Why Every Educator Needs to Teach Problem-Solving Skills

Strong problem-solving skills will help students be more resilient and will increase their academic and career success .

Want to learn more about how to measure and teach students’ higher-order skills, including problem solving, critical thinking, and written communication?

Problem-solving skills are essential in school, careers, and life.

Problem-solving skills are important for every student to master. They help individuals navigate everyday life and find solutions to complex issues and challenges. These skills are especially valuable in the workplace, where employees are often required to solve problems and make decisions quickly and effectively.

Problem-solving skills are also needed for students’ personal growth and development because they help individuals overcome obstacles and achieve their goals. By developing strong problem-solving skills, students can improve their overall quality of life and become more successful in their personal and professional endeavors.

importance of problem solving skills in students

Problem-Solving Skills Help Students…

   develop resilience.

Problem-solving skills are an integral part of resilience and the ability to persevere through challenges and adversity. To effectively work through and solve a problem, students must be able to think critically and creatively. Critical and creative thinking help students approach a problem objectively, analyze its components, and determine different ways to go about finding a solution.  

This process in turn helps students build self-efficacy . When students are able to analyze and solve a problem, this increases their confidence, and they begin to realize the power they have to advocate for themselves and make meaningful change.

When students gain confidence in their ability to work through problems and attain their goals, they also begin to build a growth mindset . According to leading resilience researcher, Carol Dweck, “in a growth mindset, people believe that their most basic abilities can be developed through dedication and hard work—brains and talent are just the starting point. This view creates a love of learning and a resilience that is essential for great accomplishment.”

icon-resilience

    Set and Achieve Goals

Students who possess strong problem-solving skills are better equipped to set and achieve their goals. By learning how to identify problems, think critically, and develop solutions, students can become more self-sufficient and confident in their ability to achieve their goals. Additionally, problem-solving skills are used in virtually all fields, disciplines, and career paths, which makes them important for everyone. Building strong problem-solving skills will help students enhance their academic and career performance and become more competitive as they begin to seek full-time employment after graduation or pursue additional education and training.

CAE Portal Icon 280

  Resolve Conflicts

In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes “thinking outside the box” and approaching a conflict by searching for different solutions. This is a very different (and more effective!) method than a more stagnant approach that focuses on placing blame or getting stuck on elements of a situation that can’t be changed.

While it’s natural to get frustrated or feel stuck when working through a conflict, students with strong problem-solving skills will be able to work through these obstacles, think more rationally, and address the situation with a more solution-oriented approach. These skills will be valuable for students in school, their careers, and throughout their lives.

Perspectives

    Achieve Success

We are all faced with problems every day. Problems arise in our personal lives, in school and in our jobs, and in our interactions with others. Employers especially are looking for candidates with strong problem-solving skills. In today’s job market, most jobs require the ability to analyze and effectively resolve complex issues. Students with strong problem-solving skills will stand out from other applicants and will have a more desirable skill set.

In a recent opinion piece published by The Hechinger Report , Virgel Hammonds, Chief Learning Officer at KnowledgeWorks, stated “Our world presents increasingly complex challenges. Education must adapt so that it nurtures problem solvers and critical thinkers.” Yet, the “traditional K–12 education system leaves little room for students to engage in real-world problem-solving scenarios.” This is the reason that a growing number of K–12 school districts and higher education institutions are transforming their instructional approach to personalized and competency-based learning, which encourage students to make decisions, problem solve and think critically as they take ownership of and direct their educational journey.

graduate-icon

Problem-Solving Skills Can Be Measured and Taught

Research shows that problem-solving skills can be measured and taught. One effective method is through performance-based assessments which require students to demonstrate or apply their knowledge and higher-order skills to create a response or product or do a task.

What Are Performance-Based Assessments?

importance of problem solving skills in students

With the No Child Left Behind Act (2002), the use of standardized testing became the primary way to measure student learning in the U.S. The legislative requirements of this act shifted the emphasis to standardized testing, and this led to a  decline in nontraditional testing methods .

But   many educators, policy makers, and parents have concerns with standardized tests. Some of the top issues include that they don’t provide feedback on how students can perform better, they don’t value creativity, they are not representative of diverse populations, and they can be disadvantageous to lower-income students.

While standardized tests are still the norm, U.S. Secretary of Education Miguel Cardona is encouraging states and districts to move away from traditional multiple choice and short response tests and instead use performance-based assessment, competency-based assessments, and other more authentic methods of measuring students abilities and skills rather than rote learning. 

Performance-based assessments  measure whether students can apply the skills and knowledge learned from a unit of study. Typically, a performance task challenges students to use their higher-order skills to complete a project or process. Tasks can range from an essay to a complex proposal or design.

Preview a Performance-Based Assessment

Want a closer look at how performance-based assessments work?  Preview CAE’s K–12 and Higher Education assessments and see how CAE’s tools help students develop critical thinking, problem-solving, and written communication skills.

Performance-Based Assessments Help Students Build and Practice Problem-Solving Skills

In addition to effectively measuring students’ higher-order skills, including their problem-solving skills, performance-based assessments can help students practice and build these skills. Through the assessment process, students are given opportunities to practically apply their knowledge in real-world situations. By demonstrating their understanding of a topic, students are required to put what they’ve learned into practice through activities such as presentations, experiments, and simulations. 

This type of problem-solving assessment tool requires students to analyze information and choose how to approach the presented problems. This process enhances their critical thinking skills and creativity, as well as their problem-solving skills. Unlike traditional assessments based on memorization or reciting facts, performance-based assessments focus on the students’ decisions and solutions, and through these tasks students learn to bridge the gap between theory and practice.

Performance-based assessments like CAE’s College and Career Readiness Assessment (CRA+) and Collegiate Learning Assessment (CLA+) provide students with in-depth reports that show them which higher-order skills they are strongest in and which they should continue to develop. This feedback helps students and their teachers plan instruction and supports to deepen their learning and improve their mastery of critical skills.

importance of problem solving skills in students

Explore CAE’s Problem-Solving Assessments

CAE offers performance-based assessments that measure student proficiency in higher-order skills including problem solving, critical thinking, and written communication.

  • College and Career Readiness Assessment (CCRA+) for secondary education and
  • Collegiate Learning Assessment (CLA+) for higher education.

Our solution also includes instructional materials, practice models, and professional development.

We can help you create a program to build students’ problem-solving skills that includes:

  • Measuring students’ problem-solving skills through a performance-based assessment    
  • Using the problem-solving assessment data to inform instruction and tailor interventions
  • Teaching students problem-solving skills and providing practice opportunities in real-life scenarios
  • Supporting educators with quality professional development

Get started with our problem-solving assessment tools to measure and build students’ problem-solving skills today! These skills will be invaluable to students now and in the future.

importance of problem solving skills in students

Ready to Get Started?

Learn more about cae’s suite of products and let’s get started measuring and teaching students important higher-order skills like problem solving..

Center for Teaching

Teaching problem solving.

Print Version

Tips and Techniques

Expert vs. novice problem solvers, communicate.

  • Have students  identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
  • If students are unable to articulate their concerns, determine where they are having trouble by  asking them to identify the specific concepts or principles associated with the problem.
  • In a one-on-one tutoring session, ask the student to  work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
  • When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)

Encourage Independence

  • Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
  • Have students work through problems on their own. Ask directing questions or give helpful suggestions, but  provide only minimal assistance and only when needed to overcome obstacles.
  • Don’t fear  group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others

Be sensitive

  • Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing  positive reinforcement to let students know when they have mastered a new concept or skill.

Encourage Thoroughness and Patience

  • Try to communicate that  the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.

Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills,  a teacher should be aware of principles and strategies of good problem solving in his or her discipline .

The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book  How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes  a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.

importance of problem solving skills in students

Teaching Guides

  • Online Course Development Resources
  • Principles & Frameworks
  • Pedagogies & Strategies
  • Reflecting & Assessing
  • Challenges & Opportunities
  • Populations & Contexts

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules

Teaching problem solving: Let students get ‘stuck’ and ‘unstuck’

Subscribe to the center for universal education bulletin, kate mills and km kate mills literacy interventionist - red bank primary school helyn kim helyn kim former brookings expert @helyn_kim.

October 31, 2017

This is the second in a six-part  blog series  on  teaching 21st century skills , including  problem solving ,  metacognition , critical thinking , and collaboration , in classrooms.

In the real world, students encounter problems that are complex, not well defined, and lack a clear solution and approach. They need to be able to identify and apply different strategies to solve these problems. However, problem solving skills do not necessarily develop naturally; they need to be explicitly taught in a way that can be transferred across multiple settings and contexts.

Here’s what Kate Mills, who taught 4 th grade for 10 years at Knollwood School in New Jersey and is now a Literacy Interventionist at Red Bank Primary School, has to say about creating a classroom culture of problem solvers:

Helping my students grow to be people who will be successful outside of the classroom is equally as important as teaching the curriculum. From the first day of school, I intentionally choose language and activities that help to create a classroom culture of problem solvers. I want to produce students who are able to think about achieving a particular goal and manage their mental processes . This is known as metacognition , and research shows that metacognitive skills help students become better problem solvers.

I begin by “normalizing trouble” in the classroom. Peter H. Johnston teaches the importance of normalizing struggle , of naming it, acknowledging it, and calling it what it is: a sign that we’re growing. The goal is for the students to accept challenge and failure as a chance to grow and do better.

I look for every chance to share problems and highlight how the students— not the teachers— worked through those problems. There is, of course, coaching along the way. For example, a science class that is arguing over whose turn it is to build a vehicle will most likely need a teacher to help them find a way to the balance the work in an equitable way. Afterwards, I make it a point to turn it back to the class and say, “Do you see how you …” By naming what it is they did to solve the problem , students can be more independent and productive as they apply and adapt their thinking when engaging in future complex tasks.

After a few weeks, most of the class understands that the teachers aren’t there to solve problems for the students, but to support them in solving the problems themselves. With that important part of our classroom culture established, we can move to focusing on the strategies that students might need.

Here’s one way I do this in the classroom:

I show the broken escalator video to the class. Since my students are fourth graders, they think it’s hilarious and immediately start exclaiming, “Just get off! Walk!”

When the video is over, I say, “Many of us, probably all of us, are like the man in the video yelling for help when we get stuck. When we get stuck, we stop and immediately say ‘Help!’ instead of embracing the challenge and trying new ways to work through it.” I often introduce this lesson during math class, but it can apply to any area of our lives, and I can refer to the experience and conversation we had during any part of our day.

Research shows that just because students know the strategies does not mean they will engage in the appropriate strategies. Therefore, I try to provide opportunities where students can explicitly practice learning how, when, and why to use which strategies effectively  so that they can become self-directed learners.

For example, I give students a math problem that will make many of them feel “stuck”. I will say, “Your job is to get yourselves stuck—or to allow yourselves to get stuck on this problem—and then work through it, being mindful of how you’re getting yourselves unstuck.” As students work, I check-in to help them name their process: “How did you get yourself unstuck?” or “What was your first step? What are you doing now? What might you try next?” As students talk about their process, I’ll add to a list of strategies that students are using and, if they are struggling, help students name a specific process. For instance, if a student says he wrote the information from the math problem down and points to a chart, I will say: “Oh that’s interesting. You pulled the important information from the problem out and organized it into a chart.” In this way, I am giving him the language to match what he did, so that he now has a strategy he could use in other times of struggle.

The charts grow with us over time and are something that we refer to when students are stuck or struggling. They become a resource for students and a way for them to talk about their process when they are reflecting on and monitoring what did or did not work.

For me, as a teacher, it is important that I create a classroom environment in which students are problem solvers. This helps tie struggles to strategies so that the students will not only see value in working harder but in working smarter by trying new and different strategies and revising their process. In doing so, they will more successful the next time around.

Related Content

Esther Care, Helyn Kim, Alvin Vista

October 17, 2017

David Owen, Alvin Vista

November 15, 2017

Loren Clarke, Esther Care

December 5, 2017

Global Education K-12 Education

Global Economy and Development

Center for Universal Education

Annelies Goger, Katherine Caves, Hollis Salway

May 16, 2024

Sofoklis Goulas, Isabelle Pula

Melissa Kay Diliberti, Elizabeth D. Steiner, Ashley Woo

SELECT COUNTRY

  • Overview of OWIS Singapore
  • Mission, Vision and Values
  • Creating Global Citizens
  • Parent Partnerships
  • Global Schools Foundation (GSF)
  • Academic & Examination Board (AEB)
  • Awards & Accreditations
  • Admissions Overview
  • Apply Online
  • Book a Tour
  • Application Process
  • School Fees
  • Scholarship
  • Admissions Events and Webinars
  • Entry Requirements
  • Student Contract & CPE-related Information
  • Agent Connect Programme
  • Learning & Curricula at OWIS
  • IB Primary Years Programme (Ages 3 to 11)
  • Modified Cambridge (Ages 12 to 14)
  • Cambridge IGCSE (Ages 15 to 16)
  • IB Diploma Programme (Ages 17 to 18)
  • Chinese-English Bilingual Programme (Ages 7 to 11)
  • Co-scholastic Learning Programmes
  • English as an Additional Language (EAL) Programme
  • After-School Programme (CCAs)
  • Overview of OWIS Nanyang
  • Welcome Message
  • Early Childhood
  • Primary School
  • Secondary School
  • Learning Environment
  • Academic Results & University Offers
  • Pastoral Care & Student Well-Being
  • School Calendar
  • Join Our Open House
  • Overview of OWIS Suntec
  • Overview of OWIS Digital Campus
  • Blogs & Insights
  • School Stories
  • In the Media
  • E-books & Downloads
  • Public vs Private School
  • Relocating to Singapore

OWIS SINGAPORE

Strategies to develop problem-solving skills in students.

David Swanson

  • November 14, 2023

OWIS Nanyang | Secondary Students in Maths Lesson | Problem-Solving Skills | International School in Singapore

Students need the freedom to brainstorm, develop solutions and make mistakes — this is truly the only way to prepare them for life outside the classroom. When students are immersed in a learning environment that only offers them step-by-step guides and encourages them to focus solely on memorisation, they are not gaining the skills necessary to help them navigate in the complex, interconnected environment of the real world.

Choosing a school that emphasises the importance of future-focussed skills will ensure your child has the abilities they need to survive and thrive anywhere in the world. What are future-focussed skills? Students who are prepared for the future need to possess highly developed communication skills, self-management skills, research skills, thinking skills, social skills and problem-solving skills. In this blog, I would like to focus on problem-solving skills.

What Are Problem-Solving Skills?

The Forage defines problem-solving skills as those that allow an individual to identify a problem, come up with solutions, analyse the options and collaborate to find the best solution for the issue.

Importance of Problem-Solving in the Classroom Setting

Learning how to solve problems effectively and positively is a crucial part of child development. When children are allowed to solve problems in a classroom setting, they can test those skills in a safe and nurturing environment. Generally, when they face age-appropriate issues, they can begin building those skills in a healthy and positive manner.

Without exposure to challenging situations and scenarios, children will not be equipped with the foundational problem-solving skills needed to tackle complex issues in the real world. Experts predict that problem-solving skills will eventually be more sought after in job applicants than hard skills related to that specific profession. Students must be given opportunities in school to resolve conflicts, address complex problems and come up with their own solutions in order to develop these skills.

Benefits of Problem-Solving Skills for Students

importance of problem solving skills in students

Learning how to solve problems offers students many advantages, such as:

Improving Academic Results

When students have a well-developed set of problem-solving skills, they are often better critical and analytical thinkers as well. They are able to effectively use these 21st-century skills when completing their coursework, allowing them to become more successful in all academic areas. By prioritising problem-solving strategies in the classroom, teachers often find that academic performance improves.

Developing Confidence

Giving students the freedom to solve problems and create their own solutions is essentially permitting them to make their own choices. This sense of independence — and the natural resilience that comes with it — allows students to become confident learners who aren’t intimidated by new or challenging situations. Ultimately, this prepares them to take on more complex challenges in the future, both on a professional and social level.

Preparing Students for Real-World Challenges

The challenges we are facing today are only growing more complex, and by the time students have graduated, they are going to be facing issues that we may not even have imagined. By arming them with real-world problem-solving experience, they will not feel intimidated or stifled by those challenges; they will be excited and ready to address them. They will know how to discuss their ideas with others, respect various perspectives and collaborate to develop a solution that best benefits everyone involved.

The Best Problem-Solving Strategies for Students

importance of problem solving skills in students

No single approach or strategy will instil a set of problem-solving skills in students.  Every child is different, so educators should rely on a variety of strategies to develop this core competency in their students.  It is best if these skills are developed naturally.

These are some of the best strategies to support students problem-solving skills:

Project-Based Learning

By providing students with project-based learning experiences and allowing plenty of time for discussion, educators can watch students put their problem-solving skills into action inside their classrooms. This strategy is one of the most effective ways to fine-tune problem-solving skills in students.  During project-based learning, teachers may take notes on how the students approach a problem and then offer feedback to students for future development. Teachers can address their observations of interactions during project-based learning at the group level or they can work with students on an individual basis to help them become more effective problem-solvers.

Encourage Discussion and Collaboration in the Classroom Setting

Another strategy to encourage the development of problem-solving skills in students is to allow for plenty of discussion and collaboration in the classroom setting.  When students interact with one another, they are naturally developing problem solving skills.  Rather than the teacher delivering information and requiring the students to passively receive information, students can share thoughts and ideas with one another.  Getting students to generate their own discussion and communication requires thinking skills. 

Utilising an Inquiry-Based approach to Learning

Students should be presented with situations in which their curiosity is sparked and they are motivated to inquire further. Teachers should ask open-ended questions and encourage students to develop responses which require problem-solving. By providing students with complex questions for which a variety of answers may be correct, teachers get students to consider different perspectives and deal with potential disagreement, which requires problem-solving skills to resolve.

Model Appropriate Problem-Solving Skills

One of the simplest ways to instil effective problem-solving skills in students is to model appropriate and respectful strategies and behaviour when resolving a conflict or addressing an issue. Teachers can showcase their problem-solving skills by:

  • Identifying a problem when they come across one for the class to see
  • Brainstorming possible solutions with students
  • Collaborating with students to decide on the best solution
  • Testing that solution and examining the results with the students
  • Adapting as necessary to improve results or achieve the desired goal

Prioritise Student Agency in Learning

Recent research shows that self-directed learning is one of the most effective ways to nurture 21st-century competency development in young learners. Learning experiences that encourage student agency often require problem-solving skills.  When creativity and innovation are needed, students often encounter unexpected problems along the way that must be solved. Through self-directed learning, students experience challenges in a natural situation and can fine-tune their problem-solving skills along the way.  Self-directed learning provides them with a foundation in problem-solving that they can build upon in the future, allowing them to eventually develop more advanced and impactful problem-solving skills for real life.

21st-Century Skill Development at OWIS Singapore

Problem-solving has been identified as one of the core competencies that young learners must develop to be prepared to meet the dynamic needs of a global environment.  At OWIS Singapore, we have implemented an inquiry-driven, skills-based curriculum that allows students to organically develop critical future-ready skills — including problem-solving.  Our hands-on approach to education enables students to collaborate, explore, innovate, face-challenges, make mistakes and adapt as necessary.  As such, they learn problem-solving skills in an authentic manner.

For more information about 21st-century skill development, schedule a campus tour today.

About Author

David swanson, latest blogs.

importance of problem solving skills in students

  • May 14, 2024

Cultivating Student Well-Being at OWIS Digital Campus for a Positive Educational Journey

OWIS Nanyang Drum Circle CCA Lesson - Music class - holistic development - international school in Singapore

  • May 9, 2024

Nurturing Young Learners Through Co-Curricular Activities at OWIS Nanyang

importance of problem solving skills in students

  • April 8, 2024

Transforming Experiential Learning Through Skill Studios at OWIS Digital Campus

importance of problem solving skills in students

  • March 26, 2024

Beyond the Classroom: Exploring IBDP’s Impact on College and Career Readiness

Image illustrating OWIS Nanyang Primary students deeply engaged in IBPYP, specifically centered around the theme of space exploration

  • March 12, 2024

Unpacking the IB PYP: A Comprehensive Guide for Parents

importance of problem solving skills in students

  • March 11, 2024

Embarking on a Journey Through the Art Spaces at OWIS Digital Campus*

Related blog posts.

importance of problem solving skills in students

  • Culture & Values
  • Holistic development
  • Testimonial

Fostering Confidence in Education: The Dynamic Blend of Diversity and Academic Excellence at OWIS Digital Campus*

  • December 18, 2023

importance of problem solving skills in students

nanyang Campus

  • +65 6914 6700
  • [email protected]
  • 21 Jurong West Street 81, Singapore 649075
  • +65 8318 3027

Digital Campus

  • #01-02, Global Campus Village, 27 Punggol Field Walk, Singapore 828649

Suntec Campus

  • 1 Raffles Blvd, Singapore 039593

OWIS Nanyang is accredited for the IB PYP, Cambridge IGCSE and IB DP. OWIS Suntec is accredited for the IB PYP. CPE Registration Number: 200800495N | Validity Period: 24 February 2023 to 23 February 2027.

importance of problem solving skills in students

Quick Links:

Virtual and in-person Campus Tours Available

  • Utility Menu

University Logo

GA4 Tracking Code

Home

fa51e2b1dc8cca8f7467da564e77b5ea

  • Make a Gift
  • Join Our Email List
  • Problem Solving in STEM

Solving problems is a key component of many science, math, and engineering classes.  If a goal of a class is for students to emerge with the ability to solve new kinds of problems or to use new problem-solving techniques, then students need numerous opportunities to develop the skills necessary to approach and answer different types of problems.  Problem solving during section or class allows students to develop their confidence in these skills under your guidance, better preparing them to succeed on their homework and exams. This page offers advice about strategies for facilitating problem solving during class.

How do I decide which problems to cover in section or class?

In-class problem solving should reinforce the major concepts from the class and provide the opportunity for theoretical concepts to become more concrete. If students have a problem set for homework, then in-class problem solving should prepare students for the types of problems that they will see on their homework. You may wish to include some simpler problems both in the interest of time and to help students gain confidence, but it is ideal if the complexity of at least some of the in-class problems mirrors the level of difficulty of the homework. You may also want to ask your students ahead of time which skills or concepts they find confusing, and include some problems that are directly targeted to their concerns.

You have given your students a problem to solve in class. What are some strategies to work through it?

  • Try to give your students a chance to grapple with the problems as much as possible.  Offering them the chance to do the problem themselves allows them to learn from their mistakes in the presence of your expertise as their teacher. (If time is limited, they may not be able to get all the way through multi-step problems, in which case it can help to prioritize giving them a chance to tackle the most challenging steps.)
  • When you do want to teach by solving the problem yourself at the board, talk through the logic of how you choose to apply certain approaches to solve certain problems.  This way you can externalize the type of thinking you hope your students internalize when they solve similar problems themselves.
  • Start by setting up the problem on the board (e.g you might write down key variables and equations; draw a figure illustrating the question).  Ask students to start solving the problem, either independently or in small groups.  As they are working on the problem, walk around to hear what they are saying and see what they are writing down. If several students seem stuck, it might be a good to collect the whole class again to clarify any confusion.  After students have made progress, bring the everyone back together and have students guide you as to what to write on the board.
  • It can help to first ask students to work on the problem by themselves for a minute, and then get into small groups to work on the problem collaboratively.
  • If you have ample board space, have students work in small groups at the board while solving the problem.  That way you can monitor their progress by standing back and watching what they put up on the board.
  • If you have several problems you would like to have the students practice, but not enough time for everyone to do all of them, you can assign different groups of students to work on different – but related - problems.

When do you want students to work in groups to solve problems?

  • Don’t ask students to work in groups for straightforward problems that most students could solve independently in a short amount of time.
  • Do have students work in groups for thought-provoking problems, where students will benefit from meaningful collaboration.
  • Even in cases where you plan to have students work in groups, it can be useful to give students some time to work on their own before collaborating with others.  This ensures that every student engages with the problem and is ready to contribute to a discussion.

What are some benefits of having students work in groups?

  • Students bring different strengths, different knowledge, and different ideas for how to solve a problem; collaboration can help students work through problems that are more challenging than they might be able to tackle on their own.
  • In working in a group, students might consider multiple ways to approach a problem, thus enriching their repertoire of strategies.
  • Students who think they understand the material will gain a deeper understanding by explaining concepts to their peers.

What are some strategies for helping students to form groups?  

  • Instruct students to work with the person (or people) sitting next to them.
  • Count off.  (e.g. 1, 2, 3, 4; all the 1’s find each other and form a group, etc)
  • Hand out playing cards; students need to find the person with the same number card. (There are many variants to this.  For example, you can print pictures of images that go together [rain and umbrella]; each person gets a card and needs to find their partner[s].)
  • Based on what you know about the students, assign groups in advance. List the groups on the board.
  • Note: Always have students take the time to introduce themselves to each other in a new group.

What should you do while your students are working on problems?

  • Walk around and talk to students. Observing their work gives you a sense of what people understand and what they are struggling with. Answer students’ questions, and ask them questions that lead in a productive direction if they are stuck.
  • If you discover that many people have the same question—or that someone has a misunderstanding that others might have—you might stop everyone and discuss a key idea with the entire class.

After students work on a problem during class, what are strategies to have them share their answers and their thinking?

  • Ask for volunteers to share answers. Depending on the nature of the problem, student might provide answers verbally or by writing on the board. As a variant, for questions where a variety of answers are relevant, ask for at least three volunteers before anyone shares their ideas.
  • Use online polling software for students to respond to a multiple-choice question anonymously.
  • If students are working in groups, assign reporters ahead of time. For example, the person with the next birthday could be responsible for sharing their group’s work with the class.
  • Cold call. To reduce student anxiety about cold calling, it can help to identify students who seem to have the correct answer as you were walking around the class and checking in on their progress solving the assigned problem. You may even want to warn the student ahead of time: "This is a great answer! Do you mind if I call on you when we come back together as a class?"
  • Have students write an answer on a notecard that they turn in to you.  If your goal is to understand whether students in general solved a problem correctly, the notecards could be submitted anonymously; if you wish to assess individual students’ work, you would want to ask students to put their names on their notecard.  
  • Use a jigsaw strategy, where you rearrange groups such that each new group is comprised of people who came from different initial groups and had solved different problems.  Students now are responsible for teaching the other students in their new group how to solve their problem.
  • Have a representative from each group explain their problem to the class.
  • Have a representative from each group draw or write the answer on the board.

What happens if a student gives a wrong answer?

  • Ask for their reasoning so that you can understand where they went wrong.
  • Ask if anyone else has other ideas. You can also ask this sometimes when an answer is right.
  • Cultivate an environment where it’s okay to be wrong. Emphasize that you are all learning together, and that you learn through making mistakes.
  • Do make sure that you clarify what the correct answer is before moving on.
  • Once the correct answer is given, go through some answer-checking techniques that can distinguish between correct and incorrect answers. This can help prepare students to verify their future work.

How can you make your classroom inclusive?

  • The goal is that everyone is thinking, talking, and sharing their ideas, and that everyone feels valued and respected. Use a variety of teaching strategies (independent work and group work; allow students to talk to each other before they talk to the class). Create an environment where it is normal to struggle and make mistakes.
  • See Kimberly Tanner’s article on strategies to promoste student engagement and cultivate classroom equity. 

A few final notes…

  • Make sure that you have worked all of the problems and also thought about alternative approaches to solving them.
  • Board work matters. You should have a plan beforehand of what you will write on the board, where, when, what needs to be added, and what can be erased when. If students are going to write their answers on the board, you need to also have a plan for making sure that everyone gets to the correct answer. Students will copy what is on the board and use it as their notes for later study, so correct and logical information must be written there.

For more information...

Tipsheet: Problem Solving in STEM Sections

Tanner, K. D. (2013). Structure matters: twenty-one teaching strategies to promote student engagement and cultivate classroom equity . CBE-Life Sciences Education, 12(3), 322-331.

  • Designing Your Course
  • A Teaching Timeline: From Pre-Term Planning to the Final Exam
  • The First Day of Class
  • Group Agreements
  • Classroom Debate
  • Flipped Classrooms
  • Leading Discussions
  • Polling & Clickers
  • Teaching with Cases
  • Engaged Scholarship
  • Devices in the Classroom
  • Beyond the Classroom
  • On Professionalism
  • Getting Feedback
  • Equitable & Inclusive Teaching
  • Advising and Mentoring
  • Teaching and Your Career
  • Teaching Remotely
  • Tools and Platforms
  • The Science of Learning
  • Bok Publications
  • Other Resources Around Campus

The Edvocate

  • Lynch Educational Consulting
  • Dr. Lynch’s Personal Website
  • Write For Us
  • The Tech Edvocate Product Guide
  • The Edvocate Podcast
  • Terms and Conditions
  • Privacy Policy
  • Assistive Technology
  • Best PreK-12 Schools in America
  • Child Development
  • Classroom Management
  • Early Childhood
  • EdTech & Innovation
  • Education Leadership
  • First Year Teachers
  • Gifted and Talented Education
  • Special Education
  • Parental Involvement
  • Policy & Reform
  • Best Colleges and Universities
  • Best College and University Programs
  • HBCU’s
  • Higher Education EdTech
  • Higher Education
  • International Education
  • The Awards Process
  • Finalists and Winners of The 2023 Tech Edvocate Awards
  • Award Seals
  • GPA Calculator for College
  • GPA Calculator for High School
  • Cumulative GPA Calculator
  • Grade Calculator
  • Weighted Grade Calculator
  • Final Grade Calculator
  • The Tech Edvocate
  • AI Powered Personal Tutor

Teaching Students About Stokely Carmichael: Civil Rights, Black Power, and the Legacy of a Revolutionary

Teaching students about blackadder: a timeless educational tool, teaching students about james mccartney: a comprehensive guide, teaching students about scott parker: inspiring the classroom through the life of a resilient sportsman, teaching students about foster brooks, teaching students about necaxa: a unique learning experience, teaching students about “the crow cast”: an insightful approach to art education, teaching students about what “ad” means: a comprehensive guide, navigating cryptocurrency on campus: a student’s guide to bitcoin, teaching students about jay’s treaty: an essential lesson in american history, strategies and methods to teach students problem solving and critical thinking skills.

importance of problem solving skills in students

The ability to problem solve and think critically are two of the most important skills that PreK-12 students can learn. Why? Because students need these skills to succeed in their academics and in life in general. It allows them to find a solution to issues and complex situations that are thrown there way, even if this is the first time they are faced with the predicament.

Okay, we know that these are essential skills that are also difficult to master. So how can we teach our students problem solve and think critically? I am glad you asked. In this piece will list and discuss strategies and methods that you can use to teach your students to do just that.

  • Direct Analogy Method

A method of problem-solving in which a problem is compared to similar problems in nature or other settings, providing solutions that could potentially be applied.

  • Attribute Listing

A technique used to encourage creative thinking in which the parts of a subject, problem, or task are listed, and then ways to change those component parts are examined.

  • Attribute Modifying

A technique used to encourage creative thinking in which the parts of a subject, problem, or task are listed, and then options for changing or improving each part are considered.

  • Attribute Transferring

A technique used to encourage creative thinking in which the parts of a subject, problem or task listed and then the problem solver uses analogies to other contexts to generate and consider potential solutions.

  • Morphological Synthesis

A technique used to encourage creative problem solving which extends on attribute transferring. A matrix is created, listing concrete attributes along the x-axis, and the ideas from a second attribute along with the y-axis, yielding a long list of idea combinations.

SCAMPER stands for Substitute, Combine, Adapt, Modify-Magnify-Minify, Put to other uses, and Reverse or Rearrange. It is an idea checklist for solving design problems.

  • Direct Analogy

A problem-solving technique in which an individual is asked to consider the ways problems of this type are solved in nature.

  • Personal Analogy

A problem-solving technique in which an individual is challenged to become part of the problem to view it from a new perspective and identify possible solutions.

  • Fantasy Analogy

A problem-solving process in which participants are asked to consider outlandish, fantastic or bizarre solutions which may lead to original and ground-breaking ideas.

  • Symbolic Analogy

A problem-solving technique in which participants are challenged to generate a two-word phrase related to the design problem being considered and that appears self-contradictory. The process of brainstorming this phrase can stimulate design ideas.

  • Implementation Charting

An activity in which problem solvers are asked to identify the next steps to implement their creative ideas. This step follows the idea generation stage and the narrowing of ideas to one or more feasible solutions. The process helps participants to view implementation as a viable next step.

  • Thinking Skills

Skills aimed at aiding students to be critical, logical, and evaluative thinkers. They include analysis, comparison, classification, synthesis, generalization, discrimination, inference, planning, predicting, and identifying cause-effect relationships.

Can you think of any additional problems solving techniques that teachers use to improve their student’s problem-solving skills?

The 4 Types of Brainstorming

Feeling lethargic it may all that screen ....

' src=

Matthew Lynch

Related articles more from author.

importance of problem solving skills in students

How to Implement the Text Tour Teaching Strategy in Your Classroom

importance of problem solving skills in students

How to Implement the Connect Two Teaching Strategy in Your Classroom

importance of problem solving skills in students

After school shootings, students fare poorly in math, English

importance of problem solving skills in students

Necessary Shifts: A Change in K-12 Teacher Education

importance of problem solving skills in students

Productivity Apps, Tools, and Resources That We Love

importance of problem solving skills in students

5 Rewards and Perks That Come With Being a Teacher

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 11 January 2023

The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature

  • Enwei Xu   ORCID: orcid.org/0000-0001-6424-8169 1 ,
  • Wei Wang 1 &
  • Qingxia Wang 1  

Humanities and Social Sciences Communications volume  10 , Article number:  16 ( 2023 ) Cite this article

15k Accesses

15 Citations

3 Altmetric

Metrics details

  • Science, technology and society

Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field of education as well as a key competence for learners in the 21st century. However, the effectiveness of collaborative problem-solving in promoting students’ critical thinking remains uncertain. This current research presents the major findings of a meta-analysis of 36 pieces of the literature revealed in worldwide educational periodicals during the 21st century to identify the effectiveness of collaborative problem-solving in promoting students’ critical thinking and to determine, based on evidence, whether and to what extent collaborative problem solving can result in a rise or decrease in critical thinking. The findings show that (1) collaborative problem solving is an effective teaching approach to foster students’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]); (2) in respect to the dimensions of critical thinking, collaborative problem solving can significantly and successfully enhance students’ attitudinal tendencies (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI[0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI[0.58, 0.82]); and (3) the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have an impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. On the basis of these results, recommendations are made for further study and instruction to better support students’ critical thinking in the context of collaborative problem-solving.

Similar content being viewed by others

importance of problem solving skills in students

Impact of artificial intelligence on human loss in decision making, laziness and safety in education

importance of problem solving skills in students

Testing theory of mind in large language models and humans

importance of problem solving skills in students

Interviews in the social sciences

Introduction.

Although critical thinking has a long history in research, the concept of critical thinking, which is regarded as an essential competence for learners in the 21st century, has recently attracted more attention from researchers and teaching practitioners (National Research Council, 2012 ). Critical thinking should be the core of curriculum reform based on key competencies in the field of education (Peng and Deng, 2017 ) because students with critical thinking can not only understand the meaning of knowledge but also effectively solve practical problems in real life even after knowledge is forgotten (Kek and Huijser, 2011 ). The definition of critical thinking is not universal (Ennis, 1989 ; Castle, 2009 ; Niu et al., 2013 ). In general, the definition of critical thinking is a self-aware and self-regulated thought process (Facione, 1990 ; Niu et al., 2013 ). It refers to the cognitive skills needed to interpret, analyze, synthesize, reason, and evaluate information as well as the attitudinal tendency to apply these abilities (Halpern, 2001 ). The view that critical thinking can be taught and learned through curriculum teaching has been widely supported by many researchers (e.g., Kuncel, 2011 ; Leng and Lu, 2020 ), leading to educators’ efforts to foster it among students. In the field of teaching practice, there are three types of courses for teaching critical thinking (Ennis, 1989 ). The first is an independent curriculum in which critical thinking is taught and cultivated without involving the knowledge of specific disciplines; the second is an integrated curriculum in which critical thinking is integrated into the teaching of other disciplines as a clear teaching goal; and the third is a mixed curriculum in which critical thinking is taught in parallel to the teaching of other disciplines for mixed teaching training. Furthermore, numerous measuring tools have been developed by researchers and educators to measure critical thinking in the context of teaching practice. These include standardized measurement tools, such as WGCTA, CCTST, CCTT, and CCTDI, which have been verified by repeated experiments and are considered effective and reliable by international scholars (Facione and Facione, 1992 ). In short, descriptions of critical thinking, including its two dimensions of attitudinal tendency and cognitive skills, different types of teaching courses, and standardized measurement tools provide a complex normative framework for understanding, teaching, and evaluating critical thinking.

Cultivating critical thinking in curriculum teaching can start with a problem, and one of the most popular critical thinking instructional approaches is problem-based learning (Liu et al., 2020 ). Duch et al. ( 2001 ) noted that problem-based learning in group collaboration is progressive active learning, which can improve students’ critical thinking and problem-solving skills. Collaborative problem-solving is the organic integration of collaborative learning and problem-based learning, which takes learners as the center of the learning process and uses problems with poor structure in real-world situations as the starting point for the learning process (Liang et al., 2017 ). Students learn the knowledge needed to solve problems in a collaborative group, reach a consensus on problems in the field, and form solutions through social cooperation methods, such as dialogue, interpretation, questioning, debate, negotiation, and reflection, thus promoting the development of learners’ domain knowledge and critical thinking (Cindy, 2004 ; Liang et al., 2017 ).

Collaborative problem-solving has been widely used in the teaching practice of critical thinking, and several studies have attempted to conduct a systematic review and meta-analysis of the empirical literature on critical thinking from various perspectives. However, little attention has been paid to the impact of collaborative problem-solving on critical thinking. Therefore, the best approach for developing and enhancing critical thinking throughout collaborative problem-solving is to examine how to implement critical thinking instruction; however, this issue is still unexplored, which means that many teachers are incapable of better instructing critical thinking (Leng and Lu, 2020 ; Niu et al., 2013 ). For example, Huber ( 2016 ) provided the meta-analysis findings of 71 publications on gaining critical thinking over various time frames in college with the aim of determining whether critical thinking was truly teachable. These authors found that learners significantly improve their critical thinking while in college and that critical thinking differs with factors such as teaching strategies, intervention duration, subject area, and teaching type. The usefulness of collaborative problem-solving in fostering students’ critical thinking, however, was not determined by this study, nor did it reveal whether there existed significant variations among the different elements. A meta-analysis of 31 pieces of educational literature was conducted by Liu et al. ( 2020 ) to assess the impact of problem-solving on college students’ critical thinking. These authors found that problem-solving could promote the development of critical thinking among college students and proposed establishing a reasonable group structure for problem-solving in a follow-up study to improve students’ critical thinking. Additionally, previous empirical studies have reached inconclusive and even contradictory conclusions about whether and to what extent collaborative problem-solving increases or decreases critical thinking levels. As an illustration, Yang et al. ( 2008 ) carried out an experiment on the integrated curriculum teaching of college students based on a web bulletin board with the goal of fostering participants’ critical thinking in the context of collaborative problem-solving. These authors’ research revealed that through sharing, debating, examining, and reflecting on various experiences and ideas, collaborative problem-solving can considerably enhance students’ critical thinking in real-life problem situations. In contrast, collaborative problem-solving had a positive impact on learners’ interaction and could improve learning interest and motivation but could not significantly improve students’ critical thinking when compared to traditional classroom teaching, according to research by Naber and Wyatt ( 2014 ) and Sendag and Odabasi ( 2009 ) on undergraduate and high school students, respectively.

The above studies show that there is inconsistency regarding the effectiveness of collaborative problem-solving in promoting students’ critical thinking. Therefore, it is essential to conduct a thorough and trustworthy review to detect and decide whether and to what degree collaborative problem-solving can result in a rise or decrease in critical thinking. Meta-analysis is a quantitative analysis approach that is utilized to examine quantitative data from various separate studies that are all focused on the same research topic. This approach characterizes the effectiveness of its impact by averaging the effect sizes of numerous qualitative studies in an effort to reduce the uncertainty brought on by independent research and produce more conclusive findings (Lipsey and Wilson, 2001 ).

This paper used a meta-analytic approach and carried out a meta-analysis to examine the effectiveness of collaborative problem-solving in promoting students’ critical thinking in order to make a contribution to both research and practice. The following research questions were addressed by this meta-analysis:

What is the overall effect size of collaborative problem-solving in promoting students’ critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills)?

How are the disparities between the study conclusions impacted by various moderating variables if the impacts of various experimental designs in the included studies are heterogeneous?

This research followed the strict procedures (e.g., database searching, identification, screening, eligibility, merging, duplicate removal, and analysis of included studies) of Cooper’s ( 2010 ) proposed meta-analysis approach for examining quantitative data from various separate studies that are all focused on the same research topic. The relevant empirical research that appeared in worldwide educational periodicals within the 21st century was subjected to this meta-analysis using Rev-Man 5.4. The consistency of the data extracted separately by two researchers was tested using Cohen’s kappa coefficient, and a publication bias test and a heterogeneity test were run on the sample data to ascertain the quality of this meta-analysis.

Data sources and search strategies

There were three stages to the data collection process for this meta-analysis, as shown in Fig. 1 , which shows the number of articles included and eliminated during the selection process based on the statement and study eligibility criteria.

figure 1

This flowchart shows the number of records identified, included and excluded in the article.

First, the databases used to systematically search for relevant articles were the journal papers of the Web of Science Core Collection and the Chinese Core source journal, as well as the Chinese Social Science Citation Index (CSSCI) source journal papers included in CNKI. These databases were selected because they are credible platforms that are sources of scholarly and peer-reviewed information with advanced search tools and contain literature relevant to the subject of our topic from reliable researchers and experts. The search string with the Boolean operator used in the Web of Science was “TS = (((“critical thinking” or “ct” and “pretest” or “posttest”) or (“critical thinking” or “ct” and “control group” or “quasi experiment” or “experiment”)) and (“collaboration” or “collaborative learning” or “CSCL”) and (“problem solving” or “problem-based learning” or “PBL”))”. The research area was “Education Educational Research”, and the search period was “January 1, 2000, to December 30, 2021”. A total of 412 papers were obtained. The search string with the Boolean operator used in the CNKI was “SU = (‘critical thinking’*‘collaboration’ + ‘critical thinking’*‘collaborative learning’ + ‘critical thinking’*‘CSCL’ + ‘critical thinking’*‘problem solving’ + ‘critical thinking’*‘problem-based learning’ + ‘critical thinking’*‘PBL’ + ‘critical thinking’*‘problem oriented’) AND FT = (‘experiment’ + ‘quasi experiment’ + ‘pretest’ + ‘posttest’ + ‘empirical study’)” (translated into Chinese when searching). A total of 56 studies were found throughout the search period of “January 2000 to December 2021”. From the databases, all duplicates and retractions were eliminated before exporting the references into Endnote, a program for managing bibliographic references. In all, 466 studies were found.

Second, the studies that matched the inclusion and exclusion criteria for the meta-analysis were chosen by two researchers after they had reviewed the abstracts and titles of the gathered articles, yielding a total of 126 studies.

Third, two researchers thoroughly reviewed each included article’s whole text in accordance with the inclusion and exclusion criteria. Meanwhile, a snowball search was performed using the references and citations of the included articles to ensure complete coverage of the articles. Ultimately, 36 articles were kept.

Two researchers worked together to carry out this entire process, and a consensus rate of almost 94.7% was reached after discussion and negotiation to clarify any emerging differences.

Eligibility criteria

Since not all the retrieved studies matched the criteria for this meta-analysis, eligibility criteria for both inclusion and exclusion were developed as follows:

The publication language of the included studies was limited to English and Chinese, and the full text could be obtained. Articles that did not meet the publication language and articles not published between 2000 and 2021 were excluded.

The research design of the included studies must be empirical and quantitative studies that can assess the effect of collaborative problem-solving on the development of critical thinking. Articles that could not identify the causal mechanisms by which collaborative problem-solving affects critical thinking, such as review articles and theoretical articles, were excluded.

The research method of the included studies must feature a randomized control experiment or a quasi-experiment, or a natural experiment, which have a higher degree of internal validity with strong experimental designs and can all plausibly provide evidence that critical thinking and collaborative problem-solving are causally related. Articles with non-experimental research methods, such as purely correlational or observational studies, were excluded.

The participants of the included studies were only students in school, including K-12 students and college students. Articles in which the participants were non-school students, such as social workers or adult learners, were excluded.

The research results of the included studies must mention definite signs that may be utilized to gauge critical thinking’s impact (e.g., sample size, mean value, or standard deviation). Articles that lacked specific measurement indicators for critical thinking and could not calculate the effect size were excluded.

Data coding design

In order to perform a meta-analysis, it is necessary to collect the most important information from the articles, codify that information’s properties, and convert descriptive data into quantitative data. Therefore, this study designed a data coding template (see Table 1 ). Ultimately, 16 coding fields were retained.

The designed data-coding template consisted of three pieces of information. Basic information about the papers was included in the descriptive information: the publishing year, author, serial number, and title of the paper.

The variable information for the experimental design had three variables: the independent variable (instruction method), the dependent variable (critical thinking), and the moderating variable (learning stage, teaching type, intervention duration, learning scaffold, group size, measuring tool, and subject area). Depending on the topic of this study, the intervention strategy, as the independent variable, was coded into collaborative and non-collaborative problem-solving. The dependent variable, critical thinking, was coded as a cognitive skill and an attitudinal tendency. And seven moderating variables were created by grouping and combining the experimental design variables discovered within the 36 studies (see Table 1 ), where learning stages were encoded as higher education, high school, middle school, and primary school or lower; teaching types were encoded as mixed courses, integrated courses, and independent courses; intervention durations were encoded as 0–1 weeks, 1–4 weeks, 4–12 weeks, and more than 12 weeks; group sizes were encoded as 2–3 persons, 4–6 persons, 7–10 persons, and more than 10 persons; learning scaffolds were encoded as teacher-supported learning scaffold, technique-supported learning scaffold, and resource-supported learning scaffold; measuring tools were encoded as standardized measurement tools (e.g., WGCTA, CCTT, CCTST, and CCTDI) and self-adapting measurement tools (e.g., modified or made by researchers); and subject areas were encoded according to the specific subjects used in the 36 included studies.

The data information contained three metrics for measuring critical thinking: sample size, average value, and standard deviation. It is vital to remember that studies with various experimental designs frequently adopt various formulas to determine the effect size. And this paper used Morris’ proposed standardized mean difference (SMD) calculation formula ( 2008 , p. 369; see Supplementary Table S3 ).

Procedure for extracting and coding data

According to the data coding template (see Table 1 ), the 36 papers’ information was retrieved by two researchers, who then entered them into Excel (see Supplementary Table S1 ). The results of each study were extracted separately in the data extraction procedure if an article contained numerous studies on critical thinking, or if a study assessed different critical thinking dimensions. For instance, Tiwari et al. ( 2010 ) used four time points, which were viewed as numerous different studies, to examine the outcomes of critical thinking, and Chen ( 2013 ) included the two outcome variables of attitudinal tendency and cognitive skills, which were regarded as two studies. After discussion and negotiation during data extraction, the two researchers’ consistency test coefficients were roughly 93.27%. Supplementary Table S2 details the key characteristics of the 36 included articles with 79 effect quantities, including descriptive information (e.g., the publishing year, author, serial number, and title of the paper), variable information (e.g., independent variables, dependent variables, and moderating variables), and data information (e.g., mean values, standard deviations, and sample size). Following that, testing for publication bias and heterogeneity was done on the sample data using the Rev-Man 5.4 software, and then the test results were used to conduct a meta-analysis.

Publication bias test

When the sample of studies included in a meta-analysis does not accurately reflect the general status of research on the relevant subject, publication bias is said to be exhibited in this research. The reliability and accuracy of the meta-analysis may be impacted by publication bias. Due to this, the meta-analysis needs to check the sample data for publication bias (Stewart et al., 2006 ). A popular method to check for publication bias is the funnel plot; and it is unlikely that there will be publishing bias when the data are equally dispersed on either side of the average effect size and targeted within the higher region. The data are equally dispersed within the higher portion of the efficient zone, consistent with the funnel plot connected with this analysis (see Fig. 2 ), indicating that publication bias is unlikely in this situation.

figure 2

This funnel plot shows the result of publication bias of 79 effect quantities across 36 studies.

Heterogeneity test

To select the appropriate effect models for the meta-analysis, one might use the results of a heterogeneity test on the data effect sizes. In a meta-analysis, it is common practice to gauge the degree of data heterogeneity using the I 2 value, and I 2  ≥ 50% is typically understood to denote medium-high heterogeneity, which calls for the adoption of a random effect model; if not, a fixed effect model ought to be applied (Lipsey and Wilson, 2001 ). The findings of the heterogeneity test in this paper (see Table 2 ) revealed that I 2 was 86% and displayed significant heterogeneity ( P  < 0.01). To ensure accuracy and reliability, the overall effect size ought to be calculated utilizing the random effect model.

The analysis of the overall effect size

This meta-analysis utilized a random effect model to examine 79 effect quantities from 36 studies after eliminating heterogeneity. In accordance with Cohen’s criterion (Cohen, 1992 ), it is abundantly clear from the analysis results, which are shown in the forest plot of the overall effect (see Fig. 3 ), that the cumulative impact size of cooperative problem-solving is 0.82, which is statistically significant ( z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]), and can encourage learners to practice critical thinking.

figure 3

This forest plot shows the analysis result of the overall effect size across 36 studies.

In addition, this study examined two distinct dimensions of critical thinking to better understand the precise contributions that collaborative problem-solving makes to the growth of critical thinking. The findings (see Table 3 ) indicate that collaborative problem-solving improves cognitive skills (ES = 0.70) and attitudinal tendency (ES = 1.17), with significant intergroup differences (chi 2  = 7.95, P  < 0.01). Although collaborative problem-solving improves both dimensions of critical thinking, it is essential to point out that the improvements in students’ attitudinal tendency are much more pronounced and have a significant comprehensive effect (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]), whereas gains in learners’ cognitive skill are slightly improved and are just above average. (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

The analysis of moderator effect size

The whole forest plot’s 79 effect quantities underwent a two-tailed test, which revealed significant heterogeneity ( I 2  = 86%, z  = 12.78, P  < 0.01), indicating differences between various effect sizes that may have been influenced by moderating factors other than sampling error. Therefore, exploring possible moderating factors that might produce considerable heterogeneity was done using subgroup analysis, such as the learning stage, learning scaffold, teaching type, group size, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, in order to further explore the key factors that influence critical thinking. The findings (see Table 4 ) indicate that various moderating factors have advantageous effects on critical thinking. In this situation, the subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), learning scaffold (chi 2  = 9.03, P  < 0.01), and teaching type (chi 2  = 7.20, P  < 0.05) are all significant moderators that can be applied to support the cultivation of critical thinking. However, since the learning stage and the measuring tools did not significantly differ among intergroup (chi 2  = 3.15, P  = 0.21 > 0.05, and chi 2  = 0.08, P  = 0.78 > 0.05), we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving. These are the precise outcomes, as follows:

Various learning stages influenced critical thinking positively, without significant intergroup differences (chi 2  = 3.15, P  = 0.21 > 0.05). High school was first on the list of effect sizes (ES = 1.36, P  < 0.01), then higher education (ES = 0.78, P  < 0.01), and middle school (ES = 0.73, P  < 0.01). These results show that, despite the learning stage’s beneficial influence on cultivating learners’ critical thinking, we are unable to explain why it is essential for cultivating critical thinking in the context of collaborative problem-solving.

Different teaching types had varying degrees of positive impact on critical thinking, with significant intergroup differences (chi 2  = 7.20, P  < 0.05). The effect size was ranked as follows: mixed courses (ES = 1.34, P  < 0.01), integrated courses (ES = 0.81, P  < 0.01), and independent courses (ES = 0.27, P  < 0.01). These results indicate that the most effective approach to cultivate critical thinking utilizing collaborative problem solving is through the teaching type of mixed courses.

Various intervention durations significantly improved critical thinking, and there were significant intergroup differences (chi 2  = 12.18, P  < 0.01). The effect sizes related to this variable showed a tendency to increase with longer intervention durations. The improvement in critical thinking reached a significant level (ES = 0.85, P  < 0.01) after more than 12 weeks of training. These findings indicate that the intervention duration and critical thinking’s impact are positively correlated, with a longer intervention duration having a greater effect.

Different learning scaffolds influenced critical thinking positively, with significant intergroup differences (chi 2  = 9.03, P  < 0.01). The resource-supported learning scaffold (ES = 0.69, P  < 0.01) acquired a medium-to-higher level of impact, the technique-supported learning scaffold (ES = 0.63, P  < 0.01) also attained a medium-to-higher level of impact, and the teacher-supported learning scaffold (ES = 0.92, P  < 0.01) displayed a high level of significant impact. These results show that the learning scaffold with teacher support has the greatest impact on cultivating critical thinking.

Various group sizes influenced critical thinking positively, and the intergroup differences were statistically significant (chi 2  = 8.77, P  < 0.05). Critical thinking showed a general declining trend with increasing group size. The overall effect size of 2–3 people in this situation was the biggest (ES = 0.99, P  < 0.01), and when the group size was greater than 7 people, the improvement in critical thinking was at the lower-middle level (ES < 0.5, P  < 0.01). These results show that the impact on critical thinking is positively connected with group size, and as group size grows, so does the overall impact.

Various measuring tools influenced critical thinking positively, with significant intergroup differences (chi 2  = 0.08, P  = 0.78 > 0.05). In this situation, the self-adapting measurement tools obtained an upper-medium level of effect (ES = 0.78), whereas the complete effect size of the standardized measurement tools was the largest, achieving a significant level of effect (ES = 0.84, P  < 0.01). These results show that, despite the beneficial influence of the measuring tool on cultivating critical thinking, we are unable to explain why it is crucial in fostering the growth of critical thinking by utilizing the approach of collaborative problem-solving.

Different subject areas had a greater impact on critical thinking, and the intergroup differences were statistically significant (chi 2  = 13.36, P  < 0.05). Mathematics had the greatest overall impact, achieving a significant level of effect (ES = 1.68, P  < 0.01), followed by science (ES = 1.25, P  < 0.01) and medical science (ES = 0.87, P  < 0.01), both of which also achieved a significant level of effect. Programming technology was the least effective (ES = 0.39, P  < 0.01), only having a medium-low degree of effect compared to education (ES = 0.72, P  < 0.01) and other fields (such as language, art, and social sciences) (ES = 0.58, P  < 0.01). These results suggest that scientific fields (e.g., mathematics, science) may be the most effective subject areas for cultivating critical thinking utilizing the approach of collaborative problem-solving.

The effectiveness of collaborative problem solving with regard to teaching critical thinking

According to this meta-analysis, using collaborative problem-solving as an intervention strategy in critical thinking teaching has a considerable amount of impact on cultivating learners’ critical thinking as a whole and has a favorable promotional effect on the two dimensions of critical thinking. According to certain studies, collaborative problem solving, the most frequently used critical thinking teaching strategy in curriculum instruction can considerably enhance students’ critical thinking (e.g., Liang et al., 2017 ; Liu et al., 2020 ; Cindy, 2004 ). This meta-analysis provides convergent data support for the above research views. Thus, the findings of this meta-analysis not only effectively address the first research query regarding the overall effect of cultivating critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills) utilizing the approach of collaborative problem-solving, but also enhance our confidence in cultivating critical thinking by using collaborative problem-solving intervention approach in the context of classroom teaching.

Furthermore, the associated improvements in attitudinal tendency are much stronger, but the corresponding improvements in cognitive skill are only marginally better. According to certain studies, cognitive skill differs from the attitudinal tendency in classroom instruction; the cultivation and development of the former as a key ability is a process of gradual accumulation, while the latter as an attitude is affected by the context of the teaching situation (e.g., a novel and exciting teaching approach, challenging and rewarding tasks) (Halpern, 2001 ; Wei and Hong, 2022 ). Collaborative problem-solving as a teaching approach is exciting and interesting, as well as rewarding and challenging; because it takes the learners as the focus and examines problems with poor structure in real situations, and it can inspire students to fully realize their potential for problem-solving, which will significantly improve their attitudinal tendency toward solving problems (Liu et al., 2020 ). Similar to how collaborative problem-solving influences attitudinal tendency, attitudinal tendency impacts cognitive skill when attempting to solve a problem (Liu et al., 2020 ; Zhang et al., 2022 ), and stronger attitudinal tendencies are associated with improved learning achievement and cognitive ability in students (Sison, 2008 ; Zhang et al., 2022 ). It can be seen that the two specific dimensions of critical thinking as well as critical thinking as a whole are affected by collaborative problem-solving, and this study illuminates the nuanced links between cognitive skills and attitudinal tendencies with regard to these two dimensions of critical thinking. To fully develop students’ capacity for critical thinking, future empirical research should pay closer attention to cognitive skills.

The moderating effects of collaborative problem solving with regard to teaching critical thinking

In order to further explore the key factors that influence critical thinking, exploring possible moderating effects that might produce considerable heterogeneity was done using subgroup analysis. The findings show that the moderating factors, such as the teaching type, learning stage, group size, learning scaffold, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, could all support the cultivation of collaborative problem-solving in critical thinking. Among them, the effect size differences between the learning stage and measuring tool are not significant, which does not explain why these two factors are crucial in supporting the cultivation of critical thinking utilizing the approach of collaborative problem-solving.

In terms of the learning stage, various learning stages influenced critical thinking positively without significant intergroup differences, indicating that we are unable to explain why it is crucial in fostering the growth of critical thinking.

Although high education accounts for 70.89% of all empirical studies performed by researchers, high school may be the appropriate learning stage to foster students’ critical thinking by utilizing the approach of collaborative problem-solving since it has the largest overall effect size. This phenomenon may be related to student’s cognitive development, which needs to be further studied in follow-up research.

With regard to teaching type, mixed course teaching may be the best teaching method to cultivate students’ critical thinking. Relevant studies have shown that in the actual teaching process if students are trained in thinking methods alone, the methods they learn are isolated and divorced from subject knowledge, which is not conducive to their transfer of thinking methods; therefore, if students’ thinking is trained only in subject teaching without systematic method training, it is challenging to apply to real-world circumstances (Ruggiero, 2012 ; Hu and Liu, 2015 ). Teaching critical thinking as mixed course teaching in parallel to other subject teachings can achieve the best effect on learners’ critical thinking, and explicit critical thinking instruction is more effective than less explicit critical thinking instruction (Bensley and Spero, 2014 ).

In terms of the intervention duration, with longer intervention times, the overall effect size shows an upward tendency. Thus, the intervention duration and critical thinking’s impact are positively correlated. Critical thinking, as a key competency for students in the 21st century, is difficult to get a meaningful improvement in a brief intervention duration. Instead, it could be developed over a lengthy period of time through consistent teaching and the progressive accumulation of knowledge (Halpern, 2001 ; Hu and Liu, 2015 ). Therefore, future empirical studies ought to take these restrictions into account throughout a longer period of critical thinking instruction.

With regard to group size, a group size of 2–3 persons has the highest effect size, and the comprehensive effect size decreases with increasing group size in general. This outcome is in line with some research findings; as an example, a group composed of two to four members is most appropriate for collaborative learning (Schellens and Valcke, 2006 ). However, the meta-analysis results also indicate that once the group size exceeds 7 people, small groups cannot produce better interaction and performance than large groups. This may be because the learning scaffolds of technique support, resource support, and teacher support improve the frequency and effectiveness of interaction among group members, and a collaborative group with more members may increase the diversity of views, which is helpful to cultivate critical thinking utilizing the approach of collaborative problem-solving.

With regard to the learning scaffold, the three different kinds of learning scaffolds can all enhance critical thinking. Among them, the teacher-supported learning scaffold has the largest overall effect size, demonstrating the interdependence of effective learning scaffolds and collaborative problem-solving. This outcome is in line with some research findings; as an example, a successful strategy is to encourage learners to collaborate, come up with solutions, and develop critical thinking skills by using learning scaffolds (Reiser, 2004 ; Xu et al., 2022 ); learning scaffolds can lower task complexity and unpleasant feelings while also enticing students to engage in learning activities (Wood et al., 2006 ); learning scaffolds are designed to assist students in using learning approaches more successfully to adapt the collaborative problem-solving process, and the teacher-supported learning scaffolds have the greatest influence on critical thinking in this process because they are more targeted, informative, and timely (Xu et al., 2022 ).

With respect to the measuring tool, despite the fact that standardized measurement tools (such as the WGCTA, CCTT, and CCTST) have been acknowledged as trustworthy and effective by worldwide experts, only 54.43% of the research included in this meta-analysis adopted them for assessment, and the results indicated no intergroup differences. These results suggest that not all teaching circumstances are appropriate for measuring critical thinking using standardized measurement tools. “The measuring tools for measuring thinking ability have limits in assessing learners in educational situations and should be adapted appropriately to accurately assess the changes in learners’ critical thinking.”, according to Simpson and Courtney ( 2002 , p. 91). As a result, in order to more fully and precisely gauge how learners’ critical thinking has evolved, we must properly modify standardized measuring tools based on collaborative problem-solving learning contexts.

With regard to the subject area, the comprehensive effect size of science departments (e.g., mathematics, science, medical science) is larger than that of language arts and social sciences. Some recent international education reforms have noted that critical thinking is a basic part of scientific literacy. Students with scientific literacy can prove the rationality of their judgment according to accurate evidence and reasonable standards when they face challenges or poorly structured problems (Kyndt et al., 2013 ), which makes critical thinking crucial for developing scientific understanding and applying this understanding to practical problem solving for problems related to science, technology, and society (Yore et al., 2007 ).

Suggestions for critical thinking teaching

Other than those stated in the discussion above, the following suggestions are offered for critical thinking instruction utilizing the approach of collaborative problem-solving.

First, teachers should put a special emphasis on the two core elements, which are collaboration and problem-solving, to design real problems based on collaborative situations. This meta-analysis provides evidence to support the view that collaborative problem-solving has a strong synergistic effect on promoting students’ critical thinking. Asking questions about real situations and allowing learners to take part in critical discussions on real problems during class instruction are key ways to teach critical thinking rather than simply reading speculative articles without practice (Mulnix, 2012 ). Furthermore, the improvement of students’ critical thinking is realized through cognitive conflict with other learners in the problem situation (Yang et al., 2008 ). Consequently, it is essential for teachers to put a special emphasis on the two core elements, which are collaboration and problem-solving, and design real problems and encourage students to discuss, negotiate, and argue based on collaborative problem-solving situations.

Second, teachers should design and implement mixed courses to cultivate learners’ critical thinking, utilizing the approach of collaborative problem-solving. Critical thinking can be taught through curriculum instruction (Kuncel, 2011 ; Leng and Lu, 2020 ), with the goal of cultivating learners’ critical thinking for flexible transfer and application in real problem-solving situations. This meta-analysis shows that mixed course teaching has a highly substantial impact on the cultivation and promotion of learners’ critical thinking. Therefore, teachers should design and implement mixed course teaching with real collaborative problem-solving situations in combination with the knowledge content of specific disciplines in conventional teaching, teach methods and strategies of critical thinking based on poorly structured problems to help students master critical thinking, and provide practical activities in which students can interact with each other to develop knowledge construction and critical thinking utilizing the approach of collaborative problem-solving.

Third, teachers should be more trained in critical thinking, particularly preservice teachers, and they also should be conscious of the ways in which teachers’ support for learning scaffolds can promote critical thinking. The learning scaffold supported by teachers had the greatest impact on learners’ critical thinking, in addition to being more directive, targeted, and timely (Wood et al., 2006 ). Critical thinking can only be effectively taught when teachers recognize the significance of critical thinking for students’ growth and use the proper approaches while designing instructional activities (Forawi, 2016 ). Therefore, with the intention of enabling teachers to create learning scaffolds to cultivate learners’ critical thinking utilizing the approach of collaborative problem solving, it is essential to concentrate on the teacher-supported learning scaffolds and enhance the instruction for teaching critical thinking to teachers, especially preservice teachers.

Implications and limitations

There are certain limitations in this meta-analysis, but future research can correct them. First, the search languages were restricted to English and Chinese, so it is possible that pertinent studies that were written in other languages were overlooked, resulting in an inadequate number of articles for review. Second, these data provided by the included studies are partially missing, such as whether teachers were trained in the theory and practice of critical thinking, the average age and gender of learners, and the differences in critical thinking among learners of various ages and genders. Third, as is typical for review articles, more studies were released while this meta-analysis was being done; therefore, it had a time limit. With the development of relevant research, future studies focusing on these issues are highly relevant and needed.

Conclusions

The subject of the magnitude of collaborative problem-solving’s impact on fostering students’ critical thinking, which received scant attention from other studies, was successfully addressed by this study. The question of the effectiveness of collaborative problem-solving in promoting students’ critical thinking was addressed in this study, which addressed a topic that had gotten little attention in earlier research. The following conclusions can be made:

Regarding the results obtained, collaborative problem solving is an effective teaching approach to foster learners’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]). With respect to the dimensions of critical thinking, collaborative problem-solving can significantly and effectively improve students’ attitudinal tendency, and the comprehensive effect is significant (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

As demonstrated by both the results and the discussion, there are varying degrees of beneficial effects on students’ critical thinking from all seven moderating factors, which were found across 36 studies. In this context, the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have a positive impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. Since the learning stage (chi 2  = 3.15, P  = 0.21 > 0.05) and measuring tools (chi 2  = 0.08, P  = 0.78 > 0.05) did not demonstrate any significant intergroup differences, we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving.

Data availability

All data generated or analyzed during this study are included within the article and its supplementary information files, and the supplementary information files are available in the Dataverse repository: https://doi.org/10.7910/DVN/IPFJO6 .

Bensley DA, Spero RA (2014) Improving critical thinking skills and meta-cognitive monitoring through direct infusion. Think Skills Creat 12:55–68. https://doi.org/10.1016/j.tsc.2014.02.001

Article   Google Scholar  

Castle A (2009) Defining and assessing critical thinking skills for student radiographers. Radiography 15(1):70–76. https://doi.org/10.1016/j.radi.2007.10.007

Chen XD (2013) An empirical study on the influence of PBL teaching model on critical thinking ability of non-English majors. J PLA Foreign Lang College 36 (04):68–72

Google Scholar  

Cohen A (1992) Antecedents of organizational commitment across occupational groups: a meta-analysis. J Organ Behav. https://doi.org/10.1002/job.4030130602

Cooper H (2010) Research synthesis and meta-analysis: a step-by-step approach, 4th edn. Sage, London, England

Cindy HS (2004) Problem-based learning: what and how do students learn? Educ Psychol Rev 51(1):31–39

Duch BJ, Gron SD, Allen DE (2001) The power of problem-based learning: a practical “how to” for teaching undergraduate courses in any discipline. Stylus Educ Sci 2:190–198

Ennis RH (1989) Critical thinking and subject specificity: clarification and needed research. Educ Res 18(3):4–10. https://doi.org/10.3102/0013189x018003004

Facione PA (1990) Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations. Eric document reproduction service. https://eric.ed.gov/?id=ed315423

Facione PA, Facione NC (1992) The California Critical Thinking Dispositions Inventory (CCTDI) and the CCTDI test manual. California Academic Press, Millbrae, CA

Forawi SA (2016) Standard-based science education and critical thinking. Think Skills Creat 20:52–62. https://doi.org/10.1016/j.tsc.2016.02.005

Halpern DF (2001) Assessing the effectiveness of critical thinking instruction. J Gen Educ 50(4):270–286. https://doi.org/10.2307/27797889

Hu WP, Liu J (2015) Cultivation of pupils’ thinking ability: a five-year follow-up study. Psychol Behav Res 13(05):648–654. https://doi.org/10.3969/j.issn.1672-0628.2015.05.010

Huber K (2016) Does college teach critical thinking? A meta-analysis. Rev Educ Res 86(2):431–468. https://doi.org/10.3102/0034654315605917

Kek MYCA, Huijser H (2011) The power of problem-based learning in developing critical thinking skills: preparing students for tomorrow’s digital futures in today’s classrooms. High Educ Res Dev 30(3):329–341. https://doi.org/10.1080/07294360.2010.501074

Kuncel NR (2011) Measurement and meaning of critical thinking (Research report for the NRC 21st Century Skills Workshop). National Research Council, Washington, DC

Kyndt E, Raes E, Lismont B, Timmers F, Cascallar E, Dochy F (2013) A meta-analysis of the effects of face-to-face cooperative learning. Do recent studies falsify or verify earlier findings? Educ Res Rev 10(2):133–149. https://doi.org/10.1016/j.edurev.2013.02.002

Leng J, Lu XX (2020) Is critical thinking really teachable?—A meta-analysis based on 79 experimental or quasi experimental studies. Open Educ Res 26(06):110–118. https://doi.org/10.13966/j.cnki.kfjyyj.2020.06.011

Liang YZ, Zhu K, Zhao CL (2017) An empirical study on the depth of interaction promoted by collaborative problem solving learning activities. J E-educ Res 38(10):87–92. https://doi.org/10.13811/j.cnki.eer.2017.10.014

Lipsey M, Wilson D (2001) Practical meta-analysis. International Educational and Professional, London, pp. 92–160

Liu Z, Wu W, Jiang Q (2020) A study on the influence of problem based learning on college students’ critical thinking-based on a meta-analysis of 31 studies. Explor High Educ 03:43–49

Morris SB (2008) Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods 11(2):364–386. https://doi.org/10.1177/1094428106291059

Article   ADS   Google Scholar  

Mulnix JW (2012) Thinking critically about critical thinking. Educ Philos Theory 44(5):464–479. https://doi.org/10.1111/j.1469-5812.2010.00673.x

Naber J, Wyatt TH (2014) The effect of reflective writing interventions on the critical thinking skills and dispositions of baccalaureate nursing students. Nurse Educ Today 34(1):67–72. https://doi.org/10.1016/j.nedt.2013.04.002

National Research Council (2012) Education for life and work: developing transferable knowledge and skills in the 21st century. The National Academies Press, Washington, DC

Niu L, Behar HLS, Garvan CW (2013) Do instructional interventions influence college students’ critical thinking skills? A meta-analysis. Educ Res Rev 9(12):114–128. https://doi.org/10.1016/j.edurev.2012.12.002

Peng ZM, Deng L (2017) Towards the core of education reform: cultivating critical thinking skills as the core of skills in the 21st century. Res Educ Dev 24:57–63. https://doi.org/10.14121/j.cnki.1008-3855.2017.24.011

Reiser BJ (2004) Scaffolding complex learning: the mechanisms of structuring and problematizing student work. J Learn Sci 13(3):273–304. https://doi.org/10.1207/s15327809jls1303_2

Ruggiero VR (2012) The art of thinking: a guide to critical and creative thought, 4th edn. Harper Collins College Publishers, New York

Schellens T, Valcke M (2006) Fostering knowledge construction in university students through asynchronous discussion groups. Comput Educ 46(4):349–370. https://doi.org/10.1016/j.compedu.2004.07.010

Sendag S, Odabasi HF (2009) Effects of an online problem based learning course on content knowledge acquisition and critical thinking skills. Comput Educ 53(1):132–141. https://doi.org/10.1016/j.compedu.2009.01.008

Sison R (2008) Investigating Pair Programming in a Software Engineering Course in an Asian Setting. 2008 15th Asia-Pacific Software Engineering Conference, pp. 325–331. https://doi.org/10.1109/APSEC.2008.61

Simpson E, Courtney M (2002) Critical thinking in nursing education: literature review. Mary Courtney 8(2):89–98

Stewart L, Tierney J, Burdett S (2006) Do systematic reviews based on individual patient data offer a means of circumventing biases associated with trial publications? Publication bias in meta-analysis. John Wiley and Sons Inc, New York, pp. 261–286

Tiwari A, Lai P, So M, Yuen K (2010) A comparison of the effects of problem-based learning and lecturing on the development of students’ critical thinking. Med Educ 40(6):547–554. https://doi.org/10.1111/j.1365-2929.2006.02481.x

Wood D, Bruner JS, Ross G (2006) The role of tutoring in problem solving. J Child Psychol Psychiatry 17(2):89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Wei T, Hong S (2022) The meaning and realization of teachable critical thinking. Educ Theory Practice 10:51–57

Xu EW, Wang W, Wang QX (2022) A meta-analysis of the effectiveness of programming teaching in promoting K-12 students’ computational thinking. Educ Inf Technol. https://doi.org/10.1007/s10639-022-11445-2

Yang YC, Newby T, Bill R (2008) Facilitating interactions through structured web-based bulletin boards: a quasi-experimental study on promoting learners’ critical thinking skills. Comput Educ 50(4):1572–1585. https://doi.org/10.1016/j.compedu.2007.04.006

Yore LD, Pimm D, Tuan HL (2007) The literacy component of mathematical and scientific literacy. Int J Sci Math Educ 5(4):559–589. https://doi.org/10.1007/s10763-007-9089-4

Zhang T, Zhang S, Gao QQ, Wang JH (2022) Research on the development of learners’ critical thinking in online peer review. Audio Visual Educ Res 6:53–60. https://doi.org/10.13811/j.cnki.eer.2022.06.08

Download references

Acknowledgements

This research was supported by the graduate scientific research and innovation project of Xinjiang Uygur Autonomous Region named “Research on in-depth learning of high school information technology courses for the cultivation of computing thinking” (No. XJ2022G190) and the independent innovation fund project for doctoral students of the College of Educational Science of Xinjiang Normal University named “Research on project-based teaching of high school information technology courses from the perspective of discipline core literacy” (No. XJNUJKYA2003).

Author information

Authors and affiliations.

College of Educational Science, Xinjiang Normal University, 830017, Urumqi, Xinjiang, China

Enwei Xu, Wei Wang & Qingxia Wang

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Enwei Xu or Wei Wang .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Additional information.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary tables, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Xu, E., Wang, W. & Wang, Q. The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature. Humanit Soc Sci Commun 10 , 16 (2023). https://doi.org/10.1057/s41599-023-01508-1

Download citation

Received : 07 August 2022

Accepted : 04 January 2023

Published : 11 January 2023

DOI : https://doi.org/10.1057/s41599-023-01508-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Impacts of online collaborative learning on students’ intercultural communication apprehension and intercultural communicative competence.

  • Hoa Thi Hoang Chau
  • Hung Phu Bui
  • Quynh Thi Huong Dinh

Education and Information Technologies (2024)

Exploring the effects of digital technology on deep learning: a meta-analysis

Sustainable electricity generation and farm-grid utilization from photovoltaic aquaculture: a bibliometric analysis.

  • A. A. Amusa
  • M. Alhassan

International Journal of Environmental Science and Technology (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

importance of problem solving skills in students

Benefits of Problem-Solving in the K-12 Classroom

Posted October 5, 2022 by Miranda Marshall

importance of problem solving skills in students

From solving complex algebra problems to investigating scientific theories, to making inferences about written texts, problem-solving is central to every subject explored in school. Even beyond the classroom, problem-solving is ranked among the most important skills for students to demonstrate on their resumes, with 82.9% of employers considering it a highly valued attribute. On an even broader scale, students who learn how to apply their problem-solving skills to the issues they notice in their communities – or even globally –  have the tools they need to change the future and leave a lasting impact on the world around them.

Problem-solving can be taught in any content area and can even combine cross-curricular concepts to connect learning from all subjects. On top of building transferrable skills for higher education and beyond, read on to learn more about five amazing benefits students will gain from the inclusion of problem-based learning in their education:

  • Problem-solving is inherently student-centered.

Student-centered learning refers to methods of teaching that recognize and cater to students’ individual needs. Students learn at varying paces, have their own unique strengths, and even further, have their own interests and motivations – and a student-centered approach recognizes this diversity within classrooms by giving students some degree of control over their learning and making them active participants in the learning process.

Incorporating problem-solving into your curriculum is a great way to make learning more student-centered, as it requires students to engage with topics by asking questions and thinking critically about explanations and solutions, rather than expecting them to absorb information in a lecture format or through wrote memorization.

  • Increases confidence and achievement across all school subjects.

As with any skill, the more students practice problem-solving, the more comfortable they become with the type of critical and analytical thinking that will carry over into other areas of their academic careers. By learning how to approach concepts they are unfamiliar with or questions they do not know the answers to, students develop a greater sense of self-confidence in their ability to apply problem-solving techniques to other subject areas, and even outside of school in their day-to-day lives.

The goal in teaching problem-solving is for it to become second nature, and for students to routinely express their curiosity, explore innovative solutions, and analyze the world around them to draw their own conclusions.

  • Encourages collaboration and teamwork.

Since problem-solving often involves working cooperatively in teams, students build a number of important interpersonal skills alongside problem-solving skills. Effective teamwork requires clear communication, a sense of personal responsibility, empathy and understanding for teammates, and goal setting and organization – all of which are important throughout higher education and in the workplace as well.

  • Increases metacognitive skills.

Metacognition is often described as “thinking about thinking” because it refers to a person’s ability to analyze and understand their own thought processes. When making decisions, metacognition allows problem-solvers to consider the outcomes of multiple plans of action and determine which one will yield the best results.

Higher metacognitive skills have also widely been linked to improved learning outcomes and improved studying strategies. Metacognitive students are able to reflect on their learning experiences to understand themselves and the world around them better.

  • Helps with long-term knowledge retention.

Students who learn problem-solving skills may see an improved ability to retain and recall information. Specifically, being asked to explain how they reached their conclusions at the time of learning, by sharing their ideas and facts they have researched, helps reinforce their understanding of the subject matter.

Problem-solving scenarios in which students participate in small-group discussions can be especially beneficial, as this discussion gives students the opportunity to both ask and answer questions about the new concepts they’re exploring.

At all grade levels, students can see tremendous gains in their academic performance and emotional intelligence when problem-solving is thoughtfully planned into their learning.

Interested in helping your students build problem-solving skills, but aren’t sure where to start? Future Problem Solving Problem International (FPSPI) is an amazing academic competition for students of all ages, all around the world, that includes helpful resources for educators to implement in their own classrooms!

Learn more about this year’s competition season from this recorded webinar:    https://youtu.be/AbeKQ8_Sm8U and/or email [email protected] to get started!

Signup Newsletter

Sign me up for the newsletter!

importance of problem solving skills in students

The Institute of Competition Sciences (ICS) was founded in 2012 to help transform learning into an exciting challenge for all students. We exist to support students in realizing the full potential of their future.

Quick Links

  • Competitions
  • Privacy Policy
  • Terms and Conditions

Connect with us on social media

Instagram

Copyright © 2024 Institute of Competition Sciences. All rights reserved.

importance of problem solving skills in students

MSU Extension

Problem-solving skills are an important factor in academic success.

Elizabeth Gutierrez, Michigan State University Extension - May 11, 2012

Updated from an original article written by [email protected]..

share this on facebook

Parents and caregivers can ensure their children's success by teaching and modeling effective problem-solving at home.

Children learn how to problem-solve by seeing and listening to how adults resolve conflict. Photo credit: Pixabay.

Helping your child learn how to problem solve is a critical skill for school readiness. Parents and caregivers are a child’s first and most important teacher; therefore, modeling good problem solving skills is very important. Children learn by watching parents and caregivers handle different situations and solve problems. If a parent handles problems by yelling, throwing things, hitting, grabbing or using other unacceptable strategies, a child will learn to do the same thing.

Often, adults will prevent their children from seeing all conflicts or disagreements. Remember, it is important for children to see adults negotiate differences, compromise and resolve conflicts. Learning to negotiate differences in a constructive way and allowing children to see how this is done is very effective and important. If parent and caregivers handle these situations privately, there is no example for the child/children to learn from.

Children can learn how to be assertive verbally as a result of seeing and listening to how adults resolve conflict. Another simple way a child can learn how to be assertive verbally is by role-playing with puppets and through pretend play with an adult. When using these techniques, it is important to help your child think of constructive ways to respond to different situations. By using puppets and role-play, your child can also learn about how others may feel in specific situations. When using these techniques, it is important not to criticize or label the child for past misbehavior.

There are some basic steps to problem solving from Incredible Years :

  • Identify the problem.
  • List the possible solutions or courses of action.
  • Weigh the possible solutions.
  • Choose a solution to try.
  • Put the solution into practice.
  • Evaluate the solution.

Using effective problem solving techniques will help children avoid conflict with others in a school setting and in their everyday lives. It will also strengthen children’s beginning empathy skills and help them learn more positive attributions about another person’s intentions. Effective problem solving skills is essential for academic and social success.

For more articles on child development, academic success, parenting and life skill development, please visit the Michigan State University Extension website.

This article was published by Michigan State University Extension . For more information, visit https://extension.msu.edu . To have a digest of information delivered straight to your email inbox, visit https://extension.msu.edu/newsletters . To contact an expert in your area, visit https://extension.msu.edu/experts , or call 888-MSUE4MI (888-678-3464).

Did you find this article useful?

Find your spark with image of 4-H clover.

Ready to grow with 4-H? Sign up today!

new - method size: 3 - Random key: 1, method: tagSpecific - key: 1

You Might Also Be Interested In

importance of problem solving skills in students

Ep. 38: Land Acknowledgement with Emily Proctor

Published on April 21, 2021

importance of problem solving skills in students

MSU Hop Podcast

Published on April 8, 2021

Flushing phosphorus down the drain: tile lines and disoloved phosphorus

Published on November 12, 2020

importance of problem solving skills in students

MSU Dairy Virtual Coffee Break: Fresh Research on Milk fever

Published on April 7, 2021

importance of problem solving skills in students

MI Community Minutes: Sustainability Efforts in Local Government with City of Holland's Dan Broersma

Published on January 24, 2022

MSU Dairy Virtual Coffee Break: Feed management 101

  • child & family development
  • early childhood development
  • msu extension
  • social and emotional development
  • child & family development,
  • early childhood development,
  • msu extension,

The Importance of Critical Thinking Skills for Students

Link Copied

Share on Facebook

Share on Twitter

Share on LinkedIn

The Importance of Critical Thinking Skills for Students

Brains at Work!

If you’re moving toward the end of your high school career, you’ve likely heard a lot about college life and how different it is from high school. Classes are more intense, professors are stricter, and the curriculum is more complicated. All in all, it’s very different compared to high school.

Different doesn’t have to mean scary, though. If you’re nervous about beginning college and you’re worried about how you’ll learn in a place so different from high school, there are steps you can take to help you thrive in your college career.

If you’re wondering how to get accepted into college and how to succeed as a freshman in such a new environment, the answer is simple: harness the power of critical thinking skills for students.

What is critical thinking?

Critical thinking entails using reasoning and the questioning of assumptions to address problems, assess information, identify biases, and more. It's a skillset crucial for students navigating their academic journey and beyond, including how to get accepted into college . At its crux, critical thinking for students has everything to do with self-discipline and making active decisions to 'think outside the box,' allowing individuals to think beyond a concept alone in order to understand it better.

Critical thinking skills for students is a concept highly encouraged in any and every educational setting, and with good reason. Possessing strong critical thinking skills will make you a better student and, frankly, help you gain valuable life skills. Not only will you be more efficient in gathering knowledge and processing information, but you will also enhance your ability to analyse and comprehend it.

Importance of critical thinking for students

Developing critical thinking skills for students is essential for success at all academic levels, particularly in college. It introduces reflection and perspective while encouraging you to question what you’re learning! Even if you’ve seen solid facts. Asking questions, considering other perspectives, and self-reflection cultivate resilient students with endless potential for learning, retention, and personal growth.A well-developed set of critical thinking skills for students will help them excel in many areas. Here are some critical thinking examples for students:

1. Decision-making

If you’re thinking critically, you’re not making impulse decisions or snap judgments; you’re taking the time to weigh the pros and cons. You’re making informed decisions. Critical thinking skills for students can make all the difference.

2. Problem-solving

Students with critical thinking skills are more effective in problem-solving. This reflective thinking process helps you use your own experiences to ideate innovations, solutions, and decisions.

3. Communication

Strong communication skills are a vital aspect of critical thinking for students, helping with their overall critical thinking abilities. How can you learn without asking questions? Critical thinking for students is what helps them produce the questions they may not have ever thought to ask. As a critical thinker, you’ll get better at expressing your ideas concisely and logically, facilitating thoughtful discussion, and learning from your teachers and peers.

4. Analytical skills

Developing analytical skills is a key component of strong critical thinking skills for students. It goes beyond study tips on reviewing data or learning a concept. It’s about the “Who? What? Where? Why? When? How?” When you’re thinking critically, these questions will come naturally, and you’ll be an expert learner because of it.

How can students develop critical thinking skills

Although critical thinking skills for students is an important and necessary process, it isn’t necessarily difficult to develop these observational skills. All it takes is a conscious effort and a little bit of practice. Here are a few tips to get you started:

1. Never stop asking questions

This is the best way to learn critical thinking skills for students. As stated earlier, ask questions—even if you’re presented with facts to begin with. When you’re examining a problem or learning a concept, ask as many questions as you can. Not only will you be better acquainted with what you’re learning, but it’ll soon become second nature to follow this process in every class you take and help you improve your GPA .

2. Practice active listening

As important as asking questions is, it is equally vital to be a good listener to your peers. It is astounding how much we can learn from each other in a collaborative environment! Diverse perspectives are key to fostering critical thinking skills for students. Keep an open mind and view every discussion as an opportunity to learn.

3. Dive into your creativity

Although a college environment is vastly different from high school classrooms, one thing remains constant through all levels of education: the importance of creativity. Creativity is a guiding factor through all facets of critical thinking skills for students. It fosters collaborative discussion, innovative solutions, and thoughtful analyses.

4. Engage in debates and discussions

Participating in debates and discussions helps you articulate your thoughts clearly and consider opposing viewpoints. It challenges the critical thinking skills of students about the evidence presented, decoding arguments, and constructing logical reasoning. Look for debates and discussion opportunities in class, online forums, or extracurricular activities.

5. Look out for diverse sources of information 

In today's digital age, information is easily available from a variety of sources. Make it a habit to explore different opinions, perspectives, and sources of information. This not only broadens one's understanding of a subject but also helps in distinguishing between reliable and biased sources, honing the critical thinking skills of students.

Unlock the power of critical thinking skills while enjoying a seamless student living experience!

Book through amber today!

6. Practice problem-solving

Try engaging in challenging problems, riddles or puzzles that require critical thinking skills for students to solve. Whether it's solving mathematical equations, tackling complex scenarios in literature, or analysing data in science experiments, regular practice of problem-solving tasks sharpens your analytical skills. It enhances your ability to think critically under pressure.

Nurturing critical thinking skills helps students with the tools to navigate the complexities of academia and beyond. By learning active listening, curiosity, creativity, and problem-solving, students can create a sturdy foundation for lifelong learning. By building upon all these skills, you’ll be an expert critical thinker in no time—and you’ll be ready to conquer all that college has to offer! 

Frequently Asked Questions

What questions should i ask to be a better critical thinker, how can i sharpen critical thinking skills for students, how do i avoid bias, can i use my critical thinking skills outside of school, will critical thinking skills help students in their future careers.

Your ideal student home & a flight ticket awaits

Follow us on :

cta

Related Posts

importance of problem solving skills in students

17 Best Beaches In Miami To Have Fun

importance of problem solving skills in students

15 Benefits Of Yoga For Students

importance of problem solving skills in students

Gen Z And Technology: How The Future Of Tech Is Changing

importance of problem solving skills in students

Planning to Study Abroad ?

importance of problem solving skills in students

Your ideal student accommodation is a few steps away! Please fill in your details below so we can find you a new home!

We have got your response

Thanksgiving Decor Ideas

amber © 2024. All rights reserved.

4.8/5 on Trustpilot

Rated as "Excellent" • 4800+ Reviews by students

Rated as "Excellent" • 4800+ Reviews by Students

play store

  • Our Mission

Helping Middle and High School Students Cultivate Habits That Support Learning

Through explicit instruction, teachers can help students develop the skills necessary to do well in school.

Middle school math class

To learn and be successful in school overall, middle and high school students need the building blocks of academic achievement, active engagement and motivation, and consistent attendance. Young people often need a little help from their teachers to get there. Taking some time to enhance foundational skills doesn’t mean we lower expectations or rigor for students . Instead, think of it as putting first things first—like placing the horse before the cart, so that it can pull it effectively and eventually effortlessly.

In coaching teachers, I’ve observed a need for more consensus and collaboration between them and students about cultivating the essentials for success. Unfortunately, youth aren’t always aware of how they can positively impact their learning outcomes. Rather than becoming informed stakeholders in their own learning, they unintentionally become impediments.

Using the following two steps, teachers and students can come to an understanding about the essentials for positive school outcomes through what’s called level-setting in the business world . These strategies also provide young people with some good goal-attainment skills.

2 Steps to Guide Students to School Success

Step 1: Explain the fundamentals and set clear expectations. It can be extremely difficult for youth to set goals to develop habits they don’t fully comprehend or see value in. Help define for them the areas in which they need to improve, while modeling and setting clear expectations of what success entails. Remember to use kid-friendly language and remain patient. What we consider common sense isn’t always common practice. Here are some examples of how to define the fundamentals for students.

Academic achievement is the ability to demonstrate growth in each school subject through grades and performance. To excel academically, students should create a personal system of strategies for effective problem-solving, studying, time management, and collaborating with peers for each class. Achieving small academic victories will nurture their self-efficacy levels and overall confidence.

Active engagement in class means students listen attentively when teachers talk, ask thoughtful questions when they’re unsure, complete tasks and assignments with their best effort, and participate in learning activities and class discussions. It also means students take responsibility for their own learning by remaining focused and present even when their classmates are not.

Motivation for their education refers to students inspiring themselves to complete their academic duties even when they don’t feel like it. We all face challenges, setbacks, and moments when we feel like doing anything other than studying or participating in an academic activity. Finding purpose and meaning in their education can be a powerful motivator for students, along with these proven self-motivation techniques . Teachers can encourage students to empower themselves by focusing on the benefits of positive learning outcomes (e.g., learning to apply a formula, scoring high scores on benchmarks, or developing elevated levels of self-agency ).

Consistent attendance means students attend class to remain engaged with their teachers, the material, and peers. You can’t learn if you’re not there is an excellent slogan to summarize why students must attend classes regularly. Good attendance enables teens to network and build the rapport and relationships required for academic and life success. Additionally, it keeps them on track with coursework and assignments and makes them less likely to fall behind socially and academically. Some students actually miss class due to concerns about their academic performance, but there are ways that teachers can lure them back .

Step 2: Encourage goal setting and goal attainment. There is more than one way to set goals and achieve them. For instance, SMART goals offer a good framework for helping individuals qualify goals, and Scholar Within, an online education company, provides this free downloadable and adaptable goal-planning template that teachers can use to help students. When the road to achieving a goal appears too complex, many students may give up without realizing that learning what to do along the way is part of the process. Teachers can help by making the distinction between goal setting and goal attainment for them. Goal setting is determining something you want. Goal attainment is the system or process one takes to get there.

After identifying an essential skill they want to improve in, assist students with developing a goal-setting sentence and then with practical and incremental attainment steps they would need to take to get there. Also, be prepared to assist with providing access to the tools, apps, resources, and manipulatives recommended in the goal-attainment steps.

Note: This example is for a middle school student looking to improve their academic achievement in math class. Feel free to use the goal-setting template provided, ensuring assistance with helping them craft a goal statement and mapping practical goal-attainment steps like those modeled here.

Student goal statement: “I will strive for academic excellence in my seventh-grade math class by learning and applying strategies that will help me to boost my confidence over time and to do well on assignments, quizzes, and end-of-year testing.”

Goal attainment steps and considerations for boosting math skills

  • Practice arithmetic operations daily using real-life examples and apps that provide interactive practice exercises.
  • Practice pre-algebra concepts using step-by-step problem-solving to decompose algebraic problems into smaller steps and follow a systematic problem-solving method. Understand algebraic concepts by using visual representations such as graphs and diagrams.
  • Learn geometry fundamentals by building models of geometric shapes and using apps to manipulate geometric shapes and visualize properties, transformations, and calculations.
  • Create a daily study schedule at home free of distractions and divide the time into practice and review.
  • Stay motivated and consistent when the chips are down by cultivating a positive mindset and seeking positive words from my teacher, family, and friends. Keep everyone informed about my progress, and remember that setting goals takes time, failing forward, and persistence.

Transformation is complex because it requires stretching oneself to improve in areas one possibly hasn’t considered or previously attempted to work on—especially for young people. Engaging students in an activity to help them see a practical pathway is the scaffold that some need to get themselves on track.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Healthcare (Basel)

Logo of healthcare

Factors Influencing Problem-Solving Competence of Nursing Students: A Cross-Sectional Study

Eunhee choi.

1 Department of Nursing, Korean Bible University, 32 Dongil-ro(st) 214-gil, Nowon-gu, Seoul 01757, Korea; moc.revan@1029iohci

Jaehee Jeon

2 Department of Nursing, Gangneung-Wonju National University, Gangneung-si 26403, Korea

Associated Data

Not applicable.

Problem-solving ability is an important competency for nursing students to enable them to solve various problems that occur in dynamic clinical settings. The purpose of this cross-sectional study was to identify the factors that affect the problem-solving ability of nursing students. The subjects of this study were 192 nursing college students in their second year or beyond. The research tool consisted of an online questionnaire, with a total of 91 items regarding general characteristics, metacognition, and communication competence. Data collection was conducted from 10 to 30 March 2022. An online survey link was uploaded to the student group of a social network service from two nursing colleges that permitted data collection. Subjects who agreed to participate directly accessed and responded to the online survey. The collected data were analyzed using descriptive statistics, and the factors associated with the problem-solving ability of nursing students were examined using hierarchical multiple regression analysis. The subjects’ mean problem-solving ability score was 3.63 out of 5. Factors affecting problem-solving ability were age, communication competence, and metacognition, among which metacognition had the greatest influence. These variables explained 51.2% of the problem-solving ability of nursing students. Thus, it is necessary to provide guidance to improve metacognition and to develop educational methods to improve communication competence in curricular and non-curricular courses to improve the problem-solving ability of nursing students.

1. Introduction

Nurses must have the ability to develop individual problem-solving methods to satisfy their patients’ diverse and high-level health needs [ 1 ]. However, the medical field is characterized by uncertainty, instability, and unpredictability; thus, it is not easy for nurses to apply or utilize the knowledge learned within controlled situations in schools, and therefore, it is often difficult for nurses to address the health needs of patients [ 2 ]. The problem-solving ability required in such situations is an essential skill that college students majoring in nursing must have in order to effectively perform their assigned nursing tasks after graduation, while successfully adapting in order to practice in a rapidly changing medical field [ 3 ]. Therefore, strategies to improve the problem-solving ability of nursing students should be applied in their education.

This study aimed to examine the relationship between metacognition, communication competency, and the problem-solving ability of nursing students, and to identify factors that affect nursing students’ problem-solving ability. The results represent basic data that could help inform the development of educational strategies to improve the communication skills of nursing students.

Problem solving involves recognizing the difference between the problem solver’s current state and the goal state to be reached, and resolving the obstacles that prevent them from achieving the goal [ 4 ]. Acquiring problem-solving ability based on judgment and critical thinking is an important element of nursing education [ 5 ]. Furthermore, the use of effective problem-solving strategies based on professional knowledge is a competency that a professional nurse should possess [ 3 ].

Recently, metacognition has been recognized in psychology and pedagogy as a central element of the understanding, self-learning, communication, and problem-solving processes. Metacognition is the ability to think about one’s own thinking [ 6 ], as expressed by the individual knowing and controlling their thought processes and applying previously acquired knowledge, skills, and experiences using appropriate strategies [ 7 ]. In particular, metacognition is an important variable for learning and problem-solving. It is the knowledge related to the selection of an appropriate strategy for the task; the establishment, selection, and application of problem-solving measures; evaluation of the effectiveness of the applied measures; and checking and adjusting the performance process [ 6 , 7 ]. Accordingly, interest in metacognition is increasing in the field of nursing, with emphasis on the problem-solving ability of nursing students [ 8 ].

Metacognition affects problem solving by cultivating the learner’s active attitude, linking existing knowledge with new knowledge, and fostering the development of practical cognitive strategies that can be used for problem solving [ 7 ]. Previous studies on learners’ metacognition have observed that a higher level of metacognition leads to an improvement in the problem-solving process, as metacognition has a significant effect on goal setting and problem-solving performance [ 9 ]. Thus, metacognition and problem-solving ability are closely related; furthermore, metacognition is a key strategic aspect in the problem-solving process [ 10 ]. Although metacognition is a powerful predictor of learning outcomes and problem-solving success, it is not clear how metacognition works regarding cognitive strategies and learning outcomes [ 11 ]. A study of adolescent metacognition-related cognition (learning strategies and problem-solving strategies) and how metacognition affects various types of learning performance confirmed that problem solving is the only mediator between general metacognition and learning performance [ 11 ]. Metacognition plays a major role in improving learning and work ability, and the appropriate use of metacognition when performing nursing tasks can improve the personal lives of nurses [ 12 ]. Therefore, it is necessary to assess the influence of metacognition and problem-solving ability on nursing education.

Communication competence is a major factor that affects problem-solving ability [ 13 ]. It is essential for smoothly maintaining professional relationships with medical personnel, patients, and guardians in diverse and complex medical environments [ 14 ]. Since communication competence is an important aspect of problem solving, it can affect the quality of nursing and the satisfaction of the patient [ 15 ]. There is an urgent need to improve communication competence, as various issues that arise during the clinical process can be solved through communication between medical staff and patients, and nurses are responsible for much of the continuous communication with patients and their guardians [ 16 ]. However, a lack of communication competence among nurses may lead to miscommunication, and thereby, poor outcomes, even if nurses possess good problem-solving methods [ 13 ].

While previous studies have revealed the relationship between communication competence and the problem-solving ability of nursing students [ 13 , 17 ], there is a lack of research regarding the relationship between metacognition, communication competence, and problem-solving ability. Through this research, we confirmed the relationship between the metacognition and problem-solving ability of nursing college students, the relationship between communication ability and problem-solving ability, and finally, examined the factors that affect variables associated with problem-solving ability, including metacognition.

2. Materials and Methods

2.1. design.

This study used quantitative methods to investigate the relationship between the metacognition, communication ability, and problem-solving ability of nursing students and to identify factors that affect problem-solving ability.

2.2. Participants and Procedures

The subjects of this study were nursing students enrolled in two nursing colleges in the same city and region. Since data collection was conducted in March, second-year, third-year, and fourth-year students, with college life experience, were targeted. The required number of study subjects was calculated using the G-Power 3.1.9.7 program, which determined a significance level of 0.05, an effect size of 0.15, a power of 0.90, and 11 predictors, for multiple regression analysis. The minimum sample size was 152. In consideration of the dropout rate, 170 was set as the target number of subjects.

Data collection was conducted from 10 to 30 March 2022. The survey was conducted online. Consent for participation in the study was obtained by the individual reading the explanation of the purpose of the study and checking a consent box, which was displayed on the first screen of the online survey. The study subjects were redirected to the questionnaire completion page after providing their consent. It required approximately 10 min to complete the questionnaire. A total of 200 participants accessed and completed the questionnaire; 192 questionnaires were used for analysis after excluding 8 questionnaires that were determined to have been completedinccurately.

2.3. Instruments

The tools of this study consisted of a total of 91 items, including 9 items regarding general characteristics, 20 metacognition items, 15 items dealing with communication competencies, and 45 regarding problem-solving skills.

The items regarding the general characteristics of the subjects included age, sex, academic level, interpersonal relationships, satisfaction with major, problem based learning (PBL) experience, number of related experiences, clinical practice experience (yes or no), and number of weeks of clinical practice experience.

Metacognition was assessed using the state metacognitive inventory developed by O’Neil Jr et al. [ 18 ], as modified and supplemented by Joo [ 19 ]. It consists of a total of 20 items that assess the four sub-factors of metacognition: cognition, cognitive strategy, plan, and monitoring, using a 5-point Likert scale ranging from 1 point, for ‘not at all’, to 5 points, for ‘strongly agree’. The Cronbach’s α measure of the reliability of the tool was 0.86 at the time of development and 0.89 in the study of Joo [ 19 ]. The value in the current study was 0.91.

Communication competence was measured using a comprehensive interpersonal communication competence scale developed by Rubin [ 20 ], as modified and supplemented by Hur [ 21 ] to fit Korean culture. This tool consists of 15 items related to communication, such as self-exposure, cross-exposure, social tension relief, assertiveness, and concentration. Each item is assessed on a 5-point Likert scale ranging from 1 point, for ‘not at all’, to 5 points, for ‘strongly agree’. The Cronbach’ α reliability measure at the time of development was 0.72, and the value in this study was 0.84.

Problem-solving ability was assessed via a life-skills measurement tool developed by the Korea Educational Development Institute [ 22 ]. This tool considers 5 problem factors (clarification, cause analysis, alternative development, plan and implementation, and performance evaluation) and 9 sub-factors (problem recognition, information collection, analysis ability, divergent thinking, decision making, planning ability, execution and risk taking, evaluation, and feedback), and thus consists of 45 items in total. Each item is assessed on a 5-point Likert scale ranging from 1 point, for ‘very rarely’, to 5 points, for ‘very often’, with higher scores indicating better problem-solving skills. The reliability at the time of tool development was indicated by a Cronbach’s α value of 0.95, whereas in this study, the Cronbach’s α value was 0.90.

2.4. Statistical Analysis

Statistical analyses were performed using SPSS (ver. 25) statistical software (IBM). The subjects’ general characteristics, metacognition, communication competence, and problem-solving ability were analyzed by number and percentage, as well as mean and standard deviation. To test the normality of all variables, skewness and kurtosis were assessed. In general, when the absolute value of skewness is less than 2 or the absolute value of kurtosis is less than 7, there are no problems associated with deviations in the variable distributions from normality [ 23 ]. In this study, skewness ranged between −0.002 and 0.435, with absolute values less than 2, and kurtosis ranged between −0.204 to 1.580, with absolute values less than 7, thus indicating that the variables satisfied the assumption of univariate normality. Differences in metacognition, communication competence, and problem-solving ability according to the general characteristics of the subjects were analyzed by mean, standard deviation, independent t-test, and one-way ANOVA, followed by Scheffé’s post hoc analysis. The correlation between metacognition, communication competence, and problem-solving ability of the participants was analyzed using Pearson’s correlation coefficient. Factors affecting the subject’s problem-solving ability were analyzed using hierarchical multiple regression.

2.5. Ethical Considerations

Before the study was conducted, the research proposal and questionnaire were approved by the Institutional Review Board of Gangneung–Wonju National University (No: GWNUIRB-2022-1). The tools used in the study were used after obtaining the consent of the original author. When explaining the purpose of the study, it was emphasized that the participants had the right to withdraw from the study at any time, that the anonymity and confidentiality of the survey results were guaranteed, and that the study results would not be used for other purposes. Participants were provided with a small gift to motivate participation.

3.1. General Characteristics

Table 1 illustrates that the participants’ mean age was 21.56 ± 1.99. Most participants were women (81.3%).

General Characteristics of Participants (N = 192).

† SD, standard deviation; ‡ PBL, problem-based learning.

3.2. Scores for Metacognition, Communication Competence, and Problem-Solving Ability

Table 2 illustrates that the average score of the subjects’ metacognition was 3.86 ± 0.47 (out of 5). Among the sub-domains, cognitive strategy showed the highest score of 4.03 ± 0.45, followed by monitoring, with 3.90 ± 0.59. The average for communication competence was 3.92 ± 0.42 points (out of 5 points). The average for problem-solving ability was 3.63 ± 0.35 (out of 5), and among the sub-domains, problem clarification was the highest at 3.83 ± 0.52, and cause analysis was the lowest at 3.28 ± 0.36.

Scores for metacognition, communication competence, and problem-solving ability. (N = 192).

3.3. Differences in Problem-Solving Ability According to General Characteristics

The problem-solving ability according to the general characteristics of the subjects was as follows ( Table 3 ): age (F = 4.32, p = 0.015), academic level (F = 10.17, p < 0.001), interpersonal relationships (F = 9.47, p < 0.001), satisfaction with major (F = 3.73, p = 0.012), PBL experience (F = 3.73, p = 0.012), number of PBL experiences (F = 3.20, p = 0.025), and practical experience (F = 2.74, p = 0.007). There was a significant difference in problem-solving ability accorfing to the number of training weeks (F = 4.46, p = 0.013). Scheffé’s post hoc analysis indicated that participants older than 23 years old and younger than 20 years old, as well as fourth-year students, were more dissatisfied than were second-year students. In other cases, interpersonal relationships were very good. Additionally, satisfaction with the major was more than satisfactory. Problem-solving ability was statistically significantly higher for those with more than 7 weeks of practice, and there was no case of not having more than 7 weeks of practice.

Differences in metacognition, communication competence, and problem-solving ability according to nursing students’ general characteristics (N = 192).

† Scheffé test; ‡ PBL, problem based learning.

3.4. Relationship beetween Metacognition, Communication Competence, and Problem-Solving Ability

There was a strong, significantly positive correlation between metacognition and problem-solving ability (r = 0.672, p < 0.001), and communication competence and problem-solving ability (r = 0.542, p < 0.001). There was also a strong, significantly positive correlation between metacognition and communication competence (r = 0.557, p < 0.001; Table 4 ).

Relationships between metacognition, communication competence, and problem-solving ability (N = 192).

3.5. Factors Influencing Problem-Solving Ability

Among general characteristics, variables were converted into dummy variables as needed to confirm their effect on the problem-solving ability of nursing students (e.g., age, 23 years or older = 1; academic level, third year = 1; interpersonal relationships, very good = 1; satisfaction with major, more than satisfied = 1; the number of PBL experiences, 3–6 times = 1; and the number of training weeks, 7 weeks or more = 1). A hierarchical stepwise multiple regression analysis was then performed, inputting communication ability followed by metacognition, which were significantly correlated.

The Durbin–Watson value was 1.96 (close to 2), which confirmed that there was no autocorrelation between the independent variables. The variance inflation factor was 1.013 to 4.999; as all value were less than 10, there were no problems with multicollinearity between independent variables.

General characteristics that showed a significant difference with problem-solving ability in univariate analyses were first input to Model 1, namely age, academic level, interpersonal relationships, and satisfaction with major. This model explained 8.1% of the variance in problem-solving ability. When PBL experience and frequency, clinical practice, and number of weeks were added to Model 1 (Model 2), the variance explained was 12.5%, namely an increased of 4.4% compared to Model 1. When communication competence and metacognition were additionally added to Model 2 (Model 3), the variance explained was 51.2%, which is an increase of 38.7% compared to Model 2. Finally, age (β = 0.11, p = 0.048), communication competence (β = 0.24, p = 0.001), and metacognition (β = 0.52, p = 0.023) were significantly related to problem-solving ability. These variables exhibited an explanatory power of 51.2% (F = 21.01, p < 0.001) regarding job satisfaction; the most influential variable was metacognition ( Table 5 ).

Factors influencing problem-solving ability (N = 192).

† Dummy variables; ‡ Reference; ¶ PBL, problem-based learning; * p < 0.05.

4. Discussion

In this study, the mean problem-solving ability score of nursing students was 3.63 out of 5, which is similar to the 3.56 points reported in a study targeting third- and fourth- year students in the department of nursing [ 24 ]. However, the current value is higher than the 3.44 points reported in a study targeting first- and second-year students [ 13 ]. Participants in these studies were nursing students in the second, third, and fourth years of study in this paper, in the third and fourth years in the study done by Kim et al. [ 24 ]; and in the first and second grades in the study by Ji et al. [ 13 ]. Problem-solving ability can be developed under the influence of various factors; those identified in previous studies include communication ability [ 13 ], critical thinking ability [ 12 , 25 ], metacognition [ 11 ], and self-directed learning [ 2 ]. These factors are continuously improved through various interpersonal relationships formed while learning and studying liberal arts and other major subjects, rather than existing as innate abilities [ 26 ]. Therefore, the degree of problem-solving ability was rather high in the study targeting the upper grades. Problem-solving ability in various unexpected situations is essential for working as a nurse [ 27 ]. In the current study, the problem-solving ability score of nursing students approximated the 72.6 percentile of the full 100-point scale. Although this score is relatively high, it is nevertheless necessary to improve problem-solving ability; given the nature of the nurse’s job, this ability represents a very important competency. Therefore, it is necessary to improve the problem-solving ability level of nursing students in Korea. The results of this study showed that factors affecting nursing students’ problem-solving ability were metacognition, communication competence, and age. It is necessary to establish a strategy that considers these factors to improve the problem-solving ability of nursing students.

The participants’ average metacognitive score was 3.86 out of 5, which was slightly higher than the 3.61 observed in a study conducted using the same tools for second-year nursing students [ 12 ]. While direct comparison using other tools is difficult, the metacognitive level of 72.3 obtained by Kim [ 28 ] for all grades in the nursing department was lower than the 77.2 points (out of 100 points) obtained in this study. According to Sternberg and Sternberg [ 29 ], the problem-solving phase includes problem identification, problem expression, strategy formulation, information construction, resource allocation, supervision, and evaluation. For health science students, metacognitive instruction has been shown to have a positive effect on students’ problem-solving ability and in improving academic achievement [ 30 ]. That is, metacognition is a key factor in predicting learning outcomes in the problem-solving domain [ 31 ]. These results were replicated in this study, which showed that a higher metacognitive level of nursing students indicated a significantly higher problem-solving ability. The subjects of this study were second-, third-, and fourth-year nursing students, and it is thought that their metacognitive level was improved compared to students in earlier phases of education, as a result of the curriculum of the nursing department. Educational programs and strategies to improve metacognition will be needed to improve the problem-solving ability of nursing students. The components of metacognition are thinking deeply in the planning stage, establishing possible strategies, undertaking regulating and monitoring activities to carry out the strategy, and revising and regulating to ensure that the solution is progressing in an appropriate direction to achieve the goal [ 32 ]. Therefore, a professor who instructs and checks nursing students is necessary to enable them to set their own goals in the curricular and non-curricular programs as they advance through the course, plan and implement strategies to achieve their goals through deep thinking, and conduct their own monitoring and control processes.

The average communication competence score of the subjects was 3.92 out of 5. Previous studies targeting students in various years of the course at the department of nursing found that the communication competence of nursing students also improved as they progressed through the course, with values reported of 3.58 points [ 33 ] and 3.56 points [ 34 ].

In previous studies, communication competence was a factor affecting nursing students’ problem-solving ability [ 13 ]. However, the current study is valuable because it additionally revealed that the level of problem-solving ability significantly increased according to the level of communication competence. Case-based education is suggested as a strategy to simultaneously improve communication competence and problem-solving skills in nursing student education [ 17 ]. This is because it is difficult to solve problems through integrative thinking and effective communication in a clinical environment, such as a hospital, with only theoretical knowledge of nursing subjects. Thus, the PBL method is applied to theoretical education in nursing colleges [ 35 , 36 ]. The results of this study showed that the presence or absence of PBL education had a significant effect on the problem-solving ability of nursing students; this ability improved when the PBL factor was added to Model 2. Therefore, it is necessary for nursing professors to practice and improve the communication competence of their students through case-based education in various subjects beginning in the first year to improve the problem-solving abilities of the students.

Additionally, the age of the subjects was also a factor influencing the problem-solving ability. Stewart, Cooper, and Moulding [ 37 ] reported that metacognitive levels increase with age. The study revealed that the communication competence of nursing students improved through various experiences [ 38 ]. Age may have had a similar influence.

Previous studies identified critical thinking disposition, empathy, nursing professional intuition, self-leadership [ 24 ], learning motivation [ 17 ], and communication competence [ 13 ] as examples of factors that affect nursing students’ problem-solving ability. However, this study demonstrated that metacognition also significantly affects the problem-solving ability of nursing students. In particular, metacognition and communication competence are considered key concepts, as they explained 51.2% of nursing students’ problem-solving ability. Therefore, it is necessary to consider and continuously apply educational strategies to improve metacognition and communication competence in the education of nursing students in the future.

This study is limited by the small number of nursing colleges that were included in the sampling, as this hinders the generalizability of the results.

5. Conclusions

This was a descriptive research study that identified the degree of and correlations between metacognition, communication competence, and problem-solving ability of nursing students, and identified factors that affect problem-solving ability. The results demonstrated that age, communication competence, and metacognition were the factors that most significantly affected the problem-solving ability of nursing students. Among these factors, metacognition had the greatest influence. Therefore, to improve the problem-solving ability of nursing students, an educational strategy is needed to improve communication competence through case-based learning in the curriculum, and development and application of activities such as PBL. In addition, the guidance of professors is needed to enable nursing students to improve their metacognition.

Since this study revealed that metacognition is a factor that influences the problem-solving ability of nursing students, we recommend conducting a study to check whether it affects actual problem-solving by developing and applying a metacognitive improvement curriculum in the future.

Acknowledgments

We would like to thank the nursing students who participated in the study.

Funding Statement

This study was supported by the research fund of Korean Bible University in 2021.

Author Contributions

Conceptualization, E.C. and J.J.; methodology, E.C. and J.J.; validation, E.C.; formal analysis, E.C.; investigation, E.C. and J.J.; resources, E.C. and J.J.; data curation, E.C.; writing—original draft preparation, E.C.; writing—review and editing, J.J.; supervision, E.C.; project administration, E.C. and J.J.; funding acquisition, E.C. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Institutional Review Board (or Ethics Committee) of Gangneung–Wonju National University (No. GWNUIRB-2022-1).

Informed Consent Statement

Informed consent was obtained from all subjects involved in the study.

Data Availability Statement

Conflicts of interest.

The authors declare no conflict of interest.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Life Alofa

Why Problem Solving Is Important For Students?

Why Problem Solving Is Important For Students?

Have you ever found yourself struggling to come up with a solution to a complex problem? Perhaps you felt overwhelmed, unsure where to start, or uncertain about the best course of action. If so, you are not alone. Many students face similar challenges when confronted with complex problems.

Problem-solving is important for students because it helps them develop critical thinking, creativity, and metacognitive skills. It allows them to approach complex problems systematically and logically, leading to better solutions.

This article will explore why problem solving is important for students and the benefits of developing these skills. By the end of this article, you will better understand why problem-solving skills are crucial for student success and how you can develop these skills to become a more effective problem-solver.

Table of Contents

Why Are Problem-Solving Skills Important In Today’s World?

With the rapidly changing and complex nature of the modern world, individuals must be equipped to think critically and solve problems effectively to thrive. Below are some reasons why problem-solving skills are so important:

  • Innovation And Creativity: Problem-solving skills are essential for innovation and creativity.
  • Career Success: These skills are highly valued by employers. The ability to identify and solve problems in the workplace is a key skill that leads to career success and advancement.
  • P ersonal Growth: Problem-solving skills are also important for personal growth and development.
  • Social Impact: Many of the world’s most pressing problems, such as poverty, inequality, and climate change, require effective problem-solving skills.

Problem-solving skills enable students to approach challenges and obstacles with a solution-oriented mindset. Below are some reasons why problem-solving skills are essential for students:

  • Success In Academics: Problem-solving skills are crucial for success in academics. Students who think critically and creatively better understand and apply the concepts they learn in the classroom. These skills help students to tackle complex and challenging academic tasks, leading to better grades and academic performance.
  • Life Skills: These skills are important for students’ lives beyond the classroom. These skills help students to navigate real-world problems and challenges, both personal and professional. Students who think critically and creatively are better equipped to handle unexpected situations, make sound decisions, and achieve their goals
  • Development Of Critical Thinking Skills: Problem-solving skills are closely linked to critical thinking skills. These skills are essential for analyzing information, evaluating arguments, and making informed decisions. By developing problem-solving skills, students also develop their critical thinking abilities.
  • Learning Process: These skills enhance the learning process. When students identify and solve problems, they actively participate in their learning. These skills also help students identify knowledge gaps and seek new information.
  • Metacognitive Skills: Problem-solving skills also help to develop metacognitive skills. These skills involve reflecting on one’s thought processes and monitoring one’s learning. By practicing problem-solving skills, students learn to evaluate their thinking, identify improvement areas, and adjust their strategies accordingly.
  • Creative Solutions: These skills promote creativity and innovation. Students who think outside the box and develop innovative solutions to problems are more likely to succeed in today’s rapidly changing world.
  • Opportunities: Problem-solving skills open up opportunities for students. Employers value employees who can solve problems independently and creatively. Students with critical thinking skills are better equipped to take advantage of job and business opportunities.
  • Classroom Culture: These skills also help to create a positive classroom culture. Students learn to collaborate and communicate effectively when they work together to solve problems. This fosters a sense of community and engagement in the classroom.

Get to know: How To Promote Critical Thinking In The Classroom?

What Are The Classroom Approaches To Problem-Solving For Students?

A classroom approach to problem-solving is an effective way to equip students with the skills and knowledge they need to tackle real-world challenges.

Teaching Problem-Solving Skills In Classrooms

One approach to teaching problem-solving skills in classrooms is explicitly teaching students a problem-solving process, such as identifying the problem, brainstorming possible solutions, evaluating the solutions, and selecting the best solution. Teachers can provide opportunities for students to practice this process through real-world scenarios and simulations and encourage them to reflect on their critical thinking skills and strategies.

Problem-Based Learning Approach

In problem-based learning (PBL), students are presented with a real-world problem or scenario and are tasked with working collaboratively to find a solution. This approach encourages students to engage in critical thinking, communication, and problem-solving skills and promotes a deeper understanding of the subject.

Self-Directed Learning Strategy

Self-directed learning is an approach where students take responsibility for their learning and are encouraged to identify and pursue their learning goals. Teachers can support self-directed learning by providing opportunities for students to choose their learning tasks, reflect on their learning, and receive feedback on their progress.

Collaborative Learning

Collaborative learning involves students working in small groups to solve problems, share ideas, and learn from one another. This approach effectively promotes problem-solving skills and encourages students to engage in critical thinking, communication, and teamwork. Collaborative learning is facilitated through various activities, such as discussions, group projects, and problem-solving tasks.

What Are The Benefits Of Problem-Solving Skills For Students?

Problem-solving skills offer numerous benefits to individuals, including academic success, daily problem-solving, job and business opportunities, and community relationships.

Having proficient problem-solving skills puts students in a better position to excel academically. They can analyze and understand complex concepts, think critically, and apply knowledge in new situations.

  • Life Skills And Daily Problem-Solving: Problem-solving skills are crucial for everyday situations. People with these skills are better equipped to make informed decisions, solve personal problems, and manage their lives effectively.
  • Opportunities In Job And Business: Employers highly value problem-solving skills in various industries. Individuals with these skills have better job prospects and are more likely to succeed. They also identify opportunities for business growth and development.
  • Community Relationship: Individuals with strong problem-solving skills are valuable contributors to their communities. They identify and address community problems, work collaboratively with others to find solutions and improve the quality of life for all community members.

What Is The Importance Of Problem-Solving Skills In Everyday Life?

Problem-solving skills are an essential part of a student’s everyday life. These skills enable students to analyze situations critically, identify potential solutions, and implement the most effective course of action. This ability is vital for success in both personal and professional life.

In school, students face numerous problems, from academic challenges to social and emotional issues. Possessing problem-solving skills helps students to manage these challenges effectively. Students with strong problem-solving skills are better equipped to make informed decisions, communicate effectively, and work collaboratively.

They are also better prepared for the demands of the 21st-century workforce, where problem-solving skills are highly valued. Furthermore, problem-solving skills are transferable, meaning they can apply to any situation or context, making them an invaluable asset throughout a student’s life.

Read Also: How to Improve Your Problem-Solving Skills for Conflict Management?

What Is The Role Of Teachers In Developing Problem-Solving Skills For Students?

Effective teaching strategies for developing problem-solving skills

Effective teaching strategies for developing problem-solving skills in students include:

  • Encouraging students to ask questions and explore possible solutions on their own.
  • Providing hands-on, experiential learning opportunities where students can apply problem-solving skills in real-world situations.
  • Using problem-based learning approaches that allow students to work on open-ended, complex problems.
  • Providing collaboration and group work opportunities where students can share ideas, perspectives, and solutions.
  • Encourage metacognition by asking students to reflect on their thinking processes and critical thinking strategies.

Which Challenges Teachers Faces In Teaching Problem-Solving Skills To Students?

Teaching problem-solving skills is challenging for teachers, requiring a unique approach and pedagogy. The following are some of the challenges that teachers face while teaching problem-solving skills:

  • Limited Time: Teachers do not have enough time to devote to teaching problem-solving skills as they need to cover a specific curriculum or course material within a set timeframe.
  • Limited Resources: They cannot access adequate tools, technology, and materials to facilitate effective problem-solving learning.
  • Students’ Lack Of Prior Knowledge: Students do not have the knowledge needed to solve complex problems, making it challenging for teachers to engage them in problem-solving activities .
  • Limited Experience: Teachers may have limited experience in solving complex problems, hindering their ability to teach problem-solving skills effectively.
  • Different Learning Styles: Students have different learning styles and abilities, making it challenging for teachers to design a curriculum that meets the needs of all learners.

How Education Helps In Establishing Self Esteem?

What Are The 7 Critical Thinking Skills And How To Develop?

How To Develop Problem Solving Skills For Remote Workers?

Common Challenges in Developing Problem Solving Skills for Kindergarten

Throughout the article, we have discussed why problem-solving is important for students. These skills enable students to think critically, analyze situations, and develop creative solutions. These skills are crucial for success in the 21st century, where innovation and adaptability are highly valued.

In the future, problem-solving skills will become even more important as the world changes rapidly. Students who develop strong problem-solving skills will be better equipped to handle the challenges and opportunities that arise in their personal and professional lives.

There are various effective teaching strategies and approaches that teachers can use to develop problem-solving skills in their students. Problem-solving skills are crucial for students’ success and development. Teachers, parents, and communities must prioritize the development of these skills to prepare students for the challenges and opportunities of the future.

Related Articles

how to help an employee who struggles with time management

How to Assist an Employee Who Struggles With Time management? Explained!

Time Management Tips for Goal Setting

Time Management Tips for Goal Setting: Unleash Success!

How time management can reduce stress and improve your well-being.

time management skills for sales professionals

Time Management Skills for Sales Professionals: Boosting Productivity and Closing More Deals

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

importance of problem solving skills in students

Explained: Importance of critical thinking, problem-solving skills in curriculum

F uture careers are no longer about domain expertise or technical skills. Rather, critical thinking and problem-solving skills in employees are on the wish list of every big organization today. Even curriculums and pedagogies across the globe and within India are now requiring skilled workers who are able to think critically and are analytical.

The reason for this shift in perspective is very simple.

These skills provide a staunch foundation for comprehensive learning that extends beyond books or the four walls of the classroom. In a nutshell, critical thinking and problem-solving skills are a part of '21st Century Skills' that can help unlock valuable learning for life.

Over the years, the education system has been moving away from the system of rote and other conventional teaching and learning parameters.

They are aligning their curriculums to the changing scenario which is becoming more tech-driven and demands a fusion of critical skills, life skills, values, and domain expertise. There's no set formula for success.

Rather, there's a defined need for humans to be more creative, innovative, adaptive, agile, risk-taking, and have a problem-solving mindset.

In today's scenario, critical thinking and problem-solving skills have become more important because they open the human mind to multiple possibilities, solutions, and a mindset that is interdisciplinary in nature.

Therefore, many schools and educational institutions are deploying AI and immersive learning experiences via gaming, and AR-VR technologies to give a more realistic and hands-on learning experience to their students that hone these abilities and help them overcome any doubt or fear.

ADVANTAGES OF CRITICAL THINKING AND PROBLEM-SOLVING IN CURRICULUM

Ability to relate to the real world:  Instead of theoretical knowledge, critical thinking, and problem-solving skills encourage students to look at their immediate and extended environment through a spirit of questioning, curiosity, and learning. When the curriculum presents students with real-world problems, the learning is immense.

Confidence, agility & collaboration : Critical thinking and problem-solving skills boost self-belief and confidence as students examine, re-examine, and sometimes fail or succeed while attempting to do something.

They are able to understand where they may have gone wrong, attempt new approaches, ask their peers for feedback and even seek their opinion, work together as a team, and learn to face any challenge by responding to it.

Willingness to try new things: When problem-solving skills and critical thinking are encouraged by teachers, they set a robust foundation for young learners to experiment, think out of the box, and be more innovative and creative besides looking for new ways to upskill.

It's important to understand that merely introducing these skills into the curriculum is not enough. Schools and educational institutions must have upskilling workshops and conduct special training for teachers so as to ensure that they are skilled and familiarized with new teaching and learning techniques and new-age concepts that can be used in the classrooms via assignments and projects.

Critical thinking and problem-solving skills are two of the most sought-after skills. Hence, schools should emphasise the upskilling of students as a part of the academic curriculum.

The article is authored by Dr Tassos Anastasiades, Principal- IB, Genesis Global School, Noida. 

Watch Live TV in English

Watch Live TV in Hindi

Explained: Importance of critical thinking, problem-solving skills in curriculum

  • Open access
  • Published: 11 May 2024

Nursing students’ stressors and coping strategies during their first clinical training: a qualitative study in the United Arab Emirates

  • Jacqueline Maria Dias 1 ,
  • Muhammad Arsyad Subu 1 ,
  • Nabeel Al-Yateem 1 ,
  • Fatma Refaat Ahmed 1 ,
  • Syed Azizur Rahman 1 , 2 ,
  • Mini Sara Abraham 1 ,
  • Sareh Mirza Forootan 1 ,
  • Farzaneh Ahmad Sarkhosh 1 &
  • Fatemeh Javanbakh 1  

BMC Nursing volume  23 , Article number:  322 ( 2024 ) Cite this article

500 Accesses

Metrics details

Understanding the stressors and coping strategies of nursing students in their first clinical training is important for improving student performance, helping students develop a professional identity and problem-solving skills, and improving the clinical teaching aspects of the curriculum in nursing programmes. While previous research have examined nurses’ sources of stress and coping styles in the Arab region, there is limited understanding of these stressors and coping strategies of nursing students within the UAE context thereby, highlighting the novelty and significance of the study.

A qualitative study was conducted using semi-structured interviews. Overall 30 students who were undergoing their first clinical placement in Year 2 at the University of Sharjah between May and June 2022 were recruited. All interviews were recorded and transcribed verbatim and analyzed for themes.

During their first clinical training, nursing students are exposed to stress from different sources, including the clinical environment, unfriendly clinical tutors, feelings of disconnection, multiple expectations of clinical staff and patients, and gaps between the curriculum of theory classes and labatories skills and students’ clinical experiences. We extracted three main themes that described students’ stress and use of coping strategies during clinical training: (1) managing expectations; (2) theory-practice gap; and (3) learning to cope. Learning to cope, included two subthemes: positive coping strategies and negative coping strategies.

Conclusions

This qualitative study sheds light from the students viewpoint about the intricate interplay between managing expectations, theory practice gap and learning to cope. Therefore, it is imperative for nursing faculty, clinical agencies and curriculum planners to ensure maximum learning in the clinical by recognizing the significance of the stressors encountered and help students develop positive coping strategies to manage the clinical stressors encountered. Further research is required look at the perspective of clinical stressors from clinical tutors who supervise students during their first clinical practicum.

Peer Review reports

Nursing education programmes aim to provide students with high-quality clinical learning experiences to ensure that nurses can provide safe, direct care to patients [ 1 ]. The nursing baccalaureate programme at the University of Sharjah is a four year program with 137 credits. The programmes has both theoretical and clinical components withs nine clinical courses spread over the four years The first clinical practicum which forms the basis of the study takes place in year 2 semester 2.

Clinical practice experience is an indispensable component of nursing education and links what students learn in the classroom and in skills laboratories to real-life clinical settings [ 2 , 3 , 4 ]. However, a gap exists between theory and practice as the curriculum in the classroom differs from nursing students’ experiences in the clinical nursing practicum [ 5 ]. Clinical nursing training places (or practicums, as they are commonly referred to), provide students with the necessary experiences to ensure that they become proficient in the delivery of patient care [ 6 ]. The clinical practicum takes place in an environment that combines numerous structural, psychological, emotional and organizational elements that influence student learning [ 7 ] and may affect the development of professional nursing competencies, such as compassion, communication and professional identity [ 8 ]. While clinical training is a major component of nursing education curricula, stress related to clinical training is common among students [ 9 ]. Furthermore, the nursing literature indicates that the first exposure to clinical learning is one of the most stressful experiences during undergraduate studies [ 8 , 10 ]. Thus, the clinical component of nursing education is considered more stressful than the theoretical component. Students often view clinical learning, where most learning takes place, as an unsupportive environment [ 11 ]. In addition, they note strained relationships between themselves and clinical preceptors and perceive that the negative attitudes of clinical staff produce stress [ 12 ].

The effects of stress on nursing students often involve a sense of uncertainty, uneasiness, or anxiety. The literature is replete with evidence that nursing students experience a variety of stressors during their clinical practicum, beginning with the first clinical rotation. Nursing is a complex profession that requires continuous interaction with a variety of individuals in a high-stress environment. Stress during clinical learning can have multiple negative consequences, including low academic achievement, elevated levels of burnout, and diminished personal well-being [ 13 , 14 ]. In addition, both theoretical and practical research has demonstrated that increased, continual exposure to stress leads to cognitive deficits, inability to concentrate, lack of memory or recall, misinterpretation of speech, and decreased learning capacity [ 15 ]. Furthermore, stress has been identified as a cause of attrition among nursing students [ 16 ].

Most sources of stress have been categorized as academic, clinical or personal. Each person copes with stress differently [ 17 ], and utilizes deliberate, planned, and psychological efforts to manage stressful demands [ 18 ]. Coping mechanisms are commonly termed adaptation strategies or coping skills. Labrague et al. [ 19 ] noted that students used critical coping strategies to handle stress and suggested that problem solving was the most common coping or adaptation mechanism used by nursing students. Nursing students’ coping strategies affect their physical and psychological well-being and the quality of nursing care they offer. Therefore, identifying the coping strategies that students use to manage stressors is important for early intervention [ 20 ].

Studies on nursing students’ coping strategies have been conducted in various countries. For example, Israeli nursing students were found to adopt a range of coping mechanisms, including talking to friends, engaging in sports, avoiding stress and sadness/misery, and consuming alcohol [ 21 ]. Other studies have examined stress levels among medical students in the Arab region. Chaabane et al. [ 15 ], conducted a systematic review of sudies in Arab countries, including Saudi Arabia, Egypt, Jordan, Iraq, Pakistan, Oman, Palestine and Bahrain, and reported that stress during clinical practicums was prevalent, although it could not be determined whether this was limited to the initial clinical course or occurred throughout clinical training. Stressors highlighted during the clinical period in the systematic review included assignments and workload during clinical practice, a feeling that the requirements of clinical practice exceeded students’ physical and emotional endurance and that their involvement in patient care was limited due to lack of experience. Furthermore, stress can have a direct effect on clinical performance, leading to mental disorders. Tung et al. [ 22 ], reported that the prevalence of depression among nursing students in Arab countries is 28%, which is almost six times greater than the rest of the world [ 22 ]. On the other hand, Saifan et al. [ 5 ], explored the theory-practice gap in the United Arab Emirates and found that clinical stressors could be decreased by preparing students better for clinical education with qualified clinical faculty and supportive preceptors.

The purpose of this study was to identify the stressors experienced by undergraduate nursing students in the United Arab Emirates during their first clinical training and the basic adaptation approaches or coping strategies they used. Recognizing or understanding different coping processes can inform the implementation of corrective measures when students experience clinical stress. The findings of this study may provide valuable information for nursing programmes, nurse educators, and clinical administrators to establish adaptive strategies to reduce stress among students going clinical practicums, particularly stressors from their first clinical training in different healthcare settings.

A qualitative approach was adopted to understand clinical stressors and coping strategies from the perspective of nurses’ lived experience. Qualitative content analysis was employed to obtain rich and detailed information from our qualitative data. Qualitative approaches seek to understand the phenomenon under study from the perspectives of individuals with lived experience [ 23 ]. Qualitative content analysis is an interpretive technique that examines the similarities and differences between and within different areas of text while focusing on the subject [ 24 ]. It is used to examine communication patterns in a repeatable and systematic way [ 25 ] and yields rich and detailed information on the topic under investigation [ 23 ]. It is a method of systematically coding and categorizing information and comprises a process of comprehending, interpreting, and conceptualizing the key meanings from qualitative data [ 26 ].

Setting and participants

This study was conducted after the clinical rotations ended in April 2022, between May and June in the nursing programme at the College of Health Sciences, University of Sharjah, in the United Arab Emirates. The study population comprised undergraduate nursing students who were undergoing their first clinical training and were recruited using purposive sampling. The inclusion criteria for this study were second-year nursing students in the first semester of clinical training who could speak English, were willing to participate in this research, and had no previous clinical work experience. The final sample consisted of 30 students.

Research instrument

The research instrument was a semi structured interview guide. The interview questions were based on an in-depth review of related literature. An intensive search included key words in Google Scholar, PubMed like the terms “nursing clinical stressors”, “nursing students”, and “coping mechanisms”. Once the questions were created, they were validated by two other faculty members who had relevant experience in mental health. A pilot test was conducted with five students and based on their feedback the following research questions, which were addressed in the study.

How would you describe your clinical experiences during your first clinical rotations?

In what ways did you find the first clinical rotation to be stressful?

What factors hindered your clinical training?

How did you cope with the stressors you encountered in clinical training?

Which strategies helped you cope with the clinical stressors you encountered?

Data collection

Semi-structured interviews were chosen as the method for data collection. Semi structured interviews are a well-established approach for gathering data in qualitative research and allow participants to discuss their views, experiences, attitudes, and beliefs in a positive environment [ 27 ]. This approach allows for flexibility in questioning thereby ensuring that key topics related to clinical learning stressors and coping strategies would be explored. Participants were given the opportunity to express their views, experiences, attitudes, and beliefs in a positive environment, encouraging open communication. These semi structured interviews were conducted by one member of the research team (MAS) who had a mental health background, and another member of the research team who attended the interviews as an observer (JMD). Neither of these researchers were involved in teaching the students during their clinical practicum, which helped to minimize bias. The interviews took place at the University of Sharjah, specifically in building M23, providing a familiar and comfortable environment for the participant. Before the interviews were all students who agreed to participate were provided with an explanation of the study’s purpose. The time and location of each interview were arranged. Before the interviews were conducted, all students who provided consent to participate received an explanation of the purpose of the study, and the time and place of each interview were arranged to accommodate the participants’ schedules and preferences. The interviews were conducted after the clinical rotation had ended in April, and after the final grades had been submitted to the coordinator. The timings of the interviews included the month of May and June which ensured that participants have completed their practicum experience and could reflect on the stressors more comprehensively. The interviews were audio-recorded with the participants’ consent, and each interview lasted 25–40 min. The data were collected until saturation was reached for 30 students. Memos and field notes were also recorded as part of the data collection process. These additional data allowed for triangulation to improve the credibility of the interpretations of the data [ 28 ]. Memos included the interviewers’ thoughts and interpretations about the interviews, the research process (including questions and gaps), and the analytic progress used for the research. Field notes were used to record the interviewers’ observations and reflections on the data. These additional data collection methods were important to guide the researchers in the interpretation of the data on the participants’ feelings, perspectives, experiences, attitudes, and beliefs. Finally, member checking was performed to ensure conformability.

Data analysis

The study used the content analysis method proposed by Graneheim and Lundman [ 24 ]. According to Graneheim and Lundman [ 24 ], content analysis is an interpretive technique that examines the similarities and differences between distinct parts of a text. This method allows researchers to determine exact theoretical and operational definitions of words, phrases, and symbols by elucidating their constituent properties [ 29 ]. First, we read the interview transcripts several times to reach an overall understanding of the data. All verbatim transcripts were read several times and discussed among all authors. We merged and used line-by-line coding of words, sentences, and paragraphs relevant to each other in terms of both the content and context of stressors and coping mechanisms. Next, we used data reduction to assess the relationships among themes using tables and diagrams to indicate conceptual patterns. Content related to stress encountered by students was extracted from the transcripts. In a separate document, we integrated and categorized all words and sentences that were related to each other in terms of both content and context. We analyzed all codes and units of meaning and compared them for similarities and differences in the context of this study. Furthermore, the emerging findings were discussed with other members of the researcher team. The final abstractions of meaningful subthemes into themes were discussed and agreed upon by the entire research team. This process resulted in the extraction of three main themes in addition to two subthemes related to stress and coping strategies.

Ethical considerations

The University of Sharjah Research Ethics Committee provided approval to conduct this study (Reference Number: REC 19-12-03-01-S). Before each interview, the goal and study procedures were explained to each participant, and written informed consent was obtained. The participants were informed that participation in the study was voluntary and that they could withdraw from the study at any time. In the event they wanted to withdraw from the study, all information related to the participant would be removed. No participant withdrew from the study. Furthermore, they were informed that their clinical practicum grade would not be affected by their participation in this study. We chose interview locations in Building M23that were private and quiet to ensure that the participants felt at ease and confident in verbalizing their opinions. No participant was paid directly for involvement in this study. In addition, participants were assured that their data would remain anonymous and confidential. Confidentiality means that the information provided by participants was kept private with restrictions on how and when data can be shared with others. The participants were informed that their information would not be duplicated or disseminated without their permission. Anonymity refers to the act of keeping people anonymous with respect to their participation in a research endeavor. No personal identifiers were used in this study, and each participant was assigned a random alpha-numeric code (e.g., P1 for participant 1). All digitally recorded interviews were downloaded to a secure computer protected by the principal investigator with a password. The researchers were the only people with access to the interview material (recordings and transcripts). All sensitive information and materials were kept secure in the principal researcher’s office at the University of Sharjah. The data will be maintained for five years after the study is completed, after which the material will be destroyed (the transcripts will be shredded, and the tapes will be demagnetized).

In total, 30 nursing students who were enrolled in the nursing programme at the Department of Nursing, College of Health Sciences, University of Sharjah, and who were undergoing their first clinical practicum participated in the study. Demographically, 80% ( n  = 24) were females and 20% ( n  = 6) were male participants. The majority (83%) of study participants ranged in age from 18 to 22 years. 20% ( n  = 6) were UAE nationals, 53% ( n  = 16) were from Gulf Cooperation Council countries, while 20% ( n  = 6) hailed from Africa and 7% ( n  = 2) were of South Asian descent. 67% of the respondents lived with their families while 33% lived in the hostel. (Table  1 )

Following the content analysis, we identified three main themes: (1) managing expectations, (2) theory-practice gap and 3)learning to cope. Learning to cope had two subthemes: positive coping strategies and negative coping strategies. An account of each theme is presented along with supporting excerpts for the identified themes. The identified themes provide valuable insight into the stressors encountered by students during their first clinical practicum. These themes will lead to targeted interventions and supportive mechanisms that can be built into the clinical training curriculum to support students during clinical practice.

Theme 1: managing expectations

In our examination of the stressors experienced by nursing students during their first clinical practicum and the coping strategies they employed, we identified the first theme as managing expectations.

The students encountered expectations from various parties, such as clinical staff, patients and patients’ relatives which they had to navigate. They attempted to fulfil their expectations as they progressed through training, which presented a source of stress. The students noted that the hospital staff and patients expected them to know how to perform a variety of tasks upon request, which made the students feel stressed and out of place if they did not know how to perform these tasks. Some participants noted that other nurses in the clinical unit did not allow them to participate in nursing procedures, which was considered an enormous impediment to clinical learning, as noted in the excerpt below:

“…Sometimes the nurses… They will not allow us to do some procedures or things during clinical. And sometimes the patients themselves don’t allow us to do procedures” (P5).

Some of the students noted that they felt they did not belong and felt like foreigners in the clinical unit. Excerpts from the students are presented in the following quotes;

“The clinical environment is so stressful. I don’t feel like I belong. There is too little time to build a rapport with hospital staff or the patient” (P22).

“… you ask the hospital staff for some guidance or the location of equipment, and they tell us to ask our clinical tutor …but she is not around … what should I do? It appears like we do not belong, and the sooner the shift is over, the better” (P18).

“The staff are unfriendly and expect too much from us students… I feel like I don’t belong, or I am wasting their (the hospital staff’s) time. I want to ask questions, but they have loads to do” (P26).

Other students were concerned about potential failure when working with patients during clinical training, which impacted their confidence. They were particularly afraid of failure when performing any clinical procedures.

“At the beginning, I was afraid to do procedures. I thought that maybe the patient would be hurt and that I would not be successful in doing it. I have low self-confidence in doing procedures” (P13).

The call bell rings, and I am told to answer Room No. XXX. The patient wants help to go to the toilet, but she has two IV lines. I don’t know how to transport the patient… should I take her on the wheelchair? My eyes glance around the room for a wheelchair. I am so confused …I tell the patient I will inform the sister at the nursing station. The relative in the room glares at me angrily … “you better hurry up”…Oh, I feel like I don’t belong, as I am not able to help the patient… how will I face the same patient again?” (P12).

Another major stressor mentioned in the narratives was related to communication and interactions with patients who spoke another language, so it was difficult to communicate.

“There was a challenge with my communication with the patients. Sometimes I have communication barriers because they (the patients) are of other nationalities. I had an experience with a patient [who was] Indian, and he couldn’t speak my language. I did not understand his language” (P9).

Thus, a variety of expectations from patients, relatives, hospital staff, and preceptors acted as sources of stress for students during their clinical training.

Theme 2: theory-practice gap

Theory-practice gaps have been identified in previous studies. In our study, there was complete dissonance between theory and actual clinical practice. The clinical procedures or practices nursing students were expected to perform differed from the theory they had covered in their university classes and skills lab. This was described as a theory–practice gap and often resulted in stress and confusion.

“For example …the procedures in the hospital are different. They are different from what we learned or from theory on campus. Or… the preceptors have different techniques than what we learned on campus. So, I was stress[ed] and confused about it” (P11).

Furthermore, some students reported that they did not feel that they received adequate briefing before going to clinical training. A related source of stress was overload because of the volume of clinical coursework and assignments in addition to clinical expectations. Additionally, the students reported that a lack of time and time management were major sources of stress in their first clinical training and impacted their ability to complete the required paperwork and assignments:

“…There is not enough time…also, time management at the hospital…for example, we start at seven a.m., and the handover takes 1 hour to finish. They (the nurses at the hospital) are very slow…They start with bed making and morning care like at 9.45 a.m. Then, we must fill [out] our assessment tool and the NCP (nursing care plan) at 10 a.m. So, 15 only minutes before going to our break. We (the students) cannot manage this time. This condition makes me and my friends very stressed out. -I cannot do my paperwork or assignments; no time, right?” (P10).

“Stressful. There is a lot of work to do in clinical. My experiences are not really good with this course. We have a lot of things to do, so many assignments and clinical procedures to complete” (P16).

The participants noted that the amount of required coursework and number of assignments also presented a challenge during their first clinical training and especially affected their opportunity to learn.

“I need to read the file, know about my patient’s condition and pathophysiology and the rationale for the medications the patient is receiving…These are big stressors for my learning. I think about assignments often. Like, we are just focusing on so many assignments and papers. We need to submit assessments and care plans for clinical cases. We focus our time to complete and finish the papers rather than doing the real clinical procedures, so we lose [the] chance to learn” (P25).

Another participant commented in a similar vein that there was not enough time to perform tasks related to clinical requirements during clinical placement.

“…there is a challenge because we do not have enough time. Always no time for us to submit papers, to complete assessment tools, and some nurses, they don’t help us. I think we need more time to get more experiences and do more procedures, reduce the paperwork that we have to submit. These are challenges …” (P14).

There were expectations that the students should be able to carry out their nursing duties without becoming ill or adversely affected. In addition, many students reported that the clinical environment was completely different from the skills laboratory at the college. Exposure to the clinical setting added to the theory-practice gap, and in some instances, the students fell ill.

One student made the following comment:

“I was assisting a doctor with a dressing, and the sight and smell from the oozing wound was too much for me. I was nauseated. As soon as the dressing was done, I ran to the bathroom and threw up. I asked myself… how will I survive the next 3 years of nursing?” (P14).

Theme 3: learning to cope

The study participants indicated that they used coping mechanisms (both positive and negative) to adapt to and manage the stressors in their first clinical practicum. Important strategies that were reportedly used to cope with stress were time management, good preparation for clinical practice, and positive thinking as well as engaging in physical activity and self-motivation.

“Time management. Yes, it is important. I was encouraging myself. I used time management and prepared myself before going to the clinical site. Also, eating good food like cereal…it helps me very much in the clinic” (P28).

“Oh yeah, for sure positive thinking. In the hospital, I always think positively. Then, after coming home, I get [to] rest and think about positive things that I can do. So, I will think something good [about] these things, and then I will be relieved of stress” (P21).

Other strategies commonly reported by the participants were managing their breathing (e.g., taking deep breaths, breathing slowly), taking breaks to relax, and talking with friends about the problems they encountered.

“I prefer to take deep breaths and breathe slowly and to have a cup of coffee and to talk to my friends about the case or the clinical preceptor and what made me sad so I will feel more relaxed” (P16).

“Maybe I will take my break so I feel relaxed and feel better. After clinical training, I go directly home and take a long shower, going over the day. I will not think about anything bad that happened that day. I just try to think about good things so that I forget the stress” (P27).

“Yes, my first clinical training was not easy. It was difficult and made me stressed out…. I felt that it was a very difficult time for me. I thought about leaving nursing” (P7).

I was not able to offer my prayers. For me, this was distressing because as a Muslim, I pray regularly. Now, my prayer time is pushed to the end of the shift” (P11).

“When I feel stress, I talk to my friends about the case and what made me stressed. Then I will feel more relaxed” (P26).

Self-support or self-motivation through positive self-talk was also used by the students to cope with stress.

“Yes, it is difficult in the first clinical training. When I am stress[ed], I go to the bathroom and stand in the front of the mirror; I talk to myself, and I say, “You can do it,” “you are a great student.” I motivate myself: “You can do it”… Then, I just take breaths slowly several times. This is better than shouting or crying because it makes me tired” (P11).

Other participants used physical activity to manage their stress.

“How do I cope with my stress? Actually, when I get stressed, I will go for a walk on campus” (P4).

“At home, I will go to my room and close the door and start doing my exercises. After that, I feel the negative energy goes out, then I start to calm down… and begin my clinical assignments” (P21).

Both positive and negative coping strategies were utilized by the students. Some participants described using negative coping strategies when they encountered stress during their clinical practice. These negative coping strategies included becoming irritable and angry, eating too much food, drinking too much coffee, and smoking cigarettes.

“…Negative adaptation? Maybe coping. If I am stressed, I get so angry easily. I am irritable all day also…It is negative energy, right? Then, at home, I am also angry. After that, it is good to be alone to think about my problems” (P12).

“Yeah, if I…feel stress or depressed, I will eat a lot of food. Yeah, ineffective, like I will be eating a lot, drinking coffee. Like I said, effective, like I will prepare myself and do breathing, ineffective, I will eat a lot of snacks in between my free time. This is the bad side” (P16).

“…During the first clinical practice? Yes, it was a difficult experience for us…not only me. When stressed, during a break at the hospital, I will drink two or three cups of coffee… Also, I smoke cigarettes… A lot. I can drink six cups [of coffee] a day when I am stressed. After drinking coffee, I feel more relaxed, I finish everything (food) in the refrigerator or whatever I have in the pantry, like chocolates, chips, etc” (P23).

These supporting excerpts for each theme and the analysis offers valuable insights into the specific stressors faced by nursing students during their first clinical practicum. These insights will form the basis for the development of targeted interventions and supportive mechanisms within the clinical training curriculum to better support students’ adjustment and well-being during clinical practice.

Our study identified the stressors students encounter in their first clinical practicum and the coping strategies, both positive and negative, that they employed. Although this study emphasizes the importance of clinical training to prepare nursing students to practice as nurses, it also demonstrates the correlation between stressors and coping strategies.The content analysis of the first theme, managing expectations, paves the way for clinical agencies to realize that the students of today will be the nurses of tomorrow. It is important to provide a welcoming environment where students can develop their identities and learn effectively. Additionally, clinical staff should foster an environment of individualized learning while also assisting students in gaining confidence and competence in their repertoire of nursing skills, including critical thinking, problem solving and communication skills [ 8 , 15 , 19 , 30 ]. Another challenge encountered by the students in our study was that they were prevented from participating in clinical procedures by some nurses or patients. This finding is consistent with previous studies reporting that key challenges for students in clinical learning include a lack of clinical support and poor attitudes among clinical staff and instructors [ 31 ]. Clinical staff with positive attitudes have a positive impact on students’ learning in clinical settings [ 32 ]. The presence, supervision, and guidance of clinical instructors and the assistance of clinical staff are essential motivating components in the clinical learning process and offer positive reinforcement [ 30 , 33 , 34 ]. Conversely, an unsupportive learning environment combined with unwelcoming clinical staff and a lack of sense of belonging negatively impact students’ clinical learning [ 35 ].

The sources of stress identified in this study were consistent with common sources of stress in clinical training reported in previous studies, including the attitudes of some staff, students’ status in their clinical placement and educational factors. Nursing students’ inexperience in the clinical setting and lack of social and emotional experience also resulted in stress and psychological difficulties [ 36 ]. Bhurtun et al. [ 33 ] noted that nursing staff are a major source of stress for students because the students feel like they are constantly being watched and evaluated.

We also found that students were concerned about potential failure when working with patients during their clinical training. Their fear of failure when performing clinical procedures may be attributable to low self-confidence. Previous studies have noted that students were concerned about injuring patients, being blamed or chastised, and failing examinations [ 37 , 38 ]. This was described as feeling “powerless” in a previous study [ 7 , 12 ]. In addition, patients’ attitudes towards “rejecting” nursing students or patients’ refusal of their help were sources of stress among the students in our study and affected their self-confidence. Self-confidence and a sense of belonging are important for nurses’ personal and professional identity, and low self-confidence is a problem for nursing students in clinical learning [ 8 , 39 , 40 ]. Our findings are consistent with a previous study that reported that a lack of self-confidence was a primary source of worry and anxiety for nursing students and affected their communication and intention to leave nursing [ 41 ].

In the second theme, our study suggests that students encounter a theory-practice gap in clinical settings, which creates confusion and presents an additional stressors. Theoretical and clinical training are complementary elements of nursing education [ 40 ], and this combination enables students to gain the knowledge, skills, and attitudes necessary to provide nursing care. This is consistent with the findings of a previous study that reported that inconsistencies between theoretical knowledge and practical experience presented a primary obstacle to the learning process in the clinical context [ 42 ], causing students to lose confidence and become anxious [ 43 ]. Additionally, the second theme, the theory-practice gap, authenticates Safian et al.’s [ 5 ] study of the theory-practice gap that exists United Arab Emirates among nursing students as well as the need for more supportive clinical faculty and the extension of clinical hours. The need for better time availability and time management to complete clinical tasks were also reported by the students in the study. Students indicated that they had insufficient time to complete clinical activities because of the volume of coursework and assignments. Our findings support those of Chaabane et al. [ 15 ]. A study conducted in Saudi Arabia [ 44 ] found that assignments and workload were among the greatest sources of stress for students in clinical settings. Effective time management skills have been linked to academic achievement, stress reduction, increased creativity [ 45 ], and student satisfaction [ 46 ]. Our findings are also consistent with previous studies that reported that a common source of stress among first-year students was the increased classroom workload [ 19 , 47 ]. As clinical assignments and workloads are major stressors for nursing students, it is important to promote activities to help them manage these assignments [ 48 ].

Another major challenge reported by the participants was related to communicating and interacting with other nurses and patients. The UAE nursing workforce and population are largely expatriate and diverse and have different cultural and linguistic backgrounds. Therefore, student nurses encounter difficulty in communication [ 49 ]. This cultural diversity that students encounter in communication with patients during clinical training needs to be addressed by curriculum planners through the offering of language courses and courses on cultural diversity [ 50 ].

Regarding the third and final theme, nursing students in clinical training are unable to avoid stressors and must learn to cope with or adapt to them. Previous research has reported a link between stressors and the coping mechanisms used by nursing students [ 51 , 52 , 53 ]. In particular, the inability to manage stress influences nurses’ performance, physical and mental health, attitude, and role satisfaction [ 54 ]. One such study suggested that nursing students commonly use problem-focused (dealing with the problem), emotion-focused (regulating emotion), and dysfunctional (e.g., venting emotions) stress coping mechanisms to alleviate stress during clinical training [ 15 ]. Labrague et al. [ 51 ] highlighted that nursing students use both active and passive coping techniques to manage stress. The pattern of clinical stress has been observed in several countries worldwide. The current study found that first-year students experienced stress during their first clinical training [ 35 , 41 , 55 ]. The stressors they encountered impacted their overall health and disrupted their clinical learning. Chaabane et al. [ 15 ] reported moderate and high stress levels among nursing students in Bahrain, Egypt, Iraq, Jordan, Oman, Pakistan, Palestine, Saudi Arabia, and Sudan. Another study from Bahrain reported that all nursing students experienced moderate to severe stress in their first clinical placement [ 56 ]. Similarly, nursing students in Spain experienced a moderate level of stress, and this stress was significantly correlated with anxiety [ 30 ]. Therefore, it is imperative that pastoral systems at the university address students’ stress and mental health so that it does not affect their clinical performance. Faculty need to utilize evidence-based interventions to support students so that anxiety-producing situations and attrition are minimized.

In our study, students reported a variety of positive and negative coping mechanisms and strategies they used when they experienced stress during their clinical practice. Positive coping strategies included time management, positive thinking, self-support/motivation, breathing, taking breaks, talking with friends, and physical activity. These findings are consistent with those of a previous study in which healthy coping mechanisms used by students included effective time management, social support, positive reappraisal, and participation in leisure activities [ 57 ]. Our study found that relaxing and talking with friends were stress management strategies commonly used by students. Communication with friends to cope with stress may be considered social support. A previous study also reported that people seek social support to cope with stress [ 58 ]. Some students in our study used physical activity to cope with stress, consistent with the findings of previous research. Stretching exercises can be used to counteract the poor posture and positioning associated with stress and to assist in reducing physical tension. Promoting such exercise among nursing students may assist them in coping with stress in their clinical training [ 59 ].

Our study also showed that when students felt stressed, some adopted negative coping strategies, such as showing anger/irritability, engaging in unhealthy eating habits (e.g., consumption of too much food or coffee), or smoking cigarettes. Previous studies have reported that high levels of perceived stress affect eating habits [ 60 ] and are linked to poor diet quality, increased snacking, and low fruit intake [ 61 ]. Stress in clinical settings has also been linked to sleep problems, substance misuse, and high-risk behaviors’ and plays a major role in student’s decision to continue in their programme.

Implications of the study

The implications of the study results can be grouped at multiple levels including; clinical, educational, and organizational level. A comprehensive approach to addressing the stressors encountered by nursing students during their clinical practicum can be overcome by offering some practical strategies to address the stressors faced by nursing students during their clinical practicum. By integrating study findings into curriculum planning, mentorship programs, and organizational support structures, a supportive and nurturing environment that enhances students’ learning, resilience, and overall success can be envisioned.

Clinical level

Introducing simulation in the skills lab with standardized patients and the use of moulage to demonstrate wounds, ostomies, and purulent dressings enhances students’ practical skills and prepares them for real-world clinical scenarios. Organizing orientation days at clinical facilities helps familiarize students with the clinical environment, identify potential stressors, and introduce interventions to enhance professionalism, social skills, and coping abilities Furthermore, creating a WhatsApp group facilitates communication and collaboration among hospital staff, clinical tutors, nursing faculty, and students, enabling immediate support and problem-solving for clinical situations as they arise, Moreover, involving chief nursing officers of clinical facilities in the Nursing Advisory Group at the Department of Nursing promotes collaboration between academia and clinical practice, ensuring alignment between educational objectives and the needs of the clinical setting [ 62 ].

Educational level

Sharing study findings at conferences (we presented the results of this study at Sigma Theta Tau International in July 2023 in Abu Dhabi, UAE) and journal clubs disseminates knowledge and best practices among educators and clinicians, promoting awareness and implementation of measures to improve students’ learning experiences. Additionally we hold mentorship training sessions annually in January and so we shared with the clinical mentors and preceptors the findings of this study so that they proactively they are equipped with strategies to support students’ coping with stressors during clinical placements.

Organizational level

At the organizational we relooked at the available student support structures, including counseling, faculty advising, and career advice, throughout the nursing program emphasizing the importance of holistic support for students’ well-being and academic success as well as retention in the nursing program. Also, offering language courses as electives recognizes the value of communication skills in nursing practice and provides opportunities for personal and professional development.

For first-year nursing students, clinical stressors are inevitable and must be given proper attention. Recognizing nursing students’ perspectives on the challenges and stressors experienced in clinical training is the first step in overcoming these challenges. In nursing schools, providing an optimal clinical environment as well as increasing supervision and evaluation of students’ practices should be emphasized. Our findings demonstrate that first-year nursing students are exposed to a variety of different stressors. Identifying the stressors, pressures, and obstacles that first-year students encounter in the clinical setting can assist nursing educators in resolving these issues and can contribute to students’ professional development and survival to allow them to remain in the profession. To overcome stressors, students frequently employ problem-solving approaches or coping mechanisms. The majority of nursing students report stress at different levels and use a variety of positive and negative coping techniques to manage stress.

The present results may not be generalizable to other nursing institutions because this study used a purposive sample along with a qualitative approach and was limited to one university in the Middle East. Furthermore, the students self-reported their stress and its causes, which may have introduced reporting bias. The students may also have over or underreported stress or coping mechanisms because of fear of repercussions or personal reasons, even though the confidentiality of their data was ensured. Further studies are needed to evaluate student stressors and coping now that measures have been introduced to support students. Time will tell if these strategies are being used effectively by both students and clinical personnel or if they need to be readdressed. Finally, we need to explore the perceptions of clinical faculty towards supervising students in their first clinical practicum so that clinical stressors can be handled effectively.

Data availability

The data sets are available with the corresponding author upon reasonable request.

Almarwani AM. The effect of integrating a nursing licensure examination preparation course into a nursing program curriculum: a quasi-experimental study. Saudi J Health Sci. 2022;11:184–9.

Article   Google Scholar  

Horntvedt MT, Nordsteien A, Fermann T, Severinsson E. Strategies for teaching evidence-based practice in nursing education: a thematic literature review. BMC Med Educ. 2018;18:172.

Article   PubMed   PubMed Central   Google Scholar  

Larsson M, Sundler AJ, Blomberg K, Bisholt B. The clinical learning environment during clinical practice in postgraduate district nursing students’ education: a cross-sectional study. Nurs Open. 2023;10:879–88.

Article   PubMed   Google Scholar  

Sellberg M, Palmgren PJ, Möller R. A cross-sectional study of clinical learning environments across four undergraduate programs using the undergraduate clinical education environment measure. BMC Med Educ. 2021;21:258.

Saifan A, Devadas B, Mekkawi M, Amoor H, Matizha P, James J, et al. Managing the theory-practice gap in nursing education and practice: hearing the voices of nursing students in the United Arab Emirates. J Nurs Manag. 2021;29:1869–79.

Flott EA, Linden L. The clinical learning environment in nursing education: a concept analysis. J Adv Nurs. 2016;72:501–13.

Kalyani MN, Jamshidi N, Molazem Z, Torabizadeh C, Sharif F. How do nursing students experience the clinical learning environment and respond to their experiences? A qualitative study. BMJ Open. 2019;9:e028052.

Mahasneh D, Shoqirat N, Alsaraireh A, Singh C, Thorpe L. From learning on mannequins to practicing on patients: nursing students’ first-time experience of clinical placement in Jordan. SAGE Open Nurs. 2021;7:23779608211004298.

PubMed   PubMed Central   Google Scholar  

Stubin C. Clinical stress among undergraduate nursing students: perceptions of clinical nursing faculty. Int J Nurs Educ Scholarsh. 2020;17:20190111.

Ahmed WAM. Anxiety and related symptoms among critical care nurses in Albaha, Kingdom of Saudi Arabia. AIMS Med Sci. 2015;2:303–9.

Alhassan. Duke Phillips. 2024.

Ekstedt M, Lindblad M, Löfmark A. Nursing students’ perception of the clinical learning environment and supervision in relation to two different supervision models - a comparative cross-sectional study. BMC Nurs. 2019;18:49.

Bradshaw C, Murphy Tighe S, Doody O. Midwifery students’ experiences of their clinical internship: a qualitative descriptive study. Nurse Educ Today. 2018;68:213–7.

McCarthy B, Trace A, O’Donovan M, O’Regan P, Brady-Nevin C, O’Shea M, et al. Coping with stressful events: a pre-post-test of a psycho-educational intervention for undergraduate nursing and midwifery students. Nurse Educ Today. 2018;61:273–80.

Chaabane S, Chaabna K, Bhagat S, Abraham A, Doraiswamy S, Mamtani R, et al. Perceived stress, stressors, and coping strategies among nursing students in the Middle East and North Africa: an overview of systematic reviews. Syst Rev. 2021;10:136.

Pines EW, Rauschhuber ML, Norgan GH, Cook JD, Canchola L, Richardson C, et al. Stress resiliency, psychological empowerment and conflict management styles among baccalaureate nursing students. J Adv Nurs. 2012;68:1482–93.

Lazarus RS. Coping theory and research: past, present, and future. Psychosom Med. 1993;55:234–47.

Article   CAS   PubMed   Google Scholar  

Boyd MA. Essentials of psychiatric nursing. Philadelphia, PA: Wolters Kluwer; 2017.

Google Scholar  

Labrague LJ, McEnroe-Petitte DM, Gloe D, Thomas L, Papathanasiou IV, Tsaras K. A literature review on stress and coping strategies in nursing students. J Ment Health. 2017;26:471–80.

Ni C, Lo D, Liu X, Ma J, Xu S, Li L. Chinese female nursing students’ coping strategies, self-esteem and related factors in different years of school. J Nurs Educ Pract. 2012;2:33–41.

Jan LK, Popescu L. Israel’s nursing students’ stress sources and coping strategies during their first clinical experience in hospital wards-a qualitative research. Soc Work Rev / Rev Asistenta Soc. 2014;13:163–88.

Tung YJ, Lo KKH, Ho RCM, Tam WSW. Prevalence of depression among nursing students: a systematic review and meta-analysis. Nurse Educ Today. 2018;63:119–29.

Speziale HS, Streubert HJ, Carpenter DR. Qualitative research in nursing: advancing the humanistic imperative. Philadelphia, PA: Lippincott Williams & Wilkins; 2011.

Graneheim UH, Lundman B. Qualitative content analysis in nursing research: concepts, procedures and measures to achieve trustworthiness. Nurse Educ Today. 2004;24:105–12.

Bryman A. Integrating quantitative and qualitative research: how is it done? Qual Res. 2006;6:97–113.

Holloway I, Wheeler S. Qualitative research in nursing and healthcare. New York, NY: Wiley; 2013.

Richards L, Morse J. A user’s guide to qualitative methods. London, UK: Sage; 2007.

Lincoln Y, Guba EG. The SAGE handbook of qualitative research. Newbury Park, CA: SAGE Publications Inc; 2017.

Park S, Park KS. Family stigma: a concept analysis. Asian Nurs Res. 2014;8:165–71.

Onieva-Zafra MD, Fernández-Muñoz JJ, Fernández-Martínez E, García-Sánchez FJ, Abreu-Sánchez A, Parra-Fernández ML. Anxiety, perceived stress and coping strategies in nursing students: a cross-sectional, correlational, descriptive study. BMC Med Educ. 2020;20:370.

Albloushi M, Ferguson L, Stamler L, Bassendowski S, Hellsten L, Kent-Wilkinson A. Saudi female nursing students experiences of sense of belonging in the clinical settings: a qualitative study. Nurse Educ Pract. 2019;35:69–74.

Arkan B, Ordin Y, Yılmaz D. Undergraduate nursing students’ experience related to their clinical learning environment and factors affecting to their clinical learning process. Nurse Educ Pract. 2018;29:127–32.

Bhurtun HD, Azimirad M, Saaranen T, Turunen H. Stress and coping among nursing students during clinical training: an integrative review. J Nurs Educ. 2019;58:266–72.

Jamshidi N, Molazem Z, Sharif F, Torabizadeh C, Kalyani MN. The challenges of nursing students in the clinical learning environment: a qualitative study. ScientificWorldJournal. 2016;2016:1846178.

Porter SL. First year nursing students’ perceptions of stress and resilience during their initial clinical placement and the introduction of a stress management app: a mixed methods approach. A thesis submitted in partial fulfilment of the requirements of Edinburgh Napier University, for the award of Doctor of Philosophy. 2019. https://www.napier.ac.uk/~/media/worktribe/output-2086663/first-year-nursing-students-perceptions-of-stress-and-resilience-during-their-initial.pdf

Panda S, Dash M, John J, Rath K, Debata A, Swain D, et al. Challenges faced by student nurses and midwives in clinical learning environment - A systematic review and meta-synthesis. Nurse Educ Today. 2021;101:104875.

Ahmadi G, Shahriari M, Keyvanara M, Kohan S. Midwifery students’ experiences of learning clinical skills in Iran: a qualitative study. Int J Med Educ. 2018;9:64–71.

Harrison-White K, Owens J. Nurse link lecturers’ perceptions of the challenges facing student nurses in clinical learning environments: a qualitative study. Nurse Educ Pract. 2018;32:78–83.

Grobecker PA. A sense of belonging and perceived stress among baccalaureate nursing students in clinical placements. Nurse Educ Today. 2016;36:178–83.

Msiska G, Kamanga M, Chilemba E, Msosa A, Munkhondya TE. Sources of stress among undergraduate nursing students during clinical practice: a Malawian perspective. Open J Nurs. 2019;9:1.

Joolaee S, Amiri SRJ, Farahani MA, Varaei S. Iranian nursing students’ preparedness for clinical training: a qualitative study. Nurse Educ Today. 2015;35:e13–7.

Günay U, Kılınç G. The transfer of theoretical knowledge to clinical practice by nursing students and the difficulties they experience: a qualitative study. Nurse Educ Today. 2018;65:81–6.

Farzi S, Shahriari M, Farzi S. Exploring the challenges of clinical education in nursing and strategies to improve it: a qualitative study. J Educ Health Promot. 2018;7:115.

Hamaideh SH, Al-Omari H, Al-Modallal H. Nursing students’ perceived stress and coping behaviors in clinical training in Saudi Arabia. J Ment Health. 2017;26:197–203.

Yaghoobi A, Mohagheghi H, Zade MY, Ganji K, Olfatii N. The effect of time management training on test anxiety and academic achievement motivation among high school students. J Sch Psychol. 2014;3:131–44.

Kebriaei A, Bidgoli MS, Saeedi A. Relationship between use of time management skills and satisfaction with spending time among students of Zahedan University of Medical Sciences. J Med Educ Dev. 2014;6:79–88.

Chen YW, Hung CH. Predictors of Taiwanese baccalaureate nursing students’ physio-psycho-social responses during clinical practicum. Nurse Educ Today. 2014;34:73–7.

Ab Latif R, Mat Nor MZ. Stressors and coping strategies during clinical practice among diploma nursing students. Malays J Med Sci. 2019;26:88–98.

Al-Yateem N, Almarzouqi A, Dias JM, Saifan A, Timmins F. Nursing in the United Arab Emirates: current challenges and opportunities. J Nurs Manag. 2021;29:109–12.

Baraz-Pordanjani S, Memarian R, Vanaki Z. Damaged professional identity as a barrier to Iranian nursing students’ clinical learning: a qualitative study. J Clin Nurs Midwifery. 2014;3:1–15.

Labrague LJ, McEnroe-Petitte DM, Papathanasiou IV, Edet OB, Tsaras K, Leocadio MC, et al. Stress and coping strategies among nursing students: an international study. J Ment Health. 2018;27:402–8.

Madian AAEM, Abdelaziz MM, Ahmed HAE. Level of stress and coping strategies among nursing students at Damanhour University, Egypt. Am J Nurs Res. 2019;7:684–96.

Wu CS, Rong JR, Huang MZ. Factors associated with perceived stress of clinical practice among associate degree nursing students in Taiwan. BMC Nurs. 2021;20:89.

Zhao FF, Lei XL, He W, Gu YH, Li DW. The study of perceived stress, coping strategy and self-efficacy of Chinese undergraduate nursing students in clinical practice. Int J Nurs Pract. 2015;21:401–9.

Bektaş H, Terkes N, Özer Z. Stress and ways of coping among first year nursing students: a Turkish perspective. J Hum Sci. 2018;15:319–30.

John B, Al-Sawad M. Perceived stress in clinical areas and emotional intelligence among baccalaureate nursing students. J Indian Acad Appl Psychol. 2015;41:76–85.

Mapfumo JS, Chitsiko N, Chireshe R. Teaching practice generated stressors and coping mechanisms among student teachers in Zimbabwe. S Afr J Educ. 2012;32:155–66.

Timmins F, Corroon AM, Byrne G, Mooney B. The challenge of contemporary nurse education programmes. Perceived stressors of nursing students: mental health and related lifestyle issues. J Psychiatr Ment Health Nurs. 2011;18:758–66.

Hegberg NJ, Tone EB. Physical activity and stress resilience: considering those at-risk for developing mental health problems. Ment Health Phys Act. 2015;8:1–7.

Shudifat RM, Al-Husban RY. Perceived sources of stress among first-year nursing students in Jordan. J Psychosoc Nurs Ment Health Serv. 2015;53:37–43.

El Ansari W, Adetunji H, Oskrochi R. Food and mental health: relationship between food and perceived stress and depressive symptoms among university students in the United Kingdom. Cent Eur J Public Health. 2014;22:90–7.

Dias JM, Aderibigbe SA, Abraham MS. Undergraduate nursing students’ mentoring experiences in the clinical practicum: the United Arab Emirates (UAE) perspective. J Nurs Manag. 2022;30:4304–13.

Download references

Acknowledgements

The authors are grateful to all second year nursing students who voluntarily participated in the study.

No funding was received. Not applicable.

Author information

Authors and affiliations.

Department of Nursing, College of Health Sciences, University of Sharjah, POBox, Sharjah, 272272, UAE

Jacqueline Maria Dias, Muhammad Arsyad Subu, Nabeel Al-Yateem, Fatma Refaat Ahmed, Syed Azizur Rahman, Mini Sara Abraham, Sareh Mirza Forootan, Farzaneh Ahmad Sarkhosh & Fatemeh Javanbakh

Health Care Management, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates

Syed Azizur Rahman

You can also search for this author in PubMed   Google Scholar

Contributions

JMD conceptualized the idea and designed the methodology, formal analysis, writing original draft and project supervision and mentoring. MAS prepared the methodology and conducted the qualitative interviews and analyzed the methodology and writing of original draft and project supervision. NY, FRA, SAR, MSA writing review and revising the draft. SMF, FAS, FJ worked with MAS on the formal analysis and prepared the first draft.All authors reviewed the final manuscipt of the article.

Corresponding author

Correspondence to Jacqueline Maria Dias .

Ethics declarations

Ethics approval and consent to participate.

The Research Ethics Committee (REC) under) the Office of the Vice Chancellor for Research and Graduate Studies UOS approved this study (REC 19-12-03-01-S). Additionally, a written consent was obtained from all participants and the process followed the recommended policies and guidelines of the Declaration of Helsinki.

Consent for publication

Not applicable.

Competing interests

Dr Fatma Refaat Ahmed is an editorial board member in BMC Nursing. Other authors do not have any conflict of interest

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Dias, J.M., Subu, M.A., Al-Yateem, N. et al. Nursing students’ stressors and coping strategies during their first clinical training: a qualitative study in the United Arab Emirates. BMC Nurs 23 , 322 (2024). https://doi.org/10.1186/s12912-024-01962-5

Download citation

Received : 06 January 2024

Accepted : 22 April 2024

Published : 11 May 2024

DOI : https://doi.org/10.1186/s12912-024-01962-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Clinical practicums
  • Coping strategies
  • Nursing students

BMC Nursing

ISSN: 1472-6955

importance of problem solving skills in students

  • Skip to main content
  • Keyboard shortcuts for audio player

Shots - Health News

Your Health

  • Treatments & Tests
  • Health Inc.
  • Public Health

Why writing by hand beats typing for thinking and learning

Jonathan Lambert

A close-up of a woman's hand writing in a notebook.

If you're like many digitally savvy Americans, it has likely been a while since you've spent much time writing by hand.

The laborious process of tracing out our thoughts, letter by letter, on the page is becoming a relic of the past in our screen-dominated world, where text messages and thumb-typed grocery lists have replaced handwritten letters and sticky notes. Electronic keyboards offer obvious efficiency benefits that have undoubtedly boosted our productivity — imagine having to write all your emails longhand.

To keep up, many schools are introducing computers as early as preschool, meaning some kids may learn the basics of typing before writing by hand.

But giving up this slower, more tactile way of expressing ourselves may come at a significant cost, according to a growing body of research that's uncovering the surprising cognitive benefits of taking pen to paper, or even stylus to iPad — for both children and adults.

Is this some kind of joke? A school facing shortages starts teaching standup comedy

In kids, studies show that tracing out ABCs, as opposed to typing them, leads to better and longer-lasting recognition and understanding of letters. Writing by hand also improves memory and recall of words, laying down the foundations of literacy and learning. In adults, taking notes by hand during a lecture, instead of typing, can lead to better conceptual understanding of material.

"There's actually some very important things going on during the embodied experience of writing by hand," says Ramesh Balasubramaniam , a neuroscientist at the University of California, Merced. "It has important cognitive benefits."

While those benefits have long been recognized by some (for instance, many authors, including Jennifer Egan and Neil Gaiman , draft their stories by hand to stoke creativity), scientists have only recently started investigating why writing by hand has these effects.

A slew of recent brain imaging research suggests handwriting's power stems from the relative complexity of the process and how it forces different brain systems to work together to reproduce the shapes of letters in our heads onto the page.

Your brain on handwriting

Both handwriting and typing involve moving our hands and fingers to create words on a page. But handwriting, it turns out, requires a lot more fine-tuned coordination between the motor and visual systems. This seems to more deeply engage the brain in ways that support learning.

Feeling Artsy? Here's How Making Art Helps Your Brain

Shots - Health News

Feeling artsy here's how making art helps your brain.

"Handwriting is probably among the most complex motor skills that the brain is capable of," says Marieke Longcamp , a cognitive neuroscientist at Aix-Marseille Université.

Gripping a pen nimbly enough to write is a complicated task, as it requires your brain to continuously monitor the pressure that each finger exerts on the pen. Then, your motor system has to delicately modify that pressure to re-create each letter of the words in your head on the page.

"Your fingers have to each do something different to produce a recognizable letter," says Sophia Vinci-Booher , an educational neuroscientist at Vanderbilt University. Adding to the complexity, your visual system must continuously process that letter as it's formed. With each stroke, your brain compares the unfolding script with mental models of the letters and words, making adjustments to fingers in real time to create the letters' shapes, says Vinci-Booher.

That's not true for typing.

To type "tap" your fingers don't have to trace out the form of the letters — they just make three relatively simple and uniform movements. In comparison, it takes a lot more brainpower, as well as cross-talk between brain areas, to write than type.

Recent brain imaging studies bolster this idea. A study published in January found that when students write by hand, brain areas involved in motor and visual information processing " sync up " with areas crucial to memory formation, firing at frequencies associated with learning.

"We don't see that [synchronized activity] in typewriting at all," says Audrey van der Meer , a psychologist and study co-author at the Norwegian University of Science and Technology. She suggests that writing by hand is a neurobiologically richer process and that this richness may confer some cognitive benefits.

Other experts agree. "There seems to be something fundamental about engaging your body to produce these shapes," says Robert Wiley , a cognitive psychologist at the University of North Carolina, Greensboro. "It lets you make associations between your body and what you're seeing and hearing," he says, which might give the mind more footholds for accessing a given concept or idea.

Those extra footholds are especially important for learning in kids, but they may give adults a leg up too. Wiley and others worry that ditching handwriting for typing could have serious consequences for how we all learn and think.

What might be lost as handwriting wanes

The clearest consequence of screens and keyboards replacing pen and paper might be on kids' ability to learn the building blocks of literacy — letters.

"Letter recognition in early childhood is actually one of the best predictors of later reading and math attainment," says Vinci-Booher. Her work suggests the process of learning to write letters by hand is crucial for learning to read them.

"When kids write letters, they're just messy," she says. As kids practice writing "A," each iteration is different, and that variability helps solidify their conceptual understanding of the letter.

Research suggests kids learn to recognize letters better when seeing variable handwritten examples, compared with uniform typed examples.

This helps develop areas of the brain used during reading in older children and adults, Vinci-Booher found.

"This could be one of the ways that early experiences actually translate to long-term life outcomes," she says. "These visually demanding, fine motor actions bake in neural communication patterns that are really important for learning later on."

Ditching handwriting instruction could mean that those skills don't get developed as well, which could impair kids' ability to learn down the road.

"If young children are not receiving any handwriting training, which is very good brain stimulation, then their brains simply won't reach their full potential," says van der Meer. "It's scary to think of the potential consequences."

Many states are trying to avoid these risks by mandating cursive instruction. This year, California started requiring elementary school students to learn cursive , and similar bills are moving through state legislatures in several states, including Indiana, Kentucky, South Carolina and Wisconsin. (So far, evidence suggests that it's the writing by hand that matters, not whether it's print or cursive.)

Slowing down and processing information

For adults, one of the main benefits of writing by hand is that it simply forces us to slow down.

During a meeting or lecture, it's possible to type what you're hearing verbatim. But often, "you're not actually processing that information — you're just typing in the blind," says van der Meer. "If you take notes by hand, you can't write everything down," she says.

The relative slowness of the medium forces you to process the information, writing key words or phrases and using drawing or arrows to work through ideas, she says. "You make the information your own," she says, which helps it stick in the brain.

Such connections and integration are still possible when typing, but they need to be made more intentionally. And sometimes, efficiency wins out. "When you're writing a long essay, it's obviously much more practical to use a keyboard," says van der Meer.

Still, given our long history of using our hands to mark meaning in the world, some scientists worry about the more diffuse consequences of offloading our thinking to computers.

"We're foisting a lot of our knowledge, extending our cognition, to other devices, so it's only natural that we've started using these other agents to do our writing for us," says Balasubramaniam.

It's possible that this might free up our minds to do other kinds of hard thinking, he says. Or we might be sacrificing a fundamental process that's crucial for the kinds of immersive cognitive experiences that enable us to learn and think at our full potential.

Balasubramaniam stresses, however, that we don't have to ditch digital tools to harness the power of handwriting. So far, research suggests that scribbling with a stylus on a screen activates the same brain pathways as etching ink on paper. It's the movement that counts, he says, not its final form.

Jonathan Lambert is a Washington, D.C.-based freelance journalist who covers science, health and policy.

  • handwriting

IMAGES

  1. 8 Important Problem Solving Skills

    importance of problem solving skills in students

  2. Developing Problem-Solving Skills for Kids

    importance of problem solving skills in students

  3. Problem-Solving Strategies: Definition and 5 Techniques to Try

    importance of problem solving skills in students

  4. How to improve your problem solving skills and strategies

    importance of problem solving skills in students

  5. Importance of Problem Solving Skills in your Child

    importance of problem solving skills in students

  6. 7 Steps to Improve Your Problem Solving Skills

    importance of problem solving skills in students

VIDEO

  1. Problem Solving Techniques

  2. 🔥Problem solving skill is more important

  3. How To Develop Analytical & Problem Solving Skills ?

  4. Critical Thinking And Problem Solving

  5. CSUSB professor shares her appreciation of campus diversity

  6. Areteem Math Challenge I-AB AMC 8 Algebra DEMO1

COMMENTS

  1. Why Every Educator Needs to Teach Problem-Solving Skills

    Resolve Conflicts. In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes "thinking outside the box" and approaching a conflict by searching for different solutions.

  2. Building Students' Problem-Solving Skills

    Our approach includes cooperative games and design challenges as well as good-to-know and problem jars. Each part is designed to allow our students to encounter consistent developmentally appropriate and varying types of conflict in order to build problem-solving skills. Throughout each activity, students are put in a variety of mixed groupings ...

  3. Teaching Problem Solving

    Make students articulate their problem solving process . In a one-on-one tutoring session, ask the student to work his/her problem out loud. This slows down the thinking process, making it more accurate and allowing you to access understanding. When working with larger groups you can ask students to provide a written "two-column solution.".

  4. Teaching problem solving: Let students get 'stuck' and 'unstuck'

    October 31, 2017. 5 min read. This is the second in a six-part blog series on teaching 21st century skills, including problem solving , metacognition, critical thinking, and collaboration, in ...

  5. Strategies To Develop Problem-Solving Skills In Students

    Importance of Problem-Solving in the Classroom Setting. Learning how to solve problems effectively and positively is a crucial part of child development. When children are allowed to solve problems in a classroom setting, they can test those skills in a safe and nurturing environment. ... Benefits of Problem-Solving Skills for Students ...

  6. Teaching Problem Solving

    Problem solving is a necessary skill in all disciplines and one that the Sheridan Center is focusing on as part of the Brown Learning Collaborative, which provides students the opportunity to achieve new levels of excellence in six key skills traditionally honed in a liberal arts education ­- critical reading, writing, research, data ...

  7. Problem Solving in STEM

    Problem Solving in STEM. Solving problems is a key component of many science, math, and engineering classes. If a goal of a class is for students to emerge with the ability to solve new kinds of problems or to use new problem-solving techniques, then students need numerous opportunities to develop the skills necessary to approach and answer ...

  8. Strengthening High School Students' Problem-Solving Skills

    Finding, shaping, and solving problems puts high school students in charge of their learning and bolsters critical-thinking skills. As an educator for over 20 years, I've heard a lot about critical thinking, problem-solving, and inquiry and how they foster student engagement. However, I've also seen students draw a blank when they're ...

  9. 4 Strategies to Build Your Students' Problem Solving Skills

    Here are a few effective strategies: Project-Based Learning: Projects that require planning, execution, and evaluation naturally involve problem-solving. For example, a project where students need to build a model bridge within a budget encourages them to solve logistical and financial problems. Group Work: Group work allows students to face ...

  10. Strategies and Methods to Teach Students Problem Solving and Critical

    Spread the loveThe ability to problem solve and think critically are two of the most important skills that PreK-12 students can learn. Why? Because students need these skills to succeed in their academics and in life in general. It allows them to find a solution to issues and complex situations that are thrown there way, even if this is the first time they are faced with the predicament. Okay ...

  11. The effectiveness of collaborative problem solving in promoting

    Duch et al. noted that problem-based learning in group collaboration is progressive active learning, which can improve students' critical thinking and problem-solving skills. Collaborative ...

  12. Motivation to learn and problem solving

    In addition to strategy use, the motivational component of perceived self-efficacy was the strongest predictor of students' creative problem-solving. ... Second, the design of the learning environment can facilitate learning and problem-solving processes by adapting important conditions such as difficulty, language, or learning aids. ...

  13. Benefits of Problem-Solving in the K-12 Classroom

    Even beyond the classroom, problem-solving is ranked among the most important skills for students to demonstrate on their resumes, with 82.9% of employers considering it a highly valued attribute. On an even broader scale, students who learn how to apply their problem-solving skills to the issues they notice in their communities - or even ...

  14. 6 Strategies To Foster Problem-Solving Skills In Students

    The importance of problem-solving skills in kids is evident. So, try to be an ideal role model for kids all the time. 6. Observe, Facilitate, And Share Feedback. Last but not least, be a guide and mentor for your students at all times. Observe them and be ready to intervene as and when it is required.

  15. PDF Developing mathematical problem-solving skills in primary school by

    Developing students' skills in solving mathematical problems and supporting creative mathematical thinking have been important topics of Finnish National Core Curricula 2004 and 2014. To foster these skills, students should be provided with rich, meaningful problem-solving tasks already in primary school. Teachers have a

  16. The Importance of Problem-Solving Skills for Students

    One of the key benefits of problem-solving skills in education is their role in helping students navigate academic challenges. By developing the ability to identify and address problems, students ...

  17. Problem-solving skills are an important factor in academic success

    Evaluate the solution. Using effective problem solving techniques will help children avoid conflict with others in a school setting and in their everyday lives. It will also strengthen children's beginning empathy skills and help them learn more positive attributions about another person's intentions. Effective problem solving skills is ...

  18. The Importance of Problem-Solving Skills for Students

    It is the ability to identify and solve problems, often requiring creativity, critical thinking, and persistence. By developing strong problem-solving skills, students can overcome challenges ...

  19. (PDF) Enhancing students' problem-solving skills ...

    understand the problem-solving process (PSP). This study presents a three-stage, context-. based, problem-solving, learning activity that involves watching detective films, constructing a context ...

  20. The Importance of Critical Thinking Skills for Students

    Importance of critical thinking for students 1. Decision-making 2. Problem-solving 3. Communication 4. Analytical skills How can students develop critical thinking skills 1. Never stop asking questions 2. Practice active listening 3. Dive into your creativity 4. Engage in debates and discussions 5.

  21. Guiding Students to School Success

    Middle and high school teachers have an important role to play when it comes to guiding students to school success. ... teachers can help students develop the skills necessary to do well in school. By Jorge Valenzuela. May 10, 2024 ... To excel academically, students should create a personal system of strategies for effective problem-solving ...

  22. Factors Influencing Problem-Solving Competence of Nursing Students: A

    Background. Problem solving involves recognizing the difference between the problem solver's current state and the goal state to be reached, and resolving the obstacles that prevent them from achieving the goal [].Acquiring problem-solving ability based on judgment and critical thinking is an important element of nursing education [].Furthermore, the use of effective problem-solving ...

  23. What Are Problem-Solving Skills? Definition and Examples

    Problem-solving skills are the ability to identify problems, brainstorm and analyze answers, and implement the best solutions. An employee with good problem-solving skills is both a self-starter and a collaborative teammate; they are proactive in understanding the root of a problem and work with others to consider a wide range of solutions ...

  24. Exploring Behavioral and Strategic Factors Affecting Secondary Students

    In STEM education, students are required to solve problems in real-world settings that are complex and ill-defined; the students must examine and apply theories and knowledge to improve their problem-solving skills and integrate their comprehension and application of knowledge in STEM fields (Lou et al., 2011; Savery, 2006).

  25. Identification of Problem-Solving Techniques in Computational Thinking

    Problem-solving skills are an ability that must be cultivated to equip students with the skills needed to deal with today's increasingly complex and volatile environment. ... The investigation of a student's problem-solving process based on computational thinking. ... the important point in this discussion is that CT can be implemented as a ...

  26. Why Problem Solving Is Important For Students?

    Problem-solving is important for students because it helps them develop critical thinking, creativity, and metacognitive skills. It allows them to approach complex problems systematically and logically, leading to better solutions. This article will explore why problem solving is important for students and the benefits of developing these skills.

  27. Explained: Importance of critical thinking, problem-solving skills in

    When the curriculum presents students with real-world problems, the learning is immense. Confidence, agility & collaboration: Critical thinking and problem-solving skills boost self-belief and ...

  28. Student mathematicians showcase their problem-solving skills in

    Math Quest Student mathematicians competed at the third annual PWCS Middle School Math Quest, an event designed to bring students together from across the division to engage in a day filled with mathematical challenges. The event emphasizes teamwork and collaborative problem-solving with students tackling a range of problems in algebra ...

  29. Nursing students' stressors and coping strategies during their first

    Understanding the stressors and coping strategies of nursing students in their first clinical training is important for improving student performance, helping students develop a professional identity and problem-solving skills, and improving the clinical teaching aspects of the curriculum in nursing programmes. While previous research have examined nurses' sources of stress and coping styles ...

  30. As schools reconsider cursive, research homes in on handwriting's ...

    Researchers are learning that handwriting engages the brain in ways typing can't match, raising questions about the costs of ditching this age-old practice, especially for kids.