SkillsYouNeed

  • LEARNING SKILLS
  • Study Skills
  • Critical Thinking

Search SkillsYouNeed:

Learning Skills:

  • A - Z List of Learning Skills
  • What is Learning?
  • Learning Approaches
  • Learning Styles
  • 8 Types of Learning Styles
  • Understanding Your Preferences to Aid Learning
  • Lifelong Learning
  • Decisions to Make Before Applying to University
  • Top Tips for Surviving Student Life
  • Living Online: Education and Learning
  • 8 Ways to Embrace Technology-Based Learning Approaches

Critical Thinking Skills

  • Critical Thinking and Fake News
  • Understanding and Addressing Conspiracy Theories
  • Critical Analysis
  • Top Tips for Study
  • Staying Motivated When Studying
  • Student Budgeting and Economic Skills
  • Getting Organised for Study
  • Finding Time to Study
  • Sources of Information
  • Assessing Internet Information
  • Using Apps to Support Study
  • What is Theory?
  • Styles of Writing
  • Effective Reading
  • Critical Reading
  • Note-Taking from Reading
  • Note-Taking for Verbal Exchanges
  • Planning an Essay
  • How to Write an Essay
  • The Do’s and Don’ts of Essay Writing
  • How to Write a Report
  • Academic Referencing
  • Assignment Finishing Touches
  • Reflecting on Marked Work
  • 6 Skills You Learn in School That You Use in Real Life
  • Top 10 Tips on How to Study While Working
  • Exam Skills
  • Writing a Dissertation or Thesis
  • Research Methods
  • Teaching, Coaching, Mentoring and Counselling
  • Employability Skills for Graduates

Subscribe to our FREE newsletter and start improving your life in just 5 minutes a day.

You'll get our 5 free 'One Minute Life Skills' and our weekly newsletter.

We'll never share your email address and you can unsubscribe at any time.

What is Critical Thinking?

Critical thinking is the ability to think clearly and rationally, understanding the logical connection between ideas.  Critical thinking has been the subject of much debate and thought since the time of early Greek philosophers such as Plato and Socrates and has continued to be a subject of discussion into the modern age, for example the ability to recognise fake news .

Critical thinking might be described as the ability to engage in reflective and independent thinking.

In essence, critical thinking requires you to use your ability to reason. It is about being an active learner rather than a passive recipient of information.

Critical thinkers rigorously question ideas and assumptions rather than accepting them at face value. They will always seek to determine whether the ideas, arguments and findings represent the entire picture and are open to finding that they do not.

Critical thinkers will identify, analyse and solve problems systematically rather than by intuition or instinct.

Someone with critical thinking skills can:

Understand the links between ideas.

Determine the importance and relevance of arguments and ideas.

Recognise, build and appraise arguments.

Identify inconsistencies and errors in reasoning.

Approach problems in a consistent and systematic way.

Reflect on the justification of their own assumptions, beliefs and values.

Critical thinking is thinking about things in certain ways so as to arrive at the best possible solution in the circumstances that the thinker is aware of. In more everyday language, it is a way of thinking about whatever is presently occupying your mind so that you come to the best possible conclusion.

Critical Thinking is:

A way of thinking about particular things at a particular time; it is not the accumulation of facts and knowledge or something that you can learn once and then use in that form forever, such as the nine times table you learn and use in school.

The Skills We Need for Critical Thinking

The skills that we need in order to be able to think critically are varied and include observation, analysis, interpretation, reflection, evaluation, inference, explanation, problem solving, and decision making.

Specifically we need to be able to:

Think about a topic or issue in an objective and critical way.

Identify the different arguments there are in relation to a particular issue.

Evaluate a point of view to determine how strong or valid it is.

Recognise any weaknesses or negative points that there are in the evidence or argument.

Notice what implications there might be behind a statement or argument.

Provide structured reasoning and support for an argument that we wish to make.

The Critical Thinking Process

You should be aware that none of us think critically all the time.

Sometimes we think in almost any way but critically, for example when our self-control is affected by anger, grief or joy or when we are feeling just plain ‘bloody minded’.

On the other hand, the good news is that, since our critical thinking ability varies according to our current mindset, most of the time we can learn to improve our critical thinking ability by developing certain routine activities and applying them to all problems that present themselves.

Once you understand the theory of critical thinking, improving your critical thinking skills takes persistence and practice.

Try this simple exercise to help you to start thinking critically.

Think of something that someone has recently told you. Then ask yourself the following questions:

Who said it?

Someone you know? Someone in a position of authority or power? Does it matter who told you this?

What did they say?

Did they give facts or opinions? Did they provide all the facts? Did they leave anything out?

Where did they say it?

Was it in public or in private? Did other people have a chance to respond an provide an alternative account?

When did they say it?

Was it before, during or after an important event? Is timing important?

Why did they say it?

Did they explain the reasoning behind their opinion? Were they trying to make someone look good or bad?

How did they say it?

Were they happy or sad, angry or indifferent? Did they write it or say it? Could you understand what was said?

What are you Aiming to Achieve?

One of the most important aspects of critical thinking is to decide what you are aiming to achieve and then make a decision based on a range of possibilities.

Once you have clarified that aim for yourself you should use it as the starting point in all future situations requiring thought and, possibly, further decision making. Where needed, make your workmates, family or those around you aware of your intention to pursue this goal. You must then discipline yourself to keep on track until changing circumstances mean you have to revisit the start of the decision making process.

However, there are things that get in the way of simple decision making. We all carry with us a range of likes and dislikes, learnt behaviours and personal preferences developed throughout our lives; they are the hallmarks of being human. A major contribution to ensuring we think critically is to be aware of these personal characteristics, preferences and biases and make allowance for them when considering possible next steps, whether they are at the pre-action consideration stage or as part of a rethink caused by unexpected or unforeseen impediments to continued progress.

The more clearly we are aware of ourselves, our strengths and weaknesses, the more likely our critical thinking will be productive.

The Benefit of Foresight

Perhaps the most important element of thinking critically is foresight.

Almost all decisions we make and implement don’t prove disastrous if we find reasons to abandon them. However, our decision making will be infinitely better and more likely to lead to success if, when we reach a tentative conclusion, we pause and consider the impact on the people and activities around us.

The elements needing consideration are generally numerous and varied. In many cases, consideration of one element from a different perspective will reveal potential dangers in pursuing our decision.

For instance, moving a business activity to a new location may improve potential output considerably but it may also lead to the loss of skilled workers if the distance moved is too great. Which of these is the more important consideration? Is there some way of lessening the conflict?

These are the sort of problems that may arise from incomplete critical thinking, a demonstration perhaps of the critical importance of good critical thinking.

Further Reading from Skills You Need

The Skills You Need Guide for Students

The Skills You Need Guide for Students

Skills You Need

Develop the skills you need to make the most of your time as a student.

Our eBooks are ideal for students at all stages of education, school, college and university. They are full of easy-to-follow practical information that will help you to learn more effectively and get better grades.

In Summary:

Critical thinking is aimed at achieving the best possible outcomes in any situation. In order to achieve this it must involve gathering and evaluating information from as many different sources possible.

Critical thinking requires a clear, often uncomfortable, assessment of your personal strengths, weaknesses and preferences and their possible impact on decisions you may make.

Critical thinking requires the development and use of foresight as far as this is possible. As Doris Day sang, “the future’s not ours to see”.

Implementing the decisions made arising from critical thinking must take into account an assessment of possible outcomes and ways of avoiding potentially negative outcomes, or at least lessening their impact.

  • Critical thinking involves reviewing the results of the application of decisions made and implementing change where possible.

It might be thought that we are overextending our demands on critical thinking in expecting that it can help to construct focused meaning rather than examining the information given and the knowledge we have acquired to see if we can, if necessary, construct a meaning that will be acceptable and useful.

After all, almost no information we have available to us, either externally or internally, carries any guarantee of its life or appropriateness.  Neat step-by-step instructions may provide some sort of trellis on which our basic understanding of critical thinking can blossom but it doesn’t and cannot provide any assurance of certainty, utility or longevity.

Continue to: Critical Thinking and Fake News Critical Reading

See also: Analytical Skills Understanding and Addressing Conspiracy Theories Introduction to Neuro-Linguistic Programming (NLP)

University of Louisville

  • Programs & Services
  • Delphi Center

Ideas to Action (i2a)

  • Paul-Elder Critical Thinking Framework

Critical thinking is that mode of thinking – about any subject, content, or problem — in which the thinker improves the quality of his or her thinking by skillfully taking charge of the structures inherent in thinking and imposing intellectual standards upon them. (Paul and Elder, 2001). The Paul-Elder framework has three components:

  • The elements of thought (reasoning)
  • The  intellectual standards that should be applied to the elements of reasoning
  • The intellectual traits associated with a cultivated critical thinker that result from the consistent and disciplined application of the intellectual standards to the elements of thought

Graphic Representation of Paul-Elder Critical Thinking Framework

According to Paul and Elder (1997), there are two essential dimensions of thinking that students need to master in order to learn how to upgrade their thinking. They need to be able to identify the "parts" of their thinking, and they need to be able to assess their use of these parts of thinking.

Elements of Thought (reasoning)

The "parts" or elements of thinking are as follows:

  • All reasoning has a purpose
  • All reasoning is an attempt to figure something out, to settle some question, to solve some problem
  • All reasoning is based on assumptions
  • All reasoning is done from some point of view
  • All reasoning is based on data, information and evidence
  • All reasoning is expressed through, and shaped by, concepts and ideas
  • All reasoning contains inferences or interpretations by which we draw conclusions and give meaning to data
  • All reasoning leads somewhere or has implications and consequences

Universal Intellectual Standards

The intellectual standards that are to these elements are used to determine the quality of reasoning. Good critical thinking requires having a command of these standards. According to Paul and Elder (1997 ,2006), the ultimate goal is for the standards of reasoning to become infused in all thinking so as to become the guide to better and better reasoning. The intellectual standards include:

Intellectual Traits

Consistent application of the standards of thinking to the elements of thinking result in the development of intellectual traits of:

  • Intellectual Humility
  • Intellectual Courage
  • Intellectual Empathy
  • Intellectual Autonomy
  • Intellectual Integrity
  • Intellectual Perseverance
  • Confidence in Reason
  • Fair-mindedness

Characteristics of a Well-Cultivated Critical Thinker

Habitual utilization of the intellectual traits produce a well-cultivated critical thinker who is able to:

  • Raise vital questions and problems, formulating them clearly and precisely
  • Gather and assess relevant information, using abstract ideas to interpret it effectively
  • Come to well-reasoned conclusions and solutions, testing them against relevant criteria and standards;
  • Think open-mindedly within alternative systems of thought, recognizing and assessing, as need be, their assumptions, implications, and practical consequences; and
  • Communicate effectively with others in figuring out solutions to complex problems

Paul, R. and Elder, L. (2010). The Miniature Guide to Critical Thinking Concepts and Tools. Dillon Beach: Foundation for Critical Thinking Press.

  • SACS & QEP
  • Planning and Implementation
  • What is Critical Thinking?
  • Why Focus on Critical Thinking?
  • Culminating Undergraduate Experience
  • Community Engagement
  • Frequently Asked Questions
  • What is i2a?

Copyright © 2012 - University of Louisville , Delphi Center

Critical thinking definition

elements of critical thinking are

Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement.

Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process, which is why it's often used in education and academics.

Some even may view it as a backbone of modern thought.

However, it's a skill, and skills must be trained and encouraged to be used at its full potential.

People turn up to various approaches in improving their critical thinking, like:

  • Developing technical and problem-solving skills
  • Engaging in more active listening
  • Actively questioning their assumptions and beliefs
  • Seeking out more diversity of thought
  • Opening up their curiosity in an intellectual way etc.

Is critical thinking useful in writing?

Critical thinking can help in planning your paper and making it more concise, but it's not obvious at first. We carefully pinpointed some the questions you should ask yourself when boosting critical thinking in writing:

  • What information should be included?
  • Which information resources should the author look to?
  • What degree of technical knowledge should the report assume its audience has?
  • What is the most effective way to show information?
  • How should the report be organized?
  • How should it be designed?
  • What tone and level of language difficulty should the document have?

Usage of critical thinking comes down not only to the outline of your paper, it also begs the question: How can we use critical thinking solving problems in our writing's topic?

Let's say, you have a Powerpoint on how critical thinking can reduce poverty in the United States. You'll primarily have to define critical thinking for the viewers, as well as use a lot of critical thinking questions and synonyms to get them to be familiar with your methods and start the thinking process behind it.

Are there any services that can help me use more critical thinking?

We understand that it's difficult to learn how to use critical thinking more effectively in just one article, but our service is here to help.

We are a team specializing in writing essays and other assignments for college students and all other types of customers who need a helping hand in its making. We cover a great range of topics, offer perfect quality work, always deliver on time and aim to leave our customers completely satisfied with what they ordered.

The ordering process is fully online, and it goes as follows:

  • Select the topic and the deadline of your essay.
  • Provide us with any details, requirements, statements that should be emphasized or particular parts of the essay writing process you struggle with.
  • Leave the email address, where your completed order will be sent to.
  • Select your prefered payment type, sit back and relax!

With lots of experience on the market, professionally degreed essay writers , online 24/7 customer support and incredibly low prices, you won't find a service offering a better deal than ours.

Critical Thinking Academy

What is Critical thinking? 

There are many definitions of Critical thinking. Some of them very long and comprehensive in coverage of everything critical thinking includes, while others are short definitions but  very succintly summarize what Critical thinking is and what leads to becoming a critical thinker. Here are three of them.

1. "Critical thinking is the process of making clear reasoned judgments" ...Beyer, 1995

2. “Critical thinking is the ability to look at a situation and clearly understand it from multiple perspectives while separating facts from opinions, myths, prejudices, hunches (intuition) and assumptions”….. Pearsons

3. "It involves the ability to questions assumptions etc. in order to make logical decisions based on consideration of the options and evaluation of all facts". … Pearsons

What do you need to learn to become a critical thinker? 

All of us know critical thinking by its absence or critical thinking traits that we see in a person. When someone makes a foolish decision or applies the first solution that comes to their mind in problem-solving, we know that critical thinking has not been exercised. But critical thinking itself has not been defined for  most of us -either in our education or later in the workplace.

Maybe we see Critical thinking as applied common sense. Critical thinking may also be defined as the process of making clear reasoned judgments about any claim, issue, or solution to a problem. Some also define it as the process of determining whether a claim is true or false. There are more complex definitions such as Critical thinking is skilled and active participation and evaluation of observations and communications, information, and argumentation (Fisher and Scriven). 

None of the academic definitions manage to communicate what Critical thinking is, its elements, and how it could be useful in the workplace, education, or life. To better understand what Critical thinking is, it is useful to look at the actual elements that go into Critical thinking, and see how they apply in various situations at work and in life.

Critical thinking is the process of making clear reasoned judgements. 

Elements of critical thinking

There are three elements that aid in critical thinking, and another three that obstruct critical thinking.

Logical reasoning: You would not expect an accountant to draw up a balance sheet without the knowledge of the debit/credit system. However, we are expected to be absolutely logical in our reasoning about problems and decision making. The absence of a formal introduction to logical reasoning results in even the most intelligent people miss a few steps in their reasoning. There are three main types of reasoning: Deductive reasoning, Inductive reasoning, and Causal reasoning. Of these, Inductive reasoning and Causal reasoning as the most commonly applied systems of logic in the workplace, education, and our daily life.

Clear thinking and communication: Discussions often end up at cross-purposes and pointless due to a lack of clear communication, and this lack of clarity is often due to a lack of definition of terms, ambiguity, and deliberated or unintended use of vague language.

Credibility: We are often required to evaluate suppliers and people to decide whether to work with them or not. We also rely on the opinions of others to make a varying range of decisions for the business, in education and life. How do we know how much credibility we should attach to the advice we get from these people, or how do we determine whether a supplier will be dependable or not? There are some simple principles that we can use to help us in our process of making judgments about credibility.

Elements that obstruct 

  Rhetoric: In the context of Critical thinking, rhetoric is the use of language to evoke emotions in us and persuade us into belief or action. Words have the power to express, elicit images, and evoke emotions in us. They have tremendous persuasive power or what can be called rhetoric force or emotive force. When a leader calls on soldiers to sacrifice lives for the sake of their country, or when citizens are passionately asked to join a protest to protect freedom, these are appeals to our emotions and not our logical reasoning. Rhetorical language and devices can cloud our ability to reason logically.  

Cognitive biases: A cognitive bias is a systematic error in our thinking and judgment and can be due to a number of different reasons such as faulty memory or perception and processing errors of our brains. There could be a number of other reasons, and scientists are still researching the causes of these cognitive biases. A cognitive bias is different from Fallacies in the sense that these errors are based on our incorrect perception and processing of information by our brains, whereas fallacies are simple errors in reasoning. Knowledge of fallacies can help us avoid reasoning errors, but cognitive biases may arise even if we have knowledge of these biases. Often the only way to mitigate errors due to cognitive biases is to rely on data or seek third party opinions.

hidden traps of persuasion banner

Critical Thinking Academy is founded with an intention of disseminating Critical thinking skills to executives…

The Sourcebook for Teaching Science

  • Sourcebook Home

Science Teaching Series

  • The Sourcebook for Teaching Science
  • Hands-On Physics Activities
  • Hands-On Chemistry Activities

Internet Resources

I. developing scientific literacy.

  • 1 - Building a Scientific Vocabulary
  • 2 - Developing Science Reading Skills
  • 3 - Developing Science Writing Skills
  • 4 - Science, Technology & Society

II. Developing Scientific Reasoning

  • 5 - Employing Scientific Methods
  • 6 - Developing Scientific Reasoning
  • 7 - Thinking Critically & Misconceptions

III. Developing Scientific Understanding

  • 8 - Organizing Science Information
  • 9 - Graphic Oganizers for Science
  • 10 - Learning Science with Analogies
  • 11 - Improving Memory in Science
  • 12 - Structure and Function in Science
  • 13 - Games for Learning Science

IV. Developing Scientific Problem Solving

  • 14 - Science Word Problems
  • 15 - Geometric Principles in Science
  • 16 - Visualizing Problems in Science
  • 17 - Dimensional Analysis
  • 18 - Stoichiometry

V. Developing Scientific Research Skills

  • 19 - Scientific Databases
  • 20 - Graphing & Data Analysis
  • 21 - Mapping & Visualizing Data
  • 22 - Science Inquiry & Research
  • 23 - Science Projects & Fairs

VI. Resources for Teaching Science

  • 24 - Science Curriculum & Instruction
  • 25 - Planning Science Instruction
  • 26 - The Science Laboratory
  • 27 - Science Reference Information

Elements of Critical Thinking

Definition of critical thinking.

  • Identification of premises and conclusions .  Critical thinkers break arguments into basic statements and draw logical implications.
  • Clarification of arguments : Critical thinkers locate ambiguity and vagueness in arguments and propositions.
  • Establishment of facts :   Critical thinkers determine if the premises are reasonable and identify information that has been omitted or not collected.  They determine if the implications are logical and search for potentially contradictory data.
  • Evaluation of Logic : Critical thinkers determine if the premises support the conclusion. In deductive arguments, the conclusions must be true if the premises are true.  In inductive arguments, the conclusions are likely if the premises are true.
  • Final evaluation :  Critical thinkers weigh the evidence and arguments.  Supporting data, logic and evidence increase the weight of an argument.  Contradictions and lack of evidence decrease the weight of an argument.  Critical thinkers do not accept propositions if they think there is more evidence against them or if the argument is unclear, omits significant information, or has false premises or poor logic.
  • Norman Herr, Ph.D.
  • RMIT Australia
  • RMIT Europe
  • RMIT Vietnam
  • RMIT Global
  • RMIT Online
  • Alumni & Giving

RMIT University Library - Learning Lab

  • What will I do?
  • What will I need?
  • Who will help me?
  • About the institution
  • New to university?
  • Studying efficiently
  • Time management
  • Mind mapping
  • Note-taking
  • Reading skills
  • Argument analysis
  • Preparing for assessment
  • Critical thinking and argument analysis
  • Online learning skills
  • Starting my first assignment
  • Researching your assignment
  • What is referencing?
  • Understanding citations
  • When referencing isn't needed
  • Paraphrasing
  • Summarising
  • Synthesising
  • Integrating ideas with reporting words
  • Referencing with Easy Cite
  • Getting help with referencing
  • Acting with academic integrity
  • Artificial intelligence tools
  • Understanding your audience
  • Writing for coursework
  • Literature review
  • Academic style
  • Writing for the workplace
  • Spelling tips
  • Writing paragraphs
  • Writing sentences
  • Academic word lists
  • Annotated bibliographies
  • Artist statement
  • Case studies
  • Creating effective poster presentations
  • Essays, Reports, Reflective Writing
  • Law assessments
  • Oral presentations
  • Reflective writing
  • Art and design
  • Critical thinking
  • Maths and statistics
  • Sustainability
  • Educators' guide
  • Learning Lab content in context
  • Latest updates
  • Students Alumni & Giving Staff Library

Learning Lab

Getting started at uni, study skills, referencing.

  • When referencing isn't needed
  • Integrating ideas

Writing and assessments

  • Critical reading
  • Poster presentations
  • Postgraduate report writing

Subject areas

For educators.

  • Educators' guide
  • Elements of critical thinking

Identifying the topic

Identifying the topic is the first step in critical analysis of a text.

Topic refers to the word or sentence, which states the main subject of the work, i.e. the issue or idea with which the entire work is related. The work is the author's explanation of the topic. The topic is explicit, and often identified in the main title and should be evident in the abstract or opening paragraph. It answers the pivotal questions of who, what and why through data and facts.

Critical thinking processes:

The critical thinking process has three key elements.

  • evaluate and 
  • synthesise.
  • Identify the parts of an argument.
  • deconstruct, divide, determine, resolve, anatomise, cut up, break up, disintegrate, separate, lay bare, dissect, part

When you analyse you:

  • identify the main elements of a text, particularly the key ideas, the argument and the evidence
  • draw out inferences 
  • draw out implications 
  • identify persuasive tactics if used.

Examples of language that analyses

The first suggests that........... . The implication is that.......... although.......... .

The second component of the evidence provided is derived from...........and indicates a high level of....... .This could be seen as implying....... .

The third element is comprised of.......... . It supports Wright’s claim in that it........... .

Overall, the research demonstrates........... and.......... .However, it also suggests that........... .

  • gauge, appraise, assess, calculate, allocate value, decide, criticise, grade, size up, take measure

When you evaluate you:

  • identify the strengths and weaknesses in an argument (credibility)
  • weigh up the value of evidence (validity)
  • identify and evaluate the assumptions underlying the argument (integrity).

Examples of language that evaluates

The latter, a survey of.........strongly suggests that......... . This evidence is relevant in that it.........and credible in that it.......... .

However, the analysis of the narrative component of the research does not support her assertion that....... .

It suggests rather that........ which undermines her claim that.......... .

Furthermore, it is based on the assumption that.........which is not .........given the ........... .

  • to combine; to make whole.
  • amalgamate, incorporate, harmonise, blend, integrate, orchestrate, symphonise, unify, arrange, manufacture

When you synthesise you:

  • put information together in a new pattern
  • provide a new point of view
  • show how the relationship between the parts, and between the parts and the whole produce a unique communication.

Examples of language that synthesises

In contrast, Jones (2012), in highlighting...........provides insight into..........and demonstrates a high level of correlation between........and........ .

Jones’s (2012) analytic focus on..........facilitates a further contribution to.......by....... .

Overall, the research demonstrates that..........and.......... .

  • What is critical thinking?
  • Why think critically?
  • Becoming a critical thinker
  • Exercise - elements of critical thinking
  • Additional resources

Still can't find what you need?

The RMIT University Library provides study support , one-on-one consultations and peer mentoring to RMIT students.

  • Facebook (opens in a new window)
  • Twitter (opens in a new window)
  • Instagram (opens in a new window)
  • Linkedin (opens in a new window)
  • YouTube (opens in a new window)
  • Weibo (opens in a new window)
  • Copyright © 2024 RMIT University |
  • Accessibility |
  • Learning Lab feedback |
  • Complaints |
  • ABN 49 781 030 034 |
  • CRICOS provider number: 00122A |
  • RTO Code: 3046 |
  • Open Universities Australia

Critical Thinking

  • What is Critical Thinking?
  • Intellectual Standards

Elements of Thought

Critical thinking - standards of thought - part 1 - by richard paul, critical thinking and the basic elements of thought - by richard paul.

  • Intellectual Traits
  • Helpful Resources
  • Cite Sources Accurately

elements of critical thinking are

The elements of reasoning, or structures of thought - is the idea that all reasoning contains parts, and that these parts enable one to analyze thinking, any thinking whatsoever, in order to best understand it. - Richard Paul, The Foundation for Critical Thinking

Paul’s theory points out that all reasoning contains the eight elements, and therefore can be analyzed into eight specific parts – in determining the full logic of the reasoning. , because all human reasoning contains these eight parts, all products of reasoning (conversations, articles, books, speeches, editorials, video programs, etc.) can be analyzed according to the eight elements. - the  foundation for critical thinking.

  • The Elements of Reasoning - The Foundation for Critical Thinking Reasoning occurs when we draw conclusions based upon reasons. We can upgrade the quality of our reasoning when we understand the intellectual processes that underlie our reasoning.
  • Beginning the Paper: Elements of Reasoning - Critical Writing : A Guide to Writing a Paper Using the Concepts and Processes of Critical Thinking The elements of reasoning are tools both for developing your thinking about a topic you are writing about and for constructing a strong, articulated overall plan for your paper.

Dr. Richard Paul defines the universal standards with which thinking may be "taken apart" evaluated and assessed. Excerpted from the Socratic Questioning Video Series from the Foundation for Critical Thinking. (8:33)

Dr. richard paul discusses and defines the basic elements of thought involved in critical thinking. excerpted from the socratic questioning video series. (5:00).

  • << Previous: Intellectual Standards
  • Next: Intellectual Traits >>
  • Last Updated: Jan 22, 2024 6:00 PM
  • URL: https://paradisevalley.libguides.com/critical_thinking
  • Departments, units, and programs
  • College leadership
  • Diversity, equity, and inclusion
  • Faculty and staff resources
  • LAS Strategic Plan

Facebook

  • Apply to LAS
  • Liberal arts & sciences majors
  • LAS Insider blog
  • Admissions FAQs
  • Parent resources
  • Pre-college summer programs

Quick Links

Request info

  • Academic policies and standing
  • Advising and support
  • College distinctions
  • Dates and deadlines
  • Intercollegiate transfers
  • LAS Lineup student newsletter
  • Programs of study
  • Scholarships
  • Certificates
  • Student emergencies

Student resources

  • Access and Achievement Program
  • Career services
  • First-Year Experience
  • Honors program
  • International programs
  • Internship opportunities
  • Paul M. Lisnek LAS Hub
  • Student research opportunities
  • Expertise in LAS
  • Research facilities and centers
  • Dean's Distinguished Lecture series
  • Alumni advice
  • Alumni award programs
  • Get involved
  • LAS Alumni Council
  • LAS@Work: Alumni careers
  • Study Abroad Alumni Networks
  • Update your information
  • Nominate an alumnus for an LAS award
  • Faculty honors
  • The Quadrangle Online
  • LAS News email newsletter archive
  • LAS social media
  • Media contact in the College of LAS
  • LAS Landmark Day of Giving
  • About giving to LAS
  • Building projects
  • Corporate engagement
  • Faculty support
  • Lincoln Scholars Initiative
  • Impact of giving

Why is critical thinking important?

What do lawyers, accountants, teachers, and doctors all have in common?

Students in the School of Literatures, Languages, Cultures, and Linguistics give a presentation in a classroom in front of a screen

What is critical thinking?

The Oxford English Dictionary defines critical thinking as “The objective, systematic, and rational analysis and evaluation of factual evidence in order to form a judgment on a subject, issue, etc.” Critical thinking involves the use of logic and reasoning to evaluate available facts and/or evidence to come to a conclusion about a certain subject or topic. We use critical thinking every day, from decision-making to problem-solving, in addition to thinking critically in an academic context!

Why is critical thinking important for academic success?

You may be asking “why is critical thinking important for students?” Critical thinking appears in a diverse set of disciplines and impacts students’ learning every day, regardless of major.

Critical thinking skills are often associated with the value of studying the humanities. In majors such as English, students will be presented with a certain text—whether it’s a novel, short story, essay, or even film—and will have to use textual evidence to make an argument and then defend their argument about what they’ve read. However, the importance of critical thinking does not only apply to the humanities. In the social sciences, an economics major , for example, will use what they’ve learned to figure out solutions to issues as varied as land and other natural resource use, to how much people should work, to how to develop human capital through education. Problem-solving and critical thinking go hand in hand. Biology is a popular major within LAS, and graduates of the biology program often pursue careers in the medical sciences. Doctors use critical thinking every day, tapping into the knowledge they acquired from studying the biological sciences to diagnose and treat different diseases and ailments.

Students in the College of LAS take many courses that require critical thinking before they graduate. You may be asked in an Economics class to use statistical data analysis to evaluate the impact on home improvement spending when the Fed increases interest rates (read more about real-world experience with Datathon ). If you’ve ever been asked “How often do you think about the Roman Empire?”, you may find yourself thinking about the Roman Empire more than you thought—maybe in an English course, where you’ll use text from Shakespeare’s Antony and Cleopatra to make an argument about Roman imperial desire.  No matter what the context is, critical thinking will be involved in your academic life and can take form in many different ways.

The benefits of critical thinking in everyday life

Building better communication.

One of the most important life skills that students learn as early as elementary school is how to give a presentation. Many classes require students to give presentations, because being well-spoken is a key skill in effective communication. This is where critical thinking benefits come into play: using the skills you’ve learned, you’ll be able to gather the information needed for your presentation, narrow down what information is most relevant, and communicate it in an engaging way. 

Typically, the first step in creating a presentation is choosing a topic. For example, your professor might assign a presentation on the Gilded Age and provide a list of figures from the 1870s—1890s to choose from. You’ll use your critical thinking skills to narrow down your choices. You may ask yourself:

  • What figure am I most familiar with?
  • Who am I most interested in? 
  • Will I have to do additional research? 

After choosing your topic, your professor will usually ask a guiding question to help you form a thesis: an argument that is backed up with evidence. Critical thinking benefits this process by allowing you to focus on the information that is most relevant in support of your argument. By focusing on the strongest evidence, you will communicate your thesis clearly.

Finally, once you’ve finished gathering information, you will begin putting your presentation together. Creating a presentation requires a balance of text and visuals. Graphs and tables are popular visuals in STEM-based projects, but digital images and graphics are effective as well. Critical thinking benefits this process because the right images and visuals create a more dynamic experience for the audience, giving them the opportunity to engage with the material.

Presentation skills go beyond the classroom. Students at the University of Illinois will often participate in summer internships to get professional experience before graduation. Many summer interns are required to present about their experience and what they learned at the end of the internship. Jobs frequently also require employees to create presentations of some kind—whether it’s an advertising pitch to win an account from a potential client, or quarterly reporting, giving a presentation is a life skill that directly relates to critical thinking. 

Fostering independence and confidence

An important life skill many people start learning as college students and then finessing once they enter the “adult world” is how to budget. There will be many different expenses to keep track of, including rent, bills, car payments, and groceries, just to name a few! After developing your critical thinking skills, you’ll put them to use to consider your salary and budget your expenses accordingly. Here’s an example:

  • You earn a salary of $75,000 a year. Assume all amounts are before taxes.
  • 1,800 x 12 = 21,600
  • 75,000 – 21,600 = 53,400
  • This leaves you with $53,400
  • 320 x 12 = 3,840 a year
  • 53,400-3,840= 49,560
  • 726 x 12 = 8,712
  • 49,560 – 8,712= 40,848
  • You’re left with $40,848 for miscellaneous expenses. You use your critical thinking skills to decide what to do with your $40,848. You think ahead towards your retirement and decide to put $500 a month into a Roth IRA, leaving $34,848. Since you love coffee, you try to figure out if you can afford a daily coffee run. On average, a cup of coffee will cost you $7. 7 x 365 = $2,555 a year for coffee. 34,848 – 2,555 = 32,293
  • You have $32,293 left. You will use your critical thinking skills to figure out how much you would want to put into savings, how much you want to save to treat yourself from time to time, and how much you want to put aside for emergency funds. With the benefits of critical thinking, you will be well-equipped to budget your lifestyle once you enter the working world.

Enhancing decision-making skills

Choosing the right university for you.

One of the biggest decisions you’ll make in your life is what college or university to go to. There are many factors to consider when making this decision, and critical thinking importance will come into play when determining these factors.

Many high school seniors apply to colleges with the hope of being accepted into a certain program, whether it’s biology, psychology, political science, English, or something else entirely. Some students apply with certain schools in mind due to overall rankings. Students also consider the campus a school is set in. While some universities such as the University of Illinois are nestled within college towns, New York University is right in Manhattan, in a big city setting. Some students dream of going to large universities, and other students prefer smaller schools. The diversity of a university’s student body is also a key consideration. For many 17- and 18-year-olds, college is a time to meet peers from diverse racial and socio-economic backgrounds and learn about life experiences different than one’s own.

With all these factors in mind, you’ll use critical thinking to decide which are most important to you—and which school is the right fit for you.

Develop your critical thinking skills at the University of Illinois

At the University of Illinois, not only will you learn how to think critically, but you will put critical thinking into practice. In the College of LAS, you can choose from 70+ majors where you will learn the importance and benefits of critical thinking skills. The College of Liberal Arts & Sciences at U of I offers a wide range of undergraduate and graduate programs in life, physical, and mathematical sciences; humanities; and social and behavioral sciences. No matter which program you choose, you will develop critical thinking skills as you go through your courses in the major of your choice. And in those courses, the first question your professors may ask you is, “What is the goal of critical thinking?” You will be able to respond with confidence that the goal of critical thinking is to help shape people into more informed, more thoughtful members of society.

With such a vast representation of disciplines, an education in the College of LAS will prepare you for a career where you will apply critical thinking skills to real life, both in and outside of the classroom, from your undergraduate experience to your professional career. If you’re interested in becoming a part of a diverse set of students and developing skills for lifelong success, apply to LAS today!

Read more first-hand stories from our amazing students at the LAS Insider blog .

  • Privacy Notice
  • Accessibility
  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Don't Miss a Post! Subscribe

  • Guest Posts

Educators Technology

  • Educational AI
  • Edtech Tools
  • Edtech Apps
  • Teacher Resources
  • Special Education
  • Edtech for Kids
  • Buying Guides for Teachers

Educators Technology

Educators Technology

Innovative EdTech for teachers, educators, parents, and students

The 8 Elements of Critical Thinking

By Med Kharbach, PhD | Last Update: November 4, 2023

Elements of critical thinking are the topic of our blog post today!

Navigating our digitally saturated world feels like wading through an ocean of information. We’ve reached an unprecedented point in history where we’re drowning in data—accessible with just a tap or a click. The very tool that’s revolutionizing our access to knowledge is also becoming a double-edged sword.

On one hand, the democratization of knowledge is an incredible leap forward, comparable to groundbreaking inventions like fire, electricity, and the internet. But, there’s also a downside: the phenomenon of “infobesity,” or information overload. How do we navigate this ocean without drowning? The answer lies in harnessing the power of critical thinking, a multifaceted skill that’s more crucial now than ever.

In this post, we’re going to dig deep into the anatomy of critical thinking—what it is, why it matters, and how to hone this indispensable skill. Along the way, I’ll draw from established thinking taxonomies, scientific studies, and my own experiences as an educational researcher to guide us through. Let’s jump right in!

Elements of Critical Thinking

This visual is inspired by Elesapiens work

What is critical thinking?

I like to think of critical thinking as an analytic framework, a conceptual structure that weaves together a set of interconnected thinking skills and reasoning abilities. Critical thinking is therefore not a monolithic skill and certainly not a single cognitive ability. 

It is the ensemble of reasoning mechanisms that enable us to synthesize, analyze, process, and evaluate information. It is, as Stanford Encyclopedia of Philosophy defines it, a ‘careful goal-directed thinking’. 

The purpose of critical thinking is to inform our behaviours, actions, decisions and to “improve our ability to reason and generate strong arguments” (Hanscomb, 2016, p. 3). 

The word critical in critical thinking implies two things: First, it implies the existence of a non-critical state of thinking which is the default state underlying the human mind. In this non-critical state, the mind becomes a warehouse of facts, a receptacle of unfiltered ideas and arguments. 

The taken for granted becomes the norm. Conversely,  in the critical state the mind makes use of complex cognitive processes to filter out information and evaluate judgements. The taken for granted is problematised and put to the question. This dichotomy of critical versus uncritical is grounded within a general discussion of thinking skills taxonomies. 

Bloom’s taxonomy, first originated in 1956, is probably one of the most popular taxonomies that attempt to categorize educational objectives into several thinking skills organized along a continuum of cognitive complexity with higher order thinking skills at one end and lower order thinking skills at the other. 

In 2001, Anderson and Krathwohl revised Bloom’s taxonomy and introduced the following six verbs: remember, understand, apply, analyze, evaluate, and create. As Howard et al (2015) argued, “most students focus on the first three parts of this cognitive complexity. 

Critical thinking and creativity depend on the three more advanced parts of cognitive complexity: analyzing, evaluating, and creating” (p. 134)

Indeed, we are thinking animals but only when we become aware of our thinking, that is, when we engage in meta-thinking (thinking about thinking), that we take the first step towards becoming critical thinkers. 

The second implication of the word critical refers to the existence of implicitly biased or distorted norms and that it is the job of critical thinkers  to uncover and expose these distortions. 

One pertinent example in this regard is the phenomenon of fake news . The ability to recognize misinformation is a pure function of critical thinking. Being able to critically appraise and filter information allows one to develop clearer processes of thinking which is why critical thinking is seldom defined as ‘the ability to think clearly and rationally’ .

5 Important Critical Thinking Skills

Critical thinking, as stated earlier, is an analytic framework that consists of several thinking skills some of which include: 

1- Asking questions

The ability to think critically starts with posing serious and deep questions regarding what is normatively considered valid and true knowledge. Critical questions are precursors of deep learning. 

They drive one’s quest to uncover different perspectives, opinions, and dispositions. Critical thinkers do not ask questions for the sake of questions but to spark learning and discovery. They are motivated by a restless need to learn.

2- Problem solving

Critical thinkers are goal oriented. Their objective is to find solutions to emerging problems. These solutions can come in different forms and formats. 

Whether it is to find the valid version of a piece of news, uncover the hidden motives behind an author’s statement, understand why things are the way they are, or to simply disambiguate a faulty line of reasoning and refute what appears to be solid arguments, critical thinkers are constantly propelled by an ethical and intellectual obligation to seek alternative perspectives, solutions, and ways of knowing. 

3- Analysing

Analytical practice is at the core of critical thinking. The abilities to ask questions and problem-solve are only effective when coupled with rigorous analytic practice. Analysis is where sifting chaff from grain takes place. 

It entails looking at hints, hidden markers, implicit associations and implications and making informed decisions. Critical analysts are sharp observers. They do not simply look but they  see  and  envision  what the laymen can not readily see.  

4- Evaluating

Critical thinkers assess information against multiple criteria and never take propositions for granted. They consider knowledge as socially constructed and relative and is therefore always prone to contention, fallacies, and falsifications. Evaluation involves scrutinizing various sources and perspectives, taking into account excluded voices, and silent viewpoints.

5- Inferring

Inferring is another key critical thinking skill. It allows one to draw conclusions from analyzed data before making any educated guess. 

Elements of critical thinking

Critical thinking is a process that is composed of a number of elements. Stanford Encyclopedia of Philosophy outlined 11 components of the critical thinking process: observing, feeling, wondering, imagining, inferring, knowledge, consulting, identifying, judging, and deciding. I adapted Stanford’s categorisation of the elements of critical thinking and synthesized them into 8 key elements:

1- Observing

At the observation phase, one notices inconsistencies, irregularities, and abnormalities in their immediate environment. Observing is all about acknowledging the presence of an issue or a problematic that requires further investigation and scrutiny. 

After observing data, one wonders about possible scenarios, plans, actions, behaviours, etc that could have been applied but were not. Wondering is about posing questions and imagining possible answers.

3- Gather information

To seek answers to their questions, critical thinkers gather information from different sources. Their goal is to cover the issue from different angles and explore as many perspectives as possible. All possible sources of data are vetted with an eye on inconsistencies, differences, divergences and contradictions.

Analysis is an important element of the critical thinking process. It is through analysis that critical thinkers deconstruct arguments, reveal implicit biases, and explore alternative viewpoints. Analysis is a methodical process that entails examining and re-examining data searching for patterns of thought and identifying structural discrepancies

5- Synthesize

The next step after collecting data from multiple sources and analyzing it is to synthesize it. Critical thinkers put disparate ideas, assumptions, facts, and propositions together and combine them into an overarching argument. 

Effective synthesis requires deeper levels of understanding because one can only deconstruct and combine ideas after they have fully internalized them. 

Reflection is another central element of the critical thinking process. Reflection is an iterative process in which one re-assesses their analytical and argumentative logic searching for possible influences, biases, and prejudices that might have impacted their reasoning.

7- Identify

After gathering information, analyzing it and reflecting on it, the critical thinker is now in a position to identify problematic areas and isolate inconsistencies.  The key is to narrow the broad scope of an argument and deconstruct its structure in such a way that it becomes easier to tackle, one problem at a time.

The last element of the critical thinking process is taking decisions. As I stated earlier, the purpose behind critical thinking is for us to be able to make informed decisions, that is, decisions based on solid facts and arguments. 

Characteristics of critical thinkers

Critical thinkers are normal individuals like everybody else except that they have developed strong cognitive filters that help them navigate the world in  more nuanced ways. Given their preoccupation with deeper forms of understanding , critical thinkers have developed unique characteristics including:

➥  Empathetic : Critical thinkers are empathetic individuals. They acknowledge and understand the feelings of others, build affinities and sympathise with them.

➥  Flexible : critical thinkers are guided by logical and reasoned argumentation and therefore have no problem changing their positions and beliefs whenever a new convincing evidence emerges.  

➥  Hard working : Critical thinkers do not take shortcuts. They compare and contrast different sources, vet resources, debate arguments, uncover hidden relations and interconnections, and put the work necessary to reach what they believe are valid conclusions. 

➥  Independent : Critical thinkers do not swear allegiance to any creed, dogma, tribe, or ideology. Their creed is logic and reason. They thrive in intellectual freedom and have a deeper sense of responsibility and respect for others. Critical thinkers are self-directed and independent life-long learners.

➥  Reflective:  Critical thinkers are reflective individuals. They constantly reflect on their actions, thinking processes, emotions, and feelings. They always seek to uncover new shades of meanings, discover hidden feelings and reactions, and optimize their reflective practice.

➥  Objective:  Critical thinkers recognize their biases and personal assumptions and are explicit about their influences. Their methodology is evidence-based.

➥  Observant:  Critical analysts have an acute sense of observation and a sharp eye for detail. They view the minutiae of everyday life as possible sources of insightful data and the path towards enlightening hunches. 

Examples of what critical thinkers can do

Critical thinkers are able to :

  • Identify fallacious arguments and provide counter-arguments.
  • Conceptualize and analyze ideas effectively.
  • Synthesize information from various sources into solid arguments.
  • Evaluate information, compare and contrast it, and identify argumentative strengths and weaknesses.
  • Structure arguments along a clear and logical order breaking down complex concepts into digestible ideas.
  • Use different forms of data collection methods to gather information including observation, experience, reading, reflection, etc.
  • Read between and beneath lines , access hidden meanings, and expose implications.

Final thoughts

In this digital age where information overload is the norm rather than the exception, the call to arms is clear: Equip yourself with critical thinking skills. Far from a monolithic concept, critical thinking is an intricate tapestry of cognitive abilities that empower us to analyze, evaluate, and synthesize the world around us. From grappling with the constant bombardment of facts and fallacies in the media to dissecting the implicit biases that often go unnoticed, the value of critical thinking is incalculable.

It’s not just an intellectual exercise; it’s a vital life skill that underpins our actions, decisions, and even our empathetic understanding of others. The word “critical” itself hints at the importance of challenging the status quo, whether it’s fake news or social norms. As thinkers in this vast digital playground, let’s make it our mission to be not just consumers of information but discerning evaluators.

More sources

  • Defining critical thinking (The Foundation for Critical Thinking)
  • Critical thinking (Stanford Encyclopedia of Philosophy)
  • Anderson, L. W., & Krathwohl, D. R. (Eds.). (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. New York: Addison Wesley Longman
  • What is critical thinking (University of Louisville)
  • 6 Critical skills you need to master now (RASMUSSEN University)
  • Critical thinking and problem solving (The University of Tennessee)
  • Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956).Taxonomy of educational objectives: The classification of educational goals. Handbook I: Cognitive domain. New York: David McKay
  • Hanscomb, S. (2016). Critical thinking : The basics. Taylor & Francis Group.
  • Howard, L. w., Tang, T. L., & Austin, M. J (2015). Teaching Critical Thinking Skills: Ability, Motivation, Intervention, and the Pygmalion Effect.J Bus Ethics 128:133–147. DOI 10.1007/s10551-014-2084-0
  • Critical thinking: Educating competent citizen s (Elesapiens)

elements of critical thinking are

Join our mailing list

Never miss an EdTech beat! Subscribe now for exclusive insights and resources .

elements of critical thinking are

Meet Med Kharbach, PhD

Dr. Med Kharbach is an influential voice in the global educational technology landscape, with an extensive background in educational studies and a decade-long experience as a K-12 teacher. Holding a Ph.D. from Mount Saint Vincent University in Halifax, Canada, he brings a unique perspective to the educational world by integrating his profound academic knowledge with his hands-on teaching experience. Dr. Kharbach's academic pursuits encompass curriculum studies, discourse analysis, language learning/teaching, language and identity, emerging literacies, educational technology, and research methodologies. His work has been presented at numerous national and international conferences and published in various esteemed academic journals.

elements of critical thinking are

Join our email list for exclusive EdTech content.

Video Series

elements of critical thinking are

  • Analyze the logic of a problem or issue
  • Analyze the logic of an article, essay, or text
  • Analyze the logic of any book of nonfiction
  • Evaluate an Author’s Reasoning
  • Analyze the logic of a character in a novel
  • Analyze the logic of a profession, subject, or discipline
  • Analyze the logic of a concept or idea
  • Distinguishing Inferences and Assumptions
  • Thinking Through Conflicting Ideas
  • Could you elaborate further?
  • Could you give me an example?
  • Could you illustrate what you mean?
  • How could we check on that?
  • How could we find out if that is true?
  • How could we verify or test that?
  • Could you be more specific?
  • Could you give me more details?
  • Could you be more exact?
  • How does that relate to the problem?
  • How does that bear on the question?
  • How does that help us with the issue?
  • What factors make this a difficult problem?
  • What are some of the complexities of this question?
  • What are some of the difficulties we need to deal with?
  • Do we need to look at this from another perspective?
  • Do we need to consider another point of view?
  • Do we need to look at this in other ways?
  • Does all this make sense together?
  • Does your first paragraph fit in with your last?
  • Does what you say follow from the evidence?
  • Is this the most important problem to consider?
  • Is this the central idea to focus on?
  • Which of these facts are most important?
  • Do I have any vested interest in this issue?
  • Am I sympathetically representing the viewpoints of others?

Everyone thinks; it is our nature to do so. But much of our thinking, left to itself, is biased, distorted, partial, uninformed, or downright prejudiced. If we want to think well, we must understand at least the udiments of thought, the most basic structures out of which all thinking is made. We must learn how to take thinking apart.

All Thinking Is Defined by the Eight Elements That Make It Up. Eight basic structures are present in all thinking: Whenever we think, we think for a purpose within a point of view based on assumptions leading to implications and consequences. We use concepts, ideas and theories to interpret data, facts, and experiences in order to answer questions, solve problems, and resolve issues.

  • generates purposes
  • raises questions
  • uses information
  • utilizes concepts
  • makes inferences
  • makes assumptions
  • generates implications
  • embodies a point of view
  • What is your, my, their purpose in doing________?
  • What is the objective of this assignment (task, job, experiment, policy, strategy, etc.)?
  • Should we question, refine, modify our purpose (goal, objective, etc.)?
  • What is the purpose of this meeting (chapter, relationship, action)?
  • What is your central aim in this line of thought?
  • What is the purpose of education?
  • Why did you say…?
  • Take time to state your purpose clearly.
  • Distinguish your purpose from related purposes.
  • Check periodically to be sure you are still on target.
  • Choose significant and realistic purposes.
  • What is the question I am trying to answer?
  • What important questions are embedded in the issue?
  • Is there a better way to put the question?
  • Is this question clear? Is it complex?
  • I am not sure exactly what question you are asking. Could you explain it?
  • The question in my mind is this: How do you see the question?
  • What kind of question is this? Historical? Scientific? Ethical? Political? Economic? Or…?
  • What would we have to do to settle this question?
  • State the question at issue clearly and precisely.
  • Express the question in several ways to clarify its meaning.
  • Break the question into sub-questions.
  • Distinguish questions that have definitive answers from those that are a matter of opinion or that require multiple viewpoints.
  • What information do I need to answer this question?
  • What data are relevant to this problem?
  • Do we need to gather more information?
  • Is this information relevant to our purpose or goal?
  • On what information are you basing that comment?
  • What experience convinced you of this? Could your experience be distorted?
  • How do we know this information (data, testimony) is accurate?
  • Have we left out any important information that we need to consider?
  • Restrict your claims to those supported by the data you have.
  • Search for information that opposes your position as well as information that supports it.
  • Make sure that all information used is clear, accurate and relevant.
  • Make sure you have gathered sufficient information.
  • What conclusions am I coming to?
  • Is my inference logical?
  • Are there other conclusions I should consider?
  • Does this interpretation make sense?
  • Does our solution necessarily follow from our data?
  • How did you reach that conclusion?
  • What are you basing your reasoning on?
  • Is there an alternative plausible conclusion?
  • Given all the facts what is the best possible conclusion?
  • How shall we interpret these data?
  • Infer only what the evidence implies.
  • Check inferences for their consistency with each other.
  • Identify assumptions underlying your inferences.
  • What idea am I using in my thinking? Is this idea causing problems for me or for others?
  • I think this is a good theory, but could you explain it more fully?
  • What is the main hypothesis you are using in your reasoning?
  • Are you using this term in keeping with established usage?
  • What main distinctions should we draw in reasoning through this problem?
  • What idea is this author using in his or her thinking? Is there a problem with it?
  • Identify key concepts and explain them clearly.
  • Consider alternative concepts or alternative definitions of concepts.
  • Make sure you are using concepts with precision.
  • What am I assuming or taking for granted?
  • Am I assuming something I shouldn’t?
  • What assumption is leading me to this conclusion?
  • What is… (this policy, strategy, explanation) assuming?
  • What exactly do sociologists (historians, mathematicians, etc.) take for granted?
  • What is being presupposed in this theory?
  • What are some important assumptions I make about my roommate, my friends, my parents, my instructors, my country?
  • Clearly identify your assumptions and determine whether they are justifiable.
  • Consider how your assumptions are shaping your point of view.
  • If I decide to do “X”, what things might happen?
  • If I decide not to do “X”, what things might happen?
  • What are you implying when you say that?
  • What is likely to happen if we do this versus that?
  • Are you implying that…?
  • How significant are the implications of this decision?
  • What, if anything, is implied by the fact that a much higher percentage of poor people are in jail than wealthy people?
  • Trace the implications and consequences that follow from your reasoning.
  • Search for negative as well as positive implications.
  • Consider all possible consequences.
  • How am I looking at this situation? Is there another way to look at it that I should consider?
  • What exactly am I focused on? And how am I seeing it?
  • Is my view the only reasonable view? What does my point of view ignore?
  • Have you ever considered the way ____(Japanese, Muslims, South Americans, etc.) view this?
  • Which of these possible viewpoints makes the most sense given the situation?
  • Am I having difficulty looking at this situation from a viewpoint with which I disagree?
  • What is the point of view of the author of this story?
  • Do I study viewpoints that challenge my personal beliefs?
  • Identify your point of view.
  • Seek other points of view and identify their strengths as well as weaknesses.
  • Strive to be fairminded in evaluating all points of view.

SEP logo

  • Table of Contents
  • New in this Archive
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment. Political and business leaders endorse its importance.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o'clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68-69; 1933: 91-92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot's position, it must appear to project far out in front of the boat. Morevoer, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69-70; 1933: 92-93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond line from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009), others on the resulting judgment (Facione 1990a), and still others on the subsequent emotive response (Siegel 1988).

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in frequency in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the frequency of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Critical thinking dispositions can usefully be divided into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started) (Facione 1990a: 25). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), and Black (2012).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work.

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? Abrami et al. (2015) found that in the experimental and quasi-experimental studies that they analyzed dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), and Bailin et al. (1999b).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Casserly, Megan, 2012, “The 10 Skills That Will Get You Hired in 2013”, Forbes , Dec. 10, 2012. Available at https://www.forbes.com/sites/meghancasserly/2012/12/10/the-10-skills-that-will-get-you-a-job-in-2013/#79e7ff4e633d ; accessed 2017 11 06.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; accessed 2017 09 26.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; accessed 2018 04 09.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; accessed 2018 04 14.
  • Dumke, Glenn S., 1980, Chancellor’s Executive Order 338 , Long Beach, CA: California State University, Chancellor’s Office. Available at https://www.calstate.edu/eo/EO-338.pdf ; accessed 2017 11 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”. Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; accessed 2017 12 02.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://drive.google.com/file/d/0BzUoP_pmwy1gdEpCR05PeW9qUzA/view ; accessed 2017 12 01.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • Obama, Barack, 2014, State of the Union Address , January 28, 2014. [ Obama 2014 available online ]
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Information available at http://www.ocr.org.uk/qualifications/as-a-level-gce-critical-thinking-h052-h452/ ; accessed 2017 10 12.
  • OECD [Organization for Economic Cooperation and Development] Centre for Educational Research and Innovation, 2018, Fostering and Assessing Students’ Creative and Critical Thinking Skills in Higher Education , Paris: OECD. Available at http://www.oecd.org/education/ceri/Fostering-and-assessing-students-creative-and-critical-thinking-skills-in-higher-education.pdf ; accessed 2018 04 22.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; accessed 2017 11 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; accessed 2017 11 29.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2011, Curriculum for the Compulsory School, Preschool Class and the Recreation Centre , Stockholm: Ordförrådet AB. Available at http://malmo.se/download/18.29c3b78a132728ecb52800034181/pdf2687.pdf ; accessed 2017 11 16.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up this entry topic at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Center for Teaching Thinking (CTT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach (criticalTHINKING.net)
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2018 by David Hitchcock < hitchckd @ mcmaster . ca >

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

Stanford Center for the Study of Language and Information

The Stanford Encyclopedia of Philosophy is copyright © 2016 by The Metaphysics Research Lab , Center for the Study of Language and Information (CSLI), Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

Bruce Tulgan, JD

Master the 3 Basics of Critical Thinking

Critical thinking is a whole lot harder than it looks..

Posted March 15, 2023 | Reviewed by Vanessa Lancaster

  • Why Education Is Important
  • Find a Child Therapist
  • The best way to build strong mental muscles is the same as building physical muscles: Exercise regularly.
  • Often, you don’t need to make important decisions based on your current judgment.
  • Good decision-making is about being able to predict likely outcomes.

magele-picture/Adobe Stock

Critical thinking skills are incredibly valuable–among the most in-demand skills in nearly every labor market sector. They are so valuable and in demand because they are considered to be in relatively short supply. That’s because critical thinking is a whole lot harder than it looks.

Critical thinkers do not leap to conclusions. Instead, they take the time to consider various possibilities and do not become too attached to one point of view. They do not latch on to one solution. Rather, they know that most solutions are temporary and improve over time with new data. Critical thinkers are in the habit of distinguishing between reliable and unreliable sources. They carefully weigh the strengths of conflicting views and apply logical reasoning. Critical thinkers are, at once, open to the views of others and supremely independent in their judgments.

If you want to set yourself apart at your job or in the hiring process, these are the three elements of critical thinking to master.

1. Proactive Learning

Here’s why you should care about proactive learning: Of course, the more you learn, the more you will know. But there is more to it than that: All the leading research shows that the very act of learning also strengthens your mind. If you are not actively learning, your mind is weakening—just like any muscle. No matter how smart you are, if you are not actively learning, you steadily lose those smarts over time.

The best way to build strong mental muscles is the same as physical ones: exercise them regularly. That means studying information, practicing technique, and contemplating multiple competing perspectives:

  • Stored knowledge is the result of studying good information.
  • Stored skills are the result of practicing good technique.
  • Stored wisdom is the result of contemplating multiple competing good perspectives.

“Good technique,” in the case of non-physical skills, means keeping an open mind. That means suspending judgment, questioning assumptions, and continually seeking the best new information, technique, and perspective.

2. Problem-Solving

In today’s information environment, so many answers to so many questions are available at the tip of their fingers. Many people today are simply not in the habit of truly thinking on their feet. Without a lot of experience puzzling through problems, it should be no surprise that many people are often puzzled when encountering unanticipated problems.

Here’s the thing: Usually, you don’t need to make important decisions based on your current judgment. You are much better off if you can rely on the accumulated experience of the organization in which you are working.

Ready-made solutions are just best practices captured, turned into standard operating procedures, and deployed throughout the organization to employees for use as job aids. The most common is a simple checklist:

  • If A happens, do B
  • If C happens, do D
  • If E happens, do F

What kind of job aids do you have at your disposal to deal with recurring problems? If you already have such job aids at your disposal, how can you better use them as learning tools?

And here’s the good news: By mastering these best practices, you will get better not only at solving the specific problems anticipated but also much better at solving unanticipated problems. By implementing specific step-by-step solutions to recurring problems, you will learn a lot about good problem-solving.

3. Decision-Making

Decision-making is not the same as sheer brain power, mental capacity, or natural intelligence . It’s not a matter of accumulated knowledge or memorized information. It is more than the mastery of techniques and tools.

Good decision-making is about predicting likely outcomes–the ability to see the connections between cause and effect–to project out the consequences of one set of events and actions instead of another. The irony is that learning from the past is the only way to develop that “go forward” ability to predict the future.

But experience alone does not teach good decision-making. The key to learning from experience is paying close attention and aggressively drawing lessons from one’s experiences. If you can begin to see the patterns in causes and their effects, you can start thinking ahead with insight. Ultimately, that’s the key to better decision-making.

Bruce Tulgan, JD

Bruce Tulgan, JD, is the founder and CEO of RainmakerThinking and the author of The Art of Being Indispensable at Work.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Teletherapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

March 2024 magazine cover

Understanding what emotional intelligence looks like and the steps needed to improve it could light a path to a more emotionally adept world.

  • Coronavirus Disease 2019
  • Affective Forecasting
  • Neuroscience

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 22 April 2024

The design and evaluation of gamified online role-play as a telehealth training strategy in dental education: an explanatory sequential mixed-methods study

  • Chayanid Teerawongpairoj 1 ,
  • Chanita Tantipoj 1 &
  • Kawin Sipiyaruk 2  

Scientific Reports volume  14 , Article number:  9216 ( 2024 ) Cite this article

Metrics details

  • Health care
  • Health services
  • Public health

To evaluate user perceptions and educational impact of gamified online role-play in teledentistry as well as to construct a conceptual framework highlighting how to design this interactive learning strategy, this research employed an explanatory sequential mixed-methods design. Participants were requested to complete self-perceived assessments toward confidence and awareness in teledentistry before and after participating in a gamified online role-play. They were also asked to complete a satisfaction questionnaire and participate in an in-depth interview to investigate their learning experience. The data were analyzed using descriptive statistics, paired sample t-test, one-way analysis of variance, and framework analysis. There were 18 participants who completed self-perceived assessments and satisfaction questionnaire, in which 12 of them participated in a semi-structured interview. There were statistically significant increases in self-perceived confidence and awareness after participating in the gamified online role-play ( P  < 0.001). In addition, the participants were likely to be satisfied with this learning strategy, where usefulness was perceived as the most positive aspect with a score of 4.44 out of 5, followed by ease of use (4.40) and enjoyment (4.03). The conceptual framework constructed from the qualitative findings has revealed five key elements in designing a gamified online role-play, including learner profile, learning settings, pedagogical components, interactive functions, and educational impact. The gamified online role-play has demonstrated its potential in improving self-perceived confidence and awareness in teledentistry. The conceptual framework developed in this research could be considered to design and implement a gamified online role-play in dental education. This research provides valuable evidence on the educational impact of gamified online role-play in teledentistry and how it could be designed and implemented in dental education. This information would be supportive for dental instructors or educators who are considering to implement teledentistry training in their practice.

Similar content being viewed by others

elements of critical thinking are

Impact of artificial intelligence on human loss in decision making, laziness and safety in education

Sayed Fayaz Ahmad, Heesup Han, … Antonio Ariza-Montes

elements of critical thinking are

Sleep quality, duration, and consistency are associated with better academic performance in college students

Kana Okano, Jakub R. Kaczmarzyk, … Jeffrey C. Grossman

elements of critical thinking are

Effect of sleep and mood on academic performance—at interface of physiology, psychology, and education

Kosha J. Mehta

Introduction

Telehealth has gained significant attention from various organization due to its potential to improve healthcare quality and accessibility 1 . It can be supportive in several aspects in healthcare, including medical and nursing services, to enhance continuous monitoring and follow-up 2 . Its adoption has increased substantially during the COVID-19 pandemic, aiming to provide convenient healthcare services 3 . Even though the COVID-19 outbreak has passed, many patients still perceive telehealth as an effective tool in reducing a number of visits and enhancing access to health care services 4 , 5 . This supports the use of telehealth in the post-COVID-19 era.

Teledentistry, a form of telehealth specific to dentistry, has been employed to improve access to dental services 6 . This system offers benefits ranging from online history taking, oral diagnosis, treatment monitoring, and interdisciplinary communication among dental professionals, enabling comprehensive and holistic treatment planning for patients 7 . Teledentistry can also reduce travel time and costs associated with dental appointments 8 , 9 , 10 . There is evidence that teledentistry serves as a valuable tool to enhance access to dental care for patients 11 . Additionally, in the context of long-term management in patients, telehealth has contributed to patient-centered care, by enhancing their surrounding environments 12 . Therefore, teledentistry should be emphasized as one of digital dentistry to enhance treatment quality.

Albeit the benefits of teledentistry, available evidence demonstrates challenges and concerns in the implementation of telehealth. Lack of awareness and knowledge in the use of telehealth can hinder the adoption of telehealth 13 . Legal issues and privacy concerns also emerge as significant challenges in telehealth use 14 . Moreover, online communication skills and technology literacy, including competency in using technological tools and applications, have been frequently reported as challenges in teledentistry 15 , 16 . Concerns regarding limitations stemming from the lack of physical examination are also significant 17 . These challenges and complexities may impact the accuracy of diagnosis and the security and confidentiality of patient information. Therefore, telehealth training for dental professionals emerges as essential prerequisites to effectively navigate the use of teledentistry, fostering confidence and competence in remote oral healthcare delivery.

The feasibility and practicality of telehealth in dental education present ongoing challenges and concerns. Given the limitations of teledentistry compared to face-to-face appointments, areas of training should encompass the telehealth system, online communication, technical issues, confidentiality concerns, and legal compliance 18 . However, there is currently no educational strategy that effectively demonstrates the importance and application of teledentistry 19 . A role-play can be considered as a teaching strategy where learners play a role that closely resembles real-life scenarios. A well-organized storytelling allows learner to manage problematic situations, leading to the development of problem-solving skill 20 , 21 . When compared to traditional lecture-based learning, learners can also enhance their communication skills through conversations with simulated patients 22 , 23 . In addition, they could express their thoughts and emotions during a role-play through experiential learning 20 , 24 , 25 . Role-play through video teleconference would be considered as a distance learning tool for training dental professionals to effectively use teledentistry.

While there have been studies supporting online role-play as an effective learning tool due to its impact of flexibility, engagement, and anonymity 26 , 27 , no evidence has been yet reported whether or not this learning strategy could have potential for training teledentistry. Given the complicated issues in telehealth, role-play for training teledentistry should incorporate different learning aspects compared to face-to-face communication with patients. In addition, game components have proved to be supportive in dental education 28 , 29 . Consequently, this research aimed to evaluate user perceptions and educational impact of gamified online role-play to enhance learner competence and awareness in using teledentistry as well as to construct a conceptual framework highlighting how to design and implement this interactive learning strategy. This research would introduce and promote the design and implementation of gamified online role-play as a learning tool for training teledentistry. To achieve the aim, specific objectives were established as follows:

1. To design a gamified online role-play for teledentistry training.

2. To investigate learner perceptions regarding their confidence and awareness in the use of teledentistry after completing the gamified online role-play.

3. To explore user satisfactions toward the use of gamified online role-play.

4. To develop a conceptual framework for designing and implementing a gamified online role-play for teledentistry training.

Materials and methods

Research design.

This research employed an explanatory sequential mixed-methods design, where a quantitative phase was firstly performed followed by a qualitative phase 30 , 31 . The quantitative phase was conducted based on pre-experimental research using one-group pretest–posttest design. Participants were requested to complete self-perceived assessments toward confidence and awareness in the use of teledentistry before and after participating in a gamified online role-play. They were also asked to complete a satisfaction questionnaire in using a gamified online role-play for training teledentistry. The qualitative phase was afterwards conducted to explore in-depth information through semi-structured interviews, in order to enhance an understanding of the quantitative phase, and to develop a conceptual framework for designing and implementing an online role-play for training teledentistry.

A gamified online role-play for training teledentistry

A gamified online role-play was designed and developed by the author team. To ensure its educational impact was significant, the expected learning outcomes were formulated based on insights gathered from a survey with experienced instructors from the Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University. These learning outcomes covered areas of online communication skill, technical issues, technology literacy of patients, limitations of physical examination, and privacy concerns of personal information. Learning scenario and instructional content were subsequently designed to support learners in achieving the expected learning outcomes, with their alignments validated by three experts in dental education. A professional actress underwent training to role-play a patient with a dental problem, requesting a virtual consultation or teledentistry. Before conducting data collection, the simulated patient was required to undergo a training and adjusting process with a pilot group under supervision of two experts in advanced general dentistry and dental education who had experience with teledentistry to ensure realism and completeness of learning content.

According to the role-play scenario, an actress was assigned to portray a 34-year-old female with chief complaints of pain around both ears, accompanied by difficulties in chewing food due to tooth loss. She was instructed to express her anxiety and nervousness about addressing these issues. Additionally, it was specified that she could not take a day off from work during this period. Despite this constraint, she required a dental consultation to receive advice for initial self-care, as her symptoms significantly impacted her daily life. Furthermore, she was designated to encounter difficulties with the technological use of the teledentistry platform.

The game components were implemented into the online role-play to enhance motivation and engagement. As challenge and randomness appear to be game elements 32 , 33 , five challenge cards were designed and embedded into the online role-play, where a participant was asked to randomly select one of them before interacting with the simulated patient. The challenging situations were potential technical concerns which could occur frequently during video conferencing, including network problems (e.g., internet disconnection and poor connection) and audiovisual quality issues. The participants were blinded to the selected card, while it was revealed to only the simulated patient. The challenging conditions were mimicked by the organizers and simulated patient, allowing learners to deal with difficulties. Therefore, both challenges and randomness were implemented into this learning intervention not only to create learning situations but also to enhance engagement.

A feedback system was carefully considered and implemented into the gamified online role-play. Immediate feedback appears to be a key feature of interactive learning environments 29 . Formative feedback was instantly delivered to learners through verbal and non-verbal communication, including words (content), tone of voice, facial expressions, and gestures of the simulated patient. This type of feedback allowed participants to reflect on whether or not their inputs were appropriate, enabling them to learn from their mistakes, or so-called the role of failure 34 . Summative feedback was also provided at the end of the role-play through a reflection from a simulated patient and suggestions from an instructor.

Learners were able to interact with the simulated patient using an online meeting room by Cisco WebEx. According to the research setting (Fig.  1 ), a learner was asked to participate in the role-play activity using a computer laptop in a soundproof room, while a simulated patient was arranged in a prepared location showing her residential environment. The researcher and instructor also joined the online meeting room and observed the interaction between the simulated patient and learners during the role-play activity whether or not all necessary information was accurately obtained. The role-play activity took around 30 minutes.

figure 1

A diagram demonstrating the setting of gamified online role-play.

Research participants

Quantitative phase.

The participants in this research were postgraduate students from the Residency Training Program in Advanced General Dentistry at Mahidol University Faculty of Dentistry in academic year 2022, using a volunteer sampling. This program was selected because its objective was to develop graduates capable of integrating competencies from various dental disciplines to provide comprehensive dental care for both normal patients and those with special needs. Therefore, teledentistry should be a supportive component of their service. The recruitment procedure involved posting a recruiting text in the group chat of the residents. Those interested in participating in the research were informed to directly contact us to request more information, and they were subsequently allowed to decide whether they would like to participate. This approach ensured that participation was voluntary. Although there could be a non-response bias within this non-probability sampling technique 35 , it was considered as appropriate for this study, as participants were willing to have contribution in the learning activity, and therefore accurate and reliable research findings with no dropout could be achieved 36 .

The inclusion and exclusion criteria were established to determine the eligibility of prospective participants for this research. This study included postgraduate students from Years 1 to 3 in the Residency Training Program in Advanced General Dentistry at Mahidol University Faculty of Dentistry, enrolled during the academic year 2022. They were also required to at least complete the first semester to be eligible for this research to ensure familiarity with comprehensive dental care. However, they were excluded if they had previous involvement in the pilot testing of the gamified online role-play or if they were not fluent in the Thai language. The sample size was determined using a formula for two dependent samples (comparing means) 37 . To detect a difference in self-perceived confidence and awareness between pre- and post-assessments at a power of 90% and a level of statistical significance of 1%, five participants were required. With an assumed dropout rate of 20%, the number of residents per year (Year 1–3) was set to be 6. Therefore, 18 residents were required for this research.

Qualitative phase

The participants from the quantitative phase were selected for semi-structured interviews using a purposive sampling. This sampling method involved the selection of information-rich participants based on specific criteria deemed relevant to the research objective and to ensure a diverse representation of perspectives and experiences within the sample group 38 . In this research, the information considered for the purposive sampling included demographic data (e.g., sex and year of study), along with self-perceived assessment scores. By incorporating perceptions from a variety of participants, a broad spectrum of insights from different experiences in comprehensive dental practice and diverse improvement levels in self-perceived confidence and awareness could inform the design and implementation of the training program effectively. The sample size for this phase was determined based on data saturation, wherein interviews continued until no new information or emerging themes were retrieved. This method ensured thorough exploration of the research topic and maximized the richness of the qualitative data obtained.

Outcome assessments

To evaluate the gamified online role-play, a triangular design approach was employed, enabling the researchers to compare the research outcomes from different assessment methods. In this research, self-perceived assessments (confidence and awareness) in teledentistry, satisfactions toward gamified online role-play, and learner experience were assessed to assure the quality and feasibility of the gamified online role-play.

Self-perceived confidence and awareness toward teledentistry

All participants were requested to rate their perceptions of teledentistry before and after participating in the gamified online role-play (Supplementary material 1 ). The self-perceived assessment was developed based on previous literature 39 , 40 , 41 , 42 . The assessment scores would inform whether or not the participants could improve their self-perceived confidence and awareness through a learning activity. The assessment consisted of two parts, which were (1) self-perceived confidence and (2) self-perceived awareness. Each part contained six items, which were similar between the pre- and post-assessments. All items were designed using a 5-point Likert scale, where 1 being ‘strongly disagree’ and 5 being ‘strongly agree’.

Satisfactions toward the gamified online role-play

All participants were asked to complete the satisfaction questionnaire after participating in the gamified online role-play, to investigate whether or not they felt satisfied with their learning (Supplementary material 2 ). The questionnaire was developed based on previous literature regarding gamification and role-play 41 , 42 , 43 , 44 . Most of the items were designed using a 5-point Likert scale, where 1 being ‘very dissatisfied’ and 5 being ‘very satisfied’. They were grouped into three aspects, which were (1) Perceived usefulness, (2) Perceived ease of use, and (3) Perceived enjoyment.

Learner experiences within the gamified online role-play

Semi-structured interviews were conducted with the purposively selected participants to gather in-depth information regarding their learning experiences within the gamified online role-play. This technique allowed researchers to ask additional interesting topics raised from the responses of participants. A topic guide for interviews were constructed based on the findings of previous literature 45 , 46 , 47 . The interview was conducted in a private room by a researcher who was trained in conducting qualitative research including interviews. The interview sessions took approximately 45–60 minutes, where all responses from participants were recorded using a digital audio recorder with their permission. The recorded audios were transcribed using a verbatim technique by a transcription service under a confidential agreement.

Validity and reliability of data collection tools

To enhance the quality of self-perceived assessment and satisfaction questionnaire, they were piloted and revised to assure their validity and reliability. According to the content validity, three experts in advanced general dentistry were asked to evaluate the questionnaire, where problematic items were iteratively revised until they achieved the index of item-objective congruence (IOC) higher than 0.5. To perform a test–retest reliability, the validated versions of both self-perceived assessment and satisfaction questionnaire were afterwards piloted in residents from other programs, and the data were analyzed using an intraclass correlation coefficient (ICC), where the values of all items were 0.7 or greater. The data from the first pilot completion of both data collection tools were analyzed using Cronbach’s alpha to ensure the internal consistency of all constructs. The problematic items were deleted to achieve the coefficient alpha of 0.7 or greater for all constructs, which was considered as acceptable internal consistency.

Data analysis

The quantitative data retrieved from self-perceived assessment and satisfaction questionnaire were analyzed with the Statistical Package for Social Sciences software (SPSS, version 29, IBM Corp.). Descriptive statistics were performed to present an overview of the data. The scores from pre- and post-assessments were analyzed using a paired sample t-test to evaluate whether or not the participants would better self-perceive their confidence and awareness in teledentistry after participating in the gamified online role-play. One-way analysis of variance (ANOVA) was conducted to compare whether or not there were statistically significant differences in self-perceived assessment and satisfaction scores among the three academic years.

The qualitative data retrieved from semi-structured interviews were analyzed using a framework analysis, where its procedure involved transcription, familiarization with the interview data, coding, developing an analytical framework, indexing, charting, and data interpreting qualitative findings 48 . In this research, the initial codes had been pre-defined from previous literature and subsequently adjusted following the analysis of each transcript to develop an analytical framework (themes and subthemes), requiring several iterations until no additional codes emerged. Subsequently, the established categories and codes were applied consistently across all transcripts (indexing). The data from each transcript were then charted to develop a matrix, facilitating the management and summarization of qualitative findings. This method enabled the researchers to compare and contrast differences within the data and to identify connections between categories, thereby exploring their relationships and informing data interpretation.

The procedure of framework analysis necessitated a transparent process for data management and interpretation of emerging themes to ensure the robustness of research 49 . The transparency of this analytic approach enabled two researchers (C.Te. and K.S.) to independently analyze the qualitative data, and the emerging themes afterwards were discussed to obtain consensus among the researchers. This technique can be considered as a triangular approach to assure the intercoder reliability and internal validity of this research. The transparent process also allowed an external expert in dental education to verify the accuracy of the analysis. All emerging themes and the decision on data saturation were based on a discussion of all researchers until an agreement was made. NVivo (version 14, QSR International) was used to performed the qualitative data analysis. Subsequently, a conceptual framework was constructed to demonstrate emerging themes and subthemes together with their relationships.

Ethical consideration

The ethical approval for the study was approved by the Institutional Review Board of Faculty of Dentistry and Faculty of Pharmacy, Mahidol University on 29 th September 2022, the ethical approval number: MU-DT/PY-IRB 2022/049.2909. All methods were performed in accordance with the relevant guidelines and regulations. Although the data were not anonymous in nature as they contained identifiable data, they were coded prior to the analysis to assure confidentiality of participants.

Informed consent

Informed consent was obtained from all participants.

There were 18 residents from Year 1 to 3 of the Residency Training Program in Advanced General Dentistry who participated in this research (six from each year). Of these, there were 14 females and 4 males. There was no participant dropout, as all of them completed all required tasks, including the pre- and post-perceived assessments, gamified online role-play, and satisfaction questionnaire. According to the purposive sampling, the participants from the quantitative phase were selected for semi-structured interviews by considering sex, year of study, and self-perceived assessment scores. Twelve students (ten females and two males) participated in semi-structured interviews, where their characteristics are presented in Table 1 .

Internal consistency of all constructs

The data collected from the research participants, in addition to the pilot samples, were analyzed with Cronbach’s alpha to confirm the internal consistency. The coefficient alpha of all constructs demonstrated high internal consistency, as demonstrated in Table 2 .

Self-perceived assessments toward confidence and awareness of teledentistry

There were statistically significant increases in the assessment scores of self-perceived confidence and awareness after participating in the gamified online role-play ( P  < 0.001). According to Table 3 , there was an increase in self-perceived confidence from 3.38 (SD = 0.68) for the pre-assessment to 4.22 (SD = 0.59) for the post-assessment ( P  < 0.001). The findings of self-perceived awareness also showed score improvement from 4.16 (SD = 0.48) to 4.55 (SD = 0.38) after interacting with the simulated patient ( P  < 0.001).

According to Fig.  2 , participants demonstrated a higher level of self-perceived assessments for both self-confidence and awareness in all aspects after participating in the gamified online role-play for teledentistry training.

figure 2

Self-perceived assessments toward confidence and awareness of teledentistry.

When comparing the self-perceived assessment scores toward confidence and awareness in the use of teledentistry among the three years of study (Year 1–3), there were no statistically significant differences in the pre-assessment, post-assessment score, and score difference (Table 4 ).

Satisfactions toward the use of gamified online role-play

According to Fig.  3 , participants exhibited high levels of satisfaction with the use of gamified online role-play across all three aspects. The aspect of usefulness received the highest satisfaction rating with a score of 4.44 (SD = 0.23) out of 5, followed by ease of use and enjoyment, scoring 4.40 (SD = 0.23) and 4.03 (SD = 0.21), respectively. Particularly, participants expressed the highest satisfaction levels regarding the usefulness of gamified online role-play for identifying their role (Mean = 4.72, SD = 0.46) and developing problem-solving skills associated with teledentistry (Mean = 4.61, SD = 0.50). Additionally, they reported satisfaction with the learning sequence presented in the gamified online role-play (Mean = 4.61, SD = 0.50). However, participants did not strongly perceive that the format of the gamified online role-play could engage them with the learning task for an extended period (Mean = 3.72, SD = 0.83).

figure 3

Satisfactions toward the use of gamified online role-play.

When comparing the satisfaction levels perceived by participants from different academic years (Table 5 ), no statistically significant differences were observed among the three groups for all three aspects ( P  > 0.05).

Following the framework analysis of qualitative data, there were five emerging themes, including: (1) learner profile, (2) learning settings of the gamified online role-play, (3) pedagogical components, (4) interactive functions, and (5) educational impact.

Theme 1: Learner profile

Learner experience and preferences appeared to have impact on how the participants perceived the use of gamified online role-play for teledentistry training. When learners preferred role-play or realized benefits of teledentistry, they were likely to support this learning intervention. In addition, they could have seen an overall picture of the assigned tasks before participating in this research.

“I had experience with a role-play activity when I was dental undergraduates, and I like this kind of learning where someone role-plays a patient with specific personalities in various contexts. This could be a reason why I felt interested to participate in this task (the gamified online role-play). I also believed that it would be supportive for my clinical practice.” Participant 12, Year 1, Female “Actually, I' have seen in several videos (about teledentistry), where dentists were teaching patients to perform self-examinations, such as checking their own mouth and taking pictures for consultations. Therefore, I could have thought about what I would experience during the activity (within the gamified online role-play).” Participant 8, Year 2, Female

Theme 2: Learning settings of the gamified online role-play

Subtheme 2.1: location.

Participants had agreed that the location for conducting a gamified online role-play should be in a private room without any disturbances, enabling learners to focus on the simulated patient. This could allow them to effectively communicate and understand of the needs of patient, leading to a better grasp of lesson content. In addition, the environments of both learners and simulated patient should be authentic to the learning quality.

“The room should be a private space without any disturbances. This will make us feel confident and engage in conversations with the simulated patient.” Participant 10, Year 1, Female “… simulating a realistic environment can engage me to interact with the simulated patient more effectively ...” Participant 8, Year 2, Female

Subtheme 2.2: Time allocated for the gamified online role-play

The time allocated for the gamified online role-play in this research was considered as appropriate, as participants believed that a 30-minutes period should be suitable to take information and afterwards give some advice to their patient. In addition, a 10-minutes discussion on how they interact with the patient could be supportive for participants to enhance their competencies in the use of teledentistry.

“… it would probably take about 20 minutes because we would need to gather a lot of information … it might need some time to request and gather various information … maybe another 10-15 minutes to provide some advice.” Participant 7, Year 1, Female “I think during the class … we could allocate around 30 minutes for role-play, … we may have discussion of learner performance for 10-15 minutes ... I think it should not be longer than 45 minutes in total.” Participant 6, Year 2, Female

Subtheme 2.3: Learning consequence within a postgraduate curriculum

Most participants suggested that the gamified online role-play in teledentistry should be arranged in the first year of their postgraduate program. This could maximize the effectiveness of online role-play, as they would be able to implement teledentistry for their clinical practice since the beginning of their training. However, some participants suggested that this learning approach could be rearranged in either second or third year of the program. As they already had experience in clinical practice, the gamified online role-play would reinforce their competence in teledentistry.

"Actually, it would be great if this session could be scheduled in the first year … I would feel more comfortable when dealing with my patients through an online platform." Participant 11, Year 2, Male "I believe this approach should be implemented in the first year because it allows students to be trained in teledentistry before being exposed to real patients. However, if this approach is implemented in either the second or third year when they have already had experience in patient care, they would be able to better learn from conversations with simulated patients." Participant 4, Year 3, Male

Theme 3: Pedagogical components

Subtheme 3.1: learning content.

Learning content appeared to be an important component of pedagogical aspect, as it would inform what participants should learn from the gamified online role-play. Based on the interview data, participants reported they could learn how to use a video teleconference platform for teledentistry. The conditions of simulated patient embedded in an online role-play also allowed them to realize the advantages of teledentistry. In addition, dental problems assigned to the simulated patient could reveal the limitations of teledentistry for participants.

“The learning tasks (within the gamified online role-play) let me know how to manage patients through the teleconference.” Participant 5, Year 2, Female “… there seemed to be limitations (of teledentistry) … there could be a risk of misdiagnosis … the poor quality of video may lead to diagnostic errors … it is difficult for patients to capture their oral lesions.” Participant 3, Year 2, Female

Subtheme 3.2: Feedback

During the use of online role-play, the simulated patient can provide formative feedback to participants through facial expressions and tones of voice, enabling participants to observe and learn to adjust their inquiries more accurately. In addition, at the completion of the gamified online role-play, summative feedback provided by instructors could summarize the performance of participants leading to further improvements in the implementation of teledentistry.

“I knew (whether or not I interacted correctly) from the gestures and emotions of the simulated patient between the conversation. I could have learnt from feedback provided during the role-play, especially from the facial expressions of the patient.” Participant 11, Year 2, Male “The feedback provided at the end let me know how well I performed within the learning tasks.” Participant 2, Year 1, Female

Theme 4: Interactive functions

Subtheme 4.1: the authenticity of the simulated patient.

Most participants believed that a simulated patient with high acting performance could enhance the flow of role-play, allowing learners to experience real consequences. The appropriate level of authenticity could engage learners with the learning activity, as they would have less awareness of time passing in the state of flow. Therefore, they could learn better from the gamified online role-play.

"It was so realistic. ... This allowed me to talk with the simulated patient naturally ... At first, when we were talking, I was not sure how I should perform … but afterwards I no longer had any doubts and felt like I wanted to explain things to her even more." Participant 3, Year 2, Female "At first, I believed that if there was a factor that could influence learning, it would probably be a simulated patient. I was impressed by how this simulated patient could perform very well. It made the conversation flow smoothly and gradually." Participant 9, Year 3, Female

Subtheme 4.2: Entertaining features

Participants were likely to be satisfied with the entertaining features embedded in the gamified online role-play. They felt excited when they were being exposed to the unrevealed challenge which they had randomly selected. In addition, participants suggested to have more learning scenarios or simulated patients where they could randomly select to enhance randomness and excitement.

“It was a playful experience while communicating with the simulated patient. There are elements of surprise from the challenge cards that make the conversation more engaging, and I did not feel bored during the role-play.” Participant 4, Year 3, Male “I like the challenge card we randomly selected, as we had no idea what we would encounter … more scenarios like eight choices and we can randomly choose to be more excited. I think we do not need additional challenge cards, as some of them have already been embedded in patient conditions.” Participant 5, Year 2, Female

Subtheme 4.3: Level of difficulty

Participants suggested the gamified online role-play to have various levels of difficulty, so learners could have a chance to select a suitable level for their competence. The difficulties could be represented through patient conditions (e.g., systemic diseases or socioeconomic status), personal health literacy, and emotional tendencies. They also recommended to design the gamified online role-play to have different levels where learners could select an option that is suitable for them.

“The patient had hidden their information, and I needed to bring them out from the conversation.” Participant 12, Year 1, Female “Patients' emotions could be more sensitive to increase level of challenges. This can provide us with more opportunities to enhance our management skills in handling patient emotions.” Participant 11, Year 2, Male “… we can gradually increase the difficult level, similar to playing a game. These challenges could be related to the simulated patient, such as limited knowledge or difficulties in communication, which is likely to occur in our profession.” Participant 6, Year 2, Female

Theme 5: Educational impact

Subtheme 5.1: self-perceived confidence in teledentistry, communication skills.

Participants were likely to perceive that they could learn from the gamified online role-play and felt more confident in the use of teledentistry. This educational impact was mostly achieved from the online conversation within the role-play activity, where the participants could improve their communication skills through a video teleconference platform.

“I feel like the online role-play was a unique form of learning. I believe that I gained confidence from the online communication the simulated patient. I could develop skills to communicate effectively with real patients.” Participant 11, Year 2, Male “I believe it support us to train communication skills ... It allowed us to practice both listening and speaking skills more comprehensively.” Participant 4, Year 3, Male

Critical thinking and problem-solving skills

In addition to communication skills, participants reported that challenges embedded in the role-play allowed them to enhance critical thinking and problem-solving skills, which were a set of skills required to deal with potential problems in the use of teledentistry.

"It was a way of training before experiencing real situations … It allowed us to think critically whether or not what we performed with the simulated patients was appropriate." Participant 7, Year 1, Female “It allowed us to learn how to effectively solve the arranged problems in simulated situation. We needed to solve problems in order to gather required information from the patient and think about how to deliver dental advice through teledentistry.” Participant 11, Year 2, Male

Subtheme 5.2: Self perceived awareness in teledentistry

Participants believed that they could realize the necessity of teledentistry from the gamified online role-play. The storytelling or patient conditions allowed learners to understand how teledentistry could have both physical and psychological support for dental patients.

“From the activity, I would consider teledentistry as a convenient tool for communicating with patients, especially if a patient cannot go to a dental office”. Participant 5, Year 2, Female “I learned about the benefits of teledentistry, particularly in terms of follow-up. The video conference platform could support information sharing, such as drawing images or presenting treatment plans, to patients.” Participant 8, Year 2, Female

A conceptual framework of learning experience within a gamified online role-play

Based on the qualitative findings, a conceptual framework was developed in which a gamified online role-play was conceptualized as a learning strategy in supporting learners to be able to implement teledentistry in their clinical practice (Fig.  4 ).

figure 4

The conceptual framework of key elements in designing a gamified online role-play.

The conceptual framework has revealed key elements to be considered in designing a gamified online role-play. Learner profile, learning settings, pedagogical components, and interactive functions are considered as influential factors toward user experience within the gamified online role-play. The well-designed learning activity will support learners to achieve expected learning outcomes, considered as educational impact of the gamified online role-play. The contributions of these five key elements to the design of gamified online role-play were interpreted, as follows:

Learner profile: This element tailors the design of gamified online role-plays for teledentistry training involves considering the background knowledge, skills, and experiences of target learners to ensure relevance and engagement.

Learning settings: The element focuses the planning for gamified online role-plays in teledentistry training involves selecting appropriate contexts, such as location and timing, to enhance accessibility and achieve learning outcomes effectively.

Pedagogical components: This element emphasizes the alignment between learning components and learning outcomes within gamified online role-plays, to ensure that the content together with effective feedback design can support learners in improving their competencies from their mistakes.

Interactive functions: This element highlights interactivity features integrated into gamified online role-plays, such as the authenticity and entertaining components to enhance immersion and engagement, together with game difficulty for optimal flow. All these features should engage learners with the learning activities until the achievement of learner outcomes.

Educational impact: This element represents the expected learning outcomes, which will inform the design of learning content and activities within gamified online role-plays. In addition, this element could be considered to evaluate the efficacy of gamified online role-plays, reflecting how well learning designs align with the learning outcomes.

A gamified online role-play can be considered as a learning strategy for teledentistry according to its educational impact. This pedagogical approach could mimic real-life practice, where dental learners could gain experience in the use of teledentistry in simulated situations before interacting with actual patients. Role-play could provide learners opportunities to develop their required competencies, especially communication and real-time decision-making skills, in a predictable and safe learning environment 20 , 23 , 46 . Potential obstacles could also be arranged for learners to deal with, leading to the enhancement of problem-solving skill 50 . In addition, the recognition of teledentistry benefits can enhance awareness and encourage its adoption and implementation, which could be explained by the technology acceptance model 51 . Therefore, a gamified online role-play with a robust design and implementation appeared to have potential in enhancing self-perceived confidence and awareness in the use of teledentistry.

The pedagogical components comprised learning content, which was complemented by assessment and feedback. Learners could develop their competence with engagement through the learning content, gamified by storytelling of the online role-play 52 , 53 . Immediate feedback provided through facial expression and voice tone of simulated patients allowed participants to learn from their failure, considered as a key feature of game-based learning 29 , 45 . The discussion of summative feedback provided from an instructor at the end of role-play activity could support a debriefing process enabling participants to reflect their learning experience, considered as important of simulation-based game 54 . These key considerations should be initially considered in the design of gamified online role-play.

The interactive functions can be considered as another key component for designing and evaluating the gamified online role-play 45 . Several participants enjoyed with a learning process within the gamified online role-play and suggested it to have more learning scenarios. In other words, this tool could engage learners with an instructional process, leading to the achievement of learning outcomes 29 , 45 . As challenge and randomness appear to be game elements 32 , 33 , this learning intervention assigned a set of cards with obstacle tasks for learners to randomly pick up before interacting with simulated patients, which was perceived by participants as a feature to make the role-play more challenging and engaging. This is consistent with previous research, where challenging content for simulated patients could make learners more engaged with a learning process 55 . However, the balance between task challenges and learner competencies is certainly required for the design of learning activities 56 , 57 . The authenticity of simulated patient and immediate feedback could also affect the game flow, leading to the enhancement of learner engagement 45 . These elements could engage participants with a learning process, leading to the enhancement of educational impact.

The educational settings for implementing gamified online role-play into dental curriculum should be another concern. This aspect has been recognized as significant in existing evidence 45 . As this research found no significant differences in all aspects among the three groups of learners, this learning intervention demonstrated the potential for its implementation at any time of postgraduate dental curriculum. This argument can be supported by previous evidence where a role-play could be adaptable for learning at any time, as it requires a short learning period but provides learners with valuable experience prior to being exposed in real-life scenarios 58 . This strategy also provides opportunities for learners who have any question or concern to seek advice or guidance from their instructors 59 . Although the gamified online role-play can be arranged in the program at any time, the first academic year should be considered, as dental learners would be confidence in implementing teledentistry for their clinical practice.

While a gamified online role-play demonstrated its strengths as an interactive learning strategy specifically for teledentistry, there are a couple of potential drawbacks that need to be addressed. The requirement for synchronous participation could limit the flexibility of access time for learners (synchronous interactivity limitation). With only one learner able to engage with a simulated patient at a time (limited participants), more simulated patients would be required if there are a number of learners, otherwise they would need to wait for their turn. Time and resources are significantly required for preparing simulated patients 60 . Despite the use of trained and calibrated professional actors/actresses, inauthenticity may be perceived during role-plays, requiring a significant amount of effort to achieve both interactional and clinical authenticities 46 . Future research could investigate asynchronous learning approaches utilizing non-player character (NPC) controlled by an artificial intelligence system as a simulated patient. This setup would enable multiple learners to have the flexibility to engage with the material at their own pace and at times convenient to them 29 . While there are potential concerns about using gamified online role-plays, this interactive learning intervention offers opportunities for dental professionals to enhance their teledentistry competency in a safe and engaging environment.

Albeit the robust design and data collection tools to assure reliability and validity as well as transparency of this study, a few limitations were raised leading to a potential of further research. While this research recruited only postgraduate students to evaluate the feasibility of gamified online role-play in teledentistry training, further research should include not only experienced dental practitioners but also undergraduate students to confirm its potential use in participants with different learner profiles. More learning scenarios in other dental specialties should also be included to validate its effectiveness, as different specialties could have different limitations and variations. Additional learning scenarios from various dental disciplines should be considered to validate the effectiveness of gamified online role-plays, as different specialties may present unique limitations and variations. A randomized controlled trial with robust design should be required to compare the effectiveness of gamified online role-play with different approaches in training the use of teledentistry.

Conclusions

This research supports the design and implementation of a gamified online role-play in dental education, as dental learners could develop self-perceived confidence and awareness with satisfaction. A well-designed gamified online role-play is necessary to support learners to achieve expected learning outcomes, and the conceptual framework developed in this research can serve as a guidance to design and implement this interactive learning strategy in dental education. However, further research with robust design should be required to validate and ensure the educational impact of gamified online role-play in dental education. Additionally, efforts should be made to develop gamified online role-play in asynchronous learning approaches to enhance the flexibility of learning activities.

Data availability

The data that support the findings of this study are available from the corresponding author, up-on reasonable request. The data are not publicly available due to information that could compromise the privacy of research participants.

Van Dyk, L. A review of telehealth service implementation frameworks. Int. J. Environ. Res. Public Health 11 (2), 1279–1298 (2014).

Article   PubMed   PubMed Central   Google Scholar  

Bartz, C. C. Nursing care in telemedicine and telehealth across the world. Soins. 61 (810), 57–59 (2016).

Article   PubMed   Google Scholar  

Lin, G.S.S., Koh, S.H., Ter, K.Z., Lim, C.W., Sultana, S., Tan, W.W. Awareness, knowledge, attitude, and practice of teledentistry among dental practitioners during COVID-19: A systematic review and meta-analysis. Medicina (Kaunas). 58 (1), 130 (2022).

Wolf, T.G., Schulze, R.K.W., Ramos-Gomez, F., Campus, G. Effectiveness of telemedicine and teledentistry after the COVID-19 pandemic. Int. J. Environ. Res. Public Health. 19 (21), 13857 (2022).

Gajarawala, S. N. & Pelkowski, J. N. Telehealth benefits and barriers. J. Nurse Pract. 17 (2), 218–221 (2021).

Jampani, N. D., Nutalapati, R., Dontula, B. S. & Boyapati, R. Applications of teledentistry: A literature review and update. J. Int. Soc. Prev. Community Dent. 1 (2), 37–44 (2011).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Khan, S. A. & Omar, H. Teledentistry in practice: literature review. Telemed. J. E. Health. 19 (7), 565–567 (2013).

Baheti, M. J. B. S., Toshniwal, N. G. & Misal, A. Teledentistry: A need of the era. Int. J. Dent. Med. Res. 1 (2), 80–91 (2014).

Google Scholar  

Datta, N., Derenne, J., Sanders, M. & Lock, J. D. Telehealth transition in a comprehensive care unit for eating disorders: Challenges and long-term benefits. Int. J. Eat. Disord. 53 (11), 1774–1779 (2020).

Bursell, S. E., Brazionis, L. & Jenkins, A. Telemedicine and ocular health in diabetes mellitus. Clin. Exp. Optom. 95 (3), 311–327 (2012).

da Costa, C. B., Peralta, F. D. S. & Ferreira de Mello, A. L. S. How has teledentistry been applied in public dental health services? An integrative review. Telemed. J. E. Health. 26 (7), 945–954 (2020).

Heckemann, B., Wolf, A., Ali, L., Sonntag, S. M. & Ekman, I. Discovering untapped relationship potential with patients in telehealth: A qualitative interview study. BMJ Open. 6 (3), e009750 (2016).

Pérez-Noboa, B., Soledispa-Carrasco, A., Padilla, V. S. & Velasquez, W. Teleconsultation apps in the COVID-19 pandemic: The case of Guayaquil City, Ecuador. IEEE Eng. Manag. Rev. 49 (1), 27–37 (2021).

Article   Google Scholar  

Wamsley, C. E., Kramer, A., Kenkel, J. M. & Amirlak, B. Trends and challenges of telehealth in an academic institution: The unforeseen benefits of the COVID-19 global pandemic. Aesthetic Surg. J. 41 (1), 109–118 (2020).

Jonasdottir, S. K., Thordardottir, I. & Jonsdottir, T. Health professionals’ perspective towards challenges and opportunities of telehealth service provision: A scoping review. Int. J. Med. Inform. 167 , 104862 (2022).

Tan, S. H. X., Lee, C. K. J., Yong, C. W. & Ding, Y. Y. Scoping review: Facilitators and barriers in the adoption of teledentistry among older adults. Gerodontology. 38 (4), 351–365 (2021).

Minervini, G. et al. Teledentistry in the management of patients with dental and temporomandibular disorders. BioMed. Res. Int. 2022 , 7091153 (2022).

Edirippulige, S. & Armfield, N. Education and training to support the use of clinical telehealth: A review of the literature. J. Telemed. Telecare. 23 (2), 273–282 (2017).

Article   CAS   PubMed   Google Scholar  

Mariño, R. & Ghanim, A. Teledentistry: A systematic review of the literature. J. Telemed. Telecare. 19 (4), 179–183 (2013).

Article   ADS   PubMed   Google Scholar  

Armitage-Chan, E. & Whiting, M. Teaching professionalism: Using role-play simulations to generate professionalism learning outcomes. J. Vet. Med. Educ. 43 (4), 359–363 (2016).

Spyropoulos, F., Trichakis, I. & Vozinaki, A.-E. A narrative-driven role-playing game for raising flood awareness. Sustainability. 14 (1), 554 (2022).

Jiang, W. K. et al. Role-play in endodontic teaching: A case study. Chin. J. Dent. Res. 23 (4), 281–288 (2020).

PubMed   Google Scholar  

Vizeshfar, F., Zare, M. & Keshtkaran, Z. Role-play versus lecture methods in community health volunteers. Nurse Educ. Today. 79 , 175–179 (2019).

Nestel, D. & Tierney, T. Role-play for medical students learning about communication: Guidelines for maximising benefits. BMC Med. Educ. 7 , 3 (2007).

Gelis, A. et al. Peer role-play for training communication skills in medical students: A systematic review. Simulat. Health. 15 (2), 106–111 (2020).

Cornelius, S., Gordon, C. & Harris, M. Role engagement and anonymity in synchronous online role play. Int. Rev. Res. Open Distrib. Learn. 12 (5), 57–73 (2011).

Bell, M. Online role-play: Anonymity, engagement and risk. Educ. Med. Int. 38 (4), 251–260 (2001).

Sipiyaruk, K., Gallagher, J. E., Hatzipanagos, S. & Reynolds, P. A. A rapid review of serious games: From healthcare education to dental education. Eur. J. Dent. Educ. 22 (4), 243–257 (2018).

Sipiyaruk, K., Hatzipanagos, S., Reynolds, P. A. & Gallagher, J. E. Serious games and the COVID-19 pandemic in dental education: An integrative review of the literature. Computers. 10 (4), 42 (2021).

Morse, J.M., Niehaus, L. Mixed Method Design: Principles and Procedures. (2016).

Creswell, J. W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches 3rd edn. (SAGE Publications, 2009).

Cheng, V. W. S., Davenport, T., Johnson, D., Vella, K. & Hickie, I. B. Gamification in apps and technologies for improving mental health and well-being: Systematic review. JMIR Ment. Health. 6 (6), e13717 (2019).

Gallego-Durán, F. J. et al. A guide for game-design-based gamification. Informatics. 6 (4), 49 (2019).

Gee, J. P. Learning and games. In The Ecology of Games: Connecting Youth, Games, and Learning (ed. Salen, K.) 21–40 (MIT Press, 2008).

Cheung, K. L., ten Klooster, P. M., Smit, C., de Vries, H. & Pieterse, M. E. The impact of non-response bias due to sampling in public health studies: A comparison of voluntary versus mandatory recruitment in a Dutch national survey on adolescent health. BMC Public Health. 17 (1), 276 (2017).

Murairwa, S. Voluntary sampling design. Int. J. Adv. Res. Manag. Social Sci. 4 (2), 185–200 (2015).

Chow, S.-C., Shao, J., Wang, H. & Lokhnygina, Y. Sample Size Calculations in Clinical Research (CRC Press, 2017).

Book   Google Scholar  

Palinkas, L. A. et al. Purposeful sampling for qualitative data collection and analysis in mixed method implementation research. Administration Policy Mental Health Mental Health Services Res. 42 (5), 533–544 (2015).

McIlvried, D. E., Prucka, S. K., Herbst, M., Barger, C. & Robin, N. H. The use of role-play to enhance medical student understanding of genetic counseling. Genet. Med. 10 (10), 739–744 (2008).

Schlegel, C., Woermann, U., Shaha, M., Rethans, J.-J. & van der Vleuten, C. Effects of communication training on real practice performance: A role-play module versus a standardized patient module. J. Nursing Educ. 51 (1), 16–22 (2012).

Manzoor, I. M. F. & Hashmi, N. R. Medical students’ perspective about role-plays as a teaching strategy in community medicine. J. Coll. Physicians Surg. Pak. 22 (4), 222–225 (2012).

Cornes, S., Gelfand, J. M. & Calton, B. Foundational telemedicine workshop for first-year medical students developed during a pandemic. MedEdPORTAL. 17 , 11171 (2021).

King, J., Hill, K. & Gleason, A. All the world’sa stage: Evaluating psychiatry role-play based learning for medical students. Austral. Psychiatry. 23 (1), 76–79 (2015).

Arayapisit, T. et al. An educational board game for learning orofacial spaces: An experimental study comparing collaborative and competitive approaches. Anatomical Sci. Educ. 16 (4), 666–676 (2023).

Sipiyaruk, K., Hatzipanagos, S., Vichayanrat, T., Reynolds, P.A., Gallagher, J.E. Evaluating a dental public health game across two learning contexts. Educ. Sci. 12 (8), 517 (2022).

Pilnick, A. et al. Using conversation analysis to inform role play and simulated interaction in communications skills training for healthcare professionals: Identifying avenues for further development through a scoping review. BMC Med. Educ. 18 (1), 267 (2018).

Lane, C. & Rollnick, S. The use of simulated patients and role-play in communication skills training: A review of the literature to August 2005. Patient Educ. Counseling. 67 (1), 13–20 (2007).

Gale, N. K., Heath, G., Cameron, E., Rashid, S. & Redwood, S. Using the framework method for the analysis of qualitative data in multi-disciplinary health research. BMC Med. Res. Methodol. 13 (1), 117 (2013).

Ritchie, J., Lewis, J., Nicholls, C. M. & Ormston, R. Qualitative Research Practice: A Guide for Social Science Students and Researchers (Sage, 2014).

Chen, J. C. & Martin, A. R. Role-play simulations as a transformative methodology in environmental education. J. Transform. Educ. 13 (1), 85–102 (2015).

Davis, F. D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. Manag. Inform. Syst. Quart. 13 (3), 319–340 (1989).

Novak, E., Johnson, T. E., Tenenbaum, G. & Shute, V. J. Effects of an instructional gaming characteristic on learning effectiveness, efficiency, and engagement: Using a storyline for teaching basic statistical skills. Interact. Learn. Environ. 24 (3), 523–538 (2016).

Marchiori, E. J. et al. A narrative metaphor to facilitate educational game authoring. Comput. Educ. 58 (1), 590–599 (2012).

Luctkar-Flude, M. et al. Effectiveness of debriefing methods for virtual simulation: A systematic review. Clin. Simulat. Nursing. 57 , 18–30 (2021).

Joyner, B. & Young, L. Teaching medical students using role play: Twelve tips for successful role plays. Med. Teach. 28 (3), 225–229 (2006).

Csikszentmihalyi, M. Flow: The Psychology of Optimal Performance (HarperCollins Publishers, 1990).

Buajeeb, W., Chokpipatkun, J., Achalanan, N., Kriwattanawong, N. & Sipiyaruk, K. The development of an online serious game for oral diagnosis and treatment planning: Evaluation of knowledge acquisition and retention. BMC Med. Educ. 23 (1), 830 (2023).

Littlefield, J. H., Hahn, H. B. & Meyer, A. S. Evaluation of a role-play learning exercise in an ambulatory clinic setting. Adv. Health. Sci. Educ. Theory Pract. 4 (2), 167–173 (1999).

Alkin, M. C. & Christie, C. A. The use of role-play in teaching evaluation. Am. J. Evaluat. 23 (2), 209–218 (2002).

Lovell, K. L., Mavis, B. E., Turner, J. L., Ogle, K. S. & Griffith, M. Medical students as standardized patients in a second-year performance-based assessment experience. Med. Educ. Online. 3 (1), 4301 (1998).

Download references

Acknowledgements

The authors would like to express our sincere gratitude to participants for their contributions in this research. We would also like to thank the experts who provided their helpful suggestions in the validation process of the data collection tools.

This research project was funded by the Faculty of Dentistry, Mahidol University. The APC was funded by Mahidol University.

Author information

Authors and affiliations.

Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand

Chayanid Teerawongpairoj & Chanita Tantipoj

Department of Orthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand

Kawin Sipiyaruk

You can also search for this author in PubMed   Google Scholar

Contributions

Conceptualization, C.Te., C.Ta., and K.S.; methodology, C.Te., C.Ta., and K.S.; validation, C.Te., C.Ta., and K.S.; investigation, C.Te. and K.S.; formal analysis, C.Te., C.Ta., and K.S.; resources, C.Te., C.Ta., and K.S.; data curation, C.Ta. and K.S.; writing-original draft preparation, C.Te., C.Ta., and K.S.; writing-review and editing, C.Te., C.Ta., and K.S. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kawin Sipiyaruk .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary information 1., supplementary information 2., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Teerawongpairoj, C., Tantipoj, C. & Sipiyaruk, K. The design and evaluation of gamified online role-play as a telehealth training strategy in dental education: an explanatory sequential mixed-methods study. Sci Rep 14 , 9216 (2024). https://doi.org/10.1038/s41598-024-58425-9

Download citation

Received : 30 September 2023

Accepted : 28 March 2024

Published : 22 April 2024

DOI : https://doi.org/10.1038/s41598-024-58425-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Dental education
  • Distance learning
  • Game-based learning
  • Gamification

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

elements of critical thinking are

IMAGES

  1. 10 Essential Critical Thinking Skills (And How to Improve Them

    elements of critical thinking are

  2. The benefits of critical thinking for students and how to develop it

    elements of critical thinking are

  3. The 8 Elements of The Critical Thinking Process

    elements of critical thinking are

  4. Critical Thinking Skills Chart

    elements of critical thinking are

  5. CriticalThinking.org

    elements of critical thinking are

  6. The 8 Elements of Critical Thinking

    elements of critical thinking are

VIDEO

  1. DEF presents at the Foundation for Critical Thinking Conference

  2. Rogue Elements Trailer Reaction

  3. Critical Thinking & Reflective Practices |Course Code 8611

  4. Mastering 3 critical elements of success #unshakeableagent #personaldevelopment

  5. Critical Thinking: an introduction (1/8)

  6. Rogue Elements_ Written By Will Jordan

COMMENTS

  1. Defining Critical Thinking

    Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking. It presupposes assent to rigorous standards of excellence and mindful command of their use. It entails effective communication and problem solving abilities and a commitment to overcome our native egocentrism and sociocentrism.

  2. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  3. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. The application of critical thinking includes self-directed, self-disciplined, self-monitored, and self-corrective habits of the mind, thus a critical thinker is a person who practices the ...

  4. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  5. PDF The Miniature Guide to Critical Thinking: Concepts & Tools

    This miniature guide focuses on of the essence of critical thinking concepts and tools distilled into pocket size. For faculty it provides a shared concept of critical thinking. For students it is a critical thinking supplement to any textbook for any course. Faculty can use it to design instruction, assignments, and tests in any subject.

  6. Critical Thinking

    Critical thinking is thinking about things in certain ways so as to arrive at the best possible solution in the circumstances that the thinker is aware of. In more everyday language, it is a way of thinking about whatever is presently occupying your mind so that you come to the best possible conclusion. ... Perhaps the most important element of ...

  7. What Are Critical Thinking Skills and Why Are They Important?

    It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice. According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills.

  8. What is Critical Thinking?

    Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action. Paul and Scriven go on to suggest that ...

  9. Critical thinking

    Theorists have noted that such skills are only valuable insofar as a person is inclined to use them. Consequently, they emphasize that certain habits of mind are necessary components of critical thinking. This disposition may include curiosity, open-mindedness, self-awareness, empathy, and persistence. Although there is a generally accepted set of qualities that are associated with critical ...

  10. Critical Thinking

    Critical Thinking. Critical Thinking is the process of using and assessing reasons to evaluate statements, assumptions, and arguments in ordinary situations. ... (2006: 4). Their approach, then, is to focus on the elements of thought and intellectual virtues that help us form beliefs that meet these standards. The Paul/Elder model is made up of ...

  11. Basic Elements of Critical Thinking

    A set of information and beliefs, generating and processing skills, and the habit of using those skills to guide behavior. Critical thinkers: Ask questions. Gather relevant information. Think through solutions and conclusions. Consider alternative systems of thought. Communicate effectively.

  12. Critical Thinking: Definition, Examples, & Skills

    Critical thinking is also a vital element of a functioning democracy for this same reason. Through misinformation and manipulation, people are often compelled to support policies that don't reflect their values or needs. For example, we all require clean air and hospitable temperatures for survival and the science is crystal clear that both ...

  13. Paul-Elder Critical Thinking Framework

    The "parts" or elements of thinking are as follows: All reasoning has a purpose; All reasoning is an attempt to figure something out, to settle some question, ... Good critical thinking requires having a command of these standards. According to Paul and Elder (1997 ,2006), the ultimate goal is for the standards of reasoning to become infused in ...

  14. Using Critical Thinking in Essays and other Assignments

    Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement. Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process ...

  15. What is Critical Thinking, and what are its elements

    Critical thinking is the process of making clear reasoned judgements. Elements of critical thinking. There are three elements that aid in critical thinking, and another three that obstruct critical thinking. Logical reasoning: You would not expect an accountant to draw up a balance sheet without the knowledge of the debit/credit system. However ...

  16. Elements of Critical Thinking

    Elements of Critical Thinking. Identification of premises and conclusions . Critical thinkers break arguments into basic statements and draw logical implications. Clarification of arguments: Critical thinkers locate ambiguity and vagueness in arguments and propositions. Establishment of facts : Critical thinkers determine if the premises are ...

  17. A Crash Course in Critical Thinking

    Here is a series of questions you can ask yourself to try to ensure that you are thinking critically. Conspiracy theories. Inability to distinguish facts from falsehoods. Widespread confusion ...

  18. Elements of critical thinking

    Identifying the topic is the first step in critical analysis of a text. Topic. Topic refers to the word or sentence, which states the main subject of the work, i.e. the issue or idea with which the entire work is related. The work is the author's explanation of the topic.

  19. Elements of Thought

    The elements of reasoning, or structures of thought - is the idea that all reasoning contains parts, and that these parts enable one to analyze thinking, any thinking whatsoever, in order to best understand it. - Richard Paul, The Foundation for Critical Thinking.

  20. Why is critical thinking important?

    The benefits of critical thinking in everyday life Building better communication. One of the most important life skills that students learn as early as elementary school is how to give a presentation. Many classes require students to give presentations, because being well-spoken is a key skill in effective communication. This is where critical ...

  21. The 8 Elements of Critical Thinking

    Elements of critical thinking. Critical thinking is a process that is composed of a number of elements. Stanford Encyclopedia of Philosophy outlined 11 components of the critical thinking process: observing, feeling, wondering, imagining, inferring, knowledge, consulting, identifying, judging, and deciding. I adapted Stanford's categorisation ...

  22. Wheel of Reason

    Before attempting to analyze the logic of an article, book, construct, issue, or idea, see our model of the elements of reasoning. This model is based fundamentally in the original work of Dr. Richard Paul, and is an essential component in the Paul- Elder framework for critical thinking™. Refer back to this model frequently to refresh your ...

  23. Critical Thinking

    Critical Thinking. First published Sat Jul 21, 2018. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the ...

  24. Master the 3 Basics of Critical Thinking

    Critical thinking is a whole lot harder than it looks. If you want to set yourself apart at your job or in the hiring process, these are the three elements of critical thinking to master.

  25. The design and evaluation of gamified online role-play as a ...

    These elements could engage participants with a learning process, leading to the enhancement of educational impact. The educational settings for implementing gamified online role-play into dental ...