Illustration of a question mark that links to the Climate Kids Big Questions menu.

What Is the Greenhouse Effect?

Watch this video to learn about the greenhouse effect! Click here to download this video (1920x1080, 105 MB, video/mp4). Click here to download this video about the greenhouse effect in Spanish (1920x1080, 154 MB, video/mp4).

How does the greenhouse effect work?

As you might expect from the name, the greenhouse effect works … like a greenhouse! A greenhouse is a building with glass walls and a glass roof. Greenhouses are used to grow plants, such as tomatoes and tropical flowers.

A greenhouse stays warm inside, even during the winter. In the daytime, sunlight shines into the greenhouse and warms the plants and air inside. At nighttime, it's colder outside, but the greenhouse stays pretty warm inside. That's because the glass walls of the greenhouse trap the Sun's heat.

assignment on green house effect

A greenhouse captures heat from the Sun during the day. Its glass walls trap the Sun's heat, which keeps plants inside the greenhouse warm — even on cold nights. Credit: NASA/JPL-Caltech

The greenhouse effect works much the same way on Earth. Gases in the atmosphere, such as carbon dioxide , trap heat similar to the glass roof of a greenhouse. These heat-trapping gases are called greenhouse gases .

During the day, the Sun shines through the atmosphere. Earth's surface warms up in the sunlight. At night, Earth's surface cools, releasing heat back into the air. But some of the heat is trapped by the greenhouse gases in the atmosphere. That's what keeps our Earth a warm and cozy 58 degrees Fahrenheit (14 degrees Celsius), on average.

assignment on green house effect

Earth's atmosphere traps some of the Sun's heat, preventing it from escaping back into space at night. Credit: NASA/JPL-Caltech

How are humans impacting the greenhouse effect?

Human activities are changing Earth's natural greenhouse effect. Burning fossil fuels like coal and oil puts more carbon dioxide into our atmosphere.

NASA has observed increases in the amount of carbon dioxide and some other greenhouse gases in our atmosphere. Too much of these greenhouse gases can cause Earth's atmosphere to trap more and more heat. This causes Earth to warm up.

What reduces the greenhouse effect on Earth?

Just like a glass greenhouse, Earth's greenhouse is also full of plants! Plants can help to balance the greenhouse effect on Earth. All plants — from giant trees to tiny phytoplankton in the ocean — take in carbon dioxide and give off oxygen.

The ocean also absorbs a lot of excess carbon dioxide in the air. Unfortunately, the increased carbon dioxide in the ocean changes the water, making it more acidic. This is called ocean acidification .

More acidic water can be harmful to many ocean creatures, such as certain shellfish and coral. Warming oceans — from too many greenhouse gases in the atmosphere — can also be harmful to these organisms. Warmer waters are a main cause of coral bleaching .

assignment on green house effect

This photograph shows a bleached brain coral. A main cause of coral bleaching is warming oceans. Ocean acidification also stresses coral reef communities. Credit: NOAA

Illustration of a video game controller.

NASA Logo

What is the greenhouse effect?

The greenhouse effect is the process through which heat is trapped near Earth's surface by substances known as 'greenhouse gases.' Imagine these gases as a cozy blanket enveloping our planet, helping to maintain a warmer temperature than it would have otherwise. Greenhouse gases consist of carbon dioxide, methane, ozone, nitrous oxide, chlorofluorocarbons, and water vapor. Water vapor, which reacts to temperature changes, is referred to as a 'feedback', because it amplifies the effect of forces that initially caused the warming.

Scientists have determined that carbon dioxide plays a crucial role in maintaining the stability of Earth's atmosphere. If carbon dioxide were removed, the terrestrial greenhouse effect would collapse, and Earth's surface temperature would drop significantly, by approximately 33°C (59°F).

Greenhouse gases are part of Earth's atmosphere. This is why Earth is often called the 'Goldilocks' planet – its conditions are just right, not too hot or too cold, allowing life to thrive. Part of what makes Earth so amenable is its natural greenhouse effect, which maintains an average temperature of 15 ° C (59 ° F) . However, in the last century, human activities, primarily from burning fossil fuels that have led to the release of carbon dioxide and other greenhouse gases into the atmosphere, have disrupted Earth's energy balance. This has led to an increase in carbon dioxide in the atmosphere and ocean. The level of carbon dioxide in Earth’s atmosphere has been rising consistently for decades and traps extra heat near Earth's surface, causing temperatures to rise.

  • The Greenhouse Effect (UCAR)
  • NASA's Climate Kids: Meet the Greenhouse Gases! (downloadable and printable cards)
  • NASA's Climate Kids: What Is the Greenhouse Effect?

Discover More Topics From NASA

Explore Earth Science

assignment on green house effect

Earth Science in Action

Earth Action

Earth Science Data

The sum of Earth's plants, on land and in the ocean, changes slightly from year to year as weather patterns shift.

Facts About Earth

assignment on green house effect

Greenhouse Effect

Global warming describes the current rise in the average temperature of Earth’s air and oceans. Global warming is often described as the most recent example of climate change.

Earth Science, Meteorology, Geography

Loading ...

Global warming describes the current rise in the average temperature of Earth’s air and oceans. Global warming is often described as the most recent example of climate change . Earth’s climate has changed many times. Our planet has gone through multiple ice ages , in which ice sheets and glaciers covered large portions of Earth. It has also gone through warm periods when temperatures were higher than they are today. Past changes in Earth’s temperature happened very slowly, over hundreds of thousands of years. However, the recent warming trend is happening much faster than it ever has. Natural cycles of warming and cooling are not enough to explain the amount of warming we have experienced in such a short time—only human activities can account for it. Scientists worry that the climate is changing faster than some living things can adapt to it. In 1988, the World Meteorological Organization and the United Nations Environment Programme established a committee of climatologists , meteorologists , geographers , and other scientists from around the world. This Intergovernmental Panel on Climate Change (IPCC) includes thousands of scientists who review the most up-to-date research available related to global warming and climate change. The IPCC evaluates the risk of climate change caused by human activities. According to the IPCC’s most recent report (in 2007), Earth’s average surface temperatures have risen about 0.74 degrees Celsius (1.33 degrees Fahrenheit) during the past 100 years. The increase is greater in northern latitudes . The IPCC also found that land regions are warming faster than oceans. The IPCC states that most of the temperature increase since the mid-20th century is likely due to human activities. The Greenhouse Effect Human activities contribute to global warming by increasing the greenhouse effect. The greenhouse effect happens when certain gases—known as greenhouse gases —collect in Earth’s atmosphere . These gases, which occur naturally in the atmosphere, include carbon dioxide , methane , nitrogen oxide, and fluorinated gases sometimes known as chlorofluorocarbons (CFCs). Greenhouse gases let the sun’s light shine onto Earth’s surface, but they trap the heat that reflects back up into the atmosphere. In this way, they act like the insulating glass walls of a greenhouse. The greenhouse effect keeps Earth’s climate comfortable. Without it, surface temperatures would be cooler by about 33 degrees Celsius (60 degrees Fahrenheit), and many life forms would freeze . Since the Industrial Revolution in the late 1700s and early 1800s, people have been releasing large quantities of greenhouse gases into the atmosphere. That amount has skyrocketed in the past century. Greenhouse gas emissions increased 70 percent between 1970 and 2004. Emissions of carbon dioxide, the most important greenhouse gas, rose by about 80 percent during that time. The amount of carbon dioxide in the atmosphere today far exceeds the natural range seen over the last 650,000 years. Most of the carbon dioxide that people put into the atmosphere comes from burning fossil fuels such as oil , coal , and natural gas . Cars, trucks, trains, and planes all burn fossil fuels. Many electric power plants also burn fossil fuels. Another way people release carbon dioxide into the atmosphere is by cutting down forests . This happens for two reasons. Decaying plant material, including trees, releases tons of carbon dioxide into the atmosphere. Living trees absorb carbon dioxide. By diminishing the number of trees to absorb carbon dioxide, the gas remains in the atmosphere. Most methane in the atmosphere comes from livestock farming , landfills , and fossil fuel production such as coal mining and natural gas processing. Nitrous oxide comes from agricultural technology and fossil fuel burning. Fluorinated gases include chlorofluorocarbons, hydrochlorofluorocarbons , and hydrofluorocarbons. These greenhouse gases are used in aerosol cans and refrigeration. All of these human activities add greenhouse gases to the atmosphere, trapping more heat than usual and contributing to global warming. Effects of Global Warming Even slight rises in average global temperatures can have huge effects. Perhaps the biggest, most obvious effect is that glaciers and ice caps melt faster than usual. The meltwater drains into the oceans, causing sea levels to rise and oceans to become less salty. Ice sheets and glaciers advance and retreat naturally. As Earth’s temperature has changed, the ice sheets have grown and shrunk, and sea levels have fallen and risen. Ancient corals found on land in Florida, Bermuda, and the Bahamas show that the sea level must have been five to six meters (16-20 feet) higher 130,000 years ago than it is today. Earth doesn’t need to become oven-hot to melt the glaciers. Northern summers were just three to five degrees Celsius (five to nine degrees Fahrenheit) warmer during the time of those ancient fossils than they are today. However, the speed at which global warming is taking place is unprecedented . The effects are unknown. Glaciers and ice caps cover about 10 percent of the world’s landmass today. They hold about 75 percent of the world’s fresh water. If all of this ice melted, sea levels would rise by about 70 meters (230 feet). The IPCC reported that the global sea level rose about 1.8 millimeters (0.07 inches) per year from 1961 to 1993, and 3.1 millimeters (0.12 inches) per year since 1993. Rising sea levels could flood coastal communities, displacing millions of people in areas such as Bangladesh, the Netherlands, and the U.S. state of Florida. Forced migration would impact not only those areas, but the regions to which the “ climate refugees ” flee . Millions more people in countries like Bolivia, Peru, and India depend on glacial meltwater for drinking, irrigation , and hydroelectric power . Rapid loss of these glaciers would devastate those countries. Glacial melt has already raised the global sea level slightly. However, scientists are discovering ways the sea level could increase even faster. For example, the melting of the Chacaltaya Glacier in Bolivia has exposed dark rocks beneath it. The rocks absorb heat from the sun, speeding up the melting process. Many scientists use the term “climate change” instead of “global warming.” This is because greenhouse gas emissions affect more than just temperature. Another effect involves changes in precipitation like rain and snow . Patterns in precipitation may change or become more extreme. Over the course of the 20th century, precipitation increased in eastern parts of North and South America, northern Europe, and northern and central Asia. However, it has decreased in parts of Africa, the Mediterranean, and parts of southern Asia. Future Changes Nobody can look into a crystal ball and predict the future with certainty. However, scientists can make estimates about future population growth, greenhouse gas emissions, and other factors that affect climate. They can enter those estimates into computer models to find out the most likely effects of global warming. The IPCC predicts that greenhouse gas emissions will continue to increase over the next few decades . As a result, they predict the average global temperature will increase by about 0.2 degrees Celsius (0.36 degrees Fahrenheit) per decade. Even if we reduce greenhouse gas and aerosol emissions to their 2000 levels, we can still expect a warming of about 0.1 degree Celsius (0.18 degrees Fahrenheit) per decade. The panel also predicts global warming will contribute to some serious changes in water supplies around the world. By the middle of the 21st century, the IPCC predicts, river runoff and water availability will most likely increase at high latitudes and in some tropical areas. However, many dry regions in the mid-latitudes and tropics will experience a decrease in water resources. As a result, millions of people may be exposed to water shortages . Water shortages decrease the amount of water available for drinking, electricity , and hygiene . Shortages also reduce water used for irrigation. Agricultural output would slow and food prices would climb. Consistent years of drought in the Great Plains of the United States and Canada would have this effect. IPCC data also suggest that the frequency of heat waves and extreme precipitation will increase. Weather patterns such as storms and tropical cyclones will become more intense. Storms themselves may be stronger, more frequent, and longer-lasting. They would be followed by stronger storm surges , the immediate rise in sea level following storms. Storm surges are particularly damaging to coastal areas because their effects (flooding, erosion , damage to buildings and crops) are lasting. What We Can Do Reducing our greenhouse gas emissions is a critical step in slowing the global warming trend. Many governments around the world are working toward this goal. The biggest effort so far has been the Kyoto Protocol , which was adopted in 1997 and went into effect in 2005. By the end of 2009, 187 countries had signed and ratified the agreement. Under the protocol , 37 industrialized countries and the European Union have committed to reducing their greenhouse gas emissions. There are several ways that governments, industries, and individuals can reduce greenhouse gases. We can improve energy efficiency in homes and businesses. We can improve the fuel efficiency of cars and other vehicles. We can also support development of alternative energy sources, such as solar power and biofuels , that don’t involve burning fossil fuels. Some scientists are working to capture carbon dioxide and store it underground, rather than let it go into the atmosphere. This process is called carbon sequestration . Trees and other plants absorb carbon dioxide as they grow. Protecting existing forests and planting new ones can help balance greenhouse gases in the atmosphere. Changes in farming practices could also reduce greenhouse gas emissions. For example, farms use large amounts of nitrogen-based fertilizers , which increase nitrogen oxide emissions from the soil. Reducing the use of these fertilizers would reduce the amount of this greenhouse gas in the atmosphere. The way farmers handle animal manure can also have an effect on global warming. When manure is stored as liquid or slurry in ponds or tanks, it releases methane. When it dries as a solid, however, it does not. Reducing greenhouse gas emissions is vitally important. However, the global temperature has already changed and will most likely continue to change for years to come. The IPCC suggests that people explore ways to adapt to global warming as well as try to slow or stop it. Some of the suggestions for adapting include:

  • Expanding water supplies through rain catchment , conservation , reuse, and desalination .
  • Adjusting crop locations, variety, and planting dates.
  • Building seawalls and storm surge barriers and creating marshes and wetlands as buffers against rising sea levels .
  • Creating heat-health action plans , boosting emergency medical services, and improving disease surveillance and control.
  • Diversifying tourism attractions, because existing attractions like ski resorts and coral reefs may disappear.
  • Planning for roads and rail lines to cope with warming and/or flooding.
  • Strengthening energy infrastructure , improving energy efficiency, and reducing dependence on single sources of energy.

Barking up the Wrong Tree Spruce bark beetles in the U.S. state of Alaska have had a population boom thanks to 20 years of warmer-than-average summers. The insects have managed to chew their way through 1.6 million hectares (four million acres) of spruce trees.

Disappearing Penguins Emperor penguins ( Aptenodytes forsteri ) made a showbiz splash in the 2005 film March of the Penguins . Sadly, their encore might include a disappearing act. In the 1970s, an abnormally long warm spell caused these Antarctic birds' population to drop by 50 percent. Some scientists worry that continued global warming will push the creatures to extinction by changing their habitat and food supply.

Shell Shock A sudden increase in the amount of carbon dioxide in the atmosphere does more than change Earth's temperature. A lot of the carbon dioxide in the air dissolves into seawater. There, it forms carbonic acid in a process called ocean acidification. Ocean acidification is making it hard for some sea creatures to build shells and skeletal structures. This could alter the ecological balance in the oceans and cause problems for fishing and tourism industries.

Audio & Video

Worksheets & handouts, media credits.

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Illustrators

Educator reviewer, last updated.

October 19, 2023

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Greenhouse Effect

The Greenhouse Effect Teaching Box

Greenhouse Effect Teaching Box This teaching box provides resources related to the greenhouse effect. It will help you teach how the greenhouse effect works, and how it prevents Earth from becoming a frozen ball of ice, and why there is too much of it happening today.

Teaching Boxes are themed collections of classroom-ready educational resources to build student understanding of science, technology, engineering, and math (STEM). Resources highlighted within teaching boxes are from various science education programs and all have been vetted by the education team at the UCAR Center for Science Education.

  • Topic:  The Greenhouse Effect
  • Level:  Middle and high school

This is an illustration showing how the greenhouse effect works: energy from the Sun is shown entering the Earth's atmosphere, and then radiating from the surface as heat. Some of the heat energy escapes, but due to greenhouse gases in the atmosphere much of that heat is trapped which causes warming.

Introduction to the Greenhouse Effect

Students will learn how greenhouse gases temporarily trap heat within Earth's atmosphere, warming our planet via the greenhouse effect.

Understanding Global Change

Discover why the climate and environment changes, your place in the Earth system, and paths to a resilient future.

Greenhouse effect

closeup image of storyboard

Life as we know it would be impossible if not for the greenhouse effect, the process through which heat is absorbed and re-radiated in that atmosphere. The intensity of a planet’s greenhouse effect is determined by the relative abundance of greenhouse gases in its atmosphere. Without greenhouse gases, most of Earth’s heat would be lost to outer space, and our planet would quickly turn into a giant ball of ice. Increase the amount of greenhouse gases to the levels found on the planet Venus, and the Earth would be as hot as a pizza oven! Fortunately, the strength of Earth’s greenhouse effect keeps our planet within a temperature range that supports life

On this page

What is the greenhouse effect, earth system models about the greenhouse effect, how human activities influence the greenhouse effect, explore the earth system, investigate, links to learn more.

For the classroom:

  • Teaching Resources

assignment on green house effect

Global Change Infographic

The greenhouse effect occurs in the atmosphere, and is an essential part of How the Earth System Works. Click the image on the left to open the Understanding Global Change Infographic . Locate the greenhouse effect icon and identify other topics that cause changes to, or are affected by, the greenhouse effect.

assignment on green house effect

Adapted from the Environmental Protection Agency greenhouse effect file

Greenhouse gases such as methane, carbon dioxide, nitrous oxide, and water vapor  significantly affect the amount of energy in the Earth system, even though they make up a tiny percentage of Earth’s atmosphere.  Solar radiation that passes through the atmosphere and reaches Earth’s surface is either reflected or absorbed . Reflected sunlight doesn’t add any heat to the Earth system because this energy bounces back into space.

However, absorbed sunlight increases the temperature of Earth’s surface, and the warmed surface re-radiates as long-wave radiation (also known as infrared radiation). Infrared radiation is invisible to the eye, but we feel it as heat.

If there were not any greenhouse gases in the atmosphere, all that heat would pass directly back into space. With greenhouse gases present, however, most of the long-wave radiation coming from Earth’s surface is absorbed and then re-radiated in all directions many times before passing back into space. Heat that is re-radiated downward, toward the Earth, is absorbed by the surface and re-radiated again.

Clouds also influence the greenhouse effect. A thick, low cloud cover can enhance the reflectivity of the atmosphere, reducing the amount of solar radiation reaching Earth’s surface, but clouds high in the atmosphere can intensify the greenhouse effect by re-radiating heat from the Earth’s surface.

Altogether, this cycle of absorption and re-radiation by greenhouse gases impedes the loss of heat from our atmosphere to space, creating the greenhouse effect. Increases in the amount of greenhouses gases will mean that more heat is trapped, increasing the amount of energy in the Earth system (Earth’s energy budget), and raising Earth’s temperature. This increase in Earth’s average temperature is also known as global warming.

This Earth system model is one way to represent the essential processes and interactions related to the greenhouse effect. Hover over the icons for brief explanations; click on the icons to learn more about each topic. Download the Earth system models on this page. There are a few ways that the relationships among these topics can be represented and explained using the Understanding Global Change icons ( download examples ).  

The greenhouse effect, which influences Earth’s average temperature, affects many of the processes that shape global climate and ecosystems.  This model shows some of the other parts of the Earth system that the greenhouse effect influences, including the water cycle and water temperature .

Humans directly affect the greenhouse effect through activities that result in greenhouse gas emissions. The Earth system model below includes some of the ways that human activities increase the amount of greenhouse gases in the atmosphere. Releasing greenhouse gases intensifies the greenhouse effect, and increases Earth’s average air temperatures (also known as global warming). Hover over or click on the icons to learn more about these human causes of change and how they influence the greenhouse effect.

Click the scene icons and bolded terms on this page to learn more about these process and phenomena.

Learn more in these real-world examples, and challenge yourself to  construct a model  that explains the Earth system relationships.

  • Ancient fossils and modern climate change
  • How Global Warming Works
  • NASA:  Global Climate Change:  A Blanket Around the Earth
  • UCAR Center for Science Education: The Greenhouse Effect
  • IPCC:  What is the Greenhouse Effect?
  • Indicators of Change (NCA.2014)
  • Human influence on the greenhouse effect
  • The Carbon Cycle and Earth’s Climate

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

AP®︎/College Environmental science

Course: ap®︎/college environmental science   >   unit 8.

  • Greenhouse effect and greenhouse gases

Greenhouse effect

  • (Choice A)   carbon dioxide ( CO A 2   ) ‍   A carbon dioxide ( CO A 2   ) ‍  
  • (Choice B)   methane ( CH A 4 ) ‍   B methane ( CH A 4 ) ‍  
  • (Choice C)   nitrous oxide ( N A 2 O ) ‍   C nitrous oxide ( N A 2 O ) ‍  
  • (Choice D)   trichlorofluoromethane ( CFCl A 3 ) ‍   D trichlorofluoromethane ( CFCl A 3 ) ‍  
  • Biology Article
  • Greenhouse Effect Gases

Greenhouse Effect

Table of Contents

What is the Greenhouse Effect?

Greenhouse gases, causes of greenhouse effect, effects of greenhouse effect, runaway greenhouse effect, greenhouse effect definition.

“Greenhouse effect is the process by which radiations from the sun are absorbed by the greenhouse gases and not reflected back into space. This insulates the surface of the earth and prevents it from freezing.”

A greenhouse is a house made of glass that can be used to grow plants. The sun’s radiations warm the plants and the air inside the greenhouse. The heat trapped inside can’t escape out and warms the greenhouse which is essential for the growth of the plants. Same is the case in the earth’s atmosphere.

During the day the sun heats up the earth’s atmosphere. At night, when the earth cools down the heat is radiated back into the atmosphere. During this process, the heat is absorbed by the greenhouse gases in the earth’s atmosphere. This is what makes the surface of the earth warmer, that makes the survival of living beings on earth possible.

However, due to the increased levels of greenhouse gases, the temperature of the earth has increased considerably. This has led to several drastic effects.

Let us have a look at the greenhouse gases and understand the causes and consequences of greenhouse effects with the help of a diagram.

Also Read:  Global Warming

“Greenhouse gases are the gases that absorb the infrared radiations and create a greenhouse effect. For eg., carbondioxide and chlorofluorocarbons.” Greenhouse Effect Diagram

Greenhouse gases

The Diagram shows Greenhouse Gases such as carbon dioxide are the primary cause for the Greenhouse Effect

The major contributors to the greenhouse gases are factories, automobiles, deforestation , etc. The increased number of factories and automobiles increases the amount of these gases in the atmosphere. The greenhouse gases never let the radiations escape from the earth and increase the surface temperature of the earth. This then leads to global warming.

Also Read:  Our Environment

The major causes of the greenhouse effect are:

Burning of Fossil Fuels

Fossil fuels are an important part of our lives. They are widely used in transportation and to produce electricity. Burning of fossil fuels releases carbon dioxide. With the increase in population, the utilization of fossil fuels has increased. This has led to an increase in the release of greenhouse gases in the atmosphere.

Deforestation

Plants and trees take in carbon dioxide and release oxygen. Due to the cutting of trees, there is a considerable increase in the greenhouse gases which increases the earth’s temperature.

Nitrous oxide used in fertilizers is one of the contributors to the greenhouse effect in the atmosphere.

Industrial Waste and Landfills

The industries and factories produce harmful gases which are released in the atmosphere.

Landfills also release carbon dioxide and methane that adds to the greenhouse gases.

assignment on green house effect

The main effects of increased greenhouse gases are:

Global Warming

It is the phenomenon of a gradual increase in the average temperature of the Earth’s atmosphere. The main cause for this environmental issue is the increased volumes of greenhouse gases such as carbon dioxide and methane released by the burning of fossil fuels, emissions from the vehicles, industries and other human activities.

Depletion of  Ozone Layer

Ozone Layer protects the earth from harmful ultraviolet rays from the sun. It is found in the upper regions of the stratosphere. The depletion of the ozone layer results in the entry of the harmful UV rays to the earth’s surface that might lead to skin cancer and can also change the climate drastically.

The major cause of this phenomenon is the accumulation of natural greenhouse gases including chlorofluorocarbons, carbon dioxide, methane, etc.

Smog and Air Pollution

Smog is formed by the combination of smoke and fog. It can be caused both by natural means and man-made activities.

In general, smog is generally formed by the accumulation of more greenhouse gases including nitrogen and sulfur oxides. The major contributors to the formation of smog are automobile and industrial emissions, agricultural fires, natural forest fires and the reaction of these chemicals among themselves.

Acidification of Water Bodies

Increase in the total amount of greenhouse gases in the air has turned most of the world’s water bodies acidic. The greenhouse gases mix with the rainwater and fall as acid rain. This leads to the acidification of water bodies.

Also, the rainwater carries the contaminants along with it and falls into the river, streams and lakes thereby causing their acidification.

This phenomenon occurs when the planet absorbs more radiation than it can radiate back. Thus, the heat lost from the earth’s surface is less and the temperature of the planet keeps rising. Scientists believe that this phenomenon took place on the surface of Venus billions of years ago.

This phenomenon is believed to have occurred in the following manner:

  • A runaway greenhouse effect arises when the temperature of a planet rises to a level of the boiling point of water. As a result, all the water from the oceans converts into water vapour, which traps more heat coming from the sun and further increases the planet’s temperature. This eventually accelerates the greenhouse effect. This is also called the “positive feedback loop”.
  • There is another scenario giving way to the runaway greenhouse effect. Suppose the temperature rise due to the above causes reaches such a high level that the chemical reactions begin to occur. These chemical reactions drive carbon dioxide from the rocks into the atmosphere. This would heat the surface of the planet which would further accelerate the transfer of carbon dioxide from the rocks to the atmosphere, giving rise to the runaway greenhouse effect.

In simple words, increasing the greenhouse effect gives rise to a runaway greenhouse effect which would increase the temperature of the earth to such an extent that no life will exist in the near future.

Also Read:  Environmental Issues

To learn more about what is the greenhouse effect, its definition, causes and effects, keep visiting BYJU’S website or download the BYJU’S app for further reference.

Frequently Asked Questions

What is global warming.

The gradual increase in temperature due to the greenhouse effect caused by pollutants, CFCs and carbon dioxide is called global warming. This phenomenon has disturbed the climatic pattern of the earth.

List gases which are responsible for the greenhouse effect.

The major greenhouse gases are: 1) Carbon dioxide 2) Methane 3) Water 4) Nitrous oxide 5) Ozone 6) Chlorofluorocarbons (CFCs)

What is the greenhouse effect?

What are the major causes of the greenhouse effect.

Burning of fossil fuels, deforestation, farming and livestock production all contribute to the greenhouse effect. Industries and factories also play a major role in the release of greenhouse gases.

What would have happened if the greenhouse gases were totally missing in the earth’s atmosphere?

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Biology related queries and study materials

Your result is as below

Request OTP on Voice Call

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

assignment on green house effect

thank you for this information this is so good

Thank you for such an informative topic

thanks for lot’s of information

Thanks for a lot information😊

Thanks again for your help

It is so much helpfull for him. thanks for this information

Thanks a lot for this information, it helped to improve my understanding.

Thank you so much. This has improved my understanding

Thank you for this information it is so interesting 👌👌

The information given by Byju’s are too useful

The term is deeply explained which is very helpful in understanding it really helps me so thank you Byju’s.

Thanks a lot for the information, it helped a lot

Thanks a lot. Very informative

Thank you sir for this beautiful explanation of topics

Thank u so much Byjus for the explanation of this topic

thankyou so much this information was very helpful

thi is so helpfull for study

Nice information

assignment on green house effect

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

Open Yale Courses

You are here, gg 140: the atmosphere, the ocean, and environmental change,  - greenhouse effect, habitability.

A simple model of the overall Earth’s heat budget is derived. The Earth is assumed to be in equilibrium with the input of solar radiation balanced by the output of infrared radiation emitted by the Earth’s surface. Using this model, the Earth’s surface temperature is calculated to be cooler than in reality due to the lack of an atmosphere and the greenhouse effect in the model.

Lecture Chapters

  • Earth Energy Balance
  • Black Body Radiation – Wien’s Law and Stephan-Boltzmann Law
  • Infrared Emission
  • Simple Model of Earth’s Energy Balance
  • Equilibrium Calculations of Earth’s Energy Budget
  • Greenhouse Effect in Earth’s Atmosphere
  • Energy Budgets for Other Planets
  • What is a Greenhouse Gas?

The Greenhouse Effect and our Planet

The greenhouse effect happens when certain gases, which are known as greenhouse gases, accumulate in Earth’s atmosphere. Greenhouse gases include carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), ozone (O 3 ), and fluorinated gases.

Biology, Ecology, Earth Science, Geography, Human Geography

Loading ...

Newsela

Earth keeps getting warmer. Scientists believe this is caused by an increase in something called greenhouse gases .

Greenhouse gases collect in Earth's atmosphere . The atmosphere is a layer of gases that surround Earth.  Carbon dioxide (CO 2 ), methane (CH 4 ), and ozone (O 3 ), are kinds of greenhouse gases.

The greenhouse gases allow the sun's light to shine onto Earth's surface. Some of that heat gets reflected . It bounces from the surface of Earth. Then, the gases trap the heat inside Earth. The gases act like the glass walls of a greenhouse. In other words, they are warming.

Animals and Plants Contribute to Greenhouse Gases Without the greenhouse effect , Earth's average temperature would drop. Now, it is about 57 degrees Fahrenheit (14 degrees Celsius). It could drop to as low as 0 degrees Fahrenheit (minus 18 degrees Celsius). The weather would go from mild to very cold.

Some greenhouse gases come from nature. Animals and plants release carbon dioxide when they breathe. Methane is another greenhouse gas . It is released when soil and living things break down.  Volcanoes also release greenhouse gases .

Factories and Vehicles Can also Be Blamed The Industrial Revolution happened in the late 1700s and early 1800s. This led to more factories and machines being built. The factories burned fuel and released more greenhouse gases into the atmosphere.

Greenhouse gases almost doubled between 1970 and 2004.

The amount of CO 2 in the atmosphere is growing. There is more CO 2 now than Earth has seen over the last 650,000 years.

Much of the CO 2 comes from burning fossil fuels . Cars, trains and planes all burn fossil fuels, such as gasoline. Many electric power plants do as well.

More Gases Lead to Global Warming Humans also release CO 2 into the atmosphere when they cut down forests . Trees contain large amounts of carbon.

People add methane to the atmosphere through farming of livestock such as cows. It also happens when we mine for coal .

Fluorinated gases are also greenhouse gases . Chlorofluoro carbons (CFCs) are one example of these. CFCs are used in refrigerators, air conditioners and aerosol cans .

As greenhouse gases increase, so does Earth's temperature. This rise caused by humans is known as global warming.

The Greenhouse Effect and Climate Change Even small increases in temperatures can have huge effects.

Perhaps the biggest effect is that glaciers and ice caps melt faster than usual. The meltwater d rains into the oceans . This causes sea levels to rise.

Glaciers and ice caps cover about one-tenth of the world's land. If all this ice melted, sea levels would rise about 70 meters (230 feet).

Climate scientists say that the world's sea level has risen.

Rising sea levels cause flooding in coastal cities. This could force millions of people in lower-lying areas out of their homes.

Millions of more people in countries depend on water from melted glaciers . They use it for drinking and watering crops . Losing these glaciers would greatly hurt those countries.

Greenhouse gases also cause changes in rain and snow .

In the 1900s, rain and snow increased in eastern parts of North and South America. It also increased in Northern Europe, and northern and Central Asia. However, it decreased in parts of Africa and southern Asia.

As climates change, so do environments . Animals that are used to a certain climate could become threatened.

Many humans depend on predictable rain patterns. This helps them to grow specific crops. If the climate of an area changes, the people there may no longer be able to grow anything. Some of them depend on farming for survival.

What Can We Do?

  • Drive less. Use  public transportation , carpool, walk, or ride a bike.
  • Fly less. Airplanes produce huge amounts of greenhouse gas emissions.
  • Reduce, reuse, and  recycle .
  • Plant a tree. Trees absorb carbon dioxide, keeping it out of the atmosphere.
  • Use less  electricity .
  • Eat less meat. Cows are one of the biggest methane producers.
  • Support alternative energy sources that don’t burn fossil fuels.

Artificial Gas

Chlorofluorocarbons (CFCs) are the only greenhouse gases not created by nature. They are created through refrigeration and aerosol cans.

CFCs, used mostly as refrigerants, are chemicals that were developed in the late 19th century and came into wide use in the mid-20th century.

Other greenhouse gases, such as carbon dioxide, are emitted by human activity, at an unnatural and unsustainable level, but the molecules do occur naturally in Earth's atmosphere.

Audio & Video

Media credits.

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Illustrators

Educator reviewer, last updated.

October 19, 2023

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

IMAGES

  1. What Is the Greenhouse Effect and How Does It Cause Global Warming?

    assignment on green house effect

  2. How Does Earth's Greenhouse Effect Work?

    assignment on green house effect

  3. Diagram showing the greenhouse effect Royalty Free Vector

    assignment on green house effect

  4. The Greenhouse Effect

    assignment on green house effect

  5. The Greenhouse Effect

    assignment on green house effect

  6. The Greenhouse Effect

    assignment on green house effect

VIDEO

  1. GREEN HOUSE EFFECT

  2. Green House Effect

  3. green house effect💚

  4. green house effect

  5. green house effect

  6. QAED ISLAMABAD

COMMENTS

  1. Greenhouse effect

    greenhouse effect, a warming of Earth's surface and troposphere (the lowest layer of the atmosphere) caused by the presence of water vapour, carbon dioxide, methane, and certain other gases in the air. Of those gases, known as greenhouse gases, water vapour has the largest effect.. The origins of the term greenhouse effect are unclear. French mathematician Joseph Fourier is sometimes given ...

  2. What Is the Greenhouse Effect?

    The Short Answer: The greenhouse effect is a process that occurs when gases in Earth's atmosphere trap the Sun's heat. This process makes Earth much warmer than it would be without an atmosphere. The greenhouse effect is one of the things that makes Earth a comfortable place to live.

  3. The Greenhouse Effect and our Planet

    The greenhouse effect happens when certain gases, which are known as greenhouse gases, accumulate in Earth's atmosphere. Greenhouse gases include carbon dioxide (CO 2), methane (CH 4), nitrous oxide (N 2 O), ozone (O 3), and fluorinated gases.. Greenhouse gases allow the sun's light to shine onto Earth's surface, and then the gases, such as ozone, trap the heat that reflects back from ...

  4. What is the greenhouse effect?

    The greenhouse effect is the process through which heat is trapped near Earth's surface by substances known as 'greenhouse gases.' Imagine these gases as a cozy blanket enveloping our planet, helping to maintain a warmer temperature than it would have otherwise. Greenhouse gases consist of carbon dioxide, methane, ozone, nitrous oxide, chlorofluorocarbons, and water vapor.

  5. Greenhouse Effect

    greenhouse effect. phenomenon where gases allow sunlight to enter Earth's atmosphere but make it difficult for heat to escape. greenhouse gas. gas in the atmosphere, such as carbon dioxide, methane, water vapor, and ozone, that absorbs solar heat reflected by the surface of the Earth, warming the atmosphere.

  6. Greenhouse effect and greenhouse gases (video)

    The greenhouse effect, as we just described it, is really based on this idea that things are getting the infrared radiation. The electromagnetic radiation is getting reabsorbed, which then gets reemitted back to the surface and vice right versa. In a real greenhouse, you can imagine that it is made out of glass.

  7. PDF Greenhouse Gases and Climate Change

    interactions with the greenhouse effect. 15-30 3 Modeling the Greenhouse Effect (See Note) Students are introduced to the idea of models. Then, following one (or more) of the demonstrations below, they answer questions about the accuracy of the model(s) they experienced. 5 4a-6a Greenhouse Effect in a Beaker A hands-on demonstration of the ...

  8. Introduction to the Greenhouse Effect

    The simulations or virtual labs described below allow your students to explore the greenhouse effect by doing simple "experiments" within computer-based models. Encourage your students to determine the basic relationship between the amount of greenhouse gases in the atmosphere and temperature (more greenhouse gases = higher temperature).

  9. Greenhouse Effect Teaching Box

    Greenhouse Effect Teaching Box This teaching box provides resources related to the greenhouse effect. It will help you teach how the greenhouse effect works, and how it prevents Earth from becoming a frozen ball of ice, and why there is too much of it happening today. Teaching Boxes are themed collections of classroom-ready educational ...

  10. Greenhouse Effect ( Read )

    The Greenhouse Effect. The exception to Earth's temperature being in balance is caused by greenhouse gases. But first the role of greenhouse gases in the atmosphere must be explained. Greenhouse gases warm the atmosphere by trapping heat. Some of the heat that radiates out from the ground is trapped by greenhouse gases in the troposphere.

  11. What is the Greenhouse Effect?

    The greenhouse effect is a natural feature of Earth's atmosphere - yet another ecosystem service. Without the greenhouse effect, Earth's surface temperature would average -18 o C (0 o F) - a temperature far too cold to support life as we know it. With the greenhouse effect, Earth's surface temperature averages 15 o C (59 o F), and it ...

  12. Greenhouse effect

    The greenhouse effect occurs in the atmosphere, and is an essential part of How the Earth System Works. Click the image on the left to open the Understanding Global Change Infographic. Locate the greenhouse effect icon and identify other topics that cause changes to, or are affected by, the greenhouse effect.

  13. PDF TEACHER BACKGROUND: THE GREENHOUSE EFFECT

    ( 21%), exert almost no greenhouse effect. Instead, the greenhouse effect comes from molecules that are more complex and much less common. Water vapor is the most important greenhouse gas, and carbon dioxide (CO 2) is the second-most important one. Methane, nitrous oxide, ozone and several other gases present in the atmosphere in small amounts ...

  14. The Greenhouse Effect and our Planet

    greenhouse effect. noun. phenomenon where gases allow sunlight to enter Earth's atmosphere but make it difficult for heat to escape. greenhouse gas. noun. gas in the atmosphere, such as carbon dioxide, methane, water vapor, and ozone, that absorbs solar heat reflected by the surface of the Earth, warming the atmosphere.

  15. The Greenhouse Effect

    How do greenhouse gases affect the climate? Explore the atmosphere during the ice age and today. What happens when you add clouds? Change the greenhouse gas concentration and see how the temperature changes. Then compare to the effect of glass panes. Zoom in and see how light interacts with molecules. Do all atmospheric gases contribute to the greenhouse effect?

  16. ‪Greenhouse Effect‬

    Explore the greenhouse effect with this interactive simulation. Change the factors that affect the climate and see how they influence the temperature and the light-molecule interactions.

  17. Greenhouse effect (practice)

    Greenhouse effect. Google Classroom. Several factors influence how much a given greenhouse gas contributes to global warming, as shown in the table below. Global warming potential ( 100. ‍. years) Residence time (years) Concentration (ppmv) Carbon dioxide ( CO A 2)

  18. What Is Greenhouse Effect?

    A greenhouse is a house made of glass that can be used to grow plants. The sun's radiations warm the plants and the air inside the greenhouse. The heat trapped inside can't escape out and warms the greenhouse which is essential for the growth of the plants. Same is the case in the earth's atmosphere. During the day the sun heats up the ...

  19. PDF The Greenhouse Effect: Science and Policy

    The greenhouse effect, despite all the controversy that surrounds the term, is actually one of the most well-established theories in atmospheric science. For example, with its dense CO2 atmosphere, Venus has temperatures near 700 K at its surface. Mars, with its very thin CO2 atmosphere, has temperatures of only 220 K.

  20. GG 140

    Overview. A simple model of the overall Earth's heat budget is derived. The Earth is assumed to be in equilibrium with the input of solar radiation balanced by the output of infrared radiation emitted by the Earth's surface. Using this model, the Earth's surface temperature is calculated to be cooler than in reality due to the lack of an ...

  21. PDF Introduction to the Greenhouse Effect Levels V-VI

    ACMP ©2006-2008 UAF Geophysical Institute B-1 Introduction to the Greenhouse Effect Overview: Students learn about the greenhouse effect and conduct a lab experi-ment using the greenhouse gas, carbon dioxide, to test a hypothesis. Objectives: The student will: • explain the natural role greenhouse gases play in the environment;

  22. The Greenhouse Effect and our Planet

    greenhouse effect. noun. phenomenon where gases allow sunlight to enter Earth's atmosphere but make it difficult for heat to escape. greenhouse gas. noun. gas in the atmosphere, such as carbon dioxide, methane, water vapor, and ozone, that absorbs solar heat reflected by the surface of the Earth, warming the atmosphere.

  23. Greenhouse gas

    greenhouse gas, any gas that has the property of absorbing infrared radiation (net heat energy) emitted from Earth's surface and reradiating it back to Earth's surface, thus contributing to the greenhouse effect. Carbon dioxide, methane, and water vapour are the most important greenhouse gases. (To a lesser extent, surface-level ozone, nitrous oxides, and fluorinated gases also trap ...