• Daily Crossword
  • Word Puzzle
  • Word Finder
  • Word of the Day
  • Synonym of the Day
  • Word of the Year
  • Language stories
  • All featured
  • Gender and sexuality
  • All pop culture
  • Grammar Coach ™
  • Writing hub
  • Grammar essentials
  • Commonly confused
  • All writing tips
  • Pop culture
  • Writing tips

Advertisement

[ hahy- poth - uh -sis , hi- ]

  • a proposition, or set of propositions, set forth as an explanation for the occurrence of some specified group of phenomena, either asserted merely as a provisional conjecture to guide investigation working hypothesis or accepted as highly probable in the light of established facts.
  • a proposition assumed as a premise in an argument.
  • the antecedent of a conditional proposition.
  • a mere assumption or guess.

/ haɪˈpɒθɪsɪs /

  • a suggested explanation for a group of facts or phenomena, either accepted as a basis for further verification ( working hypothesis ) or accepted as likely to be true Compare theory
  • an assumption used in an argument without its being endorsed; a supposition
  • an unproved theory; a conjecture

/ hī-pŏth ′ ĭ-sĭs /

, Plural hypotheses hī-pŏth ′ ĭ-sēz′

  • A statement that explains or makes generalizations about a set of facts or principles, usually forming a basis for possible experiments to confirm its viability.
  • plur. hypotheses (heye- poth -uh-seez) In science, a statement of a possible explanation for some natural phenomenon. A hypothesis is tested by drawing conclusions from it; if observation and experimentation show a conclusion to be false, the hypothesis must be false. ( See scientific method and theory .)

Discover More

Derived forms.

  • hyˈpothesist , noun

Other Words From

  • hy·pothe·sist noun
  • counter·hy·pothe·sis noun plural counterhypotheses
  • subhy·pothe·sis noun plural subhypotheses

Word History and Origins

Origin of hypothesis 1

Synonym Study

Example sentences.

Each one is a set of questions we’re fascinated by and hypotheses we’re testing.

Mousa’s research hinges on the “contact hypothesis,” the idea that positive interactions among rival group members can reduce prejudices.

Do more research on it, come up with a hypothesis as to why it underperforms, and try to improve it.

Now is the time to test your hypotheses to figure out what’s changing in your customers’ worlds, and address these topics directly.

Whether computing power alone is enough to fuel continued machine learning breakthroughs is a source of debate, but it seems clear we’ll be able to test the hypothesis.

Though researchers have struggled to understand exactly what contributes to this gender difference, Dr. Rohan has one hypothesis.

The leading hypothesis for the ultimate source of the Ebola virus, and where it retreats in between outbreaks, lies in bats.

In 1996, John Paul II called the Big Bang theory “more than a hypothesis.”

To be clear: There have been no double-blind or controlled studies that conclusively confirm this hair-loss hypothesis.

The bacteria-driven-ritual hypothesis ignores the huge diversity of reasons that could push someone to perform a religious ritual.

And remember it is by our hypothesis the best possible form and arrangement of that lesson.

Taken in connection with what we know of the nebulæ, the proof of Laplace's nebular hypothesis may fairly be regarded as complete.

What has become of the letter from M. de St. Mars, said to have been discovered some years ago, confirming this last hypothesis?

To admit that there had really been any communication between the dead man and the living one is also an hypothesis.

"I consider it highly probable," asserted Aunt Maria, forgetting her Scandinavian hypothesis.

Related Words

  • explanation
  • interpretation
  • proposition
  • supposition

More About Hypothesis

What is a hypothesis .

In science, a hypothesis is a statement or proposition that attempts to explain phenomena or facts. Hypotheses are often tested to see if they are accurate.

Crafting a useful hypothesis is one of the early steps in the scientific method , which is central to every field of scientific experimentation. A useful scientific hypothesis is based on current, accepted scientific knowledge and is testable.

Outside of science, the word hypothesis is often used more loosely to mean a guess or prediction.

Why is hypothesis important?

The first records of the term hypothesis come from around 1590. It comes from the Greek term hypóthesis , meaning “basis, supposition.”

Trustworthy science involves experiments and tests. In order to have an experiment, you need to test something. In science, that something is called a hypothesis . It is important to remember that, in science, a verified hypothesis is not actually confirmed to be an absolute truth. Instead, it is accepted to be accurate according to modern knowledge. Science always allows for the possibility that new information could disprove a widely accepted hypothesis .

Related to this, scientists will usually only propose a new hypothesis when new information is discovered because there is no reason to test something that is already accepted as scientifically accurate.

Did you know … ?

It can take a long time and even the discovery of new technology to confirm that a hypothesis is accurate. Physicist Albert Einstein ’s 1916 theory of relativity contained hypotheses about space and time that have only been confirmed recently, thanks to modern technology!

What are real-life examples of hypothesis ?

While in science, hypothesis has a narrow meaning, in general use its meaning is broader.

"This study confirms the hypothesis that individuals who have been infected with COVID-19 have persistent objectively measurable cognitive deficits." (N=81,337) Ventilation subgroup show 7-point reduction in IQ https://t.co/50xrNNHC5E — Claire Lehmann (@clairlemon) July 23, 2021
Not everyone drives. They can walk, cycle, catch a train, tram etc. That’s alternatives. What’s your alternative in your hypothesis? — Barry (@Bazzaboy1982) July 27, 2021

What other words are related to hypothesis ?

  • scientific method
  • scientific theory

Quiz yourself!

True or False?

In science, a hypothesis must be based on current scientific information and be testable.

Cambridge Dictionary

  • Cambridge Dictionary +Plus

Meaning of hypothesis – Learner’s Dictionary

Your browser doesn't support HTML5 audio

(Definition of hypothesis from the Cambridge Learner's Dictionary © Cambridge University Press)

Translations of hypothesis

Get a quick, free translation!

{{randomImageQuizHook.quizId}}

Word of the Day

relating to the scientific study of animals, especially their structure

Dead ringers and peas in pods (Talking about similarities, Part 2)

Dead ringers and peas in pods (Talking about similarities, Part 2)

define hypothesis

Learn more with +Plus

  • Recent and Recommended {{#preferredDictionaries}} {{name}} {{/preferredDictionaries}}
  • Definitions Clear explanations of natural written and spoken English English Learner’s Dictionary Essential British English Essential American English
  • Grammar and thesaurus Usage explanations of natural written and spoken English Grammar Thesaurus
  • Pronunciation British and American pronunciations with audio English Pronunciation
  • English–Chinese (Simplified) Chinese (Simplified)–English
  • English–Chinese (Traditional) Chinese (Traditional)–English
  • English–Dutch Dutch–English
  • English–French French–English
  • English–German German–English
  • English–Indonesian Indonesian–English
  • English–Italian Italian–English
  • English–Japanese Japanese–English
  • English–Norwegian Norwegian–English
  • English–Polish Polish–English
  • English–Portuguese Portuguese–English
  • English–Spanish Spanish–English
  • English–Swedish Swedish–English
  • Dictionary +Plus Word Lists
  • Learner’s Dictionary    Noun
  • Translations
  • All translations

Add hypothesis to one of your lists below, or create a new one.

{{message}}

Something went wrong.

There was a problem sending your report.

  • Dictionaries home
  • American English
  • Collocations
  • German-English
  • Grammar home
  • Practical English Usage
  • Learn & Practise Grammar (Beta)
  • Word Lists home
  • My Word Lists
  • Recent additions
  • Resources home
  • Text Checker

Definition of hypothesis noun from the Oxford Advanced American Dictionary

  • formulate/advance a theory/hypothesis
  • build/construct/create/develop a simple/theoretical/mathematical model
  • develop/establish/provide/use a theoretical/conceptual framework/an algorithm
  • advance/argue/develop the thesis that…
  • explore an idea/a concept/a hypothesis
  • make a prediction/an inference
  • base a prediction/your calculations on something
  • investigate/evaluate/accept/challenge/reject a theory/hypothesis/model
  • design an experiment/a questionnaire/a study/a test
  • do research/an experiment/an analysis
  • make observations/calculations
  • take/record measurements
  • carry out/conduct/perform an experiment/a test/a longitudinal study/observations/clinical trials
  • run an experiment/a simulation/clinical trials
  • repeat an experiment/a test/an analysis
  • replicate a study/the results/the findings
  • observe/study/examine/investigate/assess a pattern/a process/a behavior
  • fund/support the research/project/study
  • seek/provide/get/secure funding for research
  • collect/gather/extract data/information
  • yield data/evidence/similar findings/the same results
  • analyze/examine the data/soil samples/a specimen
  • consider/compare/interpret the results/findings
  • fit the data/model
  • confirm/support/verify a prediction/a hypothesis/the results/the findings
  • prove a conjecture/hypothesis/theorem
  • draw/make/reach the same conclusions
  • read/review the records/literature
  • describe/report an experiment/a study
  • present/publish/summarize the results/findings
  • present/publish/read/review/cite a paper in a scientific journal

Questions about grammar and vocabulary?

Find the answers with Practical English Usage online, your indispensable guide to problems in English.

  • 2 [ uncountable ] guesses and ideas that are not based on certain knowledge synonym speculation It would be pointless to engage in hypothesis before we have the facts.

Other results

Nearby words.

Go to the homepage

Definition of 'hypothesis'

IPA Pronunciation Guide

Video: pronunciation of hypothesis

Youtube video

hypothesis in British English

Hypothesis in american english, examples of 'hypothesis' in a sentence hypothesis, cobuild collocations hypothesis, trends of hypothesis.

View usage for: All Years Last 10 years Last 50 years Last 100 years Last 300 years

In other languages hypothesis

  • American English : hypothesis / haɪˈpɒθɪsɪs /
  • Brazilian Portuguese : hipótese
  • Chinese : 假设
  • European Spanish : hipótesis
  • French : hypothèse
  • German : Hypothese
  • Italian : ipotesi
  • Japanese : 仮説
  • Korean : 가설
  • European Portuguese : hipótese
  • Latin American Spanish : hipótesis
  • Thai : สมมุติฐาน

Browse alphabetically hypothesis

  • hypothermia
  • hypothermic
  • hypothesis states
  • hypothesis suggests
  • hypothesis testing
  • All ENGLISH words that begin with 'H'

Related terms of hypothesis

  • Gaia hypothesis
  • null hypothesis
  • initial hypothesis
  • View more related words

Quick word challenge

Quiz Review

Score: 0 / 5

Image

Wordle Helper

Tile

Scrabble Tools

Image

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

define hypothesis

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

define hypothesis

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

What Is a Hypothesis? (Science)

If...,Then...

Angela Lumsden/Getty Images

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject.

In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

In the study of logic, a hypothesis is an if-then proposition, typically written in the form, "If X , then Y ."

In common usage, a hypothesis is simply a proposed explanation or prediction, which may or may not be tested.

Writing a Hypothesis

Most scientific hypotheses are proposed in the if-then format because it's easy to design an experiment to see whether or not a cause and effect relationship exists between the independent variable and the dependent variable . The hypothesis is written as a prediction of the outcome of the experiment.

  • Null Hypothesis and Alternative Hypothesis

Statistically, it's easier to show there is no relationship between two variables than to support their connection. So, scientists often propose the null hypothesis . The null hypothesis assumes changing the independent variable will have no effect on the dependent variable.

In contrast, the alternative hypothesis suggests changing the independent variable will have an effect on the dependent variable. Designing an experiment to test this hypothesis can be trickier because there are many ways to state an alternative hypothesis.

For example, consider a possible relationship between getting a good night's sleep and getting good grades. The null hypothesis might be stated: "The number of hours of sleep students get is unrelated to their grades" or "There is no correlation between hours of sleep and grades."

An experiment to test this hypothesis might involve collecting data, recording average hours of sleep for each student and grades. If a student who gets eight hours of sleep generally does better than students who get four hours of sleep or 10 hours of sleep, the hypothesis might be rejected.

But the alternative hypothesis is harder to propose and test. The most general statement would be: "The amount of sleep students get affects their grades." The hypothesis might also be stated as "If you get more sleep, your grades will improve" or "Students who get nine hours of sleep have better grades than those who get more or less sleep."

In an experiment, you can collect the same data, but the statistical analysis is less likely to give you a high confidence limit.

Usually, a scientist starts out with the null hypothesis. From there, it may be possible to propose and test an alternative hypothesis, to narrow down the relationship between the variables.

Example of a Hypothesis

Examples of a hypothesis include:

  • If you drop a rock and a feather, (then) they will fall at the same rate.
  • Plants need sunlight in order to live. (if sunlight, then life)
  • Eating sugar gives you energy. (if sugar, then energy)
  • White, Jay D.  Research in Public Administration . Conn., 1998.
  • Schick, Theodore, and Lewis Vaughn.  How to Think about Weird Things: Critical Thinking for a New Age . McGraw-Hill Higher Education, 2002.
  • Null Hypothesis Definition and Examples
  • Definition of a Hypothesis
  • What Are the Elements of a Good Hypothesis?
  • Six Steps of the Scientific Method
  • Independent Variable Definition and Examples
  • What Are Examples of a Hypothesis?
  • Understanding Simple vs Controlled Experiments
  • Scientific Method Flow Chart
  • Scientific Method Vocabulary Terms
  • What Is a Testable Hypothesis?
  • Null Hypothesis Examples
  • What 'Fail to Reject' Means in a Hypothesis Test
  • How To Design a Science Fair Experiment
  • What Is an Experiment? Definition and Design
  • Hypothesis Test for the Difference of Two Population Proportions

What is a scientific hypothesis?

It's the initial building block in the scientific method.

A girl looks at plants in a test tube for a science experiment. What's her scientific hypothesis?

Hypothesis basics

What makes a hypothesis testable.

  • Types of hypotheses
  • Hypothesis versus theory

Additional resources

Bibliography.

A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method . Many describe it as an "educated guess" based on prior knowledge and observation. While this is true, a hypothesis is more informed than a guess. While an "educated guess" suggests a random prediction based on a person's expertise, developing a hypothesis requires active observation and background research. 

The basic idea of a hypothesis is that there is no predetermined outcome. For a solution to be termed a scientific hypothesis, it has to be an idea that can be supported or refuted through carefully crafted experimentation or observation. This concept, called falsifiability and testability, was advanced in the mid-20th century by Austrian-British philosopher Karl Popper in his famous book "The Logic of Scientific Discovery" (Routledge, 1959).

A key function of a hypothesis is to derive predictions about the results of future experiments and then perform those experiments to see whether they support the predictions.

A hypothesis is usually written in the form of an if-then statement, which gives a possibility (if) and explains what may happen because of the possibility (then). The statement could also include "may," according to California State University, Bakersfield .

Here are some examples of hypothesis statements:

  • If garlic repels fleas, then a dog that is given garlic every day will not get fleas.
  • If sugar causes cavities, then people who eat a lot of candy may be more prone to cavities.
  • If ultraviolet light can damage the eyes, then maybe this light can cause blindness.

A useful hypothesis should be testable and falsifiable. That means that it should be possible to prove it wrong. A theory that can't be proved wrong is nonscientific, according to Karl Popper's 1963 book " Conjectures and Refutations ."

An example of an untestable statement is, "Dogs are better than cats." That's because the definition of "better" is vague and subjective. However, an untestable statement can be reworded to make it testable. For example, the previous statement could be changed to this: "Owning a dog is associated with higher levels of physical fitness than owning a cat." With this statement, the researcher can take measures of physical fitness from dog and cat owners and compare the two.

Types of scientific hypotheses

Elementary-age students study alternative energy using homemade windmills during public school science class.

In an experiment, researchers generally state their hypotheses in two ways. The null hypothesis predicts that there will be no relationship between the variables tested, or no difference between the experimental groups. The alternative hypothesis predicts the opposite: that there will be a difference between the experimental groups. This is usually the hypothesis scientists are most interested in, according to the University of Miami .

For example, a null hypothesis might state, "There will be no difference in the rate of muscle growth between people who take a protein supplement and people who don't." The alternative hypothesis would state, "There will be a difference in the rate of muscle growth between people who take a protein supplement and people who don't."

If the results of the experiment show a relationship between the variables, then the null hypothesis has been rejected in favor of the alternative hypothesis, according to the book " Research Methods in Psychology " (​​BCcampus, 2015). 

There are other ways to describe an alternative hypothesis. The alternative hypothesis above does not specify a direction of the effect, only that there will be a difference between the two groups. That type of prediction is called a two-tailed hypothesis. If a hypothesis specifies a certain direction — for example, that people who take a protein supplement will gain more muscle than people who don't — it is called a one-tailed hypothesis, according to William M. K. Trochim , a professor of Policy Analysis and Management at Cornell University.

Sometimes, errors take place during an experiment. These errors can happen in one of two ways. A type I error is when the null hypothesis is rejected when it is true. This is also known as a false positive. A type II error occurs when the null hypothesis is not rejected when it is false. This is also known as a false negative, according to the University of California, Berkeley . 

A hypothesis can be rejected or modified, but it can never be proved correct 100% of the time. For example, a scientist can form a hypothesis stating that if a certain type of tomato has a gene for red pigment, that type of tomato will be red. During research, the scientist then finds that each tomato of this type is red. Though the findings confirm the hypothesis, there may be a tomato of that type somewhere in the world that isn't red. Thus, the hypothesis is true, but it may not be true 100% of the time.

Scientific theory vs. scientific hypothesis

The best hypotheses are simple. They deal with a relatively narrow set of phenomena. But theories are broader; they generally combine multiple hypotheses into a general explanation for a wide range of phenomena, according to the University of California, Berkeley . For example, a hypothesis might state, "If animals adapt to suit their environments, then birds that live on islands with lots of seeds to eat will have differently shaped beaks than birds that live on islands with lots of insects to eat." After testing many hypotheses like these, Charles Darwin formulated an overarching theory: the theory of evolution by natural selection.

"Theories are the ways that we make sense of what we observe in the natural world," Tanner said. "Theories are structures of ideas that explain and interpret facts." 

  • Read more about writing a hypothesis, from the American Medical Writers Association.
  • Find out why a hypothesis isn't always necessary in science, from The American Biology Teacher.
  • Learn about null and alternative hypotheses, from Prof. Essa on YouTube .

Encyclopedia Britannica. Scientific Hypothesis. Jan. 13, 2022. https://www.britannica.com/science/scientific-hypothesis

Karl Popper, "The Logic of Scientific Discovery," Routledge, 1959.

California State University, Bakersfield, "Formatting a testable hypothesis." https://www.csub.edu/~ddodenhoff/Bio100/Bio100sp04/formattingahypothesis.htm  

Karl Popper, "Conjectures and Refutations," Routledge, 1963.

Price, P., Jhangiani, R., & Chiang, I., "Research Methods of Psychology — 2nd Canadian Edition," BCcampus, 2015.‌

University of Miami, "The Scientific Method" http://www.bio.miami.edu/dana/161/evolution/161app1_scimethod.pdf  

William M.K. Trochim, "Research Methods Knowledge Base," https://conjointly.com/kb/hypotheses-explained/  

University of California, Berkeley, "Multiple Hypothesis Testing and False Discovery Rate" https://www.stat.berkeley.edu/~hhuang/STAT141/Lecture-FDR.pdf  

University of California, Berkeley, "Science at multiple levels" https://undsci.berkeley.edu/article/0_0_0/howscienceworks_19

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Alina Bradford

Eerie, orange skies loom over Athens as dust storm engulfs southern Greece

Hidden 'biosphere' of extreme microbes discovered 13 feet below Atacama Desert is deepest found there to date

Chemo side effect caused man's eyelash growth to go haywire

Most Popular

  • 2 Giant, 82-foot lizard fish discovered on UK beach could be largest marine reptile ever found
  • 3 Global 'time signals' subtly shifted as the total solar eclipse reshaped Earth's upper atmosphere, new data shows
  • 4 Scientists discover once-in-a-billion-year event — 2 lifeforms merging to create a new cell part
  • 5 NASA's downed Ingenuity helicopter has a 'last gift' for humanity — but we'll have to go to Mars to get it
  • 2 NASA reveals 'glass-smooth lake of cooling lava' on surface of Jupiter's moon Io
  • 3 'We were in disbelief': Antarctica is behaving in a way we've never seen before. Can it recover?
  • 4 George Washington's stash of centuries-old cherries found hidden under Mount Vernon floor
  • 5 Scientists create 'toxic AI' that is rewarded for thinking up the worst possible questions we could imagine

define hypothesis

Research Hypothesis In Psychology: Types, & Examples

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .

Hypotheses connect theory to data and guide the research process towards expanding scientific understanding

Some key points about hypotheses:

  • A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
  • It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
  • A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
  • Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
  • For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
  • Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.

Types of Research Hypotheses

Alternative hypothesis.

The research hypothesis is often called the alternative or experimental hypothesis in experimental research.

It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.

The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).

A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:

  • Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.

In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and are significant in supporting the theory being investigated.

The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.

Null Hypothesis

The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.

It states results are due to chance and are not significant in supporting the idea being investigated.

The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.

Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.

This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.

Nondirectional Hypothesis

A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.

It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.

For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.

Directional Hypothesis

A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)

It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.

For example, “Exercise increases weight loss” is a directional hypothesis.

hypothesis

Falsifiability

The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.

Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.

It means that there should exist some potential evidence or experiment that could prove the proposition false.

However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.

For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.

Can a Hypothesis be Proven?

Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.

All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.

In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
  • Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
  • However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.

We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.

If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.

Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.

How to Write a Hypothesis

  • Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
  • Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
  • Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
  • Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
  • Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.

Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).

Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:

  • The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
  • The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.

More Examples

  • Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
  • Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
  • Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
  • Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
  • Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
  • Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
  • Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
  • Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.

Print Friendly, PDF & Email

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

define hypothesis

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

This is the Difference Between a Hypothesis and a Theory

What to Know A hypothesis is an assumption made before any research has been done. It is formed so that it can be tested to see if it might be true. A theory is a principle formed to explain the things already shown in data. Because of the rigors of experiment and control, it is much more likely that a theory will be true than a hypothesis.

As anyone who has worked in a laboratory or out in the field can tell you, science is about process: that of observing, making inferences about those observations, and then performing tests to see if the truth value of those inferences holds up. The scientific method is designed to be a rigorous procedure for acquiring knowledge about the world around us.

hypothesis

In scientific reasoning, a hypothesis is constructed before any applicable research has been done. A theory, on the other hand, is supported by evidence: it's a principle formed as an attempt to explain things that have already been substantiated by data.

Toward that end, science employs a particular vocabulary for describing how ideas are proposed, tested, and supported or disproven. And that's where we see the difference between a hypothesis and a theory .

A hypothesis is an assumption, something proposed for the sake of argument so that it can be tested to see if it might be true.

In the scientific method, the hypothesis is constructed before any applicable research has been done, apart from a basic background review. You ask a question, read up on what has been studied before, and then form a hypothesis.

What is a Hypothesis?

A hypothesis is usually tentative, an assumption or suggestion made strictly for the objective of being tested.

When a character which has been lost in a breed, reappears after a great number of generations, the most probable hypothesis is, not that the offspring suddenly takes after an ancestor some hundred generations distant, but that in each successive generation there has been a tendency to reproduce the character in question, which at last, under unknown favourable conditions, gains an ascendancy. Charles Darwin, On the Origin of Species , 1859 According to one widely reported hypothesis , cell-phone transmissions were disrupting the bees' navigational abilities. (Few experts took the cell-phone conjecture seriously; as one scientist said to me, "If that were the case, Dave Hackenberg's hives would have been dead a long time ago.") Elizabeth Kolbert, The New Yorker , 6 Aug. 2007

What is a Theory?

A theory , in contrast, is a principle that has been formed as an attempt to explain things that have already been substantiated by data. It is used in the names of a number of principles accepted in the scientific community, such as the Big Bang Theory . Because of the rigors of experimentation and control, its likelihood as truth is much higher than that of a hypothesis.

It is evident, on our theory , that coasts merely fringed by reefs cannot have subsided to any perceptible amount; and therefore they must, since the growth of their corals, either have remained stationary or have been upheaved. Now, it is remarkable how generally it can be shown, by the presence of upraised organic remains, that the fringed islands have been elevated: and so far, this is indirect evidence in favour of our theory . Charles Darwin, The Voyage of the Beagle , 1839 An example of a fundamental principle in physics, first proposed by Galileo in 1632 and extended by Einstein in 1905, is the following: All observers traveling at constant velocity relative to one another, should witness identical laws of nature. From this principle, Einstein derived his theory of special relativity. Alan Lightman, Harper's , December 2011

Non-Scientific Use

In non-scientific use, however, hypothesis and theory are often used interchangeably to mean simply an idea, speculation, or hunch (though theory is more common in this regard):

The theory of the teacher with all these immigrant kids was that if you spoke English loudly enough they would eventually understand. E. L. Doctorow, Loon Lake , 1979 Chicago is famous for asking questions for which there can be no boilerplate answers. Example: given the probability that the federal tax code, nondairy creamer, Dennis Rodman and the art of mime all came from outer space, name something else that has extraterrestrial origins and defend your hypothesis . John McCormick, Newsweek , 5 Apr. 1999 In his mind's eye, Miller saw his case suddenly taking form: Richard Bailey had Helen Brach killed because she was threatening to sue him over the horses she had purchased. It was, he realized, only a theory , but it was one he felt certain he could, in time, prove. Full of urgency, a man with a mission now that he had a hypothesis to guide him, he issued new orders to his troops: Find out everything you can about Richard Bailey and his crowd. Howard Blum, Vanity Fair , January 1995

And sometimes one term is used as a genus, or a means for defining the other:

Laplace's popular version of his astronomy, the Système du monde , was famous for introducing what came to be known as the nebular hypothesis , the theory that the solar system was formed by the condensation, through gradual cooling, of the gaseous atmosphere (the nebulae) surrounding the sun. Louis Menand, The Metaphysical Club , 2001 Researchers use this information to support the gateway drug theory — the hypothesis that using one intoxicating substance leads to future use of another. Jordy Byrd, The Pacific Northwest Inlander , 6 May 2015 Fox, the business and economics columnist for Time magazine, tells the story of the professors who enabled those abuses under the banner of the financial theory known as the efficient market hypothesis . Paul Krugman, The New York Times Book Review , 9 Aug. 2009

Incorrect Interpretations of "Theory"

Since this casual use does away with the distinctions upheld by the scientific community, hypothesis and theory are prone to being wrongly interpreted even when they are encountered in scientific contexts—or at least, contexts that allude to scientific study without making the critical distinction that scientists employ when weighing hypotheses and theories.

The most common occurrence is when theory is interpreted—and sometimes even gleefully seized upon—to mean something having less truth value than other scientific principles. (The word law applies to principles so firmly established that they are almost never questioned, such as the law of gravity.)

This mistake is one of projection: since we use theory in general use to mean something lightly speculated, then it's implied that scientists must be talking about the same level of uncertainty when they use theory to refer to their well-tested and reasoned principles.

The distinction has come to the forefront particularly on occasions when the content of science curricula in schools has been challenged—notably, when a school board in Georgia put stickers on textbooks stating that evolution was "a theory, not a fact, regarding the origin of living things." As Kenneth R. Miller, a cell biologist at Brown University, has said , a theory "doesn’t mean a hunch or a guess. A theory is a system of explanations that ties together a whole bunch of facts. It not only explains those facts, but predicts what you ought to find from other observations and experiments.”

While theories are never completely infallible, they form the basis of scientific reasoning because, as Miller said "to the best of our ability, we’ve tested them, and they’ve held up."

More Differences Explained

  • Epidemic vs. Pandemic
  • Diagnosis vs. Prognosis
  • Treatment vs. Cure

Word of the Day

Tendentious.

See Definitions and Examples »

Get Word of the Day daily email!

Games & Quizzes

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Commonly Confused

'canceled' or 'cancelled', is it 'home in' or 'hone in', the difference between 'race' and 'ethnicity', homophones, homographs, and homonyms, on 'biweekly' and 'bimonthly', grammar & usage, primary and caucus: what is the difference, words commonly mispronounced, merriam-webster’s great big list of words you love to hate, more commonly misspelled words, commonly misspelled words, 12 words for signs of spring, 12 more bird names that sound like insults (and sometimes are), 13 unusually long english words, the words of the week - apr. 19, 10 words from taylor swift songs (merriam's version).

  • Scientific Methods

What is Hypothesis?

We have heard of many hypotheses which have led to great inventions in science. Assumptions that are made on the basis of some evidence are known as hypotheses. In this article, let us learn in detail about the hypothesis and the type of hypothesis with examples.

A hypothesis is an assumption that is made based on some evidence. This is the initial point of any investigation that translates the research questions into predictions. It includes components like variables, population and the relation between the variables. A research hypothesis is a hypothesis that is used to test the relationship between two or more variables.

Characteristics of Hypothesis

Following are the characteristics of the hypothesis:

  • The hypothesis should be clear and precise to consider it to be reliable.
  • If the hypothesis is a relational hypothesis, then it should be stating the relationship between variables.
  • The hypothesis must be specific and should have scope for conducting more tests.
  • The way of explanation of the hypothesis must be very simple and it should also be understood that the simplicity of the hypothesis is not related to its significance.

Sources of Hypothesis

Following are the sources of hypothesis:

  • The resemblance between the phenomenon.
  • Observations from past studies, present-day experiences and from the competitors.
  • Scientific theories.
  • General patterns that influence the thinking process of people.

Types of Hypothesis

There are six forms of hypothesis and they are:

  • Simple hypothesis
  • Complex hypothesis
  • Directional hypothesis
  • Non-directional hypothesis
  • Null hypothesis
  • Associative and casual hypothesis

Simple Hypothesis

It shows a relationship between one dependent variable and a single independent variable. For example – If you eat more vegetables, you will lose weight faster. Here, eating more vegetables is an independent variable, while losing weight is the dependent variable.

Complex Hypothesis

It shows the relationship between two or more dependent variables and two or more independent variables. Eating more vegetables and fruits leads to weight loss, glowing skin, and reduces the risk of many diseases such as heart disease.

Directional Hypothesis

It shows how a researcher is intellectual and committed to a particular outcome. The relationship between the variables can also predict its nature. For example- children aged four years eating proper food over a five-year period are having higher IQ levels than children not having a proper meal. This shows the effect and direction of the effect.

Non-directional Hypothesis

It is used when there is no theory involved. It is a statement that a relationship exists between two variables, without predicting the exact nature (direction) of the relationship.

Null Hypothesis

It provides a statement which is contrary to the hypothesis. It’s a negative statement, and there is no relationship between independent and dependent variables. The symbol is denoted by “H O ”.

Associative and Causal Hypothesis

Associative hypothesis occurs when there is a change in one variable resulting in a change in the other variable. Whereas, the causal hypothesis proposes a cause and effect interaction between two or more variables.

Examples of Hypothesis

Following are the examples of hypotheses based on their types:

  • Consumption of sugary drinks every day leads to obesity is an example of a simple hypothesis.
  • All lilies have the same number of petals is an example of a null hypothesis.
  • If a person gets 7 hours of sleep, then he will feel less fatigue than if he sleeps less. It is an example of a directional hypothesis.

Functions of Hypothesis

Following are the functions performed by the hypothesis:

  • Hypothesis helps in making an observation and experiments possible.
  • It becomes the start point for the investigation.
  • Hypothesis helps in verifying the observations.
  • It helps in directing the inquiries in the right direction.

How will Hypothesis help in the Scientific Method?

Researchers use hypotheses to put down their thoughts directing how the experiment would take place. Following are the steps that are involved in the scientific method:

  • Formation of question
  • Doing background research
  • Creation of hypothesis
  • Designing an experiment
  • Collection of data
  • Result analysis
  • Summarizing the experiment
  • Communicating the results

Frequently Asked Questions – FAQs

What is hypothesis.

A hypothesis is an assumption made based on some evidence.

Give an example of simple hypothesis?

What are the types of hypothesis.

Types of hypothesis are:

  • Associative and Casual hypothesis

State true or false: Hypothesis is the initial point of any investigation that translates the research questions into a prediction.

Define complex hypothesis..

A complex hypothesis shows the relationship between two or more dependent variables and two or more independent variables.

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Physics related queries and study materials

Your result is as below

Request OTP on Voice Call

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

define hypothesis

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

Define Hypothesis: Unveiling the First Step in Scientific Inquiry

Master Scientific Data Visualization. Learn how to make data easier, unlock insights and captivate audiences effectively.

' src=

Welcome to the world of research, where you’ll journey through a universe brimming with questions and curiosity. In this cosmos, a hypothesis is one celestial object you can’t miss! Today’s expedition invites you on board an exploration to ‘Define Hypothesis.’ Hop in; it wouldn’t be hyperbole to state we’re about to unlock the nucleus behind every ever scientific theory and inquiry!

Definition of Hypothesis

Introduction to the concept of hypothesis.

Picture yourself as a detective solving a case. Right from inspecting clues, formulating potential theories on whodunit, putting these theories under rigorous tests until finally reaching that elusive conclusive evidence – exciting, isn’t it?

Now replace detective with researcher and voila – here comes our heavyweight term: Hypothesis. Much like how any plausible theory drives detectives’ investigations, scientific hypotheses are vital navigational compasses guiding researchers in their quest for scientific evolutions.

Explanation of What a Hypothesis Is in The Context of Research and Scientific Inquiry

A hypothesis – popularly known as an educated guess or predictive statement – represents an initial supposition or proposed explanation made on limited information but founded on validation-grounded knowledge. It forms the basis for preliminary exploration into a specific set of circumstances or natural phenomena beyond.

Formulated prior to conducting research, scientists employ hypotheses as testable conjectures to explain an observed behavior or event. Confused? Fret not. To put it simply and by example: “If I increase the frequency of watering my plants twice daily (instead of solely relying upon weather conditions), then they will grow faster.” Now that’s what we call an everyday-life hypothesis!

Remember, hypotheses are not wild guesses plucked out of thin air but rather preconceived assertions open to empirical verification. They mark the inception point for any scientific investigation and serve as cornerstones for further experiments.

Characteristics and Components of a Hypothesis

Key characteristics of a hypothesis.

Before plunging into the deep end to define a hypothesis, let’s brush up on the features that contribute to effective hypotheses. For starters, a strong hypothesis is testable. This means it must be possible for empirical evidence to either support the word hypothesis or contradict it. The proposal should also be logically consistent and grounded firmly in existing knowledge.

Further down the line, another salient feature is specificity. Good hypotheses are not broad statements but instead focus on a specific aspect or phenomenon within the intended research field. Moreover, they are typically succinct and easily understandable ensuring information isn’t lost in translation among researchers.

Moreover, any well-structured hypothesis connects the independent and dependent variables together – typically, there’s at least one independent and one dependent variable involved. These elements form a relationship where changes instigated in the independent variable affect the values observed for the dependent variable.

Lastly but importantly, a solid hypothesis often carries potential implications for future research areas and can potentially lead to further tests and studies if verified.

Elements that make up a well-formulated hypothesis

Delving deeper into what shapes up a robust hypothesis, we realize that certain crucial components determine its effectiveness.

Firstly, every good hypothesis or test has clear variables which essentially refer to specific aspects of the study subject matter being measured or manipulated during research. These aspects are segregated as:

  • Independent Variable (IV): This component relates directly to what you have control over in your study.
  • Dependent Variable (DV): This component consists of outcomes affected by alterations made in IV

Next comes ‘Predicted Outcome’ – what you anticipate happening as repercussions due to modification of two or more variables under scrutiny.

The ‘Testability’ factor also holds veritable importance comprising experimental procedures capable enough to refute or accept your claims.

The last element circles the argument around presenting a capacity called ‘Relationship’ correlating IV with DV believed to either causing some effect or showcasing an association.

Hence, these prime facets further accentuate your endeavor to adequately define the hypothesis.

Importance and Purpose of a Hypothesis

Understanding the Role of a Hypothesis in Research

First, let’s delve into the overarching role that hypothesis plays within research scenarios. As we define the hypothesis, you should view this as an underlying pillar or guiding star for your investigation. A well-articulated hypothesis steers your exploration by providing clarity on what specifically you aim to examine.

A meaningful analogy would be considering a hypothesis as a compass during a voyage. If research is the vast ocean where confusing whirlpools of data and evidence abound, then it can guide us in our direction rather than letting us drift aimlessly. Furthermore, the formulation of a quality hypothesis inherently demands clarity about your objectives upfront – this essentially sets your research vessel on course bearing towards effective outcomes.

Exploring Why Formulating A Hypothesis is Crucial in Scientific Investigations

So why precisely is nurturing such a detailed forecast vital?

  • Structural Advantage: By proposing potential answers to posed questions via hypotheses, researchers streamline their methods and techniques. The approach undertaken depends significantly on what the suggested outcome or phenomenon might be.
  • Generate Preliminary Expectations: Even if they’re proven wrong, making observations and developing models based on hypotheses often lead to more interesting inquiries or turn up unexpected findings.
  • Quantifiable Predictions: More than simple conjectures, strong hypotheses are testable; they propose results expressed in measurable terms.

In essence, remember that formulating hypotheses smoothes the path towards solid conclusions by being the architect’s blueprints of robust investigations. Never underestimate the forward thrust they provide for progress within scientific inquiry!

Types of Hypotheses

Once we understand to define a hypothesis, we’ll find that hypotheses come in several types. Different classifications of plural hypotheses depend on their formulations and the nature of predictions or assumptions they lead towards – simple, complex, directional, non-directional, null, associative and causal. Let’s explore some of these.

Simple Hypothesis: Definition and Examples

A simple hypothesis is a type of prediction or an educated guess that carries one independent variable and one dependent variable. In essence, it creates a relationship between two singular entities; for instance, ‘Exercise improves memory.’ This suggests that there’s an impact (of improvement) on the ‘memory’ (dependent variable) by ‘exercise’ (independent variable).

Complex Hypothesis: Definition and Examples

On the contrary to its name mate – a simple hypothesis – a complex hypothesis involves more than just two variables. It points out multiple variables and how they interlink with each other. The effects aren’t just limited to cause-and-effect but can be interactive or combined impact-dependent variables too – for instance,’Diet and exercise affect weight loss and heart health.’ Here, diet and exercise are your independent factors influencing multifold aspects like weight loss (a dependent variable) alongside heart health(another dependent variable).

Directional Hypothesis: Definition and Examples

One might argue that the path laid by a directional hypothesis is less twisted as it predicts the directionality of an effect – whether one variable will increase or decrease another variable. An example here could be “Cutting down on alcohol will reduce liver disorders.” Here a reduction in ‘drinking alcohol’ implicitly identifies fewer occurrences of ‘liver disorders.’

Non-directional Hypothesis: Definition and Examples

Sometimes science requires open-ended answers; henceforth comes into play our non-directional hypothesis which merely stipulates that there’s going to be an impact without specifying its course – good, bad or otherwise. For example, “Exposure to secondhand smoke influences lung health.” It infers that there’s an effect on ‘lung health’ due to ‘secondhand smoke,’ without indicating if it’s an improvement or deterioration.

Null Hypothesis: Definition and Examples

The null hypothesis, often symbolized as H0, makes things pretty straight with assumptions; basically, it purports no existence of a relationship between the variables. Researchers utilize this hypothesis chiefly for statistical testing. In lay terms – “Smoking is not linked to lung cancer.” Here a nonexistence of association is suggested between ‘smoking’ and ‘lung cancer.’

Associative and Causal Hypothesis: Explanation and Examples

Now leaving the train station named Null-ville we enter into quite associative terrain where the associative hypothesis foretells ‘relationships’ but are shy when it comes to cause-effects. An instance could be “Students scoring high also tend to play chess.” These fellows here don’t claim that playing chess outrightly shoots up scores yet suggests a specific pattern.

On another spectrum brightful cause-effect claims jump in bravely shouting out not just relationships but boldly stating their causes too – “Consumption of fast food leads to obesity” is being so certain about fast food consumption (cause) escalating obesity levels(effect).

Navigating through these alternative hypotheses and variants allows us to step into researchers’ shoes better while also helps defining complex constructions bit by bit, making them simple outcomes anyone can interpret.

Developing and Testing a Hypothesis

In the world of research, it’s not uncommon to hear someone say “Let’s define hypothesis!” This term may seem complex at first glance, but its essence falls within our natural instinct to question and learn. To give structure to this innate curiosity, we form hypotheses and navigate through the rigorous process of testing them.

Process of Formulating a Hypothesis

Forming an effective hypothesis is both an art and a science. It involves finding a perfect blend between creativity and logical reasoning. Here are some simple yet essential steps you’d want to follow:

  • Identify Your Research Question – The first step towards formulating a hypothesis is defining your research question based on preliminary observations or literature review.
  • Conduct Thorough Literature Review – Once your question is in place, an extensive read about what has already been studied can help refine it further.
  • Create Tentative Explanation – Develop a preliminary answer based on your knowledge and understanding which will serve as your tentative explanation or hypothesis.
  • Refine Your Hypothesis : Refine this initial guess considering available resources for empirical testing, ethical implications, and potential outcomes.

Remember that the key is formation clarity in statement-making; overly complex language might obscure rather than clarify your central idea.

Importance of Testing a Hypothesis Through Empirical Research Methods

man, writing, laptop

Testing a hypothesis isn’t simply about proving it right or wrong; it’s much more refined than that – it’s about validation and advancement of human knowledge. By applying empirical methods such as observation or experimentation, logic meets practice in real-world scenarios.

These hands-on approaches afford us precious insights into how our theories hold up under scrutiny outside the confines of abstract thought alone.

  • Validity Confirmation : Empirical testing helps confirm if our predictions were correct or not, providing validation for our presumptions.
  • Understanding Relationships : Testing allows us to assess the relational dynamics between variables under investigation.
  • Promotes Scientific Inquiry : Empirical testing encourages a systematic and objective approach to understanding phenomena, which lies at the heart of scientific inquiry.

Consider this: hypotheses are our best-educated guesses – smart hunches rooted in what we know so far. To move beyond guessing and into knowledgeable assertion, we define hypothesis structure as one that can be empirically tested. Only then do we truly start to shape our understanding with any level of certainty.

Examples of Hypotheses in Different Fields

Indeed, it’s fundamental to understand that hypotheses are not confined to a single discipline but span across numerous fields. To better illuminate this, let’s delve into various examples.

Examples of Hypotheses in Scientific Research Studies

In the realm of scientific research studies, hypotheses play a pivotal role in shaping the basis for investigations research hypotheses and experiments. Let’s consider an elementary example: studying plant growth. A researcher might formulate the hypothesis – “If a specific type of fertilizer is used, then plants will grow more rapidly.” This hypothesis aims to validate or refute the assumption that given fertilizer perceptibly affects plant growth rate.

Another common example arises from investigating causal relationships between physical activity and heart health. The scientist may hypothesize that “Regular aerobic exercise decreases the risk of heart disease.”

Examples of Hypotheses in Social Sciences

When we transition towards social sciences, which deals with human behavior and its relation to societal constructs, our formative definitions undergo a change as well.

Imagine researchers examining how socioeconomic status influences educational attainment rates. They could pose a hypothesis saying, “High socioeconomic status positively correlates with higher levels of formal education.” This hypothesis attempts to tie economic background directly to education outcomes.

The correlation between gender diversity within workplace teams and improved business performance presents another illustration. A possible hypothesis could be – “Teams comprising diverse genders exhibit superior business performance than homogenous teams.”

Examples of Hypotheses in Psychology

Within psychology – the study dedicated to how individuals think, feel, and behave; clearly stated hypotheses serve as essential stepping stones for meaningful findings and insights.

Take, for instance, predicting performance under pressure: psychologists may propose an assumption like – “Stress triggers increased errors on complex tasks”. Or when researching cognitive development in children – they may hypothesize – “Language acquisition accelerates once children start attending school”.

Examples of Hypotheses in Medical Research

Lastly but importantly, in medical research, well-articulated hypotheses help probe pressing healthcare questions and identify effective treatments.

For instance: “Patients receiving chemotherapy experience significant weight loss”. Or regarding disease transmission during pandemics – they might propose “Regular hand sanitation reduces the risk of COVID-19 infection.”

In conclusion, these examples hopefully underline the importance and versatility of a hypothesis in scientific inquiry. Irrespective of its utilization within various research fields, a scientific hypothesis still essentially remains an educated assumption that offers direction and purpose to the investigation. Interestingly enough, each study’s defined hypothesis sets forth a path leading towards a better comprehension of our world and life within it.

Common Mistakes to Avoid when Formulating a Hypothesis

Identifying errors that researchers often make when developing a hypothesis.

Many researchers, especially those new in the field, may sometimes falter while crafting their hypotheses. Here are some frequently observed mistakes:

  • Framing Vague Hypotheses : Clarity is vital when defining your hypothesis. A common pitfall involves creating an ambiguous statement which leaves room for multiple interpretations. This hinders precise data collection and analysis.
  • Formulating Unfalsifiable Hypotheses : These are statements that cannot be proven false because they don’t connect to observable or measurable variables.
  • Targeting Unachievable Results : Often, there is an inclination to develop complex hypotheses expecting groundbreaking findings. However, it’s crucial to limit the scope according to practical constraints and possibilities.
  • Ignoring Null Hypothesis : The null hypothesis provides a means of contradiction to the alternative hypothesis being tested, making it essential for any research study.

Tips for avoiding these mistakes

After identifying the commonly made errors when forming a hypothesis, let’s now consider some proactive measures you can adopt:

  • Crystallize Your Thoughts : Before you articulate your hypothesis, refine and clarify your ideas first. Define the parameters of your study clearly and ensure your proposition directly aligns with them.
  • Keep It Simple : Stick with simplicity as much as possible in describing expected relationships or patterns in your research subject area. Remember: A simpler hypothesis often leads to effective testing.
  • Embrace Falsifiability . To avoid making unfalsifiable claims, learn how to craft ‘If – Then’ statements articulately in your define hypothesis process.
  • Remember the Null Hypothesis : Always formulate and account for a null hypothesis—a statement that negates the relationship between variables—for robust results validation.

In truth, it takes practice to strike the right balance and formulate a solid, practical hypothesis for your research. With these tips in mind, you’re better equipped to avoid common pitfalls that can compromise the quality of your investigation as they guide your approach when you define hypotheses.

Evaluating and Refining a Hypothesis

Laying out a hypothesis is merely the first stage of an intricate journey. Testing and refining this conjecture is equally pivotal in perfecting your next scientific method of undertaking. This pathway comprises evaluation for validity, and relevance, followed by refinement through research findings.

Methods for Assessing the Validity and Relevance of a Hypothesis

To define a hypothesis of meticulosity, we need to subject it to rigorous scrutiny. Utilizing statistical tests enables you to judge the validity of your hypothesis. Here’s a brief look at some key methods that can assist in assessing your theory:

  • Empirical Testing : Conduct experiments or surveys as per the requirements of your study.
  • Consistency Check : The hypothesis should remain consistent with other established theories and laws within its field.
  • Falsifiability principle : Proposed by Karl Popper, a valid hypothesis must be capable of being proven wrong.

Let me reemphasize here, that relevance plays an integral part too especially when defining hypotheses linked with pragmatics like social sciences or business studies.

A relevant hypothesis will hold significance to not just existing knowledge but also pave the way for future work within the particular area of expertise. It should address gaps in current scientific theories while shedding light on possible solutions.

Ways to Refine and Modify a Hypothesis Based on Research Findings

Our job doesn’t end up on developing an initial proposition; it’s crucial to use findings from our research to refine that preliminary conception further. This essential process breathes life into what was once purely speculative.

While refining your conjecture can sound daunting initially, I assure you it’s nothing more complicated than diagnosing any missing links between your original theory and novel evidence you’ve discovered along this research journey.

If H0 (null hypothesis) contradicts your empirical results, then getting back onto the drafting board becomes necessary for crafting H1 (alternative hypothesis). This scientific cycle of formulating, testing then reformulating the hypotheses can continue till we eventually reach statistically significant results.

Remember, it’s important to be open-minded and responsive towards indications from your research findings. They will guide you intuitively in tweaking your working hypothesis in sync with your target goals.

Hence we must embrace this intricate art of defining a hypothesis while simultaneously embracing its dynamic nature which requires periodic refinement based upon insightful feedback from meticulous research.

Summarizing the Key Points About the Definition and Characteristics of a Hypothesis

Having delved into the concept extensively, we can confidently define a hypothesis as an informed and testable guess or prediction that acts as a guiding light in research studies and scientific investigations. When formulated correctly, it comprises two essential elements: clarity and specificity. It should be free from ambiguity, allowing other researchers to easily understand its proposed idea and the direction the study is heading.

In addition, a robust hypothesis exhibits predictability. As a researcher, you’re not only stating what you think will happen but also defining the variables in your experiment – your assumption confines your investigation’s parameters to make it manageable. Lastly, remember that any meaningful hypothesis must be verifiable — capable of being supported or refuted through data collection and analysis.

Reiterating the Importance of Hypotheses in Scientific Inquiry and Research

This discourse wouldn’t be complete without reaffirming how indispensable hypotheses are within scientific explorations and research inquiries. A conceptualized hypothesis serves as a foundational block upon which every aspect of a research project is built. It directs your observations along assumed patterns, thereby saving time during investigations.

We also need to note that formulating hypotheses promotes critical thinking skills among researchers because they require logical reasoning backed by empirical evidence rather than just empty conjectures.

Henceforth, whether you’re treading through unchartered waters of complex scientific endeavors or conducting social science research with less strict rules for predictions – keeping these insights on “define hypothesis” at hand would surely enhance your journey towards revealing valuable truths.

In essence, cultivating a comprehensive understanding of what constitutes a well-formed hypothesis not only lends credibility to our investigative ventures but also enables us to bring precision, focus, and relevance to our chosen field of exploration. The power lies in its simplistic yet profound ability to guide us from uncertainty towards concrete evidential findings – truly embodying scientific inquiry’s spirit!

Unlock the Power of Visualization with Mind the Graph: Elevate Your Hypothesis to New Heights

As a scientist, your hypothesis is the cornerstone of your research journey. But what if you could take it beyond mere words and equations, and transform it into a visual masterpiece that captivates your audience? Enter Mind the Graph , your ultimate ally in scientific visualization. With our intuitive platform, you can seamlessly translate complex hypotheses into stunning graphs, charts, and illustrations that speak volumes. Whether you are presenting at a conference, publishing a paper, or simply sharing your findings with the world, Mind the Graph empowers you to convey your hypotheses with clarity, precision, and undeniable impact. Join the scientific revolution today and let your hypotheses shine like never before with Mind the Graph.

illustrations-banner

Subscribe to our newsletter

Exclusive high quality content about effective visual communication in science.

Unlock Your Creativity

Create infographics, presentations and other scientifically-accurate designs without hassle — absolutely free for 7 days!

About Fabricio Pamplona

Fabricio Pamplona is the founder of Mind the Graph - a tool used by over 400K users in 60 countries. He has a Ph.D. and solid scientific background in Psychopharmacology and experience as a Guest Researcher at the Max Planck Institute of Psychiatry (Germany) and Researcher in D'Or Institute for Research and Education (IDOR, Brazil). Fabricio holds over 2500 citations in Google Scholar. He has 10 years of experience in small innovative businesses, with relevant experience in product design and innovation management. Connect with him on LinkedIn - Fabricio Pamplona .

Content tags

en_US

IMAGES

  1. 🏷️ Formulation of hypothesis in research. How to Write a Strong

    define hypothesis

  2. What is Hypothesis? Functions- Characteristics-types-Criteria

    define hypothesis

  3. SOLUTION: How to write research hypothesis

    define hypothesis

  4. PPT

    define hypothesis

  5. Marketing Research Hypothesis Examples : Research questions hypotheses

    define hypothesis

  6. PPT

    define hypothesis

VIDEO

  1. Concept of Hypothesis

  2. proofs exist only in mathematics

  3. Hypothesis Testing

  4. What Is A Hypothesis?

  5. Scientific Method Galileo

  6. Solving of biological problems//Biological Methods// Class 9th Biology Chapter no 2nd topic 2.1

COMMENTS

  1. Hypothesis Definition & Meaning

    hypothesis: [noun] an assumption or concession made for the sake of argument. an interpretation of a practical situation or condition taken as the ground for action.

  2. HYPOTHESIS

    A hypothesis is an idea or explanation for something that is based on known facts but has not yet been proved. Learn more about the meaning, usage and pronunciation of hypothesis with Cambridge Dictionary.

  3. HYPOTHESIS Definition & Meaning

    A hypothesis is a proposed explanation for some observed phenomena, either tentative or highly probable. Learn the origin, synonyms, and usage of the word hypothesis with examples from various sources.

  4. HYPOTHESIS

    HYPOTHESIS meaning: 1. an idea or explanation for something that is based on known facts but has not yet been proved…. Learn more.

  5. Hypothesis

    A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon. For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained with the available scientific theories.

  6. Hypothesis

    hypothesis: 1 n a tentative insight into the natural world; a concept that is not yet verified but that if true would explain certain facts or phenomena "a scientific hypothesis that survives experimental testing becomes a scientific theory" Synonyms: possibility , theory Types: show 17 types... hide 17 types... hypothetical a hypothetical ...

  7. HYPOTHESIS

    A hypothesis is a suggested explanation for something that has not yet been proved to be true. Learn more about the meaning, usage and translations of hypothesis with examples and related words.

  8. Hypothesis

    A hypothesis is a tentative explanation for a phenomenon or a problem that can be tested by observation or experiment. Learn how hypotheses are formulated, evaluated, and used in scientific research from Britannica's experts.

  9. hypothesis noun

    A hypothesis is an idea or explanation that is based on some facts but not yet proved to be true or correct. Learn how to use the word hypothesis in scientific research, guessing and doubt, and see synonyms and related words.

  10. hypothesis noun

    1 [countable] an idea or explanation of something that is based on a few known facts but that has not yet been proved to be true or correct synonym theory to formulate/confirm a hypothesis a hypothesis about the function of dreams There is little evidence to support these hypotheses. Topic Collocations Scientific Research theory. formulate/advance a theory/hypothesis

  11. HYPOTHESIS definition and meaning

    A hypothesis is an unproved idea or explanation for a situation or condition, often used in scientific research or argument. Learn the word origin, synonyms, pronunciation and usage of hypothesis with examples from Collins English Dictionary.

  12. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  13. How to Write a Strong Hypothesis

    A hypothesis is a statement that can be tested by scientific research. Learn how to write a hypothesis for your research project, including variables, types, and examples.

  14. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  15. Scientific hypothesis

    hypothesis. science. scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If…then" statement summarizing the idea and in the ...

  16. What Is a Hypothesis? The Scientific Method

    A hypothesis is a proposed explanation for an observation, often tested by an experiment. Learn how to write a hypothesis in science, logic and common usage, and see examples of null and alternative hypotheses.

  17. What is a scientific hypothesis?

    A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method. Many describe it as an "educated guess ...

  18. Research Hypothesis In Psychology: Types, & Examples

    A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

  19. Hypothesis Testing

    Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories. ... Definition and Examples The p-value shows the likelihood of your data occurring under the null hypothesis. P-values help ...

  20. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  21. Hypothesis vs. Theory: The Difference Explained

    A hypothesis is an assumption made before any research has been done, while a theory is a principle formed to explain the things already shown in data. Learn how to use these terms correctly in scientific and non-scientific contexts, and avoid common misinterpretations of theory.

  22. What is Hypothesis

    Learn what is a hypothesis, a clear and precise assumption based on some evidence, and how it helps in scientific research. Explore the characteristics, sources, types and functions of hypothesis with examples and quiz.

  23. Define Hypothesis: Unveiling the First Step in Scientific Inquiry

    Simple Hypothesis: Definition and Examples. A simple hypothesis is a type of prediction or an educated guess that carries one independent variable and one dependent variable. In essence, it creates a relationship between two singular entities; for instance, 'Exercise improves memory.'