Home Blog Design Understanding Data Presentations (Guide + Examples)

Understanding Data Presentations (Guide + Examples)

Cover for guide on data presentation by SlideModel

In this age of overwhelming information, the skill to effectively convey data has become extremely valuable. Initiating a discussion on data presentation types involves thoughtful consideration of the nature of your data and the message you aim to convey. Different types of visualizations serve distinct purposes. Whether you’re dealing with how to develop a report or simply trying to communicate complex information, how you present data influences how well your audience understands and engages with it. This extensive guide leads you through the different ways of data presentation.

Table of Contents

What is a Data Presentation?

What should a data presentation include, line graphs, treemap chart, scatter plot, how to choose a data presentation type, recommended data presentation templates, common mistakes done in data presentation.

A data presentation is a slide deck that aims to disclose quantitative information to an audience through the use of visual formats and narrative techniques derived from data analysis, making complex data understandable and actionable. This process requires a series of tools, such as charts, graphs, tables, infographics, dashboards, and so on, supported by concise textual explanations to improve understanding and boost retention rate.

Data presentations require us to cull data in a format that allows the presenter to highlight trends, patterns, and insights so that the audience can act upon the shared information. In a few words, the goal of data presentations is to enable viewers to grasp complicated concepts or trends quickly, facilitating informed decision-making or deeper analysis.

Data presentations go beyond the mere usage of graphical elements. Seasoned presenters encompass visuals with the art of data storytelling , so the speech skillfully connects the points through a narrative that resonates with the audience. Depending on the purpose – inspire, persuade, inform, support decision-making processes, etc. – is the data presentation format that is better suited to help us in this journey.

To nail your upcoming data presentation, ensure to count with the following elements:

  • Clear Objectives: Understand the intent of your presentation before selecting the graphical layout and metaphors to make content easier to grasp.
  • Engaging introduction: Use a powerful hook from the get-go. For instance, you can ask a big question or present a problem that your data will answer. Take a look at our guide on how to start a presentation for tips & insights.
  • Structured Narrative: Your data presentation must tell a coherent story. This means a beginning where you present the context, a middle section in which you present the data, and an ending that uses a call-to-action. Check our guide on presentation structure for further information.
  • Visual Elements: These are the charts, graphs, and other elements of visual communication we ought to use to present data. This article will cover one by one the different types of data representation methods we can use, and provide further guidance on choosing between them.
  • Insights and Analysis: This is not just showcasing a graph and letting people get an idea about it. A proper data presentation includes the interpretation of that data, the reason why it’s included, and why it matters to your research.
  • Conclusion & CTA: Ending your presentation with a call to action is necessary. Whether you intend to wow your audience into acquiring your services, inspire them to change the world, or whatever the purpose of your presentation, there must be a stage in which you convey all that you shared and show the path to staying in touch. Plan ahead whether you want to use a thank-you slide, a video presentation, or which method is apt and tailored to the kind of presentation you deliver.
  • Q&A Session: After your speech is concluded, allocate 3-5 minutes for the audience to raise any questions about the information you disclosed. This is an extra chance to establish your authority on the topic. Check our guide on questions and answer sessions in presentations here.

Bar charts are a graphical representation of data using rectangular bars to show quantities or frequencies in an established category. They make it easy for readers to spot patterns or trends. Bar charts can be horizontal or vertical, although the vertical format is commonly known as a column chart. They display categorical, discrete, or continuous variables grouped in class intervals [1] . They include an axis and a set of labeled bars horizontally or vertically. These bars represent the frequencies of variable values or the values themselves. Numbers on the y-axis of a vertical bar chart or the x-axis of a horizontal bar chart are called the scale.

Presentation of the data through bar charts

Real-Life Application of Bar Charts

Let’s say a sales manager is presenting sales to their audience. Using a bar chart, he follows these steps.

Step 1: Selecting Data

The first step is to identify the specific data you will present to your audience.

The sales manager has highlighted these products for the presentation.

  • Product A: Men’s Shoes
  • Product B: Women’s Apparel
  • Product C: Electronics
  • Product D: Home Decor

Step 2: Choosing Orientation

Opt for a vertical layout for simplicity. Vertical bar charts help compare different categories in case there are not too many categories [1] . They can also help show different trends. A vertical bar chart is used where each bar represents one of the four chosen products. After plotting the data, it is seen that the height of each bar directly represents the sales performance of the respective product.

It is visible that the tallest bar (Electronics – Product C) is showing the highest sales. However, the shorter bars (Women’s Apparel – Product B and Home Decor – Product D) need attention. It indicates areas that require further analysis or strategies for improvement.

Step 3: Colorful Insights

Different colors are used to differentiate each product. It is essential to show a color-coded chart where the audience can distinguish between products.

  • Men’s Shoes (Product A): Yellow
  • Women’s Apparel (Product B): Orange
  • Electronics (Product C): Violet
  • Home Decor (Product D): Blue

Accurate bar chart representation of data with a color coded legend

Bar charts are straightforward and easily understandable for presenting data. They are versatile when comparing products or any categorical data [2] . Bar charts adapt seamlessly to retail scenarios. Despite that, bar charts have a few shortcomings. They cannot illustrate data trends over time. Besides, overloading the chart with numerous products can lead to visual clutter, diminishing its effectiveness.

For more information, check our collection of bar chart templates for PowerPoint .

Line graphs help illustrate data trends, progressions, or fluctuations by connecting a series of data points called ‘markers’ with straight line segments. This provides a straightforward representation of how values change [5] . Their versatility makes them invaluable for scenarios requiring a visual understanding of continuous data. In addition, line graphs are also useful for comparing multiple datasets over the same timeline. Using multiple line graphs allows us to compare more than one data set. They simplify complex information so the audience can quickly grasp the ups and downs of values. From tracking stock prices to analyzing experimental results, you can use line graphs to show how data changes over a continuous timeline. They show trends with simplicity and clarity.

Real-life Application of Line Graphs

To understand line graphs thoroughly, we will use a real case. Imagine you’re a financial analyst presenting a tech company’s monthly sales for a licensed product over the past year. Investors want insights into sales behavior by month, how market trends may have influenced sales performance and reception to the new pricing strategy. To present data via a line graph, you will complete these steps.

First, you need to gather the data. In this case, your data will be the sales numbers. For example:

  • January: $45,000
  • February: $55,000
  • March: $45,000
  • April: $60,000
  • May: $ 70,000
  • June: $65,000
  • July: $62,000
  • August: $68,000
  • September: $81,000
  • October: $76,000
  • November: $87,000
  • December: $91,000

After choosing the data, the next step is to select the orientation. Like bar charts, you can use vertical or horizontal line graphs. However, we want to keep this simple, so we will keep the timeline (x-axis) horizontal while the sales numbers (y-axis) vertical.

Step 3: Connecting Trends

After adding the data to your preferred software, you will plot a line graph. In the graph, each month’s sales are represented by data points connected by a line.

Line graph in data presentation

Step 4: Adding Clarity with Color

If there are multiple lines, you can also add colors to highlight each one, making it easier to follow.

Line graphs excel at visually presenting trends over time. These presentation aids identify patterns, like upward or downward trends. However, too many data points can clutter the graph, making it harder to interpret. Line graphs work best with continuous data but are not suitable for categories.

For more information, check our collection of line chart templates for PowerPoint and our article about how to make a presentation graph .

A data dashboard is a visual tool for analyzing information. Different graphs, charts, and tables are consolidated in a layout to showcase the information required to achieve one or more objectives. Dashboards help quickly see Key Performance Indicators (KPIs). You don’t make new visuals in the dashboard; instead, you use it to display visuals you’ve already made in worksheets [3] .

Keeping the number of visuals on a dashboard to three or four is recommended. Adding too many can make it hard to see the main points [4]. Dashboards can be used for business analytics to analyze sales, revenue, and marketing metrics at a time. They are also used in the manufacturing industry, as they allow users to grasp the entire production scenario at the moment while tracking the core KPIs for each line.

Real-Life Application of a Dashboard

Consider a project manager presenting a software development project’s progress to a tech company’s leadership team. He follows the following steps.

Step 1: Defining Key Metrics

To effectively communicate the project’s status, identify key metrics such as completion status, budget, and bug resolution rates. Then, choose measurable metrics aligned with project objectives.

Step 2: Choosing Visualization Widgets

After finalizing the data, presentation aids that align with each metric are selected. For this project, the project manager chooses a progress bar for the completion status and uses bar charts for budget allocation. Likewise, he implements line charts for bug resolution rates.

Data analysis presentation example

Step 3: Dashboard Layout

Key metrics are prominently placed in the dashboard for easy visibility, and the manager ensures that it appears clean and organized.

Dashboards provide a comprehensive view of key project metrics. Users can interact with data, customize views, and drill down for detailed analysis. However, creating an effective dashboard requires careful planning to avoid clutter. Besides, dashboards rely on the availability and accuracy of underlying data sources.

For more information, check our article on how to design a dashboard presentation , and discover our collection of dashboard PowerPoint templates .

Treemap charts represent hierarchical data structured in a series of nested rectangles [6] . As each branch of the ‘tree’ is given a rectangle, smaller tiles can be seen representing sub-branches, meaning elements on a lower hierarchical level than the parent rectangle. Each one of those rectangular nodes is built by representing an area proportional to the specified data dimension.

Treemaps are useful for visualizing large datasets in compact space. It is easy to identify patterns, such as which categories are dominant. Common applications of the treemap chart are seen in the IT industry, such as resource allocation, disk space management, website analytics, etc. Also, they can be used in multiple industries like healthcare data analysis, market share across different product categories, or even in finance to visualize portfolios.

Real-Life Application of a Treemap Chart

Let’s consider a financial scenario where a financial team wants to represent the budget allocation of a company. There is a hierarchy in the process, so it is helpful to use a treemap chart. In the chart, the top-level rectangle could represent the total budget, and it would be subdivided into smaller rectangles, each denoting a specific department. Further subdivisions within these smaller rectangles might represent individual projects or cost categories.

Step 1: Define Your Data Hierarchy

While presenting data on the budget allocation, start by outlining the hierarchical structure. The sequence will be like the overall budget at the top, followed by departments, projects within each department, and finally, individual cost categories for each project.

  • Top-level rectangle: Total Budget
  • Second-level rectangles: Departments (Engineering, Marketing, Sales)
  • Third-level rectangles: Projects within each department
  • Fourth-level rectangles: Cost categories for each project (Personnel, Marketing Expenses, Equipment)

Step 2: Choose a Suitable Tool

It’s time to select a data visualization tool supporting Treemaps. Popular choices include Tableau, Microsoft Power BI, PowerPoint, or even coding with libraries like D3.js. It is vital to ensure that the chosen tool provides customization options for colors, labels, and hierarchical structures.

Here, the team uses PowerPoint for this guide because of its user-friendly interface and robust Treemap capabilities.

Step 3: Make a Treemap Chart with PowerPoint

After opening the PowerPoint presentation, they chose “SmartArt” to form the chart. The SmartArt Graphic window has a “Hierarchy” category on the left.  Here, you will see multiple options. You can choose any layout that resembles a Treemap. The “Table Hierarchy” or “Organization Chart” options can be adapted. The team selects the Table Hierarchy as it looks close to a Treemap.

Step 5: Input Your Data

After that, a new window will open with a basic structure. They add the data one by one by clicking on the text boxes. They start with the top-level rectangle, representing the total budget.  

Treemap used for presenting data

Step 6: Customize the Treemap

By clicking on each shape, they customize its color, size, and label. At the same time, they can adjust the font size, style, and color of labels by using the options in the “Format” tab in PowerPoint. Using different colors for each level enhances the visual difference.

Treemaps excel at illustrating hierarchical structures. These charts make it easy to understand relationships and dependencies. They efficiently use space, compactly displaying a large amount of data, reducing the need for excessive scrolling or navigation. Additionally, using colors enhances the understanding of data by representing different variables or categories.

In some cases, treemaps might become complex, especially with deep hierarchies.  It becomes challenging for some users to interpret the chart. At the same time, displaying detailed information within each rectangle might be constrained by space. It potentially limits the amount of data that can be shown clearly. Without proper labeling and color coding, there’s a risk of misinterpretation.

A heatmap is a data visualization tool that uses color coding to represent values across a two-dimensional surface. In these, colors replace numbers to indicate the magnitude of each cell. This color-shaded matrix display is valuable for summarizing and understanding data sets with a glance [7] . The intensity of the color corresponds to the value it represents, making it easy to identify patterns, trends, and variations in the data.

As a tool, heatmaps help businesses analyze website interactions, revealing user behavior patterns and preferences to enhance overall user experience. In addition, companies use heatmaps to assess content engagement, identifying popular sections and areas of improvement for more effective communication. They excel at highlighting patterns and trends in large datasets, making it easy to identify areas of interest.

We can implement heatmaps to express multiple data types, such as numerical values, percentages, or even categorical data. Heatmaps help us easily spot areas with lots of activity, making them helpful in figuring out clusters [8] . When making these maps, it is important to pick colors carefully. The colors need to show the differences between groups or levels of something. And it is good to use colors that people with colorblindness can easily see.

Check our detailed guide on how to create a heatmap here. Also discover our collection of heatmap PowerPoint templates .

Pie charts are circular statistical graphics divided into slices to illustrate numerical proportions. Each slice represents a proportionate part of the whole, making it easy to visualize the contribution of each component to the total.

The size of the pie charts is influenced by the value of data points within each pie. The total of all data points in a pie determines its size. The pie with the highest data points appears as the largest, whereas the others are proportionally smaller. However, you can present all pies of the same size if proportional representation is not required [9] . Sometimes, pie charts are difficult to read, or additional information is required. A variation of this tool can be used instead, known as the donut chart , which has the same structure but a blank center, creating a ring shape. Presenters can add extra information, and the ring shape helps to declutter the graph.

Pie charts are used in business to show percentage distribution, compare relative sizes of categories, or present straightforward data sets where visualizing ratios is essential.

Real-Life Application of Pie Charts

Consider a scenario where you want to represent the distribution of the data. Each slice of the pie chart would represent a different category, and the size of each slice would indicate the percentage of the total portion allocated to that category.

Step 1: Define Your Data Structure

Imagine you are presenting the distribution of a project budget among different expense categories.

  • Column A: Expense Categories (Personnel, Equipment, Marketing, Miscellaneous)
  • Column B: Budget Amounts ($40,000, $30,000, $20,000, $10,000) Column B represents the values of your categories in Column A.

Step 2: Insert a Pie Chart

Using any of the accessible tools, you can create a pie chart. The most convenient tools for forming a pie chart in a presentation are presentation tools such as PowerPoint or Google Slides.  You will notice that the pie chart assigns each expense category a percentage of the total budget by dividing it by the total budget.

For instance:

  • Personnel: $40,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 40%
  • Equipment: $30,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 30%
  • Marketing: $20,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 20%
  • Miscellaneous: $10,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 10%

You can make a chart out of this or just pull out the pie chart from the data.

Pie chart template in data presentation

3D pie charts and 3D donut charts are quite popular among the audience. They stand out as visual elements in any presentation slide, so let’s take a look at how our pie chart example would look in 3D pie chart format.

3D pie chart in data presentation

Step 03: Results Interpretation

The pie chart visually illustrates the distribution of the project budget among different expense categories. Personnel constitutes the largest portion at 40%, followed by equipment at 30%, marketing at 20%, and miscellaneous at 10%. This breakdown provides a clear overview of where the project funds are allocated, which helps in informed decision-making and resource management. It is evident that personnel are a significant investment, emphasizing their importance in the overall project budget.

Pie charts provide a straightforward way to represent proportions and percentages. They are easy to understand, even for individuals with limited data analysis experience. These charts work well for small datasets with a limited number of categories.

However, a pie chart can become cluttered and less effective in situations with many categories. Accurate interpretation may be challenging, especially when dealing with slight differences in slice sizes. In addition, these charts are static and do not effectively convey trends over time.

For more information, check our collection of pie chart templates for PowerPoint .

Histograms present the distribution of numerical variables. Unlike a bar chart that records each unique response separately, histograms organize numeric responses into bins and show the frequency of reactions within each bin [10] . The x-axis of a histogram shows the range of values for a numeric variable. At the same time, the y-axis indicates the relative frequencies (percentage of the total counts) for that range of values.

Whenever you want to understand the distribution of your data, check which values are more common, or identify outliers, histograms are your go-to. Think of them as a spotlight on the story your data is telling. A histogram can provide a quick and insightful overview if you’re curious about exam scores, sales figures, or any numerical data distribution.

Real-Life Application of a Histogram

In the histogram data analysis presentation example, imagine an instructor analyzing a class’s grades to identify the most common score range. A histogram could effectively display the distribution. It will show whether most students scored in the average range or if there are significant outliers.

Step 1: Gather Data

He begins by gathering the data. The scores of each student in class are gathered to analyze exam scores.

After arranging the scores in ascending order, bin ranges are set.

Step 2: Define Bins

Bins are like categories that group similar values. Think of them as buckets that organize your data. The presenter decides how wide each bin should be based on the range of the values. For instance, the instructor sets the bin ranges based on score intervals: 60-69, 70-79, 80-89, and 90-100.

Step 3: Count Frequency

Now, he counts how many data points fall into each bin. This step is crucial because it tells you how often specific ranges of values occur. The result is the frequency distribution, showing the occurrences of each group.

Here, the instructor counts the number of students in each category.

  • 60-69: 1 student (Kate)
  • 70-79: 4 students (David, Emma, Grace, Jack)
  • 80-89: 7 students (Alice, Bob, Frank, Isabel, Liam, Mia, Noah)
  • 90-100: 3 students (Clara, Henry, Olivia)

Step 4: Create the Histogram

It’s time to turn the data into a visual representation. Draw a bar for each bin on a graph. The width of the bar should correspond to the range of the bin, and the height should correspond to the frequency.  To make your histogram understandable, label the X and Y axes.

In this case, the X-axis should represent the bins (e.g., test score ranges), and the Y-axis represents the frequency.

Histogram in Data Presentation

The histogram of the class grades reveals insightful patterns in the distribution. Most students, with seven students, fall within the 80-89 score range. The histogram provides a clear visualization of the class’s performance. It showcases a concentration of grades in the upper-middle range with few outliers at both ends. This analysis helps in understanding the overall academic standing of the class. It also identifies the areas for potential improvement or recognition.

Thus, histograms provide a clear visual representation of data distribution. They are easy to interpret, even for those without a statistical background. They apply to various types of data, including continuous and discrete variables. One weak point is that histograms do not capture detailed patterns in students’ data, with seven compared to other visualization methods.

A scatter plot is a graphical representation of the relationship between two variables. It consists of individual data points on a two-dimensional plane. This plane plots one variable on the x-axis and the other on the y-axis. Each point represents a unique observation. It visualizes patterns, trends, or correlations between the two variables.

Scatter plots are also effective in revealing the strength and direction of relationships. They identify outliers and assess the overall distribution of data points. The points’ dispersion and clustering reflect the relationship’s nature, whether it is positive, negative, or lacks a discernible pattern. In business, scatter plots assess relationships between variables such as marketing cost and sales revenue. They help present data correlations and decision-making.

Real-Life Application of Scatter Plot

A group of scientists is conducting a study on the relationship between daily hours of screen time and sleep quality. After reviewing the data, they managed to create this table to help them build a scatter plot graph:

In the provided example, the x-axis represents Daily Hours of Screen Time, and the y-axis represents the Sleep Quality Rating.

Scatter plot in data presentation

The scientists observe a negative correlation between the amount of screen time and the quality of sleep. This is consistent with their hypothesis that blue light, especially before bedtime, has a significant impact on sleep quality and metabolic processes.

There are a few things to remember when using a scatter plot. Even when a scatter diagram indicates a relationship, it doesn’t mean one variable affects the other. A third factor can influence both variables. The more the plot resembles a straight line, the stronger the relationship is perceived [11] . If it suggests no ties, the observed pattern might be due to random fluctuations in data. When the scatter diagram depicts no correlation, whether the data might be stratified is worth considering.

Choosing the appropriate data presentation type is crucial when making a presentation . Understanding the nature of your data and the message you intend to convey will guide this selection process. For instance, when showcasing quantitative relationships, scatter plots become instrumental in revealing correlations between variables. If the focus is on emphasizing parts of a whole, pie charts offer a concise display of proportions. Histograms, on the other hand, prove valuable for illustrating distributions and frequency patterns. 

Bar charts provide a clear visual comparison of different categories. Likewise, line charts excel in showcasing trends over time, while tables are ideal for detailed data examination. Starting a presentation on data presentation types involves evaluating the specific information you want to communicate and selecting the format that aligns with your message. This ensures clarity and resonance with your audience from the beginning of your presentation.

1. Fact Sheet Dashboard for Data Presentation

graphical representation of data in ppt

Convey all the data you need to present in this one-pager format, an ideal solution tailored for users looking for presentation aids. Global maps, donut chats, column graphs, and text neatly arranged in a clean layout presented in light and dark themes.

Use This Template

2. 3D Column Chart Infographic PPT Template

graphical representation of data in ppt

Represent column charts in a highly visual 3D format with this PPT template. A creative way to present data, this template is entirely editable, and we can craft either a one-page infographic or a series of slides explaining what we intend to disclose point by point.

3. Data Circles Infographic PowerPoint Template

graphical representation of data in ppt

An alternative to the pie chart and donut chart diagrams, this template features a series of curved shapes with bubble callouts as ways of presenting data. Expand the information for each arch in the text placeholder areas.

4. Colorful Metrics Dashboard for Data Presentation

graphical representation of data in ppt

This versatile dashboard template helps us in the presentation of the data by offering several graphs and methods to convert numbers into graphics. Implement it for e-commerce projects, financial projections, project development, and more.

5. Animated Data Presentation Tools for PowerPoint & Google Slides

Canvas Shape Tree Diagram Template

A slide deck filled with most of the tools mentioned in this article, from bar charts, column charts, treemap graphs, pie charts, histogram, etc. Animated effects make each slide look dynamic when sharing data with stakeholders.

6. Statistics Waffle Charts PPT Template for Data Presentations

graphical representation of data in ppt

This PPT template helps us how to present data beyond the typical pie chart representation. It is widely used for demographics, so it’s a great fit for marketing teams, data science professionals, HR personnel, and more.

7. Data Presentation Dashboard Template for Google Slides

graphical representation of data in ppt

A compendium of tools in dashboard format featuring line graphs, bar charts, column charts, and neatly arranged placeholder text areas. 

8. Weather Dashboard for Data Presentation

graphical representation of data in ppt

Share weather data for agricultural presentation topics, environmental studies, or any kind of presentation that requires a highly visual layout for weather forecasting on a single day. Two color themes are available.

9. Social Media Marketing Dashboard Data Presentation Template

graphical representation of data in ppt

Intended for marketing professionals, this dashboard template for data presentation is a tool for presenting data analytics from social media channels. Two slide layouts featuring line graphs and column charts.

10. Project Management Summary Dashboard Template

graphical representation of data in ppt

A tool crafted for project managers to deliver highly visual reports on a project’s completion, the profits it delivered for the company, and expenses/time required to execute it. 4 different color layouts are available.

11. Profit & Loss Dashboard for PowerPoint and Google Slides

graphical representation of data in ppt

A must-have for finance professionals. This typical profit & loss dashboard includes progress bars, donut charts, column charts, line graphs, and everything that’s required to deliver a comprehensive report about a company’s financial situation.

Overwhelming visuals

One of the mistakes related to using data-presenting methods is including too much data or using overly complex visualizations. They can confuse the audience and dilute the key message.

Inappropriate chart types

Choosing the wrong type of chart for the data at hand can lead to misinterpretation. For example, using a pie chart for data that doesn’t represent parts of a whole is not right.

Lack of context

Failing to provide context or sufficient labeling can make it challenging for the audience to understand the significance of the presented data.

Inconsistency in design

Using inconsistent design elements and color schemes across different visualizations can create confusion and visual disarray.

Failure to provide details

Simply presenting raw data without offering clear insights or takeaways can leave the audience without a meaningful conclusion.

Lack of focus

Not having a clear focus on the key message or main takeaway can result in a presentation that lacks a central theme.

Visual accessibility issues

Overlooking the visual accessibility of charts and graphs can exclude certain audience members who may have difficulty interpreting visual information.

In order to avoid these mistakes in data presentation, presenters can benefit from using presentation templates . These templates provide a structured framework. They ensure consistency, clarity, and an aesthetically pleasing design, enhancing data communication’s overall impact.

Understanding and choosing data presentation types are pivotal in effective communication. Each method serves a unique purpose, so selecting the appropriate one depends on the nature of the data and the message to be conveyed. The diverse array of presentation types offers versatility in visually representing information, from bar charts showing values to pie charts illustrating proportions. 

Using the proper method enhances clarity, engages the audience, and ensures that data sets are not just presented but comprehensively understood. By appreciating the strengths and limitations of different presentation types, communicators can tailor their approach to convey information accurately, developing a deeper connection between data and audience understanding.

[1] Government of Canada, S.C. (2021) 5 Data Visualization 5.2 Bar Chart , 5.2 Bar chart .  https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch9/bargraph-diagrammeabarres/5214818-eng.htm

[2] Kosslyn, S.M., 1989. Understanding charts and graphs. Applied cognitive psychology, 3(3), pp.185-225. https://apps.dtic.mil/sti/pdfs/ADA183409.pdf

[3] Creating a Dashboard . https://it.tufts.edu/book/export/html/1870

[4] https://www.goldenwestcollege.edu/research/data-and-more/data-dashboards/index.html

[5] https://www.mit.edu/course/21/21.guide/grf-line.htm

[6] Jadeja, M. and Shah, K., 2015, January. Tree-Map: A Visualization Tool for Large Data. In GSB@ SIGIR (pp. 9-13). https://ceur-ws.org/Vol-1393/gsb15proceedings.pdf#page=15

[7] Heat Maps and Quilt Plots. https://www.publichealth.columbia.edu/research/population-health-methods/heat-maps-and-quilt-plots

[8] EIU QGIS WORKSHOP. https://www.eiu.edu/qgisworkshop/heatmaps.php

[9] About Pie Charts.  https://www.mit.edu/~mbarker/formula1/f1help/11-ch-c8.htm

[10] Histograms. https://sites.utexas.edu/sos/guided/descriptive/numericaldd/descriptiven2/histogram/ [11] https://asq.org/quality-resources/scatter-diagram

graphical representation of data in ppt

Like this article? Please share

Data Analysis, Data Science, Data Visualization Filed under Design

Related Articles

How to Make a Presentation Graph

Filed under Design • March 27th, 2024

How to Make a Presentation Graph

Detailed step-by-step instructions to master the art of how to make a presentation graph in PowerPoint and Google Slides. Check it out!

All About Using Harvey Balls

Filed under Presentation Ideas • January 6th, 2024

All About Using Harvey Balls

Among the many tools in the arsenal of the modern presenter, Harvey Balls have a special place. In this article we will tell you all about using Harvey Balls.

How to Design a Dashboard Presentation: A Step-by-Step Guide

Filed under Business • December 8th, 2023

How to Design a Dashboard Presentation: A Step-by-Step Guide

Take a step further in your professional presentation skills by learning what a dashboard presentation is and how to properly design one in PowerPoint. A detailed step-by-step guide is here!

Leave a Reply

graphical representation of data in ppt

Graphical Representation of Data

Graphical representation of data is an attractive method of showcasing numerical data that help in analyzing and representing quantitative data visually. A graph is a kind of a chart where data are plotted as variables across the coordinate. It became easy to analyze the extent of change of one variable based on the change of other variables. Graphical representation of data is done through different mediums such as lines, plots, diagrams, etc. Let us learn more about this interesting concept of graphical representation of data, the different types, and solve a few examples.

Definition of Graphical Representation of Data

A graphical representation is a visual representation of data statistics-based results using graphs, plots, and charts. This kind of representation is more effective in understanding and comparing data than seen in a tabular form. Graphical representation helps to qualify, sort, and present data in a method that is simple to understand for a larger audience. Graphs enable in studying the cause and effect relationship between two variables through both time series and frequency distribution. The data that is obtained from different surveying is infused into a graphical representation by the use of some symbols, such as lines on a line graph, bars on a bar chart, or slices of a pie chart. This visual representation helps in clarity, comparison, and understanding of numerical data.

Representation of Data

The word data is from the Latin word Datum, which means something given. The numerical figures collected through a survey are called data and can be represented in two forms - tabular form and visual form through graphs. Once the data is collected through constant observations, it is arranged, summarized, and classified to finally represented in the form of a graph. There are two kinds of data - quantitative and qualitative. Quantitative data is more structured, continuous, and discrete with statistical data whereas qualitative is unstructured where the data cannot be analyzed.

Principles of Graphical Representation of Data

The principles of graphical representation are algebraic. In a graph, there are two lines known as Axis or Coordinate axis. These are the X-axis and Y-axis. The horizontal axis is the X-axis and the vertical axis is the Y-axis. They are perpendicular to each other and intersect at O or point of Origin. On the right side of the Origin, the Xaxis has a positive value and on the left side, it has a negative value. In the same way, the upper side of the Origin Y-axis has a positive value where the down one is with a negative value. When -axis and y-axis intersect each other at the origin it divides the plane into four parts which are called Quadrant I, Quadrant II, Quadrant III, Quadrant IV. This form of representation is seen in a frequency distribution that is represented in four methods, namely Histogram, Smoothed frequency graph, Pie diagram or Pie chart, Cumulative or ogive frequency graph, and Frequency Polygon.

Principle of Graphical Representation of Data

Advantages and Disadvantages of Graphical Representation of Data

Listed below are some advantages and disadvantages of using a graphical representation of data:

  • It improves the way of analyzing and learning as the graphical representation makes the data easy to understand.
  • It can be used in almost all fields from mathematics to physics to psychology and so on.
  • It is easy to understand for its visual impacts.
  • It shows the whole and huge data in an instance.
  • It is mainly used in statistics to determine the mean, median, and mode for different data

The main disadvantage of graphical representation of data is that it takes a lot of effort as well as resources to find the most appropriate data and then represent it graphically.

Rules of Graphical Representation of Data

While presenting data graphically, there are certain rules that need to be followed. They are listed below:

  • Suitable Title: The title of the graph should be appropriate that indicate the subject of the presentation.
  • Measurement Unit: The measurement unit in the graph should be mentioned.
  • Proper Scale: A proper scale needs to be chosen to represent the data accurately.
  • Index: For better understanding, index the appropriate colors, shades, lines, designs in the graphs.
  • Data Sources: Data should be included wherever it is necessary at the bottom of the graph.
  • Simple: The construction of a graph should be easily understood.
  • Neat: The graph should be visually neat in terms of size and font to read the data accurately.

Uses of Graphical Representation of Data

The main use of a graphical representation of data is understanding and identifying the trends and patterns of the data. It helps in analyzing large quantities, comparing two or more data, making predictions, and building a firm decision. The visual display of data also helps in avoiding confusion and overlapping of any information. Graphs like line graphs and bar graphs, display two or more data clearly for easy comparison. This is important in communicating our findings to others and our understanding and analysis of the data.

Types of Graphical Representation of Data

Data is represented in different types of graphs such as plots, pies, diagrams, etc. They are as follows,

Related Topics

Listed below are a few interesting topics that are related to the graphical representation of data, take a look.

  • x and y graph
  • Frequency Polygon
  • Cumulative Frequency

Examples on Graphical Representation of Data

Example 1 : A pie chart is divided into 3 parts with the angles measuring as 2x, 8x, and 10x respectively. Find the value of x in degrees.

We know, the sum of all angles in a pie chart would give 360º as result. ⇒ 2x + 8x + 10x = 360º ⇒ 20 x = 360º ⇒ x = 360º/20 ⇒ x = 18º Therefore, the value of x is 18º.

Example 2: Ben is trying to read the plot given below. His teacher has given him stem and leaf plot worksheets. Can you help him answer the questions? i) What is the mode of the plot? ii) What is the mean of the plot? iii) Find the range.

Solution: i) Mode is the number that appears often in the data. Leaf 4 occurs twice on the plot against stem 5.

Hence, mode = 54

ii) The sum of all data values is 12 + 14 + 21 + 25 + 28 + 32 + 34 + 36 + 50 + 53 + 54 + 54 + 62 + 65 + 67 + 83 + 88 + 89 + 91 = 958

To find the mean, we have to divide the sum by the total number of values.

Mean = Sum of all data values ÷ 19 = 958 ÷ 19 = 50.42

iii) Range = the highest value - the lowest value = 91 - 12 = 79

go to slide go to slide

graphical representation of data in ppt

Book a Free Trial Class

Practice Questions on Graphical Representation of Data

Faqs on graphical representation of data, what is graphical representation.

Graphical representation is a form of visually displaying data through various methods like graphs, diagrams, charts, and plots. It helps in sorting, visualizing, and presenting data in a clear manner through different types of graphs. Statistics mainly use graphical representation to show data.

What are the Different Types of Graphical Representation?

The different types of graphical representation of data are:

  • Stem and leaf plot
  • Scatter diagrams
  • Frequency Distribution

Is the Graphical Representation of Numerical Data?

Yes, these graphical representations are numerical data that has been accumulated through various surveys and observations. The method of presenting these numerical data is called a chart. There are different kinds of charts such as a pie chart, bar graph, line graph, etc, that help in clearly showcasing the data.

What is the Use of Graphical Representation of Data?

Graphical representation of data is useful in clarifying, interpreting, and analyzing data plotting points and drawing line segments , surfaces, and other geometric forms or symbols.

What are the Ways to Represent Data?

Tables, charts, and graphs are all ways of representing data, and they can be used for two broad purposes. The first is to support the collection, organization, and analysis of data as part of the process of a scientific study.

What is the Objective of Graphical Representation of Data?

The main objective of representing data graphically is to display information visually that helps in understanding the information efficiently, clearly, and accurately. This is important to communicate the findings as well as analyze the data.

SlidePlayer

  • My presentations

Auth with social network:

Download presentation

We think you have liked this presentation. If you wish to download it, please recommend it to your friends in any social system. Share buttons are a little bit lower. Thank you!

Presentation is loading. Please wait.

Graphical Representation of Data

Published by Anis Shaw Modified over 6 years ago

Similar presentations

Presentation on theme: "Graphical Representation of Data"— Presentation transcript:

Graphical Representation of Data

Excel 2003: Chart types. Column chart Shows data changes over a period of time Shows data changes over a period of time Or illustrates comparisons among.

graphical representation of data in ppt

Graphic representations in statistics (part II). Statistics graph Data recorded in surveys are displayed by a statistical graph. There are some specific.

graphical representation of data in ppt

Reading Graphs and Charts are more attractive and easy to understand than tables enable the reader to ‘see’ patterns in the data are easy to use for comparisons.

graphical representation of data in ppt

Objectives Explain how scientists use statistics.

graphical representation of data in ppt

TABLES, CHARTS, AND GRAPHS. TABLES  A Table is simply a set of numbers from which you could draw a graph or chart.  A table should provide a clear summary.

graphical representation of data in ppt

Presentation of Data.

graphical representation of data in ppt

The Stats Unit.

graphical representation of data in ppt

Climate Graphs.

graphical representation of data in ppt

© 2008 Pearson Addison-Wesley. All rights reserved Chapter 1 Section 13-1 Visual Displays of Data.

graphical representation of data in ppt

Who is the best cricketer?. BATTING AVERAGE IN CRICKET In cricket, a player's batting average is the total number of runs he has scored divided by the.

graphical representation of data in ppt

Copyright © Cengage Learning. All rights reserved. 2 Organizing Data.

graphical representation of data in ppt

Chapter 13: Interpreting Graphic Aids

graphical representation of data in ppt

Tools of Environmental ScienceSection 2 Section 2: Statistics and Models Preview Bellringer Objectives How Scientists use Statistics Statistics Works with.

graphical representation of data in ppt

Dr. Asawer A. Alwasiti.  Chapter one: Introduction  Chapter two: Frequency Distribution  Chapter Three: Measures of Central Tendency  Chapter Four:

graphical representation of data in ppt

 Statistics is the collection and classification of data that are in the form of numbers. Scientists rely on and use statistics to summarize, characterize,

graphical representation of data in ppt

Chapter 2 Data Presentation Using Descriptive Graphs.

graphical representation of data in ppt

Chapter 2 Graphs, Charts, and Tables - Describing Your Data ©

graphical representation of data in ppt

Presentation Of Data. Data Presentation All business decisions are based on evaluation of some data All business decisions are based on evaluation of.

graphical representation of data in ppt

Virtual University of Pakistan Lecture No. 3 Statistics and Probability By: Miss Saleha Naghmi Habibullah.

About project

© 2024 SlidePlayer.com Inc. All rights reserved.

easybiologyclass, Easybiologyclass, EBC, ebc

Graphical Representation of Data PPT (Power Point Presentation)

Graphical representation of data ppt (line diagram, bar diagram, histogram, frequency curve, ogive and pie chart).

What is graphical representation? Importance of Graphical Representation, Advantages of Graphical Representation, Disadvantages of Graphical Representation, Things to remember when constructing a Graph, Different types of graphs / charts: Line Diagram, Bar diagram, Simple Vertical Bar Diagram, Subdivided Bar Diagram, Multiple Bar Diagram, Percentage Bar Diagram, Histogram, Frequency Polygon, Frequency Curve, Ogive, Less Than Ogive, Greater Than Ogive, Calculating Median from Ogive, Pie Chart, Relative Frequency and Pie Diagram.

Learn more: Lecture Note in Graphical Representation of Data Part 1 , Part 2

Please be patient to load the online preview….

You can DOWNLOAD the PPT by clicking on the download link below the preview…

Please be patient for few seconds to load the PPT preview…

More Biostatistics  PPTs

Biometric PPT

You may also like…

@. Cell and Molecular Biology PPT

@. Biotechnology PPT

@. Genetics PPT

@. Evolution PPT

@. Immunology PPT

@. Ecology / Environmental Science / Diversity PPT

@. Microbiology PPT

@. Human Physiology / Endocrinology PPT

@. Plant Physiology PPT

@. Biophysics PPT

@. Biostatistics PPT

@. Research Methodology PPT

@. Botany PPT

@. Zoology PPT

Please Share for your Students, Colleagues, Friends and Relatives…

Related posts:

  • Classification and Tabulation of Data PPT
  • Frequency Distribution PPT
  • Hypothesis Testing PPT
  • Errors in Statistics PPT (Type I and Type II Errors)
  • Nucleotide Biosynthesis PPT (Synthesis of Purine and Pyrimidine PPT)

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Privacy Overview

graphical representation of data

Graphical Representation of Data

Jul 09, 2014

820 likes | 3.58k Views

Graphical Representation of Data. Meaning : Graphical representation of data is the geometrical image of a set of data. It is a mathematical picture. It enables us to think about a statistical problem in visual terms. Advantages . Attractive and an appealing form.

Share Presentation

  • national counil
  • parental income certificate
  • visual terms
  • choice based credit system

sophie

Presentation Transcript

Graphical Representation of Data Meaning : Graphical representation of data is the geometrical image of a set of data. It is a mathematical picture. It enables us to think about a statistical problem in visual terms.

Advantages Attractive and an appealing form. Lasting effect on the brain. Comparative analysis and interpretation is effectively and easily made.

Through such representation we also get an indication of correlation between two variables. • The real value of graphical representation lies in its economy and effectiveness. It carries a lot of communication power.

Economy and efficiency of presentation

Two types of data • 1. Ungrouped data • 2. Grouped data. • Ungrouped data is in the form of raw scores. • When it is organised into frequency distribution, then it is referred to as Grouped data.

Graphical representation of ungrouped data. • Bar graph or bar diagrams • Circle graph or pie diagrams • Pictograms • Line graphs

Why RIEM? • Regional Institute of Education, Mysore is a constituent unit of National Counil of Educational Research and Training (NCERT), an autonomous body under the Ministry of Human Resource Development, Government of India. we are committed to delivering quality Teacher Education programmess both pre-service and in-service. Currently we offer four year integrated teacher preparation programmes of BA.Ed and BSc.Ed. for preparing secondary school teachers in Science, Mathematics, English and Social Science. Six year integarted teacher preparation programme to prepare Higher Secondary School Teachers in Physics/Chemistry/Mathematics. Our in-service programmes cater to the professional development needs of teachers, teacher educators and other school functionaries. In addition we also have one year programme on Guidance and Counselling for preparing teacher counsellors.We have a strong team of faculty members who have proven excellence in teaching and research. We also work closely with the Ministry of Human Resource Development in Implementing various Government of India initiatives in school education. We have a good track record of campus placement for our students and in the recent years almost 100% of them get the placements through the campus recruitment. • All students belonging to the Scheduled Castes/Tribes admitted to the Institute shall be awarded scholarship, provided they are not getting any financial assistance from any other source. Upto 50% of the remaining students will be awarded the merit-cum-means scholarship as per rules. The amount of schiolarship payable is • Rs.800/- per month for BSc.Ed, BA.Ed and MSc.Ed (I to VIII semesters) • Rs.1200/- per month for MSc.Ed. (IX to XII semesters) and MEd. • In addition to this 20% of the remaining students will be awarded freeship as per rules. The selected candidate has to submit parental income certificate at the time of admission. The Institute revise its curriculum on a continous basis keeping in pace with latest developments. All the courses are currently affiliated to the University of Mysore and we follow Choice Based Credit System for all the courses.

EMMRC has produced over 800 programmes in the past two decades, including varied subject selection like Science, Economics, Technology, Sports, Culture, Archaeological Heritage, People, Places and so on. Additional to this we have various multiple part series' on subjects such as Entrepreneurship and Media, Girl-Child Education and Architectural Sites as well as on sports like Hockey  

Our programmes are strictly based on the needs and interest preferences of our viewers and we have study reports and research papers to substantiate our viewer-oriented approach. 

  • More by User

Statistics: Representation of Data

Statistics: Representation of Data

Statistics: Representation of Data. Definition of Statistics: The science of producing unreliable facts from reliable figures. Evan Esar Read more: http://www.brainyquote.com/quotes/keywords/statistics.html#ixzz1JQITwxvL. Scatterplots & Correlation.

1.5k views • 46 slides

Data Representation

Data Representation

Data Representation. Dr. Bernard Chen Ph.D. University of Central Arkansas. Outline. Data Representation Compliments Subtraction of Unsigned Numbers using r’s complement How To Represent Signed Numbers Floating-Point Representation. Data Types.

1.17k views • 73 slides

Graphical Displays of Data

Graphical Displays of Data

Graphical Displays of Data. EPSY 5245 Michael C. Rodriguez. Graphical Display of Data. Format depends on purpose Make important data stand out Draw attention to the important features of the data Focus on the data of concern Proofread and ask: Does this say what I need it to say?.

556 views • 36 slides

Representation of spatial data

Representation of spatial data

Representation of spatial data. GIS thematic layers, raster and vector, conversi on , subdivisi on representation, continu ous data: contours, DEMs, TINs. Thematic map la yers. Separate storage of data according to them e : map la yers (or data layers)

606 views • 44 slides

Graphical Presentation of Data

Graphical Presentation of Data

Graphical Presentation of Data. Graphical Presentation of Data. Qualitative Data. Bar Diagram. A graphical method for depicting qualitative data. Specify the labels for each of the classes on the horizontal axis.

662 views • 40 slides

Graphical Examination of Data

Graphical Examination of Data

Graphical Examination of Data. 1.12.1999 Jaakko Leppänen [email protected]. Sources. H. Anderson, T. Black: Multivariate Data Analysis, (5th ed., p.40-46) . Yi-tzuu Chien: Interactive Pattern Recognition, (Chapter 3.4) .

411 views • 29 slides

Data Representation

Data Representation. Art 311 Dr. J R. Parker Fall 2010. Data Representation. The basic question today is: “Given that a computer only manipulates numbers, how can we represent interesting things like images, sounds, graphics, text, video, and so on”?

687 views • 55 slides

Representation of Data

Representation of Data

Representation of Data. Ma King Man. Reference. Text Book: Volume 2 Notes: Chapter 19. Road Map. Number System Base Conversion between binary, octal and hexadecimal system Base conversion from any base to decimal Base concersion from decimal to any base Fixed - point representation

399 views • 25 slides

Representation of data types

Representation of data types

Representation of data types. Integers (int) are represented as a signed binary number. Ex. (5) 10 = (0101) 2 (-5) 10 = (?) 2 Take the 1-complement of 0101, That is 1010, and add 1 which gives 1011. 1011 is the representation of -5 The left-most bit is named the sign bit.

251 views • 15 slides

Graphical Displays of Data

Graphical Displays of Data. Section 2.2. Objectives. Create and interpret the basic types of graphs used to display data. Introduction. A graph is a snapshot that allows us to view patterns at a glance without undergoing lengthy analysis of the data.

405 views • 22 slides

HyperMSC – a Graphical Representation of TTCN

HyperMSC – a Graphical Representation of TTCN

HyperMSC – a Graphical Representation of TTCN. Jens Grabowski University of Lübeck, Institute for Telematics joint work with Ekkart Rudolph and Ina Schieferdecker. Outline. Motivation STF 156 Objectives Initial trials Advanced trials Future. Motivation (1).

341 views • 25 slides

Graphical Descriptions of Data

Graphical Descriptions of Data

Graphical Descriptions of Data. Chapter 2. Outline. 2.1 Frequency Distributions 2.2 Graphical Displays of Data 2.3 Analyzing Graphs. Introduction. After collecting data as described in Chapter 1, you need to organize it so that inferences and conclusions can be drawn

257 views • 15 slides

Graphical Analysis of Data

Graphical Analysis of Data

Graphical Analysis of Data. Details on website http://sst.tees.ac.uk/external/U0000504 select “Res/Sci” method on main menu. Graphical Analysis. Pictorial representation of a mathematical relationship Two main approaches Analytical Based on theory Empirical

334 views • 16 slides

Graphical Representation of Climate Model Architecture

Graphical Representation of Climate Model Architecture

Graphical Representation of Climate Model Architecture. Kaitlin Alexander, University of Manitoba Steve Easterbrook, University of Toronto. Intercomparison Projects. CMIP5 PMIP3 GeoMIP Architecture?. EMICs. GCMs. UVic ESCM 2.9. COSMOS 1.2.1 Model E HadGEM3 CESM 1.0.2 GFDL CM 2.1

372 views • 18 slides

Chapter Three Graphical Image and Data Representation

Chapter Three Graphical Image and Data Representation

Chapter Three Graphical Image and Data Representation Dr. Abbas Fadhil Mohammed Ali AL-Juboori [email protected] [email protected] 2013. Graphics: Terminology. Pixels picture elements in digital images Image Resolution

581 views • 43 slides

Graphical Presentation of Data

Graphical Presentation of Data. Descriptive Statistics can be divided into two subject areas Graphical methods, and Numerical methods.

571 views • 10 slides

GRAPHICAL REPRESENTATION

GRAPHICAL REPRESENTATION

GRAPHICAL REPRESENTATION. LP Model. DEFINITIONS. Solution – Values of Decision variables x j (j=1,2,…n) that satisfy the constraints of the LP problem are said to constitute solution to that problem.

355 views • 17 slides

Graphical Examination of Data

313 views • 29 slides

Lattice Representation of Data

Lattice Representation of Data

Lattice Representation of Data. Dr. Alex Pogel Physical Science Laboratory New Mexico State University. Basic Idea. Replace tabular representation by lattice representation in order to reveal hierarchical structure Basic definitions Information in the lattice

419 views • 38 slides

  • Math Article

Graphical Representation

Graphical Representation is a way of analysing numerical data. It exhibits the relation between data, ideas, information and concepts in a diagram. It is easy to understand and it is one of the most important learning strategies. It always depends on the type of information in a particular domain. There are different types of graphical representation. Some of them are as follows:

  • Line Graphs – Line graph or the linear graph is used to display the continuous data and it is useful for predicting future events over time.
  • Bar Graphs – Bar Graph is used to display the category of data and it compares the data using solid bars to represent the quantities.
  • Histograms – The graph that uses bars to represent the frequency of numerical data that are organised into intervals. Since all the intervals are equal and continuous, all the bars have the same width.
  • Line Plot – It shows the frequency of data on a given number line. ‘ x ‘ is placed above a number line each time when that data occurs again.
  • Frequency Table – The table shows the number of pieces of data that falls within the given interval.
  • Circle Graph – Also known as the pie chart that shows the relationships of the parts of the whole. The circle is considered with 100% and the categories occupied is represented with that specific percentage like 15%, 56%, etc.
  • Stem and Leaf Plot – In the stem and leaf plot, the data are organised from least value to the greatest value. The digits of the least place values from the leaves and the next place value digit forms the stems.
  • Box and Whisker Plot – The plot diagram summarises the data by dividing into four parts. Box and whisker show the range (spread) and the middle ( median) of the data.

Graphical Representation

General Rules for Graphical Representation of Data

There are certain rules to effectively present the information in the graphical representation. They are:

  • Suitable Title: Make sure that the appropriate title is given to the graph which indicates the subject of the presentation.
  • Measurement Unit: Mention the measurement unit in the graph.
  • Proper Scale: To represent the data in an accurate manner, choose a proper scale.
  • Index: Index the appropriate colours, shades, lines, design in the graphs for better understanding.
  • Data Sources: Include the source of information wherever it is necessary at the bottom of the graph.
  • Keep it Simple: Construct a graph in an easy way that everyone can understand.
  • Neat: Choose the correct size, fonts, colours etc in such a way that the graph should be a visual aid for the presentation of information.

Graphical Representation in Maths

In Mathematics, a graph is defined as a chart with statistical data, which are represented in the form of curves or lines drawn across the coordinate point plotted on its surface. It helps to study the relationship between two variables where it helps to measure the change in the variable amount with respect to another variable within a given interval of time. It helps to study the series distribution and frequency distribution for a given problem.  There are two types of graphs to visually depict the information. They are:

  • Time Series Graphs – Example: Line Graph
  • Frequency Distribution Graphs – Example: Frequency Polygon Graph

Principles of Graphical Representation

Algebraic principles are applied to all types of graphical representation of data. In graphs, it is represented using two lines called coordinate axes. The horizontal axis is denoted as the x-axis and the vertical axis is denoted as the y-axis. The point at which two lines intersect is called an origin ‘O’. Consider x-axis, the distance from the origin to the right side will take a positive value and the distance from the origin to the left side will take a negative value. Similarly, for the y-axis, the points above the origin will take a positive value, and the points below the origin will a negative value.

Principles of graphical representation

Generally, the frequency distribution is represented in four methods, namely

  • Smoothed frequency graph
  • Pie diagram
  • Cumulative or ogive frequency graph
  • Frequency Polygon

Merits of Using Graphs

Some of the merits of using graphs are as follows:

  • The graph is easily understood by everyone without any prior knowledge.
  • It saves time
  • It allows us to relate and compare the data for different time periods
  • It is used in statistics to determine the mean, median and mode for different data, as well as in the interpolation and the extrapolation of data.

Example for Frequency polygonGraph

Here are the steps to follow to find the frequency distribution of a frequency polygon and it is represented in a graphical way.

  • Obtain the frequency distribution and find the midpoints of each class interval.
  • Represent the midpoints along x-axis and frequencies along the y-axis.
  • Plot the points corresponding to the frequency at each midpoint.
  • Join these points, using lines in order.
  • To complete the polygon, join the point at each end immediately to the lower or higher class marks on the x-axis.

Draw the frequency polygon for the following data

Mark the class interval along x-axis and frequencies along the y-axis.

Let assume that class interval 0-10 with frequency zero and 90-100 with frequency zero.

Now calculate the midpoint of the class interval.

Using the midpoint and the frequency value from the above table, plot the points A (5, 0), B (15, 4), C (25, 6), D (35, 8), E (45, 10), F (55, 12), G (65, 14), H (75, 7), I (85, 5) and J (95, 0).

To obtain the frequency polygon ABCDEFGHIJ, draw the line segments AB, BC, CD, DE, EF, FG, GH, HI, IJ, and connect all the points.

graphical representation of data in ppt

Frequently Asked Questions

What are the different types of graphical representation.

Some of the various types of graphical representation include:

  • Line Graphs
  • Frequency Table
  • Circle Graph, etc.

Read More:  Types of Graphs

What are the Advantages of Graphical Method?

Some of the advantages of graphical representation are:

  • It makes data more easily understandable.
  • It saves time.
  • It makes the comparison of data more efficient.

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

graphical representation of data in ppt

Very useful for understand the basic concepts in simple and easy way. Its very useful to all students whether they are school students or college sudents

Thanks very much for the information

graphical representation of data in ppt

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

  • Graphic Presentation of Data

Apart from diagrams, Graphic presentation is another way of the presentation of data and information. Usually, graphs are used to present time series and frequency distributions. In this article, we will look at the graphic presentation of data and information along with its merits, limitations , and types.

Suggested Videos

Construction of a graph.

The graphic presentation of data and information offers a quick and simple way of understanding the features and drawing comparisons. Further, it is an effective analytical tool and a graph can help us in finding the mode, median, etc.

We can locate a point in a plane using two mutually perpendicular lines – the X-axis (the horizontal line) and the Y-axis (the vertical line). Their point of intersection is the Origin .

We can locate the position of a point in terms of its distance from both these axes. For example, if a point P is 3 units away from the Y-axis and 5 units away from the X-axis, then its location is as follows:

presentation of data and information

Browse more Topics under Descriptive Statistics

  • Definition and Characteristics of Statistics
  • Stages of Statistical Enquiry
  • Importance and Functions of Statistics
  • Nature of Statistics – Science or Art?
  • Application of Statistics
  • Law of Statistics and Distrust of Statistics
  • Meaning and Types of Data
  • Methods of Collecting Data
  • Sample Investigation
  • Classification of Data
  • Tabulation of Data
  • Frequency Distribution of Data
  • Diagrammatic Presentation of Data
  • Measures of Central Tendency
  • Mean Median Mode
  • Measures of Dispersion
  • Standard Deviation
  • Variance Analysis

Some points to remember:

  • We measure the distance of the point from the Y-axis along the X-axis. Similarly, we measure the distance of the point from the X-axis along the Y-axis. Therefore, to measure 3 units from the Y-axis, we move 3 units along the X-axis and likewise for the other coordinate .
  • We then draw perpendicular lines from these two points.
  • The point where the perpendiculars intersect is the position of the point P.
  • We denote it as follows (3,5) or (abscissa, ordinate). Together, they are the coordinates of the point P.
  • The four parts of the plane are Quadrants.
  • Also, we can plot different points for a different pair of values.

General Rules for Graphic Presentation of Data and Information

There are certain guidelines for an attractive and effective graphic presentation of data and information. These are as follows:

  • Suitable Title – Ensure that you give a suitable title to the graph which clearly indicates the subject for which you are presenting it.
  • Unit of Measurement – Clearly state the unit of measurement below the title.
  • Suitable Scale – Choose a suitable scale so that you can represent the entire data in an accurate manner.
  • Index – Include a brief index which explains the different colors and shades, lines and designs that you have used in the graph. Also, include a scale of interpretation for better understanding.
  • Data Sources – Wherever possible, include the sources of information at the bottom of the graph.
  • Keep it Simple – You should construct a graph which even a layman (without any exposure in the areas of statistics or mathematics) can understand.
  • Neat – A graph is a visual aid for the presentation of data and information. Therefore, you must keep it neat and attractive. Choose the right size, right lettering, and appropriate lines, colors, dashes, etc.

Merits of a Graph

  • The graph presents data in a manner which is easier to understand.
  • It allows us to present statistical data in an attractive manner as compared to tables. Users can understand the main features, trends, and fluctuations of the data at a glance.
  • A graph saves time.
  • It allows the viewer to compare data relating to two different time-periods or regions.
  • The viewer does not require prior knowledge of mathematics or statistics to understand a graph.
  • We can use a graph to locate the mode, median, and mean values of the data.
  • It is useful in forecasting, interpolation, and extrapolation of data.

Limitations of a Graph

  • A graph lacks complete accuracy of facts.
  • It depicts only a few selected characteristics of the data.
  • We cannot use a graph in support of a statement.
  • A graph is not a substitute for tables.
  • Usually, laymen find it difficult to understand and interpret a graph.
  • Typically, a graph shows the unreasonable tendency of the data and the actual values are not clear.

Types of Graphs

Graphs are of two types:

  • Time Series graphs
  • Frequency Distribution graphs

Time Series Graphs

A time series graph or a “ histogram ” is a graph which depicts the value of a variable over a different point of time. In a time series graph, time is the most important factor and the variable is related to time. It helps in the understanding and analysis of the changes in the variable at a different point of time. Many statisticians and businessmen use these graphs because they are easy to understand and also because they offer complex information in a simple manner.

Further, constructing a time series graph does not require a user with technical skills. Here are some major steps in the construction of a time series graph:

  • Represent time on the X-axis and the value of the variable on the Y-axis.
  • Start the Y-value with zero and devise a suitable scale which helps you present the whole data in the given space.
  • Plot the values of the variable and join different point with a straight line.
  • You can plot multiple variables through different lines.

You can use a line graph to summarize how two pieces of information are related and how they vary with each other.

  • You can compare multiple continuous data-sets easily
  • You can infer the interim data from the graph line

Disadvantages

  • It is only used with continuous data.

Use of a false Base Line

Usually, in a graph, the vertical line starts from the Origin. However, in some cases, a false Base Line is used for a better representation of the data. There are two scenarios where you should use a false Base Line:

  • To magnify the minor fluctuation in the time series data
  • To economize the space

Net Balance Graph

If you have to show the net balance of income and expenditure or revenue and costs or imports and exports, etc., then you must use a net balance graph. You can use different colors or shades for positive and negative differences.

Frequency Distribution Graphs

Let’s look at the different types of frequency distribution graphs.

A histogram is a graph of a grouped frequency distribution. In a histogram, we plot the class intervals on the X-axis and their respective frequencies on the Y-axis. Further, we create a rectangle on each class interval with its height proportional to the frequency density of the class.

presentation of data and information

Frequency Polygon or Histograph

A frequency polygon or a Histograph is another way of representing a frequency distribution on a graph. You draw a frequency polygon by joining the midpoints of the upper widths of the adjacent rectangles of the histogram with straight lines.

presentation of data and information

Frequency Curve

When you join the verticals of a polygon using a smooth curve, then the resulting figure is a Frequency Curve. As the number of observations increase, we need to accommodate more classes. Therefore, the width of each class reduces. In such a scenario, the variable tends to become continuous and the frequency polygon starts taking the shape of a frequency curve.

Cumulative Frequency Curve or Ogive

A cumulative frequency curve or Ogive is the graphical representation of a cumulative frequency distribution. Since a cumulative frequency is either of a ‘less than’ or a ‘more than’ type, Ogives are of two types too – ‘less than ogive’ and ‘more than ogive’.

presentation of data and information

Scatter Diagram

A scatter diagram or a dot chart enables us to find the nature of the relationship between the variables. If the plotted points are scattered a lot, then the relationship between the two variables is lesser.

presentation of data and information

Solved Question

Q1. What are the general rules for the graphic presentation of data and information?

Answer: The general rules for the graphic presentation of data are:

  • Use a suitable title
  • Clearly specify the unit of measurement
  • Ensure that you choose a suitable scale
  • Provide an index specifying the colors, lines, and designs used in the graph
  • If possible, provide the sources of information at the bottom of the graph
  • Keep the graph simple and neat.

Customize your course in 30 seconds

Which class are you in.

tutor

Descriptive Statistics

  • Nature of Statistics – Science or Art?

2 responses to “Stages of Statistical Enquiry”

Im trying to find out if my mother ALICE Desjarlais is registered with the Red Pheasant Reserve, I applied with Metie Urban Housing and I need my Metie card. Is there anyway you can help me.

Quite useful details about statistics. I’d also like to add one point. If you need professional help with a statistics project? Find a professional in minutes!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

graphical representation of data in ppt

Guide On Graphical Representation of Data – Types, Importance, Rules, Principles And Advantages

graphical representation of data in ppt

What are Graphs and Graphical Representation?

Graphs, in the context of data visualization, are visual representations of data using various graphical elements such as charts, graphs, and diagrams. Graphical representation of data , often referred to as graphical presentation or simply graphs which plays a crucial role in conveying information effectively.

Principles of Graphical Representation

Effective graphical representation follows certain fundamental principles that ensure clarity, accuracy, and usability:Clarity : The primary goal of any graph is to convey information clearly and concisely. Graphs should be designed in a way that allows the audience to quickly grasp the key points without confusion.

  • Simplicity: Simplicity is key to effective data visualization. Extraneous details and unnecessary complexity should be avoided to prevent confusion and distraction.
  • Relevance: Include only relevant information that contributes to the understanding of the data. Irrelevant or redundant elements can clutter the graph.
  • Visualization: Select a graph type that is appropriate for the supplied data. Different graph formats, like bar charts, line graphs, and scatter plots, are appropriate for various sorts of data and relationships.

Rules for Graphical Representation of Data

Creating effective graphical representations of data requires adherence to certain rules:

  • Select the Right Graph: Choosing the appropriate type of graph is essential. For example, bar charts are suitable for comparing categories, while line charts are better for showing trends over time.
  • Label Axes Clearly: Axis labels should be descriptive and include units of measurement where applicable. Clear labeling ensures the audience understands the data’s context.
  • Use Appropriate Colors: Colors can enhance understanding but should be used judiciously. Avoid overly complex color schemes and ensure that color choices are accessible to all viewers.
  • Avoid Misleading Scaling: Scale axes appropriately to prevent exaggeration or distortion of data. Misleading scaling can lead to incorrect interpretations.
  • Include Data Sources: Always provide the source of your data. This enhances transparency and credibility.

Importance of Graphical Representation of Data

Graphical representation of data in statistics is of paramount importance for several reasons:

  • Enhances Understanding: Graphs simplify complex data, making it more accessible and understandable to a broad audience, regardless of their statistical expertise.
  • Helps Decision-Making: Visual representations of data enable informed decision-making. Decision-makers can easily grasp trends and insights, leading to better choices.
  • Engages the Audience: Graphs capture the audience’s attention more effectively than raw data. This engagement is particularly valuable when presenting findings or reports.
  • Universal Language: Graphs serve as a universal language that transcends linguistic barriers. They can convey information to a global audience without the need for translation.

Advantages of Graphical Representation

The advantages of graphical representation of data extend to various aspects of communication and analysis:

  • Clarity: Data is presented visually, improving clarity and reducing the likelihood of misinterpretation.
  • Efficiency: Graphs enable the quick absorption of information. Key insights can be found in seconds, saving time and effort.
  • Memorability: Visuals are more memorable than raw data. Audiences are more likely to retain information presented graphically.
  • Problem-Solving: Graphs help in identifying and solving problems by revealing trends, correlations, and outliers that may require further investigation.

Use of Graphical Representations

Graphical representations find applications in a multitude of fields:

  • Business: In the business world, graphs are used to illustrate financial data, track performance metrics, and present market trends. They are invaluable tools for strategic decision-making.
  • Science: Scientists employ graphs to visualize experimental results, depict scientific phenomena, and communicate research findings to both colleagues and the general public.
  • Education: Educators utilize graphs to teach students about data analysis, statistics, and scientific concepts. Graphs make learning more engaging and memorable.
  • Journalism: Journalists rely on graphs to support their stories with data-driven evidence. Graphs make news articles more informative and impactful.

Types of Graphical Representation

There exists a diverse array of graphical representations, each suited to different data types and purposes. Common types include:

1.Bar Charts:

Used to compare categories or discrete data points, often side by side.

graphical representation of data in ppt

2. Line Charts:

Ideal for showing trends and changes over time, such as stock market performance or temperature fluctuations.

graphical representation of data in ppt

3. Pie Charts:

Display parts of a whole, useful for illustrating proportions or percentages.

graphical representation of data in ppt

4. Scatter Plots:

Reveal relationships between two variables and help identify correlations.

graphical representation of data in ppt

5. Histograms:

Depict the distribution of data, especially in the context of continuous variables.

graphical representation of data in ppt

In conclusion, the graphical representation of data is an indispensable tool for simplifying complex information, aiding in decision-making, and enhancing communication across diverse fields. By following the principles and rules of effective data visualization, individuals and organizations can harness the power of graphs to convey their messages, support their arguments, and drive informed actions.

Download PPT of Graphical Representation

graphical representation of data in ppt

Video On Graphical Representation

FAQs on Graphical Representation of Data

What is the purpose of graphical representation.

Graphical representation serves the purpose of simplifying complex data, making it more accessible and understandable through visual means.

Why are graphs and diagrams important?

Graphs and diagrams are crucial because they provide visual clarity, aiding in the comprehension and retention of information.

How do graphs help learning?

Graphs engage learners by presenting information visually, which enhances understanding and retention, particularly in educational settings.

Who uses graphs?

Professionals in various fields, including scientists, analysts, educators, and business leaders, use graphs to convey data effectively and support decision-making.

Where are graphs used in real life?

Graphs are used in real-life scenarios such as business reports, scientific research, news articles, and educational materials to make data more accessible and meaningful.

Why are graphs important in business?

In business, graphs are vital for analyzing financial data, tracking performance metrics, and making informed decisions, contributing to success.

Leave a comment

Cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Related Posts

graphical representation of data in ppt

Best Google AdWords Consultants in India...

What is a Google Ads Consultant? A Google Ads Consultant is an expert who specializes in delivering expertise and advice on Google Ads, which is Google’s online advertising medium. Google Ads permits companies to develop and run ads that are visible on Google’s search engine and other Google platforms. The function of a Google Ads […]

graphical representation of data in ppt

Best PPC Consultants in India –...

What Is a PPC Consultant? A PPC consultant or a pay per click consultant is an expert who specializes in handling and optimizing PPC advertisement drives for companies. PPC is a digital marketing model where advertisers pay a price each time their ad is clicked. Standard PPC mediums include Bing Ads, Google Ads, and social media advertisement platforms like […]

graphical representation of data in ppt

Top 20 Generic Digital Marketing Interview...

1. What is Digital Marketing? Digital marketing is also known as online marketing which means promoting and selling products or services to potential customers using the internet and online platforms. It includes email, social media, and web-based advertising, but also text and multimedia messages as a marketing channel. 2. What are the types of Digital […]

graphical representation of data in ppt

Best Social Media Consultants in India...

What Is a Social Media Consultant? A social media advisor is a specialist who delivers direction, recommendation, and assistance linked to the usage of social media for people, companies, or associations. Their prime objective is to support customers effectively by employing social media platforms to gain specific objectives, such as improving brand awareness, entertaining target […]

graphical representation of data in ppt

Gaurav Mittal

Had a great time spent with some awesome learning at The Digital Education Institute. It really helped me to build my career and i am thankful to the institute for making me what i am today.

Company where our students are working

graphical representation of data in ppt

Enroll Now for 2 Hour Free Digital Marketing Class

Lorem Ipsum is simply dummy text of the printing and typesetting industry

Lorem Ipsum is simply dummy text of the printing and typesetting industry . Lorem Ipsum is simply dummy text of the printing and typesetting industry

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

2.E: Graphical Representations of Data (Exercises)

  • Last updated
  • Save as PDF
  • Page ID 22228

2.2: Stem-and-Leaf Graphs (Stemplots), Line Graphs, and Bar Graphs

Student grades on a chemistry exam were: 77, 78, 76, 81, 86, 51, 79, 82, 84, 99

  • Construct a stem-and-leaf plot of the data.
  • Are there any potential outliers? If so, which scores are they? Why do you consider them outliers?

The table below contains the 2010 obesity rates in U.S. states and Washington, DC.

  • Use a random number generator to randomly pick eight states. Construct a bar graph of the obesity rates of those eight states.
  • Construct a bar graph for all the states beginning with the letter "A."
  • Construct a bar graph for all the states beginning with the letter "M."
  • Number the entries in the table 1–51 (Includes Washington, DC; Numbered vertically)
  • Arrow over to PRB
  • Press 5:randInt(
  • Enter 51,1,8)

Eight numbers are generated (use the right arrow key to scroll through the numbers). The numbers correspond to the numbered states (for this example: {47 21 9 23 51 13 25 4}. If any numbers are repeated, generate a different number by using 5:randInt(51,1)). Here, the states (and Washington DC) are {Arkansas, Washington DC, Idaho, Maryland, Michigan, Mississippi, Virginia, Wyoming}.

Corresponding percents are {30.1, 22.2, 26.5, 27.1, 30.9, 34.0, 26.0, 25.1}.

A bar graph showing 8 states on the x-axis and corresponding obesity rates on the y-axis.

Figure \(\PageIndex{1}\): (a)

This is a bar graph that matches the supplied data. The x-axis shows states, and the y-axis shows percentages.

Figure \(\PageIndex{1}\): (b)

This is a bar graph that matches the supplied data. The x-axis shows states, and the y-axis shows percentages.

Figure \(\PageIndex{1}\): (c)

For each of the following data sets, create a stem plot and identify any outliers.

Exercise 2.2.7

The miles per gallon rating for 30 cars are shown below (lowest to highest).

19, 19, 19, 20, 21, 21, 25, 25, 25, 26, 26, 28, 29, 31, 31, 32, 32, 33, 34, 35, 36, 37, 37, 38, 38, 38, 38, 41, 43, 43

The height in feet of 25 trees is shown below (lowest to highest).

25, 27, 33, 34, 34, 34, 35, 37, 37, 38, 39, 39, 39, 40, 41, 45, 46, 47, 49, 50, 50, 53, 53, 54, 54

The data are the prices of different laptops at an electronics store. Round each value to the nearest ten.

249, 249, 260, 265, 265, 280, 299, 299, 309, 319, 325, 326, 350, 350, 350, 365, 369, 389, 409, 459, 489, 559, 569, 570, 610

The data are daily high temperatures in a town for one month.

61, 61, 62, 64, 66, 67, 67, 67, 68, 69, 70, 70, 70, 71, 71, 72, 74, 74, 74, 75, 75, 75, 76, 76, 77, 78, 78, 79, 79, 95

For the next three exercises, use the data to construct a line graph.

Exercise 2.2.8

In a survey, 40 people were asked how many times they visited a store before making a major purchase. The results are shown in the Table below.

This is a line graph that matches the supplied data. The x-axis shows the number of times people reported visiting a store before making a major purchase, and the y-axis shows the frequency.

Exercise 2.2.9

In a survey, several people were asked how many years it has been since they purchased a mattress. The results are shown in Table .

Exercise 2.2.10

Several children were asked how many TV shows they watch each day. The results of the survey are shown in the Table below.

This is a line graph that matches the supplied data. The x-axis shows the number of TV shows a kid watches each day, and the y-axis shows the frequency.

Exercise 2.2.11

The students in Ms. Ramirez’s math class have birthdays in each of the four seasons. Table shows the four seasons, the number of students who have birthdays in each season, and the percentage (%) of students in each group. Construct a bar graph showing the number of students.

Using the data from Mrs. Ramirez’s math class supplied in the table above, construct a bar graph showing the percentages.

This is a bar graph that matches the supplied data. The x-axis shows the seasons of the year, and the y-axis shows the proportion of birthdays.

Exercise 2.2.12

David County has six high schools. Each school sent students to participate in a county-wide science competition. Table shows the percentage breakdown of competitors from each school, and the percentage of the entire student population of the county that goes to each school. Construct a bar graph that shows the population percentage of competitors from each school.

Use the data from the David County science competition supplied in Exercise . Construct a bar graph that shows the county-wide population percentage of students at each school.

This is a bar graph that matches the supplied data. The x-axis shows the county high schools, and the y-axis shows the proportion of county students.

2.3: Histograms, Frequency, Polygons, and Time Series Graphs

Suppose that three book publishers were interested in the number of fiction paperbacks adult consumers purchase per month. Each publisher conducted a survey. In the survey, adult consumers were asked the number of fiction paperbacks they had purchased the previous month. The results are as follows:

  • Find the relative frequencies for each survey. Write them in the charts.
  • Using either a graphing calculator, computer, or by hand, use the frequency column to construct a histogram for each publisher's survey. For Publishers A and B, make bar widths of one. For Publisher C, make bar widths of two.
  • In complete sentences, give two reasons why the graphs for Publishers A and B are not identical.
  • Would you have expected the graph for Publisher C to look like the other two graphs? Why or why not?
  • Make new histograms for Publisher A and Publisher B. This time, make bar widths of two.
  • Now, compare the graph for Publisher C to the new graphs for Publishers A and B. Are the graphs more similar or more different? Explain your answer.

Often, cruise ships conduct all on-board transactions, with the exception of gambling, on a cashless basis. At the end of the cruise, guests pay one bill that covers all onboard transactions. Suppose that 60 single travelers and 70 couples were surveyed as to their on-board bills for a seven-day cruise from Los Angeles to the Mexican Riviera. Following is a summary of the bills for each group.

  • Fill in the relative frequency for each group.
  • Construct a histogram for the singles group. Scale the x -axis by $50 widths. Use relative frequency on the y -axis.
  • Construct a histogram for the couples group. Scale the x -axis by $50 widths. Use relative frequency on the y -axis.
  • List two similarities between the graphs.
  • List two differences between the graphs.
  • Overall, are the graphs more similar or different?
  • Construct a new graph for the couples by hand. Since each couple is paying for two individuals, instead of scaling the x -axis by $50, scale it by $100. Use relative frequency on the y -axis.
  • How did scaling the couples graph differently change the way you compared it to the singles graph?
  • Based on the graphs, do you think that individuals spend the same amount, more or less, as singles as they do person by person as a couple? Explain why in one or two complete sentences.
  • See the tables above

This is a histogram that matches the supplied data supplied for singles. The x-axis shows the total charges in intervals of 50 from 50 to 350, and the y-axis shows the relative frequency in increments of 0.05 from 0 to 0.3.

  • Both graphs have a single peak.
  • Both graphs use class intervals with width equal to $50.
  • The couples graph has a class interval with no values.
  • It takes almost twice as many class intervals to display the data for couples.
  • Answers may vary. Possible answers include: The graphs are more similar than different because the overall patterns for the graphs are the same.
  • Check student's solution.
  • Both graphs display 6 class intervals.
  • Both graphs show the same general pattern.
  • Answers may vary. Possible answers include: Although the width of the class intervals for couples is double that of the class intervals for singles, the graphs are more similar than they are different.
  • Answers may vary. Possible answers include: You are able to compare the graphs interval by interval. It is easier to compare the overall patterns with the new scale on the Couples graph. Because a couple represents two individuals, the new scale leads to a more accurate comparison.
  • Answers may vary. Possible answers include: Based on the histograms, it seems that spending does not vary much from singles to individuals who are part of a couple. The overall patterns are the same. The range of spending for couples is approximately double the range for individuals.

Twenty-five randomly selected students were asked the number of movies they watched the previous week. The results are as follows.

  • Construct a histogram of the data.
  • Complete the columns of the chart.

Use the following information to answer the next two exercises: Suppose one hundred eleven people who shopped in a special t-shirt store were asked the number of t-shirts they own costing more than $19 each.

The percentage of people who own at most three t-shirts costing more than $19 each is approximately:

  • Cannot be determined

If the data were collected by asking the first 111 people who entered the store, then the type of sampling is:

  • simple random
  • convenience

Following are the 2010 obesity rates by U.S. states and Washington, DC.

Construct a bar graph of obesity rates of your state and the four states closest to your state. Hint: Label the \(x\)-axis with the states.

Answers will vary.

Exercise 2.3.6

Sixty-five randomly selected car salespersons were asked the number of cars they generally sell in one week. Fourteen people answered that they generally sell three cars; nineteen generally sell four cars; twelve generally sell five cars; nine generally sell six cars; eleven generally sell seven cars. Complete the table.

Exercise 2.3.7

What does the frequency column in the Table above sum to? Why?

Exercise 2.3.8

What does the relative frequency column in in the Table above  sum to? Why?

Exercise 2.3.9

What is the difference between relative frequency and frequency for each data value in in the Table above ?

The relative frequency shows the proportion of data points that have each value. The frequency tells the number of data points that have each value.

Exercise 2.3.10

What is the difference between cumulative relative frequency and relative frequency for each data value?

Exercise 2.3.11

To construct the histogram for the data in in the Table above , determine appropriate minimum and maximum x and y values and the scaling. Sketch the histogram. Label the horizontal and vertical axes with words. Include numerical scaling.

An empty graph template for use with this question.

Answers will vary. One possible histogram is shown:

graphical representation of data in ppt

Exercise 2.3.12

Construct a frequency polygon for the following:

Exercise 2.3.13

Construct a frequency polygon from the frequency distribution for the 50 highest ranked countries for depth of hunger.

Find the midpoint for each class. These will be graphed on the x -axis. The frequency values will be graphed on the y -axis values.

This is a frequency polygon that matches the supplied data. The x-axis shows the depth of hunger, and the y-axis shows the frequency.

Exercise 2.3.14

Use the two frequency tables to compare the life expectancy of men and women from 20 randomly selected countries. Include an overlayed frequency polygon and discuss the shapes of the distributions, the center, the spread, and any outliers. What can we conclude about the life expectancy of women compared to men?

Exercise 2.3.15

Construct a times series graph for (a) the number of male births, (b) the number of female births, and (c) the total number of births.

graphical representation of data in ppt

Exercise 2.3.16

The following data sets list full time police per 100,000 citizens along with homicides per 100,000 citizens for the city of Detroit, Michigan during the period from 1961 to 1973.

  • Construct a double time series graph using a common x -axis for both sets of data.
  • Which variable increased the fastest? Explain.
  • Did Detroit’s increase in police officers have an impact on the murder rate? Explain.

2.4: Measures of the Location of the Data

The median age for U.S. blacks currently is 30.9 years; for U.S. whites it is 42.3 years.

  • Based upon this information, give two reasons why the black median age could be lower than the white median age.
  • Does the lower median age for blacks necessarily mean that blacks die younger than whites? Why or why not?
  • How might it be possible for blacks and whites to die at approximately the same age, but for the median age for whites to be higher?

Six hundred adult Americans were asked by telephone poll, "What do you think constitutes a middle-class income?" The results are in the Table below. Also, include left endpoint, but not the right endpoint.

  • What percentage of the survey answered "not sure"?
  • What percentage think that middle-class is from $25,000 to $50,000?
  • Should all bars have the same width, based on the data? Why or why not?
  • How should the <20,000 and the 100,000+ intervals be handled? Why?
  • Find the 40 th and 80 th percentiles
  • Construct a bar graph of the data
  • \(1 - (0.02 + 0.09 + 0.19 + 0.26 + 0.18 + 0.17 + 0.02 + 0.01) = 0.06\)
  • \(0.19 + 0.26 + 0.18 = 0.63\)
  • Check student’s solution.

80 th percentile will fall between 50,000 and 75,000

Given the following box plot:

This is a horizontal boxplot graphed over a number line from 0 to 13. The first whisker extends from the smallest value, 0, to the first quartile, 2. The box begins at the first quartile and extends to third quartile, 12. A vertical, dashed line is drawn at median, 10. The second whisker extends from the third quartile to largest value, 13.

  • which quarter has the smallest spread of data? What is that spread?
  • which quarter has the largest spread of data? What is that spread?
  • find the interquartile range ( IQR ).
  • are there more data in the interval 5–10 or in the interval 10–13? How do you know this?
  • 10–12
  • 12–13
  • need more information

The following box plot shows the U.S. population for 1990, the latest available year.

A box plot with values from 0 to 105, with Q1 at 17, M at 33, and Q3 at 50.

  • Are there fewer or more children (age 17 and under) than senior citizens (age 65 and over)? How do you know?
  • 12.6% are age 65 and over. Approximately what percentage of the population are working age adults (above age 17 to age 65)?
  • more children; the left whisker shows that 25% of the population are children 17 and younger. The right whisker shows that 25% of the population are adults 50 and older, so adults 65 and over represent less than 25%.

2.5: Box Plots

In a survey of 20-year-olds in China, Germany, and the United States, people were asked the number of foreign countries they had visited in their lifetime. The following box plots display the results.

This shows three boxplots graphed over a number line from 0 to 11. The boxplots match the supplied data, and compare the countries' results. The China boxplot has a single whisker from 0 to 5. The Germany box plot's median is equal to the third quartile, so there is a dashed line at right edge of box. The America boxplot does not have a left whisker.

  • In complete sentences, describe what the shape of each box plot implies about the distribution of the data collected.
  • Have more Americans or more Germans surveyed been to over eight foreign countries?
  • Compare the three box plots. What do they imply about the foreign travel of 20-year-old residents of the three countries when compared to each other?

Given the following box plot, answer the questions.

This is a boxplot graphed over a number line from 0 to 150. There is no first, or left, whisker. The box starts at the first quartile, 0, and ends at the third quartile, 80. A vertical, dashed line marks the median, 20. The second whisker extends the third quartile to the largest value, 150.

  • Think of an example (in words) where the data might fit into the above box plot. In 2–5 sentences, write down the example.
  • What does it mean to have the first and second quartiles so close together, while the second to third quartiles are far apart?
  • Answers will vary. Possible answer: State University conducted a survey to see how involved its students are in community service. The box plot shows the number of community service hours logged by participants over the past year.
  • Because the first and second quartiles are close, the data in this quarter is very similar. There is not much variation in the values. The data in the third quarter is much more variable, or spread out. This is clear because the second quartile is so far away from the third quartile.

Given the following box plots, answer the questions.

This shows two boxplots graphed over number lines from 0 to 7. The first whisker in the data 1 boxplot extends from 0 to 2. The box begins at the firs quartile, 2, and ends at the third quartile, 5. A vertical, dashed line marks the median at 4. The second whisker extends from the third quartile to the largest value, 7. The first whisker in the data 2 box plot extends from 0 to 1.3. The box begins at the first quartile, 1.3, and ends at the third quartile, 2.5. A vertical, dashed line marks the medial at 2. The second whisker extends from the third quartile to the largest value, 7.

  • Data 1 has more data values above two than Data 2 has above two.
  • The data sets cannot have the same mode.
  • For Data 1 , there are more data values below four than there are above four.
  • For which group, Data 1 or Data 2, is the value of “7” more likely to be an outlier? Explain why in complete sentences.

A survey was conducted of 130 purchasers of new BMW 3 series cars, 130 purchasers of new BMW 5 series cars, and 130 purchasers of new BMW 7 series cars. In it, people were asked the age they were when they purchased their car. The following box plots display the results.

This shows three boxplots graphed over a number line from 25 to 80. The first whisker on the BMW 3 plot extends from 25 to 30. The box begins at the firs quartile, 30 and ends at the thir quartile, 41. A verical, dashed line marks the median at 34. The second whisker extends from the third quartile to 66. The first whisker on the BMW 5 plot extends from 31 to 40. The box begins at the firs quartile, 40, and ends at the third quartile, 55. A vertical, dashed line marks the median at 41. The second whisker extends from 55 to 64. The first whisker on the BMW 7 plot extends from 35 to 41. The box begins at the first quartile, 41, and ends at the third quartile, 59. A vertical, dashed line marks the median at 46. The second whisker extends from 59 to 68.

  • In complete sentences, describe what the shape of each box plot implies about the distribution of the data collected for that car series.
  • Which group is most likely to have an outlier? Explain how you determined that.
  • Compare the three box plots. What do they imply about the age of purchasing a BMW from the series when compared to each other?
  • Look at the BMW 5 series. Which quarter has the smallest spread of data? What is the spread?
  • Look at the BMW 5 series. Which quarter has the largest spread of data? What is the spread?
  • Look at the BMW 5 series. Estimate the interquartile range (IQR).
  • Look at the BMW 5 series. Are there more data in the interval 31 to 38 or in the interval 45 to 55? How do you know this?
  • 31–35
  • 38–41
  • 41–64
  • Each box plot is spread out more in the greater values. Each plot is skewed to the right, so the ages of the top 50% of buyers are more variable than the ages of the lower 50%.
  • The BMW 3 series is most likely to have an outlier. It has the longest whisker.
  • Comparing the median ages, younger people tend to buy the BMW 3 series, while older people tend to buy the BMW 7 series. However, this is not a rule, because there is so much variability in each data set.
  • The second quarter has the smallest spread. There seems to be only a three-year difference between the first quartile and the median.
  • The third quarter has the largest spread. There seems to be approximately a 14-year difference between the median and the third quartile.
  • IQR ~ 17 years
  • There is not enough information to tell. Each interval lies within a quarter, so we cannot tell exactly where the data in that quarter is concentrated.
  • The interval from 31 to 35 years has the fewest data values. Twenty-five percent of the values fall in the interval 38 to 41, and 25% fall between 41 and 64. Since 25% of values fall between 31 and 38, we know that fewer than 25% fall between 31 and 35.

Twenty-five randomly selected students were asked the number of movies they watched the previous week. The results are as follows:

Construct a box plot of the data.

2.6: Measures of the Center of the Data

The most obese countries in the world have obesity rates that range from 11.4% to 74.6%. This data is summarized in the following table.

  • What is the best estimate of the average obesity percentage for these countries?
  • The United States has an average obesity rate of 33.9%. Is this rate above average or below?
  • How does the United States compare to other countries?

The table below gives the percent of children under five considered to be underweight. What is the best estimate for the mean percentage of underweight children?

The mean percentage, \(\bar{x} = \frac{1328.65}{50} = 26.75\)

2.7: Skewness and the Mean, Median, and Mode

The median age of the U.S. population in 1980 was 30.0 years. In 1991, the median age was 33.1 years.

  • What does it mean for the median age to rise?
  • Give two reasons why the median age could rise.
  • For the median age to rise, is the actual number of children less in 1991 than it was in 1980? Why or why not?

2.8: Measures of the Spread of the Data

Use the following information to answer the next nine exercises: The population parameters below describe the full-time equivalent number of students (FTES) each year at Lake Tahoe Community College from 1976–1977 through 2004–2005.

  • \(\mu = 1000\) FTES
  • median = 1,014 FTES
  • \(\sigma = 474\) FTES
  • first quartile = 528.5 FTES
  • third quartile = 1,447.5 FTES
  • \(n = 29\) years

A sample of 11 years is taken. About how many are expected to have a FTES of 1014 or above? Explain how you determined your answer.

The median value is the middle value in the ordered list of data values. The median value of a set of 11 will be the 6th number in order. Six years will have totals at or below the median.

75% of all years have an FTES:

  • at or below: _____
  • at or above: _____

The population standard deviation = _____

What percent of the FTES were from 528.5 to 1447.5? How do you know?

What is the IQR ? What does the IQR represent?

How many standard deviations away from the mean is the median?

Additional Information: The population FTES for 2005–2006 through 2010–2011 was given in an updated report. The data are reported here.

Calculate the mean, median, standard deviation, the first quartile, the third quartile and the IQR . Round to one decimal place.

  • mean = 1,809.3
  • median = 1,812.5
  • standard deviation = 151.2
  • first quartile = 1,690
  • third quartile = 1,935

Construct a box plot for the FTES for 2005–2006 through 2010–2011 and a box plot for the FTES for 1976–1977 through 2004–2005.

Compare the IQR for the FTES for 1976–77 through 2004–2005 with the IQR for the FTES for 2005-2006 through 2010–2011. Why do you suppose the IQR s are so different?

Hint: Think about the number of years covered by each time period and what happened to higher education during those periods.

Three students were applying to the same graduate school. They came from schools with different grading systems. Which student had the best GPA when compared to other students at his school? Explain how you determined your answer.

A music school has budgeted to purchase three musical instruments. They plan to purchase a piano costing $3,000, a guitar costing $550, and a drum set costing $600. The mean cost for a piano is $4,000 with a standard deviation of $2,500. The mean cost for a guitar is $500 with a standard deviation of $200. The mean cost for drums is $700 with a standard deviation of $100. Which cost is the lowest, when compared to other instruments of the same type? Which cost is the highest when compared to other instruments of the same type. Justify your answer.

For pianos, the cost of the piano is 0.4 standard deviations BELOW the mean. For guitars, the cost of the guitar is 0.25 standard deviations ABOVE the mean. For drums, the cost of the drum set is 1.0 standard deviations BELOW the mean. Of the three, the drums cost the lowest in comparison to the cost of other instruments of the same type. The guitar costs the most in comparison to the cost of other instruments of the same type.

An elementary school class ran one mile with a mean of 11 minutes and a standard deviation of three minutes. Rachel, a student in the class, ran one mile in eight minutes. A junior high school class ran one mile with a mean of nine minutes and a standard deviation of two minutes. Kenji, a student in the class, ran 1 mile in 8.5 minutes. A high school class ran one mile with a mean of seven minutes and a standard deviation of four minutes. Nedda, a student in the class, ran one mile in eight minutes.

  • Why is Kenji considered a better runner than Nedda, even though Nedda ran faster than he?
  • Who is the fastest runner with respect to his or her class? Explain why.

The most obese countries in the world have obesity rates that range from 11.4% to 74.6%. This data is summarized in the table belo2

What is the best estimate of the average obesity percentage for these countries? What is the standard deviation for the listed obesity rates? The United States has an average obesity rate of 33.9%. Is this rate above average or below? How “unusual” is the United States’ obesity rate compared to the average rate? Explain.

  • \(\bar{x} = 23.32\)
  • Using the TI 83/84, we obtain a standard deviation of: \(s_{x} = 12.95\).
  • The obesity rate of the United States is 10.58% higher than the average obesity rate.
  • Since the standard deviation is 12.95, we see that \(23.32 + 12.95 = 36.27\) is the obesity percentage that is one standard deviation from the mean. The United States obesity rate is slightly less than one standard deviation from the mean. Therefore, we can assume that the United States, while 34% obese, does not have an unusually high percentage of obese people.

The Table below gives the percent of children under five considered to be underweight.

What is the best estimate for the mean percentage of underweight children? What is the standard deviation? Which interval(s) could be considered unusual? Explain.

  • School Guide
  • Class 9 Syllabus
  • Maths Notes Class 9
  • Science Notes Class 9
  • History Notes Class 9
  • Geography Notes Class 9
  • Political Science Notes Class 9
  • NCERT Soln. Class 9 Maths
  • RD Sharma Soln. Class 9
  • Math Formulas Class 9
  • CBSE Class 9 Maths Revision Notes

Chapter 1: Number System

  • Number System in Maths
  • Natural Numbers | Definition, Examples, Properties
  • Whole Numbers - Definition, Properties and Examples
  • Rational Number: Definition, Examples, Worksheet
  • Irrational Numbers: Definition, Examples, Symbol, Properties
  • Real Numbers
  • Decimal Expansion of Real Numbers
  • Decimal Expansions of Rational Numbers
  • Representation of Rational Numbers on the Number Line | Class 8 Maths
  • Represent √3 on the number line
  • Operations on Real Numbers
  • Rationalization of Denominators
  • Laws of Exponents for Real Numbers

Chapter 2: Polynomials

  • Polynomials in One Variable - Polynomials | Class 9 Maths
  • Polynomial Formula
  • Types of Polynomials
  • Zeros of Polynomial
  • Factorization of Polynomial
  • Remainder Theorem
  • Factor Theorem
  • Algebraic Identities

Chapter 3: Coordinate Geometry

  • Coordinate Geometry
  • Cartesian Coordinate System
  • Cartesian Plane

Chapter 4: Linear equations in two variables

  • Linear Equations in One Variable
  • Linear Equation in Two Variables
  • Graph of Linear Equations in Two Variables
  • Graphical Methods of Solving Pair of Linear Equations in Two Variables
  • Equations of Lines Parallel to the x-axis and y-axis

Chapter 5: Introduction to Euclid's Geometry

  • Euclidean Geometry
  • Equivalent Version of Euclid’s Fifth Postulate

Chapter 6: Lines and Angles

  • Lines and Angles
  • Types of Angles
  • Pairs of Angles - Lines & Angles
  • Transversal Lines
  • Angle Sum Property of a Triangle

Chapter 7: Triangles

  • Triangles in Geometry
  • Congruence of Triangles |SSS, SAS, ASA, and RHS Rules
  • Theorem - Angle opposite to equal sides of an isosceles triangle are equal | Class 9 Maths
  • Triangle Inequality Theorem, Proof & Applications

Chapter 8: Quadrilateral

  • Angle Sum Property of a Quadrilateral
  • Quadrilateral - Definition, Properties, Types, Formulas, Examples
  • Introduction to Parallelogram: Properties, Types, and Theorem
  • Rhombus: Definition, Properties, Formula, Examples
  • Kite - Quadrilaterals
  • Properties of Parallelograms
  • Mid Point Theorem

Chapter 9: Areas of Parallelograms and Triangles

  • Area of Triangle | Formula and Examples
  • Area of Parallelogram
  • Figures on the Same Base and between the Same Parallels

Chapter 10: Circles

  • Circles in Maths
  • Radius of Circle
  • Tangent to a Circle
  • What is the longest chord of a Circle?
  • Circumference of Circle - Definition, Perimeter Formula, and Examples
  • Angle subtended by an arc at the centre of a circle
  • What is Cyclic Quadrilateral
  • Theorem - The sum of opposite angles of a cyclic quadrilateral is 180° | Class 9 Maths

Chapter 11: Construction

  • Basic Constructions - Angle Bisector, Perpendicular Bisector, Angle of 60°
  • Construction of Triangles

Chapter 12: Heron's Formula

  • Area of Equilateral Triangle
  • Area of Isosceles Triangle
  • Heron's Formula
  • Applications of Heron's Formula
  • Area of Quadrilateral
  • Area of Polygons

Chapter 13: Surface Areas and Volumes

  • Surface Area of Cuboid
  • Volume of Cuboid | Formula and Examples
  • Surface Area of Cube
  • Volume of a Cube
  • Surface Area of Cylinder
  • Volume of Cylinder
  • Surface Area of Cone
  • Volume of Cone: Formula, Derivation and Examples
  • Surface Area of Sphere | CSA, TSA, Formula and Derivation
  • Volume of a Sphere
  • Surface Area of a Hemisphere
  • Volume of Hemisphere

Chapter 14: Statistics

  • Collection and Presentation of Data

Graphical Representation of Data

  • Bar Graphs and Histograms
  • Central Tendency
  • Mean, Median and Mode

Chapter 15: Probability

  • Experimental Probability
  • Empirical Probability
  • CBSE Class 9 Maths Formulas
  • NCERT Solutions for Class 9 Maths: Chapter Wise PDF 2024
  • RD Sharma Class 9 Solutions

Graphical Representation of Data: In today’s world of the internet and connectivity, there is a lot of data available, and some or other method is needed for looking at large data, the patterns, and trends in it. There is an entire branch in mathematics dedicated to dealing with collecting, analyzing, interpreting, and presenting numerical data in visual form in such a way that it becomes easy to understand and the data becomes easy to compare as well, the branch is known as Statistics .

The branch is widely spread and has a plethora of real-life applications such as Business Analytics, demography, astrostatistics, and so on. In this article, we have provided everything about the graphical representation of data, including its types, rules, advantages, etc.

Table of Content

What is Graphical Representation?

Types of graphical representations, graphical representations used in maths, principles of graphical representations, advantages and disadvantages of using graphical system, general rules for graphical representation of data, solved examples on graphical representation of data.

There are two ways of representing data,

  • Pictorial Representation through graphs.

They say, “A picture is worth a thousand words”.  It’s always better to represent data in a graphical format. Even in Practical Evidence and Surveys, scientists have found that the restoration and understanding of any information is better when it is available in the form of visuals as Human beings process data better in visual form than any other form. Does it increase the ability 2 times or 3 times? The answer is it increases the Power of understanding 60,000 times for a normal Human being, the fact is amusing and true at the same time.

Comparison between different items is best shown with graphs, it becomes easier to compare the crux of the data about different items. Let’s look at all the different types of graphical representations briefly: 

Line Graphs

A line graph is used to show how the value of a particular variable changes with time. We plot this graph by connecting the points at different values of the variable. It can be useful for analyzing the trends in the data and predicting further trends. 

graphical representation of data in ppt

A bar graph is a type of graphical representation of the data in which bars of uniform width are drawn with equal spacing between them on one axis (x-axis usually), depicting the variable. The values of the variables are represented by the height of the bars. 

graphical representation of data in ppt

Histograms 

This is similar to bar graphs, but it is based frequency of numerical values rather than their actual values. The data is organized into intervals and the bars represent the frequency of the values in that range. That is, it counts how many values of the data lie in a particular range. 

graphical representation of data in ppt

It is a plot that displays data as points and checkmarks above a number line, showing the frequency of the point. 

graphical representation of data in ppt

Stem and Leaf Plot 

This is a type of plot in which each value is split into a “leaf”(in most cases, it is the last digit) and “stem”(the other remaining digits). For example: the number 42 is split into leaf (2) and stem (4).  

graphical representation of data in ppt

Box and Whisker Plot 

These plots divide the data into four parts to show their summary. They are more concerned about the spread, average, and median of the data. 

graphical representation of data in ppt

It is a type of graph which represents the data in form of a circular graph. The circle is divided such that each portion represents a proportion of the whole. 

graphical representation of data in ppt

Graphs in maths are used to study the relationships between two or more variables that are changing. Statistical data can be summarized in a better way using graphs. There are basically two lines of thoughts of making graphs in maths: 

  • Value-Based or Time Series Graphs

Frequency Based

Value-based or time series graphs .

These graphs allow us to study the change of a variable with respect to another variable within a given interval of time. The variables can be anything. Time Series graphs study the change of variable with time. They study the trends, periodic behavior, and patterns in the series. We are more concerned with the values of the variables here rather than the frequency of those values. 

Example: Line Graph

These kinds of graphs are more concerned with the distribution of data. How many values lie between a particular range of the variables, and which range has the maximum frequency of the values. They are used to judge a spread and average and sometimes median of a variable under study. 

Example: Frequency Polygon, Histograms.

All types of graphical representations require some rule/principles which are to be followed. These are some algebraic principles. When we plot a graph, there is an origin, and we have our two axes. These two axes divide the plane into four parts called quadrants. The horizontal one is usually called the x-axis and the other one is called the y-axis. The origin is the point where these two axes intersect. The thing we need to keep in mind about the values of the variable on the x-axis is that positive values need to be on the right side of the origin and negative values should be on the left side of the origin. Similarly, for the variable on the y-axis, we need to make sure that the positive values of this variable should be above the x-axis and negative values of this variable must be below the y-axis. 

graphical representation of data in ppt

  • It gives us a summary of the data which is easier to look at and analyze.
  • It saves time.
  • We can compare and study more than one variable at a time.

Disadvantages

It usually takes only one aspect of the data and ignores the other. For example, A bar graph does not represent the mean, median, and other statistics of the data. 

We should keep in mind some things while plotting and designing these graphs. The goal should be a better and clear picture of the data. Following things should be kept in mind while plotting the above graphs: 

  • Whenever possible, the data source must be mentioned for the viewer.
  • Always choose the proper colors and font sizes. They should be chosen to keep in mind that the graphs should look neat.
  • The measurement Unit should be mentioned in the top right corner of the graph.
  • The proper scale should be chosen while making the graph, it should be chosen such that the graph looks accurate.
  • Last but not the least, a suitable title should be chosen.

Frequency Polygon

A frequency polygon is a graph that is constructed by joining the midpoint of the intervals. The height of the interval or the bin represents the frequency of the values that lie in that interval. 

graphical representation of data in ppt

People Also View:

Diagrammatic and Graphic Presentation of Data What are the different ways of Data Representation?

Question 1: What are different types of frequency-based plots? 

Types of frequency based plots:  Histogram Frequency Polygon Box Plots

Question 2: A company with an advertising budget of Rs 10,00,00,000 has planned the following expenditure in the different advertising channels such as TV Advertisement, Radio, Facebook, Instagram, and Printed media. The table represents the money spent on different channels. 

Draw a bar graph for the following data. 

Steps:  Put each of the channels on the x-axis The height of the bars is decided by the value of each channel.

Question 3: Draw a line plot for the following data 

Steps:  Put each of the x-axis row value on the x-axis joint the value corresponding to the each value of the x-axis.

Question 4: Make a frequency plot of the following data: 

Steps:  Draw the class intervals on the x-axis and frequencies on the y-axis. Calculate the mid point of each class interval. Class Interval Mid Point Frequency 0-3 1.5 3 3-6 4.5 4 6-9 7.5 2 9-12 10.5 6 Now join the mid points of the intervals and their corresponding frequencies on the graph.  This graph shows both the histogram and frequency polygon for the given distribution.

FAQs on Graphical Representation of Data

What are the advantages of using graphs to represent data.

Graphs offer visualization, clarity, and easy comparison of data, aiding in outlier identification and predictive analysis.

What are the common types of graphs used for data representation?

Common graph types include bar, line, pie, histogram, and scatter plots, each suited for different data representations and analysis purposes.

How do you choose the most appropriate type of graph for your data?

Select a graph type based on data type, analysis objective, and audience familiarity to effectively convey information and insights.

How do you create effective labels and titles for graphs?

Use descriptive titles, clear axis labels with units, and legends to ensure the graph communicates information clearly and concisely.

How do you interpret graphs to extract meaningful insights from data?

Interpret graphs by examining trends, identifying outliers, comparing data across categories, and considering the broader context to draw meaningful insights and conclusions.

Please Login to comment...

Similar reads.

  • Mathematics
  • School Learning

advertisewithusBannerImg

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

IMAGES

  1. Graphical Representation of Statistical Data PPT

    graphical representation of data in ppt

  2. Data Visualization for Presentation 183602 Vector Art at Vecteezy

    graphical representation of data in ppt

  3. Data Visualization 02 PowerPoint Template

    graphical representation of data in ppt

  4. Chart PPT Redesign

    graphical representation of data in ppt

  5. Data Visualization PowerPoint Template

    graphical representation of data in ppt

  6. How to Use Data Visualization in Your Infographics

    graphical representation of data in ppt

VIDEO

  1. Graphical Representation Of Data

  2. Diagrammatic and Graphical Representation

  3. 🔴 Continuous chart செய்து எப்படி ⚠️💢😍

  4. Diagrammatic and Graphical Representation of Data

  5. Statistics: Ch 2 Graphical Representation of Data (20 of 62) Midrange

  6. Statistics: Ch 2 Graphical Representation of Data (22 of 62) Range

COMMENTS

  1. Graphical Representation of data

    7. Graphical representation is the visual display of data using plots and charts. it is used in many academic and professional disciplines but most widely so in the field of mathamatics,medicine and the science. Graphical representation helps to quantify, sort and present data in a method that is understandable to a large variety of audience.

  2. Understanding Data Presentations (Guide + Examples)

    A data presentation is a slide deck that aims to disclose quantitative information to an audience through the use of visual formats and narrative techniques derived from data analysis, making complex data understandable and actionable. ... Bar charts are a graphical representation of data using rectangular bars to show quantities or frequencies ...

  3. Graphical Representation of Data

    Examples on Graphical Representation of Data. Example 1: A pie chart is divided into 3 parts with the angles measuring as 2x, 8x, and 10x respectively. Find the value of x in degrees. Solution: We know, the sum of all angles in a pie chart would give 360º as result. ⇒ 2x + 8x + 10x = 360º. ⇒ 20 x = 360º.

  4. How To Work With Tables, Graphs And Charts In PowerPoint

    PowerPoint will then automatically create your chart for you. For tables, use the Insert > Table option on PowerPoint. Define the size of the table and just copy and paste the data (not the table!) from Excel to your PowerPoint table. PowerPoint will then automatically create your new table for you.

  5. Ultimate Guide to Using Data Visualization in Your Presentation

    1. Collect your data. First things first, and that is to have all your information ready. Especially for long business presentations, there can be a lot of information to consider when working on your slides. Having it all organized and ready to use will make the whole process much easier to go through. 2.

  6. Presenting data in PowerPoint in visual and effective ways

    3. Choose a data visualization option. One key to data visualization in PowerPoint is being aware of your choices and picking the best one for your needs. This depends on the type of data you're trying to showcase and your story. When showcasing growth over time, you won't use a spider chart but a line chart.

  7. 2: Graphical Representations of Data

    2.3: Histograms, Frequency Polygons, and Time Series Graphs. A histogram is a graphic version of a frequency distribution. The graph consists of bars of equal width drawn adjacent to each other. The horizontal scale represents classes of quantitative data values and the vertical scale represents frequencies. The heights of the bars correspond ...

  8. PDF Tabular and Graphical Presentation of Data

    Graph 2 Same data as in Graph 1, but in 2‐D. Better Representation of the data. •Values are not distorted by the skewed perspective. • Category labels are more space‐efficient. •The graph, not its title, occupies the most space. •Colors can be distin‐ guished, even by a color‐ blind reader Graph 3

  9. Graphical Representation of Data

    21 Polybar diagram. 24 3. Pie graphs Pie diagram is another graphical method of the representation of data. It is drawn to show the total value of the given attribute using a circle. Dividing the circle into corresponding degrees of angle then represent the sub- sets of the data. Hence, it is also called as Divided Circle Diagram.

  10. Graphical Data Representation PPT & PDF

    Graphical Representation of Data PPT (Line Diagram, Bar Diagram, Histogram, Frequency Curve, Ogive and Pie Chart) What is graphical representation? Importance of Graphical Representation, Advantages of Graphical Representation, Disadvantages of Graphical Representation, Things to remember when constructing a Graph, Different types of graphs ...

  11. PPT

    Meaning : Graphical representation of data is the geometrical image of a set of data. It is a mathematical picture. It enables us to think about a statistical problem in visual terms. Advantages . Attractive and an appealing form. Slideshow 1552489 by sophie.

  12. Golden rules for Creating a Data Visualization PowerPoint

    This section will share with you the 4 golden rules of creating a data visualization ppt your audience will understand. Data is only useful when your audience can understand it. One of the best ways to decipher a jumble of figures and statistics is to turn it into a visual representation. By understanding and choosing the best medium for your ...

  13. Graphical Representation

    Data Sources: Include the source of information wherever it is necessary at the bottom of the graph. Keep it Simple: Construct a graph in an easy way that everyone can understand. Neat: Choose the correct size, fonts, colours etc in such a way that the graph should be a visual aid for the presentation of information. Graphical Representation in ...

  14. Graphic Presentation of Data and Information

    Data Sources - Wherever possible, include the sources of information at the bottom of the graph. Keep it Simple - You should construct a graph which even a layman (without any exposure in the areas of statistics or mathematics) can understand. Neat - A graph is a visual aid for the presentation of data and information.

  15. What Is Graphical Representation Of Data

    What are Graphs and Graphical Representation? Graphs, in the context of data visualization, are visual representations of data using various graphical elements such as charts, graphs, and diagrams.Graphical representation of data, often referred to as graphical presentation or simply graphs which plays a crucial role in conveying information effectively.

  16. 2.E: Graphical Representations of Data (Exercises)

    Construct a histogram of the data. Complete the columns of the chart. Use the following information to answer the next two exercises: Suppose one hundred eleven people who shopped in a special t-shirt store were asked the number of t-shirts they own costing more than $19 each. Figure 2.E. 8 2.

  17. Graphical Representation of Data

    Graphical Representation of Data: In today's world of the internet and connectivity, there is a lot of data available, and some or other method is needed for looking at large data, the patterns, and trends in it. There is an entire branch in mathematics dedicated to dealing with collecting, analyzing, interpreting, and presenting numerical data in visual form in such a way that it becomes ...