• PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game New
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • College University and Postgraduate
  • Academic Writing

How to Write Research Methodology

Last Updated: May 21, 2023 Approved

This article was co-authored by Alexander Ruiz, M.Ed. and by wikiHow staff writer, Jennifer Mueller, JD . Alexander Ruiz is an Educational Consultant and the Educational Director of Link Educational Institute, a tutoring business based in Claremont, California that provides customizable educational plans, subject and test prep tutoring, and college application consulting. With over a decade and a half of experience in the education industry, Alexander coaches students to increase their self-awareness and emotional intelligence while achieving skills and the goal of achieving skills and higher education. He holds a BA in Psychology from Florida International University and an MA in Education from Georgia Southern University. wikiHow marks an article as reader-approved once it receives enough positive feedback. In this case, several readers have written to tell us that this article was helpful to them, earning it our reader-approved status. This article has been viewed 518,125 times.

The research methodology section of any academic research paper gives you the opportunity to convince your readers that your research is useful and will contribute to your field of study. An effective research methodology is grounded in your overall approach – whether qualitative or quantitative – and adequately describes the methods you used. Justify why you chose those methods over others, then explain how those methods will provide answers to your research questions. [1] X Research source

Describing Your Methods

Step 1 Restate your research problem.

  • In your restatement, include any underlying assumptions that you're making or conditions that you're taking for granted. These assumptions will also inform the research methods you've chosen.
  • Generally, state the variables you'll test and the other conditions you're controlling or assuming are equal.

Step 2 Establish your overall methodological approach.

  • If you want to research and document measurable social trends, or evaluate the impact of a particular policy on various variables, use a quantitative approach focused on data collection and statistical analysis.
  • If you want to evaluate people's views or understanding of a particular issue, choose a more qualitative approach.
  • You can also combine the two. For example, you might look primarily at a measurable social trend, but also interview people and get their opinions on how that trend is affecting their lives.

Step 3 Define how you collected or generated data.

  • For example, if you conducted a survey, you would describe the questions included in the survey, where and how the survey was conducted (such as in person, online, over the phone), how many surveys were distributed, and how long your respondents had to complete the survey.
  • Include enough detail that your study can be replicated by others in your field, even if they may not get the same results you did. [4] X Research source

Step 4 Provide background for uncommon methods.

  • Qualitative research methods typically require more detailed explanation than quantitative methods.
  • Basic investigative procedures don't need to be explained in detail. Generally, you can assume that your readers have a general understanding of common research methods that social scientists use, such as surveys or focus groups.

Step 5 Cite any sources that contributed to your choice of methodology.

  • For example, suppose you conducted a survey and used a couple of other research papers to help construct the questions on your survey. You would mention those as contributing sources.

Justifying Your Choice of Methods

Step 1 Explain your selection criteria for data collection.

  • Describe study participants specifically, and list any inclusion or exclusion criteria you used when forming your group of participants.
  • Justify the size of your sample, if applicable, and describe how this affects whether your study can be generalized to larger populations. For example, if you conducted a survey of 30 percent of the student population of a university, you could potentially apply those results to the student body as a whole, but maybe not to students at other universities.

Step 2 Distinguish your research from any weaknesses in your methods.

  • Reading other research papers is a good way to identify potential problems that commonly arise with various methods. State whether you actually encountered any of these common problems during your research.

Step 3 Describe how you overcame obstacles.

  • If you encountered any problems as you collected data, explain clearly the steps you took to minimize the effect that problem would have on your results.

Step 4 Evaluate other methods you could have used.

  • In some cases, this may be as simple as stating that while there were numerous studies using one method, there weren't any using your method, which caused a gap in understanding of the issue.
  • For example, there may be multiple papers providing quantitative analysis of a particular social trend. However, none of these papers looked closely at how this trend was affecting the lives of people.

Connecting Your Methods to Your Research Goals

Step 1 Describe how you analyzed your results.

  • Depending on your research questions, you may be mixing quantitative and qualitative analysis – just as you could potentially use both approaches. For example, you might do a statistical analysis, and then interpret those statistics through a particular theoretical lens.

Step 2 Explain how your analysis suits your research goals.

  • For example, suppose you're researching the effect of college education on family farms in rural America. While you could do interviews of college-educated people who grew up on a family farm, that would not give you a picture of the overall effect. A quantitative approach and statistical analysis would give you a bigger picture.

Step 3 Identify how your analysis answers your research questions.

  • If in answering your research questions, your findings have raised other questions that may require further research, state these briefly.
  • You can also include here any limitations to your methods, or questions that weren't answered through your research.

Step 4 Assess whether your findings can be transferred or generalized.

  • Generalization is more typically used in quantitative research. If you have a well-designed sample, you can statistically apply your results to the larger population your sample belongs to.

Template to Write Research Methodology

steps to writing research methods

Community Q&A

AneHane

  • Organize your methodology section chronologically, starting with how you prepared to conduct your research methods, how you gathered data, and how you analyzed that data. [13] X Research source Thanks Helpful 0 Not Helpful 0
  • Write your research methodology section in past tense, unless you're submitting the methodology section before the research described has been carried out. [14] X Research source Thanks Helpful 2 Not Helpful 0
  • Discuss your plans in detail with your advisor or supervisor before committing to a particular methodology. They can help identify possible flaws in your study. [15] X Research source Thanks Helpful 0 Not Helpful 0

steps to writing research methods

You Might Also Like

Write

  • ↑ http://expertjournals.com/how-to-write-a-research-methodology-for-your-academic-article/
  • ↑ http://libguides.usc.edu/writingguide/methodology
  • ↑ https://www.skillsyouneed.com/learn/dissertation-methodology.html
  • ↑ https://uir.unisa.ac.za/bitstream/handle/10500/4245/05Chap%204_Research%20methodology%20and%20design.pdf
  • ↑ https://elc.polyu.edu.hk/FYP/html/method.htm

About This Article

Alexander Ruiz, M.Ed.

To write a research methodology, start with a section that outlines the problems or questions you'll be studying, including your hypotheses or whatever it is you're setting out to prove. Then, briefly explain why you chose to use either a qualitative or quantitative approach for your study. Next, go over when and where you conducted your research and what parameters you used to ensure you were objective. Finally, cite any sources you used to decide on the methodology for your research. To learn how to justify your choice of methods in your research methodology, scroll down! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Prof. Dr. Ahmed Askar

Prof. Dr. Ahmed Askar

Apr 18, 2020

Did this article help you?

steps to writing research methods

M. Mahmood Shah Khan

Mar 17, 2020

Shimola Makondo

Shimola Makondo

Jul 20, 2019

Zain Sharif Mohammed Alnadhery

Zain Sharif Mohammed Alnadhery

Jan 7, 2019

Lundi Dukashe

Lundi Dukashe

Feb 17, 2020

Am I a Narcissist or an Empath Quiz

Featured Articles

Choose the Right Car for You

Trending Articles

How to Set Boundaries with Texting

Watch Articles

Fold Boxer Briefs

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

wikiHow Tech Help Pro:

Level up your tech skills and stay ahead of the curve

When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open.

  • PLOS Biology
  • PLOS Climate
  • PLOS Complex Systems
  • PLOS Computational Biology
  • PLOS Digital Health
  • PLOS Genetics
  • PLOS Global Public Health
  • PLOS Medicine
  • PLOS Mental Health
  • PLOS Neglected Tropical Diseases
  • PLOS Pathogens
  • PLOS Sustainability and Transformation
  • PLOS Collections
  • How to Write Your Methods

steps to writing research methods

Ensure understanding, reproducibility and replicability

What should you include in your methods section, and how much detail is appropriate?

Why Methods Matter

The methods section was once the most likely part of a paper to be unfairly abbreviated, overly summarized, or even relegated to hard-to-find sections of a publisher’s website. While some journals may responsibly include more detailed elements of methods in supplementary sections, the movement for increased reproducibility and rigor in science has reinstated the importance of the methods section. Methods are now viewed as a key element in establishing the credibility of the research being reported, alongside the open availability of data and results.

A clear methods section impacts editorial evaluation and readers’ understanding, and is also the backbone of transparency and replicability.

For example, the Reproducibility Project: Cancer Biology project set out in 2013 to replicate experiments from 50 high profile cancer papers, but revised their target to 18 papers once they understood how much methodological detail was not contained in the original papers.

steps to writing research methods

What to include in your methods section

What you include in your methods sections depends on what field you are in and what experiments you are performing. However, the general principle in place at the majority of journals is summarized well by the guidelines at PLOS ONE : “The Materials and Methods section should provide enough detail to allow suitably skilled investigators to fully replicate your study. ” The emphases here are deliberate: the methods should enable readers to understand your paper, and replicate your study. However, there is no need to go into the level of detail that a lay-person would require—the focus is on the reader who is also trained in your field, with the suitable skills and knowledge to attempt a replication.

A constant principle of rigorous science

A methods section that enables other researchers to understand and replicate your results is a constant principle of rigorous, transparent, and Open Science. Aim to be thorough, even if a particular journal doesn’t require the same level of detail . Reproducibility is all of our responsibility. You cannot create any problems by exceeding a minimum standard of information. If a journal still has word-limits—either for the overall article or specific sections—and requires some methodological details to be in a supplemental section, that is OK as long as the extra details are searchable and findable .

Imagine replicating your own work, years in the future

As part of PLOS’ presentation on Reproducibility and Open Publishing (part of UCSF’s Reproducibility Series ) we recommend planning the level of detail in your methods section by imagining you are writing for your future self, replicating your own work. When you consider that you might be at a different institution, with different account logins, applications, resources, and access levels—you can help yourself imagine the level of specificity that you yourself would require to redo the exact experiment. Consider:

  • Which details would you need to be reminded of? 
  • Which cell line, or antibody, or software, or reagent did you use, and does it have a Research Resource ID (RRID) that you can cite?
  • Which version of a questionnaire did you use in your survey? 
  • Exactly which visual stimulus did you show participants, and is it publicly available? 
  • What participants did you decide to exclude? 
  • What process did you adjust, during your work? 

Tip: Be sure to capture any changes to your protocols

You yourself would want to know about any adjustments, if you ever replicate the work, so you can surmise that anyone else would want to as well. Even if a necessary adjustment you made was not ideal, transparency is the key to ensuring this is not regarded as an issue in the future. It is far better to transparently convey any non-optimal methods, or methodological constraints, than to conceal them, which could result in reproducibility or ethical issues downstream.

Visual aids for methods help when reading the whole paper

Consider whether a visual representation of your methods could be appropriate or aid understanding your process. A visual reference readers can easily return to, like a flow-diagram, decision-tree, or checklist, can help readers to better understand the complete article, not just the methods section.

Ethical Considerations

In addition to describing what you did, it is just as important to assure readers that you also followed all relevant ethical guidelines when conducting your research. While ethical standards and reporting guidelines are often presented in a separate section of a paper, ensure that your methods and protocols actually follow these guidelines. Read more about ethics .

Existing standards, checklists, guidelines, partners

While the level of detail contained in a methods section should be guided by the universal principles of rigorous science outlined above, various disciplines, fields, and projects have worked hard to design and develop consistent standards, guidelines, and tools to help with reporting all types of experiment. Below, you’ll find some of the key initiatives. Ensure you read the submission guidelines for the specific journal you are submitting to, in order to discover any further journal- or field-specific policies to follow, or initiatives/tools to utilize.

Tip: Keep your paper moving forward by providing the proper paperwork up front

Be sure to check the journal guidelines and provide the necessary documents with your manuscript submission. Collecting the necessary documentation can greatly slow the first round of peer review, or cause delays when you submit your revision.

Randomized Controlled Trials – CONSORT The Consolidated Standards of Reporting Trials (CONSORT) project covers various initiatives intended to prevent the problems of  inadequate reporting of randomized controlled trials. The primary initiative is an evidence-based minimum set of recommendations for reporting randomized trials known as the CONSORT Statement . 

Systematic Reviews and Meta-Analyses – PRISMA The Preferred Reporting Items for Systematic Reviews and Meta-Analyses ( PRISMA ) is an evidence-based minimum set of items focusing  on the reporting of  reviews evaluating randomized trials and other types of research.

Research using Animals – ARRIVE The Animal Research: Reporting of In Vivo Experiments ( ARRIVE ) guidelines encourage maximizing the information reported in research using animals thereby minimizing unnecessary studies. (Original study and proposal , and updated guidelines , in PLOS Biology .) 

Laboratory Protocols Protocols.io has developed a platform specifically for the sharing and updating of laboratory protocols , which are assigned their own DOI and can be linked from methods sections of papers to enhance reproducibility. Contextualize your protocol and improve discovery with an accompanying Lab Protocol article in PLOS ONE .

Consistent reporting of Materials, Design, and Analysis – the MDAR checklist A cross-publisher group of editors and experts have developed, tested, and rolled out a checklist to help establish and harmonize reporting standards in the Life Sciences . The checklist , which is available for use by authors to compile their methods, and editors/reviewers to check methods, establishes a minimum set of requirements in transparent reporting and is adaptable to any discipline within the Life Sciences, by covering a breadth of potentially relevant methodological items and considerations. If you are in the Life Sciences and writing up your methods section, try working through the MDAR checklist and see whether it helps you include all relevant details into your methods, and whether it reminded you of anything you might have missed otherwise.

Summary Writing tips

The main challenge you may find when writing your methods is keeping it readable AND covering all the details needed for reproducibility and replicability. While this is difficult, do not compromise on rigorous standards for credibility!

steps to writing research methods

  • Keep in mind future replicability, alongside understanding and readability.
  • Follow checklists, and field- and journal-specific guidelines.
  • Consider a commitment to rigorous and transparent science a personal responsibility, and not just adhering to journal guidelines.
  • Establish whether there are persistent identifiers for any research resources you use that can be specifically cited in your methods section.
  • Deposit your laboratory protocols in Protocols.io, establishing a permanent link to them. You can update your protocols later if you improve on them, as can future scientists who follow your protocols.
  • Consider visual aids like flow-diagrams, lists, to help with reading other sections of the paper.
  • Be specific about all decisions made during the experiments that someone reproducing your work would need to know.

steps to writing research methods

Don’t

  • Summarize or abbreviate methods without giving full details in a discoverable supplemental section.
  • Presume you will always be able to remember how you performed the experiments, or have access to private or institutional notebooks and resources.
  • Attempt to hide constraints or non-optimal decisions you had to make–transparency is the key to ensuring the credibility of your research.
  • How to Write a Great Title
  • How to Write an Abstract
  • How to Report Statistics
  • How to Write Discussions and Conclusions
  • How to Edit Your Work

The contents of the Peer Review Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

The contents of the Writing Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

There’s a lot to consider when deciding where to submit your work. Learn how to choose a journal that will help your study reach its audience, while reflecting your values as a researcher…

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

A Comprehensive Guide to Methodology in Research

Sumalatha G

Table of Contents

Research methodology plays a crucial role in any study or investigation. It provides the framework for collecting, analyzing, and interpreting data, ensuring that the research is reliable, valid, and credible. Understanding the importance of research methodology is essential for conducting rigorous and meaningful research.

In this article, we'll explore the various aspects of research methodology, from its types to best practices, ensuring you have the knowledge needed to conduct impactful research.

What is Research Methodology?

Research methodology refers to the system of procedures, techniques, and tools used to carry out a research study. It encompasses the overall approach, including the research design, data collection methods, data analysis techniques, and the interpretation of findings.

Research methodology plays a crucial role in the field of research, as it sets the foundation for any study. It provides researchers with a structured framework to ensure that their investigations are conducted in a systematic and organized manner. By following a well-defined methodology, researchers can ensure that their findings are reliable, valid, and meaningful.

When defining research methodology, one of the first steps is to identify the research problem. This involves clearly understanding the issue or topic that the study aims to address. By defining the research problem, researchers can narrow down their focus and determine the specific objectives they want to achieve through their study.

How to Define Research Methodology

Once the research problem is identified, researchers move on to defining the research questions. These questions serve as a guide for the study, helping researchers to gather relevant information and analyze it effectively. The research questions should be clear, concise, and aligned with the overall goals of the study.

After defining the research questions, researchers need to determine how data will be collected and analyzed. This involves selecting appropriate data collection methods, such as surveys, interviews, observations, or experiments. The choice of data collection methods depends on various factors, including the nature of the research problem, the target population, and the available resources.

Once the data is collected, researchers need to analyze it using appropriate data analysis techniques. This may involve statistical analysis, qualitative analysis, or a combination of both, depending on the nature of the data and the research questions. The analysis of data helps researchers to draw meaningful conclusions and make informed decisions based on their findings.

Role of Methodology in Research

Methodology plays a crucial role in research, as it ensures that the study is conducted in a systematic and organized manner. It provides a clear roadmap for researchers to follow, ensuring that the research objectives are met effectively. By following a well-defined methodology, researchers can minimize bias, errors, and inconsistencies in their study, thus enhancing the reliability and validity of their findings.

In addition to providing a structured approach, research methodology also helps in establishing the reliability and validity of the study. Reliability refers to the consistency and stability of the research findings, while validity refers to the accuracy and truthfulness of the findings. By using appropriate research methods and techniques, researchers can ensure that their study produces reliable and valid results, which can be used to make informed decisions and contribute to the existing body of knowledge.

Steps in Choosing the Right Research Methodology

Choosing the appropriate research methodology for your study is a critical step in ensuring the success of your research. Let's explore some steps to help you select the right research methodology:

Identifying the Research Problem

The first step in choosing the right research methodology is to clearly identify and define the research problem. Understanding the research problem will help you determine which methodology will best address your research questions and objectives.

Identifying the research problem involves a thorough examination of the existing literature in your field of study. This step allows you to gain a comprehensive understanding of the current state of knowledge and identify any gaps that your research can fill. By identifying the research problem, you can ensure that your study contributes to the existing body of knowledge and addresses a significant research gap.

Once you have identified the research problem, you need to consider the scope of your study. Are you focusing on a specific population, geographic area, or time frame? Understanding the scope of your research will help you determine the appropriate research methodology to use.

Reviewing Previous Research

Before finalizing the research methodology, it is essential to review previous research conducted in the field. This will allow you to identify gaps, determine the most effective methodologies used in similar studies, and build upon existing knowledge.

Reviewing previous research involves conducting a systematic review of relevant literature. This process includes searching for and analyzing published studies, articles, and reports that are related to your research topic. By reviewing previous research, you can gain insights into the strengths and limitations of different methodologies and make informed decisions about which approach to adopt.

During the review process, it is important to critically evaluate the quality and reliability of the existing research. Consider factors such as the sample size, research design, data collection methods, and statistical analysis techniques used in previous studies. This evaluation will help you determine the most appropriate research methodology for your own study.

Formulating Research Questions

Once the research problem is identified, formulate specific and relevant research questions. These questions will guide your methodology selection process by helping you determine what type of data you need to collect and how to analyze it.

Formulating research questions involves breaking down the research problem into smaller, more manageable components. These questions should be clear, concise, and measurable. They should also align with the objectives of your study and provide a framework for data collection and analysis.

When formulating research questions, consider the different types of data that can be collected, such as qualitative or quantitative data. Depending on the nature of your research questions, you may need to employ different data collection methods, such as interviews, surveys, observations, or experiments. By carefully formulating research questions, you can ensure that your chosen methodology will enable you to collect the necessary data to answer your research questions effectively.

Implementing the Research Methodology

After choosing the appropriate research methodology, it is time to implement it. This stage involves collecting data using various techniques and analyzing the gathered information. Let's explore two crucial aspects of implementing the research methodology:

Data Collection Techniques

Data collection techniques depend on the chosen research methodology. They can include surveys, interviews, observations, experiments, or document analysis. Selecting the most suitable data collection techniques will ensure accurate and relevant data for your study.

Data Analysis Methods

Data analysis is a critical part of the research process. It involves interpreting and making sense of the collected data to draw meaningful conclusions. Depending on the research methodology, data analysis methods can include statistical analysis, content analysis, thematic analysis, or grounded theory.

Ensuring the Validity and Reliability of Your Research

In order to ensure the validity and reliability of your research findings, it is important to address these two key aspects:

Understanding Validity in Research

Validity refers to the accuracy and soundness of a research study. It is crucial to ensure that the research methods used effectively measure what they intend to measure. Researchers can enhance validity by using proper sampling techniques, carefully designing research instruments, and ensuring accurate data collection.

Ensuring Reliability in Your Study

Reliability refers to the consistency and stability of the research results. It is important to ensure that the research methods and instruments used yield consistent and reproducible results. Researchers can enhance reliability by using standardized procedures, ensuring inter-rater reliability, and conducting pilot studies.

A comprehensive understanding of research methodology is essential for conducting high-quality research. By selecting the right research methodology, researchers can ensure that their studies are rigorous, reliable, and valid. It is crucial to follow the steps in choosing the appropriate methodology, implement the chosen methodology effectively, and address validity and reliability concerns throughout the research process. By doing so, researchers can contribute valuable insights and advances in their respective fields.

You might also like

AI for Meta-Analysis — A Comprehensive Guide

AI for Meta-Analysis — A Comprehensive Guide

Monali Ghosh

Cybersecurity in Higher Education: Safeguarding Students and Faculty Data

Leena Jaiswal

How To Write An Argumentative Essay

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 15 April 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.
  • Privacy Policy

Buy Me a Coffee

Research Method

Home » How To Write A Research Proposal – Step-by-Step [Template]

How To Write A Research Proposal – Step-by-Step [Template]

Table of Contents

How To Write a Research Proposal

How To Write a Research Proposal

Writing a Research proposal involves several steps to ensure a well-structured and comprehensive document. Here is an explanation of each step:

1. Title and Abstract

  • Choose a concise and descriptive title that reflects the essence of your research.
  • Write an abstract summarizing your research question, objectives, methodology, and expected outcomes. It should provide a brief overview of your proposal.

2. Introduction:

  • Provide an introduction to your research topic, highlighting its significance and relevance.
  • Clearly state the research problem or question you aim to address.
  • Discuss the background and context of the study, including previous research in the field.

3. Research Objectives

  • Outline the specific objectives or aims of your research. These objectives should be clear, achievable, and aligned with the research problem.

4. Literature Review:

  • Conduct a comprehensive review of relevant literature and studies related to your research topic.
  • Summarize key findings, identify gaps, and highlight how your research will contribute to the existing knowledge.

5. Methodology:

  • Describe the research design and methodology you plan to employ to address your research objectives.
  • Explain the data collection methods, instruments, and analysis techniques you will use.
  • Justify why the chosen methods are appropriate and suitable for your research.

6. Timeline:

  • Create a timeline or schedule that outlines the major milestones and activities of your research project.
  • Break down the research process into smaller tasks and estimate the time required for each task.

7. Resources:

  • Identify the resources needed for your research, such as access to specific databases, equipment, or funding.
  • Explain how you will acquire or utilize these resources to carry out your research effectively.

8. Ethical Considerations:

  • Discuss any ethical issues that may arise during your research and explain how you plan to address them.
  • If your research involves human subjects, explain how you will ensure their informed consent and privacy.

9. Expected Outcomes and Significance:

  • Clearly state the expected outcomes or results of your research.
  • Highlight the potential impact and significance of your research in advancing knowledge or addressing practical issues.

10. References:

  • Provide a list of all the references cited in your proposal, following a consistent citation style (e.g., APA, MLA).

11. Appendices:

  • Include any additional supporting materials, such as survey questionnaires, interview guides, or data analysis plans.

Research Proposal Format

The format of a research proposal may vary depending on the specific requirements of the institution or funding agency. However, the following is a commonly used format for a research proposal:

1. Title Page:

  • Include the title of your research proposal, your name, your affiliation or institution, and the date.

2. Abstract:

  • Provide a brief summary of your research proposal, highlighting the research problem, objectives, methodology, and expected outcomes.

3. Introduction:

  • Introduce the research topic and provide background information.
  • State the research problem or question you aim to address.
  • Explain the significance and relevance of the research.
  • Review relevant literature and studies related to your research topic.
  • Summarize key findings and identify gaps in the existing knowledge.
  • Explain how your research will contribute to filling those gaps.

5. Research Objectives:

  • Clearly state the specific objectives or aims of your research.
  • Ensure that the objectives are clear, focused, and aligned with the research problem.

6. Methodology:

  • Describe the research design and methodology you plan to use.
  • Explain the data collection methods, instruments, and analysis techniques.
  • Justify why the chosen methods are appropriate for your research.

7. Timeline:

8. Resources:

  • Explain how you will acquire or utilize these resources effectively.

9. Ethical Considerations:

  • If applicable, explain how you will ensure informed consent and protect the privacy of research participants.

10. Expected Outcomes and Significance:

11. References:

12. Appendices:

Research Proposal Template

Here’s a template for a research proposal:

1. Introduction:

2. Literature Review:

3. Research Objectives:

4. Methodology:

5. Timeline:

6. Resources:

7. Ethical Considerations:

8. Expected Outcomes and Significance:

9. References:

10. Appendices:

Research Proposal Sample

Title: The Impact of Online Education on Student Learning Outcomes: A Comparative Study

1. Introduction

Online education has gained significant prominence in recent years, especially due to the COVID-19 pandemic. This research proposal aims to investigate the impact of online education on student learning outcomes by comparing them with traditional face-to-face instruction. The study will explore various aspects of online education, such as instructional methods, student engagement, and academic performance, to provide insights into the effectiveness of online learning.

2. Objectives

The main objectives of this research are as follows:

  • To compare student learning outcomes between online and traditional face-to-face education.
  • To examine the factors influencing student engagement in online learning environments.
  • To assess the effectiveness of different instructional methods employed in online education.
  • To identify challenges and opportunities associated with online education and suggest recommendations for improvement.

3. Methodology

3.1 Study Design

This research will utilize a mixed-methods approach to gather both quantitative and qualitative data. The study will include the following components:

3.2 Participants

The research will involve undergraduate students from two universities, one offering online education and the other providing face-to-face instruction. A total of 500 students (250 from each university) will be selected randomly to participate in the study.

3.3 Data Collection

The research will employ the following data collection methods:

  • Quantitative: Pre- and post-assessments will be conducted to measure students’ learning outcomes. Data on student demographics and academic performance will also be collected from university records.
  • Qualitative: Focus group discussions and individual interviews will be conducted with students to gather their perceptions and experiences regarding online education.

3.4 Data Analysis

Quantitative data will be analyzed using statistical software, employing descriptive statistics, t-tests, and regression analysis. Qualitative data will be transcribed, coded, and analyzed thematically to identify recurring patterns and themes.

4. Ethical Considerations

The study will adhere to ethical guidelines, ensuring the privacy and confidentiality of participants. Informed consent will be obtained, and participants will have the right to withdraw from the study at any time.

5. Significance and Expected Outcomes

This research will contribute to the existing literature by providing empirical evidence on the impact of online education on student learning outcomes. The findings will help educational institutions and policymakers make informed decisions about incorporating online learning methods and improving the quality of online education. Moreover, the study will identify potential challenges and opportunities related to online education and offer recommendations for enhancing student engagement and overall learning outcomes.

6. Timeline

The proposed research will be conducted over a period of 12 months, including data collection, analysis, and report writing.

The estimated budget for this research includes expenses related to data collection, software licenses, participant compensation, and research assistance. A detailed budget breakdown will be provided in the final research plan.

8. Conclusion

This research proposal aims to investigate the impact of online education on student learning outcomes through a comparative study with traditional face-to-face instruction. By exploring various dimensions of online education, this research will provide valuable insights into the effectiveness and challenges associated with online learning. The findings will contribute to the ongoing discourse on educational practices and help shape future strategies for maximizing student learning outcomes in online education settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

How To Write A Proposal

How To Write A Proposal – Step By Step Guide...

Grant Proposal

Grant Proposal – Example, Template and Guide

How To Write A Business Proposal

How To Write A Business Proposal – Step-by-Step...

Business Proposal

Business Proposal – Templates, Examples and Guide

Proposal

Proposal – Types, Examples, and Writing Guide

How to choose an Appropriate Method for Research?

How to choose an Appropriate Method for Research?

  • About Research & Innovation
  • Advanced Cardiovascular Care
  • Health Equity
  • Inflammation
  • Maternal and Fetal Medicine
  • Musculoskeletal Care
  • Neuroscience
  • Opioid & Pain
  • Research Centers
  • Departments
  • About the Office of Research
  • Funding & Proposal Development
  • Regulatory Review & Compliance
  • Research Project Management
  • Cores & Resources
  • Education & Training
  • Peter Arvan Lab
  • Antiphospholipid Syndrome Research Labs
  • J. Michelle Kahlenberg Lab
  • John Varga Lab (ScleroLab)
  • Mulholland Lab
  • Raghavendran Lab
  • ALS Center of Excellence
  • Institute for Heart & Brain Health
  • Center for Basic & Translational Science
  • Center for Bioethics and Social Sciences in Medicine
  • Biomedical Research Core Facilities
  • IT Route Map
  • Clinical Research Route Map
  • Commercialization Route Map
  • Great Minds, Greater Discoveries
  • Research Scouts
  • Meet the ROMS Team
  • ROMS Fellowship Application Information
  • Working with a ROMS Fellow
  • Pandemic Research Recovery
  • Research Climate Council
  • Support for Outstanding Research
  • Research News Trivia
  • Frequently Asked Questions (FAQ)
  • News and Stories
  • Mind Matters
  • MADC Partners
  • Co-Investigators
  • Leaders Initiative
  • Administrative Team
  • Advisory Boards
  • Research Studies
  • MiNDSet Registry
  • U-M Memory and Aging Project
  • Dementia for Scientists Curriculum
  • Developmental Project Program
  • REC Mentorship
  • Faculty Expertise
  • Publications
  • Alzheimer's Disease and Related Dementias
  • Book Recommendations
  • Patient Care
  • About Lewy Body Dementia
  • LBD Support Groups
  • LBD Resources
  • Wellness Connection
  • Self Care Resources
  • About the Michigan Brain Bank
  • Brain Donation Testimonial
  • Brain Donation Resources

Join us in our mission to conquer Alzheimer's disease and related dementias. We conduct groundbreaking research, offer cutting-edge care, and champion education and wellness across the state. Together, we bridge disparities, empower futures, and ignite hope for future generations.

Three older gentlemen and two older ladies smiling in a group outside

Learn how we connect to a national network and pioneered a statewide center.

Learn more about our multidisciplinary care team and emerging treatments.

If you're a researcher or interested in joining a study find out more.

Meet the team.

Discover more about our collaborative outreach.

Support our work.

The Michigan Alzheimer's Disease Center (MADC) is committed to memory and aging research, patient care, education and wellness to support persons living with or caring for a loved one with dementia.

Established at Michigan Medicine and based in the Department of Neurology, the MADC aims to:

  • Conduct and support research on Alzheimer’s disease and related dementias
  • Promote state-of-the-art care and wellness for individuals and families affected by memory loss
  • Increase dementia awareness through collaborative education and outreach efforts
  • Work to address racial and ethnic disparities in Alzheimer’s disease and related dementias
  • Provide training and support to the next generation of clinicians and scientists

MADC:   [email protected]

Brain Bank: [email protected]

The Rinne Lewy Body Dementia Initiative was created to support those living with the disease and their care partners, improve awareness among healthcare professionals and the public, and advance our understanding and treatment of the disease.

Our Wellness Initiative offers a variety of programs to support the well-being of caregivers and people living with early-stage memory loss.

The Michigan Brain Bank provides individuals and families an opportunity to contribute to the future of science.

Mind Matter Newsletter Icon

The Michigan Alzheimer’s Disease Center publishes several monthly e-newsletters. Sign up to stay in the loop with new Center research, enrolling studies, educational events, and more.

We transform lives through bold discovery, compassionate care and innovative education.

  • Diversity, Equity & Inclusion
  • News & Stories
  • Find a Doctor
  • Conditions & Treatments
  • Patient & Visitor Guide
  • Patient Portal
  • Clinical Trials
  • Research Labs
  • Cores and Resources
  • Programs & Admissions
  • Our Community
  • Departments, Centers & Offices
  • About the Medical School

Global Footer Secondary Navigation

15 Steps to Good Research

  • Define and articulate a research question (formulate a research hypothesis). How to Write a Thesis Statement (Indiana University)
  • Identify possible sources of information in many types and formats. Georgetown University Library's Research & Course Guides
  • Judge the scope of the project.
  • Reevaluate the research question based on the nature and extent of information available and the parameters of the research project.
  • Select the most appropriate investigative methods (surveys, interviews, experiments) and research tools (periodical indexes, databases, websites).
  • Plan the research project. Writing Anxiety (UNC-Chapel Hill) Strategies for Academic Writing (SUNY Empire State College)
  • Retrieve information using a variety of methods (draw on a repertoire of skills).
  • Refine the search strategy as necessary.
  • Write and organize useful notes and keep track of sources. Taking Notes from Research Reading (University of Toronto) Use a citation manager: Zotero or Refworks
  • Evaluate sources using appropriate criteria. Evaluating Internet Sources
  • Synthesize, analyze and integrate information sources and prior knowledge. Georgetown University Writing Center
  • Revise hypothesis as necessary.
  • Use information effectively for a specific purpose.
  • Understand such issues as plagiarism, ownership of information (implications of copyright to some extent), and costs of information. Georgetown University Honor Council Copyright Basics (Purdue University) How to Recognize Plagiarism: Tutorials and Tests from Indiana University
  • Cite properly and give credit for sources of ideas. MLA Bibliographic Form (7th edition, 2009) MLA Bibliographic Form (8th edition, 2016) Turabian Bibliographic Form: Footnote/Endnote Turabian Bibliographic Form: Parenthetical Reference Use a citation manager: Zotero or Refworks

Adapted from the Association of Colleges and Research Libraries "Objectives for Information Literacy Instruction" , which are more complete and include outcomes. See also the broader "Information Literacy Competency Standards for Higher Education."

Sanger Sequencing Steps & Method

What is sanger sequencing.

Sanger sequencing, also known as the “chain termination method”, is a method for determining the nucleotide sequence of DNA. The method was developed by two time Nobel Laureate Frederick Sanger and his colleagues in 1977, hence the name the Sanger Sequence.

To review the general structure of DNA, please see Figure 2 .

How Does Sanger Sequencing Work?

Sanger sequencing can be performed manually or, more commonly, in an automated fashion via sequencing machine ( Figure 1 ). Each method follows three basic steps, as described below.

Automated Sanger Sequencing.

Figure 1. Three Basic Steps of Automated Sanger Sequencing.

Sanger Sequencing Steps

There are three main steps to Sanger sequencing.

1. DNA Sequence For Chain Termination PCR

The DNA sequence of interest is used as a template for a special type of PCR called chain-termination PCR. Chain-termination PCR works just like standard PCR, but with one major difference: the addition of modified nucleotides (dNTPs) called dideoxyribonucleotides (ddNTPs). In the extension step of standard PCR, DNA polymerase adds dNTPs to a growing DNA strand by catalyzing the formation of a phosphodiester bond between the free 3’-OH group of the last nucleotide and the 5’-phosphate of the next ( Figure 2 ).

In chain-termination PCR, the user mixes a low ratio of chain-terminating ddNTPs in with the normal dNTPs in the PCR reaction. ddNTPs lack the 3'-OH group required for phosphodiester bond formation; therefore, when DNA polymerase incorporates a ddNTP at random, extension ceases. The result of chain-termination PCR is millions to billions of oligonucleotide copies of the DNA sequence of interest, terminated at a random lengths (n) by 5’-ddNTPs.

In manual Sanger sequencing, four PCR reactions are set up, each with only a single type of ddNTP (ddATP, ddTTP, ddGTP, and ddCTP) mixed in.

In automated Sanger sequencing, all ddNTPs are mixed in a single reaction, and each of the four dNTPs has a unique fluorescent label.

2. Size Separation by Gel Electrophoresis

In the second step, the chain-terminated oligonucleotides are separated by size via gel electrophoresis. In gel electrophoresis, DNA samples are loaded into one end of a gel matrix, and an electric current is applied; DNA is negatively charged, so the oligonucleotides will be pulled toward the positive electrode on the opposite side of the gel. Because all DNA fragments have the same charge per unit of mass, the speed at which the oligonucleotides move will be determined only by size. The smaller a fragment is, the less friction it will experience as it moves through the gel, and the faster it will move. In result, the oligonucleotides will be arranged from smallest to largest, reading the gel from bottom to top.

In manual Sanger sequencing, the oligonucleotides from each of the four PCR reactions are run in four separate lanes of a gel. This allows the user to know which oligonucleotides correspond to each ddNTP.

In automated Sanger sequencing, all oligonucleotides are run in a single capillary gel electrophoresis within the sequencing machine.

3. Gel Analysis & Determination of DNA Sequence

The last step simply involves reading the gel to determine the sequence of the input DNA. Because DNA polymerase only synthesizes DNA in the 5’ to 3’ direction starting at a provided primer, each terminal ddNTP will correspond to a specific nucleotide in the original sequence (e.g., the shortest fragment must terminate at the first nucleotide from the 5’ end, the second-shortest fragment must terminate at the second nucleotide from the 5’ end, etc.) Therefore, by reading the gel bands from smallest to largest, we can determine the 5’ to 3’ sequence of the original DNA strand.

In manual Sanger sequencing, the user reads all four lanes of the gel at once, moving bottom to top, using the lane to determine the identity of the terminal ddNTP for each band. For example, if the bottom band is found in the column corresponding to ddGTP, then the smallest PCR fragment terminates with ddGTP, and the first nucleotide from the 5’ end of the original sequence has a guanine (G) base.

In automated Sanger sequencing, a computer reads each band of the capillary gel, in order, using fluorescence to call the identity of each terminal ddNTP. In short, a laser excites the fluorescent tags in each band, and a computer detects the resulting light emitted. Because each of the four ddNTPs is tagged with a different fluorescent label, the light emitted can be directly tied to the identity of the terminal ddNTP. The output is called a chromatogram, which shows the fluorescent peak of each nucleotide along the length of the template DNA.

 DNA Structure Schematic. DNA is a molecule composed of two strands that coil around each other to form a double helix. Each strand is made up of a string of molecules called deoxyribonucleotides (dNTPs).

Figure 2. DNA Structure Schematic. DNA is a molecule composed of two strands that coil around each other to form a double helix. Each strand is made up of a string of molecules called deoxyribonucleotides (dNTPs).

Each dNTP contains a phosphate group, a sugar group, and one of four nitrogenous bases [adenine (A),thymine (T), guanine (G), or cytosine (C)]. The dNTPs are strung together in a linear fashion by phosphodiester covalent bonds between the sugar of one dNTP and the phosphate group of the next; this repeated sugar-phosphate pattern makes up the sugar-phosphate backbone.

The nitrogenous bases of the two separate strands are bound together by hydrogen bonds between complementary bases to form the double-stranded DNA helix.

How to Read Sanger Sequencing Results

Reading the Sanger sequencing results properly will depend on which of the two complementary DNA strands is of interest and what primer is available. If the two strands of DNA are A and B and strand A is of interest, but the primer is better for strand B, the output fragments will be identical to strand A. On the other hand, if strand A is of interest and the primer is better for strand A, then the output will be identical to strand B. Accordingly, the output must be converted back to strand A.

So, if the sequence of interest reads “TACG” and the primer is best for that strand, the output will be “ATGC” and, therefore, must be converted back to “TACG”. However, if the primer is better for the complementary strand (“ATGC”), then the output will be “TACG”, which is the correct sequence.

In short, before starting, you need to know what you’re targeting and how you’re going to get there! So keeping this in mind, here is an example of the former example (TACG -> ATGC -> TACG). If the dideoxynucleotides labels are T = yellow, A = pink, C = dark blue, and G = light blue, you will end up with the short sequences primer-A, primer-AT, primer-ATG, and primer-ATGC. Once the fragments have been separated by electrophoresis, the laser will read the fragments in order of length (pink, yellow, light blue, and dark blue) and produce a chromatogram. The computer will convert the letters, so the final sequence is the correct TACG.

Sanger Sequencing vs. PCR

Sanger sequencing and PCR use similar starting materials and can be used in conjunction with each other, but neither can replace the other.

PCR is used to amplify DNA in its entirety. While fragments of varying lengths may be produced by accident (e.g., the DNA polymerase might fall off), the goal is to duplicate the entire DNA sequence. To that end, the “ingredients” are the target DNA, nucleotides, DNA primer, and DNA polymerase (specifically Taq polymerase, which can survive the high temperatures required in PCR).

In contrast, the goal of Sanger sequencing is to generate every possible length of DNA up to the full length of the target DNA. That is why, in addition to the PCR starting materials, the dideoxynucleotides are necessary.

Sanger sequencing and PCR can be brought together when generating the starting material for a Sanger sequencing protocol. PCR can be used to create many copies of the DNA that is to be sequenced.

Having more than one template to work from makes the Sanger protocol more efficient. If the target sequence is 1,000 nucleotides long and there is only one copy of the template, it is going to take longer to generate the 1,000 tagged fragments. However, if there are several copies of the template, in theory it will take less time to generate all 1,000 of the tagged fragments.

  • PCR Applications
  • Genetic Screening

To continue reading please sign in or create an account.

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

Vibrant M

© 2024 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.

  • English - EN
  • Español - ES

IMAGES

  1. Research Paper Methodology

    steps to writing research methods

  2. Tips For How To Write A Scientific Research Paper

    steps to writing research methods

  3. Tips for writing a research paper

    steps to writing research methods

  4. Infographic: Steps in the Research Process

    steps to writing research methods

  5. Steps Of Research Paper Writing

    steps to writing research methods

  6. Research papers Writing Steps And process of writing a paper

    steps to writing research methods

VIDEO

  1. How to write a research methodology in 4 steps I academic writing tips

  2. Steps to Successful Writing Part 1

  3. Three Ways to Write Your Novel’s First Draft

  4. How to Write a Research Paper (Steps & Examples)

  5. HOW TO WRITE THE METHODOLOGY

  6. How To Write A Journal Article Methods Section || The 3 step process to writing research methods

COMMENTS

  1. What Is a Research Methodology?

    Step 1: Explain your methodological approach. Step 2: Describe your data collection methods. Step 3: Describe your analysis method. Step 4: Evaluate and justify the methodological choices you made. Tips for writing a strong methodology chapter. Other interesting articles.

  2. Research Methodology

    How to Write Research Methodology. Writing a research methodology involves explaining the methods and techniques you used to conduct research, collect data, and analyze results. It's an essential section of any research paper or thesis, as it helps readers understand the validity and reliability of your findings. Here are the steps to write a ...

  3. Your Step-by-Step Guide to Writing a Good Research Methodology

    Provide the rationality behind your chosen approach. Based on logic and reason, let your readers know why you have chosen said research methodologies. Additionally, you have to build strong arguments supporting why your chosen research method is the best way to achieve the desired outcome. 3. Explain your mechanism.

  4. How to Write Research Methodology: 13 Steps (with Pictures)

    A quantitative approach and statistical analysis would give you a bigger picture. 3. Identify how your analysis answers your research questions. Relate your methodology back to your original research questions and present a proposed outcome based on your analysis.

  5. How to Write Your Methods

    Your Methods Section contextualizes the results of your study, giving editors, reviewers and readers alike the information they need to understand and interpret your work. Your methods are key to establishing the credibility of your study, along with your data and the results themselves. A complete methods section should provide enough detail ...

  6. A Comprehensive Guide to Methodology in Research

    Research methodology refers to the system of procedures, techniques, and tools used to carry out a research study. It encompasses the overall approach, including the research design, data collection methods, data analysis techniques, and the interpretation of findings. Research methodology plays a crucial role in the field of research, as it ...

  7. What Is a Research Methodology?

    Step 1: Explain your methodological approach. Step 2: Describe your data collection methods. Step 3: Describe your analysis method. Step 4: Evaluate and justify the methodological choices you made. Tips for writing a strong methodology chapter. Frequently asked questions about methodology.

  8. Research Design

    Table of contents. Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies.

  9. How to Write Research Methodology in 2024: Overview, Tips, and

    Methodology in research is defined as the systematic method to resolve a research problem through data gathering using various techniques, providing an interpretation of data gathered and drawing conclusions about the research data. Essentially, a research methodology is the blueprint of a research or study (Murthy & Bhojanna, 2009, p. 32).

  10. How to Write a Research Methodology in 4 Steps

    Learn how to write a strong methodology chapter that allows readers to evaluate the reliability and validity of the research. A good methodology chapter incl...

  11. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  12. How To Write A Research Methodology In 4 Steps

    Step One: Explain Your Methodology The first step in writing your research methodology is to explain your general approach to the research and how you will go about it. There are two ways you can ...

  13. Five Steps to Writing More Engaging Qualitative Research

    A-85). Successful writing requires a writer to pay quiet diligent attention to the construction of the genre they are working in. Each genre has its own sense of verisimilitude—the bearing of truth. Each places different constraints on the writer and has different goals, forms, and structure.

  14. Research Paper

    Definition: Research Paper is a written document that presents the author's original research, analysis, and interpretation of a specific topic or issue. It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new ...

  15. (Pdf) a Guide to Research Writing

    5. Select the research methodology. The researcher has to begin to formulate one or more hypotheses, research questions and. research objectives, decide on the type of data needed, and select the ...

  16. How To Write A Research Proposal

    Here is an explanation of each step: 1. Title and Abstract. Choose a concise and descriptive title that reflects the essence of your research. Write an abstract summarizing your research question, objectives, methodology, and expected outcomes. It should provide a brief overview of your proposal. 2.

  17. Michigan Alzheimer's Disease Center

    Our new monthly Leaders Initiative Seminar Series highlights the research of early-career faculty who are part of the Michigan Alzheimer's Disease Research Center's Leaders Initiative. Have a Seat Have a Seat is a weekly guided meditation program that takes place virtually. Event runs April 16, 2024 - December 31, 2024 ...

  18. Wellness Is Simpler Than You Think: 25 Years of Research Shows All You

    The feeling of "flow" is a kind of engagement during which "the activity is its own reward," it continues, noting that "flow can be experienced in a wide variety of activities, e.g., a good ...

  19. 15 Steps to Good Research

    Judge the scope of the project. Reevaluate the research question based on the nature and extent of information available and the parameters of the research project. Select the most appropriate investigative methods (surveys, interviews, experiments) and research tools (periodical indexes, databases, websites). Plan the research project.

  20. How to Write an Appendix for a Research Paper in 4 Steps

    Explore our guide for insights into its definition, writing steps, and valuable tips. How to Write Cause and Effect Essay: A Step-By-Step Writing Guide. Explore key strategies for writing effective cause and effect essays, including understanding causal relationships, organizing data, and selecting engaging topics. Perfect your essay writing ...

  21. Sanger Sequencing Steps & Method

    Sanger Sequencing Steps. There are three main steps to Sanger sequencing. 1. DNA Sequence For Chain Termination PCR. The DNA sequence of interest is used as a template for a special type of PCR called chain-termination PCR. Chain-termination PCR works just like standard PCR, but with one major difference: the addition of modified nucleotides (dNTPs) called dideoxyribonucleotides (ddNTPs).

  22. Unveiling the submerged secrets: bumblebee queens' resilience to

    2.1. Queen rearing and diapause initiation. The common eastern bumblebee (B. impatiens) was chosen as a study organism owing to its commercial availability and widespread distribution and abundance in eastern North America [].Four queenright B. impatiens colonies were sourced from Biobest Canada Ltd (Leamington, Ontario, Canada) in January 2023 and kept in complete darkness in a bee-rearing ...