or ‘none of the above’ options in your quant questions, accommodating those who don’t feel the pre-set answers reflect their true opinion. As mentioned earlier, you can always include a small number of dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139748">open-ended questions in your quant survey to account for any ideas or expanded feedback that the pre-coded questions don’t (or can’t) cover. Back to table of contents 

Examples of dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139745">quantitative survey questions  

dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139745">Quantitative survey questions impose limits on the answers that dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents can choose from, and this is a good thing when it comes to measuring consumer opinions on a large scale and comparing across dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents . A large volume of freeform, open-ended answers is interesting when looking for themes from qualitative studies, but impractical to wade through when dealing with a large dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139756">sample size , and impossible to subject to dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139774">statistical analysis .

For example, a quantitative survey might aim to establish consumers' smartphone habits. This could include their frequency of buying a new smartphone, the considerations that drive purchase, which features they use their phone for, and how much they like their smartphone.

Some examples of quantitative survey questions relating to these habits would be:

Q. How often do you buy a new smartphone?

[single select question]

More than once per year

Every 1-2 years

Every 3-5 years

Every 6+ years

Q. Thinking about when you buy a smartphone, please rank the following factors in order of importance:

[drag and drop ranking question]

screen size

storage capacity

Q. How often do you use the following features on your smartphone?

[matrix question]

Q. How do you feel about your current smartphone?

[sliding scale]

I love it <-------> I hate it

Answers from these above questions, and others within the survey, would be analyzed to paint a picture of smartphone usage and attitude trends across a population and its sub-groups. dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139738">Qualitative research might then be carried out to explore those findings further - for example, people’s detailed attitudes towards their smartphones, how they feel about the amount of time they spend on it, and how features could be improved. Back to table of contents 

quantilope’s Consumer Intelligence Platform specializes in automated, advanced survey insights so that researchers of any skill level can benefit from quick, high-quality consumer insights. With 12 advanced methods to choose from and a wide variety of quantitative question formats, quantilope is your one-stop-shop for all things dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139740">market research (including its dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139776">in-depth dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139738">qualitative research solution - inColor ).

When it comes to building your survey, you decide how you want to go about it. You can start with a blank slate and drop questions into your survey from a pre-programmed list, or you can get a head start with a survey dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139765">template for a particular business use case (like concept testing ) and customize from there. Once your survey is ready to launch, simply specify your dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139743">target audience , connect any panel (quantilope is panel agnostic), and watch as dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139783">answer questions in your survey in real-time by monitoring the fieldwork section of your project. AI-driven dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139764">data analysis takes the raw data and converts it into actionable findings so you never have to worry about manual calculations or statistical testing.

Whether you want to run your quantitative study entirely on your own or with the help of a classically trained research team member, the choice is yours on quantilope’s platform. For more information on how quantilope can help with your next dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139736">quantitative dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139768">research dropdown#toggle" data-dropdown-menu-id-param="menu_term_281139768" data-dropdown-placement-param="top" data-term-id="281139768"> project , get in touch below!

Get in touch to learn more about quantitative research with quantilope!

Related posts, quantilope & greenbook webinar: tapping into consumers' subconscious through implicit research, master the art of tracking with quantilope's certification course, van westendorp price sensitivity meter questions, quantilope & organic valley: understanding consumer values behind behaviors.

research question gathers quantitative data

  • (855) 776-7763

Training Maker

All Products

Qualaroo Insights

ProProfs.com

  • Sign Up Free

Do you want a free Survey Software?

We have the #1 Online Survey Maker Software to get actionable user insights.

How to Write Quantitative Research Questions: Types With Examples

How to Write Quantitative Research Questions: Types With Examples

For research to be effective, it becomes crucial to properly formulate the quantitative research questions in a correct way. Otherwise, you will not get the answers you were looking for.

Has it ever happened that you conducted a quantitative research study and found out the results you were expecting are quite different from the actual results?

This could happen due to many factors like the unpredictable nature of respondents, errors in calculation, research bias, etc. However, your quantitative research usually does not provide reliable results when questions are not written correctly.

We get it! Structuring the quantitative research questions can be a difficult task.

Hence, in this blog, we will share a few bits of advice on how to write good quantitative research questions. We will also look at different types of quantitative research questions along with their examples.

Let’s start:

How to Write Quantitative Research Questions?

When you want to obtain actionable insight into the trends and patterns of the research topic to make sense of it, quantitative research questions are your best bet.

Being objective in nature, these questions provide you with detailed information about the research topic and help in collecting quantifiable data that can be easily analyzed. This data can be generalized to the entire population and help make data-driven and sound decisions.

Respondents find it easier to answer quantitative survey questions than qualitative questions. At the same time, researchers can also analyze them quickly using various statistical models.

However, when it comes to writing the quantitative research questions, one can get a little overwhelmed as the entire study depends on the types of questions used.

There is no “one good way” to prepare these questions. However, to design well-structured quantitative research questions, you can follow the 4-steps approach given below:

1. Select the Type of Quantitative Question

The first step is to determine which type of quantitative question you want to add to your study. There are three types of quantitative questions:

  • Descriptive
  • Comparative 
  • Relationship-based

This will help you choose the correct words and phrases while constructing the question. At the same time, it will also assist readers in understanding the question correctly.

2. Identify the Type of Variable

The second step involves identifying the type of variable you are trying to measure, manipulate, or control. Basically, there are two types of variables:

  • Independent variable (a variable that is being manipulated)
  • Dependent variable (outcome variable)

quantitative questions examples

If you plan to use descriptive research questions, you have to deal with a number of dependent variables. However, where you plan to create comparative or relationship research questions, you will deal with both dependent and independent variables.

3. Select the Suitable Structure

The next step is determining the structure of the research question. It involves:

  • Identifying the components of the question. It involves the type of dependent or independent variable and a group of interest (the group from which the researcher tries to conclude the population).
  • The number of different components used. Like, as to how many variables and groups are being examined.
  • Order in which these are presented. For example, the independent variable before the dependent variable or vice versa.

4. Draft the Complete Research Question

The last step involves identifying the problem or issue that you are trying to address in the form of complete quantitative survey questions . Also, make sure to build an exhaustive list of response options to make sure your respondents select the correct response. If you miss adding important answer options, then the ones chosen by respondents may not be entirely true.

Types of Quantitative Research Questions With Examples

Quantitative research questions are generally used to answer the “who” and “what” of the research topic. For quantitative research to be effective, it is crucial that the respondents are able to answer your questions concisely and precisely. With that in mind, let’s look in greater detail at the three types of formats you can use when preparing quantitative market research questions.

1. Descriptive

Descriptive research questions are used to collect participants’ opinions about the variable that you want to quantify. It is the most effortless way to measure the particular variable (single or multiple variables) you are interested in on a large scale. Usually, descriptive research questions begin with “ how much,” “how often,” “what percentage,” “what proportion,” etc.

Examples of descriptive research questions include:

2. Comparative

Comparative research questions help you identify the difference between two or more groups based on one or more variables. In general, a comparative research question is used to quantify one variable; however, you can use two or more variables depending on your market research objectives.

Comparative research questions examples include:

3. Relationship-based

Relationship research questions are used to identify trends, causal relationships, or associations between two or more variables. It is not vital to distinguish between causal relationships, trends, or associations while using these types of questions. These questions begin with “What is the relationship” between independent and dependent variables, amongst or between two or more groups.

Relationship-based quantitative questions examples include:

Ready to Write Your Quantitative Research Questions?

So, there you have it. It was all about quantitative research question types and their examples. By now, you must have figured out a way to write quantitative research questions for your survey to collect actionable customer feedback.

Now, the only thing you need is a good survey maker tool , like ProProfs Survey Maker , that will glide your process of designing and conducting your surveys . You also get access to various survey question types, both qualitative and quantitative, that you can add to any kind of survey along with professionally-designed survey templates .

Emma David

About the author

Emma David is a seasoned market research professional with 8+ years of experience. Having kick-started her journey in research, she has developed rich expertise in employee engagement, survey creation and administration, and data management. Emma believes in the power of data to shape business performance positively. She continues to help brands and businesses make strategic decisions and improve their market standing through her understanding of research methodologies.

Popular Posts in This Category

research question gathers quantitative data

How to Calculate Customer Effort Score to Grow Your Business

research question gathers quantitative data

Improve Work Environment Using Employee Feedback

research question gathers quantitative data

What Is the Difference Between CSAT, CES, and NPS? Pros & Cons Explained

research question gathers quantitative data

18 Ways to Create Survey Email Subject Lines With Examples

research question gathers quantitative data

50+ NPS Survey Questions Examples for Every Scenario

research question gathers quantitative data

How To Write a Good Research Question: Guide with Definition, Tips & Examples

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research question gathers quantitative data

Home Market Research

Quantitative Data Collection: Best 5 methods

quantitative-data-collection

In contrast to qualitative data , quantitative data collection is everything about figures and numbers. Researchers often rely on quantitative data when they intend to quantify attributes, attitudes, behaviors, and other defined variables with a motive to either back or oppose the hypothesis of a specific phenomenon by contextualizing the data obtained via surveying or interviewing the study sample.

Content Index

What is Quantitative Data Collection?

Importance of quantitative data collection, probability sampling, surveys/questionnaires, observations, document review in quantitative data collection.

Quantitative data collection refers to the collection of numerical data that can be analyzed using statistical methods. This type of data collection is often used in surveys, experiments, and other research methods. It measure variables and establish relationships between variables. The data collected through quantitative methods is typically in the form of numbers, such as response frequencies, means, and standard deviations, and can be analyzed using statistical software.

LEARN ABOUT: Research Process Steps

As a researcher, you do have the option to opt either for data collection online or use traditional data collection methods via appropriate research. Quantitative data collection is important for several reasons:

  • Objectivity: Quantitative data collection provides objective and verifiable information, as the data is collected in a systematic and standardized manner.
  • Generalizability: The results from quantitative data collection can be generalized to a larger population, making it an effective way to study large groups of people.
  • Precision: Numerical data allows for precise measurement and unit of analysis , providing more accurate results than other data collection forms.
  • Hypothesis testing: Quantitative data collection allows for testing hypotheses and theories, leading to a better understanding of the relationships between variables.
  • Comparison: Quantitative data collection allows for data comparison and analysis. It can be useful in making decisions and identifying trends or patterns.
  • Replicability: The numerical nature of quantitative data makes it easier to replicate research results. It is essential for building knowledge in a particular field.

Quantitative data collection provides valuable information for understanding complex phenomena and making informed decisions based on empirical evidence.

LEARN ABOUT: Best Data Collection Tools

Methods used for Quantitative Data Collection

A data that can be counted or expressed in numerical’s constitute the quantitative data. It is commonly used to study the events or levels of concurrence. And is collected through a Structured Question & structured questionnaire asking questions starting with “how much” or “how many.” As the quantitative data is numerical, it represents both definitive and objective data. Furthermore, quantitative information is much sorted for statistical analysis and mathematical analysis, making it possible to illustrate it in the form of charts and graphs.

Discrete and continuous are the two major categories of quantitative data where discreet data have finite numbers and the constant data values falling on a continuum possessing the possibility to have fractions or decimals. If research is conducted to find out the number of vehicles owned by the American household, then we get a whole number, which is an excellent example of discrete data. When research is limited to the study of physical measurements of the population like height, weight, age, or distance, then the result is an excellent example of continuous data.

Any traditional or online data collection method that helps in gathering numerical data is a proven method of collecting quantitative data.

LEARN ABOUT: Survey Sampling

research question gathers quantitative data

There are four significant types of probability sampling:

  • Simple random sampling : More often, the targeted demographic is chosen for inclusion in the sample. 
  • Cluster sampling : Cluster sampling is a technique in which a population is divided into smaller groups or clusters, and a random sample of these clusters is selected. This method is used when it is impractical or expensive to obtain a random sample from the entire population . 
  • Systematic sampling : Any of the targeted demographic would be included in the sample, but only the first unit for inclusion in the sample is selected randomly, rest are selected in the ordered fashion as if one out of every ten people on the list .
  • Stratified sampling : It allows selecting each unit from a particular group of the targeted audience while creating a sample. It is useful when the researchers are selective about including a specific set of people in the sample, i.e., only males or females, managers or executives, people working within a particular industry.

Interviewing people is a standard method used for data collection . However, the interviews conducted to collect quantitative data are more structured, wherein the researchers ask only a standard set of online questionnaires and nothing more than that.

There are three major types of interviews conducted for data collection 

  • Telephone interviews: For years, telephone interviews ruled the charts of data collection methods. Nowadays, there is a significant rise in conducting video interviews using the internet, Skype, or similar online video calling platforms. 
  • Face-to-face interviews: It is a proven technique to collect data directly from the participants. It helps in acquiring quality data as it provides a scope to ask detailed questions and probing further to collect rich and informative data. Literacy requirements of the participant are irrelevant as F2F surveys offer ample opportunities to collect non-verbal data through observation or to explore complex and unknown issues. Although it can be an expensive and time-consuming method, the response rates for F2F interviews are often higher. 
  • Computer-Assisted Personal Interviewing (CAPI): It is nothing but a similar setup of the face-to-face interview where the interviewer carries a desktop or laptop along with him at the time of interview to upload the data obtained from the interview directly into the database. CAPI saves a lot of time in updating and processing the data and also makes the entire process paperless as the interviewer does not carry a bunch of papers and questionnaires.

research question gathers quantitative data

There are two significant types of survey questionnaires used to collect online data for quantitative market research.

  • Web-based questionnaire : This is one of the ruling and most trusted methods for internet-based research or online research. In a web-based questionnaire, the receive an email containing the survey link, clicking on which takes the respondent to a secure online survey tool from where he/she can take the survey or fill in the survey questionnaire. Being a cost-efficient, quicker, and having a wider reach, web-based surveys are more preferred by the researchers. The primary benefit of a web-based questionnaire is flexibility. Respondents are free to take the survey in their free time using either a desktop, laptop, tablet, or mobile.
  • Mail Questionnaire : In a mail questionnaire, the survey is mailed out to a host of the sample population, enabling the researcher to connect with a wide range of audiences. The mail questionnaire typically consists of a packet containing a cover sheet that introduces the audience about the type of research and reason why it is being conducted along with a prepaid return to collect data online. Although the mail questionnaire has a higher churn rate compared to other quantitative data collection methods, adding certain perks such as reminders and incentives to complete the survey help in drastically improving the churn rate. One of the major benefits of the mail questionnaire is all the responses are anonymous, and respondents are allowed to take as much time as they want to complete the survey and be completely honest about the answer without the fear of prejudice.

LEARN ABOUT: Steps in Qualitative Research

As the name suggests, it is a pretty simple and straightforward method of collecting quantitative data. In this method, researchers collect quantitative data through systematic observations by using techniques like counting the number of people present at the specific event at a particular time and a particular venue or number of people attending the event in a designated place. More often, for quantitative data collection, the researchers have a naturalistic observation approach. It needs keen observation skills and senses for getting the numerical data about the “what” and not about “why” and ”how.”

Naturalistic observation is used to collect both types of data; qualitative and quantitative. However, structured observation is more used to collect quantitative rather than qualitative data collection .

  • Structured observation: In this type of observation method, the researcher has to make careful observations of one or more specific behaviors in a more comprehensive or structured setting compared to naturalistic or participant observation . In a structured observation, the researchers, rather than observing everything, focus only on very specific behaviors of interest. It allows them to quantify the behaviors they are observing. When the qualitative observations require a judgment on the part of the observers – it is often described as coding, which requires a clearly defining a set of target behaviors.

Document review is a process used to collect data after reviewing the existing documents. It is an efficient and effective way of gathering data as documents are manageable. Those are the practical resource to get qualified data from the past. Apart from strengthening and supporting the research by providing supplementary research data document review has emerged as one of the beneficial methods to gather quantitative research data.

Three primary document types are being analyzed for collecting supporting quantitative research data.

  • Public Records: Under this document review, official, ongoing records of an organization are analyzed for further research. For example, annual reports policy manuals, student activities, game activities in the university, etc.
  • Personal Documents: In contrast to public documents, this type of document review deals with individual personal accounts of individuals’ actions, behavior, health, physique, etc. For example, the height and weight of the students, distance students are traveling to attend the school, etc.
  • Physical Evidence:  Physical evidence or physical documents deal with previous achievements of an individual or of an organization in terms of monetary and scalable growth.

LEARN ABOUT: 12 Best Tools for Researchers

Quantitative data is not about convergent reasoning, but it is about divergent thinking. It deals with the numerical, logic, and an objective stance, by focusing on numeric and unchanging data. More often, data collection methods are used to collect quantitative research data, and the results are dependent on the larger sample sizes that are commonly representing the population researcher intend to study.

Although there are many other methods to collect quantitative data. Those mentioned above probability sampling, interviews, questionnaire observation, and document review are the most common and widely used methods for data collection.

With QuestionPro, you can precise results, and data analysis . QuestionPro provides the opportunity to collect data from a large number of participants. It increases the representativeness of the sample and providing more accurate results.

FREE TRIAL         LEARN MORE

MORE LIKE THIS

Trend Report

Trend Report: Guide for Market Dynamics & Strategic Analysis

May 29, 2024

Cannabis Industry Business Intelligence

Cannabis Industry Business Intelligence: Impact on Research

May 28, 2024

Best Dynata Alternatives

Top 10 Dynata Alternatives & Competitors

May 27, 2024

research question gathers quantitative data

What Are My Employees Really Thinking? The Power of Open-ended Survey Analysis

May 24, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Hofstra University: LibAnswers banner

  • Hofstra Library

Q. What is quantitative research?

  • 3 African Studies
  • 5 Anthropology
  • 2 Area Studies
  • 3 Art History
  • 50 Articles
  • 15 Business
  • 1 Catholic Studies
  • 10 Citation Management
  • 6 Communication
  • 1 Computer Science
  • 6 Counseling
  • 2 Criminology
  • 5 Current Events
  • 53 Databases
  • 1 Drama and Dance
  • 2 Economics
  • 13 Education and Teaching
  • 5 Film and Media
  • 6 Film Studies
  • 1 General Collection
  • 3 Geography
  • 17 Government Information
  • 11 Health Science
  • 4 Interlibrary Loan
  • 1 irish studies
  • 2 Jewish Studies
  • 3 Journal Finder
  • 4 LGBT Studies
  • 1 Linguistics
  • 1 Literary Criticism
  • 12 Medicine
  • 3 Middle Eastern Studies
  • 2 natural science
  • 5 Newspapers
  • 7 Open-Access
  • 4 Philosophy
  • 8 Political Science
  • 4 Psychology
  • 6 Reference
  • 8 Religious Studies
  • 40 Services
  • 1 Sikh Studies
  • 9 Sociology
  • 5 Statistics
  • 6 Technology
  • 1 Television
  • 3 Tests and Measures
  • 1 Transportation
  • 3 Women's Studies
  • 2 Writing Center

Answered By: Hofstra Reference Last Updated: Aug 07, 2023     Views: 16

Quantitative research gathers data that can be measured numerically and analyzed mathematically.

Quantitative research attempts to answer research questions through the quantification of data. 

Further information about using the library databases to find quantitative research can be found within the  Quantitative and Qualitative Research LibGuide located here:

https://libguides.hofstra.edu/c.php?g=1273745&p=9344790 . 

  • Share on Facebook

Was this helpful? Yes 0 No 0

Related Topics

Submit a question.

Note: Please make sure you type your email address correctly or you may not get the answer to your question!

  • AI & NLP
  • Churn & Loyalty
  • Customer Experience
  • Customer Journeys
  • Customer Metrics
  • Feedback Analysis
  • Product Experience
  • Product Updates
  • Sentiment Analysis
  • Surveys & Feedback Collection
  • Try Thematic

Welcome to the community

research question gathers quantitative data

Understanding Qualitative vs Quantitative Data

Keen to understand the difference between qualitative vs quantitative data?

There are many types of data out there! Understanding the best ways to use both qualitative and quantitative data can help you make better decisions and gain deeper insights.

In this post, I’ll take a closer look at these two types of data, exploring their differences, strengths, and how they can work together to provide a comprehensive understanding of complex issues.

  • Qualitative data helps you understand people’s behaviors, emotions and experiences while quantitative data provides measurable insights.
  • Qualitative research methods include interviews, focus groups, and surveys with open-ended questions, while quantitative research uses surveys with closed-ended questions.
  • In simple terms, quantitative data answers the “what” or “how many” of a research question, and qualitative data answers the "why".
  • Combining qualitative and quantitative data helps researchers gain a comprehensive understanding of any given subject.

Looking for a set of FAQs about qual and quant data? Skip to the end of the post here !

Understanding Qualitative Data

graphic of two people discussing positive and negative experiences

Diving into qualitative data means exploring the rich, descriptive information that helps us understand human behavior, emotions, and experiences.

Unlike quantitative data, which focuses on numbers and measurements, qualitative data is all about the subjective. It captures people’s thoughts, feelings, and interactions with their environment.

Qualitative data can be collected through interviews, focus groups, surveys, and observations. It can provide insights into why people do what they do, how they feel about certain topics, and how they interact with their environment.

This type of data is important no matter the industry - from product managers looking to improve an app, to healthcare professionals wanting to transform the in-patient experience.

Defining Qualitative Data

So what exactly is qualitative data? At its core, qualitative data is descriptive, non-numerical information that helps us understand complex social phenomena. It refers to the words, phrases, or labels used to describe certain characteristics or traits, such as people’s opinions, motivations, and emotions.

Qualitative research is subjective, less rigid, and approaches the research topic from the perspective of those living it. While quantitative data focuses on numbers and measuring variables, qualitative data allows you to gain a deeper understanding of the topic at hand and grasp the context in which it exists.

Common Qualitative Research Methods

There are several types of qualitative feedback that can help you uncover deep insights into human experiences. These qualitative feedback types include in-depth interviews, focus groups, surveys, observations, and case studies:

  • Interviews in qualitative research dive into people’s attitudes and opinions on specific topics, allowing the researcher to explore their unique perspectives.
  • Focus groups gather information through group discussions where participants share their thoughts and ideas.  
  • Qualitative surveys are surveys with open-ended questions , or 'open-enders'. This means a question like 'What impressed you?' where the respondent can provide their own verbatim answer.
  • Observations involve watching people in their natural settings to collect data.
  • Case studies analyze a single person or group in detail.

These types of qualitative feedback offer rich, in-depth insights that help researchers gain a better understanding of complex social phenomena and interactions with products or services.

There are also a few different methods & approaches of qualitative data analysis .

Analyzing Qualitative Data

When it comes to analyzing qualitative data, the process involves interpreting unstructured data , such as large chunks of text. This requires a different approach than that used for quantitative data.

Popular techniques for qualitative data analysis include content analysis, grounded theory, thematic analysis , and discourse analysis.

Thematic analysis, for example, is a widely used method that involves coding the data to identify common keywords or topics and then grouping them into meaningful themes.

While traditionally known for being time-consuming, qualitative data analysis plays a crucial role in uncovering the hidden gems of information that can lead to valuable insights and understanding.

And with advances in technology, it's now possible to analyze qualitative data at scale , faster than ever before. For example, here at Thematic we take millions of customer comments - large volumes of hard to analyze, unstructured text data - and use AI to turn them into quantifiable insights for product companies to act on.

Grasping Quantitative Data

graphic of a man standing among graphs and numbers

Okay, now for quantitative data. The focus here is on numerical information that allows you to measure variables, test hypotheses, and establish general patterns across populations.

Quantitative data offers an objective and reliable approach to research, providing measurable and statistically significant insights that can help drive informed decision-making.

Defining Quantitative Data

Quantitative data is numerical and measurable information that can be used to identify trends, relationships, and make predictions. This type of data is the cornerstone of quantitative research, which relies on gathering numerical data and using statistical methods to analyze it.

Some examples of quantitative data include age, height, weight, income, and test scores. This data is often used to analyze relationships, confirm or test theories or hypotheses, assess problems, or answer the “what” or “how many” of a research question.

Quantitative data allows for quantifying behaviors, opinions, attitudes, and other variables, making it an essential tool in many research and business contexts.

Common Quantitative Research Methods

There are several quantitative research methods you can employ to gather numerical data. Experiments, numerical observations and surveys comprising closed-ended questions are some common methods. They can be beneficial in providing accurate empirical data.

Surveys, in particular, are a popular research method involving the use of structured questions to collect information from a large number of participants.

Closed-ended questions are those where the respondent has to choose from a set of pre-defined answers. Think multi-choice options, yes/no, true/false, or a scale, like 'how likely are you to recommend us to family or friends', where 1 is least likely, and 10 is most likely. Closed-ended questions provide respondents with a clear direction and help ensure consistency in the data collected, making it easier to analyze.

Other examples of quantitative research methods include controlled observations and questionnaires, which can help measure variables, test hypotheses, and establish general patterns across populations.

Analyzing Quantitative Data

When it comes to analyzing quantitative data, researchers typically rely on descriptive and evidence-based statistics to summarize data patterns and identify significant differences between groups. Through statistical analysis, researchers can draw conclusions from the numerical data, spot trends, see relationships, and make predictions.

Statistical analysis techniques help quantitative researchers make informed decisions based on measurable and objective data.

Comparing and Contrasting Qualitative and Quantitative Data

graphic of two people with graphs looking at numerical and text data

Now that we have a good understanding of both qualitative and quantitative data, let’s dive deeper into their differences, as well as how they can complement each other.

Recognizing the key distinctions between these two types of data is essential for choosing the right research methods and analysis techniques for a specific research question or project.

Differences in Data Collection

One of the main differences between qualitative and quantitative data collection lies in the methods used.

Qualitative data collection methods involve:

  • Surveys with open-ended questions
  • Observations

All of which allow for more flexibility and adaptability in the research process. These approaches capture people’s thoughts, feelings, and experiences, providing a rich and in-depth understanding.

Quantitative data collection methods involve:

  • Structured surveys
  • Experiments with numerical data
  • Statistical analysis.

These approaches focus on measuring variables and testing hypotheses, providing an objective and reliable set of data that can be easily compared and analyzed.

The choice between qualitative and quantitative data collection methods largely depends on the research question and the type of insights the researcher aims to gain.

Differences in Data Analysis

In terms of data analysis, qualitative and quantitative data require different approaches and techniques.

Qualitative data analysis involves interpreting non-numerical data, often through the use of interpretive techniques such as:

  • Content analysis
  • Grounded theory
  • Thematic analysis
  • Discourse analysis.

This type of analysis aims to uncover deeper insights and understanding by exploring the nuances and complexities of the data.

Qualitative data is the best choice when you're looking to understand complex social phenomena, explore new ideas, or gain insights into human experiences and emotions. This type of data allows you to dive into the subjective nature of experiences and capture the essence of people’s thoughts, feelings, and interactions with their environment.

By using qualitative data, you get a deeper understanding of the context surrounding an issue. You can uncover hidden patterns and relationships that may not be immediately apparent through quantitative data alone. This depth of understanding can prove invaluable in informing decision-making and guiding future research efforts.

In contrast, quantitative data analysis relies on statistical methods to analyze numerical data. This objective approach allows researchers to identify patterns, connections, and predict outcomes based on the data.

Quantitative data is the best choice when the goal is to measure variables, test hypotheses, and establish general patterns across populations. This type of data allows for the collection of objective, measurable information that can be easily compared and analyzed, providing insights into trends, relationships, and predictive outcomes.

Quantitative data is particularly useful for confirming or testing theories or hypotheses, assessing problems, and answering the “what” or “how many” of a research question. By using quantitative data, researchers can quantify behaviors, opinions, attitudes, and other variables, allowing them to make informed decisions based on measurable and reliable data.

While both types of data analysis have their merits, it’s important to recognize the unique strengths and limitations of each approach to ensure the most effective and accurate analysis of your data.

Complementing Each Other: Implementing Mixed Methods Research

It doesn't always have to be qualitative vs quantitative. There are clear differences in their collection and analysis methods, but both types of data can work together to provide a more comprehensive understanding of research questions.

By employing qualitative and quantitative research, qualitative data offers depth and context, allowing researchers to explore the reasons behind trends, behaviors, and opinions, while quantitative data provides measurable trends and patterns that can be used to make predictions and draw conclusions.

In customer feedback analysis, combining qualitative and quantitative data is the best way to get a 360 view of your users. Feedback analysis software makes it easy to combine your qualitative data with quantitative data for deeper insights.

Metrics go up, and metrics go down - this is your quantitative data. Numbers on a dashboard provide a good indicator of various things going wrong - and going right - but you need to know why they’re shifting.

You can draw some conclusions from your quantitative data, such as comparing customer segments to work out common patterns, but what you need to know is how to shift your numbers in a positive direction.

Your much harder to analyze qualitative data is where the answers lie. Qualitative data provides valuable context, so that you get the insight you need into the customer experience and understand the "why" behind what's happening with your metrics.

Real-World Examples of Qualitative and Quantitative Data

Screenshot/stylised Thematic dashboard showing both metrics and verbatims

To better understand the practical applications of qualitative and quantitative data, let’s take a look at some real-world examples that demonstrate how these two types of data can be used in various fields.

Qualitative Data in Action

Some real world examples of qualitative data include:

  • Analyzing interview transcripts to better understand customer preferences
  • Analyzing responses to open-ended survey questions
  • Observing customer behavior in a retail environment
  • Assessing the impact of a new policy on a community

Qualitative data allows you to dig deeper into the reasons and motivations behind certain behaviors, providing valuable insights that can inform decision-making and guide future actions.

For instance, a product designer may conduct in-depth interviews with users to gain insights into their needs and preferences, helping them create a product that truly meets the needs of their target audience.

In the medical field, qualitative data can be used to assess patient satisfaction with a particular treatment or procedure. This data can then be used to inform decisions about how to improve patient care.

Customer experience professionals can analyze the qualitative data from support chat logs to identify common issues and requests. These can be quantified to enable the right actions - perhaps updating the company's FAQ page to guide customers, or prioritizing a bug fix.

Quantitative Data in Action

Quantitative data can be seen in action through:

  • The use of surveys to measure customer satisfaction (although often these surveys will combine quantitative questions with qualitative open-enders)
  • Analyzing sales data to identify trends.
  • Comparing test scores between different educational programs.

This type of data provides objective, measurable information that can be easily compared and analyzed, allowing researchers to make informed decisions based on trends and patterns.

For example, a marketing team may use quantitative data to analyze the success of various advertising campaigns, identifying which strategies are most effective in driving sales and customer engagement.

By relying on measurable and objective data, you can make data-driven decisions and develop strategies that are grounded in evidence and proven results.

Understanding the differences between qualitative and quantitative data, as well as knowing when to use each type, is essential for conducting effective and well-rounded research.

While qualitative data provides depth and context, allowing you to explore the complexities of human experiences, quantitative data offers objective and measurable insights, enabling you to identify trends, relationships, and make predictions.

By combining the strengths of both types of data, you can develop a more comprehensive understanding of any research question, leading to more accurate and reliable results.

So, the next time you're working on a research or analysis project, remember to consider both qualitative and quantitative data. Aim for a well-rounded approach so you can uncover valuable insights and understanding.

Frequently Asked Questions

What is an example of qualitative and quantitative data.

An example of qualitative and quantitative data could be measuring annual income (quantitative) and collecting occupation data (qualitative) to provide a more comprehensive understanding of average annual income for different occupations.

How do you know if the research is qualitative or quantitative?

You can tell if the research is qualitative or quantitative by looking at the type of data collected. Quantitative research focuses on numerical data and seeks to quantify a problem, while qualitative research focuses on non-numerical data and seeks to gain an in-depth understanding of a topic.

Examining the data type can provide clues as to the type of research being conducted.

What is an example of quantitative data?

Quantitative data is information that can be expressed in numerical values. An example of quantitative data could be height, weight or age. For instance, if you weigh 130lbs, that would be an example of quantitative data.

Another example would be if you are 25 years old; this is also an example of quantitative data.

What is the main difference between qualitative and quantitative data?

Qualitative data provides a richer understanding of a topic, while quantitative data is more focused on concrete facts and figures.

When should I use qualitative data in my research?

Qualitative data is best used to uncover why things happen and gain a deeper understanding of how people interact with and feel about certain topics. It can be particularly useful in understanding the motivations behind specific behaviors.

research question gathers quantitative data

Content Marketing

Caley enjoys creating useful content to help people learn new things and solve problems.

We make it easy to discover the customer and product issues that matter.

Unlock the value of feedback at scale, in one platform. Try it for free now!

  • Questions to ask your Feedback Analytics vendor
  • How to end customer churn for good
  • Scalable analysis of NPS verbatims
  • 5 Text analytics approaches
  • How to calculate the ROI of CX

Our experts will show you how Thematic works, how to discover pain points and track the ROI of decisions. To access your free trial, book a personal demo today.

Recent posts

When two major storms wreaked havoc on Auckland and Watercare’s infrastructurem the utility went through a CX crisis. With a massive influx of calls to their support center, Thematic helped them get inisghts from this data to forge a new approach to restore services and satisfaction levels.

Become a qualitative theming pro! Creating a perfect code frame is hard, but thematic analysis software makes the process much easier.

Everyone says they want customers to be satisfied, but what are you actually doing to make customers happy? How do you know if you’re on the right track? How do you know if your customer satisfaction efforts make a difference? Why even aim for customer satisfaction at all? We

IMAGES

  1. Week 12: Quantitative Research Methods

    research question gathers quantitative data

  2. Quantitative Data Map

    research question gathers quantitative data

  3. Qualitative vs Quantitative Research

    research question gathers quantitative data

  4. Diagram Showing The Different Types Of Quantitative Research

    research question gathers quantitative data

  5. Quantitative Research: What it is, Tips & Examples

    research question gathers quantitative data

  6. Quantitative Research Questions Examples

    research question gathers quantitative data

VIDEO

  1. QUALITATIVE RESEARCH: Methods of data collection

  2. The AI Personal Nutritionist is Here

  3. How to conduct quantitative research (8 Major Steps)

  4. Mastering Research Methodology: Essential Techniques for Dissertation Success || WritersER

  5. Claygent: Transform Your Audience Research with AI Precision

  6. Develop a mixed methods research study plan or outline that integrates quantitative and qualitative

COMMENTS

  1. A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  2. Quantitative Research

    Education Research: Quantitative research is used in education research to study the effectiveness of teaching methods, assess student learning outcomes, and identify factors that influence student success. Researchers use experimental and quasi-experimental designs, as well as surveys and other quantitative methods, to collect and analyze data.

  3. Data Collection Methods

    Depending on your research questions, you might need to collect quantitative or qualitative data: Quantitative data is expressed in numbers and graphs and is analysed through statistical methods. Qualitative data is expressed in words and analysed through interpretations and categorisations. If your aim is to test a hypothesis, measure ...

  4. What Is Quantitative Research?

    Revised on June 22, 2023. Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and analyzing ...

  5. Library Guides: How to Research Guide: Quantitative Research

    Quantitative research gathers a range of numeric data. Some of the numeric data is intrinsically quantitative (e.g. personal income), while in other cases the numeric structure is imposed (e.g. ... Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population ...

  6. Quantitative Data

    Here is a basic guide for gathering quantitative data: Define the research question: The first step in gathering quantitative data is to clearly define the research question. This will help determine the type of data to be collected, the sample size, and the methods of data analysis.

  7. Examples of Quantitative Research Questions

    As you embark on your journey into quantitative research, remember that StatsCamp.org is here to support you every step of the way. Whether you're formulating research questions, analyzing data, or interpreting results, our courses provide the knowledge and expertise you need to succeed. Join us today and unlock the power of quantitative ...

  8. Gathering and Analyzing Quantitative Data

    3 Gathering and Analyzing Quantitative Data . Although the goal of any research study is to gather information to analyze, this process can be a little daunting. Hopefully, you've taken the time to plan your approach so that you have a clear plan for the type of information you'll be gathering and the process by which you will assign meaning and glean an understanding about what you've ...

  9. Quantitative and Qualitative Research

    Social scientists are concerned with the study of people. Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population. Allen, M. (2017). The SAGE encyclopedia ...

  10. Qualitative vs. Quantitative Research

    When collecting and analyzing data, quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings. Both are important for gaining different kinds of knowledge. Quantitative research. Quantitative research is expressed in numbers and graphs. It is used to test or confirm theories and assumptions.

  11. Qualitative vs quantitative research

    It can help add a 'why' element to factual, objective data. Qualitative research gives breadth, depth and context to questions, although its linguistic subtleties and subjectivity can mean that results are trickier to analyze than quantitative data. This qualitative data is called unstructured data by researchers.

  12. LibGuides: Health Science: Qualitative vs. Quantitative Research

    What is Quantitative Research? Qualitative research is based upon data that is gathered by observation. Qualitative research articles will attempt to answer questions that cannot be measured by numbers but rather by perceived meaning. Qualitative research will likely include interviews, case studies, ethnography, or focus groups.

  13. Quantitative research questions: Types, tips & examples

    The quantitative research question is a type of question where the person asking the question wants to obtain a numeric answer that will provide them with a tangible answer. It involves collecting objective, measurable data about a particular subject or topic, often through surveys, experiments, or other structured methods.

  14. Data Analysis in Quantitative Research

    Abstract. Quantitative data analysis serves as part of an essential process of evidence-making in health and social sciences. It is adopted for any types of research question and design whether it is descriptive, explanatory, or causal. However, compared with qualitative counterpart, quantitative data analysis has less flexibility.

  15. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  16. Qualitative vs. Quantitative Research

    Quantitative research gathers data that can be measured numerically and analyzed mathematically. Quantitative research attempts to answer research questions through the quantification of data. Indicators of quantitative research include: contains statistical analysis . large sample size . objective - little room to argue with the numbers

  17. What Are Quantitative Survey Questions? Types and Examples

    Single select questions are the simplest form of quantitative questioning, as respondents are asked to choose just one answer from a list of items, which tend to be 'either/or', 'yes/no', or 'true/false' questions. These questions are useful when you need to get a clear answer without any qualifying nuances. For example:

  18. How to Write Quantitative Research Questions: Types With Examples

    Read More - 90+ Market Research Questions to Ask Your Customers. 1. Select the Type of Quantitative Question. The first step is to determine which type of quantitative question you want to add to your study. There are three types of quantitative questions: Descriptive. Comparative. Relationship-based.

  19. Quantitative Data Collection: Best 5 methods

    Those mentioned above probability sampling, interviews, questionnaire observation, and document review are the most common and widely used methods for data collection. With QuestionPro, you can precise results, and data analysis. QuestionPro provides the opportunity to collect data from a large number of participants.

  20. What is quantitative research?

    Aug 07, 2023 15. Quantitative research gathers data that can be measured numerically and analyzed mathematically. Quantitative research attempts to answer research questions through the quantification of data. Further information about using the library databases to find quantitative research can be found within the Quantitative and Qualitative ...

  21. Understanding Qualitative vs Quantitative Data

    Qualitative data helps you understand people's behaviors, emotions and experiences while quantitative data provides measurable insights. Qualitative research methods include interviews, focus groups, and surveys with open-ended questions, while quantitative research uses surveys with closed-ended questions. In simple terms, quantitative data ...

  22. Quantitative Data Collection: A Quick Guide for Beginners

    It's a research method that gathers and analyzes numerical data. Its purpose is to answer research questions, or test hypotheses. ... Data Collection Tools in Quantitative Research. Data collection tools are basically instruments that are used to collect data in a standardized and consistent way. So different methods of quantitative data ...