• Search Menu
  • Advance articles
  • Editor's Choice
  • Key Concepts
  • The View From Here
  • Author Guidelines
  • Submission Site
  • Open Access
  • Why Publish?
  • About ELT Journal
  • Editorial Board
  • Advertising and Corporate Services
  • Journals Career Network
  • Self-Archiving Policy
  • Dispatch Dates
  • Terms and Conditions
  • Journals on Oxford Academic
  • Books on Oxford Academic

Article Contents

  • < Previous

Age and the critical period hypothesis

  • Article contents
  • Figures & tables
  • Supplementary Data

Christian Abello-Contesse, Age and the critical period hypothesis, ELT Journal , Volume 63, Issue 2, April 2009, Pages 170–172, https://doi.org/10.1093/elt/ccn072

  • Permissions Icon Permissions

In the field of second language acquisition (SLA), how specific aspects of learning a non-native language (L2) may be affected by when the process begins is referred to as the ‘age factor’. Because of the way age intersects with a range of social, affective, educational, and experiential variables, clarifying its relationship with learning rate and/or success is a major challenge.

There is a popular belief that children as L2 learners are ‘superior’ to adults ( Scovel 2000 ), that is, the younger the learner, the quicker the learning process and the better the outcomes. Nevertheless, a closer examination of the ways in which age combines with other variables reveals a more complex picture, with both favourable and unfavourable age-related differences being associated with early- and late-starting L2 learners ( Johnstone 2002 ).

The ‘critical period hypothesis’ (CPH) is a particularly relevant case in point. This is the claim that there is, indeed, an optimal period for language acquisition, ending at puberty. However, in its original formulation ( Lenneberg 1967 ), evidence for its existence was based on the relearning of impaired L1 skills, rather than the learning of a second language under normal circumstances.

Furthermore, although the age factor is an uncontroversial research variable extending from birth to death ( Cook 1995 ), and the CPH is a narrowly focused proposal subject to recurrent debate, ironically, it is the latter that tends to dominate SLA discussions ( García Lecumberri and Gallardo 2003 ), resulting in a number of competing conceptualizations. Thus, in the current literature on the subject ( Bialystok 1997 ; Richards and Schmidt 2002 ; Abello-Contesse et al. 2006), references can be found to (i) multiple critical periods (each based on a specific language component, such as age six for L2 phonology), (ii) the non-existence of one or more critical periods for L2 versus L1 acquisition, (iii) a ‘sensitive’ yet not ‘critical’ period, and (iv) a gradual and continual decline from childhood to adulthood.

It therefore needs to be recognized that there is a marked contrast between the CPH as an issue of continuing dispute in SLA, on the one hand, and, on the other, the popular view that it is an invariable ‘law’, equally applicable to any L2 acquisition context or situation. In fact, research indicates that age effects of all kinds depend largely on the actual opportunities for learning which are available within overall contexts of L2 acquisition and particular learning situations, notably the extent to which initial exposure is substantial and sustained ( Lightbown 2000 ).

Thus, most classroom-based studies have shown not only a lack of direct correlation between an earlier start and more successful/rapid L2 development but also a strong tendency for older children and teenagers to be more efficient learners. For example, in research conducted in the context of conventional school programmes, Cenoz (2003) and Muñoz (2006) have shown that learners whose exposure to the L2 began at age 11 consistently displayed higher levels of proficiency than those for whom it began at 4 or 8. Furthermore, comparable limitations have been reported for young learners in school settings involving innovative, immersion-type programmes, where exposure to the target language is significantly increased through subject-matter teaching in the L2 ( Genesee 1992 ; Abello-Contesse 2006 ). In sum, as Harley and Wang (1997) have argued, more mature learners are usually capable of making faster initial progress in acquiring the grammatical and lexical components of an L2 due to their higher level of cognitive development and greater analytical abilities.

In terms of language pedagogy, it can therefore be concluded that (i) there is no single ‘magic’ age for L2 learning, (ii) both older and younger learners are able to achieve advanced levels of proficiency in an L2, and (iii) the general and specific characteristics of the learning environment are also likely to be variables of equal or greater importance.

Google Scholar

Google Preview

Email alerts

Citing articles via.

  • Recommend to Your Library

Affiliations

  • Online ISSN 1477-4526
  • Print ISSN 0951-0893
  • Copyright © 2024 Oxford University Press
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Critical Period In Brain Development and Childhood Learning

Charlotte Nickerson

Research Assistant at Harvard University

Undergraduate at Harvard University

Charlotte Nickerson is a student at Harvard University obsessed with the intersection of mental health, productivity, and design.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Key Takeaways

  • Critical period is an ethological term that refers to a fixed and crucial time during the early development of an organism when it can learn things that are essential to survival. These influences impact the development of processes such as hearing and vision, social bonding, and language learning.
  • The term is most often experienced in the study of imprinting, where it is thought that young birds could only develop an attachment to the mother during a fixed time soon after hatching.
  • Neurologically, critical periods are marked by high levels of plasticity in the brain before neural connections become more solidified and stable. In particular, critical periods tend to end when synapses that inhibit the neurotransmitter GABA mature.
  • In contrast to critical periods, sensitive periods, otherwise known as “weak critical periods,” happen when an organism is more sensitive than usual to outside factors influencing behavior, but this influence is not necessarily restricted to the sensitive period.
  • Scholars have debated the extent to which older organisms can develop certain skills, such as natively-accented foreign languages, after the critical period.

brain critical development

The critical period is a biologically determined stage of development where an organism is optimally ready to acquire some pattern of behavior that is part of typical development. This period, by definition, will not recur at a later stage.

If an organism does not receive exposure to the appropriate stimulus needed to learn a skill during a critical period, it may be difficult or even impossible for that organism to develop certain functions associated with that skill later in life.

This happens because a range of functional and structural elements prevent passive experiences from eliciting significant changes in the brain (Cisneros-Franco et al., 2020).

The first strong proponent of the theory of critical periods was Charles Stockhard (1921), a biologist who attempted to experiment with the effects of various chemicals on the development of fish embryos, though he gave credit to Dareste for originating the idea 30 years earlier (Scott, 1962).

Stockhard’s experiments showed that applying almost any chemical to fish embryos at a certain stage of development would result in one-eyed fish.

These experiments established that the most rapidly growing tissues in an embryo are the most sensitive to any change in conditions, leading to effects later in development (Scott, 1962).

Meanwhile, psychologist Sigmund Freud attempted to explain the origins of neurosis in human patients as the result of early experiences, implying that infants are particularly sensitive to influences at certain points in their lives.

Lorenz (1935) later emphasized the importance of critical periods in the formation of primary social bonds (otherwise known as imprinting) in birds, remarking that this psychological imprinting was similar to critical periods in the development of the embryo.

Soon thereafter, McGraw (1946) pointed out the existence of critical periods for the optimal learning of motor skills in human infants (Scott, 1962).

Example: Infant-Parent Attachment

The concept of critical or sensitive periods can also be found in the domain of social development, for example, in the formation of the infant-parent attachment relationship (Salkind, 2005).

Attachment describes the strong emotional ties between the infant and caregiver, a reciprocal relationship developing over the first year of the child’s life and particularly during the second six months of the first year.

During this attachment period , the infant’s social behavior becomes increasingly focused on the principal caregivers (Salkind, 2005).

The 20th-century English psychiatrist John Bowlby formulated and presented a comprehensive theory of attachment influenced by evolutionary theory.

Bowlby argued that the infant-parent attachment relationship develops because it is important to the survival of the infant and that the period from six to twenty-four months of age is a critical period of attachment.

This coincides with an infant’s increasing tendency to approach familiar caregivers and to be wary of unfamiliar adults. After this critical period, it is still possible for a first attachment relationship to develop, albeit with greater difficulty (Salkind, 2005).

This has brought into question, in a similar vein to language development, whether there is actually a critical development period for infant-caregiver attachment.

Sources debating this issue typically include cases of infants who did not experience consistent caregiving due to being raised in institutions prior to adoption (Salkind, 2005).

Early research into the critical period of attachment, published in the 1940s, reports consistently that children raised in orphanages subsequently showed unusual and maladaptive patterns of social behavior, difficulty in forming close relationships, and being indiscriminately friendly toward unfamiliar adults (Salkind, 2005).

Later, research from the 1990s indicated that adoptees were actually still able to form attachment relationships after the first year of life and also made developmental progress following adoption.

Nonetheless, these children had an overall increased risk of insecure or maladaptive attachment relationships with their adoptive parents. This evidence supports the notion of a sensitive period, but not a critical period, in the development of first attachment relationships (Salkind, 2005).

Mechanisms for Critical Periods

Both genetics and sensory experiences from outside the body shape the brain as it develops (Knudsen, 2004). However, the developmental stage that an organism is in significantly impacts how much the brain can change based on these experiences.

In scientific terms, the brain’s plasticity changes over the course of a lifespan. The brain is very plastic in the early stages of life before many key connections take root, but less so later.

This is why researchers have shown that early experience is crucial for the development of, say, language and musical abilities, and these skills are more challenging to take up in adulthood (Skoe and Kraus, 2013; White et al., 2013; Hartshorne et al., 2018).

As brains mature, the connections in them become more fixed. The brain’s transitions from a more plastic to a more fixed state advantageously allow it to retain new and complex processes, such as perceptual, motor, and cognitive functions (Piaget, 1962).

Children’s gestures, for example, pride and predict how they will acquire oral language skills (Colonnesi et al., 2010), which in turn are important for developing executive functions (Marcovitch and Zelazo, 2009).

However, this formation of stable connections in the brain can limit how the brain’s neural circuitry can be revised in the future. For example, if a young organism has abnormal sensory experiences during the critical period – such as auditory or visual deprivation – the brain may not wire itself in a way that processes future sensory inputs properly (Gallagher et al., 2020).

One illustration of this is the timing of cochlear implants – a prosthesis that restores hearing in some deaf people. Children who receive cochlear implants before two years of age are more likely to benefit from them than those who are implanted later in life (Kral and Eggermont, 2007; Gallagher et al., 2020).

Similarly, the visual deprivation caused by cataracts in infants can cause similar consequences. When cataracts are removed during early infancy, individuals can develop relatively normal vision; however, when the cataracts are not removed until adulthood, this results in substantially poorer vision (Martins Rosa et al., 2013).

After the critical period closes, abnormal sensory experiences have a less drastic effect on the brain and lead to – barring direct damage to the central nervous system – reversible changes (Gallagher et al., 2020). Much of what scientists know about critical periods derives from animal studies , as these allow researchers greater control over the variables that they are testing.

This research has found that different sensory systems, such as vision, auditory processing, and spatial hearing, have different critical periods (Gallagher et al., 2020).

The brain regulates when critical periods open and close by regulating how much the brain’s synapses take up neurotransmitters , which are chemical substances that affect the transmission of electrical signals between neurons.

In particular, over time, synapses decrease their uptake of gamma-aminobutyric acid, better known as GABA. At the beginning of the critical period, outside sources become more effective at influencing changes and growth in the brain.

Meanwhile, as the inhibitory circuits of the brain mature, the mature brain becomes less sensitive to sensory experiences (Gallagher et al., 2020).

Critical Periods vs Sensitive Periods

Critical periods are similar to sensitive periods, and scholars have, at times, used them interchangeably. However, they describe distinct but overlapping developmental processes.

A sensitive period is a developmental stage where sensory experiences have a greater impact on behavioral and brain development than usual; however, this influence is not exclusive to this time period (Knudsen, 2004; Gallagher, 2020). These sensitive periods are important for skills such as learning a language or instrument.

In contrast, A critical period is a special type of sensitive period – a window where sensory experience is necessary to shape the neural circuits involved in basic sensory processing, and when this window opens and closes is well-defined (Gallagher, 2020).

Researchers also refer to sensitive periods as weak critical periods. Some examples of strong critical periods include the development of vision and hearing, while weak critical periods include phenome tuning – how children learn how to organize sounds in a language, grammar processing, vocabulary acquisition, musical training, and sports training (Gallagher et al., 2020).

Critical Period Hypothesis

One of the most notable applications of the concept of a critical period is in linguistics. Scholars usually trace the origins of the debate around age in language acquisition to Penfield and Robert’s (2014) book Speech and Brain Mechanisms.

In the 1950s and 1960s, Penfield was a staunch advocate of early immersion education (Kroll and De Groot, 2009). Nonetheless, it was Lenneberg, in his book Biological Foundations of Language, who coined the term critical period (1967) in describing the language period.

Lennenberg (1967) described a critical period as a period of automatic acquisition from mere exposure” that “seems to disappear after this age.” Scovel (1969) later summarized and narrowed Penfield’s and Lenneberg’s view on the critical period hypothesis into three main claims:

  • Adult native speakers can identify non-natives by their accents immediately and accurately.
  • The loss of brain plasticity at about the age of puberty accounts for the emergence of foreign accents./li>
  • The critical period hypothesis only holds for speech (whether or not someone has a native accent) and does not affect other areas of linguistic competence.

Linguists have since attempted to find evidence for whether or not scientific evidence actually supports the critical period hypothesis, if there is a critical period for acquiring accentless speech, for “morphosyntactic” competence, and if these are true, how age-related differences can be explained on the neurological level (Scovel, 2000).

The critical period hypothesis applies to both first and second-language learning. Until recently, research around the critical period’s role in first language acquisition revolved around findings about so-called “feral” children who had failed to acquire language at an older age after having been deprived of normal input during the critical period.

However, these case studies did not account for the extent to which social deprivation, and possibly food deprivation or sensory deprivation, may have confounded with language input deprivation (Kroll and De Groot, 2009).

More recently, researchers have focused more systematically on deaf children born to hearing parents who are therefore deprived of language input until at least elementary school.

These studies have found the effects of lack of language input without extreme social deprivation: the older the age of exposure to sign language is, the worse its ultimate attainment (Emmorey, Bellugi, Friederici, and Horn, 1995; Kroll and De Groot, 2009).

However, Kroll and De Groot argue that the critical period hypothesis does not apply to the rate of acquisition of language. Adults and adolescents can learn languages at the same rate or even faster than children in their initial stage of acquisition (Slavoff and Johnson, 1995).

However, adults tend to have a more limited ultimate attainment of language ability (Kroll and De Groot, 2009).

There has been a long lineage of empirical findings around the age of acquisition. The most fundamental of this research comes from a series of studies since the late 1970s documenting a negative correlation between age of acquisition and ultimate language mastery (Kroll and De Grott, 2009).

Nonetheless, different periods correspond to sensitivity to different aspects of language. For example, shortly after birth, infants can perceive and discriminate speech sounds from any language, including ones they have not been exposed to (Eimas et al., 1971; Gallagher et al., 2020).

Around six months of age, exposure to the primary language in the infant’s environment guides phonetic representations of language and, subsequently, the neural representations of speech sounds of the native language while weakening those of unused sounds (McClelland et al., 1999; Gallagher et al., 2020).

Vocabulary learning experiences rapid growth at about 18 months of age (Kuhl, 2010).

Critical Evaluation

More than any other area of applied linguistics, the critical period hypothesis has impacted how teachers teach languages. Consequently, researchers have critiqued how important the critical period is to language learning.

For example, several studies in early language acquisition research showed that children were not necessarily superior to older learners in acquiring a second language, even in the area of pronunciation (Olson and Samuels, 1973; Snow and Hoefnagel-Hohle, 1978; Scovel, 2000).

In fact, the majority of researchers at the time appeared to be skeptical about the existence of a critical period, with some explicitly denying its existence.

Counter to one of the primary tenets of Scovel’s (1969) critical period hypothesis, there have been several cases of people who have acquired a second language in adulthood speaking with native accents.

For example, Moyer’s study of highly proficient English-speaking learners of German suggested that at least one of the participants was judged to have native-like pronunciation in his second language (1999), and several participants in Bongaerts (1999) study of highly proficient Dutch speakers of French spoke with accents judged to be native (Scovel, 2000).

Bongaerts, T. (1999). Ultimate attainment in L2 pronunciation: The case of very advanced late L2 learners. Second language acquisition and the critical period hypothesis, 133-159.

Cisneros-Franco, J. M., Voss, P., Thomas, M. E., & de Villers-Sidani, E. (2020). Critical periods of brain development. In Handbook of Clinical Neurolog y (Vol. 173, pp. 75-88). Elsevier.

Colonnesi, C., Stams, G. J. J., Koster, I., & Noom, M. J. (2010). The relation between pointing and language development: A meta-analysis. Developmental Review, 30 (4), 352-366.

Eimas, P. D., Siqueland, E. R., Jusczyk, P., & Vigorito, J. (1971). Speech perception in infants. Science, 171 (3968), 303-306.

Emmorey, K., Bellugi, U., Friederici, A., & Horn, P. (1995). Effects of age of acquisition on grammatical sensitivity: Evidence from on-line and off-line tasks. Applied Psycholinguistics, 16 (1), 1-23.

Knudsen, E. I. (2004). Sensitive periods in the development of the brain and behavior. Journal of cognitive neuroscience, 16 (8), 1412-1425.

Hartshorne, J. K., Tenenbaum, J. B., & Pinker, S. (2018). A critical period for second language acquisition: Evidence from 2/3 million English speakers. Cognition, 177 , 263-277.

Kral, A., & Eggermont, J. J. (2007). What’s to lose and what’s to learn: development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Research Reviews, 56(1), 259-269.

Kroll, J. F., & De Groot, A. M. (Eds.). (2009). Handbook of bilingualism: Psycholinguistic approaches . Oxford University Press.

Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67 (5), 713-727.

Lenneberg, E. H. (1967). The biological foundations of language. Hospital Practice, 2( 12), 59-67.

Lorenz, K. (1935). Der kumpan in der umwelt des vogels. Journal für Ornithologie, 83 (2), 137-213.

Marcovitch, S., & Zelazo, P. D. (2009). A hierarchical competing systems model of the emergence and early development of executive function. Developmental science, 12 (1), 1-18.

McClelland, J. L., Thomas, A. G., McCandliss, B. D., & Fiez, J. A. (1999). Understanding failures of learning: Hebbian learning, competition for representational space, and some preliminary experimental data. Progress in brain research, 121, 75-80.

McGraw, M. B. (1946). Maturation of behavior. In Manual of child psychology. (pp. 332-369). John Wiley & Sons Inc.

Moyer, A. (1999). Ultimate attainment in L2 phonology: The critical factors of age, motivation, and instruction. Studies in second language acquisition, 21 (1), 81-108.

Gallagher, A., Bulteau, C., Cohen, D., & Michaud, J. L. (2019). Neurocognitive Development: Normative Development. Elsevier.

Olson, L. L., & Jay Samuels, S. (1973). The relationship between age and accuracy of foreign language pronunciation. The Journal of Educational Research, 66 (6), 263-268.

Penfield, W., & Roberts, L. (2014). Speech and brain mechanisms. Princeton University Press.

Piaget, J. (1962). The stages of the intellectual development of the child. Bulletin of the Menninger Clinic, 26 (3), 120.

Rosa, A. M., Silva, M. F., Ferreira, S., Murta, J., & Castelo-Branco, M. (2013). Plasticity in the human visual cortex: an ophthalmology-based perspective. BioMed research international, 2013.

Salkind, N. J. (Ed.). (2005). Encyclopedia of human development . Sage Publications.

Scott, J. P. (1962). Critical periods in behavioral development. Science, 138 (3544), 949-958.

Scovel, T. (1969). Foreign accents, language acquisition, and cerebral dominance 1. Language learning, 19 (3‐4), 245-253.

Scovel, T. (2000). A critical review of the critical period research. Annual review of applied linguistics, 20 , 213-223.

Skoe, E., & Kraus, N. (2013). Musical training heightens auditory brainstem function during sensitive periods in development. Frontiers in Psychology, 4, 622.

Slavoff, G. R., & Johnson, J. S. (1995). The effects of age on the rate of learning a second language. Studies in Second Language Acquisition, 17 (1), 1-16.

Snow, C. E., & Hoefnagel-Höhle, M. (1978). The critical period for language acquisition: Evidence from second language learning. Child development, 1114-1128.

Stockard, C. R. (1921). Developmental rate and structural expression: an experimental study of twins,‘double monsters’ and single deformities, and the interaction among embryonic organs during their origin and development. American Journal of Anatomy, 28 (2), 115-277.

White, E. J., Hutka, S. A., Williams, L. J., & Moreno, S. (2013). Learning, neural plasticity and sensitive periods: implications for language acquisition, music training and transfer across the lifespan. Frontiers in systems neuroscience, 7, 90.

Further Information

Print Friendly, PDF & Email

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of plosone

The Critical Period Hypothesis in Second Language Acquisition: A Statistical Critique and a Reanalysis

Jan vanhove.

Department of Multilingualism, University of Fribourg, Fribourg, Switzerland

Analyzed the data: JV. Wrote the paper: JV.

Associated Data

In second language acquisition research, the critical period hypothesis ( cph ) holds that the function between learners' age and their susceptibility to second language input is non-linear. This paper revisits the indistinctness found in the literature with regard to this hypothesis's scope and predictions. Even when its scope is clearly delineated and its predictions are spelt out, however, empirical studies–with few exceptions–use analytical (statistical) tools that are irrelevant with respect to the predictions made. This paper discusses statistical fallacies common in cph research and illustrates an alternative analytical method (piecewise regression) by means of a reanalysis of two datasets from a 2010 paper purporting to have found cross-linguistic evidence in favour of the cph . This reanalysis reveals that the specific age patterns predicted by the cph are not cross-linguistically robust. Applying the principle of parsimony, it is concluded that age patterns in second language acquisition are not governed by a critical period. To conclude, this paper highlights the role of confirmation bias in the scientific enterprise and appeals to second language acquisition researchers to reanalyse their old datasets using the methods discussed in this paper. The data and R commands that were used for the reanalysis are provided as supplementary materials.

Introduction

In the long term and in immersion contexts, second-language (L2) learners starting acquisition early in life – and staying exposed to input and thus learning over several years or decades – undisputedly tend to outperform later learners. Apart from being misinterpreted as an argument in favour of early foreign language instruction, which takes place in wholly different circumstances, this general age effect is also sometimes taken as evidence for a so-called ‘critical period’ ( cp ) for second-language acquisition ( sla ). Derived from biology, the cp concept was famously introduced into the field of language acquisition by Penfield and Roberts in 1959 [1] and was refined by Lenneberg eight years later [2] . Lenneberg argued that language acquisition needed to take place between age two and puberty – a period which he believed to coincide with the lateralisation process of the brain. (More recent neurological research suggests that different time frames exist for the lateralisation process of different language functions. Most, however, close before puberty [3] .) However, Lenneberg mostly drew on findings pertaining to first language development in deaf children, feral children or children with serious cognitive impairments in order to back up his claims. For him, the critical period concept was concerned with the implicit “automatic acquisition” [2, p. 176] in immersion contexts and does not preclude the possibility of learning a foreign language after puberty, albeit with much conscious effort and typically less success.

sla research adopted the critical period hypothesis ( cph ) and applied it to second and foreign language learning, resulting in a host of studies. In its most general version, the cph for sla states that the ‘susceptibility’ or ‘sensitivity’ to language input varies as a function of age, with adult L2 learners being less susceptible to input than child L2 learners. Importantly, the age–susceptibility function is hypothesised to be non-linear. Moving beyond this general version, we find that the cph is conceptualised in a multitude of ways [4] . This state of affairs requires scholars to make explicit their theoretical stance and assumptions [5] , but has the obvious downside that critical findings risk being mitigated as posing a problem to only one aspect of one particular conceptualisation of the cph , whereas other conceptualisations remain unscathed. This overall vagueness concerns two areas in particular, viz. the delineation of the cph 's scope and the formulation of testable predictions. Delineating the scope and formulating falsifiable predictions are, needless to say, fundamental stages in the scientific evaluation of any hypothesis or theory, but the lack of scholarly consensus on these points seems to be particularly pronounced in the case of the cph . This article therefore first presents a brief overview of differing views on these two stages. Then, once the scope of their cph version has been duly identified and empirical data have been collected using solid methods, it is essential that researchers analyse the data patterns soundly in order to assess the predictions made and that they draw justifiable conclusions from the results. As I will argue in great detail, however, the statistical analysis of data patterns as well as their interpretation in cph research – and this includes both critical and supportive studies and overviews – leaves a great deal to be desired. Reanalysing data from a recent cph -supportive study, I illustrate some common statistical fallacies in cph research and demonstrate how one particular cph prediction can be evaluated.

Delineating the scope of the critical period hypothesis

First, the age span for a putative critical period for language acquisition has been delimited in different ways in the literature [4] . Lenneberg's critical period stretched from two years of age to puberty (which he posits at about 14 years of age) [2] , whereas other scholars have drawn the cutoff point at 12, 15, 16 or 18 years of age [6] . Unlike Lenneberg, most researchers today do not define a starting age for the critical period for language learning. Some, however, consider the possibility of the critical period (or a critical period for a specific language area, e.g. phonology) ending much earlier than puberty (e.g. age 9 years [1] , or as early as 12 months in the case of phonology [7] ).

Second, some vagueness remains as to the setting that is relevant to the cph . Does the critical period constrain implicit learning processes only, i.e. only the untutored language acquisition in immersion contexts or does it also apply to (at least partly) instructed learning? Most researchers agree on the former [8] , but much research has included subjects who have had at least some instruction in the L2.

Third, there is no consensus on what the scope of the cp is as far as the areas of language that are concerned. Most researchers agree that a cp is most likely to constrain the acquisition of pronunciation and grammar and, consequently, these are the areas primarily looked into in studies on the cph [9] . Some researchers have also tried to define distinguishable cp s for the different language areas of phonetics, morphology and syntax and even for lexis (see [10] for an overview).

Fourth and last, research into the cph has focused on ‘ultimate attainment’ ( ua ) or the ‘final’ state of L2 proficiency rather than on the rate of learning. From research into the rate of acquisition (e.g. [11] – [13] ), it has become clear that the cph cannot hold for the rate variable. In fact, it has been observed that adult learners proceed faster than child learners at the beginning stages of L2 acquisition. Though theoretical reasons for excluding the rate can be posited (the initial faster rate of learning in adults may be the result of more conscious cognitive strategies rather than to less conscious implicit learning, for instance), rate of learning might from a different perspective also be considered an indicator of ‘susceptibility’ or ‘sensitivity’ to language input. Nevertheless, contemporary sla scholars generally seem to concur that ua and not rate of learning is the dependent variable of primary interest in cph research. These and further scope delineation problems relevant to cph research are discussed in more detail by, among others, Birdsong [9] , DeKeyser and Larson-Hall [14] , Long [10] and Muñoz and Singleton [6] .

Formulating testable hypotheses

Once the relevant cph 's scope has satisfactorily been identified, clear and testable predictions need to be drawn from it. At this stage, the lack of consensus on what the consequences or the actual observable outcome of a cp would have to look like becomes evident. As touched upon earlier, cph research is interested in the end state or ‘ultimate attainment’ ( ua ) in L2 acquisition because this “determines the upper limits of L2 attainment” [9, p. 10]. The range of possible ultimate attainment states thus helps researchers to explore the potential maximum outcome of L2 proficiency before and after the putative critical period.

One strong prediction made by some cph exponents holds that post- cp learners cannot reach native-like L2 competences. Identifying a single native-like post- cp L2 learner would then suffice to falsify all cph s making this prediction. Assessing this prediction is difficult, however, since it is not clear what exactly constitutes sufficient nativelikeness, as illustrated by the discussion on the actual nativelikeness of highly accomplished L2 speakers [15] , [16] . Indeed, there exists a real danger that, in a quest to vindicate the cph , scholars set the bar for L2 learners to match monolinguals increasingly higher – up to Swiftian extremes. Furthermore, the usefulness of comparing the linguistic performance in mono- and bilinguals has been called into question [6] , [17] , [18] . Put simply, the linguistic repertoires of mono- and bilinguals differ by definition and differences in the behavioural outcome will necessarily be found, if only one digs deep enough.

A second strong prediction made by cph proponents is that the function linking age of acquisition and ultimate attainment will not be linear throughout the whole lifespan. Before discussing how this function would have to look like in order for it to constitute cph -consistent evidence, I point out that the ultimate attainment variable can essentially be considered a cumulative measure dependent on the actual variable of interest in cph research, i.e. susceptibility to language input, as well as on such other factors like duration and intensity of learning (within and outside a putative cp ) and possibly a number of other influencing factors. To elaborate, the behavioural outcome, i.e. ultimate attainment, can be assumed to be integrative to the susceptibility function, as Newport [19] correctly points out. Other things being equal, ultimate attainment will therefore decrease as susceptibility decreases. However, decreasing ultimate attainment levels in and by themselves represent no compelling evidence in favour of a cph . The form of the integrative curve must therefore be predicted clearly from the susceptibility function. Additionally, the age of acquisition–ultimate attainment function can take just about any form when other things are not equal, e.g. duration of learning (Does learning last up until time of testing or only for a more or less constant number of years or is it dependent on age itself?) or intensity of learning (Do learners always learn at their maximum susceptibility level or does this intensity vary as a function of age, duration, present attainment and motivation?). The integral of the susceptibility function could therefore be of virtually unlimited complexity and its parameters could be adjusted to fit any age of acquisition–ultimate attainment pattern. It seems therefore astonishing that the distinction between level of sensitivity to language input and level of ultimate attainment is rarely made in the literature. Implicitly or explicitly [20] , the two are more or less equated and the same mathematical functions are expected to describe the two variables if observed across a range of starting ages of acquisition.

But even when the susceptibility and ultimate attainment variables are equated, there remains controversy as to what function linking age of onset of acquisition and ultimate attainment would actually constitute evidence for a critical period. Most scholars agree that not any kind of age effect constitutes such evidence. More specifically, the age of acquisition–ultimate attainment function would need to be different before and after the end of the cp [9] . According to Birdsong [9] , three basic possible patterns proposed in the literature meet this condition. These patterns are presented in Figure 1 . The first pattern describes a steep decline of the age of onset of acquisition ( aoa )–ultimate attainment ( ua ) function up to the end of the cp and a practically non-existent age effect thereafter. Pattern 2 is an “unconventional, although often implicitly invoked” [9, p. 17] notion of the cp function which contains a period of peak attainment (or performance at ceiling), i.e. performance does not vary as a function of age, which is often referred to as a ‘window of opportunity’. This time span is followed by an unbounded decline in ua depending on aoa . Pattern 3 includes characteristics of patterns 1 and 2. At the beginning of the aoa range, performance is at ceiling. The next segment is a downward slope in the age function which ends when performance reaches its floor. Birdsong points out that all of these patterns have been reported in the literature. On closer inspection, however, he concludes that the most convincing function describing these age effects is a simple linear one. Hakuta et al. [21] sketch further theoretically possible predictions of the cph in which the mean performance drops drastically and/or the slope of the aoa – ua proficiency function changes at a certain point.

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.g001.jpg

The graphs are based on based on Figure 2 in [9] .

Although several patterns have been proposed in the literature, it bears pointing out that the most common explicit prediction corresponds to Birdsong's first pattern, as exemplified by the following crystal-clear statement by DeKeyser, one of the foremost cph proponents:

[A] strong negative correlation between age of acquisition and ultimate attainment throughout the lifespan (or even from birth through middle age), the only age effect documented in many earlier studies, is not evidence for a critical period…[T]he critical period concept implies a break in the AoA–proficiency function, i.e., an age (somewhat variable from individual to individual, of course, and therefore an age range in the aggregate) after which the decline of success rate in one or more areas of language is much less pronounced and/or clearly due to different reasons. [22, p. 445].

DeKeyser and before him among others Johnson and Newport [23] thus conceptualise only one possible pattern which would speak in favour of a critical period: a clear negative age effect before the end of the critical period and a much weaker (if any) negative correlation between age and ultimate attainment after it. This ‘flattened slope’ prediction has the virtue of being much more tangible than the ‘potential nativelikeness’ prediction: Testing it does not necessarily require comparing the L2-learners to a native control group and thus effectively comparing apples and oranges. Rather, L2-learners with different aoa s can be compared amongst themselves without the need to categorise them by means of a native-speaker yardstick, the validity of which is inevitably going to be controversial [15] . In what follows, I will concern myself solely with the ‘flattened slope’ prediction, arguing that, despite its clarity of formulation, cph research has generally used analytical methods that are irrelevant for the purposes of actually testing it.

Inferring non-linearities in critical period research: An overview

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.e005.jpg

Group mean or proportion comparisons

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.e007.jpg

[T]he main differences can be found between the native group and all other groups – including the earliest learner group – and between the adolescence group and all other groups. However, neither the difference between the two childhood groups nor the one between the two adulthood groups reached significance, which indicates that the major changes in eventual perceived nativelikeness of L2 learners can be associated with adolescence. [15, p. 270].

Similar group comparisons aimed at investigating the effect of aoa on ua have been carried out by both cph advocates and sceptics (among whom Bialystok and Miller [25, pp. 136–139], Birdsong and Molis [26, p. 240], Flege [27, pp. 120–121], Flege et al. [28, pp. 85–86], Johnson [29, p. 229], Johnson and Newport [23, p. 78], McDonald [30, pp. 408–410] and Patowski [31, pp. 456–458]). To be clear, not all of these authors drew direct conclusions about the aoa – ua function on the basis of these groups comparisons, but their group comparisons have been cited as indicative of a cph -consistent non-continuous age effect, as exemplified by the following quote by DeKeyser [22] :

Where group comparisons are made, younger learners always do significantly better than the older learners. The behavioral evidence, then, suggests a non-continuous age effect with a “bend” in the AoA–proficiency function somewhere between ages 12 and 16. [22, p. 448].

The first problem with group comparisons like these and drawing inferences on the basis thereof is that they require that a continuous variable, aoa , be split up into discrete bins. More often than not, the boundaries between these bins are drawn in an arbitrary fashion, but what is more troublesome is the loss of information and statistical power that such discretisation entails (see [32] for the extreme case of dichotomisation). If we want to find out more about the relationship between aoa and ua , why throw away most of the aoa information and effectively reduce the ua data to group means and the variance in those groups?

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.e010.jpg

Comparison of correlation coefficients

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.e026.jpg

Correlation-based inferences about slope discontinuities have similarly explicitly been made by cph advocates and skeptics alike, e.g. Bialystok and Miller [25, pp. 136 and 140], DeKeyser and colleagues [22] , [44] and Flege et al. [45, pp. 166 and 169]. Others did not explicitly infer the presence or absence of slope differences from the subset correlations they computed (among others Birdsong and Molis [26] , DeKeyser [8] , Flege et al. [28] and Johnson [29] ), but their studies nevertheless featured in overviews discussing discontinuities [14] , [22] . Indeed, the most recent overview draws a strong conclusion about the validity of the cph 's ‘flattened slope’ prediction on the basis of these subset correlations:

In those studies where the two groups are described separately, the correlation is much higher for the younger than for the older group, except in Birdsong and Molis (2001) [ =  [26] , JV], where there was a ceiling effect for the younger group. This global picture from more than a dozen studies provides support for the non-continuity of the decline in the AoA–proficiency function, which all researchers agree is a hallmark of a critical period phenomenon. [22, p. 448].

In Johnson and Newport's specific case [23] , their correlation-based inference that ua levels off after puberty happened to be largely correct: the gjt scores are more or less randomly distributed around a near-horizontal trend line [26] . Ultimately, however, it rests on the fallacy of confusing correlation coefficients with slopes, which seriously calls into question conclusions such as DeKeyser's (cf. the quote above).

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.e030.jpg

It can then straightforwardly be deduced that, other things equal, the aoa – ua correlation in the older group decreases as the ua variance in the older group increases relative to the ua variance in the younger group (Eq. 3).

equation image

Lower correlation coefficients in older aoa groups may therefore be largely due to differences in ua variance, which have been reported in several studies [23] , [26] , [28] , [29] (see [46] for additional references). Greater variability in ua with increasing age is likely due to factors other than age proper [47] , such as the concomitant greater variability in exposure to literacy, degree of education, motivation and opportunity for language use, and by itself represents evidence neither in favour of nor against the cph .

Regression approaches

Having demonstrated that neither group mean or proportion comparisons nor correlation coefficient comparisons can directly address the ‘flattened slope’ prediction, I now turn to the studies in which regression models were computed with aoa as a predictor variable and ua as the outcome variable. Once again, this category of studies is not mutually exclusive with the two categories discussed above.

In a large-scale study using self-reports and approximate aoa s derived from a sample of the 1990 U.S. Census, Stevens found that the probability with which immigrants from various countries stated that they spoke English ‘very well’ decreased curvilinearly as a function of aoa [48] . She noted that this development is similar to the pattern found by Johnson and Newport [23] but that it contains no indication of an “abruptly defined ‘critical’ or sensitive period in L2 learning” [48, p. 569]. However, she modelled the self-ratings using an ordinal logistic regression model in which the aoa variable was logarithmically transformed. Technically, this is perfectly fine, but one should be careful not to read too much into the non-linear curves found. In logistic models, the outcome variable itself is modelled linearly as a function of the predictor variables and is expressed in log-odds. In order to compute the corresponding probabilities, these log-odds are transformed using the logistic function. Consequently, even if the model is specified linearly, the predicted probabilities will not lie on a perfectly straight line when plotted as a function of any one continuous predictor variable. Similarly, when the predictor variable is first logarithmically transformed and then used to linearly predict an outcome variable, the function linking the predicted outcome variables and the untransformed predictor variable is necessarily non-linear. Thus, non-linearities follow naturally from Stevens's model specifications. Moreover, cph -consistent discontinuities in the aoa – ua function cannot be found using her model specifications as they did not contain any parameters allowing for this.

Using data similar to Stevens's, Bialystok and Hakuta found that the link between the self-rated English competences of Chinese- and Spanish-speaking immigrants and their aoa could be described by a straight line [49] . In contrast to Stevens, Bialystok and Hakuta used a regression-based method allowing for changes in the function's slope, viz. locally weighted scatterplot smoothing ( lowess ). Informally, lowess is a non-parametrical method that relies on an algorithm that fits the dependent variable for small parts of the range of the independent variable whilst guaranteeing that the overall curve does not contain sudden jumps (for technical details, see [50] ). Hakuta et al. used an even larger sample from the same 1990 U.S. Census data on Chinese- and Spanish-speaking immigrants (2.3 million observations) [21] . Fitting lowess curves, no discontinuities in the aoa – ua slope could be detected. Moreover, the authors found that piecewise linear regression models, i.e. regression models containing a parameter that allows a sudden drop in the curve or a change of its slope, did not provide a better fit to the data than did an ordinary regression model without such a parameter.

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.e060.jpg

To sum up, I have argued at length that regression approaches are superior to group mean and correlation coefficient comparisons for the purposes of testing the ‘flattened slope’ prediction. Acknowledging the reservations vis-à-vis self-estimated ua s, we still find that while the relationship between aoa and ua is not necessarily perfectly linear in the studies discussed, the data do not lend unequivocal support to this prediction. In the following section, I will reanalyse data from a recent empirical paper on the cph by DeKeyser et al. [44] . The first goal of this reanalysis is to further illustrate some of the statistical fallacies encountered in cph studies. Second, by making the computer code available I hope to demonstrate how the relevant regression models, viz. piecewise regression models, can be fitted and how the aoa representing the optimal breakpoint can be identified. Lastly, the findings of this reanalysis will contribute to our understanding of how aoa affects ua as measured using a gjt .

Summary of DeKeyser et al. (2010)

I chose to reanalyse a recent empirical paper on the cph by DeKeyser et al. [44] (henceforth DK et al.). This paper lends itself well to a reanalysis since it exhibits two highly commendable qualities: the authors spell out their hypotheses lucidly and provide detailed numerical and graphical data descriptions. Moreover, the paper's lead author is very clear on what constitutes a necessary condition for accepting the cph : a non-linearity in the age of onset of acquisition ( aoa )–ultimate attainment ( ua ) function, with ua declining less strongly as a function of aoa in older, post- cp arrivals compared to younger arrivals [14] , [22] . Lastly, it claims to have found cross-linguistic evidence from two parallel studies backing the cph and should therefore be an unsuspected source to cph proponents.

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.e067.jpg

The authors set out to test the following hypotheses:

  • Hypothesis 1: For both the L2 English and the L2 Hebrew group, the slope of the age of arrival–ultimate attainment function will not be linear throughout the lifespan, but will instead show a marked flattening between adolescence and adulthood.
  • Hypothesis 2: The relationship between aptitude and ultimate attainment will differ markedly for the young and older arrivals, with significance only for the latter. (DK et al., p. 417)

Both hypotheses were purportedly confirmed, which in the authors' view provides evidence in favour of cph . The problem with this conclusion, however, is that it is based on a comparison of correlation coefficients. As I have argued above, correlation coefficients are not to be confused with regression coefficients and cannot be used to directly address research hypotheses concerning slopes, such as Hypothesis 1. In what follows, I will reanalyse the relationship between DK et al.'s aoa and gjt data in order to address Hypothesis 1. Additionally, I will lay bare a problem with the way in which Hypothesis 2 was addressed. The extracted data and the computer code used for the reanalysis are provided as supplementary materials, allowing anyone interested to scrutinise and easily reproduce my whole analysis and carry out their own computations (see ‘supporting information’).

Data extraction

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.e069.jpg

In order to verify whether we did in fact extract the data points to a satisfactory degree of accuracy, I computed summary statistics for the extracted aoa and gjt data and checked these against the descriptive statistics provided by DK et al. (pp. 421 and 427). These summary statistics for the extracted data are presented in Table 1 . In addition, I computed the correlation coefficients for the aoa – gjt relationship for the whole aoa range and for aoa -defined subgroups and checked these coefficients against those reported by DK et al. (pp. 423 and 428). The correlation coefficients computed using the extracted data are presented in Table 2 . Both checks strongly suggest the extracted data to be virtually identical to the original data, and Dr DeKeyser confirmed this to be the case in response to an earlier draft of the present paper (personal communication, 6 May 2013).

Results and Discussion

Modelling the link between age of onset of acquisition and ultimate attainment.

I first replotted the aoa and gjt data we extracted from DK et al.'s scatterplots and added non-parametric scatterplot smoothers in order to investigate whether any changes in slope in the aoa – gjt function could be revealed, as per Hypothesis 1. Figures 3 and ​ and4 4 show this not to be the case. Indeed, simple linear regression models that model gjt as a function of aoa provide decent fits for both the North America and the Israel data, explaining 65% and 63% of the variance in gjt scores, respectively. The parameters of these models are given in Table 3 .

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.g003.jpg

The trend line is a non-parametric scatterplot smoother. The scatterplot itself is a near-perfect replication of DK et al.'s Fig. 1.

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.g004.jpg

The trend line is a non-parametric scatterplot smoother. The scatterplot itself is a near-perfect replication of DK et al.'s Fig. 5.

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.e073.jpg

To ensure that both segments are joined at the breakpoint, the predictor variable is first centred at the breakpoint value, i.e. the breakpoint value is subtracted from the original predictor variable values. For a blow-by-blow account of how such models can be fitted in r , I refer to an example analysis by Baayen [55, pp. 214–222].

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.e081.jpg

Solid: regression with breakpoint at aoa 18 (dashed lines represent its 95% confidence interval); dot-dash: regression without breakpoint.

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.g006.jpg

Solid: regression with breakpoint at aoa 18 (dashed lines represent its 95% confidence interval); dot-dash (hardly visible due to near-complete overlap): regression without breakpoint.

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.e092.jpg

Solid: regression with breakpoint at aoa 16 (dashed lines represent its 95% confidence interval); dot-dash: regression without breakpoint.

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.g009.jpg

Solid: regression with breakpoint at aoa 6 (dashed lines represent its 95% confidence interval); dot-dash (hardly visible due to near-complete overlap): regression without breakpoint.

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.e105.jpg

In sum, a regression model that allows for changes in the slope of the the aoa – gjt function to account for putative critical period effects provides a somewhat better fit to the North American data than does an everyday simple regression model. The improvement in model fit is marginal, however, and including a breakpoint does not result in any detectable improvement of model fit to the Israel data whatsoever. Breakpoint models therefore fail to provide solid cross-linguistic support in favour of critical period effects: across both data sets, gjt can satisfactorily be modelled as a linear function of aoa .

On partialling out ‘age at testing’

As I have argued above, correlation coefficients cannot be used to test hypotheses about slopes. When the correct procedure is carried out on DK et al.'s data, no cross-linguistically robust evidence for changes in the aoa – gjt function was found. In addition to comparing the zero-order correlations between aoa and gjt , however, DK et al. computed partial correlations in which the variance in aoa associated with the participants' age at testing ( aat ; a potentially confounding variable) was filtered out. They found that these partial correlations between aoa and gjt , which are given in Table 9 , differed between age groups in that they are stronger for younger than for older participants. This, DK et al. argue, constitutes additional evidence in favour of the cph . At this point, I can no longer provide my own analysis of DK et al.'s data seeing as the pertinent data points were not plotted. Nevertheless, the detailed descriptions by DK et al. strongly suggest that the use of these partial correlations is highly problematic. Most importantly, and to reiterate, correlations (whether zero-order or partial ones) are actually of no use when testing hypotheses concerning slopes. Still, one may wonder why the partial correlations differ across age groups. My surmise is that these differences are at least partly the by-product of an imbalance in the sampling procedure.

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.e109.jpg

The upshot of this brief discussion is that the partial correlation differences reported by DK et al. are at least partly the result of an imbalance in the sampling procedure: aoa and aat were simply less intimately tied for the young arrivals in the North America study than for the older arrivals with L2 English or for all of the L2 Hebrew participants. In an ideal world, we would like to fix aat or ascertain that it at most only weakly correlates with aoa . This, however, would result in a strong correlation between aoa and another potential confound variable, length of residence in the L2 environment, bringing us back to square one. Allowing for only moderate correlations between aoa and aat might improve our predicament somewhat, but even in that case, we should tread lightly when making inferences on the basis of statistical control procedures [61] .

On estimating the role of aptitude

Having shown that Hypothesis 1 could not be confirmed, I now turn to Hypothesis 2, which predicts a differential role of aptitude for ua in sla in different aoa groups. More specifically, it states that the correlation between aptitude and gjt performance will be significant only for older arrivals. The correlation coefficients of the relationship between aptitude and gjt are presented in Table 10 .

The problem with both the wording of Hypothesis 2 and the way in which it is addressed is the following: it is assumed that a variable has a reliably different effect in different groups when the effect reaches significance in one group but not in the other. This logic is fairly widespread within several scientific disciplines (see e.g. [62] for a discussion). Nonetheless, it is demonstrably fallacious [63] . Here we will illustrate the fallacy for the specific case of comparing two correlation coefficients.

An external file that holds a picture, illustration, etc.
Object name is pone.0069172.e130.jpg

Apart from not being replicated in the North America study, does this difference actually show anything? I contend that it does not: what is of interest are not so much the correlation coefficients, but rather the interactions between aoa and aptitude in models predicting gjt . These interactions could be investigated by fitting a multiple regression model in which the postulated cp breakpoint governs the slope of both aoa and aptitude. If such a model provided a substantially better fit to the data than a model without a breakpoint for the aptitude slope and if the aptitude slope changes in the expected direction (i.e. a steeper slope for post- cp than for younger arrivals) for different L1–L2 pairings, only then would this particular prediction of the cph be borne out.

Using data extracted from a paper reporting on two recent studies that purport to provide evidence in favour of the cph and that, according to its authors, represent a major improvement over earlier studies (DK et al., p. 417), it was found that neither of its two hypotheses were actually confirmed when using the proper statistical tools. As a matter of fact, the gjt scores continue to decline at essentially the same rate even beyond the end of the putative critical period. According to the paper's lead author, such a finding represents a serious problem to his conceptualisation of the cph [14] ). Moreover, although modelling a breakpoint representing the end of a cp at aoa 16 may improve the statistical model slightly in study on learners of English in North America, the study on learners of Hebrew in Israel fails to confirm this finding. In fact, even if we were to accept the optimal breakpoint computed for the Israel study, it lies at aoa 6 and is associated with a different geometrical pattern.

Diverging age trends in parallel studies with participants with different L2s have similarly been reported by Birdsong and Molis [26] and are at odds with an L2-independent cph . One parsimonious explanation of such conflicting age trends may be that the overall, cross-linguistic age trend is in fact linear, but that fluctuations in the data (due to factors unaccounted for or randomness) may sometimes give rise to a ‘stretched L’-shaped pattern ( Figure 1, left panel ) and sometimes to a ‘stretched 7’-shaped pattern ( Figure 1 , middle panel; see also [66] for a similar comment).

Importantly, the criticism that DeKeyser and Larsson-Hall levy against two studies reporting findings similar to the present [48] , [49] , viz. that the data consisted of self-ratings of questionable validity [14] , does not apply to the present data set. In addition, DK et al. did not exclude any outliers from their analyses, so I assume that DeKeyser and Larsson-Hall's criticism [14] of Birdsong and Molis's study [26] , i.e. that the findings were due to the influence of outliers, is not applicable to the present data either. For good measure, however, I refitted the regression models with and without breakpoints after excluding one potentially problematic data point per model. The following data points had absolute standardised residuals larger than 2.5 in the original models without breakpoints as well as in those with breakpoints: the participant with aoa 17 and a gjt score of 125 in the North America study and the participant with aoa 12 and a gjt score of 117 in the Israel study. The resultant models were virtually identical to the original models (see Script S1 ). Furthermore, the aoa variable was sufficiently fine-grained and the aoa – gjt curve was not ‘presmoothed’ by the prior aggregation of gjt across parts of the aoa range (see [51] for such a criticism of another study). Lastly, seven of the nine “problems with supposed counter-evidence” to the cph discussed by Long [5] do not apply either, viz. (1) “[c]onfusion of rate and ultimate attainment”, (2) “[i]nappropriate choice of subjects”, (3) “[m]easurement of AO”, (4) “[l]eading instructions to raters”, (6) “[u]se of markedly non-native samples making near-native samples more likely to sound native to raters”, (7) “[u]nreliable or invalid measures”, and (8) “[i]nappropriate L1–L2 pairings”. Problem No. 5 (“Assessments based on limited samples and/or “language-like” behavior”) may be apropos given that only gjt data were used, leaving open the theoretical possibility that other measures might have yielded a different outcome. Finally, problem No. 9 (“Faulty interpretation of statistical patterns”) is, of course, precisely what I have turned the spotlights on.

Conclusions

The critical period hypothesis remains a hotly contested issue in the psycholinguistics of second-language acquisition. Discussions about the impact of empirical findings on the tenability of the cph generally revolve around the reliability of the data gathered (e.g. [5] , [14] , [22] , [52] , [67] , [68] ) and such methodological critiques are of course highly desirable. Furthermore, the debate often centres on the question of exactly what version of the cph is being vindicated or debunked. These versions differ mainly in terms of its scope, specifically with regard to the relevant age span, setting and language area, and the testable predictions they make. But even when the cph 's scope is clearly demarcated and its main prediction is spelt out lucidly, the issue remains to what extent the empirical findings can actually be marshalled in support of the relevant cph version. As I have shown in this paper, empirical data have often been taken to support cph versions predicting that the relationship between age of acquisition and ultimate attainment is not strictly linear, even though the statistical tools most commonly used (notably group mean and correlation coefficient comparisons) were, crudely put, irrelevant to this prediction. Methods that are arguably valid, e.g. piecewise regression and scatterplot smoothing, have been used in some studies [21] , [26] , [49] , but these studies have been criticised on other grounds. To my knowledge, such methods have never been used by scholars who explicitly subscribe to the cph .

I suspect that what may be going on is a form of ‘confirmation bias’ [69] , a cognitive bias at play in diverse branches of human knowledge seeking: Findings judged to be consistent with one's own hypothesis are hardly questioned, whereas findings inconsistent with one's own hypothesis are scrutinised much more strongly and criticised on all sorts of points [70] – [73] . My reanalysis of DK et al.'s recent paper may be a case in point. cph exponents used correlation coefficients to address their prediction about the slope of a function, as had been done in a host of earlier studies. Finding a result that squared with their expectations, they did not question the technical validity of their results, or at least they did not report this. (In fact, my reanalysis is actually a case in point in two respects: for an earlier draft of this paper, I had computed the optimal position of the breakpoints incorrectly, resulting in an insignificant improvement of model fit for the North American data rather than a borderline significant one. Finding a result that squared with my expectations, I did not question the technical validity of my results – until this error was kindly pointed out to me by Martijn Wieling (University of Tübingen).) That said, I am keen to point out that the statistical analyses in this particular paper, though suboptimal, are, as far as I could gather, reported correctly, i.e. the confirmation bias does not seem to have resulted in the blatant misreportings found elsewhere (see [74] for empirical evidence and discussion). An additional point to these authors' credit is that, apart from explicitly identifying their cph version's scope and making crystal-clear predictions, they present data descriptions that actually permit quantitative reassessments and have a history of doing so (e.g. the appendix in [8] ). This leads me to believe that they analysed their data all in good conscience and to hope that they, too, will conclude that their own data do not, in fact, support their hypothesis.

I end this paper on an upbeat note. Even though I have argued that the analytical tools employed in cph research generally leave much to be desired, the original data are, so I hope, still available. This provides researchers, cph supporters and sceptics alike, with an exciting opportunity to reanalyse their data sets using the tools outlined in the present paper and publish their findings at minimal cost of time and resources (for instance, as a comment to this paper). I would therefore encourage scholars to engage their old data sets and to communicate their analyses openly, e.g. by voluntarily publishing their data and computer code alongside their articles or comments. Ideally, cph supporters and sceptics would join forces to agree on a protocol for a high-powered study in order to provide a truly convincing answer to a core issue in sla .

Supporting Information

aoa and gjt data extracted from DeKeyser et al.'s North America study.

aoa and gjt data extracted from DeKeyser et al.'s Israel study.

Script with annotated R code used for the reanalysis. All add-on packages used can be installed from within R.

Acknowledgments

I would like to thank Irmtraud Kaiser (University of Fribourg) for helping me to get an overview of the literature on the critical period hypothesis in second language acquisition. Thanks are also due to Martijn Wieling (currently University of Tübingen) for pointing out an error in the R code accompanying an earlier draft of this paper.

Funding Statement

No current external funding sources for this study.

Critical Period

  • Living reference work entry
  • First Online: 26 January 2018
  • Cite this living reference work entry

Book cover

  • Yan Wang 3 &
  • Jing Guo 3  

780 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Belsky, J., Schlomer, G. L., & Ellis, B. J. (2012). Beyond cumulative risk: Distinguishing harshness and unpredictability as determinants of parenting and early life history strategy. Developmental Psychology, 48 , 662–673.

Article   PubMed   Google Scholar  

Bowlby, J. (1951). Maternal care and mental health . Bulletin of the World Health Organization, 3, 1–63.

Google Scholar  

Bowlby, J. (1969). Attachment and loss. Vol. 1. Attachment . New York: Basic Books.

Doom, J. R., Vanzomeren-Dohm, A. A., & Simpson, J. A. (2016). Early unpredictability predicts increased adolescent externalizing behaviors and substance use: A life history perspective. Development and Psychopathology, 28 , 1505–1516.

Ellis, B. J. (2004). Timing of pubertal maturation in girls: An integrated life history approach. Psychological Bulletin, 130 , 920–958.

Ellis, B. J., & Del Giudice, M. (2014). Beyond allostatic load: Rethinking the role of stress in regulating human development. Developmental and Psychopathology, 26 , 1–20.

Article   Google Scholar  

Friedmann, N., & Rusou, D. (2015). Critical period for first language: The crucial role of language input during the first year of life. Current Opinion in Neurobiology, 35 , 27–34.

Granena, G., & Long, M. H. (2014). Age of onset, length of residence, language aptitude and ultimate L2 attainment in three linguistic domains. Second Language Research, 29 (3), 311–343.

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160 (45), 106–154.

Article   PubMed   PubMed Central   Google Scholar  

Hurford, J. R. (1991). The evolution of the critical period for language acquisition. Cognition, 40 (3), 159–201.

James, W. (1899). Talks to teachers on psychology: And to students on some of life’s ideals . Dover Publications 2001. ISBN 0-486-41964-9.

Simpson, J. A., Griskevicius, V., Kuo, A. I.-C., Sung, S., & Collins, W. A. (2012). Evolution, stress and sensitive periods: The influence of unpredictability in early versus late childhood on sex and risky behavior. Developmental Psychology, 48 (3), 674–686.

Susman, E. J. (2006). Psychobiology of persistent antisocial behavior: Stress, early vulnerabilities and the attenuation hypothesis. Neuroscience & Biobehavioral Reviews, 30 , 376–389.

Vanhove, J. (2013). Critical evidence: A test of the critical-period hypothesis for second-language acquisition. Psychological Science, 14 (1), 31–38.

Download references

Author information

Authors and affiliations.

Department of Psychology, Fudan University, Shanghai, China

Yan Wang & Jing Guo

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Yan Wang .

Editor information

Editors and affiliations.

Department of Psychology, Oakland University, Rochester, Michigan, USA

Todd K. Shackelford

Rochester, Michigan, USA

Viviana A. Weekes-Shackelford

Section Editor information

University of Nicosia, Nicosia, Cyprus

Menelaos Apostolou

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry.

Wang, Y., Guo, J. (2018). Critical Period. In: Shackelford, T., Weekes-Shackelford, V. (eds) Encyclopedia of Evolutionary Psychological Science. Springer, Cham. https://doi.org/10.1007/978-3-319-16999-6_1060-1

Download citation

DOI : https://doi.org/10.1007/978-3-319-16999-6_1060-1

Received : 21 December 2017

Accepted : 02 January 2018

Published : 26 January 2018

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-16999-6

Online ISBN : 978-3-319-16999-6

eBook Packages : Springer Reference Behavioral Science and Psychology Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Critical Period in Brain Development: Definition, Importance

Toketemu has been multimedia storyteller for the last four years. Her expertise focuses primarily on mental wellness and women’s health topics. 

critical age hypothesis example

Catherine Falls Commercial / Getty Images

  • When Does the Critical Period Begin and End?
  • The Critical Period Hypothesis—What It States
  • What Happens to the Brain in the Critical Period?
  • What Kind of Events Impact the Brain During the Critical Period?
  • How Do Adverse Events Impact the Brain?
  • What's the Difference Between a Critical Period and a Sensitive Period?
  • What Happens to the Brain When the Critical Period Ends?

The critical period in brain development is an immensely significant and specific time frame during which the brain is especially receptive to environmental stimuli and undergoes a series of rapid changes. 

These changes have lifelong effects as essential neural connections and pathways are established, playing a vital role in cognitive, emotional, and social development. 

This article will explore the timeline, impacting events, and subsequent consequences of the critical period on brain development. It also explores the distinction between critical periods and sensitive periods and what happens to the brain once the critical period ends.

When Does the Critical Period Begin and End? 

The starting point of the critical period is at conception. The brain starts to form and develop from the moment you are conceived. During pregnancy, a baby's brain is already beginning to shape itself for the world outside. The brain is gearing up and getting ready to absorb a massive amount of information.

The Early Years of a Child's Life

Once the baby is born, the brain kicks into high gear. The early years of a child's life, from birth to around the age of five, are generally considered the core of the critical period. The brain is incredibly absorbent during these years, taking in information rapidly. Everything from language to motor skills to social cues is being learned and processed extensively.

Different aspects of learning and development have different critical periods. For instance, the critical period for language acquisition extends into early adolescence. This means that while the brain is still very good at learning languages during early childhood, it continues to be relatively efficient at it until the teenage years.

The brain is incredibly absorbent during these years, taking in information rapidly. Everything from language to motor skills to social cues is being learned and processed extensively.

Vision Develops During This Period

On the other hand, for certain sensory abilities like vision, the critical period might end much earlier. This means that the brain is most receptive to developing visual abilities in the first few years of life, and after that, it becomes significantly harder to change or improve these abilities.

The Critical Period Hypothesis—What It States 

The brain has a certain time window when it's exceptionally good at learning new things, especially languages. This window of time is what is referred to as the "critical period."

Younger People Learn Languages Faster Than Older People

Eric Lenneberg, a neuropsychologist, introduced the Critical Period Hypothesis. He was very interested in how people learn languages . Through his observations and research, Lenneberg noticed that younger people were much more adept at learning languages than older people. This observation led him to the idea that there is a specific period during which the brain is highly efficient and capable of absorbing languages.

As You Age, It Becomes More Difficult to Absorb New Information

If the critical period is a wide open window in the early years of life, allowing the brain to take in an abundance of information quickly and efficiently, as time progresses, this window begins to close gradually. As it closes, the brain becomes less capable of easily absorbing languages.

This doesn't mean that learning becomes impossible as you age; it merely indicates that the ease and efficiency with which the brain learns start to decline.

What Happens to the Brain in the Critical Period? 

During the critical period, the brain experiences explosive growth. Let's take a look at some of the changes that happen in the brain during the critical period.

Neurons Form Connections

In the early stages, neurons in the brain start to form connections. These connections are called synapses.

Synapses are bridges that help different parts of the brain communicate with each other. In the critical period, the brain is building these bridges at an incredible pace.

Neuroplasticity Strengthens Brain Connections

As a baby interacts with the world, certain connections strengthen while others weaken. For instance, if a baby hears a lot of music, the parts of the brain associated with sounds and music will become stronger. This process of strengthening certain connections is known as brain plasticity because the brain molds itself like plastic.

Attachment to Primary Caregivers

An essential aspect of the critical period is the development of attachment to caregivers. During the early months and years, babies and toddlers form strong bonds with the people caring for them .

These attachments are critical for emotional development. When a caregiver responds to a baby's needs with warmth and care, the baby learns to form secure attachments . This lays the foundation for healthy relationships later in life.

What Happens When Children Are Not Given Attention?

What if a child is not given the attention and care they need during the critical period? This is a significant concern. Without proper attention and stimulation, the brain doesn't develop as effectively. The bridges or connections that should be built might not form properly. This can lead to various issues, including difficulty forming relationships, emotional problems, and learning difficulties.

When a child is given proper attention, stimulation, and care during the critical period, their brain thrives. The connections form rapidly and robustly. This sets the stage for better learning, emotional regulation, and relationship-building throughout life.

What Kind of Events Impact the Brain During the Critical Period? 

When a child is exposed to a rich, stimulating environment where they can play, explore, and learn, it tremendously impacts the brain. Engaging in interactive learning, being read to, and having supportive relationships with caregivers can significantly contribute to a well-developed brain.

Events such as abuse, neglect, head trauma , or extreme stress—collectively known as adverse childhood experiences (ACEs)—can be detrimental to brain development. These adverse events can impede the formation of neural connections and lead to behavioral, emotional, and cognitive difficulties later in life. "Unfortunately, disruptions to normal brain development due to environmental influences such as poverty, neglect, or exposure to toxins can cause lasting damage. This is why it is so important for children to receive adequate nutrition, stimulation, and parental care during these first few years of life; without it, they may suffer developmental delays and other issues that could potentially be avoided with proper attention,"  Harold Hong, MD , a board-certified psychiatrist says.

How Do Adverse Events Impact the Brain? 

When a child is neglected or abused, stress can impact how their brain develops. The parts of the brain involved in emotions and handling stress might not develop properly. This can make it hard for the person to manage their emotions later in life.

The hippocampus, involved in learning and memory, and the amygdala, which plays a role in emotion processing, are especially vulnerable. 

Similarly, if a child does not have enough food to eat or a safe place to live, the chronic stress of these conditions can impact brain development. The brain might focus on survival instead of other important areas of development, like learning and building relationships.

Even accidents that cause head injuries can impact the brain during the critical period. If a child experiences head trauma, it can affect the brain's development depending on the injury's severity and location.

What's the Difference Between a Critical Period and a Sensitive Period?

It is imperative to distinguish between critical periods and sensitive periods.

  • Critical periods are specific windows of time during development when the brain is exceptionally receptive to certain types of learning and experiences. Once this period is over, acquiring those skills or attributes becomes significantly more challenging.
  • Sensitive periods are phases in which the brain is more responsive to certain experiences. It's easier to learn or be influenced by specific experiences during sensitive periods, but unlike critical periods, missing this timeframe doesn't make it impossible to acquire those skills or traits later.

For example, while there is a critical period for acquiring native-like pronunciation and grammar, there is also a sensitive period for language learning. Children are more adept at learning new languages when they are young, but even if someone misses this window, they can still learn languages later in life.

One way to visualize the difference is to think of critical periods as a tightly defined window of time with a clear beginning and end, during which certain development must occur. In contrast, sensitive periods are more like a gradual slope, where learning at the beginning is optimal, but the ability doesn't disappear entirely over time.

What Happens to the Brain When the Critical Period Ends? 

It's essential to recognize that the end of the critical period does not mean the end of learning or brain development. Instead, it signifies a shift in how the brain learns and adapts. 

During the critical period, the brain is highly plastic, meaning it can change and form new connections rapidly. As this period ends, the brain doesn't lose this plasticity entirely, but the rate at which it can make new connections slows down. 

According to Hong, although some of these connections can still be altered by experiences later in life, such as learning a new language or practicing a skill, it is much harder to make significant changes after the critical period has ended. This highlights just how important it is for parents to provide proper care and nurture during those first few years.

The Brain Becomes More Specialized Via Adult Plasticity

The brain also becomes more specialized in the skills and information it has acquired as this period ends. During the critical period, the brain forms numerous connections, and as it ends, it starts to use these connections more efficiently for specialized tasks.

Even though the critical period ends, the brain still possesses a degree of plasticity and continues to learn throughout life. This is called adult plasticity.

Adult plasticity is not as robust during the critical period, but it allows for the continuous adaptation and learning necessary for us to navigate the ever-changing demands of life.

The conventional view is that critical periods close relatively tightly. However, research has started to challenge this rigid view. It's more accurate to say that the doors of critical periods close but do not necessarily lock.

While the brain's plasticity decreases after these periods, learning and adaptation can still take place, albeit with more effort and over a longer time. This phenomenon of 'metaplasticity'—the brain's ability to change its plasticity levels—remains an exciting area of ongoing research,  Dr. Ryan Sultan , a neuroscientist, child psychiatrist, and professor of psychiatry at Columbia University, says. 

What This Means For You

The critical period represents an invaluable window during which the foundations for cognitive, emotional, and social abilities are established. The environment, experiences, and attachments formed during this period have far-reaching consequences on a person's life.  Understanding the nuances of the critical period is essential for educators, parents, and policymakers to create nurturing environments that support healthy brain development. Providing support and early interventions for children exposed to adverse experiences is vital for ensuring their potential is not hindered by the circumstances of their early life.

Siahaan F. The critical period hypothesis of sla eric lenneberg’s . Journal of Applied Linguistics . 2022;2(1):40-45.

Nelson CA, Gabard-Durnam LJ. Early adversity and critical periods: neurodevelopmental consequences of violating the expectable environment. Trends in Neurosciences. 2020;43(3):133-143.

Colombo J, Gustafson KM, Carlson SE. Critical and sensitive periods in development and nutrition. Ann Nutr Metab . 2019;75(Suppl. 1):34-42.

Patton MH, Blundon JA, Zakharenko SS. Rejuvenation of plasticity in the brain: opening the critical period. Current Opinion in Neurobiology . 2019;54:83-89.

By Toketemu Ohwovoriole Toketemu has been multimedia storyteller for the last four years. Her expertise focuses primarily on mental wellness and women’s health topics.

  • Architecture and Design
  • Asian and Pacific Studies
  • Business and Economics
  • Classical and Ancient Near Eastern Studies
  • Computer Sciences
  • Cultural Studies
  • Engineering
  • General Interest
  • Geosciences
  • Industrial Chemistry
  • Islamic and Middle Eastern Studies
  • Jewish Studies
  • Library and Information Science, Book Studies
  • Life Sciences
  • Linguistics and Semiotics
  • Literary Studies
  • Materials Sciences
  • Mathematics
  • Social Sciences
  • Sports and Recreation
  • Theology and Religion
  • Publish your article
  • The role of authors
  • Promoting your article
  • Abstracting & indexing
  • Publishing Ethics
  • Why publish with De Gruyter
  • How to publish with De Gruyter
  • Our book series
  • Our subject areas
  • Your digital product at De Gruyter
  • Contribute to our reference works
  • Product information
  • Tools & resources
  • Product Information
  • Promotional Materials
  • Orders and Inquiries
  • FAQ for Library Suppliers and Book Sellers
  • Repository Policy
  • Free access policy
  • Open Access agreements
  • Database portals
  • For Authors
  • Customer service
  • People + Culture
  • Journal Management
  • How to join us
  • Working at De Gruyter
  • Mission & Vision
  • De Gruyter Foundation
  • De Gruyter Ebound
  • Our Responsibility
  • Partner publishers

critical age hypothesis example

Your purchase has been completed. Your documents are now available to view.

2 The Age Factor and the Critical Period Hypothesis

From the book cognitive individual differences in second language acquisition.

  • Adriana Biedroń

Critical Period Hypothesis concerns the phase of heightened sensitivity when it is possible to gain a native-like level of proficiency in a language. Despite controversies surrounding this concept, there is ample evidence for a negative correlation between the age of onset of acquisition and ultimate attainment in a foreign language. The purpose of this chapter is to review the relevant research on the concept of critical/sensitive periods for language learning with an emphasis on the inverse correlation between the age of onset and ultimate attainment in foreign language learning of both children and adults. We will also shed light on the cases of linguistically gifted people, polyglots and savants who seem not to be subject to the universal constraints of the critical period.

  • X / Twitter

Supplementary Materials

Please login or register with De Gruyter to order this product.

Cognitive Individual Differences in Second Language Acquisition

Chapters in this book (20)

  • Professional development
  • Knowing the subject
  • Teaching Knowledge database A-C

Critical period hypothesis

The critical period hypothesis says that there is a period of growth in which full native competence is possible when acquiring a language. This period is from early childhood to adolescence.

A young learner

The critical period hypothesis has implications for teachers and learning programmes, but it is not universally accepted. Acquisition theories say that adults do not acquire languages as well as children because of external and internal factors, not because of a lack of ability.

Example Older learners rarely achieve a near-native accent. Many people suggest this is due to them being beyond the critical period.

In the classroom A problem arising from the differences between younger learners and adults is that adults believe that they cannot learn languages well. Teachers can help learners with this belief in various ways, for example, by talking about the learning process and learning styles, helping set realistic goals, choosing suitable methodologies, and addressing the emotional needs of the adult learner.

Further links:

https://www.teachingenglish.org.uk/article/how-maximise-language-learning-senior-learners

https://www.teachingenglish.org.uk/article/how-much-do-your-learners-use-english-outside-classroom

Research and insight

Browse fascinating case studies, research papers, publications and books by researchers and ELT experts from around the world.

See our publications, research and insight

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

9.6: Second Language Acquisitions Theories and Components

  • Last updated
  • Save as PDF
  • Page ID 114818

Second Language Acquisition Theories and Components, from Sarah Harmon

Video Script

Every single one of you has attempted to learn a second language; in some cases, you may have been successful, while in other cases, not so much so. As we go through these next few sections about second language acquisition, keep in mind your own experiences. I'm sure some of them, if not all of them, will be reflected in what we talk about.

To start things off, this was a hilarious meme that came through Facebook years ago.

Funny meme about learning different foreign languages

Having learned or attempted to learn a couple of these languages, I can relate. For a bit more context:

  • Latin: The fact that Latin doesn’t have specific lexicon for ‘yes’ and ‘no’, but there seems to be 3,000 different ways to talk about killing people.
  • Ancient Greek: There's so many different derivations of verbs that you never knew existed until you look at Ancient Greek.
  • Ancient Egyptian: The hieroglyphs are the connection.
  • French: Certainly, if you tried to learn or if you have learned French, it seems that half of what you see written doesn't get pronounced
  • German: If you go back to morphology, we looked at German compounding; look up the word for ‘research’ in German, and that should tell you some things.
  • Mandarin: Remember, it’s an isolating language.
  • Spanish: Remember, it’s a fusional language and a synthetic language.
  • English: Okay, maybe not maybe not hell, maybe not the easiest language to learn.

There are certain impressions about learning a different language., that some languages seem easier and others are harder. None of that's really true; they're all difficult, and don't think otherwise. Everybody has their path in learning a language.

Let's talk about some of these theories of language acquisition. With respect to adults, mind you when I say ‘adults’, I’m saying anybody who has hit puberty and beyond. That has to do with the Critical Age Hypothesis ; this is a hypothesis that is up for debate in some aspects, but not in others. It does seem to be the case that somewhere around puberty is when our brains have stopped absorbing like sponges. The elasticity and the neural plasticity are not the same when we are teenagers and adults as it is when we are children. Critical Age Hypothesis states that our brains don't seem to be able to pick up various skills as easily, including and especially language. It must be taught via logic, and if you think about a language course, that is really what you're learning: you're learning the logic of the language. Critical Age Hypothesis has its detractors; there are some that suggests that there is no such thing as waning elasticity of the neurons, that any person can learn any skill at any time, and there's no change or difference. That does not seem to be the case at least with respect to this concept of the Fundamental Difference Hypothesis , which states that learning a language as an adult is not at all like that of learning a language as a child. Regardless of the detractors, there is a large amount of data that show that with any major skill, children learn these skills as if through osmosis; they just watch, they practice, and they do, and it seems relatively effortless. The reality may not be the same, but that seems to be the case. As adults, the only time that is true is that if we can build upon a skill we already have; take language.

For example, I can learn a Romance language pretty easily, because I already have acquired and mastered two; based off of those two, I can use those skills to use to learn another Romance language. I will tell you that Germanic languages for me are very difficult; I'm terrible at learning Germanic languages. I just don't get the logic, despite the fact that I natively speak a Germanic language in English. It's because growing up, I didn't hear much in the way of Germanic languages; there was a Swedish family down the street, but they spoke English, and there was a Norwegian woman that one of my cousins married, but she spoke English, so realistically I didn't have much. I've tried to learn Japanese, and there's aspects of it that I get, but I heard Japanese as a kid by a few neighbors. Even though tonal languages seem to elude me as far as getting the tones down, I do see some of the patterns in them, but growing up, I had a number of friends who whose families were from Hong Kong, Shanghai, Beijing, or Taiwan. These are various places that speak different Sino-Tibetan languages, so for me, I start to see those patterns easier because I’ve been around them and have been exposed to them.

Fundamental Difference Hypothesis underlies mostly language learning, but, as I said, can be extended to other skill sets, especially motor skills. There's this concept with childhood development that when you expose a young child to as many inputs as possible—without overloading but certainly a number of them—and give them consistent access to those inputs, they pick up those talents and skills readily. That it sets up an affinity for those similar skills in their later lives. It's why we try to expose children to music, both listening and playing music from an early age, because if children are exposed to those skills early, they will continue to at least attempt to use them.

These two hypotheses are just that: they're hypotheses. We cannot officially make them into laws or universals, because there are exceptions always. In order to test them properly, we would need some very unethical training and activities, and we're not going to do that. We're not going to deprive a child linguistic input to see what can happen. We're not going to force them to do all sorts of activities that they may not be able to do physically. We're not going to do those things. We do have a goodly amount of evidence that shows that Critical Age Hypothesis does not say that you cannot learn a language once you hit puberty; it says that it must be taught as language acquisition based on logic. It can't be through osmosis.

There are certain common errors and processes that all adult language learners do. Whether they stay in this error-laden stage, or they get past these errors, this depends on a number of things. Fossilization is the big one; this is the situation of a language learner who keeps producing incorrect language in certain areas, but it's so ingrained in their mind that they just think it's the right way to do it. A couple of definitions: L2 and L1. ‘L’ refers to ‘language; ‘L2’ is the second language, while ‘L1’ is the first or native language. An example of a fossilization error: I teach Spanish, and one of the huge ones that I still get from intermediate students and beyond is, “Me llamo es." Spanish speakers, I apologize; I know how cringe worthy that is. "Me llamo es" is wrong in every way. "Me llamo" is 'I call myself'; it's what you say, when you say, “Oh, my name is Sarah,” you say "Me llamo Sarah;" I call myself Sarah. "Es" is a verb; it means 'is'. The problem is "llamo" is also a verb; it means 'I call', so "Me llamo es" is never going to work because you have two conjugated verbs that don't go together. It is a big error.

Interlanguage and interference are connected. Interlanguage is what we do as we're learning a language, when we combine elements to try and succeed in producing more of the target language. Think of telegraphic speech in child language acquisition, and this is kind of the adult version. Interlanguage is described as having more basic sentences that eventually lead to more complex sentences and phrases. We use interlanguage as we try to put our pieces together. Sometimes as we do that, we end up having interference or sometimes it's called transfer grammar . When your L1 interferes with your L2, for example as a native English speaker if I go to learn Russian, and I keep trying to use English phrasing, words, and pronunciation, instead of staying in Russian and learning the Russian, that's interference or transfer grammar. This is really common of all folks who learn a second language; we also see them children, but mostly we see this in adults.

Any language learner can get through all of this. In part, this is done through good instruction, which involves aspects that we're going to talk about soon: encouraging and open environments, like allowing students to feel like they can take a risk. Part of this is also internal motivation; we’ll talk about learner affect soon enough. But there are always going to be little bits that keep you from being a native speaker; we can be a near-native speaker, and I’ll explain more that in a minute, but some of those near-native elements are directly related to interference and the related to fossilization. But you can get around it.

I would be remiss to not talk about heritage learners. A heritage learner is somebody who is trying to learn the language of their heritage or ancestors; frequently it's the language of their parents or grandparents. Think of a case where you have a family that integrates to a new country, a new linguistic community. Their children and grandchildren may learn that new language very quickly, but then may drop the first language, the heritage language, along the way. Many folks, including maybe some of you, try to learn that heritage language in puberty or adulthood. This is a different process; it's not quite the same as learning from scratch. There are various levels of heritage learners. A low-level heritage learner knows the sounds and some words, but isn't really able to construct the basic sentence in that language. A mid-level or high-level heritage speaker can produce much more. There's always conflicting or competing issues going on with heritage learners, and they have to be addressed in the language and learning environment. There is frequently a desire to ‘speak properly’; I can't count the number of heritage Spanish speakers who sign up for first semester Spanish because they want to learn the language ‘properly’, thinking that what they know is not proper or accurate and somehow substandard. Frequently, that's not the case; in the vast majority of cases, that person is marginally, if not fully, fluent in that language. They just may need to boost their literacy, or learn more complex structures so that they can speak at a higher level, but they are fluent, at least at a basic level. There's also language attrition , which we talked a little bit about in child bilingualism. In many cases, once the heritage learner started their formal education in preschool or kindergarten, that is when they had to stop speaking their heritage language; they were forced into speaking the new language. As a result of societal pressures and everything else, they just ‘lose’ the first language; it's attrition. Just like a muscle that you stopped using and it atrophies, the same thing can be said for a ‘home language’ or heritage language.

Finally, there's this thing that I like to call ‘heritage speaker guilt’. As far as I know, this is a Sarah-ism; I don't know if this is an official term, but it's a specific kind of learner affect. When we are learning a new skill, including a new language, we suffer from some element of learner affect . That is the emotion that bubbles up inside of us and says that we can't do it, or we're scared to do it, or we're not confident in our abilities and we don't want to be made to feel the fool. When we're learning a language that does not have our heritage, you have learner affect in varying forms. But when it's part of your heritage, it's present at even higher levels, and it's a very specific one. There are a few flavors of it; there's the ‘why aren't I doing this correctly?’ or ‘why can't I get this right, why aren't I speaking properly?’ flavor. There's also the ‘why aren't I remembering this?’, ‘this was something I used to speak or hear when I was a child, why the heck can't I do it as an adult?’ flavor. (Frequently stronger language is used. 😉) Learner affect as a whole is an emotional block, and it takes some psychology to go past it, but it doubles down when it is your heritage language. I didn't have this problem as much when I learned Italian, because it was my great-grandparents that immigrated here and spoke it. But my mother was a different story; my mother, to this day, cannot learn Italian. It’s not to say she can't really learn it; she actually speaks Spanish, which she has not learned since high school many moons ago. If she goes to Mexico, she can give basic instructions to the taxi driver. That's Spanish, though; that's not Italian. She's got such a block on Italian. She has tried multiple times; first, she wanted me to teach her, which was a bad idea. (We have an amazing relationship, but learning from your child is a little bit different.) I suggested that she take classes at the community college or that she goes to the Italian Cultural Center in San Francisco. She tried a number of ways, and she's never been able to get over that heritage speaker guilt. In her mind, this should be instantaneous, and it's not.

How do you include heritage speakers? The answer is: whenever possible, especially the higher-level heritage speakers. We try to separate them out into their own class, and that makes sense; they're going to learn the language in a way that's different from a complete beginner. But the big one is support, even if you have a separate class, but especially if they're mixed in with the general population, as it were. You have to give them that emotional support, so they feel like they can take that risk, but also that they can feel pride in what they already know. You include their experiences, especially when discussing elements of culture. One of my favorite lessons when we do intermediate Spanish is when we talk about Spanish in the United States. I love this section, because we start picking apart this concept of what it means to be bicultural. There are so many folks in the class that are bicultural with different cultures, that it brings this really rich conversation. You start seeing the pride well up in them; that starts breaking down the learner affect, the heritage speaker guilt. Alongside that is to expand their knowledge. There are many people who say, “well, I don't need to learn the language; I’m already fluent in it, I already know everything about it.” Learning a language, especially a language that has multiple cultures and dialects—English, Spanish, and Mandarin are just three that come to mind—when you start expanding their horizons and cultural knowledge, they start feeling more of that pride. I always grew up with this pride of being an Italian-American. Even though I could count to 10 in our dialect and I knew words for certain food items, and certain not-so-nice things to say to people 😜. But when I was a senior in high school, I started taking Italian at a local community college. It expanded my horizons. Suddenly, I was learning about all sorts of things with respect to Italian culture, and not just my little neck of northwestern Italy, where my family is from. I suddenly was starting to learn about all these different concepts and different ways to phrase things. To this day, I still can't say focaccia , the bread, without visualizing the term; it still is always going to come out for me as fogassa , which is what we say in Lombardy. But I do know there's a difference, and I know that difference, and I express that difference. That all comes from learning about my heritage language and the cultures and the dialects that are associated with it.

raising language learners

Age and Language Acquisition

Navigating the impact of age on language acquisition.

Imagine a world where learning another language was as effortless as learning your native language. Now, consider that your age might be the secret code that unlocks – or limits- this linguistic superpower. In this post, you’ll learn how age shapes our ability to master a new language. 

Various factors can explain how age is an essential factor in second language learning. The critical period hypothesis, cognitive development in childhood, adolescence, and adulthood language learning challenges. 

age and language acquisition

Read More »

While there are challenges associated with learning a second language during adolescence and adulthood, there are also unique opportunities. The critical period hypothesis suggests that the effort required to attain native-like proficiency in a second language increases as individuals age. Grammar rules, phonetics, and cultural nuances may become more challenging for older learners.

Accent and Pronunciation Challenges

Older learners might face greater difficulty acquiring a native-like accent, with some arguing that the critical period impacts the ability to produce certain sounds accurately. It’s important to note that individual differences play a significant role. Some older learners may still achieve a high level of proficiency, while some younger learners may struggle. Motivation, exposure, and learning strategies also contribute to language acquisition success.  

As one factor that influences language acquisition, age is one of the most critical factors to consider. The critical age hypothesis explains how age affects a person’s critical period of language learning. Specific differences, including challenges and opportunities, exist during early childhood and at a later age.

Share in the comment area. At what age did you start learning another language?

Related posts…

  • Factors that Influence Second Language Acquisition
  • Stages of Second Language Acquisition
  • Do we all have a language accent?
  • Kid’s Books
  • Favorite Kids’ Books

Visit our LigoLearnerShop 🛒

Sharing is caring!

About The Author

' data-src=

Dr. Sugely (soo-heh-lee) Solano

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

The Critical Period Hypothesis in Second Language Acquisition: A Statistical Critique and a Reanalysis

* E-mail: [email protected]

Affiliation Department of Multilingualism, University of Fribourg, Fribourg, Switzerland

  • Jan Vanhove

PLOS

  • Published: July 25, 2013
  • https://doi.org/10.1371/journal.pone.0069172
  • Reader Comments

17 Jul 2014: The PLOS ONE Staff (2014) Correction: The Critical Period Hypothesis in Second Language Acquisition: A Statistical Critique and a Reanalysis. PLOS ONE 9(7): e102922. https://doi.org/10.1371/journal.pone.0102922 View correction

Figure 1

In second language acquisition research, the critical period hypothesis ( cph ) holds that the function between learners' age and their susceptibility to second language input is non-linear. This paper revisits the indistinctness found in the literature with regard to this hypothesis's scope and predictions. Even when its scope is clearly delineated and its predictions are spelt out, however, empirical studies–with few exceptions–use analytical (statistical) tools that are irrelevant with respect to the predictions made. This paper discusses statistical fallacies common in cph research and illustrates an alternative analytical method (piecewise regression) by means of a reanalysis of two datasets from a 2010 paper purporting to have found cross-linguistic evidence in favour of the cph . This reanalysis reveals that the specific age patterns predicted by the cph are not cross-linguistically robust. Applying the principle of parsimony, it is concluded that age patterns in second language acquisition are not governed by a critical period. To conclude, this paper highlights the role of confirmation bias in the scientific enterprise and appeals to second language acquisition researchers to reanalyse their old datasets using the methods discussed in this paper. The data and R commands that were used for the reanalysis are provided as supplementary materials.

Citation: Vanhove J (2013) The Critical Period Hypothesis in Second Language Acquisition: A Statistical Critique and a Reanalysis. PLoS ONE 8(7): e69172. https://doi.org/10.1371/journal.pone.0069172

Editor: Stephanie Ann White, UCLA, United States of America

Received: May 7, 2013; Accepted: June 7, 2013; Published: July 25, 2013

Copyright: © 2013 Jan Vanhove. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: No current external funding sources for this study.

Competing interests: The author has declared that no competing interests exist.

Introduction

In the long term and in immersion contexts, second-language (L2) learners starting acquisition early in life – and staying exposed to input and thus learning over several years or decades – undisputedly tend to outperform later learners. Apart from being misinterpreted as an argument in favour of early foreign language instruction, which takes place in wholly different circumstances, this general age effect is also sometimes taken as evidence for a so-called ‘critical period’ ( cp ) for second-language acquisition ( sla ). Derived from biology, the cp concept was famously introduced into the field of language acquisition by Penfield and Roberts in 1959 [1] and was refined by Lenneberg eight years later [2] . Lenneberg argued that language acquisition needed to take place between age two and puberty – a period which he believed to coincide with the lateralisation process of the brain. (More recent neurological research suggests that different time frames exist for the lateralisation process of different language functions. Most, however, close before puberty [3] .) However, Lenneberg mostly drew on findings pertaining to first language development in deaf children, feral children or children with serious cognitive impairments in order to back up his claims. For him, the critical period concept was concerned with the implicit “automatic acquisition” [2, p. 176] in immersion contexts and does not preclude the possibility of learning a foreign language after puberty, albeit with much conscious effort and typically less success.

sla research adopted the critical period hypothesis ( cph ) and applied it to second and foreign language learning, resulting in a host of studies. In its most general version, the cph for sla states that the ‘susceptibility’ or ‘sensitivity’ to language input varies as a function of age, with adult L2 learners being less susceptible to input than child L2 learners. Importantly, the age–susceptibility function is hypothesised to be non-linear. Moving beyond this general version, we find that the cph is conceptualised in a multitude of ways [4] . This state of affairs requires scholars to make explicit their theoretical stance and assumptions [5] , but has the obvious downside that critical findings risk being mitigated as posing a problem to only one aspect of one particular conceptualisation of the cph , whereas other conceptualisations remain unscathed. This overall vagueness concerns two areas in particular, viz. the delineation of the cph 's scope and the formulation of testable predictions. Delineating the scope and formulating falsifiable predictions are, needless to say, fundamental stages in the scientific evaluation of any hypothesis or theory, but the lack of scholarly consensus on these points seems to be particularly pronounced in the case of the cph . This article therefore first presents a brief overview of differing views on these two stages. Then, once the scope of their cph version has been duly identified and empirical data have been collected using solid methods, it is essential that researchers analyse the data patterns soundly in order to assess the predictions made and that they draw justifiable conclusions from the results. As I will argue in great detail, however, the statistical analysis of data patterns as well as their interpretation in cph research – and this includes both critical and supportive studies and overviews – leaves a great deal to be desired. Reanalysing data from a recent cph -supportive study, I illustrate some common statistical fallacies in cph research and demonstrate how one particular cph prediction can be evaluated.

Delineating the scope of the critical period hypothesis

First, the age span for a putative critical period for language acquisition has been delimited in different ways in the literature [4] . Lenneberg's critical period stretched from two years of age to puberty (which he posits at about 14 years of age) [2] , whereas other scholars have drawn the cutoff point at 12, 15, 16 or 18 years of age [6] . Unlike Lenneberg, most researchers today do not define a starting age for the critical period for language learning. Some, however, consider the possibility of the critical period (or a critical period for a specific language area, e.g. phonology) ending much earlier than puberty (e.g. age 9 years [1] , or as early as 12 months in the case of phonology [7] ).

Second, some vagueness remains as to the setting that is relevant to the cph . Does the critical period constrain implicit learning processes only, i.e. only the untutored language acquisition in immersion contexts or does it also apply to (at least partly) instructed learning? Most researchers agree on the former [8] , but much research has included subjects who have had at least some instruction in the L2.

Third, there is no consensus on what the scope of the cp is as far as the areas of language that are concerned. Most researchers agree that a cp is most likely to constrain the acquisition of pronunciation and grammar and, consequently, these are the areas primarily looked into in studies on the cph [9] . Some researchers have also tried to define distinguishable cp s for the different language areas of phonetics, morphology and syntax and even for lexis (see [10] for an overview).

Fourth and last, research into the cph has focused on ‘ultimate attainment’ ( ua ) or the ‘final’ state of L2 proficiency rather than on the rate of learning. From research into the rate of acquisition (e.g. [11] – [13] ), it has become clear that the cph cannot hold for the rate variable. In fact, it has been observed that adult learners proceed faster than child learners at the beginning stages of L2 acquisition. Though theoretical reasons for excluding the rate can be posited (the initial faster rate of learning in adults may be the result of more conscious cognitive strategies rather than to less conscious implicit learning, for instance), rate of learning might from a different perspective also be considered an indicator of ‘susceptibility’ or ‘sensitivity’ to language input. Nevertheless, contemporary sla scholars generally seem to concur that ua and not rate of learning is the dependent variable of primary interest in cph research. These and further scope delineation problems relevant to cph research are discussed in more detail by, among others, Birdsong [9] , DeKeyser and Larson-Hall [14] , Long [10] and Muñoz and Singleton [6] .

Formulating testable hypotheses

Once the relevant cph 's scope has satisfactorily been identified, clear and testable predictions need to be drawn from it. At this stage, the lack of consensus on what the consequences or the actual observable outcome of a cp would have to look like becomes evident. As touched upon earlier, cph research is interested in the end state or ‘ultimate attainment’ ( ua ) in L2 acquisition because this “determines the upper limits of L2 attainment” [9, p. 10]. The range of possible ultimate attainment states thus helps researchers to explore the potential maximum outcome of L2 proficiency before and after the putative critical period.

One strong prediction made by some cph exponents holds that post- cp learners cannot reach native-like L2 competences. Identifying a single native-like post- cp L2 learner would then suffice to falsify all cph s making this prediction. Assessing this prediction is difficult, however, since it is not clear what exactly constitutes sufficient nativelikeness, as illustrated by the discussion on the actual nativelikeness of highly accomplished L2 speakers [15] , [16] . Indeed, there exists a real danger that, in a quest to vindicate the cph , scholars set the bar for L2 learners to match monolinguals increasingly higher – up to Swiftian extremes. Furthermore, the usefulness of comparing the linguistic performance in mono- and bilinguals has been called into question [6] , [17] , [18] . Put simply, the linguistic repertoires of mono- and bilinguals differ by definition and differences in the behavioural outcome will necessarily be found, if only one digs deep enough.

A second strong prediction made by cph proponents is that the function linking age of acquisition and ultimate attainment will not be linear throughout the whole lifespan. Before discussing how this function would have to look like in order for it to constitute cph -consistent evidence, I point out that the ultimate attainment variable can essentially be considered a cumulative measure dependent on the actual variable of interest in cph research, i.e. susceptibility to language input, as well as on such other factors like duration and intensity of learning (within and outside a putative cp ) and possibly a number of other influencing factors. To elaborate, the behavioural outcome, i.e. ultimate attainment, can be assumed to be integrative to the susceptibility function, as Newport [19] correctly points out. Other things being equal, ultimate attainment will therefore decrease as susceptibility decreases. However, decreasing ultimate attainment levels in and by themselves represent no compelling evidence in favour of a cph . The form of the integrative curve must therefore be predicted clearly from the susceptibility function. Additionally, the age of acquisition–ultimate attainment function can take just about any form when other things are not equal, e.g. duration of learning (Does learning last up until time of testing or only for a more or less constant number of years or is it dependent on age itself?) or intensity of learning (Do learners always learn at their maximum susceptibility level or does this intensity vary as a function of age, duration, present attainment and motivation?). The integral of the susceptibility function could therefore be of virtually unlimited complexity and its parameters could be adjusted to fit any age of acquisition–ultimate attainment pattern. It seems therefore astonishing that the distinction between level of sensitivity to language input and level of ultimate attainment is rarely made in the literature. Implicitly or explicitly [20] , the two are more or less equated and the same mathematical functions are expected to describe the two variables if observed across a range of starting ages of acquisition.

But even when the susceptibility and ultimate attainment variables are equated, there remains controversy as to what function linking age of onset of acquisition and ultimate attainment would actually constitute evidence for a critical period. Most scholars agree that not any kind of age effect constitutes such evidence. More specifically, the age of acquisition–ultimate attainment function would need to be different before and after the end of the cp [9] . According to Birdsong [9] , three basic possible patterns proposed in the literature meet this condition. These patterns are presented in Figure 1 . The first pattern describes a steep decline of the age of onset of acquisition ( aoa )–ultimate attainment ( ua ) function up to the end of the cp and a practically non-existent age effect thereafter. Pattern 2 is an “unconventional, although often implicitly invoked” [9, p. 17] notion of the cp function which contains a period of peak attainment (or performance at ceiling), i.e. performance does not vary as a function of age, which is often referred to as a ‘window of opportunity’. This time span is followed by an unbounded decline in ua depending on aoa . Pattern 3 includes characteristics of patterns 1 and 2. At the beginning of the aoa range, performance is at ceiling. The next segment is a downward slope in the age function which ends when performance reaches its floor. Birdsong points out that all of these patterns have been reported in the literature. On closer inspection, however, he concludes that the most convincing function describing these age effects is a simple linear one. Hakuta et al. [21] sketch further theoretically possible predictions of the cph in which the mean performance drops drastically and/or the slope of the aoa – ua proficiency function changes at a certain point.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

The graphs are based on based on Figure 2 in [9] .

https://doi.org/10.1371/journal.pone.0069172.g001

Although several patterns have been proposed in the literature, it bears pointing out that the most common explicit prediction corresponds to Birdsong's first pattern, as exemplified by the following crystal-clear statement by DeKeyser, one of the foremost cph proponents:

[A] strong negative correlation between age of acquisition and ultimate attainment throughout the lifespan (or even from birth through middle age), the only age effect documented in many earlier studies, is not evidence for a critical period…[T]he critical period concept implies a break in the AoA–proficiency function, i.e., an age (somewhat variable from individual to individual, of course, and therefore an age range in the aggregate) after which the decline of success rate in one or more areas of language is much less pronounced and/or clearly due to different reasons. [22, p. 445].

DeKeyser and before him among others Johnson and Newport [23] thus conceptualise only one possible pattern which would speak in favour of a critical period: a clear negative age effect before the end of the critical period and a much weaker (if any) negative correlation between age and ultimate attainment after it. This ‘flattened slope’ prediction has the virtue of being much more tangible than the ‘potential nativelikeness’ prediction: Testing it does not necessarily require comparing the L2-learners to a native control group and thus effectively comparing apples and oranges. Rather, L2-learners with different aoa s can be compared amongst themselves without the need to categorise them by means of a native-speaker yardstick, the validity of which is inevitably going to be controversial [15] . In what follows, I will concern myself solely with the ‘flattened slope’ prediction, arguing that, despite its clarity of formulation, cph research has generally used analytical methods that are irrelevant for the purposes of actually testing it.

Inferring non-linearities in critical period research: An overview

critical age hypothesis example

Group mean or proportion comparisons.

critical age hypothesis example

[T]he main differences can be found between the native group and all other groups – including the earliest learner group – and between the adolescence group and all other groups. However, neither the difference between the two childhood groups nor the one between the two adulthood groups reached significance, which indicates that the major changes in eventual perceived nativelikeness of L2 learners can be associated with adolescence. [15, p. 270].

Similar group comparisons aimed at investigating the effect of aoa on ua have been carried out by both cph advocates and sceptics (among whom Bialystok and Miller [25, pp. 136–139], Birdsong and Molis [26, p. 240], Flege [27, pp. 120–121], Flege et al. [28, pp. 85–86], Johnson [29, p. 229], Johnson and Newport [23, p. 78], McDonald [30, pp. 408–410] and Patowski [31, pp. 456–458]). To be clear, not all of these authors drew direct conclusions about the aoa – ua function on the basis of these groups comparisons, but their group comparisons have been cited as indicative of a cph -consistent non-continuous age effect, as exemplified by the following quote by DeKeyser [22] :

Where group comparisons are made, younger learners always do significantly better than the older learners. The behavioral evidence, then, suggests a non-continuous age effect with a “bend” in the AoA–proficiency function somewhere between ages 12 and 16. [22, p. 448].

The first problem with group comparisons like these and drawing inferences on the basis thereof is that they require that a continuous variable, aoa , be split up into discrete bins. More often than not, the boundaries between these bins are drawn in an arbitrary fashion, but what is more troublesome is the loss of information and statistical power that such discretisation entails (see [32] for the extreme case of dichotomisation). If we want to find out more about the relationship between aoa and ua , why throw away most of the aoa information and effectively reduce the ua data to group means and the variance in those groups?

critical age hypothesis example

Comparison of correlation coefficients.

critical age hypothesis example

Correlation-based inferences about slope discontinuities have similarly explicitly been made by cph advocates and skeptics alike, e.g. Bialystok and Miller [25, pp. 136 and 140], DeKeyser and colleagues [22] , [44] and Flege et al. [45, pp. 166 and 169]. Others did not explicitly infer the presence or absence of slope differences from the subset correlations they computed (among others Birdsong and Molis [26] , DeKeyser [8] , Flege et al. [28] and Johnson [29] ), but their studies nevertheless featured in overviews discussing discontinuities [14] , [22] . Indeed, the most recent overview draws a strong conclusion about the validity of the cph 's ‘flattened slope’ prediction on the basis of these subset correlations:

In those studies where the two groups are described separately, the correlation is much higher for the younger than for the older group, except in Birdsong and Molis (2001) [ =  [26] , JV], where there was a ceiling effect for the younger group. This global picture from more than a dozen studies provides support for the non-continuity of the decline in the AoA–proficiency function, which all researchers agree is a hallmark of a critical period phenomenon. [22, p. 448].

In Johnson and Newport's specific case [23] , their correlation-based inference that ua levels off after puberty happened to be largely correct: the gjt scores are more or less randomly distributed around a near-horizontal trend line [26] . Ultimately, however, it rests on the fallacy of confusing correlation coefficients with slopes, which seriously calls into question conclusions such as DeKeyser's (cf. the quote above).

critical age hypothesis example

https://doi.org/10.1371/journal.pone.0069172.g002

critical age hypothesis example

Lower correlation coefficients in older aoa groups may therefore be largely due to differences in ua variance, which have been reported in several studies [23] , [26] , [28] , [29] (see [46] for additional references). Greater variability in ua with increasing age is likely due to factors other than age proper [47] , such as the concomitant greater variability in exposure to literacy, degree of education, motivation and opportunity for language use, and by itself represents evidence neither in favour of nor against the cph .

Regression approaches.

Having demonstrated that neither group mean or proportion comparisons nor correlation coefficient comparisons can directly address the ‘flattened slope’ prediction, I now turn to the studies in which regression models were computed with aoa as a predictor variable and ua as the outcome variable. Once again, this category of studies is not mutually exclusive with the two categories discussed above.

In a large-scale study using self-reports and approximate aoa s derived from a sample of the 1990 U.S. Census, Stevens found that the probability with which immigrants from various countries stated that they spoke English ‘very well’ decreased curvilinearly as a function of aoa [48] . She noted that this development is similar to the pattern found by Johnson and Newport [23] but that it contains no indication of an “abruptly defined ‘critical’ or sensitive period in L2 learning” [48, p. 569]. However, she modelled the self-ratings using an ordinal logistic regression model in which the aoa variable was logarithmically transformed. Technically, this is perfectly fine, but one should be careful not to read too much into the non-linear curves found. In logistic models, the outcome variable itself is modelled linearly as a function of the predictor variables and is expressed in log-odds. In order to compute the corresponding probabilities, these log-odds are transformed using the logistic function. Consequently, even if the model is specified linearly, the predicted probabilities will not lie on a perfectly straight line when plotted as a function of any one continuous predictor variable. Similarly, when the predictor variable is first logarithmically transformed and then used to linearly predict an outcome variable, the function linking the predicted outcome variables and the untransformed predictor variable is necessarily non-linear. Thus, non-linearities follow naturally from Stevens's model specifications. Moreover, cph -consistent discontinuities in the aoa – ua function cannot be found using her model specifications as they did not contain any parameters allowing for this.

Using data similar to Stevens's, Bialystok and Hakuta found that the link between the self-rated English competences of Chinese- and Spanish-speaking immigrants and their aoa could be described by a straight line [49] . In contrast to Stevens, Bialystok and Hakuta used a regression-based method allowing for changes in the function's slope, viz. locally weighted scatterplot smoothing ( lowess ). Informally, lowess is a non-parametrical method that relies on an algorithm that fits the dependent variable for small parts of the range of the independent variable whilst guaranteeing that the overall curve does not contain sudden jumps (for technical details, see [50] ). Hakuta et al. used an even larger sample from the same 1990 U.S. Census data on Chinese- and Spanish-speaking immigrants (2.3 million observations) [21] . Fitting lowess curves, no discontinuities in the aoa – ua slope could be detected. Moreover, the authors found that piecewise linear regression models, i.e. regression models containing a parameter that allows a sudden drop in the curve or a change of its slope, did not provide a better fit to the data than did an ordinary regression model without such a parameter.

critical age hypothesis example

To sum up, I have argued at length that regression approaches are superior to group mean and correlation coefficient comparisons for the purposes of testing the ‘flattened slope’ prediction. Acknowledging the reservations vis-à-vis self-estimated ua s, we still find that while the relationship between aoa and ua is not necessarily perfectly linear in the studies discussed, the data do not lend unequivocal support to this prediction. In the following section, I will reanalyse data from a recent empirical paper on the cph by DeKeyser et al. [44] . The first goal of this reanalysis is to further illustrate some of the statistical fallacies encountered in cph studies. Second, by making the computer code available I hope to demonstrate how the relevant regression models, viz. piecewise regression models, can be fitted and how the aoa representing the optimal breakpoint can be identified. Lastly, the findings of this reanalysis will contribute to our understanding of how aoa affects ua as measured using a gjt .

Summary of DeKeyser et al. (2010)

I chose to reanalyse a recent empirical paper on the cph by DeKeyser et al. [44] (henceforth DK et al.). This paper lends itself well to a reanalysis since it exhibits two highly commendable qualities: the authors spell out their hypotheses lucidly and provide detailed numerical and graphical data descriptions. Moreover, the paper's lead author is very clear on what constitutes a necessary condition for accepting the cph : a non-linearity in the age of onset of acquisition ( aoa )–ultimate attainment ( ua ) function, with ua declining less strongly as a function of aoa in older, post- cp arrivals compared to younger arrivals [14] , [22] . Lastly, it claims to have found cross-linguistic evidence from two parallel studies backing the cph and should therefore be an unsuspected source to cph proponents.

critical age hypothesis example

The authors set out to test the following hypotheses:

  • Hypothesis 1: For both the L2 English and the L2 Hebrew group, the slope of the age of arrival–ultimate attainment function will not be linear throughout the lifespan, but will instead show a marked flattening between adolescence and adulthood.
  • Hypothesis 2: The relationship between aptitude and ultimate attainment will differ markedly for the young and older arrivals, with significance only for the latter. (DK et al., p. 417)

Both hypotheses were purportedly confirmed, which in the authors' view provides evidence in favour of cph . The problem with this conclusion, however, is that it is based on a comparison of correlation coefficients. As I have argued above, correlation coefficients are not to be confused with regression coefficients and cannot be used to directly address research hypotheses concerning slopes, such as Hypothesis 1. In what follows, I will reanalyse the relationship between DK et al.'s aoa and gjt data in order to address Hypothesis 1. Additionally, I will lay bare a problem with the way in which Hypothesis 2 was addressed. The extracted data and the computer code used for the reanalysis are provided as supplementary materials, allowing anyone interested to scrutinise and easily reproduce my whole analysis and carry out their own computations (see ‘supporting information’).

Data extraction

critical age hypothesis example

In order to verify whether we did in fact extract the data points to a satisfactory degree of accuracy, I computed summary statistics for the extracted aoa and gjt data and checked these against the descriptive statistics provided by DK et al. (pp. 421 and 427). These summary statistics for the extracted data are presented in Table 1 . In addition, I computed the correlation coefficients for the aoa – gjt relationship for the whole aoa range and for aoa -defined subgroups and checked these coefficients against those reported by DK et al. (pp. 423 and 428). The correlation coefficients computed using the extracted data are presented in Table 2 . Both checks strongly suggest the extracted data to be virtually identical to the original data, and Dr DeKeyser confirmed this to be the case in response to an earlier draft of the present paper (personal communication, 6 May 2013).

thumbnail

https://doi.org/10.1371/journal.pone.0069172.t001

thumbnail

https://doi.org/10.1371/journal.pone.0069172.t002

Results and Discussion

Modelling the link between age of onset of acquisition and ultimate attainment.

I first replotted the aoa and gjt data we extracted from DK et al.'s scatterplots and added non-parametric scatterplot smoothers in order to investigate whether any changes in slope in the aoa – gjt function could be revealed, as per Hypothesis 1. Figures 3 and 4 show this not to be the case. Indeed, simple linear regression models that model gjt as a function of aoa provide decent fits for both the North America and the Israel data, explaining 65% and 63% of the variance in gjt scores, respectively. The parameters of these models are given in Table 3 .

thumbnail

The trend line is a non-parametric scatterplot smoother. The scatterplot itself is a near-perfect replication of DK et al.'s Fig. 1.

https://doi.org/10.1371/journal.pone.0069172.g003

thumbnail

The trend line is a non-parametric scatterplot smoother. The scatterplot itself is a near-perfect replication of DK et al.'s Fig. 5.

https://doi.org/10.1371/journal.pone.0069172.g004

thumbnail

https://doi.org/10.1371/journal.pone.0069172.t003

critical age hypothesis example

To ensure that both segments are joined at the breakpoint, the predictor variable is first centred at the breakpoint value, i.e. the breakpoint value is subtracted from the original predictor variable values. For a blow-by-blow account of how such models can be fitted in r , I refer to an example analysis by Baayen [55, pp. 214–222].

critical age hypothesis example

Solid: regression with breakpoint at aoa 18 (dashed lines represent its 95% confidence interval); dot-dash: regression without breakpoint.

https://doi.org/10.1371/journal.pone.0069172.g005

thumbnail

Solid: regression with breakpoint at aoa 18 (dashed lines represent its 95% confidence interval); dot-dash (hardly visible due to near-complete overlap): regression without breakpoint.

https://doi.org/10.1371/journal.pone.0069172.g006

thumbnail

https://doi.org/10.1371/journal.pone.0069172.t004

critical age hypothesis example

https://doi.org/10.1371/journal.pone.0069172.g007

thumbnail

Solid: regression with breakpoint at aoa 16 (dashed lines represent its 95% confidence interval); dot-dash: regression without breakpoint.

https://doi.org/10.1371/journal.pone.0069172.g008

thumbnail

Solid: regression with breakpoint at aoa 6 (dashed lines represent its 95% confidence interval); dot-dash (hardly visible due to near-complete overlap): regression without breakpoint.

https://doi.org/10.1371/journal.pone.0069172.g009

thumbnail

https://doi.org/10.1371/journal.pone.0069172.t005

thumbnail

https://doi.org/10.1371/journal.pone.0069172.t006

thumbnail

https://doi.org/10.1371/journal.pone.0069172.t007

thumbnail

https://doi.org/10.1371/journal.pone.0069172.t008

critical age hypothesis example

In sum, a regression model that allows for changes in the slope of the the aoa – gjt function to account for putative critical period effects provides a somewhat better fit to the North American data than does an everyday simple regression model. The improvement in model fit is marginal, however, and including a breakpoint does not result in any detectable improvement of model fit to the Israel data whatsoever. Breakpoint models therefore fail to provide solid cross-linguistic support in favour of critical period effects: across both data sets, gjt can satisfactorily be modelled as a linear function of aoa .

On partialling out ‘age at testing’

As I have argued above, correlation coefficients cannot be used to test hypotheses about slopes. When the correct procedure is carried out on DK et al.'s data, no cross-linguistically robust evidence for changes in the aoa – gjt function was found. In addition to comparing the zero-order correlations between aoa and gjt , however, DK et al. computed partial correlations in which the variance in aoa associated with the participants' age at testing ( aat ; a potentially confounding variable) was filtered out. They found that these partial correlations between aoa and gjt , which are given in Table 9 , differed between age groups in that they are stronger for younger than for older participants. This, DK et al. argue, constitutes additional evidence in favour of the cph . At this point, I can no longer provide my own analysis of DK et al.'s data seeing as the pertinent data points were not plotted. Nevertheless, the detailed descriptions by DK et al. strongly suggest that the use of these partial correlations is highly problematic. Most importantly, and to reiterate, correlations (whether zero-order or partial ones) are actually of no use when testing hypotheses concerning slopes. Still, one may wonder why the partial correlations differ across age groups. My surmise is that these differences are at least partly the by-product of an imbalance in the sampling procedure.

thumbnail

https://doi.org/10.1371/journal.pone.0069172.t009

critical age hypothesis example

The upshot of this brief discussion is that the partial correlation differences reported by DK et al. are at least partly the result of an imbalance in the sampling procedure: aoa and aat were simply less intimately tied for the young arrivals in the North America study than for the older arrivals with L2 English or for all of the L2 Hebrew participants. In an ideal world, we would like to fix aat or ascertain that it at most only weakly correlates with aoa . This, however, would result in a strong correlation between aoa and another potential confound variable, length of residence in the L2 environment, bringing us back to square one. Allowing for only moderate correlations between aoa and aat might improve our predicament somewhat, but even in that case, we should tread lightly when making inferences on the basis of statistical control procedures [61] .

On estimating the role of aptitude

Having shown that Hypothesis 1 could not be confirmed, I now turn to Hypothesis 2, which predicts a differential role of aptitude for ua in sla in different aoa groups. More specifically, it states that the correlation between aptitude and gjt performance will be significant only for older arrivals. The correlation coefficients of the relationship between aptitude and gjt are presented in Table 10 .

thumbnail

https://doi.org/10.1371/journal.pone.0069172.t010

The problem with both the wording of Hypothesis 2 and the way in which it is addressed is the following: it is assumed that a variable has a reliably different effect in different groups when the effect reaches significance in one group but not in the other. This logic is fairly widespread within several scientific disciplines (see e.g. [62] for a discussion). Nonetheless, it is demonstrably fallacious [63] . Here we will illustrate the fallacy for the specific case of comparing two correlation coefficients.

critical age hypothesis example

Apart from not being replicated in the North America study, does this difference actually show anything? I contend that it does not: what is of interest are not so much the correlation coefficients, but rather the interactions between aoa and aptitude in models predicting gjt . These interactions could be investigated by fitting a multiple regression model in which the postulated cp breakpoint governs the slope of both aoa and aptitude. If such a model provided a substantially better fit to the data than a model without a breakpoint for the aptitude slope and if the aptitude slope changes in the expected direction (i.e. a steeper slope for post- cp than for younger arrivals) for different L1–L2 pairings, only then would this particular prediction of the cph be borne out.

Using data extracted from a paper reporting on two recent studies that purport to provide evidence in favour of the cph and that, according to its authors, represent a major improvement over earlier studies (DK et al., p. 417), it was found that neither of its two hypotheses were actually confirmed when using the proper statistical tools. As a matter of fact, the gjt scores continue to decline at essentially the same rate even beyond the end of the putative critical period. According to the paper's lead author, such a finding represents a serious problem to his conceptualisation of the cph [14] ). Moreover, although modelling a breakpoint representing the end of a cp at aoa 16 may improve the statistical model slightly in study on learners of English in North America, the study on learners of Hebrew in Israel fails to confirm this finding. In fact, even if we were to accept the optimal breakpoint computed for the Israel study, it lies at aoa 6 and is associated with a different geometrical pattern.

Diverging age trends in parallel studies with participants with different L2s have similarly been reported by Birdsong and Molis [26] and are at odds with an L2-independent cph . One parsimonious explanation of such conflicting age trends may be that the overall, cross-linguistic age trend is in fact linear, but that fluctuations in the data (due to factors unaccounted for or randomness) may sometimes give rise to a ‘stretched L’-shaped pattern ( Figure 1, left panel ) and sometimes to a ‘stretched 7’-shaped pattern ( Figure 1 , middle panel; see also [66] for a similar comment).

Importantly, the criticism that DeKeyser and Larsson-Hall levy against two studies reporting findings similar to the present [48] , [49] , viz. that the data consisted of self-ratings of questionable validity [14] , does not apply to the present data set. In addition, DK et al. did not exclude any outliers from their analyses, so I assume that DeKeyser and Larsson-Hall's criticism [14] of Birdsong and Molis's study [26] , i.e. that the findings were due to the influence of outliers, is not applicable to the present data either. For good measure, however, I refitted the regression models with and without breakpoints after excluding one potentially problematic data point per model. The following data points had absolute standardised residuals larger than 2.5 in the original models without breakpoints as well as in those with breakpoints: the participant with aoa 17 and a gjt score of 125 in the North America study and the participant with aoa 12 and a gjt score of 117 in the Israel study. The resultant models were virtually identical to the original models (see Script S1 ). Furthermore, the aoa variable was sufficiently fine-grained and the aoa – gjt curve was not ‘presmoothed’ by the prior aggregation of gjt across parts of the aoa range (see [51] for such a criticism of another study). Lastly, seven of the nine “problems with supposed counter-evidence” to the cph discussed by Long [5] do not apply either, viz. (1) “[c]onfusion of rate and ultimate attainment”, (2) “[i]nappropriate choice of subjects”, (3) “[m]easurement of AO”, (4) “[l]eading instructions to raters”, (6) “[u]se of markedly non-native samples making near-native samples more likely to sound native to raters”, (7) “[u]nreliable or invalid measures”, and (8) “[i]nappropriate L1–L2 pairings”. Problem No. 5 (“Assessments based on limited samples and/or “language-like” behavior”) may be apropos given that only gjt data were used, leaving open the theoretical possibility that other measures might have yielded a different outcome. Finally, problem No. 9 (“Faulty interpretation of statistical patterns”) is, of course, precisely what I have turned the spotlights on.

Conclusions

The critical period hypothesis remains a hotly contested issue in the psycholinguistics of second-language acquisition. Discussions about the impact of empirical findings on the tenability of the cph generally revolve around the reliability of the data gathered (e.g. [5] , [14] , [22] , [52] , [67] , [68] ) and such methodological critiques are of course highly desirable. Furthermore, the debate often centres on the question of exactly what version of the cph is being vindicated or debunked. These versions differ mainly in terms of its scope, specifically with regard to the relevant age span, setting and language area, and the testable predictions they make. But even when the cph 's scope is clearly demarcated and its main prediction is spelt out lucidly, the issue remains to what extent the empirical findings can actually be marshalled in support of the relevant cph version. As I have shown in this paper, empirical data have often been taken to support cph versions predicting that the relationship between age of acquisition and ultimate attainment is not strictly linear, even though the statistical tools most commonly used (notably group mean and correlation coefficient comparisons) were, crudely put, irrelevant to this prediction. Methods that are arguably valid, e.g. piecewise regression and scatterplot smoothing, have been used in some studies [21] , [26] , [49] , but these studies have been criticised on other grounds. To my knowledge, such methods have never been used by scholars who explicitly subscribe to the cph .

I suspect that what may be going on is a form of ‘confirmation bias’ [69] , a cognitive bias at play in diverse branches of human knowledge seeking: Findings judged to be consistent with one's own hypothesis are hardly questioned, whereas findings inconsistent with one's own hypothesis are scrutinised much more strongly and criticised on all sorts of points [70] – [73] . My reanalysis of DK et al.'s recent paper may be a case in point. cph exponents used correlation coefficients to address their prediction about the slope of a function, as had been done in a host of earlier studies. Finding a result that squared with their expectations, they did not question the technical validity of their results, or at least they did not report this. (In fact, my reanalysis is actually a case in point in two respects: for an earlier draft of this paper, I had computed the optimal position of the breakpoints incorrectly, resulting in an insignificant improvement of model fit for the North American data rather than a borderline significant one. Finding a result that squared with my expectations, I did not question the technical validity of my results – until this error was kindly pointed out to me by Martijn Wieling (University of Tübingen).) That said, I am keen to point out that the statistical analyses in this particular paper, though suboptimal, are, as far as I could gather, reported correctly, i.e. the confirmation bias does not seem to have resulted in the blatant misreportings found elsewhere (see [74] for empirical evidence and discussion). An additional point to these authors' credit is that, apart from explicitly identifying their cph version's scope and making crystal-clear predictions, they present data descriptions that actually permit quantitative reassessments and have a history of doing so (e.g. the appendix in [8] ). This leads me to believe that they analysed their data all in good conscience and to hope that they, too, will conclude that their own data do not, in fact, support their hypothesis.

I end this paper on an upbeat note. Even though I have argued that the analytical tools employed in cph research generally leave much to be desired, the original data are, so I hope, still available. This provides researchers, cph supporters and sceptics alike, with an exciting opportunity to reanalyse their data sets using the tools outlined in the present paper and publish their findings at minimal cost of time and resources (for instance, as a comment to this paper). I would therefore encourage scholars to engage their old data sets and to communicate their analyses openly, e.g. by voluntarily publishing their data and computer code alongside their articles or comments. Ideally, cph supporters and sceptics would join forces to agree on a protocol for a high-powered study in order to provide a truly convincing answer to a core issue in sla .

Supporting Information

Dataset s1..

aoa and gjt data extracted from DeKeyser et al.'s North America study.

https://doi.org/10.1371/journal.pone.0069172.s001

Dataset S2.

aoa and gjt data extracted from DeKeyser et al.'s Israel study.

https://doi.org/10.1371/journal.pone.0069172.s002

Script with annotated R code used for the reanalysis. All add-on packages used can be installed from within R.

https://doi.org/10.1371/journal.pone.0069172.s003

Acknowledgments

I would like to thank Irmtraud Kaiser (University of Fribourg) for helping me to get an overview of the literature on the critical period hypothesis in second language acquisition. Thanks are also due to Martijn Wieling (currently University of Tübingen) for pointing out an error in the R code accompanying an earlier draft of this paper.

Author Contributions

Analyzed the data: JV. Wrote the paper: JV.

  • 1. Penfield W, Roberts L (1959) Speech and brain mechanisms. Princeton: Princeton University Press.
  • 2. Lenneberg EH (1967) Biological foundations of language. New York: Wiley.
  • View Article
  • Google Scholar
  • 10. Long MH (2007) Problems in SLA. Mahwah, NJ: Lawrence Erlbaum.
  • 14. DeKeyser R, Larson-Hall J (2005) What does the critical period really mean? In: Kroll and De Groot [75], 88–108.
  • 19. Newport EL (1991) Contrasting conceptions of the critical period for language. In: Carey S, Gelman R, editors, The epigenesis of mind: Essays on biology and cognition, Hillsdale, NJ: Lawrence Erlbaum. 111–130.
  • 20. Birdsong D (2005) Interpreting age effects in second language acquisition. In: Kroll and De Groot [75], 109–127.
  • 22. DeKeyser R (2012) Age effects in second language learning. In: Gass SM, Mackey A, editors, The Routledge handbook of second language acquisition, London: Routledge. 442–460.
  • 24. Weisstein EW. Discontinuity. From MathWorld –A Wolfram Web Resource. Available: http://mathworld.wolfram.com/Discontinuity.html . Accessed 2012 March 2.
  • 27. Flege JE (1999) Age of learning and second language speech. In: Birdsong [76], 101–132.
  • 36. Champely S (2009) pwr: Basic functions for power analysis. Available: http://cran.r-project.org/package=pwr . R package, version 1.1.1.
  • 37. R Core Team (2013) R: A language and environment for statistical computing. Available: http://www.r-project.org/ . Software, version 2.15.3.
  • 47. Hyltenstam K, Abrahamsson N (2003) Maturational constraints in sla . In: Doughty CJ, Long MH, editors, The handbook of second language acquisition, Malden, MA: Blackwell. 539–588.
  • 49. Bialystok E, Hakuta K (1999) Confounded age: Linguistic and cognitive factors in age differences for second language acquisition. In: Birdsong [76], 161–181.
  • 52. DeKeyser R (2006) A critique of recent arguments against the critical period hypothesis. In: Abello-Contesse C, Chacón-Beltrán R, López-Jiménez MD, Torreblanca-López MM, editors, Age in L2 acquisition and teaching, Bern: Peter Lang. 49–58.
  • 55. Baayen RH (2008) Analyzing linguistic data: A practical introduction to statistics using R. Cambridge: Cambridge University Press.
  • 56. Fox J (2002) Robust regression. Appendix to An R and S-Plus Companion to Applied Regression. Available: http://cran.r-project.org/doc/contrib/Fox-Companion/appendix.html .
  • 57. Ripley B, Hornik K, Gebhardt A, Firth D (2012) MASS: Support functions and datasets for Venables and Ripley's MASS. Available: http://cran.r-project.org/package=MASS . R package, version 7.3–17.
  • 58. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. New York: Springer.
  • 59. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2013) nlme: Linear and nonlinear mixed effects models. Available: http://cran.r-project.org/package=nlme . R package, version 3.1–108.
  • 65. Field A (2009) Discovering statistics using SPSS. London: SAGE 3rd edition.
  • 66. Birdsong D (2009) Age and the end state of second language acquisition. In: Ritchie WC, Bhatia TK, editors, The new handbook of second language acquisition, Bingley: Emerlad. 401–424.
  • 75. Kroll JF, De Groot AMB, editors (2005) Handbook of bilingualism: Psycholinguistic approaches. New York: Oxford University Press.
  • 76. Birdsong D, editor (1999) Second language acquisition and the critical period hypothesis. Mahwah, NJ: Lawrence Erlbaum.

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

6 Common Leadership Styles — and How to Decide Which to Use When

  • Rebecca Knight

critical age hypothesis example

Being a great leader means recognizing that different circumstances call for different approaches.

Research suggests that the most effective leaders adapt their style to different circumstances — be it a change in setting, a shift in organizational dynamics, or a turn in the business cycle. But what if you feel like you’re not equipped to take on a new and different leadership style — let alone more than one? In this article, the author outlines the six leadership styles Daniel Goleman first introduced in his 2000 HBR article, “Leadership That Gets Results,” and explains when to use each one. The good news is that personality is not destiny. Even if you’re naturally introverted or you tend to be driven by data and analysis rather than emotion, you can still learn how to adapt different leadership styles to organize, motivate, and direct your team.

Much has been written about common leadership styles and how to identify the right style for you, whether it’s transactional or transformational, bureaucratic or laissez-faire. But according to Daniel Goleman, a psychologist best known for his work on emotional intelligence, “Being a great leader means recognizing that different circumstances may call for different approaches.”

critical age hypothesis example

  • RK Rebecca Knight is a journalist who writes about all things related to the changing nature of careers and the workplace. Her essays and reported stories have been featured in The Boston Globe, Business Insider, The New York Times, BBC, and The Christian Science Monitor. She was shortlisted as a Reuters Institute Fellow at Oxford University in 2023. Earlier in her career, she spent a decade as an editor and reporter at the Financial Times in New York, London, and Boston.

Partner Center

IMAGES

  1. Age and the critical period hypothesis

    critical age hypothesis example

  2. SOLUTION: Critical age hypothesis

    critical age hypothesis example

  3. PPT

    critical age hypothesis example

  4. PPT

    critical age hypothesis example

  5. How to Write a Hypothesis: The Ultimate Guide with Examples

    critical age hypothesis example

  6. PPT

    critical age hypothesis example

VIDEO

  1. Critical Period Hypothesis @quicknote

  2. What is Hypothesis? Example of Hypothesis [#shorts] [#statistics

  3. Tutorial for Finding the Critical Value(s) in a Z Test

  4. FA II Statistics/ Chapter no 7/ Testing of hypothesis/ Example no 7.1

  5. Colin Clark’s Critical Limit Hypothesis./ugc net /upsc/public finance./ignou /mec 006

  6. Steps to Write a Directional Hypothesis #mimtechnovate #hypothesis #researchmethodology

COMMENTS

  1. Critical period hypothesis

    The critical period hypothesis or sensitive period hypothesis claims that there is an ideal time window of brain development to acquire language in a linguistically rich environment, after which further language acquisition becomes much more difficult and effortful. It is the subject of a long-standing debate in linguistics and language acquisition over the extent to which the ability to ...

  2. Critical Period Hypothesis & Development

    The critical period hypothesis for language development suggests that in order to learn a language fluently, people must start learning it before the age of nine. This theory is still being ...

  3. Age and the critical period hypothesis

    Age and the critical period hypothesis. In the field of second language acquisition (SLA), how specific aspects of learning a non-native language (L2) may be affected by when the process begins is referred to as the 'age factor'. Because of the way age intersects with a range of social, affective, educational, and experiential variables ...

  4. Critical periods for language acquisition: New insights with particular

    Evidence for the critical period hypothesis (CPH) comes from a number of sources demonstrating that age is a crucial predictor for language attainment and that the capacity to learn language diminishes with age. To take just one example, a recent study by Hartshorne, Tenenbaum and Pinker (Reference Hartshorne, Tenenbaum and Pinker 2018 ...

  5. Critical Period In Brain Development and Childhood Learning

    Vocabulary learning experiences rapid growth at about 18 months of age (Kuhl, 2010). Critical Evaluation. More than any other area of applied linguistics, the critical period hypothesis has impacted how teachers teach languages. Consequently, researchers have critiqued how important the critical period is to language learning.

  6. Critical Period Hypothesis

    For example, Birdsong (2007) ... In addition to age, duration of hormone deprivation prior to E 2 treatment is also relevant to consideration of the critical period hypothesis. In women, age and duration of hormone deprivation are typically linked (except in the case of surgical menopause for younger women), so differentiating between effects ...

  7. The Critical Period Hypothesis in Second Language Acquisition: A

    Delineating the scope of the critical period hypothesis. First, the age span for a putative critical period for language acquisition has been delimited in different ways in the literature .Lenneberg's critical period stretched from two years of age to puberty (which he posits at about 14 years of age) , whereas other scholars have drawn the cutoff point at 12, 15, 16 or 18 years of age .

  8. Critical period

    For example, the critical period for the development of a human child's binocular vision is thought to be between three and eight months, with sensitivity to damage extending up to at least three years of age. Further critical periods have been identified for ... The critical period hypothesis holds that first language acquisition must occur ...

  9. Critical Period

    The critical period hypothesis, as a long-standing debate in linguistics and language acquisition, briefly states that the ability to acquire language is biologically linked to chronological age. ... For example, one study (Simpson et al. 2012) proved exposure to environmental unpredictability during the first 5 years of life, but not a later ...

  10. The Critical Period Hypothesis: Support, Challenge, and Reconc

    The Critical Period Hypothesis: Support, Challenge, and Reconceptualization Considering the realm of first language acquisition only, Lenneberg (1967) sought to determine the age at which it becomes too late for an individual to acquire language. Using different types of evidence including data from recovered aphasics, the development of language

  11. Critical Period in Brain Development: Definition, Importance

    The Critical Period Hypothesis—What It States ... This doesn't mean that learning becomes impossible as you age; it merely indicates that the ease and efficiency with which the brain learns start to decline. ... For example, while there is a critical period for acquiring native-like pronunciation and grammar, there is also a sensitive period ...

  12. PDF Second Language Acquisition and the Critical Period Hypothesis

    attributed to age differences, then the role of age in explaining these effects would need to be reconsidered. Our approach, however, is to offer data that challenge the interpretation that the effects are caused by age by identifying areas in which empirical results contradict predictions from the critical period hypothesis.

  13. (PDF) Critical Period Revisited: A Neurocognitive Approach

    There has been a long-standing debate in linguistics over the extent to which language acquisition is biologically linked to age. In this debate, the Critical Period Hypothesis was first proposed ...

  14. 2 The Age Factor and the Critical Period Hypothesis

    Abstract. Critical Period Hypothesis concerns the phase of heightened sensitivity when it is possible to gain a native-like level of proficiency in a language. Despite controversies surrounding this concept, there is ample evidence for a negative correlation between the age of onset of acquisition and ultimate attainment in a foreign language.

  15. Critical period hypothesis

    The critical period hypothesis has implications for teachers and learning programmes, but it is not universally accepted. Acquisition theories say that adults do not acquire languages as well as children because of external and internal factors, not because of a lack of ability. Example Older learners rarely achieve a near-native accent. Many people suggest this is due to them being beyond the ...

  16. What are the main arguments for and against the critical period

    Definitions of the critical period used by supporters of CPH. The researchers who support some form of the Critical Period Hypothesis (Johnson and Newport 1989, DeKeyser and Larson-Hall 2005), formulate it in a form that is much weaker than Bialystok's (1997) formulation. What they postulate often resembles what Bialystok calls the optimal age.

  17. PDF 1 Running Head: CRITICAL PERIOD IN SECOND LANGUAGE ACQUISITION

    Kenji Hakuta CERAS Bldg. Stanford University Stanford, CA. 94305. (650) 725-7454 e-mail: [email protected] Abstract. The critical period hypothesis for second language acquisition was tested on data from the 1990. U. S. Census using responses from 2.3 million immigrants with Spanish or Chinese language. backgrounds.

  18. 9.6: Second Language Acquisitions Theories and Components

    Critical Age Hypothesis has its detractors; there are some that suggests that there is no such thing as waning elasticity of the neurons, that any person can learn any skill at any time, and there's no change or difference. ... L1. 'L' refers to 'language; 'L2' is the second language, while 'L1' is the first or native language. An ...

  19. Age and Language Acquisition

    Critical Period Hypothesis. The age a person has when they begin to acquire or learn a language is one of the most important factors influencing language acquisition. The critical period hypothesis is one well-known hypothesis that helps explain the effects of age and second language acquisition. Hartshorne and colleagues (2018) refer to the ...

  20. The Critical Period Hypothesis in Second Language Acquisition: A ...

    Delineating the scope of the critical period hypothesis. First, the age span for a putative critical period for language acquisition has been delimited in different ways in the literature .Lenneberg's critical period stretched from two years of age to puberty (which he posits at about 14 years of age) , whereas other scholars have drawn the cutoff point at 12, 15, 16 or 18 years of age .

  21. [PDF] Age and the critical period hypothesis

    Age and the critical period hypothesis. There is a popular belief that children as L2 learners are 'superior' to adults (Scovel 2000), that is, the younger the learner, the quicker the learning process and the better the outcomes. Nevertheless, a closer examination of theways inwhich age combineswith other variables reveals amore complex ...

  22. The Critical Age Hypothesis and Literacy Skills

    The Critical Age Hypothesis states that children need to be intelligible or possess clear, understandable speech by 5½ years of age, or they are likely to have difficulty with decoding and spelling (Bishop and Adams, 1990). ... For example, the 4-year-old who is 50% intelligible is considered to be "delayed" by two years. Intelligibility ...

  23. PDF The Critical Period Hypothesis for L2 Acquisition: An Unfalsifiable

    Singleton (2005) also critiques the "multiple critical periods" idea—revived by, for example, Granena and Long (2013), who posit three sensitive periods, closing, according to their analysis, first, for phonology, then for lexis, and finally, for syntax. Supporters of this idea might have been pleased with the results of the two recent ...

  24. 6 Common Leadership Styles

    Much has been written about common leadership styles and how to identify the right style for you, whether it's transactional or transformational, bureaucratic or laissez-faire. But according to ...