• Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

100+ Quantitative Research Topics For Students

Quantitative Research Topics

Quantitative research is a research strategy focusing on quantified data collection and analysis processes. This research strategy emphasizes testing theories on various subjects. It also includes collecting and analyzing non-numerical data.

Quantitative research is a common approach in the natural and social sciences , like marketing, business, sociology, chemistry, biology, economics, and psychology. So, if you are fond of statistics and figures, a quantitative research title would be an excellent option for your research proposal or project.

How to Get a Title of Quantitative Research

How to make quantitative research title, what is the best title for quantitative research, amazing quantitative research topics for students, creative quantitative research topics, perfect quantitative research title examples, unique quantitative research titles, outstanding quantitative research title examples for students, creative example title of quantitative research samples, outstanding quantitative research problems examples, fantastic quantitative research topic examples, the best quantitative research topics, grade 12 quantitative research title for students, list of quantitative research titles for high school, easy quantitative research topics for students, trending topics for quantitative research, quantitative research proposal topics, samples of quantitative research titles, research title about business quantitative.

Finding a great title is the key to writing a great quantitative research proposal or paper. A title for quantitative research prepares you for success, failure, or mediocre grades. This post features examples of quantitative research titles for all students.

Putting together a research title and quantitative research design is not as easy as some students assume. So, an example topic of quantitative research can help you craft your own. However, even with the examples, you may need some guidelines for personalizing your research project or proposal topics.

So, here are some tips for getting a title for quantitative research:

  • Consider your area of studies
  • Look out for relevant subjects in the area
  • Expert advice may come in handy
  • Check out some sample quantitative research titles

Making a quantitative research title is easy if you know the qualities of a good title in quantitative research. Reading about how to make a quantitative research title may not help as much as looking at some samples. Looking at a quantitative research example title will give you an idea of where to start.

However, let’s look at some tips for how to make a quantitative research title:

  • The title should seem interesting to readers
  • Ensure that the title represents the content of the research paper
  • Reflect on the tone of the writing in the title
  • The title should contain important keywords in your chosen subject to help readers find your paper
  • The title should not be too lengthy
  • It should be grammatically correct and creative
  • It must generate curiosity

An excellent quantitative title should be clear, which implies that it should effectively explain the paper and what readers can expect. A research title for quantitative research is the gateway to your article or proposal. So, it should be well thought out. Additionally, it should give you room for extensive topic research.

A sample of quantitative research titles will give you an idea of what a good title for quantitative research looks like. Here are some examples:

  • What is the correlation between inflation rates and unemployment rates?
  • Has climate adaptation influenced the mitigation of funds allocation?
  • Job satisfaction and employee turnover: What is the link?
  • A look at the relationship between poor households and the development of entrepreneurship skills
  • Urbanization and economic growth: What is the link between these elements?
  • Does education achievement influence people’s economic status?
  • What is the impact of solar electricity on the wholesale energy market?
  • Debt accumulation and retirement: What is the relationship between these concepts?
  • Can people with psychiatric disorders develop independent living skills?
  • Children’s nutrition and its impact on cognitive development

Quantitative research applies to various subjects in the natural and social sciences. Therefore, depending on your intended subject, you have numerous options. Below are some good quantitative research topics for students:

  • The difference between the colorific intake of men and women in your country
  • Top strategies used to measure customer satisfaction and how they work
  • Black Friday sales: are they profitable?
  • The correlation between estimated target market and practical competitive risk assignment
  • Are smartphones making us brighter or dumber?
  • Nuclear families Vs. Joint families: Is there a difference?
  • What will society look like in the absence of organized religion?
  • A comparison between carbohydrate weight loss benefits and high carbohydrate diets?
  • How does emotional stability influence your overall well-being?
  • The extent of the impact of technology in the communications sector

Creativity is the key to creating a good research topic in quantitative research. Find a good quantitative research topic below:

  • How much exercise is good for lasting physical well-being?
  • A comparison of the nutritional therapy uses and contemporary medical approaches
  • Does sugar intake have a direct impact on diabetes diagnosis?
  • Education attainment: Does it influence crime rates in society?
  • Is there an actual link between obesity and cancer rates?
  • Do kids with siblings have better social skills than those without?
  • Computer games and their impact on the young generation
  • Has social media marketing taken over conventional marketing strategies?
  • The impact of technology development on human relationships and communication
  • What is the link between drug addiction and age?

Need more quantitative research title examples to inspire you? Here are some quantitative research title examples to look at:

  • Habitation fragmentation and biodiversity loss: What is the link?
  • Radiation has affected biodiversity: Assessing its effects
  • An assessment of the impact of the CORONA virus on global population growth
  • Is the pandemic truly over, or have human bodies built resistance against the virus?
  • The ozone hole and its impact on the environment
  • The greenhouse gas effect: What is it and how has it impacted the atmosphere
  • GMO crops: are they good or bad for your health?
  • Is there a direct link between education quality and job attainment?
  • How have education systems changed from traditional to modern times?
  • The good and bad impacts of technology on education qualities

Your examiner will give you excellent grades if you come up with a unique title and outstanding content. Here are some quantitative research examples titles.

  • Online classes: are they helpful or not?
  • What changes has the global CORONA pandemic had on the population growth curve?
  • Daily habits influenced by the global pandemic
  • An analysis of the impact of culture on people’s personalities
  • How has feminism influenced the education system’s approach to the girl child’s education?
  • Academic competition: what are its benefits and downsides for students?
  • Is there a link between education and student integrity?
  • An analysis of how the education sector can influence a country’s economy
  • An overview of the link between crime rates and concern for crime
  • Is there a link between education and obesity?

Research title example quantitative topics when well-thought guarantees a paper that is a good read. Look at the examples below to get started.

  • What are the impacts of online games on students?
  • Sex education in schools: how important is it?
  • Should schools be teaching about safe sex in their sex education classes?
  • The correlation between extreme parent interference on student academic performance
  • Is there a real link between academic marks and intelligence?
  • Teacher feedback: How necessary is it, and how does it help students?
  • An analysis of modern education systems and their impact on student performance
  • An overview of the link between academic performance/marks and intelligence
  • Are grading systems helpful or harmful to students?
  • What was the impact of the pandemic on students?

Irrespective of the course you take, here are some titles that can fit diverse subjects pretty well. Here are some creative quantitative research title ideas:

  • A look at the pre-corona and post-corona economy
  • How are conventional retail businesses fairing against eCommerce sites like Amazon and Shopify?
  • An evaluation of mortality rates of heart attacks
  • Effective treatments for cardiovascular issues and their prevention
  • A comparison of the effectiveness of home care and nursing home care
  • Strategies for managing effective dissemination of information to modern students
  • How does educational discrimination influence students’ futures?
  • The impacts of unfavorable classroom environment and bullying on students and teachers
  • An overview of the implementation of STEM education to K-12 students
  • How effective is digital learning?

If your paper addresses a problem, you must present facts that solve the question or tell more about the question. Here are examples of quantitative research titles that will inspire you.

  • An elaborate study of the influence of telemedicine in healthcare practices
  • How has scientific innovation influenced the defense or military system?
  • The link between technology and people’s mental health
  • Has social media helped create awareness or worsened people’s mental health?
  • How do engineers promote green technology?
  • How can engineers raise sustainability in building and structural infrastructures?
  • An analysis of how decision-making is dependent on someone’s sub-conscious
  • A comprehensive study of ADHD and its impact on students’ capabilities
  • The impact of racism on people’s mental health and overall wellbeing
  • How has the current surge in social activism helped shape people’s relationships?

Are you looking for an example of a quantitative research title? These ten examples below will get you started.

  • The prevalence of nonverbal communication in social control and people’s interactions
  • The impacts of stress on people’s behavior in society
  • A study of the connection between capital structures and corporate strategies
  • How do changes in credit ratings impact equality returns?
  • A quantitative analysis of the effect of bond rating changes on stock prices
  • The impact of semantics on web technology
  • An analysis of persuasion, propaganda, and marketing impact on individuals
  • The dominant-firm model: what is it, and how does it apply to your country’s retail sector?
  • The role of income inequality in economy growth
  • An examination of juvenile delinquents’ treatment in your country

Excellent Topics For Quantitative Research

Here are some titles for quantitative research you should consider:

  • Does studying mathematics help implement data safety for businesses
  • How are art-related subjects interdependent with mathematics?
  • How do eco-friendly practices in the hospitality industry influence tourism rates?
  • A deep insight into how people view eco-tourisms
  • Religion vs. hospitality: Details on their correlation
  • Has your country’s tourist sector revived after the pandemic?
  • How effective is non-verbal communication in conveying emotions?
  • Are there similarities between the English and French vocabulary?
  • How do politicians use persuasive language in political speeches?
  • The correlation between popular culture and translation

Here are some quantitative research titles examples for your consideration:

  • How do world leaders use language to change the emotional climate in their nations?
  • Extensive research on how linguistics cultivate political buzzwords
  • The impact of globalization on the global tourism sector
  • An analysis of the effects of the pandemic on the worldwide hospitality sector
  • The influence of social media platforms on people’s choice of tourism destinations
  • Educational tourism: What is it and what you should know about it
  • Why do college students experience math anxiety?
  • Is math anxiety a phenomenon?
  • A guide on effective ways to fight cultural bias in modern society
  • Creative ways to solve the overpopulation issue

An example of quantitative research topics for 12 th -grade students will come in handy if you want to score a good grade. Here are some of the best ones:

  • The link between global warming and climate change
  • What is the greenhouse gas impact on biodiversity and the atmosphere
  • Has the internet successfully influenced literacy rates in society
  • The value and downsides of competition for students
  • A comparison of the education system in first-world and third-world countries
  • The impact of alcohol addiction on the younger generation
  • How has social media influenced human relationships?
  • Has education helped boost feminism among men and women?
  • Are computers in classrooms beneficial or detrimental to students?
  • How has social media improved bullying rates among teenagers?

High school students can apply research titles on social issues  or other elements, depending on the subject. Let’s look at some quantitative topics for students:

  • What is the right age to introduce sex education for students
  • Can extreme punishment help reduce alcohol consumption among teenagers?
  • Should the government increase the age of sexual consent?
  • The link between globalization and the local economy collapses
  • How are global companies influencing local economies?

There are numerous possible quantitative research topics you can write about. Here are some great quantitative research topics examples:

  • The correlation between video games and crime rates
  • Do college studies impact future job satisfaction?
  • What can the education sector do to encourage more college enrollment?
  • The impact of education on self-esteem
  • The relationship between income and occupation

You can find inspiration for your research topic from trending affairs on social media or in the news. Such topics will make your research enticing. Find a trending topic for quantitative research example from the list below:

  • How the country’s economy is fairing after the pandemic
  • An analysis of the riots by women in Iran and what the women gain to achieve
  • Is the current US government living up to the voter’s expectations?
  • How is the war in Ukraine affecting the global economy?
  • Can social media riots affect political decisions?

A proposal is a paper you write proposing the subject you would like to cover for your research and the research techniques you will apply. If the proposal is approved, it turns to your research topic. Here are some quantitative titles you should consider for your research proposal:

  • Military support and economic development: What is the impact in developing nations?
  • How does gun ownership influence crime rates in developed countries?
  • How can the US government reduce gun violence without influencing people’s rights?
  • What is the link between school prestige and academic standards?
  • Is there a scientific link between abortion and the definition of viability?

You can never have too many sample titles. The samples allow you to find a unique title you’re your research or proposal. Find a sample quantitative research title here:

  • Does weight loss indicate good or poor health?
  • Should schools do away with grading systems?
  • The impact of culture on student interactions and personalities
  • How can parents successfully protect their kids from the dangers of the internet?
  • Is the US education system better or worse than Europe’s?

If you’re a business major, then you must choose a research title quantitative about business. Let’s look at some research title examples quantitative in business:

  • Creating shareholder value in business: How important is it?
  • The changes in credit ratings and their impact on equity returns
  • The importance of data privacy laws in business operations
  • How do businesses benefit from e-waste and carbon footprint reduction?
  • Organizational culture in business: what is its importance?

We Are A Call Away

Interesting, creative, unique, and easy quantitative research topics allow you to explain your paper and make research easy. Therefore, you should not take choosing a research paper or proposal topic lightly. With your topic ready, reach out to us today for excellent research paper writing services .

Leave a Reply Cancel reply

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » 500+ Quantitative Research Titles and Topics

500+ Quantitative Research Titles and Topics

Table of Contents

Quantitative Research Topics

Quantitative research involves collecting and analyzing numerical data to identify patterns, trends, and relationships among variables. This method is widely used in social sciences, psychology , economics , and other fields where researchers aim to understand human behavior and phenomena through statistical analysis. If you are looking for a quantitative research topic, there are numerous areas to explore, from analyzing data on a specific population to studying the effects of a particular intervention or treatment. In this post, we will provide some ideas for quantitative research topics that may inspire you and help you narrow down your interests.

Quantitative Research Titles

Quantitative Research Titles are as follows:

Business and Economics

  • “Statistical Analysis of Supply Chain Disruptions on Retail Sales”
  • “Quantitative Examination of Consumer Loyalty Programs in the Fast Food Industry”
  • “Predicting Stock Market Trends Using Machine Learning Algorithms”
  • “Influence of Workplace Environment on Employee Productivity: A Quantitative Study”
  • “Impact of Economic Policies on Small Businesses: A Regression Analysis”
  • “Customer Satisfaction and Profit Margins: A Quantitative Correlation Study”
  • “Analyzing the Role of Marketing in Brand Recognition: A Statistical Overview”
  • “Quantitative Effects of Corporate Social Responsibility on Consumer Trust”
  • “Price Elasticity of Demand for Luxury Goods: A Case Study”
  • “The Relationship Between Fiscal Policy and Inflation Rates: A Time-Series Analysis”
  • “Factors Influencing E-commerce Conversion Rates: A Quantitative Exploration”
  • “Examining the Correlation Between Interest Rates and Consumer Spending”
  • “Standardized Testing and Academic Performance: A Quantitative Evaluation”
  • “Teaching Strategies and Student Learning Outcomes in Secondary Schools: A Quantitative Study”
  • “The Relationship Between Extracurricular Activities and Academic Success”
  • “Influence of Parental Involvement on Children’s Educational Achievements”
  • “Digital Literacy in Primary Schools: A Quantitative Assessment”
  • “Learning Outcomes in Blended vs. Traditional Classrooms: A Comparative Analysis”
  • “Correlation Between Teacher Experience and Student Success Rates”
  • “Analyzing the Impact of Classroom Technology on Reading Comprehension”
  • “Gender Differences in STEM Fields: A Quantitative Analysis of Enrollment Data”
  • “The Relationship Between Homework Load and Academic Burnout”
  • “Assessment of Special Education Programs in Public Schools”
  • “Role of Peer Tutoring in Improving Academic Performance: A Quantitative Study”

Medicine and Health Sciences

  • “The Impact of Sleep Duration on Cardiovascular Health: A Cross-sectional Study”
  • “Analyzing the Efficacy of Various Antidepressants: A Meta-Analysis”
  • “Patient Satisfaction in Telehealth Services: A Quantitative Assessment”
  • “Dietary Habits and Incidence of Heart Disease: A Quantitative Review”
  • “Correlations Between Stress Levels and Immune System Functioning”
  • “Smoking and Lung Function: A Quantitative Analysis”
  • “Influence of Physical Activity on Mental Health in Older Adults”
  • “Antibiotic Resistance Patterns in Community Hospitals: A Quantitative Study”
  • “The Efficacy of Vaccination Programs in Controlling Disease Spread: A Time-Series Analysis”
  • “Role of Social Determinants in Health Outcomes: A Quantitative Exploration”
  • “Impact of Hospital Design on Patient Recovery Rates”
  • “Quantitative Analysis of Dietary Choices and Obesity Rates in Children”

Social Sciences

  • “Examining Social Inequality through Wage Distribution: A Quantitative Study”
  • “Impact of Parental Divorce on Child Development: A Longitudinal Study”
  • “Social Media and its Effect on Political Polarization: A Quantitative Analysis”
  • “The Relationship Between Religion and Social Attitudes: A Statistical Overview”
  • “Influence of Socioeconomic Status on Educational Achievement”
  • “Quantifying the Effects of Community Programs on Crime Reduction”
  • “Public Opinion and Immigration Policies: A Quantitative Exploration”
  • “Analyzing the Gender Representation in Political Offices: A Quantitative Study”
  • “Impact of Mass Media on Public Opinion: A Regression Analysis”
  • “Influence of Urban Design on Social Interactions in Communities”
  • “The Role of Social Support in Mental Health Outcomes: A Quantitative Analysis”
  • “Examining the Relationship Between Substance Abuse and Employment Status”

Engineering and Technology

  • “Performance Evaluation of Different Machine Learning Algorithms in Autonomous Vehicles”
  • “Material Science: A Quantitative Analysis of Stress-Strain Properties in Various Alloys”
  • “Impacts of Data Center Cooling Solutions on Energy Consumption”
  • “Analyzing the Reliability of Renewable Energy Sources in Grid Management”
  • “Optimization of 5G Network Performance: A Quantitative Assessment”
  • “Quantifying the Effects of Aerodynamics on Fuel Efficiency in Commercial Airplanes”
  • “The Relationship Between Software Complexity and Bug Frequency”
  • “Machine Learning in Predictive Maintenance: A Quantitative Analysis”
  • “Wearable Technologies and their Impact on Healthcare Monitoring”
  • “Quantitative Assessment of Cybersecurity Measures in Financial Institutions”
  • “Analysis of Noise Pollution from Urban Transportation Systems”
  • “The Influence of Architectural Design on Energy Efficiency in Buildings”

Quantitative Research Topics

Quantitative Research Topics are as follows:

  • The effects of social media on self-esteem among teenagers.
  • A comparative study of academic achievement among students of single-sex and co-educational schools.
  • The impact of gender on leadership styles in the workplace.
  • The correlation between parental involvement and academic performance of students.
  • The effect of mindfulness meditation on stress levels in college students.
  • The relationship between employee motivation and job satisfaction.
  • The effectiveness of online learning compared to traditional classroom learning.
  • The correlation between sleep duration and academic performance among college students.
  • The impact of exercise on mental health among adults.
  • The relationship between social support and psychological well-being among cancer patients.
  • The effect of caffeine consumption on sleep quality.
  • A comparative study of the effectiveness of cognitive-behavioral therapy and pharmacotherapy in treating depression.
  • The relationship between physical attractiveness and job opportunities.
  • The correlation between smartphone addiction and academic performance among high school students.
  • The impact of music on memory recall among adults.
  • The effectiveness of parental control software in limiting children’s online activity.
  • The relationship between social media use and body image dissatisfaction among young adults.
  • The correlation between academic achievement and parental involvement among minority students.
  • The impact of early childhood education on academic performance in later years.
  • The effectiveness of employee training and development programs in improving organizational performance.
  • The relationship between socioeconomic status and access to healthcare services.
  • The correlation between social support and academic achievement among college students.
  • The impact of technology on communication skills among children.
  • The effectiveness of mindfulness-based stress reduction programs in reducing symptoms of anxiety and depression.
  • The relationship between employee turnover and organizational culture.
  • The correlation between job satisfaction and employee engagement.
  • The impact of video game violence on aggressive behavior among children.
  • The effectiveness of nutritional education in promoting healthy eating habits among adolescents.
  • The relationship between bullying and academic performance among middle school students.
  • The correlation between teacher expectations and student achievement.
  • The impact of gender stereotypes on career choices among high school students.
  • The effectiveness of anger management programs in reducing violent behavior.
  • The relationship between social support and recovery from substance abuse.
  • The correlation between parent-child communication and adolescent drug use.
  • The impact of technology on family relationships.
  • The effectiveness of smoking cessation programs in promoting long-term abstinence.
  • The relationship between personality traits and academic achievement.
  • The correlation between stress and job performance among healthcare professionals.
  • The impact of online privacy concerns on social media use.
  • The effectiveness of cognitive-behavioral therapy in treating anxiety disorders.
  • The relationship between teacher feedback and student motivation.
  • The correlation between physical activity and academic performance among elementary school students.
  • The impact of parental divorce on academic achievement among children.
  • The effectiveness of diversity training in improving workplace relationships.
  • The relationship between childhood trauma and adult mental health.
  • The correlation between parental involvement and substance abuse among adolescents.
  • The impact of social media use on romantic relationships among young adults.
  • The effectiveness of assertiveness training in improving communication skills.
  • The relationship between parental expectations and academic achievement among high school students.
  • The correlation between sleep quality and mood among adults.
  • The impact of video game addiction on academic performance among college students.
  • The effectiveness of group therapy in treating eating disorders.
  • The relationship between job stress and job performance among teachers.
  • The correlation between mindfulness and emotional regulation.
  • The impact of social media use on self-esteem among college students.
  • The effectiveness of parent-teacher communication in promoting academic achievement among elementary school students.
  • The impact of renewable energy policies on carbon emissions
  • The relationship between employee motivation and job performance
  • The effectiveness of psychotherapy in treating eating disorders
  • The correlation between physical activity and cognitive function in older adults
  • The effect of childhood poverty on adult health outcomes
  • The impact of urbanization on biodiversity conservation
  • The relationship between work-life balance and employee job satisfaction
  • The effectiveness of eye movement desensitization and reprocessing (EMDR) in treating trauma
  • The correlation between parenting styles and child behavior
  • The effect of social media on political polarization
  • The impact of foreign aid on economic development
  • The relationship between workplace diversity and organizational performance
  • The effectiveness of dialectical behavior therapy in treating borderline personality disorder
  • The correlation between childhood abuse and adult mental health outcomes
  • The effect of sleep deprivation on cognitive function
  • The impact of trade policies on international trade and economic growth
  • The relationship between employee engagement and organizational commitment
  • The effectiveness of cognitive therapy in treating postpartum depression
  • The correlation between family meals and child obesity rates
  • The effect of parental involvement in sports on child athletic performance
  • The impact of social entrepreneurship on sustainable development
  • The relationship between emotional labor and job burnout
  • The effectiveness of art therapy in treating dementia
  • The correlation between social media use and academic procrastination
  • The effect of poverty on childhood educational attainment
  • The impact of urban green spaces on mental health
  • The relationship between job insecurity and employee well-being
  • The effectiveness of virtual reality exposure therapy in treating anxiety disorders
  • The correlation between childhood trauma and substance abuse
  • The effect of screen time on children’s social skills
  • The impact of trade unions on employee job satisfaction
  • The relationship between cultural intelligence and cross-cultural communication
  • The effectiveness of acceptance and commitment therapy in treating chronic pain
  • The correlation between childhood obesity and adult health outcomes
  • The effect of gender diversity on corporate performance
  • The impact of environmental regulations on industry competitiveness.
  • The impact of renewable energy policies on greenhouse gas emissions
  • The relationship between workplace diversity and team performance
  • The effectiveness of group therapy in treating substance abuse
  • The correlation between parental involvement and social skills in early childhood
  • The effect of technology use on sleep patterns
  • The impact of government regulations on small business growth
  • The relationship between job satisfaction and employee turnover
  • The effectiveness of virtual reality therapy in treating anxiety disorders
  • The correlation between parental involvement and academic motivation in adolescents
  • The effect of social media on political engagement
  • The impact of urbanization on mental health
  • The relationship between corporate social responsibility and consumer trust
  • The correlation between early childhood education and social-emotional development
  • The effect of screen time on cognitive development in young children
  • The impact of trade policies on global economic growth
  • The relationship between workplace diversity and innovation
  • The effectiveness of family therapy in treating eating disorders
  • The correlation between parental involvement and college persistence
  • The effect of social media on body image and self-esteem
  • The impact of environmental regulations on business competitiveness
  • The relationship between job autonomy and job satisfaction
  • The effectiveness of virtual reality therapy in treating phobias
  • The correlation between parental involvement and academic achievement in college
  • The effect of social media on sleep quality
  • The impact of immigration policies on social integration
  • The relationship between workplace diversity and employee well-being
  • The effectiveness of psychodynamic therapy in treating personality disorders
  • The correlation between early childhood education and executive function skills
  • The effect of parental involvement on STEM education outcomes
  • The impact of trade policies on domestic employment rates
  • The relationship between job insecurity and mental health
  • The effectiveness of exposure therapy in treating PTSD
  • The correlation between parental involvement and social mobility
  • The effect of social media on intergroup relations
  • The impact of urbanization on air pollution and respiratory health.
  • The relationship between emotional intelligence and leadership effectiveness
  • The effectiveness of cognitive-behavioral therapy in treating depression
  • The correlation between early childhood education and language development
  • The effect of parental involvement on academic achievement in STEM fields
  • The impact of trade policies on income inequality
  • The relationship between workplace diversity and customer satisfaction
  • The effectiveness of mindfulness-based therapy in treating anxiety disorders
  • The correlation between parental involvement and civic engagement in adolescents
  • The effect of social media on mental health among teenagers
  • The impact of public transportation policies on traffic congestion
  • The relationship between job stress and job performance
  • The effectiveness of group therapy in treating depression
  • The correlation between early childhood education and cognitive development
  • The effect of parental involvement on academic motivation in college
  • The impact of environmental regulations on energy consumption
  • The relationship between workplace diversity and employee engagement
  • The effectiveness of art therapy in treating PTSD
  • The correlation between parental involvement and academic success in vocational education
  • The effect of social media on academic achievement in college
  • The impact of tax policies on economic growth
  • The relationship between job flexibility and work-life balance
  • The effectiveness of acceptance and commitment therapy in treating anxiety disorders
  • The correlation between early childhood education and social competence
  • The effect of parental involvement on career readiness in high school
  • The impact of immigration policies on crime rates
  • The relationship between workplace diversity and employee retention
  • The effectiveness of play therapy in treating trauma
  • The correlation between parental involvement and academic success in online learning
  • The effect of social media on body dissatisfaction among women
  • The impact of urbanization on public health infrastructure
  • The relationship between job satisfaction and job performance
  • The effectiveness of eye movement desensitization and reprocessing therapy in treating PTSD
  • The correlation between early childhood education and social skills in adolescence
  • The effect of parental involvement on academic achievement in the arts
  • The impact of trade policies on foreign investment
  • The relationship between workplace diversity and decision-making
  • The effectiveness of exposure and response prevention therapy in treating OCD
  • The correlation between parental involvement and academic success in special education
  • The impact of zoning laws on affordable housing
  • The relationship between job design and employee motivation
  • The effectiveness of cognitive rehabilitation therapy in treating traumatic brain injury
  • The correlation between early childhood education and social-emotional learning
  • The effect of parental involvement on academic achievement in foreign language learning
  • The impact of trade policies on the environment
  • The relationship between workplace diversity and creativity
  • The effectiveness of emotion-focused therapy in treating relationship problems
  • The correlation between parental involvement and academic success in music education
  • The effect of social media on interpersonal communication skills
  • The impact of public health campaigns on health behaviors
  • The relationship between job resources and job stress
  • The effectiveness of equine therapy in treating substance abuse
  • The correlation between early childhood education and self-regulation
  • The effect of parental involvement on academic achievement in physical education
  • The impact of immigration policies on cultural assimilation
  • The relationship between workplace diversity and conflict resolution
  • The effectiveness of schema therapy in treating personality disorders
  • The correlation between parental involvement and academic success in career and technical education
  • The effect of social media on trust in government institutions
  • The impact of urbanization on public transportation systems
  • The relationship between job demands and job stress
  • The correlation between early childhood education and executive functioning
  • The effect of parental involvement on academic achievement in computer science
  • The effectiveness of cognitive processing therapy in treating PTSD
  • The correlation between parental involvement and academic success in homeschooling
  • The effect of social media on cyberbullying behavior
  • The impact of urbanization on air quality
  • The effectiveness of dance therapy in treating anxiety disorders
  • The correlation between early childhood education and math achievement
  • The effect of parental involvement on academic achievement in health education
  • The impact of global warming on agriculture
  • The effectiveness of narrative therapy in treating depression
  • The correlation between parental involvement and academic success in character education
  • The effect of social media on political participation
  • The impact of technology on job displacement
  • The relationship between job resources and job satisfaction
  • The effectiveness of art therapy in treating addiction
  • The correlation between early childhood education and reading comprehension
  • The effect of parental involvement on academic achievement in environmental education
  • The impact of income inequality on social mobility
  • The relationship between workplace diversity and organizational culture
  • The effectiveness of solution-focused brief therapy in treating anxiety disorders
  • The correlation between parental involvement and academic success in physical therapy education
  • The effect of social media on misinformation
  • The impact of green energy policies on economic growth
  • The relationship between job demands and employee well-being
  • The correlation between early childhood education and science achievement
  • The effect of parental involvement on academic achievement in religious education
  • The impact of gender diversity on corporate governance
  • The relationship between workplace diversity and ethical decision-making
  • The correlation between parental involvement and academic success in dental hygiene education
  • The effect of social media on self-esteem among adolescents
  • The impact of renewable energy policies on energy security
  • The effect of parental involvement on academic achievement in social studies
  • The impact of trade policies on job growth
  • The relationship between workplace diversity and leadership styles
  • The correlation between parental involvement and academic success in online vocational training
  • The effect of social media on self-esteem among men
  • The impact of urbanization on air pollution levels
  • The effectiveness of music therapy in treating depression
  • The correlation between early childhood education and math skills
  • The effect of parental involvement on academic achievement in language arts
  • The impact of immigration policies on labor market outcomes
  • The effectiveness of hypnotherapy in treating phobias
  • The effect of social media on political engagement among young adults
  • The impact of urbanization on access to green spaces
  • The relationship between job crafting and job satisfaction
  • The effectiveness of exposure therapy in treating specific phobias
  • The correlation between early childhood education and spatial reasoning
  • The effect of parental involvement on academic achievement in business education
  • The impact of trade policies on economic inequality
  • The effectiveness of narrative therapy in treating PTSD
  • The correlation between parental involvement and academic success in nursing education
  • The effect of social media on sleep quality among adolescents
  • The impact of urbanization on crime rates
  • The relationship between job insecurity and turnover intentions
  • The effectiveness of pet therapy in treating anxiety disorders
  • The correlation between early childhood education and STEM skills
  • The effect of parental involvement on academic achievement in culinary education
  • The impact of immigration policies on housing affordability
  • The relationship between workplace diversity and employee satisfaction
  • The effectiveness of mindfulness-based stress reduction in treating chronic pain
  • The correlation between parental involvement and academic success in art education
  • The effect of social media on academic procrastination among college students
  • The impact of urbanization on public safety services.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Funny Research Topics

200+ Funny Research Topics

Sports Research Topics

500+ Sports Research Topics

American History Research Paper Topics

300+ American History Research Paper Topics

Cyber Security Research Topics

500+ Cyber Security Research Topics

Environmental Research Topics

500+ Environmental Research Topics

Economics Research Topics

500+ Economics Research Topics

research topic quantitative in school

190+ Best Quantitative Research Topics for STEM Students 2024

Dive into a world of quantitative research topics for STEM students! It’s all about unveiling the secrets of biology, decoding the language of particles, and taking a data-driven ride into the unknown.

Ready for a deep dive into the quantitative wonders of Science, Technology, Engineering, and Math? Our “Quantitative Research Topics for STEM Students” lineup is like a playground for your curious minds.

Imagine it as a buffet of cool ideas waiting for your unique spin. Whether you love crunching numbers to reveal data mysteries or untangling relationships between different things, these topics are your VIP pass to the science party!

So, grab a seat, gear up that brainpower, and let’s turn STEM research into an adventure. Picture these ideas as your scientific rollercoaster – twists, turns, and maybe even a couple of “aha!” moments. Let the quantitative fun kick-off!

Table of Contents

The Importance of Quantitative Research in STEM

Check out the importance of quantitative research in STEM.

research topic quantitative in school

1. Get Real with Numbers

Quantitative research in STEM isn’t just about jargon and equations; it’s the cool way of saying, “Let’s measure things objectively!” It gives us the numbers to express complex stuff and makes experiments the rockstars of replicability.

2. Data Detective Work

Ever wanted to be a detective? Well, quantitative research in STEM lets us play detective with data. We dig into big datasets, spot trends, and unveil the secrets that numbers hide. It’s like solving a mystery, but with graphs and charts!

3. Reliability Rocks

Picture this: your research is like a superhero, reliable and always ready for action. Thanks to quantitative methods, experiments can be repeated with superhero-like consistency, making our findings more trustworthy than ever.

4. Math Models – The Superheroes of STEM

Move over, superheroes; mathematical models are here! Quantitative research helps us create these powerful models that predict and explain all the cool and crazy things happening in the natural world. It’s like having a mathematical superhero team!

5. Crack Problems with Quantitative Kung Fu

Forget about traditional problem-solving. In STEM, we use quantitative kung fu! We quantify variables, analyze relationships, and kick problems to the curb with efficient and powerful moves. It’s basically the Bruce Lee of research!

6. Tech Trends Unleashed

Want to be at the forefront of technology? Quantitative research is the ticket. It doesn’t just guide us in designing cool tech; it helps us optimize what we already have. It’s the GPS for navigating the fast-paced world of STEM innovation.

7. Numbers Speak Louder in Policy Land

Policymakers love a good story, especially if it’s told in numbers. Quantitative research speaks their language, helping shape policies based on hard evidence. It’s like turning data into a blockbuster movie with a powerful impact!

8. Theory Testing, Like a Boss

In STEM, we don’t just talk theories; we test them like bosses. Quantitative research brings theories down to earth, making sure they’re not just cool ideas but proven, tested, and ready to roll.

9. Mixing STEM Flavors

STEM isn’t a solo act; it’s a band. Quantitative research lets us mix and match data from different instruments, creating a symphony of insights. It’s like blending different STEM flavors to cook up something amazing!

Choosing the Right Quantitative Research Topic

Choosing the perfect quantitative research topic is like embarking on a thrilling adventure – it’s all about excitement, challenges, and finding something that truly lights up your STEM-loving heart. So, let’s dive into the wild ride of “Choosing the Right Quantitative Research Topic.”

Choosing the Right Quantitative Research Topic

1. Follow Your STEM Heartbeat

First things first, what makes your STEM-loving heart race? Is it the allure of cracking genetic codes or navigating the intricate world of algorithms? Choose a topic that makes you go, “Wow, I want to know more!”

2. Venture into the Unknown

Don’t fear the unknown; embrace it! The most fascinating questions often lurk in uncharted territories. Think of your research topic as a treasure waiting to be discovered in the vast landscape of STEM.

3. Map Out the Data Terrain

A good adventure needs a map, right? Similarly, ensure there’s enough data to guide you. Having solid and accessible data turns your research journey into a well-prepared expedition.

4. Keep It Practical

Consider the practical side. Can you realistically embark on experiments, gather data, or dive into analyses within your available resources and timeframe? Let’s keep this adventure doable!

5. Hunt for Research Gaps

Explore the landscape of existing research. Are there areas where quantitative exploration is scarce? Becoming a gap-filler not only makes you a research superhero but also adds a unique twist to your journey.

6. Get Inspired

Think of reading research papers and attending seminars as your STEM version of gathering allies for your quest. Surround yourself with inspiration – it’s like finding magical artifacts for your research toolkit.

7. Seek Wisdom from the Wise

Wise mentors, professors, or seasoned experts are like the Gandalfs of your STEM journey. Seek their counsel. They’ve been through quests and can guide you with their sage advice.

8. Real-World Impact Check

Consider the real-world impact of your research. How can your findings make a dent in solving problems or pushing the boundaries of knowledge in your STEM realm? It’s like giving your research a superhero cape!

9. Match Your Skills with Your Quest

Choose a topic that aligns with your skills and strengths. Think of it as selecting a character for a video game – you want one that matches your style and abilities for a victorious and enjoyable quest.

Remember, your quantitative research topic isn’t just a research project – it’s your personal STEM expedition, waiting for your unique exploration and discovery. Let the adventure begin!

Quantitative Research Topics for STEM Students

Check out quantitative research topics in physics.

Biology Research Topics 

Chemistry research topics , physics research topics, mathematics research topics, computer science research topics, engineering research topics, environmental science research topics, biomedical engineering research topics, aerospace engineering research topics, mechanical engineering research topics, list of 125+ quantitative research topics for stem students.

Alright, let’s wrap this up in a more laid-back way. So, quantitative research for STEM students? It’s basically like handing them the keys to a scientific playground. These topics aren’t just a snooze-fest of numbers and graphs; think of it as a superhero origin story, but for budding scientists.

Picture this: students diving into data like it’s a treasure map, figuring out the secrets of biology or decoding the funky dance moves of particles. It’s not just studying; it’s like getting a backstage pass to the cool, mysterious world of science.

Why bother? Because this isn’t just about acing exams. It’s about becoming the superhero of your scientific turf. You’re not just learning stuff; you’re becoming a detective—asking the big questions, collecting clues, and maybe stumbling upon some mind-blowing discoveries.

So, cheers to the quantitative research journey! It’s not just a college thing; it’s the ticket to becoming the cool, problem-solving scientist everyone wants on their team. Ready for the adventure? Let’s dive in!

Frequently Asked Questions (FAQs)

Are there specific resources for stem students engaging in quantitative research.

Yes, there are specialized software tools, academic journals, and online platforms dedicated to quantitative research in STEM. Explore these resources for comprehensive support.

How can I overcome common pitfalls in quantitative research?

Mitigating pitfalls involves thorough planning, robust methodology, and staying aware of potential biases. Learning from the experiences of others can also be invaluable.

Related Posts

Qualitative Research Topics for High School Students

100+ Most Qualitative Research Topics For High School Students In 2024

Google Scholar Research Topics

99+ Astonishing Google Scholar Research Topics: The Road Less Traveled

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

StatAnalytica

200+ Experimental Quantitative Research Topics For STEM Students In 2023

Experimental Quantitative Research Topics For Stem Students

STEM means Science, Technology, Engineering, and Math, which is not the only stuff we learn in school. It is like a treasure chest of skills that help students become great problem solvers, ready to tackle the real world’s challenges.

In this blog, we are here to explore the world of Research Topics for STEM Students. We will break down what STEM really means and why it is so important for students. In addition, we will give you the lowdown on how to pick a fascinating research topic. We will explain a list of 200+ Experimental Quantitative Research Topics For STEM Students.

And when it comes to writing a research title, we will guide you step by step. So, stay with us as we unlock the exciting world of STEM research – it is not just about grades; it is about growing smarter, more confident, and happier along the way.

What Is STEM?

Table of Contents

STEM is Science, Technology, Engineering, and Mathematics. It is a way of talking about things like learning, jobs, and activities related to these four important subjects. Science is about understanding the world around us, technology is about using tools and machines to solve problems, engineering is about designing and building things, and mathematics is about numbers and solving problems with them. STEM helps us explore, discover, and create cool stuff that makes our world better and more exciting.

Why STEM Research Is Important?

STEM research is important because it helps us learn new things about the world and solve problems. When scientists, engineers, and mathematicians study these subjects, they can discover cures for diseases, create new technology that makes life easier, and build things that help us live better. It is like a big puzzle where we put together pieces of knowledge to make our world safer, healthier, and more fun.

  • STEM research leads to new discoveries and solutions.
  • It helps find cures for diseases.
  • STEM technology makes life easier.
  • Engineers build things that improve our lives.
  • Mathematics helps us understand and solve complex problems.

How to Choose a Topic for STEM Research Paper

Here are some steps to choose a topic for STEM Research Paper:

Step 1: Identify Your Interests

Think about what you like and what excites you in science, technology, engineering, or math. It could be something you learned in school, saw in the news, or experienced in your daily life. Choosing a topic you’re passionate about makes the research process more enjoyable.

Step 2: Research Existing Topics

Look up different STEM research areas online, in books, or at your library. See what scientists and experts are studying. This can give you ideas and help you understand what’s already known in your chosen field.

Step 3: Consider Real-World Problems

Think about the problems you see around you. Are there issues in your community or the world that STEM can help solve? Choosing a topic that addresses a real-world problem can make your research impactful.

Step 4: Talk to Teachers and Mentors

Discuss your interests with your teachers, professors, or mentors. They can offer guidance and suggest topics that align with your skills and goals. They may also provide resources and support for your research.

Step 5: Narrow Down Your Topic

Once you have some ideas, narrow them down to a specific research question or project. Make sure it’s not too broad or too narrow. You want a topic that you can explore in depth within the scope of your research paper.

Here we will discuss 200+ Experimental Quantitative Research Topics For STEM Students: 

Qualitative Research Topics for STEM Students:

Qualitative research focuses on exploring and understanding phenomena through non-numerical data and subjective experiences. Here are 10 qualitative research topics for STEM students:

  • Exploring the experiences of female STEM students in overcoming gender bias in academia.
  • Understanding the perceptions of teachers regarding the integration of technology in STEM education.
  • Investigating the motivations and challenges of STEM educators in underprivileged schools.
  • Exploring the attitudes and beliefs of parents towards STEM education for their children.
  • Analyzing the impact of collaborative learning on student engagement in STEM subjects.
  • Investigating the experiences of STEM professionals in bridging the gap between academia and industry.
  • Understanding the cultural factors influencing STEM career choices among minority students.
  • Exploring the role of mentorship in the career development of STEM graduates.
  • Analyzing the perceptions of students towards the ethics of emerging STEM technologies like AI and CRISPR.
  • Investigating the emotional well-being and stress levels of STEM students during their academic journey.

Easy Experimental Research Topics for STEM Students:

These experimental research topics are relatively straightforward and suitable for STEM students who are new to research:

  •  Measuring the effect of different light wavelengths on plant growth.
  •  Investigating the relationship between exercise and heart rate in various age groups.
  •  Testing the effectiveness of different insulating materials in conserving heat.
  •  Examining the impact of pH levels on the rate of chemical reactions.
  •  Studying the behavior of magnets in different temperature conditions.
  •  Investigating the effect of different concentrations of a substance on bacterial growth.
  •  Testing the efficiency of various sunscreen brands in blocking UV radiation.
  •  Measuring the impact of music genres on concentration and productivity.
  •  Examining the correlation between the angle of a ramp and the speed of a rolling object.
  •  Investigating the relationship between the number of blades on a wind turbine and energy output.

Research Topics for STEM Students in the Philippines:

These research topics are tailored for STEM students in the Philippines:

  •  Assessing the impact of climate change on the biodiversity of coral reefs in the Philippines.
  •  Studying the potential of indigenous plants in the Philippines for medicinal purposes.
  •  Investigating the feasibility of harnessing renewable energy sources like solar and wind in rural Filipino communities.
  •  Analyzing the water quality and pollution levels in major rivers and lakes in the Philippines.
  •  Exploring sustainable agricultural practices for small-scale farmers in the Philippines.
  •  Assessing the prevalence and impact of dengue fever outbreaks in urban areas of the Philippines.
  •  Investigating the challenges and opportunities of STEM education in remote Filipino islands.
  •  Studying the impact of typhoons and natural disasters on infrastructure resilience in the Philippines.
  •  Analyzing the genetic diversity of endemic species in the Philippine rainforests.
  •  Assessing the effectiveness of disaster preparedness programs in Philippine communities.

Read More 

  • Frontend Project Ideas
  • Business Intelligence Projects For Beginners

Good Research Topics for STEM Students:

These research topics are considered good because they offer interesting avenues for investigation and learning:

  •  Developing a low-cost and efficient water purification system for rural communities.
  •  Investigating the potential use of CRISPR-Cas9 for gene therapy in genetic disorders.
  •  Studying the applications of blockchain technology in securing medical records.
  •  Analyzing the impact of 3D printing on customized prosthetics for amputees.
  •  Exploring the use of artificial intelligence in predicting and preventing forest fires.
  •  Investigating the effects of microplastic pollution on aquatic ecosystems.
  •  Analyzing the use of drones in monitoring and managing agricultural crops.
  •  Studying the potential of quantum computing in solving complex optimization problems.
  •  Investigating the development of biodegradable materials for sustainable packaging.
  •  Exploring the ethical implications of gene editing in humans.

Unique Research Topics for STEM Students:

Unique research topics can provide STEM students with the opportunity to explore unconventional and innovative ideas. Here are 10 unique research topics for STEM students:

  •  Investigating the use of bioluminescent organisms for sustainable lighting solutions.
  •  Studying the potential of using spider silk proteins for advanced materials in engineering.
  •  Exploring the application of quantum entanglement for secure communication in the field of cryptography.
  •  Analyzing the feasibility of harnessing geothermal energy from underwater volcanoes.
  •  Investigating the use of CRISPR-Cas12 for rapid and cost-effective disease diagnostics.
  •  Studying the interaction between artificial intelligence and human creativity in art and music generation.
  •  Exploring the development of edible packaging materials to reduce plastic waste.
  •  Investigating the impact of microgravity on cellular behavior and tissue regeneration in space.
  •  Analyzing the potential of using sound waves to detect and combat invasive species in aquatic ecosystems.
  •  Studying the use of biotechnology in reviving extinct species, such as the woolly mammoth.

Experimental Research Topics for STEM Students in the Philippines

Research topics for STEM students in the Philippines can address specific regional challenges and opportunities. Here are 10 experimental research topics for STEM students in the Philippines:

  •  Assessing the effectiveness of locally sourced materials for disaster-resilient housing construction in typhoon-prone areas.
  •  Investigating the utilization of indigenous plants for natural remedies in Filipino traditional medicine.
  •  Studying the impact of volcanic soil on crop growth and agriculture in volcanic regions of the Philippines.
  •  Analyzing the water quality and purification methods in remote island communities.
  •  Exploring the feasibility of using bamboo as a sustainable construction material in the Philippines.
  •  Investigating the potential of using solar stills for freshwater production in water-scarce regions.
  •  Studying the effects of climate change on the migration patterns of bird species in the Philippines.
  •  Analyzing the growth and sustainability of coral reefs in marine protected areas.
  •  Investigating the utilization of coconut waste for biofuel production.
  •  Studying the biodiversity and conservation efforts in the Tubbataha Reefs Natural Park.

Capstone Research Topics for STEM Students in the Philippines:

Capstone research projects are often more comprehensive and can address real-world issues. Here are 10 capstone research topics for STEM students in the Philippines:

  •  Designing a low-cost and sustainable sanitation system for informal settlements in urban Manila.
  •  Developing a mobile app for monitoring and reporting natural disasters in the Philippines.
  •  Assessing the impact of climate change on the availability and quality of drinking water in Philippine cities.
  •  Designing an efficient traffic management system to address congestion in major Filipino cities.
  •  Analyzing the health implications of air pollution in densely populated urban areas of the Philippines.
  •  Developing a renewable energy microgrid for off-grid communities in the archipelago.
  •  Assessing the feasibility of using unmanned aerial vehicles (drones) for agricultural monitoring in rural Philippines.
  •  Designing a low-cost and sustainable aquaponics system for urban agriculture.
  •  Investigating the potential of vertical farming to address food security in densely populated urban areas.
  •  Developing a disaster-resilient housing prototype suitable for typhoon-prone regions.

Experimental Quantitative Research Topics for STEM Students:

Experimental quantitative research involves the collection and analysis of numerical data to conclude. Here are 10 Experimental Quantitative Research Topics For STEM Students interested in experimental quantitative research:

  •  Examining the impact of different fertilizers on crop yield in agriculture.
  •  Investigating the relationship between exercise and heart rate among different age groups.
  •  Analyzing the effect of varying light intensities on photosynthesis in plants.
  •  Studying the efficiency of various insulation materials in reducing building heat loss.
  •  Investigating the relationship between pH levels and the rate of corrosion in metals.
  •  Analyzing the impact of different concentrations of pollutants on aquatic ecosystems.
  •  Examining the effectiveness of different antibiotics on bacterial growth.
  •  Trying to figure out how temperature affects how thick liquids are.
  •  Finding out if there is a link between the amount of pollution in the air and lung illnesses in cities.
  •  Analyzing the efficiency of solar panels in converting sunlight into electricity under varying conditions.

Descriptive Research Topics for STEM Students

Descriptive research aims to provide a detailed account or description of a phenomenon. Here are 10 topics for STEM students interested in descriptive research:

  •  Describing the physical characteristics and behavior of a newly discovered species of marine life.
  •  Documenting the geological features and formations of a particular region.
  •  Creating a detailed inventory of plant species in a specific ecosystem.
  •  Describing the properties and behavior of a new synthetic polymer.
  •  Documenting the daily weather patterns and climate trends in a particular area.
  •  Providing a comprehensive analysis of the energy consumption patterns in a city.
  •  Describing the structural components and functions of a newly developed medical device.
  •  Documenting the characteristics and usage of traditional construction materials in a region.
  •  Providing a detailed account of the microbiome in a specific environmental niche.
  •  Describing the life cycle and behavior of a rare insect species.

Research Topics for STEM Students in the Pandemic:

The COVID-19 pandemic has raised many research opportunities for STEM students. Here are 10 research topics related to pandemics:

  •  Analyzing the effectiveness of various personal protective equipment (PPE) in preventing the spread of respiratory viruses.
  •  Studying the impact of lockdown measures on air quality and pollution levels in urban areas.
  •  Investigating the psychological effects of quarantine and social isolation on mental health.
  •  Analyzing the genomic variation of the SARS-CoV-2 virus and its implications for vaccine development.
  •  Studying the efficacy of different disinfection methods on various surfaces.
  •  Investigating the role of contact tracing apps in tracking & controlling the spread of infectious diseases.
  •  Analyzing the economic impact of the pandemic on different industries and sectors.
  •  Studying the effectiveness of remote learning in STEM education during lockdowns.
  •  Investigating the social disparities in healthcare access during a pandemic.
  • Analyzing the ethical considerations surrounding vaccine distribution and prioritization.

Research Topics for STEM Students Middle School

Research topics for middle school STEM students should be engaging and suitable for their age group. Here are 10 research topics:

  • Investigating the growth patterns of different types of mold on various food items.
  • Studying the negative effects of music on plant growth and development.
  • Analyzing the relationship between the shape of a paper airplane and its flight distance.
  • Investigating the properties of different materials in making effective insulators for hot and cold beverages.
  • Studying the effect of salt on the buoyancy of different objects in water.
  • Analyzing the behavior of magnets when exposed to different temperatures.
  • Investigating the factors that affect the rate of ice melting in different environments.
  • Studying the impact of color on the absorption of heat by various surfaces.
  • Analyzing the growth of crystals in different types of solutions.
  • Investigating the effectiveness of different natural repellents against common pests like mosquitoes.

Technology Research Topics for STEM Students

Technology is at the forefront of STEM fields. Here are 10 research topics for STEM students interested in technology:

  • Developing and optimizing algorithms for autonomous drone navigation in complex environments.
  • Exploring the use of blockchain technology for enhancing the security and transparency of supply chains.
  • Investigating the applications of virtual reality (VR) and augmented reality (AR) in medical training and surgery simulations.
  • Studying the potential of 3D printing for creating personalized prosthetics and orthopedic implants.
  • Analyzing the ethical and privacy implications of facial recognition technology in public spaces.
  • Investigating the development of quantum computing algorithms for solving complex optimization problems.
  • Explaining the use of machine learning and AI in predicting and mitigating the impact of natural disasters.
  • Studying the advancement of brain-computer interfaces for assisting individuals with
  • disabilities.
  • Analyzing the role of wearable technology in monitoring and improving personal health and wellness.
  • Investigating the use of robotics in disaster response and search and rescue operations.

Scientific Research Topics for STEM Students

Scientific research encompasses a wide range of topics. Here are 10 research topics for STEM students focusing on scientific exploration:

  • Investigating the behavior of subatomic particles in high-energy particle accelerators.
  • Studying the ecological impact of invasive species on native ecosystems.
  • Analyzing the genetics of antibiotic resistance in bacteria and its implications for healthcare.
  • Exploring the physics of gravitational waves and their detection through advanced interferometry.
  • Investigating the neurobiology of memory formation and retention in the human brain.
  • Studying the biodiversity and adaptation of extremophiles in harsh environments.
  • Analyzing the chemistry of deep-sea hydrothermal vents and their potential for life beyond Earth.
  • Exploring the properties of superconductors and their applications in technology.
  • Investigating the mechanisms of stem cell differentiation for regenerative medicine.
  • Studying the dynamics of climate change and its impact on global ecosystems.

Interesting Research Topics for STEM Students:

Engaging and intriguing research topics can foster a passion for STEM. Here are 10 interesting research topics for STEM students:

  • Exploring the science behind the formation of auroras and their cultural significance.
  • Investigating the mysteries of dark matter and dark energy in the universe.
  • Studying the psychology of decision-making in high-pressure situations, such as sports or
  • emergencies.
  • Analyzing the impact of social media on interpersonal relationships and mental health.
  • Exploring the potential for using genetic modification to create disease-resistant crops.
  • Investigating the cognitive processes involved in solving complex puzzles and riddles.
  • Studying the history and evolution of cryptography and encryption methods.
  • Analyzing the physics of time travel and its theoretical possibilities.
  • Exploring the role of Artificial Intelligence  in creating art and music.
  • Investigating the science of happiness and well-being, including factors contributing to life satisfaction.

Practical Research Topics for STEM Students

Practical research often leads to real-world solutions. Here are 10 practical research topics for STEM students:

  • Developing an affordable and sustainable water purification system for rural communities.
  • Designing a low-cost, energy-efficient home heating and cooling system.
  • Investigating strategies for reducing food waste in the supply chain and households.
  • Studying the effectiveness of eco-friendly pest control methods in agriculture.
  • Analyzing the impact of renewable energy integration on the stability of power grids.
  • Developing a smartphone app for early detection of common medical conditions.
  • Investigating the feasibility of vertical farming for urban food production.
  • Designing a system for recycling and upcycling electronic waste.
  • Studying the environmental benefits of green roofs and their potential for urban heat island mitigation.
  • Analyzing the efficiency of alternative transportation methods in reducing carbon emissions.

Experimental Research Topics for STEM Students About Plants

Plants offer a rich field for experimental research. Here are 10 experimental research topics about plants for STEM students:

  • Investigating the effect of different light wavelengths on plant growth and photosynthesis.
  • Studying the impact of various fertilizers and nutrient solutions on crop yield.
  • Analyzing the response of plants to different types and concentrations of plant hormones.
  • Investigating the role of mycorrhizal in enhancing nutrient uptake in plants.
  • Studying the effects of drought stress and water scarcity on plant physiology and adaptation mechanisms.
  • Analyzing the influence of soil pH on plant nutrient availability and growth.
  • Investigating the chemical signaling and defense mechanisms of plants against herbivores.
  • Studying the impact of environmental pollutants on plant health and genetic diversity.
  • Analyzing the role of plant secondary metabolites in pharmaceutical and agricultural applications.
  • Investigating the interactions between plants and beneficial microorganisms in the rhizosphere.

Qualitative Research Topics for STEM Students in the Philippines

Qualitative research in the Philippines can address local issues and cultural contexts. Here are 10 qualitative research topics for STEM students in the Philippines:

  • Exploring indigenous knowledge and practices in sustainable agriculture in Filipino communities.
  • Studying the perceptions and experiences of Filipino fishermen in coping with climate change impacts.
  • Analyzing the cultural significance and traditional uses of medicinal plants in indigenous Filipino communities.
  • Investigating the barriers and facilitators of STEM education access in remote Philippine islands.
  • Exploring the role of traditional Filipino architecture in natural disaster resilience.
  • Studying the impact of indigenous farming methods on soil conservation and fertility.
  • Analyzing the cultural and environmental significance of mangroves in coastal Filipino regions.
  • Investigating the knowledge and practices of Filipino healers in treating common ailments.
  • Exploring the cultural heritage and conservation efforts of the Ifugao rice terraces.
  • Studying the perceptions and practices of Filipino communities in preserving marine biodiversity.

Science Research Topics for STEM Students

Science offers a diverse range of research avenues. Here are 10 science research topics for STEM students:

  • Investigating the potential of gene editing techniques like CRISPR-Cas9 in curing genetic diseases.
  • Studying the ecological impacts of species reintroduction programs on local ecosystems.
  • Analyzing the effects of microplastic pollution on aquatic food webs and ecosystems.
  • Investigating the link between air pollution and respiratory health in urban populations.
  • Studying the role of epigenetics in the inheritance of acquired traits in organisms.
  • Analyzing the physiology and adaptations of extremophiles in extreme environments on Earth.
  • Investigating the genetics of longevity and factors influencing human lifespan.
  • Studying the behavioral ecology and communication strategies of social insects.
  • Analyzing the effects of deforestation on global climate patterns and biodiversity loss.
  • Investigating the potential of synthetic biology in creating bioengineered organisms for beneficial applications.

Correlational Research Topics for STEM Students

Correlational research focuses on relationships between variables. Here are 10 correlational research topics for STEM students:

  • Analyzing the correlation between dietary habits and the incidence of chronic diseases.
  • Studying the relationship between exercise frequency and mental health outcomes.
  • Investigating the correlation between socioeconomic status and access to quality healthcare.
  • Analyzing the link between social media usage and self-esteem in adolescents.
  • Studying the correlation between academic performance and sleep duration among students.
  • Investigating the relationship between environmental factors and the prevalence of allergies.
  • Analyzing the correlation between technology use and attention span in children.
  • Studying how environmental factors are related to the frequency of allergies.
  • Investigating the link between parental involvement in education and student achievement.
  • Analyzing the correlation between temperature fluctuations and wildlife migration patterns.

Quantitative Research Topics for STEM Students in the Philippines

Quantitative research in the Philippines can address specific regional issues. Here are 10 quantitative research topics for STEM students in the Philippines

  • Analyzing the impact of typhoons on coastal erosion rates in the Philippines.
  • Studying the quantitative effects of land use change on watershed hydrology in Filipino regions.
  • Investigating the quantitative relationship between deforestation and habitat loss for endangered species.
  • Analyzing the quantitative patterns of marine biodiversity in Philippine coral reef ecosystems.
  • Studying the quantitative assessment of water quality in major Philippine rivers and lakes.
  • Investigating the quantitative analysis of renewable energy potential in specific Philippine provinces.
  • Analyzing the quantitative impacts of agricultural practices on soil health and fertility.
  • Studying the quantitative effectiveness of mangrove restoration in coastal protection in the Philippines.
  • Investigating the quantitative evaluation of indigenous agricultural practices for sustainability.
  • Analyzing the quantitative patterns of air pollution and its health impacts in urban Filipino areas.

Things That Must Keep In Mind While Writing Quantitative Research Title 

Here are few things that must be keep in mind while writing quantitative research tile:

1. Be Clear and Precise

Make sure your research title is clear and says exactly what your study is about. People should easily understand the topic and goals of your research by reading the title.

2. Use Important Words

Include words that are crucial to your research, like the main subjects, who you’re studying, and how you’re doing your research. This helps others find your work and understand what it’s about.

3. Avoid Confusing Words

Stay away from words that might confuse people. Your title should be easy to grasp, even if someone isn’t an expert in your field.

4. Show Your Research Approach

Tell readers what kind of research you did, like experiments or surveys. This gives them a hint about how you conducted your study.

5. Match Your Title with Your Research Questions

Make sure your title matches the questions you’re trying to answer in your research. It should give a sneak peek into what your study is all about and keep you on the right track as you work on it.

STEM students, addressing what STEM is and why research matters in this field. It offered an extensive list of research topics , including experimental, qualitative, and regional options, catering to various academic levels and interests. Whether you’re a middle school student or pursuing advanced studies, these topics offer a wealth of ideas. The key takeaway is to choose a topic that resonates with your passion and aligns with your goals, ensuring a successful journey in STEM research. Choose the best Experimental Quantitative Research Topics For Stem Students today!

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

logo

Top 127+ Great Quantitative Research Topics For STEM Students

Are you a STEM enthusiast eager to dive into quantitative research but uncertain about the best topics to explore? Look no further! In this comprehensive guide, we’ll navigate through the top 27+ Quantitative Research Topics for STEM Students. 

There are we give the best topics for future scientists, engineers, and math whizzes! Are you curious about diving into the fantastic world of quantitative research? Well, you’re in for an exciting way! Today, we’re going to explore some super cool Quantitative Research Topics for STEM Students like you. But first, what’s all this talk about “quantitative research”? Don’t worry; it’s not as tricky as it sounds!

Quantitative research simply means using numbers and data to study things. For example, solving a math problem or conducting a science experiment where you count, measure, or analyze stuff to learn more. Cool, right? Now, let’s talk about STEM. No, not the plant stem, but STEM subjects – Science, Technology, Engineering, and Mathematics. These subjects are like the crucial part of knowledge!

So, here’s the exciting part! We’ve got a bunch of fascinating topics lined up for you to explore in these STEM fields using numbers, stats, and math. From studying how robots help doctors predict climate change to finding ways to make renewable energy work better in cities, these topics will make your brain more creative!

Also Like To Know: Sk Project Ideas

Table of Contents

What Is Experimental Quantitative Research Topics For STEM Students

Experimental quantitative research topics for STEM students involve conducting investigations using numbers and measurements to find answers to questions related to science, technology, engineering, and mathematics. These topics help students gather data through controlled experiments and use mathematical analysis to understand how things work or solve problems in subjects like biology, physics, chemistry, or mathematics. For example, they might explore topics like testing how different temperatures affect plant growth or analyzing the relationship between force and motion using simple experiments and numbers.

How Do You Identify A Quantitative Research Title?

Here are 7 easy steps to identify a quantitative research title:

  • Define Your Research Area: Start by identifying the general subject or field you want to study. For instance, it could be related to science, education, psychology, etc.
  • Focus on a Specific Topic: Narrow down your field of interest to a specific area or problem. For example, if you’re interested in psychology, you might want to focus on the effects of social media on teenagers’ mental health.
  • Identify Variables: Determine the variables or factors you want to measure or investigate. In quantitative research, these are typically measurable quantities or numerical data.
  • Formulate a Research Question: Develop a clear and concise research question that reflects what you want to study. Ensure it is specific and can be addressed using quantitative methods.
  • Consider the Population or Sample: Determine the population you want to study or the sample you’ll collect data from. This helps in shaping the scope of your research.
  • Quantifiable Outcome: Ensure that the research title suggests an outcome that can be measured numerically. Quantitative research aims to gather numerical data and analyze it statistically.
  • Review and Refine: After formulating a tentative title, review it to ensure it aligns with the research objectives, is clear and concise, and accurately reflects the focus of your study. Make any necessary refinements to improve clarity and precision.

List of Best 127+ Great Quantitative Research Topics For STEM Students

Here are the 127+ Great Quantitative Research Topics For STEM Students:

Best Mathematics Quantitative Research Topics For STEM Students

  • Applications of Machine Learning in Mathematical Problem Solving
  • Chaos Theory and Its Applications in Nonlinear Systems
  • Algorithmic Trading Strategies and Mathematical Modeling
  • Data Compression Techniques: Efficiency and Accuracy Trade-offs
  • Exploring Applications of Topological Data Analysis
  • Analyzing Random Matrix Theory in Statistical Physics
  • Mathematical Models for Climate Change Predictions
  • Analyzing Cryptocurrency Trends Using Mathematical Models
  • Investigating Mathematical Models for Social Networks
  • Studying Mathematical Foundations of Quantum Computing

Easy Quantitative Research Topics For STEM Students In Physics

  • Quantum Entanglement and Its Applications in Communication
  • Plasma Physics: Understanding Fusion Reactors
  • Superconductivity and Its Practical Applications
  • Statistical Mechanics in Complex Systems
  • Applications of String Theory in Cosmology
  • Gravitational Wave Detection and Interpretation
  • Quantum Field Theory and Particle Interactions
  • Quantum Computing: Designing Error-Correcting Codes
  • Analyzing Exoplanet Data Using Astrophysical Models
  • Studying Black Hole Physics and Information Paradox
  • Computational Chemistry for Drug Design and Discovery
  • Quantum Chemistry: Exploring Molecular Properties
  • Applications of Nanomaterials in Renewable Energy
  • Analyzing Chemical Reaction Kinetics
  • Environmental Impact Assessment of Chemical Pollutants
  • Polymer Chemistry: Designing Advanced Materials
  • Studying Catalysis and Surface Chemistry
  • Exploring Electrochemical Energy Storage Systems
  • Bioinorganic Chemistry: Metalloprotein Modeling
  • Investigating Supramolecular Chemistry for Functional Materials

Biology Quantitative Research Topics For STEM Students

  • Systems Biology: Modeling Cellular Signaling Networks
  • Computational Neuroscience: Brain Network Analysis
  • Population Genetics and Evolutionary Dynamics
  • Mathematical Modeling of Infectious Diseases
  • Studying Protein Folding Using Computational Methods
  • Ecological Niche Modeling for Biodiversity Conservation
  • Quantitative Analysis of Gene Regulatory Networks
  • Metagenomics: Analyzing Microbial Communities
  • Bioinformatics Applications in Personalized Medicine
  • Integrative Biology: Understanding Multi-Omics Data

Engineering

  • Robotics and Autonomous Systems: Motion Planning Algorithms
  • Finite Element Analysis for Structural Engineering
  • Machine Learning in Image Processing and Computer Vision
  • Control Systems Engineering in Autonomous Vehicles
  • Renewable Energy Grid Integration and Optimization
  • Optimization of Transportation Networks
  • Analyzing Fluid Dynamics in Aerospace Engineering
  • Materials Science: Quantum Mechanics in Materials Design
  • Sustainable Infrastructure Planning and Design
  • Cyber-Physical Systems: Security and Resilience

Computer Science Quantitative Research Topics For STEM Students

  • Big Data Analytics: Scalable Algorithms for Data Processing
  • Natural Language Processing for Sentiment Analysis
  • Blockchain Technology: Security and Consensus Algorithms
  • Quantum Computing Algorithms and Complexity
  • Developing Explainable AI Models for Decision Support
  • Privacy-Preserving Techniques in Data Mining
  • Network Security: Intrusion Detection Systems
  • Cloud Computing: Resource Allocation and Optimization
  • Human-Robot Interaction and Collaboration
  • Advancements in Quantum Cryptography Protocols

Earth and Environmental Sciences

  • Climate Modeling: Predicting Regional Climate Changes
  • Geographical Information Systems (GIS) in Environmental Analysis
  • Hydrology and Water Resource Management Modeling
  • Remote Sensing: Image Analysis for Environmental Monitoring
  • Seismology: Studying Earthquake Patterns Using Data Analysis
  • Oceanography: Analyzing Ocean Currents and Climate Impacts
  • Environmental Impact Assessment of Renewable Energy Projects
  • Soil Science: Quantifying Soil Erosion and Nutrient Dynamics
  • Air Quality Modeling and Pollution Analysis
  • Ecosystem Services Valuation Using Quantitative Methods

Agriculture and Food Sciences

  • Precision Agriculture: Using Data Analytics for Crop Management
  • Genetics and Genomics in Crop Improvement Strategies
  • Quantitative Analysis of Food Supply Chains
  • Agricultural Policy Analysis and Economic Modeling
  • Nutritional Analysis Using Quantitative Methods
  • Modeling Pesticide Use and Environmental Impact
  • Aquaculture: Optimization of Fish Farming Practices
  • Soil Fertility Modeling and Nutrient Management
  • Food Safety Assessment Using Quantitative Techniques
  • Sustainable Agriculture: Systems Modeling and Optimization

Health Sciences and Medicine: quantitative research topics in nursing

  • Epidemiology: Modeling Disease Transmission Dynamics
  • Healthcare Analytics: Predictive Modeling for Patient Outcomes
  • Pharmacokinetics and Drug Dosage Optimization
  • Health Informatics: Quantitative Analysis of Electronic Health Records
  • Medical Imaging Analysis Using Quantitative Techniques
  • Health Economics: Cost-Benefit Analysis of Healthcare Policies
  • Genomic Medicine: Analyzing Genetic Data for Disease Risk Prediction
  • Public Health Policy Evaluation Using Quantitative Methods
  • Biostatistics: Designing Clinical Trials and Statistical Analysis
  • Computational Anatomy for Disease Diagnosis and Treatment

Psychology and Social Sciences

  • Quantitative Analysis of Social Network Dynamics
  • Behavioral Economics: Decision-Making Models
  • Psychometrics: Measurement Models in Psychological Testing
  • Quantitative Study of Human Cognition and Memory
  • Social Media Analytics: Sentiment Analysis and Trends
  • Sociology: Modeling Social Movements and Cultural Dynamics
  • Educational Data Mining and Learning Analytics
  • Quantitative Research in Political Science and Policy Analysis
  • Consumer Behavior Analysis Using Quantitative Methods
  • Quantitative Approaches to Studying Emotion and Personality

Astronomy and Astrophysics

  • Cosmic Microwave Background Radiation: Analyzing Anisotropies
  • Time-domain Astronomy: Statistical Analysis of Variable Stars
  • Gravitational Lensing: Quantifying Distortions in Cosmic Images
  • Stellar Evolution Modeling and Simulations
  • Exoplanet Atmosphere Characterization Using Quantitative Methods
  • Galaxy Formation and Evolution: Statistical Approaches
  • Multimessenger Astronomy: Data Fusion Techniques
  • Dark Matter and Dark Energy: Analyzing Cosmological Models
  • Astrophysical Jets: Modeling High-Energy Particle Emissions
  • Supernova Studies: Quantitative Analysis of Stellar Explosions

Linguistics and Language Sciences

  • Computational Linguistics: Natural Language Generation Models
  • Phonetics and Speech Analysis Using Quantitative Techniques
  • Sociolinguistics: Statistical Analysis of Dialect Variation
  • Syntax and Grammar Modeling in Linguistic Theory
  • Quantitative Study of Language Acquisition in Children
  • Corpus Linguistics: Quantifying Textual Data
  • Language Typology and Universals: Cross-Linguistic Analysis
  • Psycholinguistics: Quantitative Study of Language Processing
  • Machine Translation: Improving Accuracy and Efficiency
  • Quantitative Approaches to Historical Linguistics

Business and Economics: quantitative research topics in education

  • Financial Risk Management: Quantitative Modeling of Risks
  • Econometrics: Statistical Methods in Economic Analysis
  • Marketing Analytics: Consumer Behavior Modeling
  • Quantitative Analysis of Macroeconomic Policies
  • Operations Research: Optimization in Supply Chain Management
  • Quantitative Methods in Corporate Finance
  • Labor Economics: Analyzing Employment Trends Using Data
  • Economic Impact Assessment of Policy Interventions
  • Quantitative Analysis of Market Dynamics and Competition
  • Behavioral Finance: Quantifying Psychological Aspects in Financial Decision-Making

Education and Pedagogy

  • Educational Data Mining for Adaptive Learning Systems
  • Quantitative Analysis of Learning Outcomes and Student Performance
  • Technology Integration in Education: Assessing Efficacy
  • Assessment and Evaluation Models in Educational Research
  • Quantitative Study of Teacher Effectiveness and Practices
  • Cognitive Load Theory: Quantifying Learning Processes
  • Educational Psychology: Quantitative Analysis of Motivation
  • Online Education: Analytics for Engagement and Success
  • Curriculum Development: Quantitative Approaches to Design
  • Educational Policy Analysis Using Quantitative Methods

Communication and Media Studies

  • Media Effects Research: Quantitative Analysis of Influence
  • Computational Journalism: Data-driven Storytelling
  • Social Media Influence Metrics and Analysis
  • Quantitative Study of Public Opinion and Opinion Formation
  • Media Content Analysis Using Statistical Methods
  • Communication Network Analysis: Quantifying Connections
  • Quantitative Approaches to Media Bias Assessment
  • Entertainment Analytics: Audience Behavior Modeling
  • Digital Media Consumption Patterns: Statistical Analysis
  • Crisis Communication: Quantitative Assessment of Responses

quantitative research topics for accounting students in the Philippines

Here are ten quantitative research topics suitable for accounting students in the Philippines:

  • “Impact of Tax Reforms on Small and Medium Enterprises (SMEs) in the Philippines: A Quantitative Analysis”
  • “Financial Performance Evaluation of Philippine Banks: A Comparative Study Using Ratios and Metrics”
  • “Effectiveness of Internal Control Systems in Mitigating Fraud: A Quantitative Assessment in Philippine Organizations”
  • “Analysis of Corporate Governance Practices and Financial Performance: Evidence from Philippine Listed Companies”
  • “Determinants of Audit Quality: A Quantitative Study of Auditing Practices in the Philippines”
  • “The Role of Accounting Information Systems in Enhancing Organizational Efficiency: A Quantitative Investigation”
  • “Factors Influencing Financial Reporting Quality in the Philippines: A Quantitative Approach”
  • “Assessing the Impact of International Financial Reporting Standards (IFRS) Adoption on Philippine Firms”
  • “Analysis of Factors Affecting Financial Literacy among Filipino College Students: A Quantitative Study”
  • “Cash Flow Management Practices and Financial Sustainability of SMEs in the Philippines: A Quantitative Analysis”

What are the 10 examples of research titles in school quantitative?

Here are ten examples of quantitative research titles suitable for school-related studies:

  • “Impact of Technology Integration on Academic Performance: A Quantitative Analysis”
  • “Effects of Classroom Size on Student Learning Outcomes: A Quantitative Study”
  • “Parental Involvement and Student Achievement: A Quantitative Investigation”
  • “Assessing the Efficacy of Different Teaching Methods in Mathematics Education”
  • “Correlation between Student Engagement and Standardized Test Scores”
  • “Bullying in Schools: Quantitative Analysis of Prevalence and Impact on Academic Performance”
  • “Examining the Relationship between Socioeconomic Status and Reading Proficiency”
  • “Effectiveness of School Counseling Programs on Student Mental Health: A Quantitative Approach”
  • “Analyzing the Impact of Extracurricular Activities on Student Success Metrics”
  • “Evaluation of a New Grading System: Quantitative Comparison with Traditional Grading Scales”

Best experimental quantitative research topics for stem students in the Philippines

The following are the best quantitative research topics for stem students:

Biology Quantitative Research Topics

In the realm of Biology, quantitative research delves into the numerical aspects of living organisms, ecosystems, and genetics, aiding in understanding diverse biological phenomena.

Chemistry Quantitative Research Topics

Chemistry’s quantitative research explores numerical relationships within chemical reactions, material properties, and various compounds, offering insights into chemical phenomena through measurable data.

Physics Quantitative Research Topics

In Physics, quantitative research scrutinizes measurable physical quantities and their interactions, exploring fundamental principles and phenomena of the natural world.

Mathematics Quantitative Research Topics

Mathematics, in its quantitative research, investigates numerical patterns, structures, and mathematical theories, exploring the quantifiable aspects of various mathematical concepts.

We’ve explored the wonders of using numbers, data, and math to unravel the mysteries of science, technology, engineering, and mathematics. Quantitative research isn’t about mind-boggling formulas or complex theories. It’s about using simple math and statistics to understand the world around us. Whether it’s predicting the impact of climate change, exploring how robots aid healthcare, or figuring out ways to make our cities greener, each topic we’ve discussed holds the potential for groundbreaking discoveries.

Now, as you continue your academic journey, keep this curiosity alive. Embrace the joy of asking questions, experimenting, and exploring. Your passion for STEM subjects can lead to amazing things – from inventing new technologies to finding solutions for global challenges.

So, what’s next for you? Pick a topic that excites you, dive into the world of quantitative research, and let your imagination soar! Who knows, maybe you’ll be the one to discover something incredible that changes the world.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Grad Coach

Research Topics & Ideas: Education

170+ Research Ideas To Fast-Track Your Project

Topic Kickstarter: Research topics in education

If you’re just starting out exploring education-related topics for your dissertation, thesis or research project, you’ve come to the right place. In this post, we’ll help kickstart your research topic ideation process by providing a hearty list of research topics and ideas , including examples from actual dissertations and theses..

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . To develop a suitable education-related research topic, you’ll need to identify a clear and convincing research gap , and a viable plan of action to fill that gap.

If this sounds foreign to you, check out our free research topic webinar that explores how to find and refine a high-quality research topic, from scratch. Alternatively, if you’d like hands-on help, consider our 1-on-1 coaching service .

Overview: Education Research Topics

  • How to find a research topic (video)
  • List of 50+ education-related research topics/ideas
  • List of 120+ level-specific research topics 
  • Examples of actual dissertation topics in education
  • Tips to fast-track your topic ideation (video)
  • Free Webinar : Topic Ideation 101
  • Where to get extra help

Education-Related Research Topics & Ideas

Below you’ll find a list of education-related research topics and idea kickstarters. These are fairly broad and flexible to various contexts, so keep in mind that you will need to refine them a little. Nevertheless, they should inspire some ideas for your project.

  • The impact of school funding on student achievement
  • The effects of social and emotional learning on student well-being
  • The effects of parental involvement on student behaviour
  • The impact of teacher training on student learning
  • The impact of classroom design on student learning
  • The impact of poverty on education
  • The use of student data to inform instruction
  • The role of parental involvement in education
  • The effects of mindfulness practices in the classroom
  • The use of technology in the classroom
  • The role of critical thinking in education
  • The use of formative and summative assessments in the classroom
  • The use of differentiated instruction in the classroom
  • The use of gamification in education
  • The effects of teacher burnout on student learning
  • The impact of school leadership on student achievement
  • The effects of teacher diversity on student outcomes
  • The role of teacher collaboration in improving student outcomes
  • The implementation of blended and online learning
  • The effects of teacher accountability on student achievement
  • The effects of standardized testing on student learning
  • The effects of classroom management on student behaviour
  • The effects of school culture on student achievement
  • The use of student-centred learning in the classroom
  • The impact of teacher-student relationships on student outcomes
  • The achievement gap in minority and low-income students
  • The use of culturally responsive teaching in the classroom
  • The impact of teacher professional development on student learning
  • The use of project-based learning in the classroom
  • The effects of teacher expectations on student achievement
  • The use of adaptive learning technology in the classroom
  • The impact of teacher turnover on student learning
  • The effects of teacher recruitment and retention on student learning
  • The impact of early childhood education on later academic success
  • The impact of parental involvement on student engagement
  • The use of positive reinforcement in education
  • The impact of school climate on student engagement
  • The role of STEM education in preparing students for the workforce
  • The effects of school choice on student achievement
  • The use of technology in the form of online tutoring

Level-Specific Research Topics

Looking for research topics for a specific level of education? We’ve got you covered. Below you can find research topic ideas for primary, secondary and tertiary-level education contexts. Click the relevant level to view the respective list.

Research Topics: Pick An Education Level

Primary education.

  • Investigating the effects of peer tutoring on academic achievement in primary school
  • Exploring the benefits of mindfulness practices in primary school classrooms
  • Examining the effects of different teaching strategies on primary school students’ problem-solving skills
  • The use of storytelling as a teaching strategy in primary school literacy instruction
  • The role of cultural diversity in promoting tolerance and understanding in primary schools
  • The impact of character education programs on moral development in primary school students
  • Investigating the use of technology in enhancing primary school mathematics education
  • The impact of inclusive curriculum on promoting equity and diversity in primary schools
  • The impact of outdoor education programs on environmental awareness in primary school students
  • The influence of school climate on student motivation and engagement in primary schools
  • Investigating the effects of early literacy interventions on reading comprehension in primary school students
  • The impact of parental involvement in school decision-making processes on student achievement in primary schools
  • Exploring the benefits of inclusive education for students with special needs in primary schools
  • Investigating the effects of teacher-student feedback on academic motivation in primary schools
  • The role of technology in developing digital literacy skills in primary school students
  • Effective strategies for fostering a growth mindset in primary school students
  • Investigating the role of parental support in reducing academic stress in primary school children
  • The role of arts education in fostering creativity and self-expression in primary school students
  • Examining the effects of early childhood education programs on primary school readiness
  • Examining the effects of homework on primary school students’ academic performance
  • The role of formative assessment in improving learning outcomes in primary school classrooms
  • The impact of teacher-student relationships on academic outcomes in primary school
  • Investigating the effects of classroom environment on student behavior and learning outcomes in primary schools
  • Investigating the role of creativity and imagination in primary school curriculum
  • The impact of nutrition and healthy eating programs on academic performance in primary schools
  • The impact of social-emotional learning programs on primary school students’ well-being and academic performance
  • The role of parental involvement in academic achievement of primary school children
  • Examining the effects of classroom management strategies on student behavior in primary school
  • The role of school leadership in creating a positive school climate Exploring the benefits of bilingual education in primary schools
  • The effectiveness of project-based learning in developing critical thinking skills in primary school students
  • The role of inquiry-based learning in fostering curiosity and critical thinking in primary school students
  • The effects of class size on student engagement and achievement in primary schools
  • Investigating the effects of recess and physical activity breaks on attention and learning in primary school
  • Exploring the benefits of outdoor play in developing gross motor skills in primary school children
  • The effects of educational field trips on knowledge retention in primary school students
  • Examining the effects of inclusive classroom practices on students’ attitudes towards diversity in primary schools
  • The impact of parental involvement in homework on primary school students’ academic achievement
  • Investigating the effectiveness of different assessment methods in primary school classrooms
  • The influence of physical activity and exercise on cognitive development in primary school children
  • Exploring the benefits of cooperative learning in promoting social skills in primary school students

Secondary Education

  • Investigating the effects of school discipline policies on student behavior and academic success in secondary education
  • The role of social media in enhancing communication and collaboration among secondary school students
  • The impact of school leadership on teacher effectiveness and student outcomes in secondary schools
  • Investigating the effects of technology integration on teaching and learning in secondary education
  • Exploring the benefits of interdisciplinary instruction in promoting critical thinking skills in secondary schools
  • The impact of arts education on creativity and self-expression in secondary school students
  • The effectiveness of flipped classrooms in promoting student learning in secondary education
  • The role of career guidance programs in preparing secondary school students for future employment
  • Investigating the effects of student-centered learning approaches on student autonomy and academic success in secondary schools
  • The impact of socio-economic factors on educational attainment in secondary education
  • Investigating the impact of project-based learning on student engagement and academic achievement in secondary schools
  • Investigating the effects of multicultural education on cultural understanding and tolerance in secondary schools
  • The influence of standardized testing on teaching practices and student learning in secondary education
  • Investigating the effects of classroom management strategies on student behavior and academic engagement in secondary education
  • The influence of teacher professional development on instructional practices and student outcomes in secondary schools
  • The role of extracurricular activities in promoting holistic development and well-roundedness in secondary school students
  • Investigating the effects of blended learning models on student engagement and achievement in secondary education
  • The role of physical education in promoting physical health and well-being among secondary school students
  • Investigating the effects of gender on academic achievement and career aspirations in secondary education
  • Exploring the benefits of multicultural literature in promoting cultural awareness and empathy among secondary school students
  • The impact of school counseling services on student mental health and well-being in secondary schools
  • Exploring the benefits of vocational education and training in preparing secondary school students for the workforce
  • The role of digital literacy in preparing secondary school students for the digital age
  • The influence of parental involvement on academic success and well-being of secondary school students
  • The impact of social-emotional learning programs on secondary school students’ well-being and academic success
  • The role of character education in fostering ethical and responsible behavior in secondary school students
  • Examining the effects of digital citizenship education on responsible and ethical technology use among secondary school students
  • The impact of parental involvement in school decision-making processes on student outcomes in secondary schools
  • The role of educational technology in promoting personalized learning experiences in secondary schools
  • The impact of inclusive education on the social and academic outcomes of students with disabilities in secondary schools
  • The influence of parental support on academic motivation and achievement in secondary education
  • The role of school climate in promoting positive behavior and well-being among secondary school students
  • Examining the effects of peer mentoring programs on academic achievement and social-emotional development in secondary schools
  • Examining the effects of teacher-student relationships on student motivation and achievement in secondary schools
  • Exploring the benefits of service-learning programs in promoting civic engagement among secondary school students
  • The impact of educational policies on educational equity and access in secondary education
  • Examining the effects of homework on academic achievement and student well-being in secondary education
  • Investigating the effects of different assessment methods on student performance in secondary schools
  • Examining the effects of single-sex education on academic performance and gender stereotypes in secondary schools
  • The role of mentoring programs in supporting the transition from secondary to post-secondary education

Tertiary Education

  • The role of student support services in promoting academic success and well-being in higher education
  • The impact of internationalization initiatives on students’ intercultural competence and global perspectives in tertiary education
  • Investigating the effects of active learning classrooms and learning spaces on student engagement and learning outcomes in tertiary education
  • Exploring the benefits of service-learning experiences in fostering civic engagement and social responsibility in higher education
  • The influence of learning communities and collaborative learning environments on student academic and social integration in higher education
  • Exploring the benefits of undergraduate research experiences in fostering critical thinking and scientific inquiry skills
  • Investigating the effects of academic advising and mentoring on student retention and degree completion in higher education
  • The role of student engagement and involvement in co-curricular activities on holistic student development in higher education
  • The impact of multicultural education on fostering cultural competence and diversity appreciation in higher education
  • The role of internships and work-integrated learning experiences in enhancing students’ employability and career outcomes
  • Examining the effects of assessment and feedback practices on student learning and academic achievement in tertiary education
  • The influence of faculty professional development on instructional practices and student outcomes in tertiary education
  • The influence of faculty-student relationships on student success and well-being in tertiary education
  • The impact of college transition programs on students’ academic and social adjustment to higher education
  • The impact of online learning platforms on student learning outcomes in higher education
  • The impact of financial aid and scholarships on access and persistence in higher education
  • The influence of student leadership and involvement in extracurricular activities on personal development and campus engagement
  • Exploring the benefits of competency-based education in developing job-specific skills in tertiary students
  • Examining the effects of flipped classroom models on student learning and retention in higher education
  • Exploring the benefits of online collaboration and virtual team projects in developing teamwork skills in tertiary students
  • Investigating the effects of diversity and inclusion initiatives on campus climate and student experiences in tertiary education
  • The influence of study abroad programs on intercultural competence and global perspectives of college students
  • Investigating the effects of peer mentoring and tutoring programs on student retention and academic performance in tertiary education
  • Investigating the effectiveness of active learning strategies in promoting student engagement and achievement in tertiary education
  • Investigating the effects of blended learning models and hybrid courses on student learning and satisfaction in higher education
  • The role of digital literacy and information literacy skills in supporting student success in the digital age
  • Investigating the effects of experiential learning opportunities on career readiness and employability of college students
  • The impact of e-portfolios on student reflection, self-assessment, and showcasing of learning in higher education
  • The role of technology in enhancing collaborative learning experiences in tertiary classrooms
  • The impact of research opportunities on undergraduate student engagement and pursuit of advanced degrees
  • Examining the effects of competency-based assessment on measuring student learning and achievement in tertiary education
  • Examining the effects of interdisciplinary programs and courses on critical thinking and problem-solving skills in college students
  • The role of inclusive education and accessibility in promoting equitable learning experiences for diverse student populations
  • The role of career counseling and guidance in supporting students’ career decision-making in tertiary education
  • The influence of faculty diversity and representation on student success and inclusive learning environments in higher education

Research topic idea mega list

Education-Related Dissertations & Theses

While the ideas we’ve presented above are a decent starting point for finding a research topic in education, they are fairly generic and non-specific. So, it helps to look at actual dissertations and theses in the education space to see how this all comes together in practice.

Below, we’ve included a selection of education-related research projects to help refine your thinking. These are actual dissertations and theses, written as part of Master’s and PhD-level programs, so they can provide some useful insight as to what a research topic looks like in practice.

  • From Rural to Urban: Education Conditions of Migrant Children in China (Wang, 2019)
  • Energy Renovation While Learning English: A Guidebook for Elementary ESL Teachers (Yang, 2019)
  • A Reanalyses of Intercorrelational Matrices of Visual and Verbal Learners’ Abilities, Cognitive Styles, and Learning Preferences (Fox, 2020)
  • A study of the elementary math program utilized by a mid-Missouri school district (Barabas, 2020)
  • Instructor formative assessment practices in virtual learning environments : a posthumanist sociomaterial perspective (Burcks, 2019)
  • Higher education students services: a qualitative study of two mid-size universities’ direct exchange programs (Kinde, 2020)
  • Exploring editorial leadership : a qualitative study of scholastic journalism advisers teaching leadership in Missouri secondary schools (Lewis, 2020)
  • Selling the virtual university: a multimodal discourse analysis of marketing for online learning (Ludwig, 2020)
  • Advocacy and accountability in school counselling: assessing the use of data as related to professional self-efficacy (Matthews, 2020)
  • The use of an application screening assessment as a predictor of teaching retention at a midwestern, K-12, public school district (Scarbrough, 2020)
  • Core values driving sustained elite performance cultures (Beiner, 2020)
  • Educative features of upper elementary Eureka math curriculum (Dwiggins, 2020)
  • How female principals nurture adult learning opportunities in successful high schools with challenging student demographics (Woodward, 2020)
  • The disproportionality of Black Males in Special Education: A Case Study Analysis of Educator Perceptions in a Southeastern Urban High School (McCrae, 2021)

As you can see, these research topics are a lot more focused than the generic topic ideas we presented earlier. So, in order for you to develop a high-quality research topic, you’ll need to get specific and laser-focused on a specific context with specific variables of interest.  In the video below, we explore some other important things you’ll need to consider when crafting your research topic.

Get 1-On-1 Help

If you’re still unsure about how to find a quality research topic within education, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic.

Research Topic Kickstarter - Need Help Finding A Research Topic?

You Might Also Like:

Research topics and ideas in psychology

54 Comments

Watson Kabwe

This is an helpful tool 🙏

Musarrat Parveen

Special education

Akbar khan

Really appreciated by this . It is the best platform for research related items

Trishna Roy

Research title related to school of students

Angel taña

Research title related to students

Ngirumuvugizi Jaccques

Good idea I’m going to teach my colleagues

Anangnerisia@gmail.com

You can find our list of nursing-related research topic ideas here: https://gradcoach.com/research-topics-nursing/

FOSU DORIS

Write on action research topic, using guidance and counseling to address unwanted teenage pregnancy in school

Samson ochuodho

Thanks a lot

Johaima

I learned a lot from this site, thank you so much!

Rhod Tuyan

Thank you for the information.. I would like to request a topic based on school major in social studies

Mercedes Bunsie

parental involvement and students academic performance

Abshir Mustafe Cali

Science education topics?

Karen Joy Andrade

How about School management and supervision pls.?

JOHANNES SERAME MONYATSI

Hi i am an Deputy Principal in a primary school. My wish is to srudy foe Master’s degree in Education.Please advice me on which topic can be relevant for me. Thanks.

NKWAIN Chia Charles

Every topic proposed above on primary education is a starting point for me. I appreciate immensely the team that has sat down to make a detail of these selected topics just for beginners like us. Be blessed.

Nkwain Chia Charles

Kindly help me with the research questions on the topic” Effects of workplace conflict on the employees’ job performance”. The effects can be applicable in every institution,enterprise or organisation.

Kelvin Kells Grant

Greetings, I am a student majoring in Sociology and minoring in Public Administration. I’m considering any recommended research topic in the field of Sociology.

Sulemana Alhassan

I’m a student pursuing Mphil in Basic education and I’m considering any recommended research proposal topic in my field of study

Kupoluyi Regina

Kindly help me with a research topic in educational psychology. Ph.D level. Thank you.

Project-based learning is a teaching/learning type,if well applied in a classroom setting will yield serious positive impact. What can a teacher do to implement this in a disadvantaged zone like “North West Region of Cameroon ( hinterland) where war has brought about prolonged and untold sufferings on the indegins?

Damaris Nzoka

I wish to get help on topics of research on educational administration

I wish to get help on topics of research on educational administration PhD level

Sadaf

I am also looking for such type of title

Afriyie Saviour

I am a student of undergraduate, doing research on how to use guidance and counseling to address unwanted teenage pregnancy in school

wysax

the topics are very good regarding research & education .

William AU Mill

Can i request your suggestion topic for my Thesis about Teachers as an OFW. thanx you

ChRISTINE

Would like to request for suggestions on a topic in Economics of education,PhD level

Would like to request for suggestions on a topic in Economics of education

George

Hi 👋 I request that you help me with a written research proposal about education the format

Sarah Moyambo

l would like to request suggestions on a topic in managing teaching and learning, PhD level (educational leadership and management)

request suggestions on a topic in managing teaching and learning, PhD level (educational leadership and management)

Ernest Gyabaah

I would to inquire on research topics on Educational psychology, Masters degree

Aron kirui

I am PhD student, I am searching my Research topic, It should be innovative,my area of interest is online education,use of technology in education

revathy a/p letchumanan

request suggestion on topic in masters in medical education .

D.Newlands PhD.

Look at British Library as they keep a copy of all PhDs in the UK Core.ac.uk to access Open University and 6 other university e-archives, pdf downloads mostly available, all free.

Monica

May I also ask for a topic based on mathematics education for college teaching, please?

Aman

Please I am a masters student of the department of Teacher Education, Faculty of Education Please I am in need of proposed project topics to help with my final year thesis

Ellyjoy

Am a PhD student in Educational Foundations would like a sociological topic. Thank

muhammad sani

please i need a proposed thesis project regardging computer science

also916

Greetings and Regards I am a doctoral student in the field of philosophy of education. I am looking for a new topic for my thesis. Because of my work in the elementary school, I am looking for a topic that is from the field of elementary education and is related to the philosophy of education.

shantel orox

Masters student in the field of curriculum, any ideas of a research topic on low achiever students

Rey

In the field of curriculum any ideas of a research topic on deconalization in contextualization of digital teaching and learning through in higher education

Omada Victoria Enyojo

Amazing guidelines

JAMES MALUKI MUTIA

I am a graduate with two masters. 1) Master of arts in religious studies and 2) Master in education in foundations of education. I intend to do a Ph.D. on my second master’s, however, I need to bring both masters together through my Ph.D. research. can I do something like, ” The contribution of Philosophy of education for a quality religion education in Kenya”? kindly, assist and be free to suggest a similar topic that will bring together the two masters. thanks in advance

betiel

Hi, I am an Early childhood trainer as well as a researcher, I need more support on this topic: The impact of early childhood education on later academic success.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

logo

60+ Best Quantitative Research Topics for STEM Students: Dive into Data

Embark on a captivating journey through the cosmos of knowledge with our curated guide on Quantitative Research Topics for STEM Students. Explore innovative ideas in science, technology, engineering, and mathematics, designed to ignite curiosity and shape the future.

Unleash the power of quantitative research and dive into uncharted territories that go beyond academics, fostering innovation and discovery.

Hey, you future scientists, tech wizards, engineering maestros, and math superheroes – gather ’round! We’re about to dive headfirst into the rad world of quantitative research topics, tailor-made for the rockstars of STEM.

In the crazy universe of science, technology, engineering, and math (STEM), quantitative research isn’t just a nerdy term—it’s your VIP pass to an interstellar adventure. Picture this: you’re strapping into a rocket ship, zooming through the cosmos, and decoding the universe’s coolest secrets, all while juggling numbers like a cosmic DJ.

But here’s the real scoop: finding the ultimate research topic is like picking the juiciest star in the galaxy. It’s about stumbling upon something so mind-blowing that you can’t resist plunging into the data. It’s about choosing questions that make your STEM-loving heart do the cha-cha.

In this guide, we’re not just your sidekicks; we’re your partners in crime through the vast jungle of quantitative research topics. Whether you’re a rookie gearing up for your first lab escapade or a seasoned explorer hunting for a new thrill, think of this article as your treasure map, guiding you to the coolest STEM discoveries.

From the teeny wonders of biology to the brain-bending puzzles of physics, the cutting-edge vibes of engineering, and the downright gorgeous dance of mathematics – we’ve got your back.

So, buckle up, fellow STEM enthusiasts! We’re setting sail on a cosmic adventure through the groovy galaxy of quantitative research topics. Get ready to unravel the secrets of science and tech, one sizzling digit at a time.

Stick around for a ride that’s part data, part disco, and all STEM swagger!

Table of Contents

Benefits of Choosing Quantitative Research

Embarking on the quantitative research journey is like stepping into a treasure trove of benefits across a spectrum of fields. Let’s dive into the exciting advantages that make choosing quantitative research a game-changer:

Numbers That Speak Louder

Quantitative research deals in cold, hard numbers. This means your data isn’t just informative; it’s objective, measurable, and has a voice of its own.

Statistical Swagger

Crunching numbers isn’t just for show. With quantitative research, statistical tools add a touch of pizzazz, boosting the validity of your findings and turning your study into a credible performance.

For the Masses

Quantitative research loves a crowd. Larger sample sizes mean your discoveries aren’t just for the lucky few – they’re for everyone. It’s the science of sharing the knowledge wealth.

Data Showdown

Ready for a duel between variables? Quantitative research sets the stage for epic battles, letting you compare, contrast, and uncover cause-and-effect relationships in the data arena.

Structured and Ready to Roll

Think of quantitative research like a well-organized party. It follows a structured plan, making replication a breeze. Because who doesn’t love a party that’s easy to recreate?

Data Efficiency Dance

Efficiency is the name of the game. Surveys, experiments, and structured observations make data collection a dance – choreographed, smooth, and oh-so-efficient.

Data Clarity FTW

No decoding needed here. Quantitative research delivers crystal-clear results. It’s like reading a good book without the need for interpretation – straightforward and to the point.

Spotting Trends Like a Pro

Ever wish you had a crystal ball for trends? Quantitative analysis is the next best thing. It’s like having a trend-spotting superpower, revealing patterns that might have otherwise stayed hidden.

Bias Be Gone

Quantitative research takes bias out of the equation. Systematic data collection and statistical wizardry reduce researcher bias, leaving you with results that are as unbiased as a judge at a talent show.

Key Components of a Quantitative Research Study

Launching into a quantitative research study is like embarking on a thrilling quest, and guess what? You’re the hero of this research adventure! Let’s unravel the exciting components that make your study a blockbuster:

Quest-Starter: Research Question or Hypothesis

It’s your “once upon a time.” Kick off your research journey with a bang by crafting a captivating research question or hypothesis. This is the spark that ignites your curiosity.

Backstory Bonanza: Literature Review

Think of it as your research Netflix binge. Dive into existing literature for the backstory. It’s not just research – it’s drama, plot twists, and the foundation for your epic tale.

Blueprint Brilliance: Research Design

Time to draw up the plans for your study castle. Choose your research design – is it a grand experiment or a cunning observational scheme? Your design is the architectural genius behind your research.

Casting Call: Population and Sample

Who’s in your star-studded lineup? Define your dream cast – your target population – and then handpick a sample that’s ready for the research red carpet.

Gear Up: Data Collection Methods

Choose your research tools wisely – surveys, experiments, or maybe a bit of detective work. Your methods are like the gadgets in a spy movie, helping you collect the data treasures.

The Numbers Game: Variables and Measures

What’s in the spotlight? Identify your main characters – independent and dependent variables. Then, sprinkle in some measures to add flair and precision to your study.

Magic Analysis Wand: Data Analysis Techniques

Enter the wizardry zone! Pick your magic wand – statistical methods, tests, or software – and watch as it unravels the mysteries hidden in your data.

Ethical Superhero Cape: Ethical Considerations

Every hero needs a moral compass. Clearly outline how you’ll be the ethical superhero of your study, protecting the well-being and secrets of your participants.

Grand Finale: Results and Findings

It’s showtime! Showcase your results like the grand finale of a fireworks display. Tables, charts, and statistical dazzle – let your findings steal the spotlight.

Wrap-Up Party: Conclusion and Implications

Bring out the confetti! Summarize your findings, discuss their VIP status in the research world, and hint at the afterparty – how your results shape the future.

Behind-the-Scenes Blooper Reel: Limitations and Future Research

No Hollywood film is perfect. Share the bloopers – the limitations of your study – and hint at the sequel with ideas for future research. It’s all part of the cinematic journey.

Roll Credits: References

Give a shout-out to the supporting cast! Cite your sources – it’s the credits that add credibility to your blockbuster.

Bonus Scene: Appendix

Think of it as the post-credits scene. Tuck in any extra goodies – surveys, questionnaires, or behind-the-scenes material – for those eager to dive deeper into your research universe.

By weaving these storylines together, your quantitative research study becomes a cinematic masterpiece, leaving a lasting impact on the grand stage of academia. Happy researching, hero!

Quantitative Research Topics for STEM Students

Check out the best quantitative research topics for STEM students:-

  • Investigating the Effects of Different Soil pH Levels on Plant Growth.
  • Analyzing the Impact of Pesticide Exposure on Bee Populations.
  • Studying the Genetic Variability in Endangered Species.
  • Quantifying the Relationship Between Temperature and Microbial Growth in Water.
  • Analyzing the Effects of Ocean Acidification on Coral Reefs.
  • Investigating the Correlation Between Pollinator Diversity and Crop Yield.
  • Studying the Role of Gut Microbiota in Human Health and Disease.
  • Quantifying the Impact of Antibiotics on Soil Microbial Communities.
  • Analyzing the Effects of Light Pollution on Nocturnal Animal Behavior.
  • Investigating the Relationship Between Altitude and Plant Adaptations in Mountain Ecosystems.
  • Measuring the Speed of Light Using Interferometry Techniques.
  • Investigating the Quantum Properties of Photons in Quantum Computing.
  • Analyzing the Factors Affecting Magnetic Field Strength in Electromagnets.
  • Studying the Behavior of Superfluids at Ultra-Low Temperatures.
  • Quantifying the Efficiency of Energy Transfer in Photovoltaic Cells.
  • Analyzing the Properties of Quantum Dots for Future Display Technologies.
  • Investigating the Behavior of Particles in High-Energy Particle Accelerators.
  • Studying the Effects of Gravitational Waves on Space-Time.
  • Quantifying the Frictional Forces on Objects at Different Surfaces.
  • Analyzing the Characteristics of Dark Matter and Dark Energy in the Universe.

Engineering

  • Optimizing the Design of Wind Turbine Blades for Maximum Efficiency.
  • Investigating the Use of Smart Materials in Structural Engineering.
  • Analyzing the Impact of 3D Printing on Prototyping in Product Design.
  • Studying the Behavior of Composite Materials Under Extreme Temperatures.
  • Evaluating the Efficiency of Water Treatment Plants in Removing Contaminants.
  • Investigating the Aerodynamics of Drones for Improved Flight Control.
  • Quantifying the Effects of Traffic Flow on Roadway Maintenance.
  • Analyzing the Impact of Vibration Damping in Building Structures.
  • Studying the Mechanical Properties of Biodegradable Polymers in Medical Devices.
  • Investigating the Use of Artificial Intelligence in Autonomous Robotic Systems.

Mathematics

  • Exploring Chaos Theory and Its Applications in Nonlinear Systems.
  • Modeling the Spread of Infectious Diseases in Population Dynamics.
  • Analyzing Data Mining Techniques for Predictive Analytics in Business.
  • Studying the Mathematics of Cryptography Algorithms for Data Security.
  • Quantifying the Patterns in Stock Market Price Movements Using Time Series Analysis.
  • Investigating the Applications of Fractal Geometry in Computer Graphics.
  • Analyzing the Behavior of Differential Equations in Climate Modeling.
  • Studying the Optimization of Supply Chain Networks Using Linear Programming.
  • Investigating the Mathematical Concepts Behind Machine Learning Algorithms.
  • Quantifying the Patterns of Prime Numbers in Number Theory.
  • Investigating the Chemical Mechanisms Behind Enzyme Catalysis.
  • Analyzing the Thermodynamic Properties of Chemical Reactions.
  • Studying the Kinetics of Chemical Reactions in Different Solvents.
  • Quantifying the Concentration of Pollutants in Urban Air Quality.
  • Evaluating the Effectiveness of Antioxidants in Food Preservation.
  • Investigating the Electrochemical Properties of Batteries for Energy Storage.
  • Studying the Behavior of Nanomaterials in Drug Delivery Systems.
  • Analyzing the Chemical Composition of Exoplanet Atmospheres Using Spectroscopy.
  • Quantifying Heavy Metal Contamination in Soil and Water Sources.
  • Investigating the Correlation Between Chemical Exposure and Human Health.

Computer Science

  • Analyzing Machine Learning Algorithms for Natural Language Processing.
  • Investigating Quantum Computing Algorithms for Cryptography Applications.
  • Studying the Efficiency of Data Compression Methods for Big Data Storage.
  • Quantifying Cybersecurity Threats and Vulnerabilities in IoT Devices.
  • Evaluating the Impact of Cloud Computing on Distributed Systems.
  • Investigating the Use of Artificial Intelligence in Autonomous Vehicles.
  • Analyzing the Behavior of Neural Networks in Deep Learning Applications.
  • Studying the Performance of Blockchain Technology in Supply Chain Management.
  • Quantifying User Behavior in Social Media Analytics.
  • Investigating Quantum Machine Learning for Enhanced Data Processing.

These additional project ideas provide a diverse range of opportunities for STEM students to engage in quantitative research and explore various aspects of their respective fields. Each project offers a unique avenue for discovery and contribution to the world of science and technology.

What is an example of a quantitative research?

Quantitative research is a powerful investigative approach, wielding numbers to shed light on intricate relationships and phenomena. Let’s dive into an example of quantitative research to understand its workings:

Research Question

What is the correlation between the time students devote to studying and their academic grades?

Students who invest more time in studying are likely to achieve higher grades.

Research Design

Imagine a researcher embarking on a journey within a high school. They distribute surveys to students, inquiring about their weekly study hours and their corresponding grades in core subjects.

Data Analysis

Equipped with statistical tools, our researcher scrutinizes the collected data. Lo and behold, a significant positive correlation emerges—students who dedicate more time to studying generally earn higher grades.

With data as their guide, the researcher concludes that indeed, a relationship exists between study time and academic grades. The more time students commit to their studies, the brighter their academic stars tend to shine.

This example merely scratches the surface of quantitative research’s potential. It can delve into an extensive array of subjects and investigate complex hypotheses. Here are a few more examples:

  • Assessing a New Drug’s Effectiveness: Quantifying the impact of a  novel medication  in treating a specific illness.
  • Socioeconomic Status and Crime Rates: Investigating the connection between economic conditions and criminal activity.
  • Analyzing the Influence of an Advertising Campaign on Sales: Measuring the effectiveness of a marketing blitz on product purchases.
  • Factors Shaping Customer Satisfaction: Using data to pinpoint the elements contributing to customer contentment.
  • Government Policies and Employment Rates: Evaluating the repercussions of new governmental regulations on job opportunities.

Quantitative research serves as a potent beacon, illuminating the complexities of our world through data-driven inquiry. Researchers harness its might to collect, analyze, and draw valuable conclusions about a vast spectrum of phenomena. It’s a vital tool for unraveling the intricacies of our universe. 

As we bid adieu to our whirlwind tour of quantitative research topics tailor-made for the STEM dreamers, it’s time to soak in the vast horizons that science, technology, engineering, and mathematics paint for us.

We’ve danced through the intricate tango of poverty and crime, peeked into the transformative realm of cutting-edge technologies, and unraveled the captivating puzzles of quantitative research. But these aren’t just topics; they’re open invitations to dive headfirst into the uncharted seas of knowledge.

To you, the STEM trailblazers, these research ideas aren’t mere academic pursuits. They’re portals to curiosity, engines of innovation, and blueprints for shaping the future of our world. They’re the sparks that illuminate the trail leading to discovery.

As you set sail on your research odyssey, remember that quantitative research isn’t just about unlocking answers—it’s about nurturing that profound sense of wonder, igniting innovation, and weaving your unique thread into the fabric of human understanding.

Whether you’re stargazing, decoding the intricate language of genes, engineering marvels, or tackling global challenges head-on, realize that your STEM and quantitative research journey is a perpetual adventure.

May your questions be audacious, your data razor-sharp, and your discoveries earth-shattering. Keep that innate curiosity alive, keep exploring, and let the spirit of STEM be your North Star, guiding you towards a future that’s not just brighter but brilliantly enlightened.

And with that, fellow adventurers, go forth, embrace the unknown, and let your journey in STEM be the epic tale that reshapes the narrative of tomorrow!

Frequently Asked Questions

How can i ensure the ethical conduct of my quantitative research project.

To ensure ethical conduct, obtain informed consent from participants, maintain data confidentiality, and adhere to ethical guidelines established by your institution and professional associations.

Are there any software tools recommended for data analysis in STEM research?

Yes, there are several widely used software tools for data analysis in STEM research, including R, Python, MATLAB, and SPSS. The choice of software depends on your specific research needs and familiarity with the tools.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

ct-logo

189+ Good Quantitative Research Topics For STEM Students

Quantitative research is an essential part of STEM (Science, Technology, Engineering, and Mathematics) fields. It involves collecting and analyzing numerical data to answer research questions and test hypotheses. 

In 2023, STEM students have a wealth of exciting research opportunities in various disciplines. Whether you’re an undergraduate or graduate student, here are quantitative research topics to consider for your next project.

If you are looking for the best list of quantitative research topics for stem students, then you can check the given list in each field. It offers STEM students numerous opportunities to explore and contribute to their respective fields in 2023 and beyond. 

Whether you’re interested in astrophysics, biology, engineering, mathematics, or any other STEM field.

Also Read: Most Exciting Qualitative Research Topics For Students

What Is Quantitative Research

Table of Contents

Quantitative research is a type of research that focuses on the organized collection, analysis, and evaluation of numerical data to answer research questions, test theories, and find trends or connections between factors. It is an organized, objective way to do study that uses measurable data and scientific methods to come to results.

Quantitative research is often used in many areas, such as the natural sciences, social sciences, economics, psychology, education, and market research. It gives useful information about patterns, trends, cause-and-effect relationships, and how often things happen. Quantitative tools are used by researchers to answer questions like “How many?” and “How often?” “Is there a significant difference?” or “What is the relationship between the variables?”

In comparison to quantitative research, qualitative research uses non-numerical data like conversations, notes, and open-ended surveys to understand and explore the ideas, experiences, and points of view of people or groups. Researchers often choose between quantitative and qualitative methods based on their research goals, questions, and the type of thing they are studying.

How To Choose Quantitative Research Topics For STEM

Here’s a step-by-step guide on how to choose quantitative research topics for STEM:

Step 1:- Identify Your Interests and Passions

Start by reflecting on your personal interests within STEM. What areas or subjects in STEM excite you the most? Choosing a topic you’re passionate about will keep you motivated throughout the research process.

Step 2:- Review Coursework and Textbooks

Look through your coursework, textbooks, and class notes. Identify concepts, theories, or areas that you found particularly intriguing or challenging. These can be a source of potential research topics.

Step 3:- Consult with Professors and Advisors

Discuss your research interests with professors, academic advisors, or mentors. They can provide valuable insights, suggest relevant topics, and guide you toward areas with research opportunities.

Step 4:- Read Recent Literature

Explore recent research articles, journals, and publications in STEM fields. This will help you identify current trends, gaps in knowledge, and areas where further research is needed.

Step 5:- Narrow Down Your Focus

Once you have a broad area of interest, narrow it down to a specific research focus. Consider questions like:

  • What specific problem or phenomenon do you want to investigate?
  • Are there unanswered questions or controversies in this area?
  • What impact could your research have on the field or society?

Step 6:- Consider Resources and Access

Assess the resources available to you, including access to laboratories, equipment, databases, and funding. Ensure that your chosen topic aligns with the resources you have or can access.

Step 7:- Think About Practicality

Consider the feasibility of conducting research on your chosen topic. Are the data readily available, or will you need to collect data yourself? Can you complete the research within your available time frame?

Step 8:- Define Your Research Question

Formulate a clear and specific research question or hypothesis. Your research question should guide your entire study and provide a focus for your data collection and analysis.

Step 9:- Conduct a Literature Review

Dive deeper into the existing literature related to your chosen topic. This will help you understand the current state of research, identify gaps, and refine your research question.

Step 10:- Consider the Impact

Think about the potential impact of your research. How does your topic contribute to the advancement of knowledge in your field? Does it have practical applications or implications for society?

Step 11:- Brainstorm Research Methods

Determine the quantitative research methods and data collection techniques you plan to use. Consider whether you’ll conduct experiments, surveys, data analysis, simulations, or use existing datasets.

Step 12:- Seek Feedback

Share your research topic and ideas with peers, advisors, or mentors. They can provide valuable feedback and help you refine your research focus.

Step 13:- Assess Ethical Considerations

Consider ethical implications related to your research, especially if it involves human subjects, sensitive data, or potential environmental impacts. Ensure that your research adheres to ethical guidelines.

Step 14:- Finalize Your Research Topic

Once you’ve gone through these steps, finalize your research topic. Write a clear and concise research proposal that outlines your research question, objectives, methods, and expected outcomes.

Step 15:- Stay Open to Adjustments

Be open to adjusting your research topic as you progress. Sometimes, new insights or challenges may lead you to refine or adapt your research focus.

Following are the most interesting quantitative research topics for stem students. These are given below.

Quantitative Research Topics In Physics and Astronomy

  • Quantum Computing Algorithms : Investigate new algorithms for quantum computers and their potential applications.
  • Dark Matter Detection Methods : Explore innovative approaches to detect dark matter particles.
  • Quantum Teleportation : Study the principles and applications of quantum teleportation.
  • Exoplanet Characterization : Analyze data from telescopes to characterize exoplanets.
  • Nuclear Fusion Modeling : Create mathematical models for nuclear fusion reactions.
  • Superconductivity at High Temperatures : Research the properties and applications of high-temperature superconductors.
  • Gravitational Wave Analysis : Analyze gravitational wave data to study astrophysical phenomena.
  • Black Hole Thermodynamics : Investigate the thermodynamics of black holes and their entropy.

Quantitative Research Topics In Biology and Life Sciences

  • Genome-Wide Association Studies (GWAS) : Conduct GWAS to identify genetic factors associated with diseases.
  • Pharmacokinetics and Pharmacodynamics : Study drug interactions in the human body.
  • Ecological Modeling : Model ecosystems to understand population dynamics.
  • Protein Folding : Research the kinetics and thermodynamics of protein folding.
  • Cancer Epidemiology : Analyze cancer incidence and risk factors in specific populations.
  • Neuroimaging Analysis : Develop algorithms for analyzing brain imaging data.
  • Evolutionary Genetics : Investigate evolutionary patterns using genetic data.
  • Stem Cell Differentiation : Study the factors influencing stem cell differentiation.

Engineering and Technology Quantitative Research Topics

  • Renewable Energy Efficiency : Optimize the efficiency of solar panels or wind turbines.
  • Aerodynamics of Drones : Analyze the aerodynamics of drone designs.
  • Autonomous Vehicle Safety : Evaluate safety measures for autonomous vehicles.
  • Machine Learning in Robotics : Implement machine learning algorithms for robot control.
  • Blockchain Scalability : Research methods to scale blockchain technology.
  • Quantum Computing Hardware : Design and test quantum computing hardware components.
  • IoT Security : Develop security protocols for the Internet of Things (IoT).
  • 3D Printing Materials Analysis : Study the mechanical properties of 3D-printed materials.

Quantitative Research Topics In Mathematics and Statistics

Following are the best Quantitative Research Topics For STEM Students in mathematics and statistics.

  • Prime Number Distribution : Investigate the distribution of prime numbers.
  • Graph Theory Algorithms : Develop algorithms for solving graph theory problems.
  • Statistical Analysis of Financial Markets : Analyze financial data and market trends.
  • Number Theory Research : Explore unsolved problems in number theory.
  • Bayesian Machine Learning : Apply Bayesian methods to machine learning models.
  • Random Matrix Theory : Study the properties of random matrices in mathematics and physics.
  • Topological Data Analysis : Use topology to analyze complex data sets.
  • Quantum Algorithms for Optimization : Research quantum algorithms for optimization problems.

Experimental Quantitative Research Topics In Science and Earth Sciences

  • Climate Change Modeling : Develop climate models to predict future trends.
  • Biodiversity Conservation Analysis : Analyze data to support biodiversity conservation efforts.
  • Geographic Information Systems (GIS) : Apply GIS techniques to solve environmental problems.
  • Oceanography and Remote Sensing : Use satellite data for oceanographic research.
  • Air Quality Monitoring : Develop sensors and models for air quality assessment.
  • Hydrological Modeling : Study the movement and distribution of water resources.
  • Volcanic Activity Prediction : Predict volcanic eruptions using quantitative methods.
  • Seismology Data Analysis : Analyze seismic data to understand earthquake patterns.

Chemistry and Materials Science Quantitative Research Topics

  • Nanomaterial Synthesis and Characterization : Research the synthesis and properties of nanomaterials.
  • Chemoinformatics : Analyze chemical data for drug discovery and materials science.
  • Quantum Chemistry Simulations : Perform quantum simulations of chemical reactions.
  • Materials for Renewable Energy : Investigate materials for energy storage and conversion.
  • Catalysis Kinetics : Study the kinetics of chemical reactions catalyzed by materials.
  • Polymer Chemistry : Research the properties and applications of polymers.
  • Analytical Chemistry Techniques : Develop new analytical techniques for chemical analysis.
  • Sustainable Chemistry : Explore green chemistry approaches for sustainable materials.

Computer Science and Information Technology Topics

  • Natural Language Processing (NLP) : Work on NLP algorithms for language understanding.
  • Cybersecurity Analytics : Analyze cybersecurity threats and vulnerabilities.
  • Big Data Analytics : Apply quantitative methods to analyze large data sets.
  • Machine Learning Fairness : Investigate bias and fairness issues in machine learning models.
  • Human-Computer Interaction (HCI) : Study user behavior and interaction patterns.
  • Software Performance Optimization : Optimize software applications for performance.
  • Distributed Systems Analysis : Analyze the performance of distributed computing systems.
  • Bioinformatics Data Mining : Develop algorithms for mining biological data.

Good Quantitative Research Topics Students In Medicine and Healthcare

  • Clinical Trial Data Analysis : Analyze clinical trial data to evaluate treatment effectiveness.
  • Epidemiological Modeling : Model disease spread and intervention strategies.
  • Healthcare Data Analytics : Analyze healthcare data for patient outcomes and cost reduction.
  • Medical Imaging Algorithms : Develop algorithms for medical image analysis.
  • Genomic Medicine : Apply genomics to personalized medicine approaches.
  • Telemedicine Effectiveness : Study the effectiveness of telemedicine in healthcare delivery.
  • Health Informatics : Analyze electronic health records for insights into patient care.

Agriculture and Food Sciences Topics

  • Precision Agriculture : Use quantitative methods for optimizing crop production.
  • Food Safety Analysis : Analyze food safety data and quality control.
  • Aquaculture Sustainability : Research sustainable practices in aquaculture.
  • Crop Disease Modeling : Model the spread of diseases in agricultural crops.
  • Climate-Resilient Agriculture : Develop strategies for agriculture in changing climates.
  • Food Supply Chain Optimization : Optimize food supply chain logistics.
  • Soil Health Assessment : Analyze soil data for sustainable land management.

Social Sciences with Quantitative Approaches

  • Educational Data Mining : Analyze educational data for improving learning outcomes.
  • Sociodemographic Surveys : Study social trends and demographics using surveys.
  • Psychometrics : Develop and validate psychological measurement instruments.
  • Political Polling Analysis : Analyze political polling data and election trends.
  • Economic Modeling : Develop economic models for policy analysis.
  • Urban Planning Analytics : Analyze data for urban planning and infrastructure.
  • Climate Policy Evaluation : Evaluate the impact of climate policies on society.

Environmental Engineering Quantitative Research Topics

  • Water Quality Assessment : Analyze water quality data for environmental monitoring.
  • Waste Management Optimization : Optimize waste collection and recycling programs.
  • Environmental Impact Assessments : Evaluate the environmental impact of projects.
  • Air Pollution Modeling : Model the dispersion of air pollutants in urban areas.
  • Sustainable Building Design : Apply quantitative methods to sustainable architecture.

Quantitative Research Topics Robotics and Automation

  • Robotic Swarm Behavior : Study the behavior of robot swarms in different tasks.
  • Autonomous Drone Navigation : Develop algorithms for autonomous drone navigation.
  • Humanoid Robot Control : Implement control algorithms for humanoid robots.
  • Robotic Grasping and Manipulation : Study robotic manipulation techniques.
  • Reinforcement Learning for Robotics : Apply reinforcement learning to robotic control.

Quantitative Research Topics Materials Engineering

  • Additive Manufacturing Process Optimization : Optimize 3D printing processes.
  • Smart Materials for Aerospace : Research smart materials for aerospace applications.
  • Nanostructured Materials for Energy Storage : Investigate energy storage materials.
  • Corrosion Prevention : Develop corrosion-resistant materials and coatings.

Nuclear Engineering Quantitative Research Topics

  • Nuclear Reactor Safety Analysis : Study safety aspects of nuclear reactor designs.
  • Nuclear Fuel Cycle Analysis : Analyze the nuclear fuel cycle for efficiency.
  • Radiation Shielding Materials : Research materials for radiation protection.

Quantitative Research Topics In Biomedical Engineering

  • Medical Device Design and Testing : Develop and test medical devices.
  • Biomechanics Analysis : Analyze biomechanics in sports or rehabilitation.
  • Biomaterials for Medical Implants : Investigate materials for medical implants.

Good Quantitative Research Topics Chemical Engineering

  • Chemical Process Optimization : Optimize chemical manufacturing processes.
  • Industrial Pollution Control : Develop strategies for pollution control in industries.
  • Chemical Reaction Kinetics : Study the kinetics of chemical reactions in industries.

Best Quantitative Research Topics In Renewable Energy

  • Energy Storage Systems : Research and optimize energy storage solutions.
  • Solar Cell Efficiency : Improve the efficiency of photovoltaic cells.
  • Wind Turbine Performance Analysis : Analyze and optimize wind turbine designs.

Brilliant Quantitative Research Topics In Astronomy and Space Sciences

  • Astrophysical Simulations : Simulate astrophysical phenomena using numerical methods.
  • Spacecraft Trajectory Optimization : Optimize spacecraft trajectories for missions.
  • Exoplanet Detection Algorithms : Develop algorithms for exoplanet detection.

Quantitative Research Topics In Psychology and Cognitive Science

  • Cognitive Psychology Experiments : Conduct quantitative experiments in cognitive psychology.
  • Emotion Recognition Algorithms : Develop algorithms for emotion recognition in AI.
  • Neuropsychological Assessments : Create quantitative assessments for brain function.

Geology and Geological Engineering Quantitative Research Topics

  • Geological Data Analysis : Analyze geological data for mineral exploration.
  • Geological Hazard Prediction : Predict geological hazards using quantitative models.

Top Quantitative Research Topics In Forensic Science

  • Forensic Data Analysis : Analyze forensic evidence using quantitative methods.
  • Crime Pattern Analysis : Study crime patterns and trends in urban areas.

Great Quantitative Research Topics In Cybersecurity

  • Network Intrusion Detection : Develop quantitative methods for intrusion detection.
  • Cryptocurrency Analysis : Analyze blockchain data and cryptocurrency trends.

Mathematical Biology Quantitative Research Topics

  • Epidemiological Modeling : Model disease spread and control in populations.
  • Population Genetics : Analyze genetic data to understand population dynamics.

Quantitative Research Topics In Chemical Analysis

  • Analytical Chemistry Methods : Develop quantitative methods for chemical analysis.
  • Spectroscopy Analysis : Analyze spectroscopic data for chemical identification.

Mathematics Education Quantitative Research Topics

  • Mathematics Curriculum Analysis : Analyze curriculum effectiveness in mathematics education.
  • Mathematics Assessment Development : Develop quantitative assessments for mathematics skills.

Quantitative Research Topics In Social Research

  • Social Network Analysis : Analyze social network structures and dynamics.
  • Survey Research : Conduct quantitative surveys on social issues and trends.

Quantitative Research Topics In Computational Neuroscience

  • Neural Network Modeling : Model neural networks and brain functions computationally.
  • Brain Connectivity Analysis : Analyze functional and structural brain connectivity.

Best Topics In Transportation Engineering

  • Traffic Flow Modeling : Model and optimize traffic flow in urban areas.
  • Public Transportation Efficiency : Analyze the efficiency of public transportation systems.

Good Quantitative Research Topics In Energy Economics

  • Energy Policy Analysis : Evaluate the economic impact of energy policies.
  • Renewable Energy Cost-Benefit Analysis : Assess the economic viability of renewable energy projects.

Quantum Information Science

  • Quantum Cryptography Protocols : Develop and analyze quantum cryptography protocols.
  • Quantum Key Distribution : Study the security of quantum key distribution systems.

Human Genetics

  • Genome Editing Ethics : Investigate ethical issues in genome editing technologies.
  • Population Genomics : Analyze genomic data for population genetics research.

Marine Biology

  • Coral Reef Health Assessment : Quantitatively assess the health of coral reefs.
  • Marine Ecosystem Modeling : Model marine ecosystems and biodiversity.

Data Science and Machine Learning

  • Machine Learning Explainability : Develop methods for explaining machine learning models.
  • Data Privacy in Machine Learning : Study privacy issues in machine learning applications.
  • Deep Learning for Image Analysis : Develop deep learning models for image recognition.

Environmental Engineering

Robotics and automation, materials engineering, nuclear engineering, biomedical engineering, chemical engineering, renewable energy, astronomy and space sciences, psychology and cognitive science, geology and geological engineering, forensic science, cybersecurity, mathematical biology, chemical analysis, mathematics education, quantitative social research, computational neuroscience, quantitative research topics in transportation engineering, quantitative research topics in energy economics, topics in quantum information science, amazing quantitative research topics in human genetics, quantitative research topics in marine biology, what is a common goal of qualitative and quantitative research.

A common goal of both qualitative and quantitative research is to generate knowledge and gain a deeper understanding of a particular phenomenon or topic. However, they approach this goal in different ways:

1. Understanding a Phenomenon

Both types of research aim to understand and explain a specific phenomenon, whether it’s a social issue, a natural process, a human behavior, or a complex event.

2. Testing Hypotheses

Both qualitative and quantitative research can involve hypothesis testing. While qualitative research may not use statistical hypothesis tests in the same way as quantitative research, it often tests hypotheses or research questions by examining patterns and themes in the data.

3. Contributing to Knowledge

Researchers in both approaches seek to contribute to the body of knowledge in their respective fields. They aim to answer important questions, address gaps in existing knowledge, and provide insights that can inform theory, practice, or policy.

4. Informing Decision-Making

Research findings from both qualitative and quantitative studies can be used to inform decision-making in various domains, whether it’s in academia, government, industry, healthcare, or social services.

5. Enhancing Understanding

Both approaches strive to enhance our understanding of complex phenomena by systematically collecting and analyzing data. They aim to provide evidence-based explanations and insights.

6. Application

Research findings from both qualitative and quantitative studies can be applied to practical situations. For example, the results of a quantitative study on the effectiveness of a new drug can inform medical treatment decisions, while qualitative research on customer preferences can guide marketing strategies.

7. Contributing to Theory

In academia, both types of research contribute to the development and refinement of theories in various disciplines. Quantitative research may provide empirical evidence to support or challenge existing theories, while qualitative research may generate new theoretical frameworks or perspectives.

Conclusion – Quantitative Research Topics For STEM Students

So, selecting a quantitative research topic for STEM students is a pivotal decision that can shape the trajectory of your academic and professional journey. The process involves a thoughtful exploration of your interests, a thorough review of the existing literature, consideration of available resources, and the formulation of a clear and specific research question.

Your chosen topic should resonate with your passions, align with your academic or career goals, and offer the potential to contribute to the body of knowledge in your STEM field. Whether you’re delving into physics, biology, engineering, mathematics, or any other STEM discipline, the right research topic can spark curiosity, drive innovation, and lead to valuable insights.

Moreover, quantitative research in STEM not only expands the boundaries of human knowledge but also has the power to address real-world challenges, improve technology, and enhance our understanding of the natural world. It is a journey that demands dedication, intellectual rigor, and an unwavering commitment to scientific inquiry.

What is quantitative research in STEM?

Quantitative research in this context is designed to improve our understanding of the science system’s workings, structural dependencies and dynamics.

What are good examples of quantitative research?

Surveys and questionnaires serve as common examples of quantitative research. They involve collecting data from many respondents and analyzing the results to identify trends, patterns

What are the 4 C’s in STEM?

They became known as the “Four Cs” — critical thinking, communication, collaboration, and creativity.

Similar Articles

How To Improve Grade

Top 19 Tips & Tricks On How To Improve Grades?

Do you want to improve your grades? If yes, then don’t worry! In this blog, I have provided 19 tips…

How To Study For Final Exam

How To Study For Final Exam – 12 Proven Tips You Must Know

How To Study For Final Exam? Studying for the final exam is very important for academic success because they test…

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Offer of the decade FLAT 20% off + sign up bonus of $20 Order Now

essayhack.io

Files Missing!

Please upload all relevant files for quick & complete assistance.

https://essayhack.io/

50+ Interesting Quantitative Research Topics

Home / Blog / 50+ Interesting Quantitative Research Topics

50+ Interesting Quantitative Research Topics

Introduction

Quantitative research questions can be tricky at times. Student needs to choose the type of question he/she would like to answer or work on. Even though one may find picking a quantitative research paper topic easy, things might turn out to be overly complicated for an individual who isn’t aware of the technicalities.

 Now that you too are grappling with the intricacy of choosing an ideal quantitative research paper topic, consider reading through this blog. I will be discussing the various technicalities that can be implemented in order to choose and structure a quantitative research question. What’s more?  I will be sharing a list of 50+ unique quantitative research topics for you.

HOW TO CHOOSE QUANTITATIVE RESEARCH TOPICS

Brought in one of its academic journals by the British Library, quantitative research questions are generally used in order to set the scene for industry reports or an entire study. There are basically three common types of quantitative research questions you will come across. Let’s take a look at them.

essay

Types of Quantitative Research Questions

Now that you are aware of the 3 crucial types of quantitative research questions, it’s time to know how to select an ideal topic or a question in different situations. Here’s a smart chart illustrating the same. Take a look.

table

 How to Choose a Quantitative Research Question

I am going to share further details with an explicitly discussed theoretical insight into the context of choosing an ideal quantitative research question. Take note:

Step 1: Choose the research topic 

Remember, your research question will represent the type of quantitative research you will use in your dissertation.  So, you should always consider choosing the type of research question quite carefully. It can be descriptive, comparative or relationship-based. If you already have a couple of plants and unique ideas in your head, figure out if they are rational and relevant in nature.

 Once you are done deciding the same, figure out the type of research question you can form using that particular idea. It goes without saying; you are required to come up with different perspectives and styles for each of the aforementioned research question types.

Step 2: Identify the variables 

It doesn’t matter whether you are working on a relationship-based, comparative or descriptive research question.  You should consider identifying the different aspects you will try to control, manipulate or measure.

There are primarily two types of variables; categorical variables and continuous variables. In addition, you need to develop an understanding of the fundamentals of dependent variables and independent variables. In case you are planning to structure a research paper based on descriptive questions, then you need to measure a number of dependent variables. On the other hand, working on a comparative or relationship-based research question will require you to deal with independent and dependent variables as well. Once you are done indentifying the individual variables associated with different types of research questions, you need to plan a perfect structure.

Step 3: Choose the appropriate structure for different types of questions 

The structure is different for each of the three types of research questions. Take a look.

flow chat

Structure of Descriptive Research Questions

data of essay

Structure of Comparative Research Questions

stucture

Structure of Relationship-based Research Questions

Step 4:  Jot down the issues you would address 

Now that you are done structuring the questions for the individual research types, it’s time to jot down the issues you would like to address. You have to be more attentive and flawless. Remember, you should consider highlighting each of the issues and addressing the same in simple languages.

The idea is to frame readable quantitative research papers. It should not appear to be convoluted in nature and must solve the purpose of establishing rational perspectives. In addition, it should also maintain a unified structure throughout the paper.

Moving on to the next section, here is a set of 50+ unique and crucial quantitative research questions for you to explore.

  • The relationship between crime statistics and immigration.
  • The impact of education on obesity.
  • The relationship between electoral results and consumer confidence.
  • What are the issues faced by Uber? What can be done in order to solve such issues?
  • The link between competitive risk assignment and estimated target market.
  • The impact of net neutrality and what could possibly happen in the future.
  • The strategy that saved IBM from going insolvent.
  • The aspect of gambling from the perspective of psychology.
  • How Magna Carta changed England?
  • Associated risks of confidential data storage and detection.
  • How is workplace diversity helping organizations become more productive?
  • The advantages and disadvantages of outsourcing services.
  • Is franchising really beneficial for businesses in and around the United Kingdom?
  • The advantages and disadvantages of Social Security Reform.
  • The pros and cons of social education in groups.
  • Is liberalism an ideal solution?
  • Are loyalty programs the most essential component of marketing?
  • The rise and impact of social media in marketing.
  • The advantages and disadvantages of setting up start-ups in the United Kingdom.
  • Benefits of Black Friday sales.
  • The impact of market segmentation in the United Kingdom.
  • The fundamentals and vision of Kellogg on Marketing.
  • The definition of viability and its link with the scientific evidence for abortion.
  • The role and impact of IT infrastructure Usage in the Healthcare industry.
  • Quantitative analysis of the marketing strategies followed by different automobile companies in and around the United Kingdom.
  • The effect of public relations in corporate organisations.
  • The link between online blogs, press releases and business development.
  • Using social insights for better marketing ROIs.
  • The impact of the recession on promotional activities related to marketing assignment help
  • Will society be better without the inclusion of organised religion?
  • The implementation and impact of brain chips.
  • The effect of relationship marketing in various UK-based corporate organisations.
  • Different strategies to measure consumer satisfaction.
  • The ethics and fundamentals of pharmaceutical marketing.
  • The role and impact of religious iconography in a nation.
  • How bioterrorism can bring in the negative impact on the environment around us?
  • The role and impact of nuclear energy in today’s world.
  • The link between academic achievement and economic status.
  • The relationship between retirement and debt accumulation.
  • Comparing the strategic display of a product of different brands.
  • The link between fiscal decentralization and innovation.
  • The relationship between cognitive development and child nutrition.
  • The impact of solar electricity on the wholesale energy market.
  • The link between micro financial participation and expectations.
  • Quantitative analysis of the number of homeless people in the United Kingdom.
  • What is the difference between the daily calorific intake of British men and women?
  • Should marijuana be legalised worldwide?
  • The relationship between economic growth and urbanisation.
  • What percent of Great Britain residents are falling short of their daily dose of vitamins?
  • What percent of Great Britain residents owns pets?
  • The advantages and disadvantages of online banking.
  • Strategies to calculate the sample size of G Power Analysis.
  • Evaluating nurse’s knowledge of dysphagia by quantitative research.
  • Is international civil society a contemporary form of neo-colonialism?
  • The role of quarantine in current epidemiological practices.
  • How can be creativity measured in online advertising?

Take some time out to evaluate each of the topics and select the one that appears to be interesting. Refer to the suggestions as well, and I hope you will be able to come up with a well-knit quantitative research paper this semester.

Looking for a Reliable Academic Expert to Help You Draft Well-knit Research Papers? Here’s essayhack.io at Your Service

If you are unable to choose a unique and interesting research paper topic too, feel free to get in touch with us. Our team of in-house academic experts is available round the clock to assist you with the best research paper help online. From solving qualitative research questions to working on quantitative research topics; the experts of essayhack.io work on any assigned subject matter. Apart from that, our diligent academic writers offer the following services:

  • Dissertation Help
  • Case Study Help
  • Coursework Help
  • Thesis Help

Assignment Help

In addition, our company has brought forth some of the most exciting discount schemes, exclusively for you. The students in and around the United Kingdom are now entitled to avail 30% discounts on all orders, along with an additional $20 sign-in bonus. So, get connected to us at the earliest, specify your academic requirements and consult our customer care representatives via live chat. We will happily help you with the finest academic writing solutions.

Do you want to share?

You might also like.

Sports Research Paper Topics

60+ Sports Research Paper Topics Ideas for Students

Types of Research Papers : Research Paper Writing Guide

Types of Research Papers : Research Paper Writing Guide

How To Write a Research Paper Outline? - Step by Step Guide

How To Write a Research Paper Outline? - Step by Step Guide

How to write an introduction to a research paper

How To Write An Introduction To a Research Paper?

Leave a reply, place order.

Want Impressive Essay Help?

Submit your requirements here

The Crucible

  -->Admin -->  Published On Oct 3, 2023 | Updated on Oct 4, 2023

The Metamorphosis

  -->Admin -->  Published On Sep 30, 2023 | Updated on Sep 30, 2023

The Handmaid's Tale

  -->Admin -->  Published On Sep 26, 2023 | Updated on Sep 26, 2023

The Kite Runner

  -->Admin -->  Published On Sep 22, 2023 | Updated on Sep 26, 2023

rhetorical analysis essay

  -->Admin -->  Published On Sep 5, 2023 | Updated on Sep 11, 2023

Dissertation

Research Paper

Persuasive Essay Topics

  -->Admin -->  Published On Sep 22, 2018 | Updated on Sep 12, 2023

Discursive Essay

  -->Admin -->  Published On Feb 13, 2019 | Updated on Aug 10, 2023

Essay Introduction

  -->Admin -->  Published On Apr 5, 2023 | Updated on Aug 10, 2023

Law Essay Writing

  -->Admin -->  Published On Jun 22, 2020 | Updated on Aug 10, 2023

How to Choose Ideal Argumentative Essay Topics to Work On

  -->Admin -->  Published On Apr 9, 2018 | Updated on Jul 28, 2023

Subscribe Newsletter

You can place your order for free now. Simply submit your order and see what our writers can Subscribe to get regular update!

Thank you for commenting.

Thank you for subscribed newsletter.

Thank You For Commenting.

Get acquainted with the top essay helpers in the country and glide smoothly towards your academic goals with the necessary essay writing help online from US’s top professionals.

Want quick $20? Share your details with us.

Thank you for subscribing our newsletter

Have any Query? Contact with us

mob turntine

Your browser is not supported

Sorry but it looks as if your browser is out of date. To get the best experience using our site we recommend that you upgrade or switch browsers.

Find a solution

  • Skip to main content
  • Skip to navigation

research topic quantitative in school

  • Back to parent navigation item
  • Primary teacher
  • Secondary/FE teacher
  • Early career or student teacher
  • Higher education
  • Curriculum support
  • Literacy in science teaching
  • Periodic table
  • Interactive periodic table
  • Climate change and sustainability
  • Resources shop
  • Collections
  • Post-lockdown teaching support
  • Remote teaching support
  • Starters for ten
  • Screen experiments
  • Assessment for learning
  • Microscale chemistry
  • Faces of chemistry
  • Classic chemistry experiments
  • Nuffield practical collection
  • Anecdotes for chemistry teachers
  • On this day in chemistry
  • Global experiments
  • PhET interactive simulations
  • Chemistry vignettes
  • Context and problem based learning
  • Journal of the month
  • Chemistry and art
  • Art analysis
  • Pigments and colours
  • Ancient art: today's technology
  • Psychology and art theory
  • Art and archaeology
  • Artists as chemists
  • The physics of restoration and conservation
  • Ancient Egyptian art
  • Ancient Greek art
  • Ancient Roman art
  • Classic chemistry demonstrations
  • In search of solutions
  • In search of more solutions
  • Creative problem-solving in chemistry
  • Solar spark
  • Chemistry for non-specialists
  • Health and safety in higher education
  • Analytical chemistry introductions
  • Exhibition chemistry
  • Introductory maths for higher education
  • Commercial skills for chemists
  • Kitchen chemistry
  • Journals how to guides
  • Chemistry in health
  • Chemistry in sport
  • Chemistry in your cupboard
  • Chocolate chemistry
  • Adnoddau addysgu cemeg Cymraeg
  • The chemistry of fireworks
  • Festive chemistry
  • Education in Chemistry
  • Teach Chemistry
  • On-demand online
  • Live online
  • Selected PD articles
  • PD for primary teachers
  • PD for secondary teachers
  • What we offer
  • Chartered Science Teacher (CSciTeach)
  • Teacher mentoring
  • UK Chemistry Olympiad
  • Who can enter?
  • How does it work?
  • Resources and past papers
  • Top of the Bench
  • Schools' Analyst
  • Regional support
  • Education coordinators
  • RSC Yusuf Hamied Inspirational Science Programme
  • RSC Education News
  • Supporting teacher training
  • Interest groups

A primary school child raises their hand in a classroom

  • More from navigation items

All Quantitative research articles

An illustration showing four people piecing a box together

Harness self-regulation to nurture independent study skills

2020-10-29T10:15:00Z

Follow these tips to engage students with learning processes

An image showing a percentage sign built out of a pencil and two pie charts overlaid on an empty notebook

Why declining science scores are no reason to panic

2020-02-05T10:31:00Z

PISA provides an interesting background to teaching, but is it only for policymakers?

A pawn before a mirror, reflected as a king

Dunning-Kruger: the gap between prediction and performance

2018-03-19T14:15:00Z

Improve expectations to improve learning

Ed-Res-News-1Alamy-GA9C2F300tb

Encouraging inquiry-based approaches

2016-09-28T00:00:00Z

Manage the load for students

Transforming-educational-research-in-UKshutterstock376152052300tb

Transforming education research

2016-09-14T00:00:00Z

New project to investigate the opportunities and challenges for teachers and researchers

0516EiCEd-Res-News-2ModelsiStock67203999300tb

The value of modelling molecules

2016-08-10T00:00:00Z

Challenge of visual-spatial representations

Education research shutterstock 139305425 300tb[1]

Why don't teachers use education research in teaching?

2016-08-09T07:57:00Z

Paul MacLellan digs into the problem with research from Durham, a secondary school teacher and a journal editor

0516EiCEd-Res-News-1ConfidenceiStock66853949300tb

What influences future science study?

2016-07-27T00:00:00Z

Study beyond GCSE linked to confidence and perceptions

0416EiCEdResNewsPeer-work300tb

It’s good to talk

2016-06-08T00:00:00Z

Facilitating peer group learning

Micer shutterstock 348717923 300tb[1]

The community of chemistry education research

2016-03-03T15:11:00Z

Michael Seery talks about being part of the chemistry education research community in the UK and Ireland

0615EiCReviewsTools300tb

Tools of chemistry education research

2015-11-09T00:00:00Z

Methods and strategies

EDITORIAL-PICKaren-Ogilvie300tb

Understanding education

2015-11-06T00:00:00Z

Raising awareness of teaching and learning opportunities all around us

Organic reaction mechanisms

Organic confusion

Rote memorising v deep understanding

Img 0013 300tb[1]

Variety in Chemistry Education 2015

2015-08-24T16:14:00Z

Michael Seery reports from the conference for chemistry teaching and learning in higher education

Students in a chemistry lab

The case against inquiry-based learning

2015-05-26T10:44:00Z

Michael Seery takes a critical look at inquiry-based learning

Go-kart

Rationalising reasoning

2015-05-11T00:00:00Z

Is contextualisation the best solution?

0315EiCEdResNewsAnalogy300tb

Analysing analogies

Teacher CPD could support analogical thinking

shutterstock132457238300tb

Flipped chemistry revisited

2015-03-05T00:00:00Z

Successful organic chemistry teaching

Sl india 300tb[1]

International Conference on Education in Chemistry, 2014

2015-01-20T13:20:00Z

Simon Lancaster reports on his visit to ICEC-2014 in Mumbai

0115EICCPDThumb300tb

Moles and titrations

2015-01-06T00:00:00Z

Dorothy Warren describes some of the difficulties with teaching this topic and shows how you can help your students to master aspects of quantitative chemistry

  • Previous Page
  • Contributors
  • Email alerts

Site powered by Webvision Cloud

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is Quantitative Research? | Definition, Uses & Methods

What Is Quantitative Research? | Definition, Uses & Methods

Published on June 12, 2020 by Pritha Bhandari . Revised on June 22, 2023.

Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations.

Quantitative research is the opposite of qualitative research , which involves collecting and analyzing non-numerical data (e.g., text, video, or audio).

Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc.

  • What is the demographic makeup of Singapore in 2020?
  • How has the average temperature changed globally over the last century?
  • Does environmental pollution affect the prevalence of honey bees?
  • Does working from home increase productivity for people with long commutes?

Table of contents

Quantitative research methods, quantitative data analysis, advantages of quantitative research, disadvantages of quantitative research, other interesting articles, frequently asked questions about quantitative research.

You can use quantitative research methods for descriptive, correlational or experimental research.

  • In descriptive research , you simply seek an overall summary of your study variables.
  • In correlational research , you investigate relationships between your study variables.
  • In experimental research , you systematically examine whether there is a cause-and-effect relationship between variables.

Correlational and experimental research can both be used to formally test hypotheses , or predictions, using statistics. The results may be generalized to broader populations based on the sampling method used.

To collect quantitative data, you will often need to use operational definitions that translate abstract concepts (e.g., mood) into observable and quantifiable measures (e.g., self-ratings of feelings and energy levels).

Note that quantitative research is at risk for certain research biases , including information bias , omitted variable bias , sampling bias , or selection bias . Be sure that you’re aware of potential biases as you collect and analyze your data to prevent them from impacting your work too much.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

research topic quantitative in school

Once data is collected, you may need to process it before it can be analyzed. For example, survey and test data may need to be transformed from words to numbers. Then, you can use statistical analysis to answer your research questions .

Descriptive statistics will give you a summary of your data and include measures of averages and variability. You can also use graphs, scatter plots and frequency tables to visualize your data and check for any trends or outliers.

Using inferential statistics , you can make predictions or generalizations based on your data. You can test your hypothesis or use your sample data to estimate the population parameter .

First, you use descriptive statistics to get a summary of the data. You find the mean (average) and the mode (most frequent rating) of procrastination of the two groups, and plot the data to see if there are any outliers.

You can also assess the reliability and validity of your data collection methods to indicate how consistently and accurately your methods actually measured what you wanted them to.

Quantitative research is often used to standardize data collection and generalize findings . Strengths of this approach include:

  • Replication

Repeating the study is possible because of standardized data collection protocols and tangible definitions of abstract concepts.

  • Direct comparisons of results

The study can be reproduced in other cultural settings, times or with different groups of participants. Results can be compared statistically.

  • Large samples

Data from large samples can be processed and analyzed using reliable and consistent procedures through quantitative data analysis.

  • Hypothesis testing

Using formalized and established hypothesis testing procedures means that you have to carefully consider and report your research variables, predictions, data collection and testing methods before coming to a conclusion.

Despite the benefits of quantitative research, it is sometimes inadequate in explaining complex research topics. Its limitations include:

  • Superficiality

Using precise and restrictive operational definitions may inadequately represent complex concepts. For example, the concept of mood may be represented with just a number in quantitative research, but explained with elaboration in qualitative research.

  • Narrow focus

Predetermined variables and measurement procedures can mean that you ignore other relevant observations.

  • Structural bias

Despite standardized procedures, structural biases can still affect quantitative research. Missing data , imprecise measurements or inappropriate sampling methods are biases that can lead to the wrong conclusions.

  • Lack of context

Quantitative research often uses unnatural settings like laboratories or fails to consider historical and cultural contexts that may affect data collection and results.

Prevent plagiarism. Run a free check.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square goodness of fit test
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Inclusion and exclusion criteria

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). What Is Quantitative Research? | Definition, Uses & Methods. Scribbr. Retrieved April 2, 2024, from https://www.scribbr.com/methodology/quantitative-research/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, descriptive statistics | definitions, types, examples, inferential statistics | an easy introduction & examples, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

383 Exciting Education Research Topics

Education is vital to every person’s career and life success. People enrolled in higher education programs are 48% less likely to be incarcerated. Moreover, individuals with at least a Bachelor’s degree have the highest employment rates ( 86% ). Thus, investing time and effort in proper education is the best decision you can make in your young years.

Whether you’re interested in studying education or researching this subject for your classes, you will surely benefit from our detailed list of education research topics. Our experts have prepared research suggestions for students of all levels to aid you at every step of your education studies. Read on to find the best pick for your assignment.

  • 🔝 Top-15 Research Titles about Education
  • #️⃣ Quantitative Research Topics
  • ️📋 Qualitative Research Topics
  • 🎒 Titles about School Issues in 2024
  • 🦼 Research Topics on Special Education
  • 👶 Early Childhood Education
  • 🧠 Educational Psychology
  • 🧸 Child Development Topics
  • 👩🏻‍💼 Educational Management Research Topics
  • 📑 Dissertation Topics

🏫 Ideas of a Quantitative Research Title about School Problems

🔗 references, 🔝 top-15 research titles about education for 2024.

If you want to write a compelling paper, select an appropriate topic . You can find a unique research title about education in our list below and simplify your writing process.

  • The role of education in eradicating poverty.
  • The impact of technology on modern learning.
  • The influence of social media on effective learning.
  • A comparative analysis of student loans and debt accumulation.
  • Effective approaches to student privacy and safety in schools.
  • How does the school leadership experience shape a student’s personality?
  • Evaluate the significance of assistive technology in special education.
  • The role of parents in education.
  • The importance of multicultural education.
  • Homeschooling vs. regular schooling.
  • The role of teachers as moral mediators.
  • Approaches to prevent mental health issues among college students.
  • The effectiveness of standardized tests in graduate schools.
  • Should the government ban boarding schools?
  • The importance of preschool education.

️#️⃣ 30 Quantitative Research Topics in Education

Quantitative research topics in education require extensive quantitative analysis and assessment of stats and figures. They involve doing calculations to support the research findings and hypotheses . The following are exciting topics on quantitative research you can use:

  • The link between the e-learning environment and students’ social anxiety levels.
  • Work hours and academic success relationship .
  • The correlation between homeschooling and GPA.
  • The effectiveness of parental involvement in child education: Statistical evidence.
  • Motivation and learning relationship analysis .
  • An analysis of the divide between tuition rates in private and public universities.
  • The relationship between high tuition fees and poor education.
  • Intervention strategies addressing six negative emotions .
  • The connection between the national debt and student loans .
  • Comparing students’ cognitive development scores in boarding and day schools.
  • Formative assessments and raising attainment levels .
  • The link between student well-being and teacher fulfillment.
  • The correlation between students’ academic workload and mental wellness .
  • Traditional or online education: which is better ?
  • The impact of socioeconomic status on academic performance.
  • The link between urbanization and education development.
  • The impact of school uniforms on school safety .
  • The effects of teaching methods on student performance.
  • A correlation between higher education attainment rates and unemployment rates.
  • The race and class impact on academic performance .
  • The impact of government policies on educational quality.
  • The correlation between coding courses and a child’s cognitive development score.
  • COVID-19 impact on student academic performance .
  • Comparing the outcomes of data science programs for students of various specialties.
  • The impact of student leadership on academic performance .
  • Video games and their impact on students’ motivation .
  • The link between social media use and psychological disorders’ incidence among students.
  • The effects of students’ educational attainment on their post-graduation economic position.
  • Time management: impact on the academic performance .
  • The impact of educational field experiences on students’ career preparedness.

📋 30 Qualitative Research Topics in Education

Numerous issues in education need extensive research. Qualitative research is a way to gain an in-depth understanding of problems facing students and teachers. Below are qualitative research topics in education you can use for your academic project:

  • Internet use among elementary school children.
  • Educational challenges of students with autism .
  • Teachers’ perspectives on the best learning strategies for autistic children .
  • A case study of the significance of mental health education in schools.
  • Inclusive classroom case study .
  • The effects of learning conditions in developing countries.
  • Early childhood educators’ perspectives on critical preschool classroom experiences.
  • A case study examining why new teachers leave the profession .
  • Students’ perceptions of their computer literacy skills.
  • Coping strategies of schoolchildren’s parents from food-insecure households.
  • Case study of a gifted student .
  • High school students’ experiences of virtual learning .
  • Students’ perceptions of lockdown browsers.
  • Case study of learning disabilities: autism .
  • The impact of alcoholism on student performance: A case study.
  • A qualitative study of adult learners’ self-regulation in a digital learning environment.
  • Human resources challenges in the higher education sphere .
  • Academic leadership challenges in nursing schools .
  • Students’ motivation to learn a rare foreign language .
  • Challenges and barriers to equal opportunities in education .
  • The role of teachers in improving learning for disabled children .
  • Student loans : The effects on student career life.
  • Korean Americans’ challenges in education .
  • Teachers’ beliefs about their role in shaping the personalities of students.
  • How to curb bullying in schools: Educators’ perspectives.
  • Challenges and benefits of today’s student life .
  • Remote learning : Advantages and disadvantages from students’ perspective.
  • Interviews with teachers on the persistence of racism in schools .
  • Learning challenges among people of color in public schools .
  • Are students from lower social classes stigmatized in schools?

🎒 Research Titles about School Issues in 2024

Education research is vital in explaining and addressing fundamental issues affecting schools. It explores learning approaches, teaching practices , or educational changes after the pandemic. Choose your ideal research title about school issues from this list:

  • The importance of standardized tests. Analyze the pros and cons of standardized tests and the consequences for students who fail the test.
  • Government policy on education funding. Examine the flaws in the formula for financing schools and assess whether it is constitutional.
  • Computer literacy in schools. Conduct a comparative assessment of effective methods to ensure all schools have enough resources to teach computer studies.
  • Digital transformation in education. Analyze issues associated with online learning . Talk about the instructional tools that improve remote education.
  • The effects of homeschooling . Discuss the advantages and disadvantages of homeschooling and its cognitive impact on young children. Examine its sustainability in modern education.
  • School safety in the 21st century. Explore the government policies on gun violence and approaches to prevent school shootings.
  • Disciplinary policies in schools. Analyze the leading causes of suspensions and expulsions in schools. Examine the impact of reform policies on preventing undisciplined students’ transition into the juvenile system.
  • The teaching of evolution . The is an ongoing debate about how to teach students about the origins of life. You can conduct a qualitative study examining parents’ or teachers’ attitudes toward this question.
  • Student loans in higher education. Conduct a case study of students who are beneficiaries of student loans. Assess the effects of debt accumulation on their present careers.
  • Bullying in schools. Study the causes and effects of bullying on students. Explore viable solutions to prevent bullying and discipline bullies.

🦼 53 Research Topics on Special Education

Special education is vital in modern society since many students have different disabilities and special needs. Teachers adopt accommodative practices to ensure total inclusivity for effective learning. Special education entails attending to students’ special needs using appropriate resources and accessible learning tools.

The following are research topics on special education to inspire your academic paper :

  • Government policies on special education. Explore the policy frameworks and implementation guidelines that advocate special needs education. Talk about learning resources, accessibility , and transition rates to higher education and career life.
  • Disabled children in early childhood education. Analyze the impact of special education on young children and determine strategies for effective teaching . Identify the challenges and possible solutions for enhancing seamless learning.
  • The role of a school principal in improving special education. Discuss the approaches a principal can introduce to support disabled students. Talk about the instructions that teachers should adopt to guarantee inclusivity .
  • Global impact of learning disabilities . Evaluate strategic approaches to special education in different countries. Analyze students’ responses to these methods and possible career paths in various countries.
  • Coping mechanisms of special needs children. Investigate stress reactions and emotional security among children with disabilities. Explore methods that teachers can adopt to help students cope with new environments.
  • The role of workshops on special educators’ mental wellness. Explore the causes and effects of stress and burnout on teachers in special education. Talk about acceptance and commitment therapy in alleviating depressive episodes.
  • Social-emotional development in special education. Explain effective ways to promote social and emotional engagement of special needs children. Discuss parent and teacher training interventions and evaluate the results and implications for future research.
  • Impact of technology on special education. Analyze the benefits of assistive technology in improving learning and give examples of tools used in special education. Talk about the barriers faced by special needs children, which result in learning exclusion .
  • Discrimination and stigmatization . Conduct a case study of physically disabled children attending regular schools. Explore the psychological impact and trauma faced by special needs children. Present possible recommendations for better learning conditions.
  • Effects of parenting style on special needs children. Analyze how different parenting styles can affect the behavior of special needs children. Explore a group of high school students with various disabilities .
  • Behavioral issues in early childhood special education. Explore the influence of negative parent-child interactions on the behavior of children with disabilities. Discuss problem-solving models for correcting behavior and creating a positive learning environment.
  • Patterns of language acquisition in children with disabilities. Compare language development in healthy and special needs children. Discuss the significance of communication skills in the early years and their effects on future learning.
  • Social participation barriers. Compare the barriers to social participation in school faced by students with hearing and visual impairment. Talk about the assistive technologies that offer solutions and prevent social obstacles.
  • Teaching strategies for special needs children. Analyze the effectiveness of various teaching approaches regarding their impact on the academic performance of special needs children.
  • Disciplining students with disabilities. Explore appropriate methods of enforcing discipline among special needs students without raising controversies. Address the rights of students and ways of encouraging good behavior.

Here are other themes you can consider when writing on a special education topic:

  • Discuss collaborative teaching strategies for special educators.
  • Special education and teacher burnout .
  • Speech-language therapists: The benefits of working in an inclusive environment .
  • Discuss the challenges faced by special needs children.
  • Special education disability categories .
  • Why should special needs children learn in a special school, not a mainstream one?
  • Effects of positive social interactions on children with disabilities.
  • Teaching strategies for pupils with special educational needs .
  • How to prevent bullying of special children?
  • Analyze the history of early childhood education for special needs children.
  • The inclusion of learners with special educational needs .
  • Should the government make special education free for all students?
  • The role of parents in instilling self-confidence in their children with disabilities.
  • Exceptional children: introduction to special education .
  • Why do students with autism face bullying more often than regular students?
  • Should teachers be trained in handling special needs children?
  • Field experience report and reflection: special education .
  • Discuss effective teaching practices in special schools.
  • Inclusive learning environment: Does it hinder or promote academic performance?
  • Learning disability: special education strategies .
  • Government policies on special education.
  • A comparative analysis of special education in different countries.
  • American special education and early intervention .
  • Why are parents of children with disabilities prone to stress?
  • Standardized tests for evaluating special needs children in early childhood education.
  • Technology integration in special education .
  • How to identify gifted children with different disabilities?
  • An analysis of education equality for children with disabilities.
  • The effect of training employees to work with special education children .
  • The effects of teachers’ attitudes on students with dyslexia .
  • Special needs children should have equal access to education.
  • Special education: parent–professional collaboration .
  • Is distance learning effective in special education?
  • Evaluate digital literacy in special schools.
  • Teacher leadership in special education .
  • The importance of peer support in special education.
  • Discuss strategies to motivate and retain special educators.
  • Autism spectrum disorder and special education issues .

👶 53 Research Topics for Early Childhood Education

Early childhood education is a vital phase that sets the proper academic foundation for students. The early years of a child are essential since education provides a base for future learning abilities and social development .

Below are research topics for early childhood education to inspire your thesis:

  • Child development stages . Compare different theories of child development. Analyze the role of the environment and genetics or explain the changes that occur from conception until a child is fully developed.
  • The role of parents in early childhood education. Explore parents’ contribution to a child’s cognitive development and behavioral patterns . Discuss the importance of consistent communication with children for their proper development.
  • The significance of field activities in preschool. Evaluate the effects of singing, dancing, drawing, painting, and physical exercise on cognitive development. Discuss the teachers’ attitudes toward child performance.
  • The history of early childhood theorists. Assess the contribution of Maria Montessori to early childhood education. Describe her approach and explain why multi-sensory learning is essential.
  • Computer literacy in young learners. Explore the reasons for introducing computer lessons in preschools. Discuss why young learners need to embrace technology but with strict limitations. Talk about the pros and cons of screen time for young children.
  • Development of cognitive abilities in the early years. Analyze how children acquire knowledge, develop skills, and learn to solve problems. You can also focus on the brain development in the early years.
  • The importance of play in child development. Explain how playing stimulates the brain and encourages social and emotional development. Give examples of child play and toys and discuss their impact.
  • Early detection of special needs children. Explain how preschool educators can detect signs of learning disabilities. Talk about the symptoms of autism, ADHD , and other conditions affecting young learners.
  • Teaching strategies in early childhood education. Explore the different teaching approaches used by educators for effective learning. Discuss play-based , inquiry, direct instruction , and project methods and assess their impact on young learners.
  • Diversity in preschool. Compare opportunities to learn about cultural differences in homeschooling and regular schooling. Highlight the benefits of diversity for a child’s cognitive development.
  • Child trauma . Explain how educators are trained to detect trauma in preschool kids. Talk about the signs of traumatic stress and its impact on a child’s development.
  • Legal regulations in early childhood education. Explore the objective of public regulation of education. Discuss children’s rights to education and the regulatory bodies that ensure their protection.
  • Contribution of Friedrich Froebel . Explore Froebel’s advocacy of an activity-based approach to early childhood education. Talk about the importance of creative and structured learning for developing minds.
  • Effects of social interaction. Discuss the significance of socializing on a child’s cognitive development. Explain why educators should incorporate social activities in preschool to boost a child’s confidence.
  • Importance of childcare centers . Evaluate their significance in developing emotional, social, and communication skills. Talk about the safety and health of children in preschool.

Here are some more exciting topics about early childhood education:

  • The significance of physical books for preschool children.
  • Best practices in early childhood education .
  • The effects of divorce on the cognitive development of a preschool child.
  • The influence of parents on young children’s moral development .
  • Interview with an early childhood professional .
  • Teachers’ attitudes toward children with ADHD in preschool.
  • Effects of technology in an early childhood class.
  • Impact of early childhood experience on the development of the personality .
  • The significance of kindergarten in children’s development.
  • How does unlimited screen time affect a child’s brain?
  • Arts and play in early childhood development .
  • Discuss the environmental factors that influence a child’s development.
  • What is the observational strategy in early childhood training?
  • Early childhood education: leadership and management .
  • Significance of outdoor play in kindergarten learners.
  • The role of vision therapy in young autistic children.
  • Teaching philosophy in early childhood development .
  • The influence of video games on young children’s learning outcomes.
  • Discuss Vygotsky’s theory of socio-cultural learning.
  • Early childhood profession in Australia .
  • An analysis of the practical implications of early childhood learning.
  • Discuss the objectives of international agreements on early childhood education.
  • Environment in early childhood education .
  • The barriers and challenges hindering young children’s effective learning.
  • Genetic influences on a child’s behavior.
  • Curricular issues in early childhood education .
  • The significance of play in enhancing social skills .
  • How does storytelling improve cognitive development?
  • Early childhood safety considerations .
  • Does early childhood development affect an individual’s personality?
  • The effect of green classroom environment on young children.
  • Early childhood education standards and practices .
  • The role of diet on child development.
  • The influence of culture on a child’s behavior.
  • Overcoming stereotypes in early childhood education .
  • The impact of bullying on young children.
  • Emotional development in early childhood education.
  • Stress in early childhood education .

🧠 53 Educational Psychology Research Topics

Educational psychology studies human learning processes, such as memory, conceptual understanding, and social-emotional skills. It covers both cognitive and behavioral aspects. Below are interesting educational psychology research topics to inspire your academic project:

  • History of educational psychology. Explore the origin of educational psychology and the contributions made by its founders. Discuss the formal learning steps according to Johann Herbart.
  • Young learners vs. adult learners. Explain the difference between learning as a child and an adult. Describe the challenges encountered and problem-solving skills demonstrated by children and adults in different situations.
  • Significance of inspirational teaching. Explore the gender differences in teaching strategies. Discuss the pros and cons of incorporating emotions when teaching. Present the findings and implications for student performance.
  • Emotion-based learning. Conduct a comparative study among autistic children and regular children in preschool. Explain how emotion-based teaching influences cognitive development and corrects learning impairments in autistic children.
  • Importance of discipline models. Construct a case study of high-school students engaging in extra-curricular activities. Establish a connection between discipline models and high achievements. Talk about the psychological impact of a strict routine on shaping an individual’s personality.
  • Effects of language challenges. Explore how language impacts the learning abilities of young children and how it may affect a student’s personality and performance later.
  • Philosophers of education. Present a comparative evaluation of the history of education philosophers. Talk about the approaches of Juan Vives, Johann Herbart, and Johann Pestalozzi and their contribution to educational psychology.
  • Impact of culture on education. Explore how culture can strongly influence an individual’s perception of education. Discuss the positive and negative aspects of culture from modern and historical angles.
  • Educational psychology in rural schools. Evaluate the ethical, professional, and legal frameworks of education in rural contexts . Talk about the challenges faced by educators in rural areas.
  • Effects of motivation on student performance. Explain the importance of motivation in students. You can focus on high-school learners and assess the effectiveness of a particular system of rewards for good performance.
  • Language and literacy in education. Identify and define language issues during early years and the implications for future achievements. Talk about reading and language barriers affecting young children.
  • Bell curve approach. Explore the fairness of the bell curve system of grading. Discuss the history of this method and its pros and cons. Explain its educational relevance and role in motivating students.
  • Positive psychology in education. Evaluate the role of positive psychology in encouraging student performance. Analyze how schools can integrate mental health education into teaching achievement and accomplishment.
  • Stress management techniques. Suggest the best approach to managing academic stress and preventing depression among students. Talk about the leading causes and effects of stress among college students and effective coping techniques.
  • Impact of peer pressure . Explain the upsides and downsides of peer groups in school-going children. Discuss the effects of peer pressure on the moral conduct of students.

Here are some more examples of educational psychology topics for your research writing:

  • The importance of educational psychology.
  • Educational psychology: theory and practice .
  • How does a child’s brain develop during learning?
  • The risk factors and outcomes of bullying.
  • Educational psychology: changing students’ behavior .
  • The significance of peer interaction in adolescents.
  • Effects of substance abuse on student performance.
  • Using educational psychology in teaching .
  • The influence of cartoons on a child’s mental state.
  • Discuss teenage rebellion against parents.
  • Reinforcers in classrooms: educational psychology in teaching .
  • The relationship between speech disorders and cognitive development.
  • An analysis of psychological theories in education.
  • Educational psychology: behaviorism .
  • The impact of media violence on child development.
  • Explore the trends in educational psychology.
  • School facilities in educational psychology .
  • The effect of gender stereotyping in schools.
  • Autism spectrum : the perspectives of parents and teachers.
  • Psychology of learning and memory .
  • The influence of the authoritarian parenting style on student performance.
  • The impact of single parenting on children’s cognitive development.
  • Cognitive learning and IQ tests .
  • Discuss major challenges in mathematical thinking.
  • An analysis of social-emotional development in children.
  • Pathways of adult learning .
  • The influence of modern technology on educational psychology.
  • The importance of critical thinking in learners.
  • Learning styles and their importance .
  • Should schools teach moral behavior?
  • A comparative study of psychological disorders .
  • Anxiety causes and effects on language learning .
  • Leading causes of mental health issues among students.
  • The significance of professional educators.
  • Student motivation and ways to enhance it .
  • Discipline approaches for moral development.
  • The mechanism of character development in young children.
  • Learning and memory relations .

🧸 53 Child Development Topics to Explore

Child development is an important field of study since it investigates the changes a person undergoes from conception to adolescence. Finding a unique topic on child development may be challenging. We offer a comprehensive list of child development topics to simplify your research project:

  • Child development theories. Explore significant theories and their importance in explaining children’s social and emotional development. For example, talk about the contributions of Jean Piaget to understanding children’s cognition.
  • The significance of social interaction. Evaluate the importance of socialization in a child’s behavior. Present the outcomes of interacting with peers and its influence on a child’s personality .
  • Mental health in early childhood development. Explain why mental health is often overlooked in young children. Discuss the signs of psychological problems in children.
  • Jean Piaget’s perspective on child development. Explore the history of Piaget’s philosophy and the importance of child psychology in the modern world. Talk about the relevance of each developmental stage.
  • Early childhood personality. Study personality development at a young age. Discuss how childhood shapes an individual’s personality throughout their life.
  • The impact of gender roles in child development. Explore what part parents and educators play in teaching children about gender roles. Discuss the possible effects of learning gender roles on shaping a child’s perception and actions as an adult.
  • The significance of the environment. Explain the role of the environment in developing the human mind during childhood. Consider such environmental factors as friends , housing, climate, and access to basic needs.
  • Communication skills in language development. Explain the importance of consistent communication with a child from conception to the early years. Talk about parent-child bonding through communication and how it influences language development.
  • The influence of culture on child development. Conduct a comprehensive study of how cultural differences impact a child’s development. Talk about the cultural norms that children are trained to accept as they grow from infancy to adulthood.
  • Importance of child observation . Explain why observing a child during the early years is crucial to identify issues in achieving developmental milestones. Discuss the role of parents and educators in child development.
  • Attachment theory by John Bowlby. Explore the attachment theory and why interpersonal relationships are essential among humans. Talk about the significance of an emotional bond between a child and a parent to facilitate normal development.
  • Erickson’s stages of development. Analyze the eight phases of human development. Discuss the importance of each stage and how it affects an individual’s future behavior and personality.
  • Asynchronous development. Explore the challenges of asynchronous development to parents, educators, and the child. Talk about the possible causes and effects of asynchronous development.
  • Child research methods. Conduct a comparative analysis of infant research methods. Discuss the key challenges when studying infants. Talk about such approaches as eye tracking, the sucking technique, or brain imaging technology.
  • Ethical considerations in child research. Explore the ethical dilemmas when conducting studies on children. Describe the verbal and non-verbal indicators that researchers can use as a child’s consent to participation.

Here are more exciting topics on child development:

  • Discuss Piaget’s theory of child development.
  • Child development from birth to three wears and the role of adults .
  • Importance of play in improving gross motor skills .
  • Why do parents need to understand child development theories?
  • Attachment and its role in child development .
  • The role of music in increasing focus in children.
  • Discuss the five steps of cognitive development.
  • Child development and education: physical exercise .
  • Ego formation in a child.
  • Discuss positive parenting styles.
  • Cognitive domain of child development: activity plan .
  • Effects of food insecurity on child development.
  • Explore Vygotsky’s social-cultural theory.
  • Gifted students: child development .
  • Child development: The role of a mother .
  • Importance of language stimulation in young children.
  • Physical education: impact on child development .
  • Significance of movement in child development.
  • An analysis of effective parenting styles.
  • Child development theories .
  • The influence of genetics on child development.
  • The role of a balanced diet in child development.
  • Educative toys’ role in child development .
  • Why are children more creative than adults?
  • The importance of pretend-play on development.
  • Connection between screen time and child development .
  • Discuss social development theory in relation to children.
  • A comparative analysis of Vygotsky’s and Piaget’s theories.
  • Child development: ages one through three .
  • Discuss the impact of literate communities on child development.
  • How can parents deal with stress in children and teenagers?
  • Child development and environmental influences .
  • The environmental influences on a child’s behavior.
  • Pros and cons of imaginary friends.
  • The impact of dyslexia on child development .
  • Effective approaches in language development.
  • The role of books in child development.
  • Child development during the COVID-19 pandemic .

👩🏻‍💼 53 Educational Management Research Topics

Educational management is a collection of various components of education. Research topics cover multiple concepts ranging from administrative to financial aspects of education. Here are inspiring educational management research topics for your perusal:

  • Higher education leadership . Explore the qualifications of higher education leaders in developed countries. Discuss their implications for pursuing a career in educational management.
  • A review of the educational ecosystem. Explore the governing bodies in education. Talk about the government ministries, statutory bodies, principals, administrative personnel, educators, and non-teaching staff. Explain why management is vital at all levels.
  • Significance of extra-curricular activities. Explore the role of co-curricular activities in maintaining a holistic education approach. Discuss the types of activities and their benefits for student performance.
  • Curriculum planning . Explore the strategies used in curriculum planning and the factors affecting its development, evaluation, and implementation. Discuss the three stages involved in this process.
  • Friedrich Frobel’s approach to curriculum development. Explore the key educational components at the preschool level and describe the forms of knowledge. Explain Frobel’s focus on life, knowledge, and beauty.
  • The impact of technology. Explore the significance of technology in education management. Investigate such issues as budget limitations, data security concerns, and poor network infrastructure.
  • Importance of financial policies in schools. Explain how economic policies offer administrative support to ensure seamless operations. Talk about the revenue streams, school funds, government subsidies, grants, and allowances.
  • Health and physical development . Explain why institutions need a health and physical education department. Talk about healthy living and the importance of exercise.
  • Significance of human resources . Discuss the role of the HR department in educational institutions. Present the benefits of specific organizational structures and operational policies in ensuring smooth functioning.
  • The objectives of educators. Explore the strategies for planning and implementing lessons. Talk about the importance of pedagogical practices in educational management. Discuss the effects of the classroom-management approach.
  • National examples of educational management. Conduct a comparative study on Australia , Finland, and Singapore. Discuss the school structure, curriculum, and government policies and involvement.
  • Parents’ perception of educational administrative policies. Discuss the parents’ attitudes toward policies from preschool to the university level. Explore both private and public institutions.
  • The goals of education ministries. Explore the objectives of the education ministry, such as designing, implementing, monitoring, and evaluating educational legislation. Discuss the leadership roles in ensuring smooth operations of learning institutions.
  • Challenges of educators. Explore the leadership styles of educators in high school. Talk about the discipline strategies for dealing with rebellious teenagers and cases of indiscipline.
  • Special education. Analyze the features of education management in special schools. Discuss the process of developing individual education plans and dealing with special education issues, such as budgeting or parent education.

Here are some more engaging topics in educational management you can check out to get inspiration:

  • Discuss the critical issues of classroom management .
  • Why is the UK education system successful ?
  • Effects of guidance on student performance.
  • The effectiveness of standardized tests for measuring student performance.
  • Corruption in the education sector: Democratic Republic of Congo .
  • The features of managing distance learning systems .
  • The role of a principal in school functioning.
  • The financial issues in the secondary education area in the US .
  • The relationship between a principal’s leadership style and teachers’ satisfaction.
  • The link between classroom management and student behavior.
  • School principals as agents of change .
  • Effects on instructional-based learning on academic performance.
  • An analysis of interactive teaching methods.
  • School-community partnership and its benefits .
  • The influence of government policies in educational administration.
  • Discuss educational leadership in the digital age.
  • Program quality assessment: teaching and learning .
  • The role of educators in moral discipline.
  • The impact of a poor educational system.
  • The lack of sex education in the Thai educational system .
  • An analysis of Montessori education .
  • Importance of curriculum planning.
  • Teachers’ certification: is it necessary ?
  • The effects of progressive education .
  • The influence of the environment on academic performance.
  • How can a principal improve the quality of special education ?
  • Discuss the impact of teacher motivation.
  • Does strict school supervision translate to high academic performance?
  • Effectiveness of educational leadership management skills .
  • Can poor management of schools result in increased student indiscipline?
  • The influence of good administrative leadership in education.
  • Educational leadership and instruction differentiation .
  • Factors preventing effective school management.
  • Explore biases in educational administration.
  • The use of standardized tests in college admissions .
  • The link between academic performance and school accountability .
  • Gender equality in educational management.
  • Financial issues facing US higher education .

📑 15 Dissertation Topics in Education

Dissertation research is more complex than usual research for college or university assignments. It requires more originality and extends over a longer period. Here are some dissertation topics in education you can consider for your forthcoming dissertation project:

  • Examine the impact of COVID-19 social isolation on students of your university.
  • Social media impact on English language learning .
  • Cross-cultural communication and conflict management at your chosen online study course.
  • Principals’ concerns and attitudes toward social distancing policies in Texas schools.
  • Formative assessment: impact on student achievement .
  • A case study of children’s first and second language use in play-based interactions in a private kindergarten.
  • The impact of present-day economic pressures on the K-12 curriculum development in the US: Teachers’ and policymakers’ perspectives.
  • How does inclusion impact autistic children ?
  • Collaborative inquiry and video documentation to facilitate school teachers’ critical thinking competencies: Analysis of the INSIGHT project at a public school .
  • Using computer-based reading interventions for at-risk preschoolers: Teachers’ perspectives.
  • Homeschooling and its impact on learners .
  • Relationship between the Math assessment method and student self-esteem.
  • Parents’ attitudes toward the use of technology in elementary school.
  • Impact of classroom technology on learner attitudes .
  • Impact of teacher training on student attainment: An EU study.
  • The link between homework load and student stress levels.
  • How common are shootings in American schools?
  • The impact of classroom size on academic performance in elementary schools.
  • The relationship between school safety measures and student psychological well-being.
  • How effective is an inclusive school environment in fostering better academic outcomes?
  • The impact of socioeconomic factors on school dropout rates.
  • What is the role of school policies in addressing cyberbullying among students?
  • The influence of socioeconomic aspects on the quality of education in public schools.
  • How prevalent is bullying in public schools?
  • The influence of standardized testing on student success.
  • How important is parent involvement in the learning process?
  • The effect of extracurricular overload on student anxiety development.
  • How does peer pressure affect student decision-making?
  • The influence of inclusive education on the performance of students with learning disabilities.
  • How can AI technology in education engage students in more active learning?
  • The link between socioeconomic background and access to educational resources.
  • The impact of government funding on the education system.
  • How limited is access to mental health support in high schools?

Now that you have a comprehensive list of educational research topics of all complexity levels, you can easily ace any assignment for your Pedagogy course. Don’t hesitate to share this article with your peers and post a commentary if any topic has been helpful to you.

❓ Education Research Topics FAQ

What are some good research topics in education.

Well-chosen topics for educational research should be carefully scoped and relevant to your academic level and context. It’s vital to cover hot issues by linking theory and practice, thus ensuring that your study is valuable and related to present-day education.

What is an example of educational research?

Educational research covers many subjects and subdisciplines, so you may focus on any area important to you. It may be a special education class where you can approach teachers or observe students with special needs . Or it can be educational leadership research, where you will search for new, efficient ways of school administration for principals.

What topics should be addressed in sex education?

Sex education is a pressing issue in many schools worldwide, as teenage pregnancy rates are increasing. You may approach this subject by examining the attitudes to sex education among parents with different religious affiliations. Or you can compare the rates of teenage abortion and pregnancies in states with and without sex education in the formal curriculum.

What is action research in education?

Action research is a combination of practice and research in one endeavor. You should first study theory, develop an assumption that can be applied in practice, and then implement that method in your educational setting. After the intervention, you measure the outcomes and present findings in your research paper, thus concluding whether your assumption was valid.

  • Child Development Basics | CDC
  • Issues and Challenges in Special Education | Southeast Asia Early Childhood Journal
  • Social Issues That Special Education Teachers Face | Chron
  • Problems in Educational Administration | Classroom
  • Early Childhood Development: The Promise, the Problem, and the Path Forward | Brookings
  • Educational Psychology and Research | University of South Carolina
  • 5 Big Challenges for Schools in 2023 | EducationWeek
  • Quantitative Methods in Education | University of Minnesota
  • Qualitative vs. Quantitative Research | American University

414 Proposal Essay Topics for Projects, Research, & Proposal Arguments

725 research proposal topics & title ideas in education, psychology, business, & more.

  • Open access
  • Published: 10 March 2020

Research and trends in STEM education: a systematic review of journal publications

  • Yeping Li 1 ,
  • Ke Wang 2 ,
  • Yu Xiao 1 &
  • Jeffrey E. Froyd 3  

International Journal of STEM Education volume  7 , Article number:  11 ( 2020 ) Cite this article

164k Accesses

149 Citations

5 Altmetric

Metrics details

With the rapid increase in the number of scholarly publications on STEM education in recent years, reviews of the status and trends in STEM education research internationally support the development of the field. For this review, we conducted a systematic analysis of 798 articles in STEM education published between 2000 and the end of 2018 in 36 journals to get an overview about developments in STEM education scholarship. We examined those selected journal publications both quantitatively and qualitatively, including the number of articles published, journals in which the articles were published, authorship nationality, and research topic and methods over the years. The results show that research in STEM education is increasing in importance internationally and that the identity of STEM education journals is becoming clearer over time.

Introduction

A recent review of 144 publications in the International Journal of STEM Education ( IJ - STEM ) showed how scholarship in science, technology, engineering, and mathematics (STEM) education developed between August 2014 and the end of 2018 through the lens of one journal (Li, Froyd, & Wang, 2019 ). The review of articles published in only one journal over a short period of time prompted the need to review the status and trends in STEM education research internationally by analyzing articles published in a wider range of journals over a longer period of time.

With global recognition of the growing importance of STEM education, we have witnessed the urgent need to support research and scholarship in STEM education (Li, 2014 , 2018a ). Researchers and educators have responded to this on-going call and published their scholarly work through many different publication outlets including journals, books, and conference proceedings. A simple Google search with the term “STEM,” “STEM education,” or “STEM education research” all returned more than 450,000,000 items. Such voluminous information shows the rapidly evolving and vibrant field of STEM education and sheds light on the volume of STEM education research. In any field, it is important to know and understand the status and trends in scholarship for the field to develop and be appropriately supported. This applies to STEM education.

Conducting systematic reviews to explore the status and trends in specific disciplines is common in educational research. For example, researchers surveyed the historical development of research in mathematics education (Kilpatrick, 1992 ) and studied patterns in technology usage in mathematics education (Bray & Tangney, 2017 ; Sokolowski, Li, & Willson, 2015 ). In science education, Tsai and his colleagues have conducted a sequence of reviews of journal articles to synthesize research trends in every 5 years since 1998 (i.e., 1998–2002, 2003–2007, 2008–2012, and 2013–2017), based on publications in three main science education journals including, Science Education , the International Journal of Science Education , and the Journal of Research in Science Teaching (e.g., Lin, Lin, Potvin, & Tsai, 2019 ; Tsai & Wen, 2005 ). Erduran, Ozdem, and Park ( 2015 ) reviewed argumentation in science education research from 1998 to 2014 and Minner, Levy, and Century ( 2010 ) reviewed inquiry-based science instruction between 1984 and 2002. There are also many literature reviews and syntheses in engineering and technology education (e.g., Borrego, Foster, & Froyd, 2015 ; Xu, Williams, Gu, & Zhang, 2019 ). All of these reviews have been well received in different fields of traditional disciplinary education as they critically appraise and summarize the state-of-art of relevant research in a field in general or with a specific focus. Both types of reviews have been conducted with different methods for identifying, collecting, and analyzing relevant publications, and they differ in terms of review aim and topic scope, time period, and ways of literature selection. In this review, we systematically analyze journal publications in STEM education research to overview STEM education scholarship development broadly and globally.

The complexity and ambiguity of examining the status and trends in STEM education research

A review of research development in a field is relatively straight forward, when the field is mature and its scope can be well defined. Unlike discipline-based education research (DBER, National Research Council, 2012 ), STEM education is not a well-defined field. Conducting a comprehensive literature review of STEM education research require careful thought and clearly specified scope to tackle the complexity naturally associated with STEM education. In the following sub-sections, we provide some further discussion.

Diverse perspectives about STEM and STEM education

STEM education as explicated by the term does not have a long history. The interest in helping students learn across STEM fields can be traced back to the 1990s when the US National Science Foundation (NSF) formally included engineering and technology with science and mathematics in undergraduate and K-12 school education (e.g., National Science Foundation, 1998 ). It coined the acronym SMET (science, mathematics, engineering, and technology) that was subsequently used by other agencies including the US Congress (e.g., United States Congress House Committee on Science, 1998 ). NSF also coined the acronym STEM to replace SMET (e.g., Christenson, 2011 ; Chute, 2009 ) and it has become the acronym of choice. However, a consensus has not been reached on the disciplines included within STEM.

To clarify its intent, NSF published a list of approved fields it considered under the umbrella of STEM (see http://bit.ly/2Bk1Yp5 ). The list not only includes disciplines widely considered under the STEM tent (called “core” disciplines, such as physics, chemistry, and materials research), but also includes disciplines in psychology and social sciences (e.g., political science, economics). However, NSF’s list of STEM fields is inconsistent with other federal agencies. Gonzalez and Kuenzi ( 2012 ) noted that at least two US agencies, the Department of Homeland Security and Immigration and Customs Enforcement, use a narrower definition that excludes social sciences. Researchers also view integration across different disciplines of STEM differently using various terms such as, multidisciplinary, interdisciplinary, and transdisciplinary (Vasquez, Sneider, & Comer, 2013 ). These are only two examples of the ambiguity and complexity in describing and specifying what constitutes STEM.

Multiple perspectives about the meaning of STEM education adds further complexity to determining the extent to which scholarly activity can be categorized as STEM education. For example, STEM education can be viewed with a broad and inclusive perspective to include education in the individual disciplines of STEM, i.e., science education, technology education, engineering education, and mathematics education, as well as interdisciplinary or cross-disciplinary combinations of the individual STEM disciplines (English, 2016 ; Li, 2014 ). On the other hand, STEM education can be viewed by others as referring only to interdisciplinary or cross-disciplinary combinations of the individual STEM disciplines (Honey, Pearson, & Schweingruber, 2014 ; Johnson, Peters-Burton, & Moore, 2015 ; Kelley & Knowles, 2016 ; Li, 2018a ). These multiple perspectives allow scholars to publish articles in a vast array and diverse journals, as long as journals are willing to take the position as connected with STEM education. At the same time, however, the situation presents considerable challenges for researchers intending to locate, identify, and classify publications as STEM education research. To tackle such challenges, we tried to find out what we can learn from prior reviews related to STEM education.

Guidance from prior reviews related to STEM education

A search for reviews of STEM education research found multiple reviews that could suggest approaches for identifying publications (e.g., Brown, 2012 ; Henderson, Beach, & Finkelstein, 2011 ; Kim, Sinatra, & Seyranian, 2018 ; Margot & Kettler, 2019 ; Minichiello, Hood, & Harkness, 2018 ; Mizell & Brown, 2016 ; Thibaut et al., 2018 ; Wu & Rau, 2019 ). The review conducted by Brown ( 2012 ) examined the research base of STEM education. He addressed the complexity and ambiguity by confining the review with publications in eight journals, two in each individual discipline, one academic research journal (e.g., the Journal of Research in Science Teaching ) and one practitioner journal (e.g., Science Teacher ). Journals were selected based on suggestions from some faculty members and K-12 teachers. Out of 1100 articles published in these eight journals from January 1, 2007, to October 1, 2010, Brown located 60 articles that authors self-identified as connected to STEM education. He found that the vast majority of these 60 articles focused on issues beyond an individual discipline and there was a research base forming for STEM education. In a follow-up study, Mizell and Brown ( 2016 ) reviewed articles published from January 2013 to October 2015 in the same eight journals plus two additional journals. Mizell and Brown used the same criteria to identify and include articles that authors self-identified as connected to STEM education, i.e., if the authors included STEM in the title or author-supplied keywords. In comparison to Brown’s findings, they found that many more STEM articles were published in a shorter time period and by scholars from many more different academic institutions. Taking together, both Brown ( 2012 ) and Mizell and Brown ( 2016 ) tended to suggest that STEM education mainly consists of interdisciplinary or cross-disciplinary combinations of the individual STEM disciplines, but their approach consisted of selecting a limited number of individual discipline-based journals and then selecting articles that authors self-identified as connected to STEM education.

In contrast to reviews on STEM education, in general, other reviews focused on specific issues in STEM education (e.g., Henderson et al., 2011 ; Kim et al., 2018 ; Margot & Kettler, 2019 ; Minichiello et al., 2018 ; Schreffler, Vasquez III, Chini, & James, 2019 ; Thibaut et al., 2018 ; Wu & Rau, 2019 ). For example, the review by Henderson et al. ( 2011 ) focused on instructional change in undergraduate STEM courses based on 191 conceptual and empirical journal articles published between 1995 and 2008. Margot and Kettler ( 2019 ) focused on what is known about teachers’ values, beliefs, perceived barriers, and needed support related to STEM education based on 25 empirical journal articles published between 2000 and 2016. The focus of these reviews allowed the researchers to limit the number of articles considered, and they typically used keyword searches of selected databases to identify articles on STEM education. Some researchers used this approach to identify publications from journals only (e.g., Henderson et al., 2011 ; Margot & Kettler, 2019 ; Schreffler et al., 2019 ), and others selected and reviewed publications beyond journals (e.g., Minichiello et al., 2018 ; Thibaut et al., 2018 ; Wu & Rau, 2019 ).

The discussion in this section suggests possible reasons contributing to the absence of a general literature review of STEM education research and development: (1) diverse perspectives in existence about STEM and STEM education that contribute to the difficulty of specifying a scope of literature review, (2) its short but rapid development history in comparison to other discipline-based education (e.g., science education), and (3) difficulties in deciding how to establish the scope of the literature review. With respect to the third reason, prior reviews have used one of two approaches to identify and select articles: (a) identifying specific journals first and then searching and selecting specific articles from these journals (e.g., Brown, 2012 ; Erduran et al., 2015 ; Mizell & Brown, 2016 ) and (b) conducting selected database searches with keywords based on a specific focus (e.g., Margot & Kettler, 2019 ; Thibaut et al., 2018 ). However, neither the first approach of selecting a limited number of individual discipline-based journals nor the second approach of selecting a specific focus for the review leads to an approach that provides a general overview of STEM education scholarship development based on existing journal publications.

Current review

Two issues were identified in setting the scope for this review.

What time period should be considered?

What publications will be selected for review?

Time period

We start with the easy one first. As discussed above, the acronym STEM did exist until the early 2000s. Although the existence of the acronym does not generate scholarship on student learning in STEM disciplines, it is symbolic and helps focus attention to efforts in STEM education. Since we want to examine the status and trends in STEM education, it is reasonable to start with the year 2000. Then, we can use the acronym of STEM as an identifier in locating specific research articles in a way as done by others (e.g., Brown, 2012 ; Mizell & Brown, 2016 ). We chose the end of 2018 as the end of the time period for our review that began during 2019.

Focusing on publications beyond individual discipline-based journals

As mentioned before, scholars responded to the call for scholarship development in STEM education with publications that appeared in various outlets and diverse languages, including journals, books, and conference proceedings. However, journal publications are typically credited and valued as one of the most important outlets for research exchange (e.g., Erduran et al., 2015 ; Henderson et al., 2011 ; Lin et al., 2019 ; Xu et al., 2019 ). Thus, in this review, we will also focus on articles published in journals in English.

The discourse above on the complexity and ambiguity regarding STEM education suggests that scholars may publish their research in a wide range of journals beyond individual discipline-based journals. To search and select articles from a wide range of journals, we thought about the approach of searching selected databases with keywords as other scholars used in reviewing STEM education with a specific focus. However, existing journals in STEM education do not have a long history. In fact, IJ-STEM is the first journal in STEM education that has just been accepted into the Social Sciences Citation Index (SSCI) (Li, 2019a ). Publications in many STEM education journals are practically not available in several important and popular databases, such as the Web of Science and Scopus. Moreover, some journals in STEM education were not normalized due to a journal’s name change or irregular publication schedule. For example, the Journal of STEM Education was named as Journal of SMET Education when it started in 2000 in a print format, and the journal’s name was not changed until 2003, Vol 4 (3 and 4), and also went fully on-line starting 2004 (Raju & Sankar, 2003 ). A simple Google Scholar search with keywords will not be able to provide accurate information, unless you visit the journal’s website to check all publications over the years. Those added complexities prevented us from taking the database search as a viable approach. Thus, we decided to identify journals first and then search and select articles from these journals. Further details about the approach are provided in the “ Method ” section.

Research questions

Given a broader range of journals and a longer period of time to be covered in this review, we can examine some of the same questions as the IJ-STEM review (Li, Froyd, & Wang, 2019 ), but we do not have access to data on readership, articles accessed, or articles cited for the other journals selected for this review. Specifically, we are interested in addressing the following six research questions:

What were the status and trends in STEM education research from 2000 to the end of 2018 based on journal publications?

What were the patterns of publications in STEM education research across different journals?

Which countries or regions, based on the countries or regions in which authors were located, contributed to journal publications in STEM education?

What were the patterns of single-author and multiple-author publications in STEM education?

What main topics had emerged in STEM education research based on the journal publications?

What research methods did authors tend to use in conducting STEM education research?

Based on the above discussion, we developed the methods for this literature review to follow careful sequential steps to identify journals first and then identify and select STEM education research articles published in these journals from January 2000 to the end of 2018. The methods should allow us to obtain a comprehensive overview about the status and trends of STEM education research based on a systematic analysis of related publications from a broad range of journals and over a longer period of time.

Identifying journals

We used the following three steps to search and identify journals for inclusion:

We assumed articles on research in STEM education have been published in journals that involve more than one traditional discipline. Thus, we used Google to search and identify all education journals with their titles containing either two, three, or all four disciplines of STEM. For example, we did Google search of all the different combinations of three areas of science, mathematics, technology Footnote 1 , and engineering as contained in a journal’s title. In addition, we also searched possible journals containing the word STEAM in the title.

Since STEM education may be viewed as encompassing discipline-based education research, articles on STEM education research may have been published in traditional discipline-based education journals, such as the Journal of Research in Science Teaching . However, there are too many such journals. Yale’s Poorvu Center for Teaching and Learning has listed 16 journals that publish articles spanning across undergraduate STEM education disciplines (see https://poorvucenter.yale.edu/FacultyResources/STEMjournals ). Thus, we selected from the list some individual discipline-based education research journals, and also added a few more common ones such as the Journal of Engineering Education .

Since articles on research in STEM education have appeared in some general education research journals, especially those well-established ones. Thus, we identified and selected a few of those journals that we noticed some publications in STEM education research.

Following the above three steps, we identified 45 journals (see Table  1 ).

Identifying articles

In this review, we will not discuss or define the meaning of STEM education. We used the acronym STEM (or STEAM, or written as the phrase of “science, technology, engineering, and mathematics”) as a term in our search of publication titles and/or abstracts. To identify and select articles for review, we searched all items published in those 45 journals and selected only those articles that author(s) self-identified with the acronym STEM (or STEAM, or written as the phrase of “science, technology, engineering, and mathematics”) in the title and/or abstract. We excluded publications in the sections of practices, letters to editors, corrections, and (guest) editorials. Our search found 798 publications that authors self-identified as in STEM education, identified from 36 journals. The remaining 9 journals either did not have publications that met our search terms or published in another language other than English (see the two separate lists in Table 1 ).

Data analysis

To address research question 3, we analyzed authorship to examine which countries/regions contributed to STEM education research over the years. Because each publication may have either one or multiple authors, we used two different methods to analyze authorship nationality that have been recognized as valuable from our review of IJ-STEM publications (Li, Froyd, & Wang, 2019 ). The first method considers only the corresponding author’s (or the first author, if no specific indication is given about the corresponding author) nationality and his/her first institution affiliation, if multiple institution affiliations are listed. Method 2 considers every author of a publication, using the following formula (Howard, Cole, & Maxwell, 1987 ) to quantitatively assign and estimate each author’s contribution to a publication (and thus associated institution’s productivity), when multiple authors are included in a publication. As an example, each publication is given one credit point. For the publication co-authored by two, the first author would be given 0.6 and the second author 0.4 credit point. For an article contributed jointly by three authors, the three authors would be credited with scores of 0.47, 0.32, and 0.21, respectively.

After calculating all the scores for each author of each paper, we added all the credit scores together in terms of each author’s country/region. For brevity, we present only the top 10 countries/regions in terms of their total credit scores calculated using these two different methods, respectively.

To address research question 5, we used the same seven topic categories identified and used in our review of IJ-STEM publications (Li, Froyd, & Wang, 2019 ). We tested coding 100 articles first to ensure the feasibility. Through test-coding and discussions, we found seven topic categories could be used to examine and classify all 798 items.

K-12 teaching, teacher, and teacher education in STEM (including both pre-service and in-service teacher education)

Post-secondary teacher and teaching in STEM (including faculty development, etc.)

K-12 STEM learner, learning, and learning environment

Post-secondary STEM learner, learning, and learning environments (excluding pre-service teacher education)

Policy, curriculum, evaluation, and assessment in STEM (including literature review about a field in general)

Culture and social and gender issues in STEM education

History, epistemology, and perspectives about STEM and STEM education

To address research question 6, we coded all 798 publications in terms of (1) qualitative methods, (2) quantitative methods, (3) mixed methods, and (4) non-empirical studies (including theoretical or conceptual papers, and literature reviews). We assigned each publication to only one research topic and one method, following the process used in the IJ-STEM review (Li, Froyd, & Wang, 2019 ). When there was more than one topic or method that could have been used for a publication, a decision was made in choosing and assigning a topic or a method. The agreement between two coders for all 798 publications was 89.5%. When topic and method coding discrepancies occurred, a final decision was reached after discussion.

Results and discussion

In the following sections, we report findings as corresponding to each of the six research questions.

The status and trends of journal publications in STEM education research from 2000 to 2018

Figure  1 shows the number of publications per year. As Fig.  1 shows, the number of publications increased each year beginning in 2010. There are noticeable jumps from 2015 to 2016 and from 2017 to 2018. The result shows that research in STEM education had grown significantly since 2010, and the most recent large number of STEM education publications also suggests that STEM education research gained its own recognition by many different journals for publication as a hot and important topic area.

figure 1

The distribution of STEM education publications over the years

Among the 798 articles, there were 549 articles with the word “STEM” (or STEAM, or written with the phrase of “science, technology, engineering, and mathematics”) included in the article’s title or both title and abstract and 249 articles without such identifiers included in the title but abstract only. The results suggest that many scholars tended to include STEM in the publications’ titles to highlight their research in or about STEM education. Figure  2 shows the number of publications per year where publications are distinguished depending on whether they used the term STEM in the title or only in the abstract. The number of publications in both categories had significant increases since 2010. Use of the acronym STEM in the title was growing at a faster rate than using the acronym only in the abstract.

figure 2

The trends of STEM education publications with vs. without STEM included in the title

Not all the publications that used the acronym STEM in the title and/or abstract reported on a study involving all four STEM areas. For each publication, we further examined the number of the four areas involved in the reported study.

Figure  3 presents the number of publications categorized by the number of the four areas involved in the study, breaking down the distribution of these 798 publications in terms of the content scope being focused on. Studies involving all four STEM areas are the most numerous with 488 (61.2%) publications, followed by involving one area (141, 17.7%), then studies involving both STEM and non-STEM (84, 10.5%), and finally studies involving two or three areas of STEM (72, 9%; 13, 1.6%; respectively). Publications that used the acronym STEAM in either the title or abstract were classified as involving both STEM and non-STEM. For example, both of the following publications were included in this category.

Dika and D’Amico ( 2016 ). “Early experiences and integration in the persistence of first-generation college students in STEM and non-STEM majors.” Journal of Research in Science Teaching , 53 (3), 368–383. (Note: this article focused on early experience in both STEM and Non-STEM majors.)

Sochacka, Guyotte, and Walther ( 2016 ). “Learning together: A collaborative autoethnographic exploration of STEAM (STEM+ the Arts) education.” Journal of Engineering Education , 105 (1), 15–42. (Note: this article focused on STEAM (both STEM and Arts).)

figure 3

Publication distribution in terms of content scope being focused on. (Note: 1=single subject of STEM, 2=two subjects of STEM, 3=three subjects of STEM, 4=four subjects of STEM, 5=topics related to both STEM and non-STEM)

Figure  4 presents the number of publications per year in each of the five categories described earlier (category 1, one area of STEM; category 2, two areas of STEM; category 3, three areas of STEM; category 4, four areas of STEM; category 5, STEM and non-STEM). The category that had grown most rapidly since 2010 is the one involving all four areas. Recent growth in the number of publications in category 1 likely reflected growing interest of traditional individual disciplinary based educators in developing and sharing multidisciplinary and interdisciplinary scholarship in STEM education, as what was noted recently by Li and Schoenfeld ( 2019 ) with publications in IJ-STEM.

figure 4

Publication distribution in terms of content scope being focused on over the years

Patterns of publications across different journals

Among the 36 journals that published STEM education articles, two are general education research journals (referred to as “subject-0”), 12 with their titles containing one discipline of STEM (“subject-1”), eight with journal’s titles covering two disciplines of STEM (“subject-2”), six covering three disciplines of STEM (“subject-3”), seven containing the word STEM (“subject-4”), and one in STEAM education (“subject-5”).

Table  2 shows that both subject-0 and subject-1 journals were usually mature journals with a long history, and they were all traditional subscription-based journals, except the Journal of Pre - College Engineering Education Research , a subject-1 journal established in 2011 that provided open access (OA). In comparison to subject-0 and subject-1 journals, subject-2 and subject-3 journals were relatively newer but still had quite many years of history on average. There are also some more journals in these two categories that provided OA. Subject-4 and subject-5 journals had a short history, and most provided OA. The results show that well-established journals had tended to focus on individual disciplines or education research in general. Multidisciplinary and interdisciplinary education journals were started some years later, followed by the recent establishment of several STEM or STEAM journals.

Table 2 also shows that subject-1, subject-2, and subject-4 journals published approximately a quarter each of the publications. The number of publications in subject-1 journals is interested, because we selected a relatively limited number of journals in this category. There are many other journals in the subject-1 category (as well as subject-0 journals) that we did not select, and thus it is very likely that we did not include some STEM education articles published in subject-0 or subject-1 journals that we did not include in our study.

Figure  5 shows the number of publications per year in each of the five categories described earlier (subject-0 through subject-5). The number of publications per year in subject-5 and subject-0 journals did not change much over the time period of the study. On the other hand, the number of publications per year in subject-4 (all 4 areas), subject-1 (single area), and subject-2 journals were all over 40 by the end of the study period. The number of publications per year in subject-3 journals increased but remained less than 30. At first sight, it may be a bit surprising that the number of publications in STEM education per year in subject-1 journals increased much faster than those in subject-2 journals over the past few years. However, as Table 2 indicates these journals had long been established with great reputations, and scholars would like to publish their research in such journals. In contrast to the trend in subject-1 journals, the trend in subject-4 journals suggests that STEM education journals collectively started to gain its own identity for publishing and sharing STEM education research.

figure 5

STEM education publication distribution across different journal categories over the years. (Note: 0=subject-0; 1=subject-1; 2=subject-2; 3=subject-3; 4=subject-4; 5=subject-5)

Figure  6 shows the number of STEM education publications in each journal where the bars are color-coded (yellow, subject-0; light blue, subject-1; green, subject-2; purple, subject-3; dark blue, subject-4; and black, subject-5). There is no clear pattern shown in terms of the overall number of STEM education publications across categories or journals, but very much individual journal-based performance. The result indicates that the number of STEM education publications might heavily rely on the individual journal’s willingness and capability of attracting STEM education research work and thus suggests the potential value of examining individual journal’s performance.

figure 6

Publication distribution across all 36 individual journals across different categories with the same color-coded for journals in the same subject category

The top five journals in terms of the number of STEM education publications are Journal of Science Education and Technology (80 publications, journal number 25 in Fig.  6 ), Journal of STEM Education (65 publications, journal number 26), International Journal of STEM Education (64 publications, journal number 17), International Journal of Engineering Education (54 publications, journal number 12), and School Science and Mathematics (41 publications, journal number 31). Among these five journals, two journals are specifically on STEM education (J26, J17), two on two subjects of STEM (J25, J31), and one on one subject of STEM (J12).

Figure  7 shows the number of STEM education publications per year in each of these top five journals. As expected, based on earlier trends, the number of publications per year increased over the study period. The largest increase was in the International Journal of STEM Education (J17) that was established in 2014. As the other four journals were all established in or before 2000, J17’s short history further suggests its outstanding performance in attracting and publishing STEM education articles since 2014 (Li, 2018b ; Li, Froyd, & Wang, 2019 ). The increase was consistent with the journal’s recognition as the first STEM education journal for inclusion in SSCI starting in 2019 (Li, 2019a ).

figure 7

Publication distribution of selected five journals over the years. (Note: J12: International Journal of Engineering Education; J17: International Journal of STEM Education; J25: Journal of Science Education and Technology; J26: Journal of STEM Education; J31: School Science and Mathematics)

Top 10 countries/regions where scholars contributed journal publications in STEM education

Table  3 shows top countries/regions in terms of the number of publications, where the country/region was established by the authorship using the two different methods presented above. About 75% (depending on the method) of contributions were made by authors from the USA, followed by Australia, Canada, Taiwan, and UK. Only Africa as a continent was not represented among the top 10 countries/regions. The results are relatively consistent with patterns reported in the IJ-STEM study (Li, Froyd, & Wang, 2019 )

Further examination of Table 3 reveals that the two methods provide not only fairly consistent results but also yield some differences. For example, Israel and Germany had more publication credit if only the corresponding author was considered, but South Korea and Turkey had more publication credit when co-authors were considered. The results in Table 3 show that each method has value when analyzing and comparing publications by country/region or institution based on authorship.

Recognizing that, as shown in Fig. 1 , the number of publications per year increased rapidly since 2010, Table  4 shows the number of publications by country/region over a 10-year period (2009–2018) and Table 5 shows the number of publications by country/region over a 5-year period (2014–2018). The ranks in Tables  3 , 4 , and 5 are fairly consistent, but that would be expected since the larger numbers of publications in STEM education had occurred in recent years. At the same time, it is interesting to note in Table 5 some changes over the recent several years with Malaysia, but not Israel, entering the top 10 list when either method was used to calculate author's credit.

Patterns of single-author and multiple-author publications in STEM education

Since STEM education differs from traditional individual disciplinary education, we are interested in determining how common joint co-authorship with collaborations was in STEM education articles. Figure  8 shows that joint co-authorship was very common among these 798 STEM education publications, with 83.7% publications with two or more co-authors. Publications with two, three, or at least five co-authors were highest, with 204, 181, and 157 publications, respectively.

figure 8

Number of publications with single or different joint authorship. (Note: 1=single author; 2=two co-authors; 3=three co-authors; 4=four co-authors; 5=five or more co-authors)

Figure  9 shows the number of publications per year using the joint authorship categories in Fig.  8 . Each category shows an increase consistent with the increase shown in Fig. 1 for all 798 publications. By the end of the time period, the number of publications with two, three, or at least five co-authors was the largest, which might suggest an increase in collaborations in STEM education research.

figure 9

Publication distribution with single or different joint authorship over the years. (Note: 1=single author; 2=two co-authors; 3=three co-authors; 4=four co-authors; 5=five or more co-authors)

Co-authors can be from the same or different countries/regions. Figure  10 shows the number of publications per year by single authors (no collaboration), co-authors from the same country (collaboration in a country/region), and co-authors from different countries (collaboration across countries/regions). Each year the largest number of publications was by co-authors from the same country, and the number increased dramatically during the period of the study. Although the number of publications in the other two categories increased, the numbers of publications were noticeably fewer than the number of publications by co-authors from the same country.

figure 10

Publication distribution in authorship across different categories in terms of collaboration over the years

Published articles by research topics

Figure  11 shows the number of publications in each of the seven topic categories. The topic category of goals, policy, curriculum, evaluation, and assessment had almost half of publications (375, 47%). Literature reviews were included in this topic category, as providing an overview assessment of education and research development in a topic area or a field. Sample publications included in this category are listed as follows:

DeCoito ( 2016 ). “STEM education in Canada: A knowledge synthesis.” Canadian Journal of Science , Mathematics and Technology Education , 16 (2), 114–128. (Note: this article provides a national overview of STEM initiatives and programs, including success, criteria for effective programs and current research in STEM education.)

Ring-Whalen, Dare, Roehrig, Titu, and Crotty ( 2018 ). “From conception to curricula: The role of science, technology, engineering, and mathematics in integrated STEM units.” International Journal of Education in Mathematics Science and Technology , 6 (4), 343–362. (Note: this article investigates the conceptions of integrated STEM education held by in-service science teachers through the use of photo-elicitation interviews and examines how those conceptions were reflected in teacher-created integrated STEM curricula.)

Schwab et al. ( 2018 ). “A summer STEM outreach program run by graduate students: Successes, challenges, and recommendations for implementation.” Journal of Research in STEM Education , 4 (2), 117–129. (Note: the article details the organization and scope of the Foundation in Science and Mathematics Program and evaluates this program.)

figure 11

Frequencies of publications’ research topic distributions. (Note: 1=K-12 teaching, teacher and teacher education; 2=Post-secondary teacher and teaching; 3=K-12 STEM learner, learning, and learning environment; 4=Post-secondary STEM learner, learning, and learning environments; 5=Goals and policy, curriculum, evaluation, and assessment (including literature review); 6=Culture, social, and gender issues; 7=History, philosophy, Epistemology, and nature of STEM and STEM education)

The topic with the second most publications was “K-12 teaching, teacher and teacher education” (103, 12.9%), followed closely by “K-12 learner, learning, and learning environment” (97, 12.2%). The results likely suggest the research community had a broad interest in both teaching and learning in K-12 STEM education. The top three topics were the same in the IJ-STEM review (Li, Froyd, & Wang, 2019 ).

Figure  11 also shows there was a virtual tie between two topics with the fourth most cumulative publications, “post-secondary STEM learner & learning” (76, 9.5%) and “culture, social, and gender issues in STEM” (78, 9.8%), such as STEM identity, students’ career choices in STEM, and inclusion. This result is different from the IJ-STEM review (Li, Froyd, & Wang, 2019 ), where “post-secondary STEM teacher & teaching” and “post-secondary STEM learner & learning” were tied as the fourth most common topics. This difference is likely due to the scope of journals and the length of the time period being reviewed.

Figure  12 shows the number of publications per year in each topic category. As expected from the results in Fig.  11 the number of publications in topic category 5 (goals, policy, curriculum, evaluation, and assessment) was the largest each year. The numbers of publications in topic category 3 (K-12 learner, learning, and learning environment), 1 (K-12 teaching, teacher, and teacher education), 6 (culture, social, and gender issues in STEM), and 4 (post-secondary STEM learner and learning) were also increasing. Although Fig.  11 shows the number of publications in topic category 1 was slightly more than the number of publications in topic category 3 (see Fig.  11 ), the number of publications in topic category 3 was increasing more rapidly in recent years than its counterpart in topic category 1. This may suggest a more rapidly growing interest in K-12 STEM learner, learning, and learning environment. The numbers of publications in topic categories 2 and 7 were not increasing, but the number of publications in IJ-STEM in topic category 2 was notable (Li, Froyd, & Wang, 2019 ). It will be interesting to follow trends in the seven topic categories in the future.

figure 12

Publication distributions in terms of research topics over the years

Published articles by research methods

Figure  13 shows the number of publications per year by research methods in empirical studies. Publications with non-empirical studies are shown in a separate category. Although the number of publications in each of the four categories increased during the study period, there were many more publications presenting empirical studies than those without. For those with empirical studies, the number of publications using quantitative methods increased most rapidly in recent years, followed by qualitative and then mixed methods. Although there were quite many publications with non-empirical studies (e.g., theoretical or conceptual papers, literature reviews) during the study period, the increase of the number of publications in this category was noticeably less than empirical studies.

figure 13

Publication distributions in terms of research methods over the years. (Note: 1=qualitative, 2=quantitative, 3=mixed, 4=Non-empirical)

Concluding remarks

The systematic analysis of publications that were considered to be in STEM education in 36 selected journals shows tremendous growth in scholarship in this field from 2000 to 2018, especially over the past 10 years. Our analysis indicates that STEM education research has been increasingly recognized as an important topic area and studies were being published across many different journals. Scholars still hold diverse perspectives about how research is designated as STEM education; however, authors have been increasingly distinguishing their articles with STEM, STEAM, or related words in the titles, abstracts, and lists of keywords during the past 10 years. Moreover, our systematic analysis shows a dramatic increase in the number of publications in STEM education journals in recent years, which indicates that these journals have been collectively developing their own professional identity. In addition, the International Journal of STEM Education has become the first STEM education journal to be accepted in SSCI in 2019 (Li, 2019a ). The achievement may mark an important milestone as STEM education journals develop their own identity for publishing and sharing STEM education research.

Consistent with our previous reviews (Li, Froyd, & Wang, 2019 ; Li, Wang, & Xiao, 2019 ), the vast majority of publications in STEM education research were contributed by authors from the USA, where STEM and STEAM education originated, followed by Australia, Canada, and Taiwan. At the same time, authors in some countries/regions in Asia were becoming very active in the field over the past several years. This trend is consistent with findings from the IJ-STEM review (Li, Froyd, & Wang, 2019 ). We certainly hope that STEM education scholarship continues its development across all five continents to support educational initiatives and programs in STEM worldwide.

Our analysis has shown that collaboration, as indicated by publications with multiple authors, has been very common among STEM education scholars, as that is often how STEM education distinguishes itself from the traditional individual disciplinary based education. Currently, most collaborations occurred among authors from the same country/region, although collaborations across cross-countries/regions were slowly increasing.

With the rapid changes in STEM education internationally (Li, 2019b ), it is often difficult for researchers to get an overall sense about possible hot topics in STEM education especially when STEM education publications appeared in a vast array of journals across different fields. Our systematic analysis of publications has shown that studies in the topic category of goals, policy, curriculum, evaluation, and assessment have been the most prevalent, by far. Our analysis also suggests that the research community had a broad interest in both teaching and learning in K-12 STEM education. These top three topic categories are the same as in the IJ-STEM review (Li, Froyd, & Wang, 2019 ). Work in STEM education will continue to evolve and it will be interesting to review the trends in another 5 years.

Encouraged by our recent IJ-STEM review, we began this review with an ambitious goal to provide an overview of the status and trends of STEM education research. In a way, this systematic review allowed us to achieve our initial goal with a larger scope of journal selection over a much longer period of publication time. At the same time, there are still limitations, such as the decision to limit the number of journals from which we would identify publications for analysis. We understand that there are many publications on STEM education research that were not included in our review. Also, we only identified publications in journals. Although this is one of the most important outlets for scholars to share their research work, future reviews could examine publications on STEM education research in other venues such as books, conference proceedings, and grant proposals.

Availability of data and materials

The data and materials used and analyzed for the report are publicly available at the various journal websites.

Journals containing the word "computers" or "ICT" appeared automatically when searching with the word "technology". Thus, the word of "computers" or "ICT" was taken as equivalent to "technology" if appeared in a journal's name.

Abbreviations

Information and Communications Technology

International Journal of STEM Education

Kindergarten–Grade 12

Science, Mathematics, Engineering, and Technology

Science, Technology, Engineering, Arts, and Mathematics

Science, Technology, Engineering, and Mathematics

Borrego, M., Foster, M. J., & Froyd, J. E. (2015). What is the state of the art of systematic review in engineering education? Journal of Engineering Education, 104 (2), 212–242. https://doi.org/10.1002/jee.20069 .

Article   Google Scholar  

Bray, A., & Tangney, B. (2017). Technology usage in mathematics education research – a systematic review of recent trends. Computers & Education, 114 , 255–273.

Brown, J. (2012). The current status of STEM education research. Journal of STEM Education: Innovations & Research, 13 (5), 7–11.

Google Scholar  

Christenson, J. (2011). Ramaley coined STEM term now used nationwide . Winona Daily News Retrieved from http://www.winonadailynews.com/news/local/article_457afe3e-0db3-11e1-abe0-001cc4c03286.html Accessed on 16 Jan 2018.

Chute, E. (2009). STEM education is branching out . Pittsburgh Post-Gazette Feb 9, 2009. https://www.post-gazette.com/news/education/2009/02/10/STEM-education-is-branching-out/stories/200902100165 Accessed on 2 Jan 2020.

DeCoito, I. (2016). STEM education in Canada: A knowledge synthesis. Canadian Journal of Science, Mathematics and Technology Education, 16 (2), 114–128.

Dika, S. L., & D'Amico, M. M. (2016). Early experiences and integration in the persistence of first-generation college students in STEM and non-STEM majors. Journal of Research in Science Teaching, 53 (3), 368–383.

English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3 , 3. https://doi.org/10.1186/s4059%204-016-0036-1 .

Erduran, S., Ozdem, Y., & Park, J.-Y. (2015). Research trends on argumentation in science education: A journal content analysis from 1998-2014. International Journal of STEM Education, 2 , 5. https://doi.org/10.1186/s40594-015-0020-1 .

Gonzalez, H. B. & Kuenzi, J. J. (2012). Science, technology, engineering, and mathematics (STEM) education: A primer. CRS report for congress, R42642, https://fas.org/sgp/crs/misc/R42642.pdf Accessed on 2 Jan 2020.

Henderson, C., Beach, A., & Finkelstein, N. (2011). Facilitating change in undergraduate STEM instructional practices: An analytic review of the literature. Journal of Research in Science Teaching, 48 (8), 952–984.

Honey, M., Pearson, G., & Schweingruber, A. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research . Washington: National Academies Press.

Howard, G. S., Cole, D. A., & Maxwell, S. E. (1987). Research productivity in psychology based on publication in the journals of the American Psychological Association. American Psychologist, 42 (11), 975–986.

Johnson, C. C., Peters-Burton, E. E., & Moore, T. J. (2015). STEM roadmap: A framework for integration . London: Taylor & Francis.

Book   Google Scholar  

Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3 , 11. https://doi.org/10.1186/s40594-016-0046-z .

Kilpatrick, J. (1992). A history of research in mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 3–38). New York: Macmillan.

Kim, A. Y., Sinatra, G. M., & Seyranian, V. (2018). Developing a STEM identity among young women: A social identity perspective. Review of Educational Research, 88 (4), 589–625.

Li, Y. (2014). International journal of STEM education – a platform to promote STEM education and research worldwide. International Journal of STEM Education, 1 , 1. https://doi.org/10.1186/2196-7822-1-1 .

Li, Y. (2018a). Journal for STEM education research – promoting the development of interdisciplinary research in STEM education. Journal for STEM Education Research, 1 (1–2), 1–6. https://doi.org/10.1007/s41979-018-0009-z .

Li, Y. (2018b). Four years of development as a gathering place for international researchers and readers in STEM education. International Journal of STEM Education, 5 , 54. https://doi.org/10.1186/s40594-018-0153-0 .

Li, Y. (2019a). Five years of development in pursuing excellence in quality and global impact to become the first journal in STEM education covered in SSCI. International Journal of STEM Education, 6 , 42. https://doi.org/10.1186/s40594-019-0198-8 .

Li, Y. (2019b). STEM education research and development as a rapidly evolving and international field. 数学教育学报(Journal of Mathematics Education), 28 (3), 42–44.

Li, Y., Froyd, J. E., & Wang, K. (2019). Learning about research and readership development in STEM education: A systematic analysis of the journal’s publications from 2014 to 2018. International Journal of STEM Education, 6 , 19. https://doi.org/10.1186/s40594-019-0176-1 .

Li, Y., & Schoenfeld, A. H. (2019). Problematizing teaching and learning mathematics as ‘given’ in STEM education. International Journal of STEM Education, 6 , 44. https://doi.org/10.1186/s40594-019-0197-9 .

Li, Y., Wang, K., & Xiao, Y. (2019). Exploring the status and development trends of STEM education research: A review of research articles in selected journals published between 2000 and 2018. 数学教育学报(Journal of Mathematics Education), 28 (3), 45–52.

Lin, T.-J., Lin, T.-C., Potvin, P., & Tsai, C.-C. (2019). Research trends in science education from 2013 to 2017: A systematic content analysis of publications in selected journals. International Journal of Science Education, 41 (3), 367–387.

Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: A systematic literature review. International Journal of STEM Education, 6 , 2. https://doi.org/10.1186/s40594-018-0151-2 .

Minichiello, A., Hood, J. R., & Harkness, D. S. (2018). Bring user experience design to bear on STEM education: A narrative literature review. Journal for STEM Education Research, 1 (1–2), 7–33.

Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction – what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47 (4), 474–496.

Mizell, S., & Brown, S. (2016). The current status of STEM education research 2013-2015. Journal of STEM Education: Innovations & Research, 17 (4), 52–56.

National Research Council. (2012). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering . Washington DC: National Academies Press.

National Science Foundation (1998). Information technology: Its impact on undergraduate education in science, mathematics, engineering, and technology. (NSF 98–82), April 18–20, 1996. http://www.nsf.gov/cgi-bin/getpub?nsf9882 Accessed 16 Jan 2018.

Raju, P. K., & Sankar, C. S. (2003). Editorial. Journal of STEM Education: Innovations & Research, 4 (3&4), 2.

Ring-Whalen, E., Dare, E., Roehrig, G., Titu, P., & Crotty, E. (2018). From conception to curricula: The role of science, technology, engineering, and mathematics in integrated STEM units. International Journal of Education in Mathematics, Science and Technology, 6 (4), 343–362.

Schreffler, J., Vasquez III, E., Chini, J., & James, W. (2019). Universal design for learning in postsecondary STEM education for students with disabilities: A systematic literature review. International Journal of STEM Education, 6 , 8. https://doi.org/10.1186/s40594-019-0161-8 .

Schwab, D. B., Cole, L. W., Desai, K. M., Hemann, J., Hummels, K. R., & Maltese, A. V. (2018). A summer STEM outreach program run by graduate students: Successes, challenges, and recommendations for implementation. Journal of Research in STEM Education, 4 (2), 117–129.

Sochacka, N. W., Guyotte, K. W., & Walther, J. (2016). Learning together: A collaborative autoethnographic exploration of STEAM (STEM+ the Arts) education. Journal of Engineering Education, 105 (1), 15–42.

Sokolowski, A., Li, Y., & Willson, V. (2015). The effects of using exploratory computerized environments in grades 1 to 8 mathematics: A meta-analysis of research. International Journal of STEM Education, 2 , 8. https://doi.org/10.1186/s40594-015-0022-z .

Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., Pauw, J. B., Dehaene, W., Deprez, J., De Cock, M., Hellinckx, L., Knipprath, H., Langie, G., Struyven, K., Van de Velde, D., Van Petegem, P., & Depaepe, F. (2018). Integrated STEM education: A systematic review of instructional practices in secondary education. European Journal of STEM Education, 3 (1), 2.

Tsai, C. C., & Wen, L. M. C. (2005). Research and trends in science education from 1998 to 2002: A content analysis of publication in selected journals. International Journal of Science Education, 27 (1), 3–14.

United States Congress House Committee on Science. (1998). The state of science, math, engineering, and technology (SMET) education in America, parts I-IV, including the results of the Third International Mathematics and Science Study (TIMSS): hearings before the Committee on Science, U.S. House of Representatives, One Hundred Fifth Congress, first session, July 23, September 24, October 8 and 29, 1997. Washington: U.S. G.P.O.

Vasquez, J., Sneider, C., & Comer, M. (2013). STEM lesson essentials, grades 3–8: Integrating science, technology, engineering, and mathematics . Portsmouth, NH: Heinemann.

Wu, S. P. W., & Rau, M. A. (2019). How students learn content in science, technology, engineering, and mathematics (STEM) through drawing activities. Educational Psychology Review . https://doi.org/10.1007/s10648-019-09467-3 .

Xu, M., Williams, P. J., Gu, J., & Zhang, H. (2019). Hotspots and trends of technology education in the International Journal of Technology and Design Education: 2000-2018. International Journal of Technology and Design Education . https://doi.org/10.1007/s10798-019-09508-6 .

Download references

Not applicable

Author information

Authors and affiliations.

Texas A&M University, College Station, TX, 77843-4232, USA

Yeping Li & Yu Xiao

Nicholls State University, Thibodaux, LA, 70310, USA

Ohio State University, Columbus, OH, 43210, USA

Jeffrey E. Froyd

You can also search for this author in PubMed   Google Scholar

Contributions

YL conceptualized the study and drafted the manuscript. KW and YX contributed with data collection, coding, and analyses. JEF reviewed drafts and contributed to manuscript revisions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yeping Li .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Li, Y., Wang, K., Xiao, Y. et al. Research and trends in STEM education: a systematic review of journal publications. IJ STEM Ed 7 , 11 (2020). https://doi.org/10.1186/s40594-020-00207-6

Download citation

Received : 10 February 2020

Accepted : 12 February 2020

Published : 10 March 2020

DOI : https://doi.org/10.1186/s40594-020-00207-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Journal publication
  • Literature review
  • STEM education research

research topic quantitative in school

Quantitative research in education : Background information

  • Background information
  • SAGE researchmethods SAGE Research Methods is a tool created to help researchers, faculty and students with their research projects. Users can explore methods concepts to help them design research projects, understand particular methods or identify a new method, conduct their research, and write up their findings. Since SAGE Research Methods focuses on methodology rather than disciplines, it can be used across the social sciences, health sciences, and other areas of research.

Cover Art

  • The American freshman, national norms for ... From the Higher Education Research Institute, University of California, Los Angeles
  • Education at a glance : OECD indicators
  • Global education digest From UNESCO
  • Next: Recent e-books >>
  • Recent e-books
  • Recent print books
  • Connect to Stanford e-resources

Profile Photo

  • Last Updated: Jan 23, 2024 12:46 PM
  • URL: https://guides.library.stanford.edu/quantitative_research_in_ed

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

Library Home

A Quick Guide to Quantitative Research in the Social Sciences

(11 reviews)

research topic quantitative in school

Christine Davies, Carmarthen, Wales

Copyright Year: 2020

Last Update: 2021

Publisher: University of Wales Trinity Saint David

Language: English

Formats Available

Conditions of use.

Attribution-NonCommercial

Learn more about reviews.

Reviewed by Tiffany Kindratt, Assistant Professor, University of Texas at Arlington on 3/9/24

The text provides a brief overview of quantitative research topics that is geared towards research in the fields of education, sociology, business, and nursing. The author acknowledges that the textbook is not a comprehensive resource but offers... read more

Comprehensiveness rating: 3 see less

The text provides a brief overview of quantitative research topics that is geared towards research in the fields of education, sociology, business, and nursing. The author acknowledges that the textbook is not a comprehensive resource but offers references to other resources that can be used to deepen the knowledge. The text does not include a glossary or index. The references in the figures for each chapter are not included in the reference section. It would be helpful to include those.

Content Accuracy rating: 4

Overall, the text is accurate. For example, Figure 1 on page 6 provides a clear overview of the research process. It includes general definitions of primary and secondary research. It would be helpful to include more details to explain some of the examples before they are presented. For instance, the example on page 5 was unclear how it pertains to the literature review section.

Relevance/Longevity rating: 4

In general, the text is relevant and up-to-date. The text includes many inferences of moving from qualitative to quantitative analysis. This was surprising to me as a quantitative researcher. The author mentions that moving from a qualitative to quantitative approach should only be done when needed. As a predominantly quantitative researcher, I would not advice those interested in transitioning to using a qualitative approach that qualitative research would enhance their research—not something that should only be done if you have to.

Clarity rating: 4

The text is written in a clear manner. It would be helpful to the reader if there was a description of the tables and figures in the text before they are presented.

Consistency rating: 4

The framework for each chapter and terminology used are consistent.

Modularity rating: 4

The text is clearly divided into sections within each chapter. Overall, the chapters are a similar brief length except for the chapter on data analysis, which is much more comprehensive than others.

Organization/Structure/Flow rating: 4

The topics in the text are presented in a clear and logical order. The order of the text follows the conventional research methodology in social sciences.

Interface rating: 5

I did not encounter any interface issues when reviewing this text. All links worked and there were no distortions of the images or charts that may confuse the reader.

Grammatical Errors rating: 3

There are some grammatical/typographical errors throughout. Of note, for Section 5 in the table of contents. “The” should be capitalized to start the title. In the title for Table 3, the “t” in typical should be capitalized.

Cultural Relevance rating: 4

The examples are culturally relevant. The text is geared towards learners in the UK, but examples are relevant for use in other countries (i.e., United States). I did not see any examples that may be considered culturally insensitive or offensive in any way.

I teach a course on research methods in a Bachelor of Science in Public Health program. I would consider using some of the text, particularly in the analysis chapter to supplement the current textbook in the future.

research topic quantitative in school

Reviewed by Finn Bell, Assistant Professor, University of Michigan, Dearborn on 1/3/24

For it being a quick guide and only 26 pages, it is very comprehensive, but it does not include an index or glossary. read more

For it being a quick guide and only 26 pages, it is very comprehensive, but it does not include an index or glossary.

Content Accuracy rating: 5

As far as I can tell, the text is accurate, error-free and unbiased.

Relevance/Longevity rating: 5

This text is up-to-date, and given the content, unlikely to become obsolete any time soon.

Clarity rating: 5

The text is very clear and accessible.

Consistency rating: 5

The text is internally consistent.

Modularity rating: 5

Given how short the text is, it seems unnecessary to divide it into smaller readings, nonetheless, it is clearly labelled such that an instructor could do so.

Organization/Structure/Flow rating: 5

The text is well-organized and brings readers through basic quantitative methods in a logical, clear fashion.

Easy to navigate. Only one table that is split between pages, but not in a way that is confusing.

Grammatical Errors rating: 5

There were no noticeable grammatical errors.

The examples in this book don't give enough information to rate this effectively.

This text is truly a very quick guide at only 26 double-spaced pages. Nonetheless, Davies packs a lot of information on the basics of quantitative research methods into this text, in an engaging way with many examples of the concepts presented. This guide is more of a brief how-to that takes readers as far as how to select statistical tests. While it would be impossible to fully learn quantitative research from such a short text, of course, this resource provides a great introduction, overview, and refresher for program evaluation courses.

Reviewed by Shari Fedorowicz, Adjunct Professor, Bridgewater State University on 12/16/22

The text is indeed a quick guide for utilizing quantitative research. Appropriate and effective examples and diagrams were used throughout the text. The author clearly differentiates between use of quantitative and qualitative research providing... read more

Comprehensiveness rating: 5 see less

The text is indeed a quick guide for utilizing quantitative research. Appropriate and effective examples and diagrams were used throughout the text. The author clearly differentiates between use of quantitative and qualitative research providing the reader with the ability to distinguish two terms that frequently get confused. In addition, links and outside resources are provided to deepen the understanding as an option for the reader. The use of these links, coupled with diagrams and examples make this text comprehensive.

The content is mostly accurate. Given that it is a quick guide, the author chose a good selection of which types of research designs to include. However, some are not provided. For example, correlational or cross-correlational research is omitted and is not discussed in Section 3, but is used as a statistical example in the last section.

Examples utilized were appropriate and associated with terms adding value to the learning. The tables that included differentiation between types of statistical tests along with a parametric/nonparametric table were useful and relevant.

The purpose to the text and how to use this guide book is stated clearly and is established up front. The author is also very clear regarding the skill level of the user. Adding to the clarity are the tables with terms, definitions, and examples to help the reader unpack the concepts. The content related to the terms was succinct, direct, and clear. Many times examples or figures were used to supplement the narrative.

The text is consistent throughout from contents to references. Within each section of the text, the introductory paragraph under each section provides a clear understanding regarding what will be discussed in each section. The layout is consistent for each section and easy to follow.

The contents are visible and address each section of the text. A total of seven sections, including a reference section, is in the contents. Each section is outlined by what will be discussed in the contents. In addition, within each section, a heading is provided to direct the reader to the subtopic under each section.

The text is well-organized and segues appropriately. I would have liked to have seen an introductory section giving a narrative overview of what is in each section. This would provide the reader with the ability to get a preliminary glimpse into each upcoming sections and topics that are covered.

The book was easy to navigate and well-organized. Examples are presented in one color, links in another and last, figures and tables. The visuals supplemented the reading and placed appropriately. This provides an opportunity for the reader to unpack the reading by use of visuals and examples.

No significant grammatical errors.

Cultural Relevance rating: 5

The text is not offensive or culturally insensitive. Examples were inclusive of various races, ethnicities, and backgrounds.

This quick guide is a beneficial text to assist in unpacking the learning related to quantitative statistics. I would use this book to complement my instruction and lessons, or use this book as a main text with supplemental statistical problems and formulas. References to statistical programs were appropriate and were useful. The text did exactly what was stated up front in that it is a direct guide to quantitative statistics. It is well-written and to the point with content areas easy to locate by topic.

Reviewed by Sarah Capello, Assistant Professor, Radford University on 1/18/22

The text claims to provide "quick and simple advice on quantitative aspects of research in social sciences," which it does. There is no index or glossary, although vocabulary words are bolded and defined throughout the text. read more

Comprehensiveness rating: 4 see less

The text claims to provide "quick and simple advice on quantitative aspects of research in social sciences," which it does. There is no index or glossary, although vocabulary words are bolded and defined throughout the text.

The content is mostly accurate. I would have preferred a few nuances to be hashed out a bit further to avoid potential reader confusion or misunderstanding of the concepts presented.

The content is current; however, some of the references cited in the text are outdated. Newer editions of those texts exist.

The text is very accessible and readable for a variety of audiences. Key terms are well-defined.

There are no content discrepancies within the text. The author even uses similarly shaped graphics for recurring purposes throughout the text (e.g., arrow call outs for further reading, rectangle call outs for examples).

The content is chunked nicely by topics and sections. If it were used for a course, it would be easy to assign different sections of the text for homework, etc. without confusing the reader if the instructor chose to present the content in a different order.

The author follows the structure of the research process. The organization of the text is easy to follow and comprehend.

All of the supplementary images (e.g., tables and figures) were beneficial to the reader and enhanced the text.

There are no significant grammatical errors.

I did not find any culturally offensive or insensitive references in the text.

This text does the difficult job of introducing the complicated concepts and processes of quantitative research in a quick and easy reference guide fairly well. I would not depend solely on this text to teach students about quantitative research, but it could be a good jumping off point for those who have no prior knowledge on this subject or those who need a gentle introduction before diving in to more advanced and complex readings of quantitative research methods.

Reviewed by J. Marlie Henry, Adjunct Faculty, University of Saint Francis on 12/9/21

Considering the length of this guide, this does a good job of addressing major areas that typically need to be addressed. There is a contents section. The guide does seem to be organized accordingly with appropriate alignment and logical flow of... read more

Considering the length of this guide, this does a good job of addressing major areas that typically need to be addressed. There is a contents section. The guide does seem to be organized accordingly with appropriate alignment and logical flow of thought. There is no glossary but, for a guide of this length, a glossary does not seem like it would enhance the guide significantly.

The content is relatively accurate. Expanding the content a bit more or explaining that the methods and designs presented are not entirely inclusive would help. As there are different schools of thought regarding what should/should not be included in terms of these designs and methods, simply bringing attention to that and explaining a bit more would help.

Relevance/Longevity rating: 3

This content needs to be updated. Most of the sources cited are seven or more years old. Even more, it would be helpful to see more currently relevant examples. Some of the source authors such as Andy Field provide very interesting and dynamic instruction in general, but they have much more current information available.

The language used is clear and appropriate. Unnecessary jargon is not used. The intent is clear- to communicate simply in a straightforward manner.

The guide seems to be internally consistent in terms of terminology and framework. There do not seem to be issues in this area. Terminology is internally consistent.

For a guide of this length, the author structured this logically into sections. This guide could be adopted in whole or by section with limited modifications. Courses with fewer than seven modules could also logically group some of the sections.

This guide does present with logical organization. The topics presented are conceptually sequenced in a manner that helps learners build logically on prior conceptualization. This also provides a simple conceptual framework for instructors to guide learners through the process.

Interface rating: 4

The visuals themselves are simple, but they are clear and understandable without distracting the learner. The purpose is clear- that of learning rather than visuals for the sake of visuals. Likewise, navigation is clear and without issues beyond a broken link (the last source noted in the references).

This guide seems to be free of grammatical errors.

It would be interesting to see more cultural integration in a guide of this nature, but the guide is not culturally insensitive or offensive in any way. The language used seems to be consistent with APA's guidelines for unbiased language.

Reviewed by Heng Yu-Ku, Professor, University of Northern Colorado on 5/13/21

The text covers all areas and ideas appropriately and provides practical tables, charts, and examples throughout the text. I would suggest the author also provides a complete research proposal at the end of Section 3 (page 10) and a comprehensive... read more

The text covers all areas and ideas appropriately and provides practical tables, charts, and examples throughout the text. I would suggest the author also provides a complete research proposal at the end of Section 3 (page 10) and a comprehensive research study as an Appendix after section 7 (page 26) to help readers comprehend information better.

For the most part, the content is accurate and unbiased. However, the author only includes four types of research designs used on the social sciences that contain quantitative elements: 1. Mixed method, 2) Case study, 3) Quasi-experiment, and 3) Action research. I wonder why the correlational research is not included as another type of quantitative research design as it has been introduced and emphasized in section 6 by the author.

I believe the content is up-to-date and that necessary updates will be relatively easy and straightforward to implement.

The text is easy to read and provides adequate context for any technical terminology used. However, the author could provide more detailed information about estimating the minimum sample size but not just refer the readers to use the online sample calculators at a different website.

The text is internally consistent in terms of terminology and framework. The author provides the right amount of information with additional information or resources for the readers.

The text includes seven sections. Therefore, it is easier for the instructor to allocate or divide the content into different weeks of instruction within the course.

Yes, the topics in the text are presented in a logical and clear fashion. The author provides clear and precise terminologies, summarizes important content in Table or Figure forms, and offers examples in each section for readers to check their understanding.

The interface of the book is consistent and clear, and all the images and charts provided in the book are appropriate. However, I did encounter some navigation problems as a couple of links are not working or requires permission to access those (pages 10 and 27).

No grammatical errors were found.

No culturally incentive or offensive in its language and the examples provided were found.

As the book title stated, this book provides “A Quick Guide to Quantitative Research in Social Science. It offers easy-to-read information and introduces the readers to the research process, such as research questions, research paradigms, research process, research designs, research methods, data collection, data analysis, and data discussion. However, some links are not working or need permissions to access them (pages 10 and 27).

Reviewed by Hsiao-Chin Kuo, Assistant Professor, Northeastern Illinois University on 4/26/21, updated 4/28/21

As a quick guide, it covers basic concepts related to quantitative research. It starts with WHY quantitative research with regard to asking research questions and considering research paradigms, then provides an overview of research design and... read more

As a quick guide, it covers basic concepts related to quantitative research. It starts with WHY quantitative research with regard to asking research questions and considering research paradigms, then provides an overview of research design and process, discusses methods, data collection and analysis, and ends with writing a research report. It also identifies its target readers/users as those begins to explore quantitative research. It would be helpful to include more examples for readers/users who are new to quantitative research.

Its content is mostly accurate and no bias given its nature as a quick guide. Yet, it is also quite simplified, such as its explanations of mixed methods, case study, quasi-experimental research, and action research. It provides resources for extended reading, yet more recent works will be helpful.

The book is relevant given its nature as a quick guide. It would be helpful to provide more recent works in its resources for extended reading, such as the section for Survey Research (p. 12). It would also be helpful to include more information to introduce common tools and software for statistical analysis.

The book is written with clear and understandable language. Important terms and concepts are presented with plain explanations and examples. Figures and tables are also presented to support its clarity. For example, Table 4 (p. 20) gives an easy-to-follow overview of different statistical tests.

The framework is very consistent with key points, further explanations, examples, and resources for extended reading. The sample studies are presented following the layout of the content, such as research questions, design and methods, and analysis. These examples help reinforce readers' understanding of these common research elements.

The book is divided into seven chapters. Each chapter clearly discusses an aspect of quantitative research. It can be easily divided into modules for a class or for a theme in a research method class. Chapters are short and provides additional resources for extended reading.

The topics in the chapters are presented in a logical and clear structure. It is easy to follow to a degree. Though, it would be also helpful to include the chapter number and title in the header next to its page number.

The text is easy to navigate. Most of the figures and tables are displayed clearly. Yet, there are several sections with empty space that is a bit confusing in the beginning. Again, it can be helpful to include the chapter number/title next to its page number.

Grammatical Errors rating: 4

No major grammatical errors were found.

There are no cultural insensitivities noted.

Given the nature and purpose of this book, as a quick guide, it provides readers a quick reference for important concepts and terms related to quantitative research. Because this book is quite short (27 pages), it can be used as an overview/preview about quantitative research. Teacher's facilitation/input and extended readings will be needed for a deeper learning and discussion about aspects of quantitative research.

Reviewed by Yang Cheng, Assistant Professor, North Carolina State University on 1/6/21

It covers the most important topics such as research progress, resources, measurement, and analysis of the data. read more

It covers the most important topics such as research progress, resources, measurement, and analysis of the data.

The book accurately describes the types of research methods such as mixed-method, quasi-experiment, and case study. It talks about the research proposal and key differences between statistical analyses as well.

The book pinpointed the significance of running a quantitative research method and its relevance to the field of social science.

The book clearly tells us the differences between types of quantitative methods and the steps of running quantitative research for students.

The book is consistent in terms of terminologies such as research methods or types of statistical analysis.

It addresses the headlines and subheadlines very well and each subheading should be necessary for readers.

The book was organized very well to illustrate the topic of quantitative methods in the field of social science.

The pictures within the book could be further developed to describe the key concepts vividly.

The textbook contains no grammatical errors.

It is not culturally offensive in any way.

Overall, this is a simple and quick guide for this important topic. It should be valuable for undergraduate students who would like to learn more about research methods.

Reviewed by Pierre Lu, Associate Professor, University of Texas Rio Grande Valley on 11/20/20

As a quick guide to quantitative research in social sciences, the text covers most ideas and areas. read more

As a quick guide to quantitative research in social sciences, the text covers most ideas and areas.

Mostly accurate content.

As a quick guide, content is highly relevant.

Succinct and clear.

Internally, the text is consistent in terms of terminology used.

The text is easily and readily divisible into smaller sections that can be used as assignments.

I like that there are examples throughout the book.

Easy to read. No interface/ navigation problems.

No grammatical errors detected.

I am not aware of the culturally insensitive description. After all, this is a methodology book.

I think the book has potential to be adopted as a foundation for quantitative research courses, or as a review in the first weeks in advanced quantitative course.

Reviewed by Sarah Fischer, Assistant Professor, Marymount University on 7/31/20

It is meant to be an overview, but it incredibly condensed and spends almost no time on key elements of statistics (such as what makes research generalizable, or what leads to research NOT being generalizable). read more

It is meant to be an overview, but it incredibly condensed and spends almost no time on key elements of statistics (such as what makes research generalizable, or what leads to research NOT being generalizable).

Content Accuracy rating: 1

Contains VERY significant errors, such as saying that one can "accept" a hypothesis. (One of the key aspect of hypothesis testing is that one either rejects or fails to reject a hypothesis, but NEVER accepts a hypothesis.)

Very relevant to those experiencing the research process for the first time. However, it is written by someone working in the natural sciences but is a text for social sciences. This does not explain the errors, but does explain why sometimes the author assumes things about the readers ("hail from more subjectivist territory") that are likely not true.

Clarity rating: 3

Some statistical terminology not explained clearly (or accurately), although the author has made attempts to do both.

Very consistently laid out.

Chapters are very short yet also point readers to outside texts for additional information. Easy to follow.

Generally logically organized.

Easy to navigate, images clear. The additional sources included need to linked to.

Minor grammatical and usage errors throughout the text.

Makes efforts to be inclusive.

The idea of this book is strong--short guides like this are needed. However, this book would likely be strengthened by a revision to reduce inaccuracies and improve the definitions and technical explanations of statistical concepts. Since the book is specifically aimed at the social sciences, it would also improve the text to have more examples that are based in the social sciences (rather than the health sciences or the arts).

Reviewed by Michelle Page, Assistant Professor, Worcester State University on 5/30/20

This text is exactly intended to be what it says: A quick guide. A basic outline of quantitative research processes, akin to cliff notes. The content provides only the essentials of a research process and contains key terms. A student or new... read more

This text is exactly intended to be what it says: A quick guide. A basic outline of quantitative research processes, akin to cliff notes. The content provides only the essentials of a research process and contains key terms. A student or new researcher would not be able to use this as a stand alone guide for quantitative pursuits without having a supplemental text that explains the steps in the process more comprehensively. The introduction does provide this caveat.

Content Accuracy rating: 3

There are no biases or errors that could be distinguished; however, it’s simplicity in content, although accurate for an outline of process, may lack a conveyance of the deeper meanings behind the specific processes explained about qualitative research.

The content is outlined in traditional format to highlight quantitative considerations for formatting research foundational pieces. The resources/references used to point the reader to literature sources can be easily updated with future editions.

The jargon in the text is simple to follow and provides adequate context for its purpose. It is simplified for its intention as a guide which is appropriate.

Each section of the text follows a consistent flow. Explanation of the research content or concept is defined and then a connection to literature is provided to expand the readers understanding of the section’s content. Terminology is consistent with the qualitative process.

As an “outline” and guide, this text can be used to quickly identify the critical parts of the quantitative process. Although each section does not provide deeper content for meaningful use as a stand alone text, it’s utility would be excellent as a reference for a course and can be used as an content guide for specific research courses.

The text’s outline and content are aligned and are in a logical flow in terms of the research considerations for quantitative research.

The only issue that the format was not able to provide was linkable articles. These would have to be cut and pasted into a browser. Functional clickable links in a text are very successful at leading the reader to the supplemental material.

No grammatical errors were noted.

This is a very good outline “guide” to help a new or student researcher to demystify the quantitative process. A successful outline of any process helps to guide work in a logical and systematic way. I think this simple guide is a great adjunct to more substantial research context.

Table of Contents

  • Section 1: What will this resource do for you?
  • Section 2: Why are you thinking about numbers? A discussion of the research question and paradigms.
  • Section 3: An overview of the Research Process and Research Designs
  • Section 4: Quantitative Research Methods
  • Section 5: the data obtained from quantitative research
  • Section 6: Analysis of data
  • Section 7: Discussing your Results

Ancillary Material

About the book.

This resource is intended as an easy-to-use guide for anyone who needs some quick and simple advice on quantitative aspects of research in social sciences, covering subjects such as education, sociology, business, nursing. If you area qualitative researcher who needs to venture into the world of numbers, or a student instructed to undertake a quantitative research project despite a hatred for maths, then this booklet should be a real help.

The booklet was amended in 2022 to take into account previous review comments.  

About the Contributors

Christine Davies , Ph.D

Contribute to this Page

edeuphoria

250 Grade 12 Quantitative Research Topics for Senior High School Students in the Philippines

Greetings, dear senior high school students in the Philippines! If you’re on the hunt for that ideal quantitative research topic for your Grade 12 project, you’ve struck gold! You’re in for a treat because we’ve got your back. Within the pages of this blog, we’ve meticulously assembled an extensive catalog of 250 intriguing quantitative research themes for your exploration.

We completely grasp that the process of selecting the right topic might feel a tad overwhelming. To alleviate those concerns, we’ve crafted this resource to simplify your quest. We’re about to embark on a journey of discovery together, one that will empower you to make a well-informed choice for your research project. So, without further ado, let’s plunge headfirst into this wealth of research possibilities!

Table of Contents

What is Quantitative Research?

Quantitative research is a type of research that deals with numbers and data. It involves collecting and analyzing numerical information to draw conclusions or make predictions. It’s all about using statistics and mathematical methods to answer research questions. Now, let’s explore some exciting quantitative research topics suitable for Grade 12 students in the Philippines.

Unlock educational insights at newedutopics.com . Explore topics, study tips, and more! Get started on your learning journey today.
  • How Social Media Affects Academic Performance
  • Factors Influencing Students’ Choice of College Courses
  • The Relationship Between Study Habits and Grades
  • The Effect of Parental Involvement on Students’ Achievements
  • Bullying in High Schools: Prevalence and Effects
  • How Does Nutrition Affect Student Concentration and Learning?
  • Examining the Relationship Between Exercise and Academic Performance
  • The Influence of Gender on Math and Science Performance
  • Investigating the Factors Leading to School Dropouts
  • The Effect of Peer Pressure on Decision-Making Among Teens
  • Exploring the Connection Between Socioeconomic Status and Academic Achievement
  • Assessing the Impact of Technology Use in Education
  • The Correlation Between Sleep Patterns and Academic Performance
  • Analyzing the Impact of Classroom Size on Student Engagement
  • The Role of Extracurricular Activities in Character Development
  • Investigating the Use of Alternative Learning Modalities During the Pandemic
  • The Effectiveness of Online Learning Platforms
  • The Influence of Parental Expectations on Career Choices
  • The Relationship Between Music and Concentration While Studying
  • Examining the Link Between Personality Traits and Academic Success

Now that we’ve given you a taste of the topics, let’s break them down into different categories:

Education and Academic Performance:

  • The Impact of Teacher-Student Relationships on Learning
  • Exploring the Benefits of Homework in Learning
  • Analyzing the Effectiveness of Different Teaching Methods
  • Investigating the Use of Technology in Teaching
  • The Role of Educational Field Trips in Learning
  • The Relationship Between Reading Habits and Academic Success
  • Assessing the Impact of Standardized Testing on Students
  • The Effect of School Uniforms on Student Behavior
  • Analyzing the Benefits of Bilingual Education
  • How Classroom Design Influences Student Engagement

Health and Wellness:

  • Analyzing the Connection Between Fast Food Consumption and Health Outcomes
  • Exploring How Physical Activity Impacts Mental Health
  • Investigating the Prevalence of Stress Among Senior High School Students
  • The Effect of Smoking on Academic Performance
  • The Relationship Between Nutrition and Physical Fitness
  • Analyzing the Impact of Vaccination Programs on Public Health
  • Understanding the Importance of Sleep in Mental and Emotional Well-being
  • Investigating the Use of Herbal Remedies in Health Management
  • The Effect of Screen Time on Eye Health
  • Examining the Connection Between Drug Abuse and Academic Performance

Social Issues:

  • Exploring the Factors Leading to Teenage Pregnancy
  • Analyzing the Impact of Social Media on Body Image
  • Investigating the Causes of Youth Involvement in Juvenile Delinquency
  • The Effect of Cyberbullying on Mental Health
  • The Relationship Between Gender Equality and Education
  • Assessing the Impact of Poverty on Student Achievement
  • The Influence of Religion on Moral Values
  • Analyzing the Role of Filipino Culture in Shaping Values
  • The Effect of Political Instability on Education
  • Investigating the Impact of Mental Health Awareness Campaigns

Technology and Innovation:

  • The Role of Artificial Intelligence in Education
  • Examining the Impact of E-Learning Platforms on Student Performance
  • Exploring the Application of Virtual Reality in Education
  • The Effect of Smartphone Use on Classroom Distractions
  • The Relationship Between Coding Skills and Future Employment
  • Assessing the Benefits of Gamification in Education
  • The Influence of Online Gaming on Academic Performance
  • Analyzing the Role of 3D Printing in Education
  • Investigating the Use of Drones in Environmental Research
  • Analyzing How Social Networking Sites Affect Socialization

Environmental Concerns:

  • Assessing the Effects of Climate Change Awareness on Conservation Efforts
  • Investigating the Impact of Pollution on Local Ecosystems
  • Exploring the Link Between Waste Management Practices and Environmental Sustainability
  • Analyzing the Benefits of Renewable Energy Sources
  • The Effect of Deforestation on Biodiversity
  • Exploring Sustainable Agriculture Practices
  • The Role of Ecotourism in Conservation
  • Investigating the Impact of Plastic Waste on Marine Life
  • Analyzing Water Quality in Local Rivers and Lakes
  • Assessing the Importance of Coral Reef Conservation

Economic Issues:

  • The Influence of Economic Status on Educational Opportunities
  • Examining the Impact of Inflation on Student Expenses
  • Investigating the Role of Microfinance in Poverty Alleviation
  • Analyzing the Effects of Unemployment on Youth
  • The Relationship Between Entrepreneurship Education and Business Success
  • The Effect of Taxation on Small Businesses
  • Assessing the Impact of Tourism on Local Economies
  • The Role of Online Marketplaces in Small Business Growth
  • Investigating the Benefits of Financial Literacy Programs
  • Analyzing the Impact of Foreign Investments on the Philippine Economy

Cultural and Historical Topics:

  • Exploring the Influence of Spanish Colonization on Filipino Culture
  • Analyzing the Role of Filipino Heroes in Nation-Building
  • Investigating the Impact of K-Pop on Filipino Youth Culture
  • The Relationship Between Traditional and Modern Filipino Values
  • Assessing the Importance of Philippine Indigenous Languages
  • The Effect of Colonial Mentality on Identity
  • The Role of Filipino Cuisine in Tourism
  • Investigating the Influence of Filipino Art on National Identity
  • Analyzing the Significance of Historical Landmarks
  • Examining the Role of Traditional Filipino Clothing in Society

Government and Politics:

  • The Influence of Social Media on Political Participation
  • Investigating Voter Education and Awareness Campaigns
  • Analyzing the Impact of Political Dynasties on Local Governance
  • Assessing the Effectiveness of Disaster Response Programs
  • The Relationship Between Corruption and Public Services
  • The Role of Youth in Nation-Building
  • Investigating the Impact of Martial Law on Philippine Society
  • Analyzing the Role of Social Movements in Policy Change
  • Assessing the Importance of Good Governance in National Development
  • The Effect of Federalism on Local Autonomy

Science and Technology:

  • Exploring Advances in Biotechnology and Genetic Engineering
  • Analyzing the Impact of Space Exploration on Scientific Discovery
  • Investigating the Use of Nanotechnology in Medicine
  • The Relationship Between STEM Education and Innovation
  • The Effect of Pollution on Biodiversity
  • Assessing the Benefits of Solar Energy in the Philippines
  • The Role of Robotics in Industry Automation
  • Investigating the Potential of Hydrogen Fuel Cells
  • Analyzing the Use of 5G Technology in Communication
  • The Impact of Artificial Intelligence in Healthcare

Healthcare and Medicine:

  • The Influence of Traditional Medicine Practices on Health
  • Investigating the Impact of Mental Health Stigma
  • Analyzing the Use of Telemedicine in Remote Areas
  • The Relationship Between Diet and Chronic Diseases
  • Assessing the Effectiveness of Healthcare Access Programs
  • The Role of Nurses in Public Health
  • Investigating the Benefits of Medical Missions
  • Analyzing the Impact of Healthcare Quality on Patient Outcomes
  • Assessing the Importance of Health Education
  • The Effect of Access to Clean Water on Public Health

Business and Finance:

  • Exploring the Impact of E-Commerce on Local Businesses
  • Analyzing the Role of Digital Payment Systems
  • Investigating Consumer Behavior in Online Shopping
  • The Relationship Between Customer Loyalty and Business Success
  • Assessing the Effectiveness of Marketing Strategies
  • The Influence of Branding on Consumer Preferences
  • The Role of Supply Chain Management in Business Efficiency
  • Investigating the Impact of Globalization on Small Enterprises
  • Analyzing the Benefits of Employee Training Programs
  • Assessing the Importance of Ethical Business Practices

Social Media and Technology:

  • The Effect of Social Media Influencers on Consumer Behavior
  • Investigating the Impact of Online Dating Apps on Relationships
  • Analyzing the Use of Social Media for Activism
  • The Relationship Between Internet Addiction and Mental Health
  • The Influence of Online Filters on Self-Image
  • Assessing the Benefits of Digital Detox Programs
  • The Role of Virtual Reality in Online Gaming
  • Investigating the Impact of Artificial Intelligence in Personalized Marketing
  • Analyzing the Use of Augmented Reality in Education
  • The Effect of Cybersecurity Measures on Online Privacy

Family and Relationships:

  • Exploring the Impact of Divorce on Children’s Well-being
  • Analyzing the Role of Sibling Relationships in Character Development
  • Investigating the Effect of Parental Divorce on Academic Performance
  • The Relationship Between Parenting Styles and Child Behavior
  • The Influence of Extended Family Support on Parenthood
  • Assessing the Benefits of Pre-marital Counseling
  • The Role of Grandparents in Child Rearing
  • Investigating the Impact of Long-distance Relationships on Couples
  • Analyzing the Use of Technology in Maintaining Family Ties
  • The Effect of Cultural Differences on Intercultural Marriages

Arts and Culture:

  • The Influence of Philippine Folk Dances on National Identity
  • Investigating the Role of Art in Social Commentary
  • Analyzing the Impact of Cultural Festivals on Tourism
  • The Relationship Between Music and Emotions
  • The Effect of Theater and Drama on Empathy
  • Assessing the Benefits of Art Therapy
  • The Role of Literature in Shaping Society
  • Investigating the Impact of Film on Social Awareness
  • Analyzing the Use of Social Media in Promoting Local Artists
  • The Influence of Indigenous Art Forms on Modern Filipino Art

Sports and Recreation:

  • Exploring the Effect of Sports Participation on Character Development
  • Analyzing the Role of Sports in Building Discipline
  • Investigating the Impact of Sports Injuries on Athletes’ Careers
  • The Relationship Between Physical Fitness and Academic Performance
  • The Influence of Team Sports on Social Skills
  • Assessing the Benefits of Recreational Activities in Stress Reduction
  • The Role of Esports in Philippine Sports Culture
  • Investigating the Impact of Sports Sponsorship on Athlete Development
  • Analyzing the Use of Sports Analytics in Decision-making
  • The Effect of Gender Stereotypes in Sports

Travel and Tourism:

  • The Influence of Travel Experience on Cultural Awareness
  • Investigating the Impact of Sustainable Tourism Practices
  • Analyzing the Role of Social Media in Travel Planning
  • The Relationship Between Travel and Stress Reduction
  • The Effect of Tourism on Local Communities
  • Assessing the Benefits of Ecotourism in Conservation
  • The Role of Historical Sites in Tourism Promotion
  • Investigating the Impact of Travel Bans on Tourism
  • Analyzing the Use of Technology in Travel Booking
  • The Impact of COVID-19 on the Travel and Tourism Industry

Technology and Education:

  • Exploring the Role of Virtual Reality in Science Education
  • Analyzing the Impact of Flipped Classrooms on Learning
  • Investigating the Use of Artificial Intelligence in Personalized Education
  • The Relationship Between Gamification and Student Engagement
  • The Effect of Online Learning on Academic Achievement
  • Assessing the Benefits of Blended Learning Approaches
  • The Role of Educational Apps in Language Learning
  • Investigating the Impact of Robotics in STEM Education
  • Analyzing the Use of Educational Videos in Teaching
  • The Influence of Social Media in Collaborative Learning

Environmental Sustainability:

  • The Influence of Eco-friendly Practices on Business Success
  • Investigating the Impact of Plastic Pollution on Marine Life
  • Analyzing the Role of Renewable Energy in Reducing Carbon Footprint
  • The Relationship Between Urbanization and Environmental Degradation
  • The Effect of Deforestation on Climate Change
  • Assessing the Benefits of Sustainable Agriculture
  • The Role of Green Building Practices in Energy Efficiency
  • Investigating the Impact of Conservation Education on Environmental Awareness
  • Analyzing the Use of Electric Vehicles in Reducing Air Pollution
  • The Impact of Waste Reduction Campaigns on Environmental Sustainability

Economic Development:

  • Investigating the Contribution of Small and Medium Enterprises to Economic Growth
  • Assessing How Foreign Direct Investment Influences Local Economies
  • Investigating the Use of Microfinance in Poverty Alleviation
  • The Relationship Between Economic Policies and Income Inequality
  • The Effect of Tourism on Local Economic Development
  • Assessing the Benefits of Export-Oriented Industries
  • The Role of Infrastructure Development in Economic Growth
  • Investigating the Impact of Technological Innovation on Economic Competitiveness
  • Analyzing the Use of Public-Private Partnerships in Infrastructure Projects
  • The Influence of Economic Literacy on Financial Decision-making

Health and Nutrition:

  • The Effect of Food Advertising on Children’s Eating Habits
  • Investigating the Impact of Fast Food Consumption on Health
  • Analyzing the Role of Nutrition Education in Promoting Healthy Eating
  • The Relationship Between Diet and Cardiovascular Health
  • The Influence of Food Labels on Consumer Choices
  • Assessing the Benefits of Organic Food Consumption
  • The Role of Physical Activity in Preventing Lifestyle Diseases
  • Investigating the Impact of Nutritional Supplements on Health
  • Analyzing the Use of Plant-Based Diets in Health Improvement
  • The Impact of Sleep Quality on Mental and Physical Health

Education and Technology:

  • Exploring the Use of Augmented Reality in History Education
  • Analyzing the Impact of Online Learning on Teacher-Student Interaction
  • Investigating the Role of Educational Apps in Language Learning
  • Understanding How Digital Literacy Relates to Academic Performance
  • The Effect of Virtual Laboratories in Science Education
  • Assessing the Benefits of Distance Learning for Students with Disabilities
  • The Role of Gamification in Enhancing Math Skills
  • Investigating the Impact of Technology Integration in Special Education
  • Analyzing the Use of Artificial Intelligence in Personalized Learning
  • The Influence of Social Media on Student Engagement

Social Issues and Awareness:

  • The Effect of Social Media on Youth Political Engagement
  • Investigating the Impact of Online Activism on Social Change
  • Analyzing the Role of Media in Shaping Public Opinion
  • The Relationship Between Gender Stereotypes and Career Choices
  • The Influence of Cultural Sensitivity on Social Harmony
  • Assessing the Benefits of Multicultural Education
  • The Role of Youth in Promoting Environmental Awareness
  • Investigating the Impact of Mental Health Advocacy
  • Analyzing the Use of Arts and Culture in Promoting Social Values
  • The Impact of Volunteerism on Community Development

Globalization and Culture:

  • Exploring the Influence of Globalization on Traditional Filipino Culture
  • Analyzing the Impact of International Trade on Philippine Economy
  • Investigating the Role of Filipino Diaspora in Cultural Exchange
  • The Relationship Between Globalization and Cultural Homogenization
  • The Effect of Westernization on Filipino Identity
  • Assessing the Benefits of Cultural Exchange Programs
  • The Role of Social Media in Global Cultural Awareness
  • Investigating the Impact of Global Brands on Local Culture
  • Analyzing the Use of Technology in Promoting Filipino Culture Worldwide
  • The Influence of International Travel on Cultural Perspective

Phew! That’s quite a list of quantitative research topics for Grade 12 students in the Philippines. Remember, the key to a successful research project is to choose a topic that genuinely interests you. When you’re passionate about your research, the journey becomes more enjoyable, and your findings are likely to be more valuable.

Take your time to explore these topics, do some preliminary research, and consult with your teachers and mentors to ensure that your chosen topic is feasible and relevant. Good luck with your Grade 12 research project, and may you discover valuable insights that contribute to the betterment of the Philippines and beyond!

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

APA Acredited Statistics Training

Quantitative Research: Examples of Research Questions and Solutions

Are you ready to embark on a journey into the world of quantitative research? Whether you’re a seasoned researcher or just beginning your academic journey, understanding how to formulate effective research questions is essential for conducting meaningful studies. In this blog post, we’ll explore examples of quantitative research questions across various disciplines and discuss how StatsCamp.org courses can provide the tools and support you need to overcome any challenges you may encounter along the way.

Understanding Quantitative Research Questions

Quantitative research involves collecting and analyzing numerical data to answer research questions and test hypotheses. These questions typically seek to understand the relationships between variables, predict outcomes, or compare groups. Let’s explore some examples of quantitative research questions across different fields:

Examples of quantitative research questions

  • What is the relationship between class size and student academic performance?
  • Does the use of technology in the classroom improve learning outcomes?
  • How does parental involvement affect student achievement?
  • What is the effect of a new drug treatment on reducing blood pressure?
  • Is there a correlation between physical activity levels and the risk of cardiovascular disease?
  • How does socioeconomic status influence access to healthcare services?
  • What factors influence consumer purchasing behavior?
  • Is there a relationship between advertising expenditure and sales revenue?
  • How do demographic variables affect brand loyalty?

Stats Camp: Your Solution to Mastering Quantitative Research Methodologies

At StatsCamp.org, we understand that navigating the complexities of quantitative research can be daunting. That’s why we offer a range of courses designed to equip you with the knowledge and skills you need to excel in your research endeavors. Whether you’re interested in learning about regression analysis, experimental design, or structural equation modeling, our experienced instructors are here to guide you every step of the way.

Bringing Your Own Data

One of the unique features of StatsCamp.org is the opportunity to bring your own data to the learning process. Our instructors provide personalized guidance and support to help you analyze your data effectively and overcome any roadblocks you may encounter. Whether you’re struggling with data cleaning, model specification, or interpretation of results, our team is here to help you succeed.

Courses Offered at StatsCamp.org

  • Latent Profile Analysis Course : Learn how to identify subgroups, or profiles, within a heterogeneous population based on patterns of responses to multiple observed variables.
  • Bayesian Statistics Course : A comprehensive introduction to Bayesian data analysis, a powerful statistical approach for inference and decision-making. Through a series of engaging lectures and hands-on exercises, participants will learn how to apply Bayesian methods to a wide range of research questions and data types.
  • Structural Equation Modeling (SEM) Course : Dive into advanced statistical techniques for modeling complex relationships among variables.
  • Multilevel Modeling Course : A in-depth exploration of this advanced statistical technique, designed to analyze data with nested structures or hierarchies. Whether you’re studying individuals within groups, schools within districts, or any other nested data structure, multilevel modeling provides the tools to account for the dependencies inherent in such data.

As you embark on your journey into quantitative research, remember that StatsCamp.org is here to support you every step of the way. Whether you’re formulating research questions, analyzing data, or interpreting results, our courses provide the knowledge and expertise you need to succeed. Join us today and unlock the power of quantitative research!

Follow Us On Social! Facebook | Instagram | X

Stats Camp Statistical Methods Training

933 San Mateo Blvd NE #500, Albuquerque, NM 87108

3014 23rd Street Lubbock, TX 79410

Monday – Friday: 9:00 AM – 5:00 PM

© Copyright 2003 - 2024 | All Rights Reserved Stats Camp Foundation 501(c)(3) Non-Profit Organization.

Study Tracks Shifts in Student Mental Health During College

Dartmouth study followed 200 students all four years, including through the pandemic.

Andrew Campbell seated by a window in a blue t-shirt and glasses

Phone App Uses AI to Detect Depression From Facial Cues

A four-year study by Dartmouth researchers captures the most in-depth data yet on how college students’ self-esteem and mental health fluctuates during their four years in academia, identifying key populations and stressors that the researchers say administrators could target to improve student well-being. 

The study also provides among the first real-time accounts of how the coronavirus pandemic affected students’ behavior and mental health. The stress and uncertainty of COVID-19 resulted in long-lasting behavioral changes that persisted as a “new normal” even as the pandemic diminished, including students feeling more stressed, less socially engaged, and sleeping more.

The researchers tracked more than 200 Dartmouth undergraduates in the classes of 2021 and 2022 for all four years of college. Students volunteered to let a specially developed app called StudentLife tap into the sensors that are built into smartphones. The app cataloged their daily physical and social activity, how long they slept, their location and travel, the time they spent on their phone, and how often they listened to music or watched videos. Students also filled out weekly behavioral surveys, and selected students gave post-study interviews. 

The study—which is the longest mobile-sensing study ever conducted—is published in the Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies .

The researchers will present it at the Association of Computing Machinery’s UbiComp/ISWC 2024 conference in Melbourne, Australia, in October. 

These sorts of tools will have a tremendous impact on projecting forward and developing much more data-driven ways to intervene and respond exactly when students need it most.

The team made their anonymized data set publicly available —including self-reports, surveys, and phone-sensing and brain-imaging data—to help advance research into the mental health of students during their college years. 

Andrew Campbell , the paper’s senior author and Dartmouth’s Albert Bradley 1915 Third Century Professor of Computer Science, says that the study’s extensive data reinforces the importance of college and university administrators across the country being more attuned to how and when students’ mental well-being changes during the school year.

“For the first time, we’ve produced granular data about the ebb and flow of student mental health. It’s incredibly dynamic—there’s nothing that’s steady state through the term, let alone through the year,” he says. “These sorts of tools will have a tremendous impact on projecting forward and developing much more data-driven ways to intervene and respond exactly when students need it most.”

First-year and female students are especially at risk for high anxiety and low self-esteem, the study finds. Among first-year students, self-esteem dropped to its lowest point in the first weeks of their transition from high school to college but rose steadily every semester until it was about 10% higher by graduation.

“We can see that students came out of high school with a certain level of self-esteem that dropped off to the lowest point of the four years. Some said they started to experience ‘imposter syndrome’ from being around other high-performing students,” Campbell says. “As the years progress, though, we can draw a straight line from low to high as their self-esteem improves. I think we would see a similar trend class over class. To me, that’s a very positive thing.”

Female students—who made up 60% of study participants—experienced on average 5% greater stress levels and 10% lower self-esteem than male students. More significantly, the data show that female students tended to be less active, with male students walking 37% more often.

Sophomores were 40% more socially active compared to their first year, the researchers report. But these students also reported feeling 13% more stressed during their second year than during their first year as their workload increased, they felt pressure to socialize, or as first-year social groups dispersed.

One student in a sorority recalled that having pre-arranged activities “kind of adds stress as I feel like I should be having fun because everyone tells me that it is fun.” Another student noted that after the first year, “students have more access to the whole campus and that is when you start feeling excluded from things.” 

In a novel finding, the researchers identify an “anticipatory stress spike” of 17% experienced in the last two weeks of summer break. While still lower than mid-academic year stress, the spike was consistent across different summers.

In post-study interviews, some students pointed to returning to campus early for team sports as a source of stress. Others specified reconnecting with family and high school friends during their first summer home, saying they felt “a sense of leaving behind the comfort and familiarity of these long-standing friendships” as the break ended, the researchers report. 

“This is a foundational study,” says Subigya Nepal , first author of the study and a PhD candidate in Campbell’s research group. “It has more real-time granular data than anything we or anyone else has provided before. We don’t know yet how it will translate to campuses nationwide, but it can be a template for getting the conversation going.”

The depth and accuracy of the study data suggest that mobile-sensing software could eventually give universities the ability to create proactive mental-health policies specific to certain student populations and times of year, Campbell says.

For example, a paper Campbell’s research group published in 2022 based on StudentLife data showed that first-generation students experienced lower self-esteem and higher levels of depression than other students throughout their four years of college.

“We will be able to look at campus in much more nuanced ways than waiting for the results of an annual mental health study and then developing policy,” Campbell says. “We know that Dartmouth is a small and very tight-knit campus community. But if we applied these same methods to a college with similar attributes, I believe we would find very similar trends.”

Weathering the pandemic

When students returned home at the start of the coronavirus pandemic, the researchers found that self-esteem actually increased during the pandemic by 5% overall and by another 6% afterward when life returned closer to what it was before. One student suggested in their interview that getting older came with more confidence. Others indicated that being home led to them spending more time with friends talking on the phone, on social media, or streaming movies together. 

The data show that phone usage—measured by the duration a phone was unlocked—indeed increased by nearly 33 minutes, or 19%, during the pandemic, while time spent in physical activity dropped by 52 minutes, or 27%. By 2022, phone usage fell from its pandemic peak to just above pre-pandemic levels, while engagement in physical activity had recovered to exceed the pre-pandemic period by three minutes. 

Despite reporting higher self-esteem, students’ feelings of stress increased by more than 10% during the pandemic. By the end of the study in June 2022, stress had fallen by less than 2% of its pandemic peak, indicating that the experience had a lasting impact on student well-being, the researchers report. 

In early 2021, as students returned to campus, their reunion with friends and community was tempered by an overwhelming concern about the still-rampant coronavirus. “There was the first outbreak in winter 2021 and that was terrifying,” one student recalls. Another student adds: “You could be put into isolation for a long time even if you did not have COVID. Everyone was afraid to contact-trace anyone else in case they got mad at each other.”

Female students were especially concerned about the coronavirus, on average 13% more than male students. “Even though the girls might have been hanging out with each other more, they are more aware of the impact,” one female student reported. “I actually had COVID and exposed some friends of mine. All the girls that I told tested as they were worried. They were continually checking up to make sure that they did not have it and take it home to their family.”

Students still learning remotely had social levels 16% higher than students on campus, who engaged in activity an average of 10% less often than when they were learning from home. However, on-campus students used their phones 47% more often. When interviewed after the study, these students reported spending extended periods of time video-calling or streaming movies with friends and family.

Social activity and engagement had not yet returned to pre-pandemic levels by the end of the study in June 2022, recovering by a little less than 3% after a nearly 10% drop during the pandemic. Similarly, the pandemic correlates with students sticking closer to home, with their distance traveled nearly cut in half during the pandemic and holding at that level since then.

Campbell and several of his fellow researchers are now developing a smartphone app known as MoodCapture that uses artificial intelligence paired with facial-image processing software to reliably detect the onset of depression before the user even knows something is wrong.

Morgan Kelly can be reached at [email protected] .

  • Mental Health and Wellness
  • Innovation and Impact
  • Arts and Sciences
  • Class of 2021
  • Class of 2022
  • Department of Computer Science
  • Guarini School of Graduate and Advanced Studies
  • Mental Health

The growth of these groups is largely flying under the radar. This level of coordination is unprecedented.

Pond Skimming at the Dartmouth Skiway

A person dressed as a bunny skims water on skis

ORIGINAL RESEARCH article

This article is part of the research topic.

Exploring STEM Environments that Broaden Participation

Facilitating Collaboration Between Japanese High Schools and Universities: A Qualitative Exploration of the Role of Education Outreach Coordinators Provisionally Accepted

  • 1 The University of Tokyo, Japan

The final, formatted version of the article will be published soon.

In recent years, universities have been expected to participate in Japanese high school education, especially in the "period for inquiry-based cross-disciplinary study." Despite various university faculties engaging in diverse educational practices, there is insufficient research on human resource development and the creation of mechanisms to ensure continuous development.This study conducted semi-structured interviews from July to November 2023, with 15 educators from universities and high schools, among others, to explore the current state of educational collaborations between these institutions and identify potential solutions.A reflective thematic analysis of the interview identified two key themes: the significance of university involvement in high school education and conflict areas generated from this collaboration. The findings suggest that the success of these initiatives relies on the involvement of coordinators who possess a high level of expertise and competencies.Discussion: These coordinators, who work in the "third space" in universities, are crucial for realizing the ideal outcomes of educational collaborations between universities and high schools in Japan's new educational environment.In the Japanese education system, particularly at the high school level, there is an increasing expectation for more university involvement.

Keywords: qualitative research, school-university collaboration, Coordinator, third space professionals, Japan

Received: 28 Feb 2024; Accepted: 03 Apr 2024.

Copyright: © 2024 Mori. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Mx. Akiko Mori, The University of Tokyo, Bunkyo, Japan

People also looked at

research topic quantitative in school

When it comes to global economic governance, less can be more if you want increased cooperation, stability, and equitable growth

HKS Professor Dani Rodrik says his new paper shows that a “light model” of international trade governance can reduce U.S.-China tensions and lead to more equitable prosperity worldwide.

In an era of great power rivalry and escalating tensions between the United States and China, how should global economic policymakers approach governance to foster greater cooperation, reduce conflict, and promote equity and shared prosperity? Tread lightly, says Harvard Kennedy School Professor Dani Rodrik . In a new paper in the Journal of Government and Economics titled " How to smooth U.S.-China economic relations for the benefit of the global economy: A light model of global economic governance ," Rodrik argues for a less-is-more approach that emphasizes transparency and restricts trade rules to those that are truly necessary. Recent history, he writes, has shown that heavy-handed, one-size-fits-all global economic governance has disadvantaged developing countries and empowered nativist, populist politicians in regions that suffered job losses due to globalization. Rodrik is the Ford Foundation Professor of International Political Economy and co-director of the Reimagining the Economy project at HKS 

Q: In your paper, you argue for a “light” model of global economic governance to smooth U.S.-China economic relations and benefit the global economy. What measures does a light economic governance model include and what does it exclude? 

The basic distinction is between addressing the most egregious policy barriers at the border—especially beggar-thy-neighbor policies—versus a more ambitious agenda of trying to remove all obstacles to the flow of trade and finance even if these encompass domestic regulations. My colleague Robert Lawrence has called this the difference between “shallow integration” and “deep integration.” So countries might negotiate over import tariffs or export restrictions, but industrial policies or financial regulations, for example, would remain largely outside the remit of global rules or trade agreements.

Q: What evidence is there that more intensive global governance and trade rules—a “heavy” or “deep integration” model—have been unnecessary or counter-productive? 

The deep integration model had two undesirable side effects. First, it made it harder for developing countries to engage in industrial policies or other structural policies to diversify and upgrade their economies and to shelter themselves from the destabilizing effects of short-term capital flows, because of real (or self-imposed) constraints on their policy autonomy. It was countries such as China who disregarded such constraints and made full use of industrial policies and capital controls that performed the best. Others who followed the deep integration model and relied on trade agreements and openness to foreign capital as their sole growth strategy, such as Mexico, did quite poorly. 

Second, it prevented policy makers in advanced economies from taking seriously and addressing the adverse labor market effects of growing imports from China and elsewhere. During the 1970s and 1980s, before globalization got supercharged, it was common for countries to put up informal trade barriers—typically “voluntary” export restrictions administered by exporting countries—which limited the shock. These were safety valves for the trade system, and even though economists complained about “protectionism,” such measures did the job of regime maintenance (in the words of our late colleague John Ruggie). After the 1990s, policymakers’ response to these dislocations was to shrug their shoulders and tell the losers this is how globalization worked and there was nothing to be done. This was one of the key failings of mainstream politicians, which in turn empowered the populists. We have plenty of evidence now that regions that lost jobs to imports from China or Mexico became the breeding grounds for the nativist populists.

Dani Rodrik headshot.

“The future of the global economic order depends first and foremost on how the bilateral relationship between the U.S. and China will evolve.”

Dani rodrik.

Q: One of the main building blocks of the light governance model is what you call a “transparency-enhancing process for policymaking.” What is that process and why is increased transparency important? 

In an interdependent global economy, it is inevitable that many policies that target national economic well-being as well as domestic social and environmental priorities will have some undesirable side effects on other nations. This is the case, for example, when nations engage in policies to fix important market failures or address national security concerns. Often such policies are needed and legitimate, and trade partners have to be permissive and understanding. Such policies have to be distinguished from those that are explicitly beggar-thy-neighbor—that is, policies that generate benefits at home because of the harms they produce for other nations.  

If we are going to live in a world where national policymakers have greater autonomy to address domestic priorities, as I think we have to, it will be important for them to communicate their motivations both to their domestic audiences and to other governments. This is to build trust and mutual understanding. For example, when the United States imposes export controls on “sensitive technologies” or imposes restrictions on Chinese investments on U.S. soil on the basis of national security, we need much better explanation on (a) what the national security objective really is, and (b) how the export or investment in question undermines the objective. Otherwise, national security can turn into a blanket justification for all kinds of policies that either do not really address national security or (as in the case of the U.S.) take too expansive view of it.

Q: How would a light governance model smooth U.S.-China relations? And how would it work in the context of the current slowdown in what had been China’s robust growth over the last three decades? 

It would be a good first step if each side were to give up on hypocrisy and recognize the similarity of their approaches. The United States continues to criticize China for allegedly pursuing mercantilist and protectionist policies and violating the norms of a “liberal” international order. For their part, Chinese policymakers accuse the United States of turning its back on globalization and waging economic warfare on China. Neither side seems to be aware of the irony that the United States has taken a page from the Chinese playbook, while U.S. departures from the “liberal order” are readily recognizable to Chinese policy makers from their own practices.   

Q: How would a light economic governance model achieve an overall global economic benefit? 

The future of the global economic order depends first and foremost on how the bilateral relationship between the United States and China will evolve. So anything that smooths this critical relationship would be very good news for the world economy. Second, as these two powers build a certain degree of trust and understanding, this would also contribute to an environment where they play a positive role in providing critical global public goods (such as decarbonizing the world economy and global public health).    

Photograph by STR/AFP/Getty Images

More from HKS

The great creep backward: policy responses to china’s slowing economy, harvard kennedy school faculty discuss the future of china: global relations, marx and confucius, and the role of universities, u.s. ambassador to china nicholas burns to deliver 2024 harvard kennedy school graduation address.

Get smart & reliable public policy insights right in your inbox. 

Samples offer glimpse of active Earth 2.5 billion years ago

Judy Zhang

In earth science, small details can help explain massive events. Rita Parai , an assistant professor of earth, environmental and planetary sciences in Arts & Sciences at Washington University in St. Louis, uses precision equipment to measure trace levels of noble gases in rocks, samples that can provide key insights into planetary evolution.

In a study published in Earth and Planetary Science Letters , Parai and graduate student Judy Zhang used measurements of noble gases from volcanic rocks from the Cook and Austral islands to show that plate tectonics have been delivering gases from the surface into deep Earth for more than 2.5 billion years.

Noble gases are especially helpful for deep-time investigations because they are chemically inert. Some of their isotopes were trapped in the interior 4.5 billion years ago when the Earth first formed.

Read more from The Ampersand .

Comments and respectful dialogue are encouraged, but content will be moderated. Please, no personal attacks, obscenity or profanity, selling of commercial products, or endorsements of political candidates or positions. We reserve the right to remove any inappropriate comments. We also cannot address individual medical concerns or provide medical advice in this forum.

You Might Also Like

Parai wins CAREER grant to study geochemistry of the deep Earth

Latest from the Record

Announcements.

Public university directory being phased out

Apply to join Danforth Staff Council, attend spring forum

MetroLink updates schedules, reopens platforms

Durkee installed as William Gardiner Hammond Professor of Law

Macias appointed director of student leader development for Leaders Academy

WashU swimmer McCormick wins NCAA title for backstroke

Philip Needleman, emeritus trustee, longtime benefactor, 85

Amarnath Ghosh, student in Arts & Sciences, 34

Philip E. Cryer, former director of endocrinology division, 84

Research Wire

Bersi receives CAREER award

Understanding how anxious misery affects brain networks aim of new grant 

The View From Here

Washington people.

Kim Thuy Seelinger

Antonio Douthit-Boyd

Katharine Flores

Who Knew WashU?

Who Knew WashU? 1.27.21

Who Knew WashU? 1.13.21

Who Knew WashU? 12.9.20

IMAGES

  1. 100+ Best Quantitative Research Topics For Students In 2023

    research topic quantitative in school

  2. Quantitative research Topics Ideas 2022 for UK Students (2022)

    research topic quantitative in school

  3. 51 Best Quantitative Research Topics for your Next Semester

    research topic quantitative in school

  4. Quantitative-Research-Proposal-Topics-list.pdf

    research topic quantitative in school

  5. Quantitative research questions: Types, tips & examples

    research topic quantitative in school

  6. How Quantitative Research Can Help Senior High School Students

    research topic quantitative in school

VIDEO

  1. Quantitative research process

  2. The Importance of Quantitative Research Across Fields || Practical Research 2 || Quarter 1/3 Week 2

  3. Exploring Qualitative and Quantitative Research Methods and why you should use them

  4. Quantitative Research

  5. Quantitative Research, Types and Examples Latest

  6. Lecture 41: Quantitative Research

COMMENTS

  1. 100+ Best Quantitative Research Topics For Students In 2023

    The 100+ best quantitative research topics for students explain events with mathematical analysis and data points. Here are examples to guide you. Services. ... List of Quantitative Research Titles for High School. High school students can apply research titles on social issues or other elements, depending on the subject. Let's look at some ...

  2. 500+ Quantitative Research Titles and Topics

    Quantitative Research Topics. Quantitative Research Topics are as follows: The effects of social media on self-esteem among teenagers. A comparative study of academic achievement among students of single-sex and co-educational schools. The impact of gender on leadership styles in the workplace.

  3. 190+ Best Quantitative Research Topics for STEM Students

    Biomedical Engineering Research Topics. 1. Optimizing algorithms for medical image analysis in diagnostic imaging. 2. Quantifying the efficiency of prosthetic and orthopedic devices in rehabilitation. 3. Analyzing the quantitative aspects of drug delivery systems in personalized medicine. 4.

  4. 200+ Experimental Quantitative Research Topics For Stem Students

    Here are 10 practical research topics for STEM students: Developing an affordable and sustainable water purification system for rural communities. Designing a low-cost, energy-efficient home heating and cooling system. Investigating strategies for reducing food waste in the supply chain and households.

  5. 127+ Great Quantitative Research Topics For STEM Students

    Biology Quantitative Research Topics For STEM Students. Systems Biology: Modeling Cellular Signaling Networks. Computational Neuroscience: Brain Network Analysis. Population Genetics and Evolutionary Dynamics. Mathematical Modeling of Infectious Diseases. Studying Protein Folding Using Computational Methods.

  6. 170+ Research Topics In Education (+ Free Webinar)

    A comprehensive list of research topics and ideas in education, along with a list of existing dissertations & theses covering education. About Us; Services. 1-On-1 Coaching. ... I would like to request a topic based on school major in social studies. Reply. Mercedes Bunsie on July 5, 2023 at 8:05 am parental involvement and students academic ...

  7. 60+ Best Quantitative Research Topics for STEM Students: Dive into Data

    Embark on a captivating journey through the cosmos of knowledge with our curated guide on Quantitative Research Topics for STEM Students. Explore innovative ideas in science, technology, engineering, and mathematics, designed to ignite curiosity and shape the future. Unleash the power of quantitative research and dive into uncharted territories ...

  8. 189+ Good Quantitative Research Topics For STEM Students

    Following are the best Quantitative Research Topics For STEM Students in mathematics and statistics. Prime Number Distribution: Investigate the distribution of prime numbers. Graph Theory Algorithms: Develop algorithms for solving graph theory problems. Statistical Analysis of Financial Markets: Analyze financial data and market trends.

  9. 50+ Unique Quantitative Research Topics for Students

    Step 1: Choose the research topic. Remember, your research question will represent the type of quantitative research you will use in your dissertation. So, you should always consider choosing the type of research question quite carefully. It can be descriptive, comparative or relationship-based. If you already have a couple of plants and unique ...

  10. All Quantitative research articles

    Moles and titrations. 5 January 2015. Dorothy Warren describes some of the difficulties with teaching this topic and shows how you can help your students to master aspects of quantitative chemistry. Previous. 1. 2. Next. All Quantitative research articles in RSC Education.

  11. A Quantitative Study of School Characteristics that Impact Student

    Part of the Educational Assessment, Evaluation, and Research Commons, and the Educational Sociology Commons Recommended Citation Swanson, Phillip L., "A Quantitative Study of School Characteristics that Impact Student Achievement on State Assessments and those Assessments' Associations to ACT Scores in Tennessee." (2009).

  12. What Is Quantitative Research?

    Revised on June 22, 2023. Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and analyzing ...

  13. 383 Education Research Topics

    Table of Contents. 🔝 Top-15 Research Titles about Education. #️⃣ Quantitative Research Topics. ️📋 Qualitative Research Topics. 🎒 Titles about School Issues in 2024. 🦼 Research Topics on Special Education. 👶 Early Childhood Education. 🧠 Educational Psychology. 🧸 Child Development Topics.

  14. Learning Module: Senior High School Quantitative Research

    Step 1: Identify the Research Title. Use your research title in research task sheet 1, step 5. e.g. Research Title: "Teaching method, and students' engagement, as factors in effective ...

  15. (PDF) Conducting Quantitative Research in Education

    This book provides a clear and straightforward guide for all those seeking to conduct quantitative research in the field of education, using primary research data samples. While positioned as less ...

  16. Research and trends in STEM education: a systematic review of journal

    With the rapid increase in the number of scholarly publications on STEM education in recent years, reviews of the status and trends in STEM education research internationally support the development of the field. For this review, we conducted a systematic analysis of 798 articles in STEM education published between 2000 and the end of 2018 in 36 journals to get an overview about developments ...

  17. Quantitative research in education : Background information

    Educational research has a strong tradition of employing state-of-the-art statistical and psychometric (psychological measurement) techniques. Commonly referred to as quantitative methods, these techniques cover a range of statistical tests and tools. The Sage encyclopedia of educational research, measurement, and evaluation by Bruce B. Frey (Ed.)

  18. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  19. A Quick Guide to Quantitative Research in the Social Sciences

    This resource is intended as an easy-to-use guide for anyone who needs some quick and simple advice on quantitative aspects of research in social sciences, covering subjects such as education, sociology, business, nursing. If you area qualitative researcher who needs to venture into the world of numbers, or a student instructed to undertake a quantitative research project despite a hatred for ...

  20. Critical Quantitative Literacy: An Educational Foundation for Critical

    Quantitative research in the social sciences is undergoing a change. After years of scholarship on the oppressive history of quantitative methods, quantitative scholars are grappling with the ways that our preferred methodology reinforces social injustices (Zuberi, 2001).Among others, the emerging fields of CritQuant (critical quantitative studies) and QuantCrit (quantitative critical race ...

  21. 250 Grade 12 Quantitative Research Topics for Senior High School

    If you're on the hunt for that ideal quantitative research topic for your Grade 12 project, you've struck gold! You're in for a treat because we've got your back. Within the pages of this blog, we've meticulously assembled an extensive catalog of 250 intriguing quantitative research themes for your exploration.

  22. Examples of Quantitative Research Questions

    Understanding Quantitative Research Questions. Quantitative research involves collecting and analyzing numerical data to answer research questions and test hypotheses. These questions typically seek to understand the relationships between variables, predict outcomes, or compare groups. Let's explore some examples of quantitative research ...

  23. Study Tracks Shifts in Student Mental Health During College

    The team made their anonymized data set publicly available—including self-reports, surveys, and phone-sensing and brain-imaging data—to help advance research into the mental health of students during their college years.. Andrew Campbell, the paper's senior author and Dartmouth's Albert Bradley 1915 Third Century Professor of Computer Science, says that the study's extensive data ...

  24. America's students are falling behind. Here's how to reimagine the

    Plenty of research shows that starting school later would benefit students, too, but policymakers and school boards rarely make changes. Mind-body interventions, which have a growing evidence base, are increasingly used in schools and can benefit students and teachers, said Melissa Bray, PhD, a professor and the director of the school ...

  25. Facilitating Collaboration Between Japanese High Schools and

    In recent years, universities have been expected to participate in Japanese high school education, especially in the "period for inquiry-based cross-disciplinary study." Despite various university faculties engaging in diverse educational practices, there is insufficient research on human resource development and the creation of mechanisms to ensure continuous development.This study conducted ...

  26. When it comes to global economic governance, less can be more if you

    Tread lightly, says Harvard Kennedy School Professor Dani Rodrik. In a new paper in the Journal of Government and Economics titled " How to smooth U.S.-China economic relations for the benefit of the global economy: A light model of global economic governance ," Rodrik argues for a less-is-more approach that emphasizes transparency and ...

  27. Samples offer glimpse of active Earth 2.5 billion years ago

    In earth science, small details can help explain massive events. Rita Parai, an assistant professor of earth, environmental and planetary sciences in Arts & Sciences at Washington University in St. Louis, uses precision equipment to measure trace levels of noble gases in rocks, samples that can provide key insights into planetary evolution.. In a study published in Earth and Planetary Science ...

  28. Human brains are getting larger. That may be good news for dementia risk

    Study participants born in the 1970s had 6.6% larger brain volumes and almost 15% larger brain surface area than those born in the 1930s. The researchers hypothesize the increased brain size may lead to an increased brain reserve, potentially reducing the overall risk of age-related dementias. The findings were published in JAMA Neurology.

  29. Research showcase brings to life the breadth and depth of public health

    PROVIDENCE, R.I. [Brown University] — While Public Health Research Day at Brown is typically referred to as a poster conference, the boards are basic backdrops to the real stars of the event: the student researchers. On Tuesday, April 2, enthusiastic conversations among nearly 160 researchers spilled out of the open doors of Alumnae Hall as School of Public Health students gathered to ...