University Library, University of Illinois at Urbana-Champaign

University of Illinois Library Wordmark

Qualitative Data Analysis: Coding

  • Atlas.ti web
  • R for text analysis
  • Microsoft Excel & spreadsheets
  • Other options
  • Planning Qual Data Analysis
  • Free Tools for QDA
  • QDA with NVivo
  • QDA with Atlas.ti
  • QDA with MAXQDA
  • PKM for QDA
  • QDA with Quirkos
  • Working Collaboratively
  • Qualitative Methods Texts
  • Transcription
  • Data organization
  • Example Publications

Coding Qualitative Data

Planning your coding strategy.

Coding is a qualitative data analysis strategy in which some aspect of the data is assigned a descriptive label that allows the researcher to identify related content across the data. How you decide to code - or whether to code- your data should be driven by your methodology. But there are rarely step-by-step descriptions, and you'll have to make many decisions about how to code for your own project.

Some questions to consider as you decide how to code your data:

What will you code? 

What aspects of your data will you code? If you are not coding all of your available data, how will you decide which elements need to be coded? If you have recordings interviews or focus groups, or other types of multimedia data, will you create transcripts to analyze and code? Or will you code the media itself (see Farley, Duppong & Aitken, 2020 on direct coding of audio recordings rather than transcripts). 

Where will your codes come from? 

Depending on your methodology, your coding scheme may come from previous research and be applied to your data (deductive). Or you my try to develop codes entirely from the data, ignoring as much as possible, previous knowledge of the topic under study, to develop a scheme grounded in your data (inductive). In practice, however, many practices will fall between these two approaches. 

How will you apply your codes to your data? 

You may decide to use software to code your qualitative data, to re-purpose other software tools (e.g. Word or spreadsheet software) or work primarily with physical versions of your data. Qualitative software is not strictly necessary, though it does offer some advantages, like: 

  • Codes can be easily re-labeled, merged, or split. You can also choose to apply multiple coding schemes to the same data, which means you can explore multiple ways of understanding the same data. Your analysis, then, is not limited by how often you are able to work with physical data, such as paper transcripts. 
  • Most software programs for QDA include the ability to export and import coding schemes. This means you can create a re-use a coding scheme from a previous study, or that was developed in outside of the software, without having to manually create each code. 
  • Some software for QDA includes the ability to directly code image, video, and audio files. This may mean saving time over creating transcripts. Or, your coding may be enhanced by access to the richness of mediated content, compared to transcripts.
  • Using QDA software may also allow you the ability to use auto-coding functions. You may be able to automatically code all of the statements by speaker in a focus group transcript, for example, or identify and code all of the paragraphs that include a specific phrase. 

What will be coded? 

Will you deploy a line-by-line coding approach, with smaller codes eventually condensed into larger categories or concepts? Or will you start with codes applied to larger segments of the text, perhaps later reviewing the examples to explore and re-code for differences between the segments? 

How will you explain the coding process? 

  • Regardless of how you approach coding, the process should be clearly communicated when you report your research, though this is not always the case (Deterding & Waters, 2021).
  • Carefully consider the use of phrases like "themes emerged." This phrasing implies that the themes lay passively in the data, waiting for the researcher to pluck them out. This description leaves little room for describing how the researcher "saw" the themes and decided which were relevant to the study. Ryan and Bernard (2003) offer a terrific guide to ways that you might identify themes in the data, using both your own observations as well as manipulations of the data. 

How will you report the results of your coding process? 

How you report your coding process should align with the methodology you've chosen. Your methodology may call for careful and consistent application of a coding scheme, with reports of inter-rater reliability and counts of how often a code appears within the data. Or you may use the codes to help develop a rich description of an experience, without needing to indicate precisely how often the code was applied. 

How will you code collaboratively?

If you are working with another researcher or a team, your coding process requires careful planning and implementation. You will likely need to have regular conversations about your process, particularly if your goal is to develop and consistently apply a coding scheme across your data. 

Coding Features in QDA Software Programs

  • Atlas.ti (Mac)
  • Atlas.ti (Windows)
  • NVivo (Windows)
  • NVivo (Mac)
  • Coding data See how to create and manage codes and apply codes to segments of the data (known as quotations in Atlas.ti).

  • Search and Code Using the search and code feature lets you locate and automatically code data through text search, regular expressions, Named Entity Recognition, and Sentiment Analysis.
  • Focus Group Coding Properly prepared focus group documents can be automatically coded by speaker.
  • Inter-Coder Agreement Coded text, audio, and video documents can be tested for inter-coder agreement. ICA is not available for images or PDF documents.
  • Quotation Reader Once you've coded data, you can view just the data that has been assigned that code.

  • Find Redundant Codings (Mac) This tool identifies "overlapping or embedded" quotations that have the same code, that are the result of manual coding or errors when merging project files.
  • Coding Data in Atlas.ti (Windows) Demonstrates how to create new codes, manage codes and applying codes to segments of the data (known as quotations in Atlas.ti)
  • Search and Code in Atlas.ti (Windows) You can use a text search, regular expressions, Named Entity Recognition, and Sentiment Analysis to identify and automatically code data in Atlas.ti.
  • Focus Group Coding in Atlas.ti (Windows) Properly prepared focus group transcripts can be automatically coded by speaker.
  • Inter-coder Agreement in Atlas.ti (Windows) Coded text, audio, and video documents can be tested for inter-coder agreement. ICA is not available for images or PDF documents.
  • Quotation Reader in Atlas.ti (Windows) Once you've coded data, you can view and export the quotations that have been assigned that code.
  • Find Redundant Codings in Atlas.ti (Windows) This tool identifies "overlapping or embedded" quotations that have the same code, that are the result of manual coding or errors when merging project files.
  • Coding in NVivo (Windows) This page includes an overview of the coding features in NVivo.
  • Automatic Coding in Documents in NVivo (Windows) You can use paragraph formatting styles or speaker names to automatically format documents.
  • Coding Comparison Query in NVivo (Windows) You can use the coding comparison feature to compare how different users have coded data in NVivo.
  • Review the References in a Node in NVivo (Windows) References are the term that NVivo uses for coded segments of the data. This shows you how to view references related to a code (or any node)
  • Text Search Queries in NVivo (Windows) Text queries let you search for specific text in your data. The results of your query can be saved as a node (a form of auto coding).
  • Coding Query in NVivo (Windows) Use a coding query to display references from your data for a single code or multiples of codes.
  • Code Files and Manage Codes in NVivo (Mac) This page offers an overview of coding features in NVivo. Note that NVivo uses the concept of a node to refer to any structure around which you organize your data. Codes are a type of node, but you may see these terms used interchangeably.
  • Automatic Coding in Datasets in NVivo (Mac) A dataset in NVivo is data that is in rows and columns, as in a spreadsheet. If a column is set to be codable, you can also automatically code the data. This approach could be used for coding open-ended survey data.
  • Text Search Query in NVivo (Mac) Use the text search query to identify relevant text in your data and automatically code references by saving as a node.
  • Review the References in a Node in NVivo (Mac) NVivo uses the term references to refer to data that has been assigned to a code or any node. You can use the reference view to see the data linked to a specific node or combination of nodes.
  • Coding Comparison Query in NVivo (Mac) Use the coding comparison query to calculate a measure of inter-rater reliability when you've worked with multiple coders.

The MAXQDA interface is the same across Mac and Windows devices. 

  • The "Code System" in MAXQDA This section of the manual shows how to create and manage codes in MAXQDA's code system.
  • How to Code with MAXQDA

  • Display Coded Segments in the Document Browser Once you've coded a document within MAXQDA, you can choose which of those codings will appear on the document, as well as choose whether or not the text is highlighted in the color linked to the code.
  • Creative Coding in MAXQDA Use the creative coding feature to explore the relationships between codes in your system. If you develop a new structure to you codes that you like, you can apply the changes to your overall code scheme.
  • Text Search in MAXQDA Use a Text Search to identify data that matches your search terms and automatically code the results. You can choose whether to code only the matching results, the sentence the results are in, or the paragraph the results appear in.
  • Segment Retrieval in MAXQDA Data that has been coded is considered a segment. Segment retrieval is how you display the segments that match a code or combination of codes. You can use the activation feature to show only the segments from a document group, or that match a document variable.
  • Intercorder Agreement in MAXQDA MAXQDA includes the ability to compare coding between two coders on a single project.
  • Create Tags in Taguette Taguette uses the term tag to refer to codes. You can create single tags as well as a tag hierarchy using punctuation marks.
  • Highlighting in Taguette Select text with a document (a highlight) and apply tags to code data in Taguette.

Useful Resources on Coding

Cover Art

Deterding, N. M., & Waters, M. C. (2021). Flexible coding of in-depth interviews: A twenty-first-century approach. Sociological Methods & Research , 50 (2), 708–739. https://doi.org/10.1177/0049124118799377

Farley, J., Duppong Hurley, K., & Aitken, A. A. (2020). Monitoring implementation in program evaluation with direct audio coding. Evaluation and Program Planning , 83 , 101854. https://doi.org/10.1016/j.evalprogplan.2020.101854

Ryan, G. W., & Bernard, H. R. (2003). Techniques to identify themes. Field Methods , 15 (1), 85–109. https://doi.org/10.1177/1525822X02239569. 

  • << Previous: Data organization
  • Next: Citations >>
  • Last Updated: May 20, 2024 4:12 PM
  • URL: https://guides.library.illinois.edu/qualitative
  • AI & NLP
  • Churn & Loyalty
  • Customer Experience
  • Customer Journeys
  • Customer Metrics
  • Feedback Analysis
  • Product Experience
  • Product Updates
  • Sentiment Analysis
  • Surveys & Feedback Collection
  • Try Thematic

Welcome to the community

is coding in research methodology

Coding Qualitative Data: How To Guide

How many hours have you spent sitting in front of Excel spreadsheets trying to find new insights from customer feedback?

You know that asking open-ended survey questions gives you more actionable insights than asking your customers for just a numerical Net Promoter Score (NPS) . But when you ask open-ended, free-text questions, you end up with hundreds (or even thousands) of free-text responses.

How can you turn all of that text into quantifiable, applicable information about your customers’ needs and expectations? By coding qualitative data.

In this article, we will cover different coding methods for qualitative data, including both manual and automated approaches, to provide a comprehensive understanding of the techniques used in the first-round pass at coding.

Keep reading to learn:

  • What coding qualitative data means (and why it’s important)
  • Different methods of coding qualitative data
  • How to manually code qualitative data to find significant themes in your data

What is coding in qualitative research?

Conducting qualitative research, particularly through coding, is a crucial step in ensuring the validity and reliability of the findings. Coding is the process of labeling and organizing your qualitative data to identify different themes and the relationships between them.

When coding customer feedback , you assign labels to words or phrases that represent important (and recurring) themes in each response. These labels can be words, phrases, or numbers; we recommend using words or short phrases, since they’re easier to remember, skim, and organize.

Coding qualitative research to find common themes and concepts is part of thematic analysis . Thematic analysis extracts themes from text by analyzing the word and sentence structure.

Within the context of customer feedback, it’s important to understand the many different types of qualitative feedback a business can collect, such as open-ended surveys, social media comments, reviews & more.

What is qualitative data analysis?

Qualitative data analysis , including coding and analyzing qualitative data, is essential for understanding the depth and complexity of qualitative data. It is the process of examining and interpreting qualitative data to understand what it represents.

Qualitative analysis is crucial as it involves various methods such as thematic analysis, emotion coding, inductive and deductive thematic analysis, and content analysis. These methods help in coding the data, which is vital for the validity of the analysis.

Qualitative data is defined as any non-numerical and unstructured data; when looking at customer feedback, qualitative data usually refers to any verbatim or text-based feedback such as reviews, open-ended responses in surveys , complaints, chat messages, customer interviews, case notes or social media posts.

For example, NPS metric can be strictly quantitative, but when you ask customers why they gave you a rating a score, you will need qualitative data analysis methods in place to understand the comments that customers leave alongside numerical responses.

Methods of qualitative data analysis

Thematic analysis.

This refers to the uncovering of themes, by analyzing the patterns and relationships in a set of qualitative data. A theme emerges or is built when related findings appear to be meaningful and there are multiple occurrences. Thematic analysis can be used by anyone to transform and organize open-ended responses, online reviews, and other qualitative data into significant themes. Thematic analysis coding is a method that aids in categorizing data extracts and deriving themes and patterns for qualitative analysis, facilitating the identification of themes revolving around a particular concept or phenomenon in the social sciences.

Content analysis:

This refers to the categorization, tagging and thematic analysis of qualitative data. Essentially content analysis is a quantification of themes, by counting the occurrence of concepts, topics or themes. Content analysis can involve combining the categories in qualitative data with quantitative data, such as behavioral data or demographic data, for deeper insights.

Narrative analysis:

Some qualitative data, such as interviews or field notes may contain a story on how someone experienced something. For example, the process of choosing a product, using it, evaluating its quality and decision to buy or not buy this product next time. The goal of narrative analysis is to turn the individual narratives into data that can be coded. This is then analyzed to understand how events or experiences had an impact on the people involved. Process coding is particularly useful in narrative analysis for identifying specific phases, sequences, and movements within the stories, capturing actions within qualitative data by using codes that typically represent gerunds ending in 'ing', providing a dynamic account of events within the data.

Discourse analysis:

This refers to analysis of what people say in social and cultural context. The goal of discourse analysis is to understand user or customer behavior by uncovering their beliefs, interests and agendas. These are reflected in the way they express their opinions, preferences and experiences. Structural coding is a method that can be applied here, organizing data based on predetermined structures, such as the structure of discourse elements, to enhance the analysis of discourse. It’s particularly useful when your focus is on building or strengthening a brand , by examining how they use metaphors and rhetorical devices.

Framework analysis:

When performing qualitative data analysis, it is useful to have a framework to organize the buckets of meaning. A taxonomy or code frame (a hierarchical set of themes used in coding qualitative data) is an example of the result. Don't fall into the trap of starting with a framework to make it faster to organize your data.  You should look at how themes relate to each other by analyzing the data and consistently check that you can validate that themes are related to each other .

Grounded theory:

This method of analysis starts by formulating a theory around a single data case. Therefore the theory is “grounded' in actual data. Then additional cases can be examined to see if they are relevant and can add to the original theory.

Why is it important to code qualitative data?

Coding qualitative data makes it easier to interpret customer feedback. Assigning codes to words and phrases in each response helps capture what the response is about which, in turn, helps you better analyze and summarize the results of the entire survey.

Researchers use coding and other qualitative data analysis processes to help them make data-driven decisions based on customer feedback. When you use coding to analyze your customer feedback, you can quantify the common themes in customer language. This makes it easier to accurately interpret and analyze customer satisfaction.

What is thematic coding?

Thematic coding, also called thematic analysis, is a type of qualitative data analysis that finds themes in text by analyzing the meaning of words and sentence structure.

When you use thematic coding to analyze customer feedback for example, you can learn which themes are most frequent in feedback. This helps you understand what drives customer satisfaction in an accurate, actionable way.

To learn more about how Thematic analysis software helps you automate the data coding process, check out this article .

Automated vs. Manual coding of qualitative data

Methods of coding qualitative data fall into three categories: automated coding and manual coding, and a blend of the two.

You can automate the coding of your qualitative data with thematic analysis software . Thematic analysis and qualitative data analysis software use machine learning, artificial intelligence (AI) natural language processing (NLP) to code your qualitative data and break text up into themes.

Thematic analysis software is autonomous , which means…

  • You don't need to set up themes or categories in advance.
  • You don't need to train the algorithm — it learns on its own.
  • You can easily capture the “unknown unknowns” to identify themes you may not have spotted on your own.

…all of which will save you time (and lots of unnecessary headaches) when analyzing your customer feedback.

Businesses are also seeing the benefit of using thematic analysis software. The capacity to aggregate data sources into a single source of analysis helps to break down data silos, unifying the analysis and insights across departments . This is now being referred to as Omni channel analysis or Unified Data Analytics .

Use Thematic Analysis Software

Try Thematic today to discover why leading companies rely on the platform to automate the coding of qualitative customer feedback at scale. Whether you have tons of customer reviews, support chat or open-ended survey responses, Thematic brings every valuable insight to the surface, while saving you thousands of hours.

Advances in natural language processing & machine learning have made it possible to automate the analysis of qualitative data, in particular content and framework analysis.  The most commonly used software for automated coding of qualitative data is text analytics software such as Thematic .

While manual human analysis is still popular due to its perceived high accuracy, automating most of the analysis is quickly becoming the preferred choice. Unlike manual analysis, which is prone to bias and doesn't scale to the amount of qualitative data that is generated today, automating analysis is not only more consistent and therefore can be more accurate, but can also save a ton of time, and therefore money.

Our Theme Editor tool ensures you take a reflexive approach, an important step in thematic analysis. The drag-and-drop tool makes it easy to refine, validate, and rename themes as you get more data. By guiding the AI, you can ensure your results are always precise, easy to understand and perfectly aligned with your objectives.

Thematic is the best software to automate code qualitative feedback at scale.

Don't just take it from us. Here's what some of our customers have to say:

I'm a fan of Thematic's ability to save time and create heroes. It does an excellent job using a single view to break down the verbatims into themes displayed by volume, sentiment and impact on our beacon metric, often but not exclusively NPS.
It does a superlative job using GenAI in summarizing a theme or sub-theme down to a single paragraph making it clear what folks are trying to say. Peter K, Snr Research Manager.
Thematic is a very intuitive tool to use. It boasts a robust level of granularity, allowing the user to see the general breadth of verbatim themes, dig into the sub-themes, and further into the sentiment of the open text itself. Artem C, Sr Manager of Research. LinkedIn.

AI-powered software to transform qualitative data at scale through a thematic and content analysis.

How to manually code qualitative data

For the rest of this post, we'll focus on manual coding. Different researchers have different processes, but manual coding usually looks something like this:

  • Choose whether you'll use deductive or inductive coding.
  • Read through your data to get a sense of what it looks like. Assign your first set of codes.
  • Go through your data line-by-line to code as much as possible. Your codes should become more detailed at this step.
  • Categorize your codes and figure out how they fit into your coding frame.
  • Identify which themes come up the most — and act on them.

Let's break it down a little further…

Deductive coding vs. inductive coding

Before you start qualitative data coding, you need to decide which codes you'll use.

What is Deductive Coding?

Deductive coding means you start with a predefined set of codes, then assign those codes to the new qualitative data. These codes might come from previous research, or you might already know what themes you're interested in analyzing. Deductive coding is also called concept-driven coding.

For example, let's say you're conducting a survey on customer experience . You want to understand the problems that arise from long call wait times, so you choose to make “wait time” one of your codes before you start looking at the data.

The deductive approach can save time and help guarantee that your areas of interest are coded. But you also need to be careful of bias; when you start with predefined codes, you have a bias as to what the answers will be. Make sure you don't miss other important themes by focusing too hard on proving your own hypothesis.

What is Inductive Coding?

Inductive coding , also called open coding, starts from scratch and creates codes based on the qualitative data itself. You don't have a set codebook; all codes arise directly from the survey responses.

Here's how inductive coding works:

  • Break your qualitative dataset into smaller samples.
  • Read a sample of the data.
  • Create codes that will cover the sample.
  • Reread the sample and apply the codes.
  • Read a new sample of data, applying the codes you created for the first sample.
  • Note where codes don't match or where you need additional codes.
  • Create new codes based on the second sample.
  • Go back and recode all responses again.
  • Repeat from step 5 until you've coded all of your data.

If you add a new code, split an existing code into two, or change the description of a code, make sure to review how this change will affect the coding of all responses. Otherwise, the same responses at different points in the survey could end up with different codes.

Sounds like a lot of work, right? Inductive coding is an iterative process, which means it takes longer and is more thorough than deductive coding. A major advantage is that it gives you a more complete, unbiased look at the themes throughout your data.

Combining inductive and deductive coding

In practice, most researchers use a blend of inductive and deductive approaches to coding.

For example, with Thematic, the AI inductively comes up with themes , while also framing the analysis so that it reflects how business decisions are made . At the end of the analysis, researchers use the Theme Editor to iterate or refine themes. Then, in the next wave of analysis, as new data comes in, the AI starts deductively with the theme taxonomy.

Categorize your codes with coding frames

Once you create your codes, you need to put them into a coding frame. A coding frame represents the organizational structure of the themes in your research. There are two types of coding frames: flat and hierarchical.

Flat Coding Frame

A flat coding frame assigns the same level of specificity and importance to each code. While this might feel like an easier and faster method for manual coding, it can be difficult to organize and navigate the themes and concepts as you create more and more codes. It also makes it hard to figure out which themes are most important, which can slow down decision making.

Hierarchical Coding Frame

Hierarchical frames help you organize codes based on how they relate to one another. For example, you can organize the codes based on your customers' feelings on a certain topic:

Hierarchical Coding Frame example

Hierarchical Coding Frame example

In this example:

  • The top-level code describes the topic (customer service)
  • The mid-level code specifies whether the sentiment is positive or negative
  • The third level details the attribute or specific theme associated with the topic

Hierarchical framing supports a larger code frame and lets you organize codes based on organizational structure. It also allows for different levels of granularity in your coding.

Whether your code frames are hierarchical or flat, your code frames should be flexible. Manually analyzing survey data takes a lot of time and effort; make sure you can use your results in different contexts.

For example, if your survey asks customers about customer service, you might only use codes that capture answers about customer service. Then you realize that the same survey responses have a lot of comments about your company's products. To learn more about what people say about your products, you may have to code all of the responses from scratch! A flexible coding frame covers different topics and insights, which lets you reuse the results later on.

Tips for manually coding qualitative data

Now that you know the basics of coding your qualitative data, here are some tips on making the most of your qualitative research.

Use a codebook to keep track of your codes

As you code more and more data, it can be hard to remember all of your codes off the top of your head. Tracking your codes in a codebook helps keep you organized throughout the data analysis process. Your codebook can be as simple as an Excel spreadsheet or word processor document. As you code new data, add new codes to your codebook and reorganize categories and themes as needed.

Make sure to track:

  • The label used for each code
  • A description of the concept or theme the code refers to
  • Who originally coded it
  • The date that it was originally coded or updated
  • Any notes on how the code relates to other codes in your analysis

How to create high-quality codes - 4 tips

1. cover as many survey responses as possible..

The code should be generic enough to apply to multiple comments, but specific enough to be useful in your analysis. For example, “Product” is a broad code that will cover a variety of responses — but it's also pretty vague. What about the product? On the other hand, “Product stops working after using it for 3 hours” is very specific and probably won't apply to many responses. “Poor product quality” or “short product lifespan” might be a happy medium.

2. Avoid commonalities.

Having similar codes is okay as long as they serve different purposes. “Customer service” and “Product” are different enough from one another, while “Customer service” and “Customer support” may have subtle differences but should likely be combined into one code.

3. Capture the positive and the negative.

Try to create codes that contrast with each other to track both the positive and negative elements of a topic separately. For example, “Useful product features” and “Unnecessary product features” would be two different codes to capture two different themes.

4. Reduce data — to a point.

Let's look at the two extremes: There are as many codes as there are responses, or each code applies to every single response. In both cases, the coding exercise is pointless; you don't learn anything new about your data or your customers. To make your analysis as useful as possible, try to find a balance between having too many and too few codes.

Group responses based on themes, not words

Make sure to group responses with the same themes under the same code, even if they don't use the same exact wording. For example, a code such as “cleanliness” could cover responses including words and phrases like:

  • Looked like a dump
  • Could eat off the floor

Having only a few codes and hierarchical framing makes it easier to group different words and phrases under one code. If you have too many codes, especially in a flat frame, your results can become ambiguous and themes can overlap. Manual coding also requires the coder to remember or be able to find all of the relevant codes; the more codes you have, the harder it is to find the ones you need, no matter how organized your codebook is.

Make accuracy a priority

Manually coding qualitative data means that the coder's cognitive biases can influence the coding process. For each study, make sure you have coding guidelines and training in place to keep coding reliable, consistent, and accurate .

One thing to watch out for is definitional drift, which occurs when the data at the beginning of the data set is coded differently than the material coded later. Check for definitional drift across the entire dataset and keep notes with descriptions of how the codes vary across the results.

If you have multiple coders working on one team, have them check one another's coding to help eliminate cognitive biases.

Conclusion: 6 main takeaways for coding qualitative data

Here are 6 final takeaways for manually coding your qualitative data:

  • Coding is the process of labeling and organizing your qualitative data to identify themes. After you code your qualitative data, you can analyze it just like numerical data.
  • Inductive coding (without a predefined code frame) is more difficult, but less prone to bias, than deductive coding.
  • Code frames can be flat (easier and faster to use) or hierarchical (more powerful and organized).
  • Your code frames need to be flexible enough that you can make the most of your results and use them in different contexts.
  • When creating codes, make sure they cover several responses, contrast one another, and strike a balance between too much and too little information.
  • Consistent coding = accuracy. Establish coding procedures and guidelines and keep an eye out for definitional drift in your qualitative data analysis.

Some more detail in our downloadable guide

If you've made it this far, you'll likely be interested in our free guide: Best practices for analyzing open-ended questions.

The guide includes some of the topics covered in this article, and goes into some more niche details.

If your company is looking to automate your qualitative coding process, try Thematic !

If you're looking to trial multiple solutions, check out our free buyer's guide . It covers what to look for when trialing different feedback analytics solutions to ensure you get the depth of insights you need.

Happy coding!

Authored by Alyona Medelyan, PhD – Natural Language Processing & Machine Learning

is coding in research methodology

CEO and Co-Founder

Alyona has a PhD in NLP and Machine Learning. Her peer-reviewed articles have been cited by over 2600 academics. Her love of writing comes from years of PhD research.

We make it easy to discover the customer and product issues that matter.

Unlock the value of feedback at scale, in one platform. Try it for free now!

  • Questions to ask your Feedback Analytics vendor
  • How to end customer churn for good
  • Scalable analysis of NPS verbatims
  • 5 Text analytics approaches
  • How to calculate the ROI of CX

Our experts will show you how Thematic works, how to discover pain points and track the ROI of decisions. To access your free trial, book a personal demo today.

Recent posts

When two major storms wreaked havoc on Auckland and Watercare’s infrastructurem the utility went through a CX crisis. With a massive influx of calls to their support center, Thematic helped them get inisghts from this data to forge a new approach to restore services and satisfaction levels.

Become a qualitative theming pro! Creating a perfect code frame is hard, but thematic analysis software makes the process much easier.

Qualtrics is one of the most well-known and powerful Customer Feedback Management platforms. But even so, it has limitations. We recently hosted a live panel where data analysts from two well-known brands shared their experiences with Qualtrics, and how they extended this platform’s capabilities. Below, we’ll share the

Logo for Open Educational Resources

Chapter 18. Data Analysis and Coding

Introduction.

Piled before you lie hundreds of pages of fieldnotes you have taken, observations you’ve made while volunteering at city hall. You also have transcripts of interviews you have conducted with the mayor and city council members. What do you do with all this data? How can you use it to answer your original research question (e.g., “How do political polarization and party membership affect local politics?”)? Before you can make sense of your data, you will have to organize and simplify it in a way that allows you to access it more deeply and thoroughly. We call this process coding . [1] Coding is the iterative process of assigning meaning to the data you have collected in order to both simplify and identify patterns. This chapter introduces you to the process of qualitative data analysis and the basic concept of coding, while the following chapter (chapter 19) will take you further into the various kinds of codes and how to use them effectively.

To those who have not yet conducted a qualitative study, the sheer amount of collected data will be a surprise. Qualitative data can be absolutely overwhelming—it may mean hundreds if not thousands of pages of interview transcripts, or fieldnotes, or retrieved documents. How do you make sense of it? Students often want very clear guidelines here, and although I try to accommodate them as much as possible, in the end, analyzing qualitative data is a bit more of an art than a science: “The process of bringing order, structure, and interpretation to a mass of collected data is messy, ambiguous, time-consuming, creative, and fascinating. It does not proceed in a linear fashion: it is not neat. At times, the researcher may feel like an eccentric and tormented artist; not to worry, this is normal” ( Marshall and Rossman 2016:214 ).

To complicate matters further, each approach (e.g., Grounded Theory, deep ethnography, phenomenology) has its own language and bag of tricks (techniques) when it comes to analysis. Grounded Theory, for example, uses in vivo coding to generate new theoretical insights that emerge from a rigorous but open approach to data analysis. Ethnographers, in contrast, are more focused on creating a rich description of the practices, behaviors, and beliefs that operate in a particular field. They are less interested in generating theory and more interested in getting the picture right, valuing verisimilitude in the presentation. And then there are some researchers who seek to account for the qualitative data using almost quantitative methods of analysis, perhaps counting and comparing the uses of certain narrative frames in media accounts of a phenomenon. Qualitative content analysis (QCA) often includes elements of counting (see chapter 17). For these researchers, having very clear hypotheses and clearly defined “variables” before beginning analysis is standard practice, whereas the same would be expressly forbidden by those researchers, like grounded theorists, taking a more emergent approach.

All that said, there are some helpful techniques to get you started, and these will be presented in this and the following chapter. As you become more of an expert yourself, you may want to read more deeply about the tradition that speaks to your research. But know that there are many excellent qualitative researchers that use what works for any given study, who take what they can from each tradition. Most of us find this permissible (but watch out for the methodological purists that exist among us).

Null

Qualitative Data Analysis as a Long Process!

Although most of this and the following chapter will focus on coding, it is important to understand that coding is just one (very important) aspect of the long data-analysis process. We can consider seven phases of data analysis, each of which is important for moving your voluminous data into “findings” that can be reported to others. The first phase involves data organization. This might mean creating a special password-protected Dropbox folder for storing your digital files. It might mean acquiring computer-assisted qualitative data-analysis software ( CAQDAS ) and uploading all transcripts, fieldnotes, and digital files to its storage repository for eventual coding and analysis. Finding a helpful way to store your material can take a lot of time, and you need to be smart about this from the very beginning. Losing data because of poor filing systems or mislabeling is something you want to avoid. You will also want to ensure that you have procedures in place to protect the confidentiality of your interviewees and informants. Filing signed consent forms (with names) separately from transcripts and linking them through an ID number or other code that only you have access to (and store safely) are important.

Once you have all of your material safely and conveniently stored, you will need to immerse yourself in the data. The second phase consists of reading and rereading or viewing and reviewing all of your data. As you do this, you can begin to identify themes or patterns in the data, perhaps writing short memos to yourself about what you are seeing. You are not committing to anything in this third phase but rather keeping your eyes and mind open to what you see. In an actual study, you may very well still be “in the field” or collecting interviews as you do this, and what you see might push you toward either concluding your data collection or expanding so that you can follow a particular group or factor that is emerging as important. For example, you may have interviewed twelve international college students about how they are adjusting to life in the US but realized as you read your transcripts that important gender differences may exist and you have only interviewed two women (and ten men). So you go back out and make sure you have enough female respondents to check your impression that gender matters here. The seven phases do not proceed entirely linearly! It is best to think of them as recursive; conceptually, there is a path to follow, but it meanders and flows.

Coding is the activity of the fourth phase . The second part of this chapter and all of chapter 19 will focus on coding in greater detail. For now, know that coding is the primary tool for analyzing qualitative data and that its purpose is to both simplify and highlight the important elements buried in mounds of data. Coding is a rigorous and systematic process of identifying meaning, patterns, and relationships. It is a more formal extension of what you, as a conscious human being, are trained to do every day when confronting new material and experiences. The “trick” or skill is to learn how to take what you do naturally and semiconsciously in your mind and put it down on paper so it can be documented and verified and tested and refined.

At the conclusion of the coding phase, your material will be searchable, intelligible, and ready for deeper analysis. You can begin to offer interpretations based on all the work you have done so far. This fifth phase might require you to write analytic memos, beginning with short (perhaps a paragraph or two) interpretations of various aspects of the data. You might then attempt stitching together both reflective and analytical memos into longer (up to five pages) general interpretations or theories about the relationships, activities, patterns you have noted as salient.

As you do this, you may be rereading the data, or parts of the data, and reviewing your codes. It’s possible you get to this phase and decide you need to go back to the beginning. Maybe your entire research question or focus has shifted based on what you are now thinking is important. Again, the process is recursive , not linear. The sixth phase requires you to check the interpretations you have generated. Are you really seeing this relationship, or are you ignoring something important you forgot to code? As we don’t have statistical tests to check the validity of our findings as quantitative researchers do, we need to incorporate self-checks on our interpretations. Ask yourself what evidence would exist to counter your interpretation and then actively look for that evidence. Later on, if someone asks you how you know you are correct in believing your interpretation, you will be able to explain what you did to verify this. Guard yourself against accusations of “ cherry-picking ,” selecting only the data that supports your preexisting notion or expectation about what you will find. [2]

The seventh and final phase involves writing up the results of the study. Qualitative results can be written in a variety of ways for various audiences (see chapter 20). Due to the particularities of qualitative research, findings do not exist independently of their being written down. This is different for quantitative research or experimental research, where completed analyses can somewhat speak for themselves. A box of collected qualitative data remains a box of collected qualitative data without its written interpretation. Qualitative research is often evaluated on the strength of its presentation. Some traditions of qualitative inquiry, such as deep ethnography, depend on written thick descriptions, without which the research is wholly incomplete, even nonexistent. All of that practice journaling and writing memos (reflective and analytical) help develop writing skills integral to the presentation of the findings.

Remember that these are seven conceptual phases that operate in roughly this order but with a lot of meandering and recursivity throughout the process. This is very different from quantitative data analysis, which is conducted fairly linearly and processually (first you state a falsifiable research question with hypotheses, then you collect your data or acquire your data set, then you analyze the data, etc.). Things are a bit messier when conducting qualitative research. Embrace the chaos and confusion, and sort your way through the maze. Budget a lot of time for this process. Your research question might change in the middle of data collection. Don’t worry about that. The key to being nimble and flexible in qualitative research is to start thinking and continue thinking about your data, even as it is being collected. All seven phases can be started before all the data has been gathered. Data collection does not always precede data analysis. In some ways, “qualitative data collection is qualitative data analysis.… By integrating data collection and data analysis, instead of breaking them up into two distinct steps, we both enrich our insights and stave off anxiety. We all know the anxiety that builds when we put something off—the longer we put it off, the more anxious we get. If we treat data collection as this mass of work we must do before we can get started on the even bigger mass of work that is analysis, we set ourselves up for massive anxiety” ( Rubin 2021:182–183 ; emphasis added).

The Coding Stage

A code is “a word or short phrase that symbolically assigns a summative, salient, essence-capturing, and/or evocative attribute for a portion of language-based or visual data” ( Saldaña 2014:5 ). Codes can be applied to particular sections of or entire transcripts, documents, or even videos. For example, one might code a video taken of a preschooler trying to solve a puzzle as “puzzle,” or one could take the transcript of that video and highlight particular sections or portions as “arranging puzzle pieces” (a descriptive code) or “frustration” (a summative emotion-based code). If the preschooler happily shouts out, “I see it!” you can denote the code “I see it!” (this is an example of an in vivo, participant-created code). As one can see from even this short example, there are many different kinds of codes and many different strategies and techniques for coding, more of which will be discussed in detail in chapter 19. The point to remember is that coding is a rigorous systematic process—to some extent, you are always coding whenever you look at a person or try to make sense of a situation or event, but you rarely do this consciously. Coding is the process of naming what you are seeing and how you are simplifying the data so that you can make sense of it in a way that is consistent with your study and in a way that others can understand and follow and replicate. Another way of saying this is that a code is “a researcher-generated interpretation that symbolizes or translates data” ( Vogt et al. 2014:13 ).

As with qualitative data analysis generally, coding is often done recursively, meaning that you do not merely take one pass through the data to create your codes. Saldaña ( 2014 ) differentiates first-cycle coding from second-cycle coding. The goal of first-cycle coding is to “tag” or identify what emerges as important codes. Note that I said emerges—you don’t always know from the beginning what will be an important aspect of the study or not, so the coding process is really the place for you to begin making the kinds of notes necessary for future analyses. In second-cycle coding, you will want to be much more focused—no longer gathering wholly new codes but synthesizing what you have into metacodes.

You might also conceive of the coding process in four parts (figure 18.1). First, identify a representative or diverse sample set of interview transcripts (or fieldnotes or other documents). This is the group you are going to use to get a sense of what might be emerging. In my own study of career obstacles to success among first-generation and working-class persons in sociology, I might select one interview from each career stage: a graduate student, a junior faculty member, a senior faculty member.

is coding in research methodology

Second, code everything (“ open coding ”). See what emerges, and don’t limit yourself in any way. You will end up with a ton of codes, many more than you will end up with, but this is an excellent way to not foreclose an interesting finding too early in the analysis. Note the importance of starting with a sample of your collected data, because otherwise, open coding all your data is, frankly, impossible and counterproductive. You will just get stuck in the weeds.

Third, pare down your coding list. Where you may have begun with fifty (or more!) codes, you probably want no more than twenty remaining. Go back through the weeds and pull out everything that does not have the potential to bloom into a nicely shaped garden. Note that you should do this before tackling all of your data . Sometimes, however, you might need to rethink the sample you chose. Let’s say that the graduate student interview brought up some interesting gender issues that were pertinent to female-identifying sociologists, but both the junior and the senior faculty members identified as male. In that case, I might read through and open code at least one other interview transcript, perhaps a female-identifying senior faculty member, before paring down my list of codes.

This is also the time to create a codebook if you are using one, a master guide to the codes you are using, including examples (see Sample Codebooks 1 and 2 ). A codebook is simply a document that lists and describes the codes you are using. It is easy to forget what you meant the first time you penciled a coded notation next to a passage, so the codebook allows you to be clear and consistent with the use of your codes. There is not one correct way to create a codebook, but generally speaking, the codebook should include (1) the code (either name or identification number or both), (2) a description of what the code signifies and when and where it should be applied, and (3) an example of the code to help clarify (2). Listing all the codes down somewhere also allows you to organize and reorganize them, which can be part of the analytical process. It is possible that your twenty remaining codes can be neatly organized into five to seven master “themes.” Codebooks can and should develop as you recursively read through and code your collected material. [3]

Fourth, using the pared-down list of codes (or codebook), read through and code all the data. I know many qualitative researchers who work without a codebook, but it is still a good practice, especially for beginners. At the very least, read through your list of codes before you begin this “ closed coding ” step so that you can minimize the chance of missing a passage or section that needs to be coded. The final step is…to do it all again. Or, at least, do closed coding (step four) again. All of this takes a great deal of time, and you should plan accordingly.

Researcher Note

People often say that qualitative research takes a lot of time. Some say this because qualitative researchers often collect their own data. This part can be time consuming, but to me, it’s the analytical process that takes the most time. I usually read every transcript twice before starting to code, then it usually takes me six rounds of coding until I’m satisfied I’ve thoroughly coded everything. Even after the coding, it usually takes me a year to figure out how to put the analysis together into a coherent argument and to figure out what language to use. Just deciding what name to use for a particular group or idea can take months. Understanding this going in can be helpful so that you know to be patient with yourself.

—Jessi Streib, author of The Power of the Past and Privilege Lost 

Note that there is no magic in any of this, nor is there any single “right” way to code or any “correct” codes. What you see in the data will be prompted by your position as a researcher and your scholarly interests. Where the above codes on a preschooler solving a puzzle emerged from my own interest in puzzle solving, another researcher might focus on something wholly different. A scholar of linguistics, for example, may focus instead on the verbalizations made by the child during the discovery process, perhaps even noting particular vocalizations (incidence of grrrs and gritting of the teeth, for example). Your recording of the codes you used is the important part, as it allows other researchers to assess the reliability and validity of your analyses based on those codes. Chapter 19 will provide more details about the kinds of codes you might develop.

Saldaña ( 2014 ) lists seven “necessary personal attributes” for successful coding. To paraphrase, they are the following:

  • Having (or practicing) good organizational skills
  • Perseverance
  • The ability and willingness to deal with ambiguity
  • Flexibility
  • Creativity, broadly understood, which includes “the ability to think visually, to think symbolically, to think in metaphors, and to think of as many ways as possible to approach a problem” (20)
  • Commitment to being rigorously ethical
  • Having an extensive vocabulary [4]

Writing Analytic Memos during/after Coding

Coding the data you have collected is only one aspect of analyzing it. Too many beginners have coded their data and then wondered what to do next. Coding is meant to help organize your data so that you can see it more clearly, but it is not itself an analysis. Thinking about the data, reviewing the coded data, and bringing in the previous literature (here is where you use your literature review and theory) to help make sense of what you have collected are all important aspects of data analysis. Analytic memos are notes you write to yourself about the data. They can be short (a single page or even a paragraph) or long (several pages). These memos can themselves be the subject of subsequent analytic memoing as part of the recursive process that is qualitative data analysis.

Short analytic memos are written about impressions you have about the data, what is emerging, and what might be of interest later on. You can write a short memo about a particular code, for example, and why this code seems important and where it might connect to previous literature. For example, I might write a paragraph about a “cultural capital” code that I use whenever a working-class sociologist says anything about “not fitting in” with their peers (e.g., not having the right accent or hairstyle or private school background). I could then write a little bit about Bourdieu, who originated the notion of cultural capital, and try to make some connections between his definition and how I am applying it here. I can also use the memo to raise questions or doubts I have about what I am seeing (e.g., Maybe the type of school belongs somewhere else? Is this really the right code?). Later on, I can incorporate some of this writing into the theory section of my final paper or article. Here are some types of things that might form the basis of a short memo: something you want to remember, something you noticed that was new or different, a reaction you had, a suspicion or hunch that you are developing, a pattern you are noticing, any inferences you are starting to draw. Rubin ( 2021 ) advises, “Always include some quotation or excerpt from your dataset…that set you off on this idea. It’s happened to me so many times—I’ll have a really strong reaction to a piece of data, write down some insight without the original quotation or context, and then [later] have no idea what I was talking about and have no way of recreating my insight because I can’t remember what piece of data made me think this way” ( 203 ).

All CAQDAS programs include spaces for writing, generating, and storing memos. You can link a memo to a particular transcript, for example. But you can just as easily keep a notebook at hand in which you write notes to yourself, if you prefer the more tactile approach. Drawing pictures that illustrate themes and patterns you are beginning to see also works. The point is to write early and write often, as these memos are the building blocks of your eventual final product (chapter 20).

In the next chapter (chapter 19), we will go a little deeper into codes and how to use them to identify patterns and themes in your data. This chapter has given you an idea of the process of data analysis, but there is much yet to learn about the elements of that process!

Qualitative Data-Analysis Samples

The following three passages are examples of how qualitative researchers describe their data-analysis practices. The first, by Harvey, is a useful example of how data analysis can shift the original research questions. The second example, by Thai, shows multiple stages of coding and how these stages build upward to conceptual themes and theorization. The third example, by Lamont, shows a masterful use of a variety of techniques to generate theory.

Example 1: “Look Someone in the Eye” by Peter Francis Harvey ( 2022 )

I entered the field intending to study gender socialization. However, through the iterative process of writing fieldnotes, rereading them, conducting further research, and writing extensive analytic memos, my focus shifted. Abductive analysis encourages the search for unexpected findings in light of existing literature. In my early data collection, fieldnotes, and memoing, classed comportment was unmistakably prominent in both schools. I was surprised by how pervasive this bodily socialization proved to be and further surprised by the discrepancies between the two schools.…I returned to the literature to compare my empirical findings.…To further clarify patterns within my data and to aid the search for disconfirming evidence, I constructed data matrices (Miles, Huberman, and Saldaña 2013). While rereading my fieldnotes, I used ATLAS.ti to code and recode key sections (Miles et al. 2013), punctuating this process with additional analytic memos. ( 2022:1420 )

Example 2:” Policing and Symbolic Control” by Mai Thai ( 2022 )

Conventional to qualitative research, my analyses iterated between theory development and testing. Analytical memos were written throughout the data collection, and my analyses using MAXQDA software helped me develop, confirm, and challenge specific themes.…My early coding scheme which included descriptive codes (e.g., uniform inspection, college trips) and verbatim codes of the common terms used by field site participants (e.g., “never quit,” “ghetto”) led me to conceptualize valorization. Later analyses developed into thematic codes (e.g., good citizens, criminality) and process codes (e.g., valorization, criminalization), which helped refine my arguments. ( 2022:1191–1192 )

Example 3: The Dignity of Working Men by Michèle Lamont ( 2000 )

To analyze the interviews, I summarized them in a 13-page document including socio-demographic information as well as information on the boundary work of the interviewees. To facilitate comparisons, I noted some of the respondents’ answers on grids and summarized these on matrix displays using techniques suggested by Miles and Huberman for standardizing and processing qualitative data. Interviews were also analyzed one by one, with a focus on the criteria that each respondent mobilized for the evaluation of status. Moreover, I located each interviewee on several five-point scales pertaining to the most significant dimensions they used to evaluate status. I also compared individual interviewees with respondents who were similar to and different from them, both within and across samples. Finally, I classified all the transcripts thematically to perform a systematic analysis of all the important themes that appear in the interviews, approaching the latter as data against which theoretical questions can be explored. ( 2000:256–257 )

Sample Codebook 1

This is an abridged version of the codebook used to analyze qualitative responses to a question about how class affects careers in sociology. Note the use of numbers to organize the flow, supplemented by highlighting techniques (e.g., bolding) and subcoding numbers.

01. CAPS: Any reference to “capitals” in the response, even if the specific words are not used

01.1: cultural capital 01.2: social capital 01.3: economic capital

(can be mixed: “0.12”= both cultural and asocial capital; “0.23”= both social and economic)

01. CAPS: a reference to “capitals” in which the specific words are used [ bold : thus, 01.23 means that both social capital and economic capital were mentioned specifically

02. DEBT: discussion of debt

02.1: mentions personal issues around debt 02.2: discusses debt but in the abstract only (e.g., “people with debt have to worry”)

03. FirstP: how the response is positioned

03.1: neutral or abstract response 03.2: discusses self (“I”) 03.3: discusses others (“they”)

Sample Coded Passage:

* Question: What other codes jump out to you here? Shouldn’t there be a code for feelings of loneliness or alienation? What about an emotions code ?

Sample Codebook 2

This is an example that uses "word" categories only, with descriptions and examples for each code

Further Readings

Elliott, Victoria. 2018. “Thinking about the Coding Process in Qualitative Analysis.” Qualitative Report 23(11):2850–2861. Address common questions those new to coding ask, including the use of “counting” and how to shore up reliability.

Friese, Susanne. 2019. Qualitative Data Analysis with ATLAS.ti. 3rd ed. A good guide to ATLAS.ti, arguably the most used CAQDAS program. Organized around a series of “skills training” to get you up to speed.

Jackson, Kristi, and Pat Bazeley. 2019. Qualitative Data Analysis with NVIVO . 3rd ed. Thousand Oaks, CA: SAGE. If you want to use the CAQDAS program NVivo, this is a good affordable guide to doing so. Includes copious examples, figures, and graphic displays.

LeCompte, Margaret D. 2000. “Analyzing Qualitative Data.” Theory into Practice 39(3):146–154. A very practical and readable guide to the entire coding process, with particular applicability to educational program evaluation/policy analysis.

Miles, Matthew B., and A. Michael Huberman. 1994. Qualitative Data Analysis: An Expanded Sourcebook . 2nd ed. Thousand Oaks, CA: SAGE. A classic reference on coding. May now be superseded by Miles, Huberman, and Saldaña (2019).

Miles, Matthew B., A. Michael Huberman, and Johnny Saldaña. 2019. Qualitative Data Analysis: A Methods Sourcebook . 4th ed. Thousand Oaks, CA; SAGE. A practical methods sourcebook for all qualitative researchers at all levels using visual displays and examples. Highly recommended.

Saldaña, Johnny. 2014. The Coding Manual for Qualitative Researchers . 2nd ed. Thousand Oaks, CA: SAGE. The most complete and comprehensive compendium of coding techniques out there. Essential reference.

Silver, Christina. 2014. Using Software in Qualitative Research: A Step-by-Step Guide. 2nd ed. Thousand Oaks, CA; SAGE. If you are unsure which CAQDAS program you are interested in using or want to compare the features and usages of each, this guidebook is quite helpful.

Vogt, W. Paul, Elaine R. Vogt, Diane C. Gardner, and Lynne M. Haeffele2014. Selecting the Right Analyses for Your Data: Quantitative, Qualitative, and Mixed Methods . New York: The Guilford Press. User-friendly reference guide to all forms of analysis; may be particularly helpful for those engaged in mixed-methods research.

  • When you have collected content (historical, media, archival) that interests you because of its communicative aspect, content analysis (chapter 17) is appropriate. Whereas content analysis is both a research method and a tool of analysis, coding is a tool of analysis that can be used for all kinds of data to address any number of questions. Content analysis itself includes coding. ↵
  • Scientific research, whether quantitative or qualitative, demands we keep an open mind as we conduct our research, that we are “neutral” regarding what is actually there to find. Students who are trained in non-research-based disciplines such as the arts or philosophy or who are (admirably) focused on pursuing social justice can too easily fall into the trap of thinking their job is to “demonstrate” something through the data. That is not the job of a researcher. The job of a researcher is to present (and interpret) findings—things “out there” (even if inside other people’s hearts and minds). One helpful suggestion: when formulating your research question, if you already know the answer (or think you do), scrap that research. Ask a question to which you do not yet know the answer. ↵
  • Codebooks are particularly useful for collaborative research so that codes are applied and interpreted similarly. If you are working with a team of researchers, you will want to take extra care that your codebooks remain in synch and that any refinements or developments are shared with fellow coders. You will also want to conduct an “intercoder reliability” check, testing whether the codes you have developed are clearly identifiable so that multiple coders are using them similarly. Messy, unclear codes that can be interpreted differently by different coders will make it much more difficult to identify patterns across the data. ↵
  • Note that this is important for creating/denoting new codes. The vocabulary does not need to be in English or any particular language. You can use whatever words or phrases capture what it is you are seeing in the data. ↵

A first-cycle coding process in which gerunds are used to identify conceptual actions, often for the purpose of tracing change and development over time.  Widely used in the Grounded Theory approach.

A first-cycle coding process in which terms or phrases used by the participants become the code applied to a particular passage.  It is also known as “verbatim coding,” “indigenous coding,” “natural coding,” “emic coding,” and “inductive coding,” depending on the tradition of inquiry of the researcher.  It is common in Grounded Theory approaches and has even given its name to one of the primary CAQDAS programs (“NVivo”).

Computer-assisted qualitative data-analysis software.  These are software packages that can serve as a repository for qualitative data and that enable coding, memoing, and other tools of data analysis.  See chapter 17 for particular recommendations.

The purposeful selection of some data to prove a preexisting expectation or desired point of the researcher where other data exists that would contradict the interpretation offered.  Note that it is not cherry picking to select a quote that typifies the main finding of a study, although it would be cherry picking to select a quote that is atypical of a body of interviews and then present it as if it is typical.

A preliminary stage of coding in which the researcher notes particular aspects of interest in the data set and begins creating codes.  Later stages of coding refine these preliminary codes.  Note: in Grounded Theory , open coding has a more specific meaning and is often called initial coding : data are broken down into substantive codes in a line-by-line manner, and incidents are compared with one another for similarities and differences until the core category is found.  See also closed coding .

A set of codes, definitions, and examples used as a guide to help analyze interview data.  Codebooks are particularly helpful and necessary when research analysis is shared among members of a research team, as codebooks allow for standardization of shared meanings and code attributions.

The final stages of coding after the refinement of codes has created a complete list or codebook in which all the data is coded using this refined list or codebook.  Compare to open coding .

A first-cycle coding process in which emotions and emotionally salient passages are tagged.

Introduction to Qualitative Research Methods Copyright © 2023 by Allison Hurst is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

  • Search Menu
  • Sign in through your institution
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Papyrology
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Evolution
  • Language Reference
  • Language Acquisition
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Media
  • Music and Religion
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Science
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Clinical Neuroscience
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Ethics
  • Business Strategy
  • Business History
  • Business and Technology
  • Business and Government
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic History
  • Economic Systems
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Theory
  • Politics and Law
  • Politics of Development
  • Public Policy
  • Public Administration
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Qualitative Research

A newer edition of this book is available.

  • < Previous chapter
  • Next chapter >

28 Coding and Analysis Strategies

Johnny Saldaña, School of Theatre and Film, Arizona State University

  • Published: 04 August 2014
  • Cite Icon Cite
  • Permissions Icon Permissions

This chapter provides an overview of selected qualitative data analytic strategies with a particular focus on codes and coding. Preparatory strategies for a qualitative research study and data management are first outlined. Six coding methods are then profiled using comparable interview data: process coding, in vivo coding, descriptive coding, values coding, dramaturgical coding, and versus coding. Strategies for constructing themes and assertions from the data follow. Analytic memo writing is woven throughout the preceding as a method for generating additional analytic insight. Next, display and arts-based strategies are provided, followed by recommended qualitative data analytic software programs and a discussion on verifying the researcher’s analytic findings.

Coding and Analysis Strategies

Anthropologist Clifford Geertz (1983) charmingly mused, “Life is just a bowl of strategies” (p. 25). Strategy , as I use it here, refers to a carefully considered plan or method to achieve a particular goal. The goal in this case is to develop a write-up of your analytic work with the qualitative data you have been given and collected as part of a study. The plans and methods you might employ to achieve that goal are what this article profiles.

Some may perceive strategy as an inappropriate if not colonizing word, suggesting formulaic or regimented approaches to inquiry. I assure you that that is not my intent. My use of strategy is actually dramaturgical in nature: strategies are actions that characters in plays take to overcome obstacles to achieve their objectives. Actors portraying these characters rely on action verbs to generate belief within themselves and to motivate them as they interpret the lines and move appropriately on stage. So what I offer is a qualitative researcher’s array of actions from which to draw to overcome the obstacles to thinking to achieve an analysis of your data. But unlike the pre-scripted text of a play in which the obstacles, strategies, and outcomes have been predetermined by the playwright, your work must be improvisational—acting, reacting, and interacting with data on a moment-by-moment basis to determine what obstacles stand in your way, and thus what strategies you should take to reach your goals.

Another intriguing quote to keep in mind comes from research methodologist Robert E. Stake (1995) who posits, “Good research is not about good methods as much as it is about good thinking” (p. 19). In other words, strategies can take you only so far. You can have a box full of tools, but if you do not know how to use them well or use them creatively, the collection seems rather purposeless. One of the best ways we learn is by doing . So pick up one or more of these strategies (in the form of verbs) and take analytic action with your data. Also keep in mind that these are discussed in the order in which they may typically occur, although humans think cyclically, iteratively, and reverberatively, and each particular research project has its own unique contexts and needs. So be prepared for your mind to jump purposefully and/or idiosyncratically from one strategy to another throughout the study.

QDA (Qualitative Data Analysis) Strategy: To Foresee

To foresee in QDA is to reflect beforehand on what forms of data you will most likely need and collect, which thus informs what types of data analytic strategies you anticipate using.

Analysis, in a way, begins even before you collect data. As you design your research study in your mind and on a word processor page, one strategy is to consider what types of data you may need to help inform and answer your central and related research questions. Interview transcripts, participant observation field notes, documents, artifacts, photographs, video recordings, and so on are not only forms of data but foundations for how you may plan to analyze them. A participant interview, for example, suggests that you will transcribe all or relevant portions of the recording, and use both the transcription and the recording itself as sources for data analysis. Any analytic memos (discussed later) or journal entries you make about your impressions of the interview also become data to analyze. Even the computing software you plan to employ will be relevant to data analysis as it may help or hinder your efforts.

As your research design formulates, compose one to two paragraphs that outline how your QDA may proceed. This will necessitate that you have some background knowledge of the vast array of methods available to you. Thus surveying the literature is vital preparatory work.

QDA Strategy: To Survey

To survey in QDA is to look for and consider the applicability of the QDA literature in your field that may provide useful guidance for your forthcoming data analytic work.

General sources in QDA will provide a good starting point for acquainting you with the data analytic strategies available for the variety of genres in qualitative inquiry (e.g., ethnography, phenomenology, case study, arts-based research, mixed methods). One of the most accessible is Graham R. Gibbs’ (2007)   Analysing Qualitative Data , and one of the most richly detailed is Frederick J. Wertz et al.'s (2011)   Five Ways of Doing Qualitative Analysis . The author’s core texts for this article came from The Coding Manual for Qualitative Researchers ( Saldaña, 2009 , 2013 ) and Fundamentals of Qualitative Research ( Saldaña, 2011 ).

If your study’s methodology or approach is grounded theory, for example, then a survey of methods works by such authors as Barney G. Glaser, Anselm L. Strauss, Juliet Corbin and, in particular, the prolific Kathy Charmaz (2006) may be expected. But there has been a recent outpouring of additional book publications in grounded theory by Birks & Mills (2011) , Bryant & Charmaz (2007) , Stern & Porr (2011) , plus the legacy of thousands of articles and chapters across many disciplines that have addressed grounded theory in their studies.

Particular fields such as education, psychology, social work, health care, and others also have their own QDA methods literature in the form of texts and journals, plus international conferences and workshops for members of the profession. Most important is to have had some university coursework and/or mentorship in qualitative research to suitably prepare you for the intricacies of QDA. Also acknowledge that the emergent nature of qualitative inquiry may require you to adopt different analytic strategies from what you originally planned.

QDA Strategy: To Collect

To collect in QDA is to receive the data given to you by participants and those data you actively gather to inform your study.

QDA is concurrent with data collection and management. As interviews are transcribed, field notes are fleshed out, and documents are filed, the researcher uses the opportunity to carefully read the corpus and make preliminary notations directly on the data documents by highlighting, bolding, italicizing, or noting in some way any particularly interesting or salient portions. As these data are initially reviewed, the researcher also composes supplemental analytic memos that include first impressions, reminders for follow-up, preliminary connections, and other thinking matters about the phenomena at work.

Some of the most common fieldwork tools you might use to collect data are notepads, pens and pencils, file folders for documents, a laptop or desktop with word processing software (Microsoft Word and Excel are most useful) and internet access, a digital camera, and a voice recorder. Some fieldworkers may even employ a digital video camera to record social action, as long as participant permissions have been secured. But everything originates from the researcher himself or herself. Your senses are immersed in the cultural milieu you study, taking in and holding on to relevant details or “significant trivia,” as I call them. You become a human camera, zooming out to capture the broad landscape of your field site one day, then zooming in on a particularly interesting individual or phenomenon the next. Your analysis is only as good as the data you collect.

Fieldwork can be an overwhelming experience because so many details of social life are happening in front of you. Take a holistic approach to your entree, but as you become more familiar with the setting and participants, actively focus on things that relate to your research topic and questions. Of course, keep yourself open to the intriguing, surprising, and disturbing ( Sunstein & Chiseri-Strater, 2012 , p. 115), for these facets enrich your study by making you aware of the unexpected.

QDA Strategy: To Feel

To feel in QDA is to gain deep emotional insight into the social worlds you study and what it means to be human.

Virtually everything we do has an accompanying emotion(s), and feelings are both reactions and stimuli for action. Others’ emotions clue you to their motives, attitudes, values, beliefs, worldviews, identities, and other subjective perceptions and interpretations. Acknowledge that emotional detachment is not possible in field research. Attunement to the emotional experiences of your participants plus sympathetic and empathetic responses to the actions around you are necessary in qualitative endeavors. Your own emotional responses during fieldwork are also data because they document the tacit and visceral. It is important during such analytic reflection to assess why your emotional reactions were as they were. But it is equally important not to let emotions alone steer the course of your study. A proper balance must be found between feelings and facts.

QDA Strategy: To Organize

To organize in QDA is to maintain an orderly repository of data for easy access and analysis.

Even in the smallest of qualitative studies, a large amount of data will be collected across time. Prepare both a hard drive and hard copy folders for digital data and paperwork, and back up all materials for security from loss. I recommend that each data “chunk” (e.g., one interview transcript, one document, one day’s worth of field notes) get its own file, with subfolders specifying the data forms and research study logistics (e.g., interviews, field notes, documents, Institutional Review Board correspondence, calendar).

For small-scale qualitative studies, I have found it quite useful to maintain one large master file with all participant and field site data copied and combined with the literature review and accompanying researcher analytic memos. This master file is used to cut and paste related passages together, deleting what seems unnecessary as the study proceeds, and eventually transforming the document into the final report itself. Cosmetic devices such as font style, font size, rich text (italicizing, bolding, underlining, etc.), and color can help you distinguish between different data forms and highlight significant passages. For example, descriptive, narrative passages of field notes are logged in regular font. “Quotations, things spoken by participants, are logged in bold font.”   Observer’s comments, such as the researcher’s subjective impressions or analytic jottings, are set in italics.

QDA Strategy: To Jot

To jot in QDA is to write occasional, brief notes about your thinking or reminders for follow up.

A jot is a phrase or brief sentence that will literally fit on a standard size “sticky note.” As data are brought and documented together, take some initial time to review their contents and to jot some notes about preliminary patterns, participant quotes that seem quite vivid, anomalies in the data, and so forth.

As you work on a project, keep something to write with or to voice record with you at all times to capture your fleeting thoughts. You will most likely find yourself thinking about your research when you're not working exclusively on the project, and a “mental jot” may occur to you as you ruminate on logistical or analytic matters. Get the thought documented in some way for later retrieval and elaboration as an analytic memo.

QDA Strategy: To Prioritize

To prioritize in QDA is to determine which data are most significant in your corpus and which tasks are most necessary.

During fieldwork, massive amounts of data in various forms may be collected, and your mind can get easily overwhelmed from the magnitude of the quantity, its richness, and its management. Decisions will need to be made about the most pertinent of them because they help answer your research questions or emerge as salient pieces of evidence. As a sweeping generalization, approximately one half to two thirds of what you collect may become unnecessary as you proceed toward the more formal stages of QDA.

To prioritize in QDA is to also determine what matters most in your assembly of codes, categories, themes, assertions, and concepts. Return back to your research purpose and questions to keep you framed for what the focus should be.

QDA Strategy: To Analyze

To analyze in QDA is to observe and discern patterns within data and to construct meanings that seem to capture their essences and essentials.

Just as there are a variety of genres, elements, and styles of qualitative research, so too are there a variety of methods available for QDA. Analytic choices are most often based on what methods will harmonize with your genre selection and conceptual framework, what will generate the most sufficient answers to your research questions, and what will best represent and present the project’s findings.

Analysis can range from the factual to the conceptual to the interpretive. Analysis can also range from a straightforward descriptive account to an emergently constructed grounded theory to an evocatively composed short story. A qualitative research project’s outcomes may range from rigorously achieved, insightful answers to open-ended, evocative questions; from rich descriptive detail to a bullet-pointed list of themes; and from third-person, objective reportage to first-person, emotion-laden poetry. Just as there are multiple destinations in qualitative research, there are multiple pathways and journeys along the way.

Analysis is accelerated as you take cognitive ownership of your data. By reading and rereading the corpus, you gain intimate familiarity with its contents and begin to notice significant details as well as make new insights about their meanings. Patterns, categories, and their interrelationships become more evident the more you know the subtleties of the database.

Since qualitative research’s design, fieldwork, and data collection are most often provisional, emergent, and evolutionary processes, you reflect on and analyze the data as you gather them and proceed through the project. If preplanned methods are not working, you change them to secure the data you need. There is generally a post-fieldwork period when continued reflection and more systematic data analysis occur, concurrent with or followed by additional data collection, if needed, and the more formal write-up of the study, which is in itself an analytic act. Through field note writing, interview transcribing, analytic memo writing, and other documentation processes, you gain cognitive ownership of your data; and the intuitive, tacit, synthesizing capabilities of your brain begin sensing patterns, making connections, and seeing the bigger picture. The purpose and outcome of data analysis is to reveal to others through fresh insights what we have observed and discovered about the human condition. And fortunately, there are heuristics for reorganizing and reflecting on your qualitative data to help you achieve that goal.

QDA Strategy: To Pattern

To pattern in QDA is to detect similarities within and regularities among the data you have collected.

The natural world is filled with patterns because we, as humans, have constructed them as such. Stars in the night sky are not just a random assembly; our ancestors pieced them together to form constellations like the Big Dipper. A collection of flowers growing wild in a field has a pattern, as does an individual flower’s patterns of leaves and petals. Look at the physical objects humans have created and notice how pattern oriented we are in our construction, organization, and decoration. Look around you in your environment and notice how many patterns are evident on your clothing, in a room, and on most objects themselves. Even our sometimes mundane daily and long-term human actions are reproduced patterns in the form of roles, relationships, rules, routines, and rituals.

This human propensity for pattern making follows us into QDA. From the vast array of interview transcripts, field notes, documents, and other forms of data, there is this instinctive, hardwired need to bring order to the collection—not just to reorganize it but to look for and construct patterns out of it. The discernment of patterns is one of the first steps in the data analytic process, and the methods described next are recommended ways to construct them.

QDA Strategy: To Code

To code in QDA is to assign a truncated, symbolic meaning to each datum for purposes of qualitative analysis.

Coding is a heuristic—a method of discovery—to the meanings of individual sections of data. These codes function as a way of patterning, classifying, and later reorganizing them into emergent categories for further analysis. Different types of codes exist for different types of research genres and qualitative data analytic approaches, but this article will focus on only a few selected methods. First, a definition of a code:

A code in qualitative data analysis is most often a word or short phrase that symbolically assigns a summative, salient, essence-capturing, and/or evocative attribute for a portion of language-based or visual data. The data can consist of interview transcripts, participant observation fieldnotes, journals, documents, literature, artifacts, photographs, video, websites, e-mail correspondence, and so on. The portion of data to be coded can... range in magnitude from a single word to a full sentence to an entire page of text to a stream of moving images.... Just as a title represents and captures a book or film or poem’s primary content and essence, so does a code represent and capture a datum’s primary content and essence. [ Saldaña, 2009 , p. 3]

One helpful pre-coding task is to divide long selections of field note or interview transcript data into shorter stanzas . Stanza division “chunks” the corpus into more manageable paragraph-like units for coding assignments and analysis. The transcript sample that follows illustrates one possible way of inserting line breaks in-between self-standing passages of interview text for easier readability.

Process Coding

As a first coding example, the following interview excerpt about an employed, single, lower-middle-class adult male’s spending habits during the difficult economic times in the U.S. during 2008–2012 is coded in the right-hand margin in capital letters. The superscript numbers match the datum unit with its corresponding code. This particular method is called process coding, which uses gerunds (“-ing” words) exclusively to represent action suggested by the data. Processes can consist of observable human actions (e.g., BUYING BARGAINS), mental processes (e.g., THINKING TWICE), and more conceptual ideas (e.g., APPRECIATING WHAT YOU’VE GOT). Notice that the interviewer’s (I) portions are not coded, just the participant’s (P). A code is applied each time the subtopic of the interview shifts—even within a stanza—and the same codes can (and should) be used more than once if the subtopics are similar. The central research question driving this qualitative study is, “In what ways are middle-class Americans influenced and affected by the current [2008–2012] economic recession?”

Different researchers analyzing this same piece of data may develop completely different codes, depending on their lenses and filters. The previous codes are only one person’s interpretation of what is happening in the data, not the definitive list. The process codes have transformed the raw data units into new representations for analysis. A listing of them applied to this interview transcript, in the order they appear, reads:

BUYING BARGAINS

QUESTIONING A PURCHASE

THINKING TWICE

STOCKING UP

REFUSING SACRIFICE

PRIORITIZING

FINDING ALTERNATIVES

LIVING CHEAPLY

NOTICING CHANGES

STAYING INFORMED

MAINTAINING HEALTH

PICKING UP THE TAB

APPRECIATING WHAT YOU’VE GOT

Coding the data is the first step in this particular approach to QDA, and categorization is just one of the next possible steps.

QDA Strategy: To Categorize

To categorize in QDA is to cluster similar or comparable codes into groups for pattern construction and further analysis.

Humans categorize things in innumerable ways. Think of an average apartment or house’s layout. The rooms of a dwelling have been constructed or categorized by their builders and occupants according to function. A kitchen is designated as an area to store and prepare food and the cooking and dining materials such as pots, pans, and utensils. A bedroom is designated for sleeping, a closet for clothing storage, a bathroom for bodily functions and hygiene, and so on. Each room is like a category in which related and relevant patterns of human action occur. Of course, there are exceptions now and then, such as eating breakfast in bed rather than in a dining area or living in a small studio apartment in which most possessions are contained within one large room (but nonetheless are most often organized and clustered into subcategories according to function and optimal use of space).

The point here is that the patterns of social action we designate into particular categories during QDA are not perfectly bounded. Category construction is our best attempt to cluster the most seemingly alike things into the most seemingly appropriate groups. Categorizing is reorganizing and reordering the vast array of data from a study because it is from these smaller, larger, and meaning-rich units that we can better grasp the particular features of each one and the categories’ possible interrelationships with one another.

One analytic strategy with a list of codes is to classify them into similar clusters. Obviously, the same codes share the same category, but it is also possible that a single code can merit its own group if you feel it is unique enough. After the codes have been classified, a category label is applied to each grouping. Sometimes a code can also double as a category name if you feel it best summarizes the totality of the cluster. Like coding, categorizing is an interpretive act, for there can be different ways of separating and collecting codes that seem to belong together. The cut-and-paste functions of a word processor are most useful for exploring which codes share something in common.

Below is my categorization of the fifteen codes generated from the interview transcript presented earlier. Like the gerunds for process codes, the categories have also been labeled as “-ing” words to connote action. And there was no particular reason why fifteen codes resulted in three categories—there could have been less or even more, but this is how the array came together after my reflections on which codes seemed to belong together. The category labels are ways of answering “why” they belong together. For at-a-glance differentiation, I place codes in CAPITAL LETTERS and categories in upper and lower case Bold Font :

Category 1: Thinking Strategically

Category 2: Spending Strategically

Category 3: Living Strategically

APPRECIATING WHAT YOU'VE GOT

Notice that the three category labels share a common word: “strategically.” Where did this word come from? It came from analytic reflection on the original data, the codes, and the process of categorizing the codes and generating their category labels. It was the analyst’s choice based on the interpretation of what primary action was happening. Your categories generated from your coded data do not need to share a common word or phrase, but I find that this technique, when appropriate, helps build a sense of unity to the initial analytic scheme.

The three categories— Thinking Strategically , Spending Strategically , and Living Strategically —are then reflected upon for how they might interact and interplay. This is where the next major facet of data analysis, analytic memos, enters the scheme. But a necessary section on the basic principles of interrelationship and analytic reasoning must precede that discussion.

QDA Strategy: To Interrelate

To interrelate in QDA is to propose connections within, between, and among the constituent elements of analyzed data.

One task of QDA is to explore the ways our patterns and categories interact and interplay. I use these terms to suggest the qualitative equivalent of statistical correlation, but interaction and interplay are much more than a simple relationship. They imply interrelationship . Interaction refers to reverberative connections—for example, how one or more categories might influence and affect the others, how categories operate concurrently, or whether there is some kind of “domino” effect to them. Interplay refers to the structural and processual nature of categories—for example, whether some type of sequential order, hierarchy, or taxonomy exists; whether any overlaps occur; whether there is superordinate and subordinate arrangement; and what types of organizational frameworks or networks might exist among them. The positivist construct of “cause and effect” becomes influences and affects in QDA.

There can even be patterns of patterns and categories of categories if your mind thinks conceptually and abstractly enough. Our minds can intricately connect multiple phenomena but only if the data and their analyses support the constructions. We can speculate about interaction and interplay all we want, but it is only through a more systematic investigation of the data—in other words, good thinking—that we can plausibly establish any possible interrelationships.

QDA Strategy: To Reason

To reason in QDA is to think in ways that lead to causal probabilities, summative findings, and evaluative conclusions.

Unlike quantitative research, with its statistical formulas and established hypothesis-testing protocols, qualitative research has no standardized methods of data analysis. Rest assured, there are recommended guidelines from the field’s scholars and a legacy of analytic strategies from which to draw. But the primary heuristics (or methods of discovery) you apply during a study are deductive , inductive , abductive , and retroductive reasoning. Deduction is what we generally draw and conclude from established facts and evidence. Induction is what we experientially explore and infer to be transferable from the particular to the general, based on an examination of the evidence and an accumulation of knowledge. Abduction is surmising from the evidence that which is most likely, those explanatory hunches based on clues. “Whereas deductive inferences are certain (so long as their premises are true) and inductive inferences are probable, abductive inferences are merely plausible” ( Shank, 2008 , p. 1). Retroduction is historic reconstruction, working backwards to figure out how the current conditions came to exist.

It is not always necessary to know the names of these four ways of reasoning as you proceed through analysis. In fact, you will more than likely reverberate quickly from one to another depending on the task at hand. But what is important to remember about reasoning is:

to base your conclusions primarily on the participants’ experiences, not just your own

not to take the obvious for granted, as sometimes the expected won't always happen. Your hunches can be quite right and, at other times, quite wrong

to examine the evidence carefully and make reasonable inferences

to logically yet imaginatively think about what is going on and how it all comes together.

Futurists and inventors propose three questions when they think about creating new visions for the world: What is possible (induction)? What is plausible (abduction)? What is preferable (deduction)? These same three questions might be posed as you proceed through QDA and particularly through analytic memo writing, which is retroductive reflection on your analytic work thus far.

QDA Strategy: To Memo

To memo in QDA is to reflect in writing on the nuances, inferences, meanings, and transfer of coded and categorized data plus your analytic processes.

Like field note writing, perspectives vary among practitioners as to the methods for documenting the researcher’s analytic insights and subjective experiences. Some advise that such reflections should be included in field notes as relevant to the data. Others advise that a separate researcher’s journal should be maintained for recording these impressions. And still others advise that these thoughts be documented as separate analytic memos. I prescribe the latter as a method because it is generated by and directly connected to the data themselves.

An analytic memo is a “think piece” of reflexive free writing, a narrative that sets in words your interpretations of the data. Coding and categorizing are heuristics to detect some of the possible patterns and interrelationships at work within the corpus, and an analytic memo further articulates your deductive, inductive, abductive, and retroductive thinking processes on what things may mean. Though the metaphor is a bit flawed and limiting, think of codes and their consequent categories as separate jigsaw puzzle pieces, and their integration into an analytic memo as the trial assembly of the complete picture.

What follows is an example of an analytic memo based on the earlier process coded and categorized interview transcript. It is not intended as the final write-up for a publication but as an open-ended reflection on the phenomena and processes suggested by the data and their analysis thus far. As the study proceeds, however, initial and substantive analytic memos can be revisited and revised for eventual integration into the final report. Note how the memo is dated and given a title for future and further categorization, how participant quotes are occasionally included for evidentiary support, and how the category names are bolded and the codes kept in capital letters to show how they integrate or weave into the thinking:

March 18, 2012 EMERGENT CATEGORIES: A STRATEGIC AMALGAM There’s a popular saying now: “Smart is the new rich.” This participant is Thinking Strategically about his spending through such tactics as THINKING TWICE and QUESTIONING A PURCHASE before he decides to invest in a product. There’s a heightened awareness of both immediate trends and forthcoming economic bad news that positively affects his Spending Strategically . However, he seems unaware that there are even more ways of LIVING CHEAPLY by FINDING ALTERNATIVES. He dines at all-you-can-eat restaurants as a way of STOCKING UP on meals, but doesn’t state that he could bring lunch from home to work, possibly saving even more money. One of his “bad habits” is cigarettes, which he refuses to give up; but he doesn’t seem to realize that by quitting smoking he could save even more money, not to mention possible health care costs. He balks at the idea of paying $1.50 for a soft drink, but doesn’t mind paying $6.00–$7.00 for a pack of cigarettes. Penny-wise and pound-foolish. Addictions skew priorities. Living Strategically , for this participant during “scary times,” appears to be a combination of PRIORITIZING those things which cannot be helped, such as pet care and personal dental care; REFUSING SACRIFICE for maintaining personal creature-comforts; and FINDING ALTERNATIVES to high costs and excessive spending. Living Strategically is an amalgam of thinking and action-oriented strategies.

There are several recommended topics for analytic memo writing throughout the qualitative study. Memos are opportunities to reflect on and write about:

how you personally relate to the participants and/or the phenomenon

your study’s research questions

your code choices and their operational definitions

the emergent patterns, categories, themes, assertions, and concepts

the possible networks (links, connections, overlaps, flows) among the codes, patterns, categories, themes, assertions, and concepts

an emergent or related existent theory

any problems with the study

any personal or ethical dilemmas with the study

future directions for the study

the analytic memos generated thus far [labeled “metamemos”]

the final report for the study [adapted from Saldaña, 2013 , p. 49]

Since writing is analysis, analytic memos expand on the inferential meanings of the truncated codes and categories as a transitional stage into a more coherent narrative with hopefully rich social insight.

QDA Strategy: To Code—A Different Way

The first example of coding illustrated process coding, a way of exploring general social action among humans. But sometimes a researcher works with an individual case study whose language is unique, or with someone the researcher wishes to honor by maintaining the authenticity of his or her speech in the analysis. These reasons suggest that a more participant-centered form of coding may be more appropriate.

In Vivo Coding

A second frequently applied method of coding is called in vivo coding. The root meaning of “in vivo” is “in that which is alive” and refers to a code based on the actual language used by the participant ( Strauss, 1987 ). What words or phrases in the data record you select as codes are those that seem to stand out as significant or summative of what is being said.

Using the same transcript of the male participant living in difficult economic times, in vivo codes are listed in the right-hand column. I recommend that in vivo codes be placed in quotation marks as a way of designating that the code is extracted directly from the data record. Note that instead of fifteen codes generated from process coding, the total number of in vivo codes is thirty. This is not to suggest that there should be specific numbers or ranges of codes used for particular methods. In vivo codes, though, tend to be applied more frequently to data. Again, the interviewer’s questions and prompts are not coded, just the participant's responses:

The thirty in vivo codes are then extracted from the transcript and listed in the order they appear to prepare them for analytic action and reflection:

“SKYROCKETED”

“TWO-FOR-ONE”

“THE LITTLE THINGS”

“THINK TWICE”

“ALL-YOU-CAN-EAT”

“CHEAP AND FILLING”

“BAD HABITS”

“DON'T REALLY NEED”

“LIVED KIND OF CHEAP”

“NOT A BIG SPENDER”

“HAVEN'T CHANGED MY HABITS”

“NOT PUTTING AS MUCH INTO SAVINGS”

“SPENDING MORE”

“ANOTHER DING IN MY WALLET”

“HIGH MAINTENANCE”

“COUPLE OF THOUSAND”

“INSURANCE IS JUST WORTHLESS”

“PICK UP THE TAB”

“IT ALL ADDS UP”

“NOT AS BAD OFF”

“SCARY TIMES”

Even though no systematic reorganization or categorization has been conducted with the codes thus far, an analytic memo of first impressions can still be composed:

March 19, 2012 CODE CHOICES: THE EVERYDAY LANGUAGE OF ECONOMICS After eyeballing the in vivo codes list, I noticed that variants of “CHEAP” appear most often. I recall a running joke between me and a friend of mine when we were shopping for sales. We’d say, “We're not ‘cheap,’ we're frugal .” There’s no formal economic or business language is this transcript—no terms such as “recession” or “downsizing”—just the everyday language of one person trying to cope during “SCARY TIMES” with “ANOTHER DING IN MY WALLET.” The participant notes that he’s always “LIVED KIND OF CHEAP” and is “NOT A BIG SPENDER” and, due to his employment, “NOT AS BAD OFF” as others in the country. Yet even with his middle class status, he’s still feeling the monetary pinch, dining at inexpensive “ALL-YOU-CAN-EAT” restaurants and worried about the rising price of peanut butter, observing that he’s “NOT PUTTING AS MUCH INTO SAVINGS” as he used to. Of all the codes, “ANOTHER DING IN MY WALLET” stands out to me, particularly because on the audio recording he sounded bitter and frustrated. It seems that he’s so concerned about “THE LITTLE THINGS” because of high veterinary and dental charges. The only way to cope with a “COUPLE OF THOUSAND” dollars worth of medical expenses is to find ways of trimming the excess in everyday facets of living: “IT ALL ADDS UP.”

Like process coding, in vivo codes could be clustered into similar categories, but another simple data analytic strategy is also possible.

QDA Strategy: To Outline

To outline in QDA is to hierarchically, processually, and/or temporally assemble such things as codes, categories, themes, assertions, and concepts into a coherent, text-based display.

Traditional outlining formats and content provide not only templates for writing a report but templates for analytic organization. This principle can be found in several CAQDAS (Computer Assisted Qualitative Data Analysis Software) programs through their use of such functions as “hierarchies,” “trees,” and “nodes,” for example. Basic outlining is simply a way of arranging primary, secondary, and sub-secondary items into a patterned display. For example, an organized listing of things in a home might consist of:

Large appliances

Refrigerator

Stove-top oven

Microwave oven

Small appliances

Coffee maker

Dining room

In QDA, outlining may include descriptive nouns or topics but, depending on the study, it may also involve processes or phenomena in extended passages, such as in vivo codes or themes.

The complexity of what we learn in the field can be overwhelming, and outlining is a way of organizing and ordering that complexity so that it does not become complicated. The cut-and-paste and tab functions of a word processor page enable you to arrange and rearrange the salient items from your preliminary coded analytic work into a more streamlined flow. By no means do I suggest that the intricate messiness of life can always be organized into neatly formatted arrangements, but outlining is an analytic act that stimulates deep reflection on both the interconnectedness and interrelationships of what we study. As an example, here are the thirty in vivo codes generated from the initial transcript analysis, arranged in such a way as to construct five major categories:

“DON’T REALLY NEED”

“HAVEN’T CHANGED MY HABITS”

Now that the codes have been rearranged into an outline format, an analytic memo is composed to expand on the rationale and constructed meanings in progress:

March 19, 2012 NETWORKS: EMERGENT CATEGORIES The five major categories I constructed from the in vivo codes are: “SCARY TIMES,” “PRIORTY,” “ANOTHER DING IN MY WALLET,” “THE LITTLE THINGS,” and “LIVED KIND OF CHEAP.” One of the things that hit me today was that the reason he may be pinching pennies on smaller purchases is that he cannot control the larger ones he has to deal with. Perhaps the only way we can cope with or seem to have some sense of agency over major expenses is to cut back on the smaller ones that we can control. $1,000 for a dental bill? Skip lunch for a few days a week. Insulin medication to buy for a pet? Don’t buy a soft drink from a vending machine. Using this reasoning, let me try to interrelate and weave the categories together as they relate to this particular participant: During these scary economic times, he prioritizes his spending because there seems to be just one ding after another to his wallet. A general lifestyle of living cheaply and keeping an eye out for how to save money on the little things compensates for those major expenses beyond his control.

QDA Strategy: To Code—In Even More Ways

The process and in vivo coding examples thus far have demonstrated only two specific methods of thirty-two documented approaches ( Saldaña, 2013 ). Which one(s) you choose for your analysis depends on such factors as your conceptual framework, the genre of qualitative research for your project, the types of data you collect, and so on. The following sections present a few other approaches available for coding qualitative data that you may find useful as starting points.

Descriptive Coding

Descriptive codes are primarily nouns that simply summarize the topic of a datum. This coding approach is particularly useful when you have different types of data gathered for one study, such as interview transcripts, field notes, documents, and visual materials such as photographs. Descriptive codes not only help categorize but also index the data corpus’ basic contents for further analytic work. An example of an interview portion coded descriptively, taken from the participant living in tough economic times, follows to illustrate how the same data can be coded in multiple ways:

For initial analysis, descriptive codes are clustered into similar categories to detect such patterns as frequency (i.e., categories with the largest number of codes), interrelationship (i.e., categories that seem to connect in some way), and initial work for grounded theory development.

Values Coding

Values coding identifies the values, attitudes, and beliefs of a participant, as shared by the individual and/or interpreted by the analyst. This coding method infers the “heart and mind” of an individual or group’s worldview as to what is important, perceived as true, maintained as opinion, and felt strongly. The three constructs are coded separately but are part of a complex interconnected system.

Briefly, a value (V) is what we attribute as important, be it a person, thing, or idea. An attitude (A) is the evaluative way we think and feel about ourselves, others, things, or ideas. A belief (B) is what we think and feel as true or necessary, formed from our “personal knowledge, experiences, opinions, prejudices, morals, and other interpretive perceptions of the social world” ( Saldaña, 2009 , pp. 89–90). Values coding explores intrapersonal, interpersonal, and cultural constructs or ethos . It is an admittedly slippery task to code this way, for it is sometimes difficult to discern what is a value, attitude, or belief because they are intricately interrelated. But the depth you can potentially obtain is rich. An example of values coding follows:

For analysis, categorize the codes for each of the three different constructs together (i.e., all values in one group, attitudes in a second group, and beliefs in a third group). Analytic memo writing about the patterns and possible interrelationships may reveal a more detailed and intricate worldview of the participant.

Dramaturgical Coding

Dramaturgical coding perceives life as performance and its participants as characters in a social drama. Codes are assigned to the data (i.e., a “play script”) that analyze the characters in action, reaction, and interaction. Dramaturgical coding of participants examines their objectives (OBJ) or wants, needs, and motives; the conflicts (CON) or obstacles they face as they try to achieve their objectives; the tactics (TAC) or strategies they employ to reach their objectives; their attitudes (ATT) toward others and their given circumstances; the particular emotions (EMO) they experience throughout; and their subtexts (SUB) or underlying and unspoken thoughts. The following is an example of dramaturgically coded data:

Not included in this particular interview excerpt are the emotions the participant may have experienced or talked about. His later line, “that’s another ding in my wallet,” would have been coded EMO: BITTER. A reader may not have inferred that specific emotion from seeing the line in print. But the interviewer, present during the event and listening carefully to the audio recording during transcription, noted that feeling in his tone of voice.

For analysis, group similar codes together (e.g., all objectives in one group, all conflicts in another group, all tactics in a third group), or string together chains of how participants deal with their circumstances to overcome their obstacles through tactics (e.g., OBJ: SAVING MEAL MONEY > TAC: SKIPPING MEALS). Explore how the individuals or groups manage problem solving in their daily lives. Dramaturgical coding is particularly useful as preliminary work for narrative inquiry story development or arts-based research representations such as performance ethnography.

Versus Coding

Versus coding identifies the conflicts, struggles, and power issues observed in social action, reaction, and interaction as an X VS. Y code, such as: MEN VS. WOMEN, CONSERVATIVES VS. LIBERALS, FAITH VS. LOGIC, and so on. Conflicts are rarely this dichotomous. They are typically nuanced and much more complex. But humans tend to perceive these struggles with an US VS. THEM mindset. The codes can range from the observable to the conceptual and can be applied to data that show humans in tension with others, themselves, or ideologies.

What follows are examples of versus codes applied to the case study participant’s descriptions of his major medical expenses:

As an initial analytic tactic, group the versus codes into one of three categories: the Stakeholders , their Perceptions and/or Actions , and the Issues at stake. Examine how the three interrelate and identify the central ideological conflict at work as an X vs. Y category. Analytic memos and the final write-up can detail the nuances of the issues.

Remember that what has been profiled in this section is a broad brushstroke description of just a few basic coding processes, several of which can be compatibly “mixed and matched” within a single analysis (see Saldaña’s [2013]   The Coding Manual for Qualitative Researchers for a complete discussion). Certainly with additional data, more in-depth analysis can occur, but coding is only one approach to extracting and constructing preliminary meanings from the data corpus. What now follows are additional methods for qualitative analysis.

QDA Strategy: To Theme

To theme in QDA is to construct summative, phenomenological meanings from data through extended passages of text.

Unlike codes, which are most often single words or short phrases that symbolically represent a datum, themes are extended phrases or sentences that summarize the manifest (apparent) and latent (underlying) meanings of data ( Auerbach & Silverstein, 2003 ; Boyatzis, 1998 ). Themes, intended to represent the essences and essentials of humans’ lived experiences, can also be categorized or listed in superordinate and subordinate outline formats as an analytic tactic.

Below is the interview transcript example used in the coding sections above. (Hopefully you are not too fatigued at this point with the transcript, but it’s important to know how inquiry with the same data set can be approached in several different ways.) During the investigation of the ways middle-class Americans are influenced and affected by the current (2008–2012) economic recession, the researcher noticed that participants’ stories exhibited facets of what he labeled “economic intelligence” or EI (based on the formerly developed theories of Howard Gardner’s multiple intelligences and Daniel Goleman’s emotional intelligence). Notice how themeing interprets what is happening through the use of two distinct phrases—ECONOMIC INTELLIGENCE IS (i.e., manifest or apparent meanings) and ECONOMIC INTELLIGENCE MEANS (i.e., latent or underlying meanings):

Unlike the fifteen process codes and thirty in vivo codes in the previous examples, there are now fourteen themes to work with. In the order they appear, they are:

EI IS TAKING ADVANTAGE OF UNEXPECTED OPPORTUNITY

EI MEANS THINKING BEFORE YOU ACT

EI IS BUYING CHEAP

EI MEANS SACRIFICE

EI IS SAVING A FEW DOLLARS NOW AND THEN

EI MEANS KNOWING YOUR FLAWS

EI IS SETTING PRIORITIES

EI IS FINDING CHEAPER FORMS OF ENTERTAINMENT

EI MEANS LIVING AN INEXPENSIVE LIFESTYLE

EI IS NOTICING PERSONAL AND NATIONAL ECONOMIC TRENDS

EI MEANS YOU CANNOT CONTROL EVERYTHING

EI IS TAKING CARE OF ONE’S OWN HEALTH

EI MEANS KNOWING YOUR LUCK

There are several ways to categorize the themes as preparation for analytic memo writing. The first is to arrange them in outline format with superordinate and subordinate levels, based on how the themes seem to take organizational shape and structure. Simply cutting and pasting the themes in multiple arrangements on a word processor page eventually develops a sense of order to them. For example:

A second approach is to categorize the themes into similar clusters and to develop different category labels or theoretical constructs . A theoretical construct is an abstraction that transforms the central phenomenon’s themes into broader applications but can still use “is” and “means” as prompts to capture the bigger picture at work:

Theoretical Construct 1: EI Means Knowing the Unfortunate Present

Supporting Themes:

Theoretical Construct 2: EI is Cultivating a Small Fortune

Theoretical Construct 3: EI Means a Fortunate Future

What follows is an analytic memo generated from the cut-and-paste arrangement of themes into an outline and into theoretical constructs:

March 19, 2012 EMERGENT THEMES: FORTUNE/FORTUNATELY/UNFORTUNATELY I first reorganized the themes by listing them in two groups: “is” and “means.” The “is” statements seemed to contain positive actions and constructive strategies for economic intelligence. The “means” statements held primarily a sense of caution and restriction with a touch of negativity thrown in. The first outline with two major themes, LIVING AN INEXPENSIVE LIFESTYLE and YOU CANNOT CONTROL EVERYTHING also had this same tone. This reminded me of the old children’s picture book, Fortunately/Unfortunately , and the themes of “fortune” as a motif for the three theoretical constructs came to mind. Knowing the Unfortunate Present means knowing what’s (most) important and what’s (mostly) uncontrollable in one’s personal economic life. Cultivating a Small Fortune consists of those small money-saving actions that, over time, become part of one's lifestyle. A Fortunate Future consists of heightened awareness of trends and opportunities at micro and macro levels, with the understanding that health matters can idiosyncratically affect one’s fortune. These three constructs comprise this particular individual’s EI—economic intelligence.

Again, keep in mind that the examples above for coding and themeing were from one small interview transcript excerpt. The number of codes and their categorization would obviously increase, given a longer interview and/or multiple interviews to analyze. But the same basic principles apply: codes and themes relegated into patterned and categorized forms are heuristics—stimuli for good thinking through the analytic memo-writing process on how everything plausibly interrelates. Methodologists vary in the number of recommended final categories that result from analysis, ranging anywhere from three to seven, with traditional grounded theorists prescribing one central or core category from coded work.

QDA Strategy: To Assert

To assert in QDA is to put forward statements that summarize particular fieldwork and analytic observations that the researcher believes credibly represent and transcend the experiences.

Educational anthropologist Frederick Erickson (1986) wrote a significant and influential chapter on qualitative methods that outlined heuristics for assertion development . Assertions are declarative statements of summative synthesis, supported by confirming evidence from the data, and revised when disconfirming evidence or discrepant cases require modification of the assertions. These summative statements are generated from an interpretive review of the data corpus and then supported and illustrated through narrative vignettes—reconstructed stories from field notes, interview transcripts, or other data sources that provide a vivid profile as part of the evidentiary warrant.

Coding or themeing data can certainly precede assertion development as a way of gaining intimate familiarity with the data, but Erickson’s methods are a more admittedly intuitive yet systematic heuristic for analysis. Erickson promotes analytic induction and exploration of and inferences about the data, based on an examination of the evidence and an accumulation of knowledge. The goal is not to look for “proof” to support the assertions but plausibility of inference-laden observations about the local and particular social world under investigation.

Assertion development is the writing of general statements, plus subordinate yet related ones called subassertions , and a major statement called a key assertion that represents the totality of the data. One also looks for key linkages between them, meaning that the key assertion links to its related assertions, which then link to their respective subassertions. Subassertions can include particulars about any discrepant related cases or specify components of their parent assertions.

Excerpts from the interview transcript of our case study will be used to illustrate assertion development at work. By now, you should be quite familiar with the contents, so I will proceed directly to the analytic example. First, there is a series of thematically related statements the participant makes:

“Buy one package of chicken, get the second one free. Now that was a bargain. And I got some.”

“With Sweet Tomatoes I get those coupons for a few bucks off for lunch, so that really helps.”

“I don’t go to movies anymore. I rent DVDs from Netflix or Redbox or watch movies online—so much cheaper than paying over ten or twelve bucks for a movie ticket.”

Assertions can be categorized into low-level and high-level inferences . Low-level inferences address and summarize “what is happening” within the particulars of the case or field site—the “micro.” High-level inferences extend beyond the particulars to speculate on “what it means” in the more general social scheme of things—the “meso” or “macro.” A reasonable low-level assertion about the three statements above collectively might read: The participant finds several small ways to save money during a difficult economic period . A high-level inference that transcends the case to the macro level might read: Selected businesses provide alternatives and opportunities to buy products and services at reduced rates during a recession to maintain consumer spending.

Assertions are instantiated (i.e., supported) by concrete instances of action or participant testimony, whose patterns lead to more general description outside the specific field site. The author’s interpretive commentary can be interspersed throughout the report, but the assertions should be supported with the evidentiary warrant . A few assertions and subassertions based on the case interview transcript might read (and notice how high-level assertions serve as the paragraphs’ topic sentences):

Selected businesses provide alternatives and opportunities to buy products and services at reduced rates during a recession to maintain consumer spending. Restaurants, for example, need to find ways during difficult economic periods when potential customers may be opting to eat inexpensively at home rather than spending more money by dining out. Special offers can motivate cash-strapped clientele to patronize restaurants more frequently. An adult male dealing with such major expenses as underinsured dental care offers: “With Sweet Tomatoes I get those coupons for a few bucks off for lunch, so that really helps.” The film and video industries also seem to be suffering from a double-whammy during the current recession: less consumer spending on higher-priced entertainment, resulting in a reduced rate of movie theatre attendance (currently 39 percent of the American population, according to CNN); coupled with a media technology and business revolution that provides consumers less costly alternatives through video rentals and internet viewing: “I don’t go to movies anymore. I rent DVDs from Netflix or Redbox or watch movies online—so much cheaper than paying over ten or twelve bucks for a movie ticket.”

“Particularizability”—the search for specific and unique dimensions of action at a site and/or the specific and unique perspectives of an individual participant—is not intended to filter out trivial excess but to magnify the salient characteristics of local meaning. Although generalizable knowledge serves little purpose in qualitative inquiry since each naturalistic setting will contain its own unique set of social and cultural conditions, there will be some aspects of social action that are plausibly universal or “generic” across settings and perhaps even across time. To work toward this, Erickson advocates that the interpretive researcher look for “concrete universals” by studying actions at a particular site in detail, then comparing those to other sites that have also been studied in detail. The exhibit or display of these generalizable features is to provide a synoptic representation, or a view of the whole. What the researcher attempts to uncover is what is both particular and general at the site of interest, preferably from the perspective of the participants. It is from the detailed analysis of actions at a specific site that these universals can be concretely discerned, rather than abstractly constructed as in grounded theory.

In sum, assertion development is a qualitative data analytic strategy that relies on the researcher’s intense review of interview transcripts, field notes, documents, and other data to inductively formulate composite statements that credibly summarize and interpret participant actions and meanings, and their possible representation of and transfer into broader social contexts and issues.

QDA Strategy: To Display

To display in QDA is to visually present the processes and dynamics of human or conceptual action represented in the data.

Qualitative researchers use not only language but illustrations to both analyze and display the phenomena and processes at work in the data. Tables, charts, matrices, flow diagrams, and other models help both you and your readers cognitively and conceptually grasp the essence and essentials of your findings. As you have seen thus far, even simple outlining of codes, categories, and themes is one visual tactic for organizing the scope of the data. Rich text, font, and format features such as italicizing, bolding, capitalizing, indenting, and bullet pointing provide simple emphasis to selected words and phrases within the longer narrative.

“Think display” was a phrase coined by methodologists Miles and Huberman (1994) to encourage the researcher to think visually as data were collected and analyzed. The magnitude of text can be essentialized into graphics for “at-a-glance” review. Bins in various shapes and lines of various thicknesses, along with arrows suggesting pathways and direction, render the study as a portrait of action. Bins can include the names of codes, categories, concepts, processes, key participants, and/or groups.

As a simple example, Figure 28.1 illustrates the three categories’ interrelationship derived from process coding. It displays what could be the apex of this interaction, LIVING STRATEGICALLY, and its connections to THINKING STRATEGICALLY, which influences and affects SPENDING STRATEGICALLY.

Figure 28.2 represents a slightly more complex (if not playful) model, based on the five major in vivo codes/categories generated from analysis. The graphic is used as a way of initially exploring the interrelationship and flow from one category to another. The use of different font styles, font sizes, and line and arrow thicknesses are intended to suggest the visual qualities of the participant’s language and his dilemmas—a way of heightening in vivo coding even further.

Accompanying graphics are not always necessary for a qualitative report. They can be very helpful for the researcher during the analytic stage as a heuristic for exploring how major ideas interrelate, but illustrations are generally included in published work when they will help supplement and clarify complex processes for readers. Photographs of the field setting or the participants (and only with their written permission) also provide evidentiary reality to the write-up and help your readers get a sense of being there.

QDA Strategy: To Narrate

To narrate in QDA is to create an evocative literary representation and presentation of the data in the form of creative nonfiction.

All research reports are stories of one kind or another. But there is yet another approach to QDA that intentionally documents the research experience as story, in its traditional literary sense. Narrative inquiry plots and story lines the participant’s experiences into what might be initially perceived as a fictional short story or novel. But the story is carefully crafted and creatively written to provide readers with an almost omniscient perspective about the participants’ worldview. The transformation of the corpus from database to creative nonfiction ranges from systematic transcript analysis to open ended literary composition. The narrative, though, should be solidly grounded in and emerge from the data as a plausible rendering of social life.

A simple illustration of category interrelationship.

An illustration with rich text and artistic features.

The following is a narrative vignette based on interview transcript selections from the participant living through tough economic times:

Jack stood in front of the soft drink vending machine at work and looked almost worriedly at the selections. With both hands in his pants pockets, his fingers jingled the few coins he had inside them as he contemplated whether he could afford the purchase. One dollar and fifty cents for a twenty-ounce bottle of Diet Coke. One dollar and fifty cents. “I can practically get a two-liter bottle for that same price at the grocery store,” he thought. Then Jack remembered the upcoming dental surgery he needed—that would cost one thousand dollars—and the bottle of insulin and syringes he needed to buy for his diabetic, “high maintenance” cat—about one hundred and twenty dollars. He sighed, took his hands out of his pockets, and walked away from the vending machine. He was skipping lunch that day anyway so he could stock up on dinner later at the cheap-but-filling-all-you-can-eat Chinese buffet. He could get his Diet Coke there.

Narrative inquiry representations, like literature, vary in tone, style, and point of view. The common goal, however, is to create an evocative portrait of participants through the aesthetic power of literary form. A story does not always have to have a moral explicitly stated by its author. The reader reflects on personal meanings derived from the piece and how the specific tale relates to one’s self and the social world.

QDA Strategy: To Poeticize

To poeticize in QDA is to create an evocative literary representation and presentation of the data in the form of poetry.

One form for analyzing or documenting analytic findings is to strategically truncate interview transcripts, field notes, and other pertinent data into poetic structures. Like coding, poetic constructions capture the essence and essentials of data in a creative, evocative way. The elegance of the format attests to the power of carefully chosen language to represent and convey complex human experience.

In vivo codes (codes based on the actual words used by participants themselves) can provide imagery, symbols, and metaphors for rich category, theme, concept, and assertion development, plus evocative content for arts-based interpretations of the data. Poetic inquiry takes note of what words and phrases seem to stand out from the data corpus as rich material for reinterpretation. Using some of the participant’s own language from the interview transcript illustrated above, a poetic reconstruction or “found poetry” might read:

Scary Times Scary times... spending more (another ding in my wallet) a couple of thousand (another ding in my wallet) insurance is just worthless (another ding in my wallet) pick up the tab (another ding in my wallet) not putting as much into savings (another ding in my wallet) It all adds up. Think twice: don't really need skip Think twice, think cheap: coupons bargains two-for-one free Think twice, think cheaper: stock up all-you-can-eat (cheap—and filling) It all adds up.

Anna Deavere Smith, a verbatim theatre performer, attests that people speak in forms of “organic poetry” in everyday life. Thus in vivo codes can provide core material for poetic representation and presentation of lived experiences, potentially transforming the routine and mundane into the epic. Some researchers also find the genre of poetry to be the most effective way to compose original work that reflects their own fieldwork experiences and autoethnographic stories.

QDA Strategy: To Compute

To compute in QDA is to employ specialized software programs for qualitative data management and analysis.

CAQDAS is an acronym for Computer Assisted Qualitative Data Analysis Software. There are diverse opinions among practitioners in the field about the utility of such specialized programs for qualitative data management and analysis. The software, unlike statistical computation, does not actually analyze data for you at higher conceptual levels. CAQDAS software packages serve primarily as a repository for your data (both textual and visual) that enable you to code them, and they can perform such functions as calculate the number of times a particular word or phrase appears in the data corpus (a particularly useful function for content analysis) and can display selected facets after coding, such as possible interrelationships. Certainly, basic word-processing software such as Microsoft Word, Excel, and Access provide utilities that can store and, with some pre-formatting and strategic entry, organize qualitative data to enable the researcher’s analytic review. The following internet addresses are listed to help in exploriong these CAQDAS packages and obtaining demonstration/trial software and tutorials:

AnSWR: www.cdc.gov/hiv/topics/surveillance/resources/software/answr

ATLAS.ti: www.atlasti.com

Coding Analysis Toolkit (CAT): cat.ucsur.pitt.edu/

Dedoose: www.dedoose.com

HyperRESEARCH: www.researchware.com

MAXQDA: www.maxqda.com

NVivo: www.qsrinternational.com

QDA Miner: www.provalisresearch.com

Qualrus: www.qualrus.com

Transana (for audio and video data materials): www.transana.org

Weft QDA: www.pressure.to/qda/

Some qualitative researchers attest that the software is indispensable for qualitative data management, especially for large-scale studies. Others feel that the learning curve of CAQDAS is too lengthy to be of pragmatic value, especially for small-scale studies. From my own experience, if you have an aptitude for picking up quickly on the scripts of software programs, explore one or more of the packages listed. If you are a novice to qualitative research, though, I recommend working manually or “by hand” for your first project so you can focus exclusively on the data and not on the software.

QDA Strategy: To Verify

To verify in QDA is to administer an audit of “quality control” to your analysis.

After your data analysis and the development of key findings, you may be thinking to yourself, “Did I get it right?” “Did I learn anything new?” Reliability and validity are terms and constructs of the positivist quantitative paradigm that refer to the replicability and accuracy of measures. But in the qualitative paradigm, other constructs are more appropriate.

Credibility and trustworthiness ( Lincoln & Guba, 1985 ) are two factors to consider when collecting and analyzing the data and presenting your findings. In our qualitative research projects, we need to present a convincing story to our audiences that we “got it right” methodologically. In other words, the amount of time we spent in the field, the number of participants we interviewed, the analytic methods we used, the thinking processes evident to reach our conclusions, and so on should be “just right” to persuade the reader that we have conducted our jobs soundly. But remember that we can never conclusively “prove” something; we can only, at best, convincingly suggest. Research is an act of persuasion.

Credibility in a qualitative research report can be established through several ways. First, citing the key writers of related works in your literature review is a must. Seasoned researchers will sometimes assess whether a novice has “done her homework” by reviewing the bibliography or references. You need not list everything that seminal writers have published about a topic, but their names should appear at least once as evidence that you know the field’s key figures and their work.

Credibility can also be established by specifying the particular data analytic methods you employed (e.g., “Interview transcripts were taken through two cycles of process coding, resulting in five primary categories”), through corroboration of data analysis with the participants themselves (e.g., “I asked my participants to read and respond to a draft of this report for their confirmation of accuracy and recommendations for revision”) or through your description of how data and findings were substantiated (e.g., “Data sources included interview transcripts, participant observation field notes, and participant response journals to gather multiple perspectives about the phenomenon”).

Creativity scholar Sir Ken Robinson is attributed with offering this cautionary advice about making a convincing argument: “Without data, you’re just another person with an opinion.” Thus researchers can also support their findings with relevant, specific evidence by quoting participants directly and/or including field note excerpts from the data corpus. These serve both as illustrative examples for readers and to present more credible testimony of what happened in the field.

Trustworthiness , or providing credibility to the writing, is when we inform the reader of our research processes. Some make the case by stating the duration of fieldwork (e.g., “Seventy-five clock hours were spent in the field”; “The study extended over a twenty-month period”). Others put forth the amounts of data they gathered (e.g., “Twenty-seven individuals were interviewed”; “My field notes totaled approximately 250 pages”). Sometimes trustworthiness is established when we are up front or confessional with the analytic or ethical dilemmas we encountered (e.g., “It was difficult to watch the participant’s teaching effectiveness erode during fieldwork”; “Analysis was stalled until I recoded the entire data corpus with a new perspective.”).

The bottom line is that credibility and trustworthiness are matters of researcher honesty and integrity . Anyone can write that he worked ethically, rigorously, and reflexively, but only the writer will ever know the truth. There is no shame if something goes wrong with your research. In fact, it is more than likely the rule, not the exception. Work and write transparently to achieve credibility and trustworthiness with your readers.

The length of this article does not enable me to expand on other qualitative data analytic strategies, such as to conceptualize, abstract, theorize, and write. Yet there are even more subtle thinking strategies to employ throughout the research enterprise, such as to synthesize, problematize, persevere, imagine, and create. Each researcher has his or her own ways of working, and deep reflection (another strategy) on your own methodology and methods as a qualitative inquirer throughout fieldwork and writing provides you with metacognitive awareness of data analytic processes and possibilities.

Data analysis is one of the most elusive processes in qualitative research, perhaps because it is a backstage, behind-the-scenes, in-your-head enterprise. It is not that there are no models to follow. It is just that each project is contextual and case specific. The unique data you collect from your unique research design must be approached with your unique analytic signature. It truly is a learning-by-doing process, so accept that and leave yourself open to discovery and insight as you carefully scrutinize the data corpus for patterns, categories, themes, concepts, assertions, and possibly new theories through strategic analysis.

Auerbach, C. F. , & Silverstein, L. B. ( 2003 ). Qualitative data: An introduction to coding and analysis . New York: New York University Press.

Google Scholar

Google Preview

Birks, M. , & Mills, J. ( 2011 ). Grounded theory: A practical guide . London: Sage.

Boyatzis, R. E. ( 1998 ). Transforming qualitative information: Thematic analysis and code development . Thousand Oaks, CA: Sage.

Bryant, A. , & Charmaz, K. (Eds.). ( 2007 ). The Sage handbook of grounded theory . London: Sage.

Charmaz, K. ( 2006 ). Constructing grounded theory: A practical guide through qualitative analysis . Thousand Oaks, CA: Sage.

Erickson, F. ( 1986 ). Qualitative methods in research on teaching. In M. C. Wittrock (Ed.), Handbook of research on teaching (3rd ed.) (pp. 119–161). New York: Macmillan.

Geertz, C. ( 1983 ). Local knowledge: Further essays in interpretive anthropology . New York: Basic Books.

Gibbs, G. R. ( 2007 ). Analysing qualitative data . London: Sage.

Lincoln, Y. S. , & Guba, E. G. ( 1985 ). Naturalistic inquiry . Newbury Park, CA: Sage.

Miles, M. B. , & Huberman, A. M. ( 1994 ). Qualitative data analysis (2nd ed.). Thousand Oaks, CA: Sage.

Saldaña, J. ( 2009 ). The coding manual for qualitative researchers . London: Sage.

Saldaña, J. ( 2011 ). Fundamentals of qualitative research . New York: Oxford University Press.

Saldaña, J. ( 2013 ). The coding manual for qualitative researchers (2nd ed.). London: Sage.

Shank, G. ( 2008 ). Abduction. In L. M. Given (Ed.), The Sage encyclopedia of qualitative research methods (pp. 1–2). Thousand Oaks, CA: Sage.

Stake, R. E. ( 1995 ). The art of case study research . Thousand Oaks, CA: Sage.

Stern, P. N. , & Porr, C. J. ( 2011 ). Essentials of accessible grounded theory . Walnut Creek, CA: Left Coast Press.

Strauss, A. L. ( 1987 ). Qualitative analysis for social scientists . Cambridge: Cambridge University Press.

Sunstein, B. S. , & Chiseri-Strater, E. ( 2012 ). FieldWorking: Reading and writing research (4th ed.). Boston: Bedford/St. Martin’s.

Wertz, F. J. , Charmaz, K. , McMullen, L. M. , Josselson, R. , Anderson, R. , & McSpadden, E. ( 2011 ). Fives ways of doing qualitative analysis: Phenomenological psychology, grounded theory, discourse analysis, narrative research, and intuitive inquiry . New York: Guilford.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Coding Qualitative Data

  • First Online: 02 January 2023

Cite this chapter

is coding in research methodology

  • Marla Rogers 4  

Part of the book series: Springer Texts in Education ((SPTE))

4832 Accesses

With the advent and proliferation of analysis software (e.g., Nvivo, Atlas.ti), coding data has become much easier in terms of application. Where autocoding algorithms do much to assist and enlighten a researcher in analysis, coding qualitative data remains an act that must largely be undertaken by a human in order to fully address the research question(s) (Kaufmann, A. A., Barcomb, A., & Riehle, D. (2020). Supporting interview analysis with autocoding. HICSS. https://www.semanticscholar.org/paper/Supporting-Interview-Analysis-with-Autocoding-Kaufmann-Barcomb/b6e045859b5ce94e1eb144a9545b26c5e9fa6f32 ). Even seasoned qualitative researchers can find the process of coding their datum corpus to be arduous at times. For novice researchers, the task can quickly become baffling and overwhelming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

is coding in research methodology

Analyzing Qualitative Data Using NVivo

is coding in research methodology

Creating Inheritable Digital Codebooks for Qualitative Research Data Analysis

is coding in research methodology

How We Code

Anonymous Author. (2019, July 2). Resolve: Finding a resolution for infertility: Infertility support group and discussion community [online discussion post]. https://www.inspire.com/

Basit, T. N. (2003). Manual or electronic? The role of coding in qualitative data analysis. Educational Research, 45 (2), 143–154.

Article   Google Scholar  

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3 (2), 77–101.

Caulfield, J. (2019, September 6). How to do thematic analysis . www.scribbr.com/methodology/thematicanalysis

Creswell, J. (2015). 30 Essential skills for the qualitative researcher . SAGE.

Google Scholar  

Elliot, V. (2018). Thinking about the coding process in qualitative data analysis. The Qualitative Report, 23 (11), 2850–2861. https://nsuworks.nova.edu/tqr/vol23/iss11/14

Kaufmann, A. A., Barcomb, A., & Riehle, D. (2020). Supporting interview analysis with autocoding. HICSS. https://www.semanticscholar.org/paper/Supporting-Interview-Analysis-with-Autocoding-Kaufmann-Barcomb/b6e045859b5ce94e1eb144a9545b26c5e9fa6f32

Saldana, J. (2009). The coding manual for qualitative researchers. SAGE.

Further Readings

Analyzing Qualitative Data: Nvivo 12 Pro for Windows (2 hours). https://www.youtube.com/watch?v=CKPS4LF9G8A

How to Analyze Interview Transcripts. (2 minutes). https://www.rev.com/blog/analyze-interview-transcripts-in-qualitative-research

How to Know You Are Coding Correctly (4 minutes). https://www.youtube.com/watch?v=iL7Ww5kpnIM

Download references

Author information

Authors and affiliations.

University of Saskatchewan, Saskatoon, Canada

Marla Rogers

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Marla Rogers .

Editor information

Editors and affiliations.

Department of Educational Administration, College of Education, University of Saskatchewan, Saskatoon, SK, Canada

Janet Mola Okoko

Scott Tunison

Department of Educational Administration, University of Saskatchewan, Saskatoon, SK, Canada

Keith D. Walker

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Rogers, M. (2023). Coding Qualitative Data. In: Okoko, J.M., Tunison, S., Walker, K.D. (eds) Varieties of Qualitative Research Methods. Springer Texts in Education. Springer, Cham. https://doi.org/10.1007/978-3-031-04394-9_12

Download citation

DOI : https://doi.org/10.1007/978-3-031-04394-9_12

Published : 02 January 2023

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-04396-3

Online ISBN : 978-3-031-04394-9

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Qualitative Data Coding

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

Coding is the process of analyzing qualitative data (usually text) by assigning labels (codes) to chunks of data that capture their essence or meaning. It allows you to condense, organize and interpret your data.

A code is a word or brief phrase that captures the essence of why you think a particular bit of data may be useful. A good analogy is that a code describes data like a hashtag describes a tweet.

qualitative coding

Coding is an iterative process, with researchers refining and revising their codes as their understanding of the data evolves.

The ultimate goal is to develop a coherent and meaningful coding scheme that captures the richness and complexity of the participants’ experiences and helps answer the research questions.

Step 1: Familiarize yourself with the data

  • Read through your data (interview transcripts, field notes, documents, etc.) several times. This process is called immersion.
  • Think and reflect on what may be important in the data before making any firm decisions about ideas, or potential patterns.

Step 2: Decide on your coding approach

  • Will you use predefined deductive codes (based on theory or prior research), or let codes emerge from the data (inductive coding)?
  • Will a piece of data have one code or multiple?
  • Will you code everything or selectively? Broader research questions may warrant coding more comprehensively.

If you decide not to code everything, it’s crucial to:

  • Have clear criteria for what you will and won’t code
  • Be transparent about your selection process in research reports
  • Remain open to revisiting uncoded data later in analysis

Step 3: Do a first round of coding

  • Go through the data and assign initial codes to chunks that stand out
  • Create a code name (a word or short phrase) that captures the essence of each chunk
  • Keep a codebook – a list of your codes with descriptions or definitions
  • Be open to adding, revising or combining codes as you go

Descriptive codes

  • In vivo coding / Semantic coding : This method uses words or short phrases directly from the participant’s own language as codes. It deals with the surface-level content, labeling what participants directly say or describe. It identifies keywords, phrases, or sentences that capture the literal content. Participant : “I was just so overwhelmed with everything.” Code : “overwhelmed”
  • Process coding : Uses gerunds (“-ing” words) to connote observable or conceptual action in the data. Participant : “I started by brainstorming ideas, then I narrowed them down.” Codes : “brainstorming ideas,” “narrowing down”
  • Open coding : A form of initial coding where the researcher remains open to any possible theoretical directions indicated by the data. Participant : “I found the class really challenging, but I learned a lot.” Codes : “challenging class,” “learning experience”
  • Descriptive coding : Summarizes the primary topic of a passage in a word or short phrase. Participant : “I usually study in the library because it’s quiet.” Code : “study environment”

Step 4: Review and refine codes

  • Look over your initial codes and see if any can be combined, split up, or revised
  • Ensure your code names clearly convey the meaning of the data
  • Check if your codes are applied consistently across the dataset
  • Get a second opinion from a peer or advisor if possible

Interpretive codes

Interpretive codes go beyond simple description and reflect the researcher’s understanding of the underlying meanings, experiences, or processes captured in the data.

These codes require the researcher to interpret the participants’ words and actions in light of the research questions and theoretical framework.

For example, latent coding is a type of interpretive coding which goes beyond surface meaning in data. It digs for underlying emotions, motivations, or unspoken ideas the participant might not explicitly state

Latent coding looks for subtext, interprets the “why” behind what’s said, and considers the context (e.g. cultural influences, or unconscious biases).

  • Example: A participant might say, “Whenever I see a spider, I feel like I’m going to pass out. It takes me back to a bad experience as a kid.” A latent code here could be “Feelings of Panic Triggered by Spiders” because it goes beyond the surface fear and explores the emotional response and potential cause.

It’s useful to ask yourself the following questions:

  • What are the assumptions made by the participants? 
  • What emotions or feelings are expressed or implied in the data?
  • How do participants relate to or interact with others in the data?
  • How do the participants’ experiences or perspectives change over time?
  • What is surprising, unexpected, or contradictory in the data?
  • What is not being said or shown in the data? What are the silences or absences?

Theoretical codes

Theoretical codes are the most abstract and conceptual type of codes. They are used to link the data to existing theories or to develop new theoretical insights.

Theoretical codes often emerge later in the analysis process, as researchers begin to identify patterns and connections across the descriptive and interpretive codes.

  • Structural coding : Applies a content-based phrase to a segment of data that relates to a specific research question. Research question : What motivates students to succeed? Participant : “I want to make my parents proud and be the first in my family to graduate college.” Interpretive Code : “family motivation” Theoretical code : “Social identity theory”
  • Value coding : This method codes data according to the participants’ values, attitudes, and beliefs, representing their perspectives or worldviews. Participant : “I believe everyone deserves access to quality healthcare.” Interpretive Code : “healthcare access” (value) Theoretical code : “Distributive justice”

Pattern codes

Pattern coding is often used in the later stages of data analysis, after the researcher has thoroughly familiarized themselves with the data and identified initial descriptive and interpretive codes.

By identifying patterns and relationships across the data, pattern codes help to develop a more coherent and meaningful understanding of the phenomenon and can contribute to theory development or refinement.

For Example

Let’s say a researcher is studying the experiences of new mothers returning to work after maternity leave. They conduct interviews with several participants and initially use descriptive and interpretive codes to analyze the data. Some of these codes might include:

  • “Guilt about leaving baby”
  • “Struggle to balance work and family”
  • “Support from colleagues”
  • “Flexible work arrangements”
  • “Breastfeeding challenges”

As the researcher reviews the coded data, they may notice that several of these codes relate to the broader theme of “work-family conflict.”

They might create a pattern code called “Navigating work-family conflict” that pulls together the various experiences and challenges described by the participants.

qualitative research

Related Articles

What Is a Focus Group?

Research Methodology

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

What Is Internal Validity In Research?

What Is Internal Validity In Research?

What Is Face Validity In Research? Importance & How To Measure

Research Methodology , Statistics

What Is Face Validity In Research? Importance & How To Measure

Criterion Validity: Definition & Examples

Criterion Validity: Definition & Examples

Convergent Validity: Definition and Examples

Convergent Validity: Definition and Examples

  • Technical Support
  • Find My Rep

You are here

The Coding Manual for Qualitative Researchers

The Coding Manual for Qualitative Researchers

  • Johnny Saldana - Arizona State University, USA
  • Description

“ Especially useful for utilization in higher education, administrative research, general development, the arts, social sciences, nursing, business, and health care. That may seem like a vast application, but both students and professionals will appreciate the clarity and the emblematic mentorship this book provides. ” – American Journal of Qualitative Research

This invaluable manual from world-renowned expert Johnny Saldaña illuminates the process of qualitative coding and provides clear, insightful guidance for qualitative researchers at all levels. The fourth edition includes a range of updates that build upon the huge success of the previous editions:

  • A structural reformat has increased accesibility; the 3 sections from the previous edition are now spread over 15 chapters for easier sectional reference
  • There are two new first cycle coding methods join the 33 others in the collection: Metaphor Coding and Themeing the Data: Categorically
  • Includes a brand new companion website with links to SAGE journal articles, sample transcripts, links to CAQDAS sites, student exercises, links to video and digital content
  • Analytic software screenshots and academic references have been updated, alongside several new figures added throughout the manual

Saldana presents a range of coding options with advantages and disadvantages to help researchers to choose the most appropriate approach for their project, reinforcing their perspective with real world examples, used to show step-by-step processes and to demonstrate important skills

See what’s new to this edition by selecting the Features tab on this page. Should you need additional information or have questions regarding the HEOA information provided for this title, including what is new to this edition, please email [email protected] . Please include your name, contact information, and the name of the title for which you would like more information. For information on the HEOA, please go to http://ed.gov/policy/highered/leg/hea08/index.html .

For assistance with your order: Please email us at [email protected] or connect with your SAGE representative.

SAGE 2455 Teller Road Thousand Oaks, CA 91320 www.sagepub.com

Supplements

This coding manual is the best go-to text for qualitative data analysis, both for a manual approach and for computer-assisted analysis. It offers a range of coding strategies applicable to any research projects, written in accessible language, making this text highly practical as well as theoretically comprehensive. 

With this expanded fourth edition of The Coding Manual for Qualitative Researchers, Saldaña  has proved to be an exemplary archivist of the field of qualitative methods, whilst never losing sight of the practical issues involved in inducting new researchers to the variety of coding methods available to them. His text provides great worked examples which build up understanding, skills and confidence around coding for the new researcher, whilst also enhancing established researchers’ grasp of the key principles of coding. 

Johnny Saldaña’s Coding Manual for Qualitative Researcher s has been an indispensable resource for students, teachers and practitioners since it was first published in 2009. With its expanded contents, new coding methods and more intuitive structure, the fourth edition deserves a prominent place on every qualitative researcher’s bookshelf.

An essential text for qualitative research training and fieldwork. Along with updated examples and applications, Saldaña's fourth edition introduces multiple new coding methods, solidifying this as the most comprehensive, practical qualitative coding guide on the market today.

This book really is the coding manual for qualitative researchers, both aspiring and seasoned. The text is well-organized and thorough. With several new methods included in the fourth edition, this is an essential reference text for qualitative analysts.  

This book will be of particular help to PhD students rather than masters.

This will be of particular help to PhD students rather than Masters

Great update to the third addition.

This is a great resource for qualitative researchers of all levels. It gives clear details on different ways to code, it gives clear examples, and there are citations of others who have used that type of coding. It is great for use in the methods section of articles. It is also valuable for introducing graduate students different ways to code. It is an indispensable resource.

Excellent resource for learning how to analyze qualitative data.

  • Over 30 techniques are now included
  • A brand new companion website with links to SAGE journal articles, sample transcripts, links to CAQDAS sites, student exercises, links to video and digital content

Preview this book

For instructors, select a purchasing option, related products.

Thinking Qualitatively

  • Interesting
  • Scholarships
  • UGC-CARE Journals

Data Coding in Research Methodology

The power of data coding: a vital step in academic and scientific research methodology.

Dr. Sowndarya Somasundaram

Research methodology is the backbone of any scientific investigation. It provides a systematic framework for gathering, organizing, and analyzing data to draw meaningful conclusions. Among the many crucial steps in the research process, data coding stands out as a fundamental technique that helps researchers make sense of the information they collect. In this article, iLovePhD explores the concept of data coding, explores its significance, and provides suitable examples to illustrate its application in research.

Understanding Data Coding

Data coding is the process of transforming raw data into a more structured and manageable format, enabling researchers to identify patterns, themes, and relationships within their data.

It involves assigning labels or numerical codes to different pieces of information based on predefined criteria or categories. These codes act as a bridge between the raw data and the analytical phase of research, facilitating the organization and interpretation of data.

Why is Data Coding Important?

full frame shot of abstract pattern

Data coding plays a pivotal role in the research process for several reasons:

  • Data Reduction: When researchers collect vast amounts of data, coding helps condense and summarize it. This reduction makes it feasible to analyze large datasets effectively.
  • Data Organization: Coding provides a systematic way to categorize and group similar pieces of information together, making it easier to manage and analyze the data.
  • Pattern Recognition: Coding allows researchers to identify patterns, trends, and relationships within the data that might not be immediately apparent when working with raw data.
  • Interpretation and Analysis: Coded data serves as the foundation for statistical analysis and hypothesis testing. Researchers can run statistical tests on coded data to draw meaningful conclusions.
  • Comparative Analysis: By coding data consistently, researchers can compare and contrast information across different cases or groups, aiding in the generation of insights and theories.

Now, let’s look at some examples to illustrate how data coding is applied in different research scenarios:

Examples of Data Coding in Research

1. qualitative research.

In qualitative research, data coding is often used to categorize and analyze textual or narrative data. For instance, imagine a study on customer feedback about a new product.

Researchers could code customer comments into categories such as “product quality,” “customer service,” “pricing,” and “delivery.” Each comment would be assigned one or more of these codes based on the main topic it addresses.

2. Survey Research

In survey research, coding can involve assigning numerical values to responses on a Likert scale. For example, in a survey about job satisfaction, the responses “strongly agree” might be coded as 5, “agree” as 4, “neutral” as 3, “disagree” as 2, and “strongly disagree” as 1. These codes enable quantitative analysis of survey data.

3. Content Analysis

Content analysis often involves coding textual or visual content, such as news articles or social media posts, into predefined categories.

For instance, in a content analysis of news articles about climate change, researchers could code articles as “supportive of climate action,” “neutral,” or “skeptical of climate change.” This coding allows researchers to assess the prevalence of different perspectives in the media.

4. Medical Research

In medical research, coding may involve categorizing patient data into different diagnostic groups based on symptoms, test results, or medical histories. This allows researchers to analyze the effectiveness of different treatments for specific conditions.

5. Historical Research

Even in historical research, data coding can be useful. Historians might code historical documents based on themes, time periods, or key events. This enables them to identify patterns and trends across historical records and gain new insights into the past.

Data coding is a powerful tool that enhances the rigor and reliability of research methodology across various disciplines.

Whether you’re conducting qualitative or quantitative research , coding helps transform raw data into meaningful insights. By systematically categorizing and organizing data, researchers can uncover hidden patterns, draw evidence-based conclusions, and contribute to the advancement of knowledge in their respective fields. So, the next time you embark on a research journey, remember the significance of data coding in unlocking the secrets within your data.

  • Academic Research
  • Codebook development
  • Coding process
  • Data Analysis
  • Data categorization
  • Data coding
  • Data coding best practices
  • Data coding software
  • Data organization
  • Data quality control
  • Inter-coder reliability
  • Research data insights
  • Research Methodology
  • research techniques
  • scientific research

Dr. Sowndarya Somasundaram

How to Write a Research Paper in a Month?

Example of abstract for research paper – tips and dos and donts, list of phd and postdoc fellowships in india 2024, most popular, india science and research fellowship (isrf) 2024-25, photopea tutorial – online free photo editor for thesis images, eight effective tips to overcome writer’s block in phd thesis writing, google ai for phd research – tools and techniques, phd in india 2024 – cost, duration, and eligibility for admission, 100 connective words for research paper writing, phd supervisors – unsung heroes of doctoral students, best for you, 24 best free plagiarism checkers in 2024, what is phd, popular posts, how to check scopus indexed journals 2024, how to write a research paper a complete guide, popular category.

  • POSTDOC 317
  • Interesting 258
  • Journals 234
  • Fellowship 129
  • Research Methodology 102
  • All Scopus Indexed Journals 92

ilovephd_logo

iLovePhD is a research education website to know updated research-related information. It helps researchers to find top journals for publishing research articles and get an easy manual for research tools. The main aim of this website is to help Ph.D. scholars who are working in various domains to get more valuable ideas to carry out their research. Learn the current groundbreaking research activities around the world, love the process of getting a Ph.D.

Contact us: [email protected]

Google News

Copyright © 2024 iLovePhD. All rights reserved

  • Artificial intelligence

is coding in research methodology

Grad Coach

What Is Research Methodology? A Plain-Language Explanation & Definition (With Examples)

By Derek Jansen (MBA)  and Kerryn Warren (PhD) | June 2020 (Last updated April 2023)

If you’re new to formal academic research, it’s quite likely that you’re feeling a little overwhelmed by all the technical lingo that gets thrown around. And who could blame you – “research methodology”, “research methods”, “sampling strategies”… it all seems never-ending!

In this post, we’ll demystify the landscape with plain-language explanations and loads of examples (including easy-to-follow videos), so that you can approach your dissertation, thesis or research project with confidence. Let’s get started.

Research Methodology 101

  • What exactly research methodology means
  • What qualitative , quantitative and mixed methods are
  • What sampling strategy is
  • What data collection methods are
  • What data analysis methods are
  • How to choose your research methodology
  • Example of a research methodology

Free Webinar: Research Methodology 101

What is research methodology?

Research methodology simply refers to the practical “how” of a research study. More specifically, it’s about how  a researcher  systematically designs a study  to ensure valid and reliable results that address the research aims, objectives and research questions . Specifically, how the researcher went about deciding:

  • What type of data to collect (e.g., qualitative or quantitative data )
  • Who  to collect it from (i.e., the sampling strategy )
  • How to  collect  it (i.e., the data collection method )
  • How to  analyse  it (i.e., the data analysis methods )

Within any formal piece of academic research (be it a dissertation, thesis or journal article), you’ll find a research methodology chapter or section which covers the aspects mentioned above. Importantly, a good methodology chapter explains not just   what methodological choices were made, but also explains  why they were made. In other words, the methodology chapter should justify  the design choices, by showing that the chosen methods and techniques are the best fit for the research aims, objectives and research questions. 

So, it’s the same as research design?

Not quite. As we mentioned, research methodology refers to the collection of practical decisions regarding what data you’ll collect, from who, how you’ll collect it and how you’ll analyse it. Research design, on the other hand, is more about the overall strategy you’ll adopt in your study. For example, whether you’ll use an experimental design in which you manipulate one variable while controlling others. You can learn more about research design and the various design types here .

Need a helping hand?

is coding in research methodology

What are qualitative, quantitative and mixed-methods?

Qualitative, quantitative and mixed-methods are different types of methodological approaches, distinguished by their focus on words , numbers or both . This is a bit of an oversimplification, but its a good starting point for understanding.

Let’s take a closer look.

Qualitative research refers to research which focuses on collecting and analysing words (written or spoken) and textual or visual data, whereas quantitative research focuses on measurement and testing using numerical data . Qualitative analysis can also focus on other “softer” data points, such as body language or visual elements.

It’s quite common for a qualitative methodology to be used when the research aims and research questions are exploratory  in nature. For example, a qualitative methodology might be used to understand peoples’ perceptions about an event that took place, or a political candidate running for president. 

Contrasted to this, a quantitative methodology is typically used when the research aims and research questions are confirmatory  in nature. For example, a quantitative methodology might be used to measure the relationship between two variables (e.g. personality type and likelihood to commit a crime) or to test a set of hypotheses .

As you’ve probably guessed, the mixed-method methodology attempts to combine the best of both qualitative and quantitative methodologies to integrate perspectives and create a rich picture. If you’d like to learn more about these three methodological approaches, be sure to watch our explainer video below.

What is sampling strategy?

Simply put, sampling is about deciding who (or where) you’re going to collect your data from . Why does this matter? Well, generally it’s not possible to collect data from every single person in your group of interest (this is called the “population”), so you’ll need to engage a smaller portion of that group that’s accessible and manageable (this is called the “sample”).

How you go about selecting the sample (i.e., your sampling strategy) will have a major impact on your study.  There are many different sampling methods  you can choose from, but the two overarching categories are probability   sampling and  non-probability   sampling .

Probability sampling  involves using a completely random sample from the group of people you’re interested in. This is comparable to throwing the names all potential participants into a hat, shaking it up, and picking out the “winners”. By using a completely random sample, you’ll minimise the risk of selection bias and the results of your study will be more generalisable  to the entire population. 

Non-probability sampling , on the other hand,  doesn’t use a random sample . For example, it might involve using a convenience sample, which means you’d only interview or survey people that you have access to (perhaps your friends, family or work colleagues), rather than a truly random sample. With non-probability sampling, the results are typically not generalisable .

To learn more about sampling methods, be sure to check out the video below.

What are data collection methods?

As the name suggests, data collection methods simply refers to the way in which you go about collecting the data for your study. Some of the most common data collection methods include:

  • Interviews (which can be unstructured, semi-structured or structured)
  • Focus groups and group interviews
  • Surveys (online or physical surveys)
  • Observations (watching and recording activities)
  • Biophysical measurements (e.g., blood pressure, heart rate, etc.)
  • Documents and records (e.g., financial reports, court records, etc.)

The choice of which data collection method to use depends on your overall research aims and research questions , as well as practicalities and resource constraints. For example, if your research is exploratory in nature, qualitative methods such as interviews and focus groups would likely be a good fit. Conversely, if your research aims to measure specific variables or test hypotheses, large-scale surveys that produce large volumes of numerical data would likely be a better fit.

What are data analysis methods?

Data analysis methods refer to the methods and techniques that you’ll use to make sense of your data. These can be grouped according to whether the research is qualitative  (words-based) or quantitative (numbers-based).

Popular data analysis methods in qualitative research include:

  • Qualitative content analysis
  • Thematic analysis
  • Discourse analysis
  • Narrative analysis
  • Interpretative phenomenological analysis (IPA)
  • Visual analysis (of photographs, videos, art, etc.)

Qualitative data analysis all begins with data coding , after which an analysis method is applied. In some cases, more than one analysis method is used, depending on the research aims and research questions . In the video below, we explore some  common qualitative analysis methods, along with practical examples.  

Moving on to the quantitative side of things, popular data analysis methods in this type of research include:

  • Descriptive statistics (e.g. means, medians, modes )
  • Inferential statistics (e.g. correlation, regression, structural equation modelling)

Again, the choice of which data collection method to use depends on your overall research aims and objectives , as well as practicalities and resource constraints. In the video below, we explain some core concepts central to quantitative analysis.

How do I choose a research methodology?

As you’ve probably picked up by now, your research aims and objectives have a major influence on the research methodology . So, the starting point for developing your research methodology is to take a step back and look at the big picture of your research, before you make methodology decisions. The first question you need to ask yourself is whether your research is exploratory or confirmatory in nature.

If your research aims and objectives are primarily exploratory in nature, your research will likely be qualitative and therefore you might consider qualitative data collection methods (e.g. interviews) and analysis methods (e.g. qualitative content analysis). 

Conversely, if your research aims and objective are looking to measure or test something (i.e. they’re confirmatory), then your research will quite likely be quantitative in nature, and you might consider quantitative data collection methods (e.g. surveys) and analyses (e.g. statistical analysis).

Designing your research and working out your methodology is a large topic, which we cover extensively on the blog . For now, however, the key takeaway is that you should always start with your research aims, objectives and research questions (the golden thread). Every methodological choice you make needs align with those three components. 

Example of a research methodology chapter

In the video below, we provide a detailed walkthrough of a research methodology from an actual dissertation, as well as an overview of our free methodology template .

is coding in research methodology

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Inferential stats 101

199 Comments

Leo Balanlay

Thank you for this simple yet comprehensive and easy to digest presentation. God Bless!

Derek Jansen

You’re most welcome, Leo. Best of luck with your research!

Asaf

I found it very useful. many thanks

Solomon F. Joel

This is really directional. A make-easy research knowledge.

Upendo Mmbaga

Thank you for this, I think will help my research proposal

vicky

Thanks for good interpretation,well understood.

Alhaji Alie Kanu

Good morning sorry I want to the search topic

Baraka Gombela

Thank u more

Boyd

Thank you, your explanation is simple and very helpful.

Suleiman Abubakar

Very educative a.nd exciting platform. A bigger thank you and I’ll like to always be with you

Daniel Mondela

That’s the best analysis

Okwuchukwu

So simple yet so insightful. Thank you.

Wendy Lushaba

This really easy to read as it is self-explanatory. Very much appreciated…

Lilian

Thanks for this. It’s so helpful and explicit. For those elements highlighted in orange, they were good sources of referrals for concepts I didn’t understand. A million thanks for this.

Tabe Solomon Matebesi

Good morning, I have been reading your research lessons through out a period of times. They are important, impressive and clear. Want to subscribe and be and be active with you.

Hafiz Tahir

Thankyou So much Sir Derek…

Good morning thanks so much for the on line lectures am a student of university of Makeni.select a research topic and deliberate on it so that we’ll continue to understand more.sorry that’s a suggestion.

James Olukoya

Beautiful presentation. I love it.

ATUL KUMAR

please provide a research mehodology example for zoology

Ogar , Praise

It’s very educative and well explained

Joseph Chan

Thanks for the concise and informative data.

Goja Terhemba John

This is really good for students to be safe and well understand that research is all about

Prakash thapa

Thank you so much Derek sir🖤🙏🤗

Abraham

Very simple and reliable

Chizor Adisa

This is really helpful. Thanks alot. God bless you.

Danushika

very useful, Thank you very much..

nakato justine

thanks a lot its really useful

karolina

in a nutshell..thank you!

Bitrus

Thanks for updating my understanding on this aspect of my Thesis writing.

VEDASTO DATIVA MATUNDA

thank you so much my through this video am competently going to do a good job my thesis

Jimmy

Thanks a lot. Very simple to understand. I appreciate 🙏

Mfumukazi

Very simple but yet insightful Thank you

Adegboyega ADaeBAYO

This has been an eye opening experience. Thank you grad coach team.

SHANTHi

Very useful message for research scholars

Teijili

Really very helpful thank you

sandokhan

yes you are right and i’m left

MAHAMUDUL HASSAN

Research methodology with a simplest way i have never seen before this article.

wogayehu tuji

wow thank u so much

Good morning thanks so much for the on line lectures am a student of university of Makeni.select a research topic and deliberate on is so that we will continue to understand more.sorry that’s a suggestion.

Gebregergish

Very precise and informative.

Javangwe Nyeketa

Thanks for simplifying these terms for us, really appreciate it.

Mary Benard Mwanganya

Thanks this has really helped me. It is very easy to understand.

mandla

I found the notes and the presentation assisting and opening my understanding on research methodology

Godfrey Martin Assenga

Good presentation

Nhubu Tawanda

Im so glad you clarified my misconceptions. Im now ready to fry my onions. Thank you so much. God bless

Odirile

Thank you a lot.

prathap

thanks for the easy way of learning and desirable presentation.

Ajala Tajudeen

Thanks a lot. I am inspired

Visor Likali

Well written

Pondris Patrick

I am writing a APA Format paper . I using questionnaire with 120 STDs teacher for my participant. Can you write me mthology for this research. Send it through email sent. Just need a sample as an example please. My topic is ” impacts of overcrowding on students learning

Thanks for your comment.

We can’t write your methodology for you. If you’re looking for samples, you should be able to find some sample methodologies on Google. Alternatively, you can download some previous dissertations from a dissertation directory and have a look at the methodology chapters therein.

All the best with your research.

Anon

Thank you so much for this!! God Bless

Keke

Thank you. Explicit explanation

Sophy

Thank you, Derek and Kerryn, for making this simple to understand. I’m currently at the inception stage of my research.

Luyanda

Thnks a lot , this was very usefull on my assignment

Beulah Emmanuel

excellent explanation

Gino Raz

I’m currently working on my master’s thesis, thanks for this! I’m certain that I will use Qualitative methodology.

Abigail

Thanks a lot for this concise piece, it was quite relieving and helpful. God bless you BIG…

Yonas Tesheme

I am currently doing my dissertation proposal and I am sure that I will do quantitative research. Thank you very much it was extremely helpful.

zahid t ahmad

Very interesting and informative yet I would like to know about examples of Research Questions as well, if possible.

Maisnam loyalakla

I’m about to submit a research presentation, I have come to understand from your simplification on understanding research methodology. My research will be mixed methodology, qualitative as well as quantitative. So aim and objective of mixed method would be both exploratory and confirmatory. Thanks you very much for your guidance.

Mila Milano

OMG thanks for that, you’re a life saver. You covered all the points I needed. Thank you so much ❤️ ❤️ ❤️

Christabel

Thank you immensely for this simple, easy to comprehend explanation of data collection methods. I have been stuck here for months 😩. Glad I found your piece. Super insightful.

Lika

I’m going to write synopsis which will be quantitative research method and I don’t know how to frame my topic, can I kindly get some ideas..

Arlene

Thanks for this, I was really struggling.

This was really informative I was struggling but this helped me.

Modie Maria Neswiswi

Thanks a lot for this information, simple and straightforward. I’m a last year student from the University of South Africa UNISA South Africa.

Mursel Amin

its very much informative and understandable. I have enlightened.

Mustapha Abubakar

An interesting nice exploration of a topic.

Sarah

Thank you. Accurate and simple🥰

Sikandar Ali Shah

This article was really helpful, it helped me understanding the basic concepts of the topic Research Methodology. The examples were very clear, and easy to understand. I would like to visit this website again. Thank you so much for such a great explanation of the subject.

Debbie

Thanks dude

Deborah

Thank you Doctor Derek for this wonderful piece, please help to provide your details for reference purpose. God bless.

Michael

Many compliments to you

Dana

Great work , thank you very much for the simple explanation

Aryan

Thank you. I had to give a presentation on this topic. I have looked everywhere on the internet but this is the best and simple explanation.

omodara beatrice

thank you, its very informative.

WALLACE

Well explained. Now I know my research methodology will be qualitative and exploratory. Thank you so much, keep up the good work

GEORGE REUBEN MSHEGAME

Well explained, thank you very much.

Ainembabazi Rose

This is good explanation, I have understood the different methods of research. Thanks a lot.

Kamran Saeed

Great work…very well explanation

Hyacinth Chebe Ukwuani

Thanks Derek. Kerryn was just fantastic!

Great to hear that, Hyacinth. Best of luck with your research!

Matobela Joel Marabi

Its a good templates very attractive and important to PhD students and lectuter

Thanks for the feedback, Matobela. Good luck with your research methodology.

Elie

Thank you. This is really helpful.

You’re very welcome, Elie. Good luck with your research methodology.

Sakina Dalal

Well explained thanks

Edward

This is a very helpful site especially for young researchers at college. It provides sufficient information to guide students and equip them with the necessary foundation to ask any other questions aimed at deepening their understanding.

Thanks for the kind words, Edward. Good luck with your research!

Ngwisa Marie-claire NJOTU

Thank you. I have learned a lot.

Great to hear that, Ngwisa. Good luck with your research methodology!

Claudine

Thank you for keeping your presentation simples and short and covering key information for research methodology. My key takeaway: Start with defining your research objective the other will depend on the aims of your research question.

Zanele

My name is Zanele I would like to be assisted with my research , and the topic is shortage of nursing staff globally want are the causes , effects on health, patients and community and also globally

Oluwafemi Taiwo

Thanks for making it simple and clear. It greatly helped in understanding research methodology. Regards.

Francis

This is well simplified and straight to the point

Gabriel mugangavari

Thank you Dr

Dina Haj Ibrahim

I was given an assignment to research 2 publications and describe their research methodology? I don’t know how to start this task can someone help me?

Sure. You’re welcome to book an initial consultation with one of our Research Coaches to discuss how we can assist – https://gradcoach.com/book/new/ .

BENSON ROSEMARY

Thanks a lot I am relieved of a heavy burden.keep up with the good work

Ngaka Mokoena

I’m very much grateful Dr Derek. I’m planning to pursue one of the careers that really needs one to be very much eager to know. There’s a lot of research to do and everything, but since I’ve gotten this information I will use it to the best of my potential.

Pritam Pal

Thank you so much, words are not enough to explain how helpful this session has been for me!

faith

Thanks this has thought me alot.

kenechukwu ambrose

Very concise and helpful. Thanks a lot

Eunice Shatila Sinyemu 32070

Thank Derek. This is very helpful. Your step by step explanation has made it easier for me to understand different concepts. Now i can get on with my research.

Michelle

I wish i had come across this sooner. So simple but yet insightful

yugine the

really nice explanation thank you so much

Goodness

I’m so grateful finding this site, it’s really helpful…….every term well explained and provide accurate understanding especially to student going into an in-depth research for the very first time, even though my lecturer already explained this topic to the class, I think I got the clear and efficient explanation here, much thanks to the author.

lavenda

It is very helpful material

Lubabalo Ntshebe

I would like to be assisted with my research topic : Literature Review and research methodologies. My topic is : what is the relationship between unemployment and economic growth?

Buddhi

Its really nice and good for us.

Ekokobe Aloysius

THANKS SO MUCH FOR EXPLANATION, ITS VERY CLEAR TO ME WHAT I WILL BE DOING FROM NOW .GREAT READS.

Asanka

Short but sweet.Thank you

Shishir Pokharel

Informative article. Thanks for your detailed information.

Badr Alharbi

I’m currently working on my Ph.D. thesis. Thanks a lot, Derek and Kerryn, Well-organized sequences, facilitate the readers’ following.

Tejal

great article for someone who does not have any background can even understand

Hasan Chowdhury

I am a bit confused about research design and methodology. Are they the same? If not, what are the differences and how are they related?

Thanks in advance.

Ndileka Myoli

concise and informative.

Sureka Batagoda

Thank you very much

More Smith

How can we site this article is Harvard style?

Anne

Very well written piece that afforded better understanding of the concept. Thank you!

Denis Eken Lomoro

Am a new researcher trying to learn how best to write a research proposal. I find your article spot on and want to download the free template but finding difficulties. Can u kindly send it to my email, the free download entitled, “Free Download: Research Proposal Template (with Examples)”.

fatima sani

Thank too much

Khamis

Thank you very much for your comprehensive explanation about research methodology so I like to thank you again for giving us such great things.

Aqsa Iftijhar

Good very well explained.Thanks for sharing it.

Krishna Dhakal

Thank u sir, it is really a good guideline.

Vimbainashe

so helpful thank you very much.

Joelma M Monteiro

Thanks for the video it was very explanatory and detailed, easy to comprehend and follow up. please, keep it up the good work

AVINASH KUMAR NIRALA

It was very helpful, a well-written document with precise information.

orebotswe morokane

how do i reference this?

Roy

MLA Jansen, Derek, and Kerryn Warren. “What (Exactly) Is Research Methodology?” Grad Coach, June 2021, gradcoach.com/what-is-research-methodology/.

APA Jansen, D., & Warren, K. (2021, June). What (Exactly) Is Research Methodology? Grad Coach. https://gradcoach.com/what-is-research-methodology/

sheryl

Your explanation is easily understood. Thank you

Dr Christie

Very help article. Now I can go my methodology chapter in my thesis with ease

Alice W. Mbuthia

I feel guided ,Thank you

Joseph B. Smith

This simplification is very helpful. It is simple but very educative, thanks ever so much

Dr. Ukpai Ukpai Eni

The write up is informative and educative. It is an academic intellectual representation that every good researcher can find useful. Thanks

chimbini Joseph

Wow, this is wonderful long live.

Tahir

Nice initiative

Thembsie

thank you the video was helpful to me.

JesusMalick

Thank you very much for your simple and clear explanations I’m really satisfied by the way you did it By now, I think I can realize a very good article by following your fastidious indications May God bless you

G.Horizon

Thanks very much, it was very concise and informational for a beginner like me to gain an insight into what i am about to undertake. I really appreciate.

Adv Asad Ali

very informative sir, it is amazing to understand the meaning of question hidden behind that, and simple language is used other than legislature to understand easily. stay happy.

Jonas Tan

This one is really amazing. All content in your youtube channel is a very helpful guide for doing research. Thanks, GradCoach.

mahmoud ali

research methodologies

Lucas Sinyangwe

Please send me more information concerning dissertation research.

Amamten Jr.

Nice piece of knowledge shared….. #Thump_UP

Hajara Salihu

This is amazing, it has said it all. Thanks to Gradcoach

Gerald Andrew Babu

This is wonderful,very elaborate and clear.I hope to reach out for your assistance in my research very soon.

Safaa

This is the answer I am searching about…

realy thanks a lot

Ahmed Saeed

Thank you very much for this awesome, to the point and inclusive article.

Soraya Kolli

Thank you very much I need validity and reliability explanation I have exams

KuzivaKwenda

Thank you for a well explained piece. This will help me going forward.

Emmanuel Chukwuma

Very simple and well detailed Many thanks

Zeeshan Ali Khan

This is so very simple yet so very effective and comprehensive. An Excellent piece of work.

Molly Wasonga

I wish I saw this earlier on! Great insights for a beginner(researcher) like me. Thanks a mil!

Blessings Chigodo

Thank you very much, for such a simplified, clear and practical step by step both for academic students and general research work. Holistic, effective to use and easy to read step by step. One can easily apply the steps in practical terms and produce a quality document/up-to standard

Thanks for simplifying these terms for us, really appreciated.

Joseph Kyereme

Thanks for a great work. well understood .

Julien

This was very helpful. It was simple but profound and very easy to understand. Thank you so much!

Kishimbo

Great and amazing research guidelines. Best site for learning research

ankita bhatt

hello sir/ma’am, i didn’t find yet that what type of research methodology i am using. because i am writing my report on CSR and collect all my data from websites and articles so which type of methodology i should write in dissertation report. please help me. i am from India.

memory

how does this really work?

princelow presley

perfect content, thanks a lot

George Nangpaak Duut

As a researcher, I commend you for the detailed and simplified information on the topic in question. I would like to remain in touch for the sharing of research ideas on other topics. Thank you

EPHRAIM MWANSA MULENGA

Impressive. Thank you, Grad Coach 😍

Thank you Grad Coach for this piece of information. I have at least learned about the different types of research methodologies.

Varinder singh Rana

Very useful content with easy way

Mbangu Jones Kashweeka

Thank you very much for the presentation. I am an MPH student with the Adventist University of Africa. I have successfully completed my theory and starting on my research this July. My topic is “Factors associated with Dental Caries in (one District) in Botswana. I need help on how to go about this quantitative research

Carolyn Russell

I am so grateful to run across something that was sooo helpful. I have been on my doctorate journey for quite some time. Your breakdown on methodology helped me to refresh my intent. Thank you.

Indabawa Musbahu

thanks so much for this good lecture. student from university of science and technology, Wudil. Kano Nigeria.

Limpho Mphutlane

It’s profound easy to understand I appreciate

Mustafa Salimi

Thanks a lot for sharing superb information in a detailed but concise manner. It was really helpful and helped a lot in getting into my own research methodology.

Rabilu yau

Comment * thanks very much

Ari M. Hussein

This was sooo helpful for me thank you so much i didn’t even know what i had to write thank you!

You’re most welcome 🙂

Varsha Patnaik

Simple and good. Very much helpful. Thank you so much.

STARNISLUS HAAMBOKOMA

This is very good work. I have benefited.

Dr Md Asraul Hoque

Thank you so much for sharing

Nkasa lizwi

This is powerful thank you so much guys

I am nkasa lizwi doing my research proposal on honors with the university of Walter Sisulu Komani I m on part 3 now can you assist me.my topic is: transitional challenges faced by educators in intermediate phase in the Alfred Nzo District.

Atonisah Jonathan

Appreciate the presentation. Very useful step-by-step guidelines to follow.

Bello Suleiman

I appreciate sir

Titilayo

wow! This is super insightful for me. Thank you!

Emerita Guzman

Indeed this material is very helpful! Kudos writers/authors.

TSEDEKE JOHN

I want to say thank you very much, I got a lot of info and knowledge. Be blessed.

Akanji wasiu

I want present a seminar paper on Optimisation of Deep learning-based models on vulnerability detection in digital transactions.

Need assistance

Clement Lokwar

Dear Sir, I want to be assisted on my research on Sanitation and Water management in emergencies areas.

Peter Sone Kome

I am deeply grateful for the knowledge gained. I will be getting in touch shortly as I want to be assisted in my ongoing research.

Nirmala

The information shared is informative, crisp and clear. Kudos Team! And thanks a lot!

Bipin pokhrel

hello i want to study

Kassahun

Hello!! Grad coach teams. I am extremely happy in your tutorial or consultation. i am really benefited all material and briefing. Thank you very much for your generous helps. Please keep it up. If you add in your briefing, references for further reading, it will be very nice.

Ezra

All I have to say is, thank u gyz.

Work

Good, l thanks

Artak Ghonyan

thank you, it is very useful

Trackbacks/Pingbacks

  • What Is A Literature Review (In A Dissertation Or Thesis) - Grad Coach - […] the literature review is to inform the choice of methodology for your own research. As we’ve discussed on the Grad Coach blog,…
  • Free Download: Research Proposal Template (With Examples) - Grad Coach - […] Research design (methodology) […]
  • Dissertation vs Thesis: What's the difference? - Grad Coach - […] and thesis writing on a daily basis – everything from how to find a good research topic to which…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

MIM Learnovate

Data Coding in Research Methodology

is coding in research methodology

Research methodology is the foundation of any scientific study. It gives us a structured way to gather, sort, and make sense of data so we can draw meaningful conclusions. One critical step in research is called “data coding.”

In this article, we’ll dive into what data coding is, why it matters, and provide examples to show how it’s used in research.

  • Table of Contents

Data Coding

Data coding is the act of converting unstructured data into a more manageable and structured format so that researchers may find themes, patterns, and relationships in their data.

It includes giving different pieces of information labels or codes based on categories or criteria that have already been set. These codes facilitate the organization and interpretation of data by serving as a link between the raw data and the analytical phase of the research process.

Types of Data Coding

Coded data can be analyzed by statistical software and other tools. There are different types of data coding, like:

1. Nominal coding

This is like giving data labels or categories. For example, if we asked people about their marital status, we could code “Single” as 1, “Married” as 2, “Divorced” as 3, and “Widowed” as 4.

2. Ordinal coding

This is when we put data into categories with a specific order. Let’s say we’re asking people how satisfied they are. We might code “Very dissatisfied” as 1, “Frustrated” as 2, “Neutral” as 3, “Satisfied” as 4, and “Very satisfied” as 5.

3. Dichotomous coding

This is simpler. It’s like saying yes (1) or no (0). For example, if we’re asking about gender, we could code “Male” as 0 and “Female” as 1.

4. Numeric coding

This is when we use numbers for data. For example, if we’re asking about age groups, we might code “18-24 years old” as 1, “25-34 years old” as 2, “35-44 years old” as 3, and so on.

5. Derived variables

This means we create new stuff based on the data we already have. Like, we might find the average score for a bunch of survey questions or make a new thing by adding up other stuff.

6. Truncation

This is like chopping off part of a data number. For example, instead of saying “12.23” or “12.47,” we might just keep “23” or “47.” It’s handy when people are doing the math themselves.

What are the implications of data coding?

There are several reasons why data coding is crucial to the  research process .

  • Data Reduction: When you have loads of data, coding makes it shorter and simpler. This makes it way easier to study large sets of data.
  • Data Organization: Coding helps you put similar information together in an organized way. This means you can manage and study your data more effectively.
  • Pattern Spotting: Coding helps you find patterns, trends, and connections in the data that might not be obvious when you’re looking at the raw stuff.
  • Interpretation and Analysis: Coded data forms the foundation for crunching numbers and testing theories. Researchers can run tests on coded data to draw meaningful conclusions.
  • Comparing Stuff: Researchers can make better case or group comparisons when data is coded consistently.This helps come up with insights and theories.

Examples of Data Coding in Research

Now, let’s look at some examples to see how data coding is used in different kinds of research:

  • Qualitative Research

Data coding is frequently used in qualitative research to organize and analyze narrative or textual data. Consider a study on customer feedback on a new product, for example.

Categories like “product quality,” “customer service,” “pricing,” and “delivery” could be used by researchers to code customer feedback. Based on the main topic discussed, each comment would be assigned one or more of these codes.

Historical Research

Even historical research benefits from data coding. Themes, key events, and time periods can all be used by historians to assign codes to historical texts. This allows them to better examine historical data for underlying patterns and trends.

  • Survey Research

Coding in survey research can involve assigning numeric values to Likert-scale responses. In a survey on job satisfaction, for instance, responses such as “strongly disagree” might be coded as 1, “strongly agree” as 5, “agree” as 4, “neutral” as 3, and “disagree” as 2. These codes allow for quantitative analysis of survey data.

Content Analysis

Textual or visual content, such as news stories or social media posts, is often coded into predefined categories for content analysis.

For example, in a study about news articles on climate change, you could code articles as “supportive of climate action,” “neutral,” or “skeptical of climate change.” This helps you see how different ideas are presented in the media.

Medical Research

In medicine, coding might involve sorting patient data into categories based on symptoms, medical history, or test results. This helps researchers figure out which treatments work best for different conditions.

Data coding is like a super useful tool that makes research better. Whether you’re doing qualitative or quantitative research , coding helps you turn raw data into smart insights.

It’s like sorting and organizing data, helping you discover hidden patterns, draw conclusions backed by evidence, and add to what we know in your field.

Other articles

Please read through some of our other articles with examples and explanations if you’d like to learn more.

  • PLS-SEM model
  • Principal Components Analysis
  • Multivariate Analysis
  • Friedman Test
  • Chi-Square Test (Χ²)
  • Effect Size
  • Critical Values in Statistics
  • Statistical Analysis
  • Calculate the Sample Size for Randomized Controlled Trials
  • Covariate in Statistics
  • Avoid Common Mistakes in Statistics
  • Standard Deviation
  • Derivatives & Formulas
  • Build a PLS-SEM model using AMOS
  • Principal Components Analysis using SPSS
  • Statistical Tools
  • Type I vs Type II error
  • Descriptive and Inferential Statistics
  • Microsoft Excel and SPSS
  • One-tailed and Two-tailed Test
  • Parametric and Non-Parametric Test

Citation Styles

  • APA Reference Page
  • MLA Citations
  • Chicago Style Format
  • “et al.” in APA, MLA, and Chicago Style
  • Do All References in a Reference List Need to Be Cited in Text?

Comparision

  • Independent vs. Dependent Variable – MIM Learnovate
  • Research Article and Research Paper
  • Proposition and Hypothesis
  • Principal Component Analysis and Partial Least Squares
  • Academic Research vs Industry Research
  • Clinical Research vs Lab Research
  • Research Lab and Hospital Lab
  • Thesis Statement and Research Question
  • Quantitative Researchers vs. Quantitative Traders
  • Premise, Hypothesis and Supposition
  • Survey Vs Experiment
  • Hypothesis and Theory
  • Independent vs. Dependent Variable
  • APA vs. MLA
  • Ghost Authorship vs. Gift Authorship
  • Basic and Applied Research
  • Cross-Sectional vs Longitudinal Studies
  • Survey vs Questionnaire
  • Open Ended vs Closed Ended Questions
  • Experimental and Non-Experimental Research
  • Inductive vs Deductive Approach
  • Null and Alternative Hypothesis
  • Reliability vs Validity
  • Population vs Sample
  • Conceptual Framework and Theoretical Framework
  • Bibliography and Reference
  • Stratified vs Cluster Sampling
  • Sampling Error vs Sampling Bias
  • Internal Validity vs External Validity
  • Full-Scale, Laboratory-Scale and Pilot-Scale Studies
  • Plagiarism and Paraphrasing
  • Research Methodology Vs. Research Method
  • Mediator and Moderator
  •   Dissertation Topic
  • Thesis Statement
  • Research Proposal
  • Research Questions
  • Research Problem
  • Research Gap
  • Types of Research Gaps
  • Operationalization of Variables
  • Literature Review
  • Research Hypothesis
  • Questionnaire
  • Reliability
  • Measurement of Scale
  • Sampling Techniques
  • Acknowledgements
  • Research Methods
  • Quantitative Research
  • Case Study Research
  • Conclusive Research
  • Descriptive Research
  • Cross-Sectional Research
  • Theoretical Framework
  • Conceptual Framework
  • Triangulation
  • Grounded Theory
  • Quasi-Experimental Design
  • Mixed Method
  • Correlational Research
  • Randomized Controlled Trial
  • Stratified Sampling
  • Ethnography
  • Ghost Authorship
  • Secondary Data Collection
  • Primary Data Collection
  • Ex-Post-Facto

is coding in research methodology

Misbah Rashid, an expert in Technology Management, holds an MBA and an MS in Information Systems and Technology Management. She has experience teaching marketing and technology in business at the university level.

Related Posts

Six useful tips for finding research gap, example of abstract for your research paper: tips, dos, and don’ts, survey sampling: what it is, types & tips, cluster sampling | method and examples, advantages and disadvantages of snowball sampling, exploring qualitative researcher skills: what they are and how to develop them, difference between quota sampling and stratified sampling, what is purposive sampling | examples, quota sampling in research, top ai tools for literature review .

Comments are closed.

IMAGES

  1. Inductive Coding: A Step-by-Step Guide for Researchers (2024)

    is coding in research methodology

  2. Coding Qualitative Data: How To Code Qualitative Research (2021)

    is coding in research methodology

  3. Coding Qualitative Data: A Beginner’s How-To + Examples

    is coding in research methodology

  4. A Design Framework for Novice Using Grounded Theory Methodology and

    is coding in research methodology

  5. coding in research methodology pdf

    is coding in research methodology

  6. PPT

    is coding in research methodology

VIDEO

  1. Research Methodology Week 1 Quiz Assignment Solution

  2. Qualitative Data Coding

  3. Data Coding in Research Methodology

  4. Research Method vs Methodology|Difference between research method and methodology|Research

  5. This methodology is BETTER than Sprints

  6. Research Methodology Week 2 Quiz Assignment Solution

COMMENTS

  1. Coding

    Coding is a qualitative data analysis strategy in which some aspect of the data is assigned a descriptive label that allows the researcher to identify related content across the data. How you decide to code - or whether to code- your data should be driven by your methodology. But there are rarely step-by-step descriptions, and you'll have to ...

  2. Qualitative Data Coding 101 (With Examples)

    Values coding. Finally, values coding involves coding that relates to the participant's worldviews. Typically, this type of coding focuses on excerpts that reflect the values, attitudes, and beliefs of the participants. Values coding is therefore very useful for research exploring cultural values and intrapersonal and experiences and actions.

  3. Coding Qualitative Data: How To Guide

    What is coding in qualitative research? Conducting qualitative research, particularly through coding, is a crucial step in ensuring the validity and reliability of the findings. Coding is the process of labeling and organizing your qualitative data to identify different themes and the relationships between them. ... Methods of coding ...

  4. Chapter 18. Data Analysis and Coding

    Whereas content analysis is both a research method and a tool of analysis, coding is a tool of analysis that can be used for all kinds of data to address any number of questions. Content analysis itself includes coding. ↵; Scientific research, whether quantitative or qualitative, demands we keep an open mind as we conduct our research, that ...

  5. Coding and Analysis Strategies

    This chapter provides an overview of selected qualitative data analytic strategies with a particular focus on codes and coding. Preparatory strategies for a qualitative research study and data management are first outlined. Six coding methods are then profiled using comparable interview data: process coding, in vivo coding, descriptive coding ...

  6. Coding Qualitative Data

    Simply put, coding is qualitative analysis. Coding is the analytical phase where researchers become immersed in their data, take the time to fully get to know it (Basit, 2003; Elliott, 2018), and allow its sense to be discerned.A code is "…a word or short phrase that symbolically assigns a summative, salient, essence-capturing, and/or evocative attribute for a portion of language-based or ...

  7. The Living Codebook: Documenting the Process of Qualitative Data

    We shift the transparency debate from ethnography and interviews to how transparency operates in the content analysis, or coding, of documents and argue that scholars should create a living codebook to analyze their data. The living codebook is a set of tools that makes the analysis of documents more transparent among team members and, if researchers decide to make it public, to the scholarly ...

  8. Qualitative Data Coding

    Coding is an iterative process, with researchers refining and revising their codes as their understanding of the data evolves. The ultimate goal is to develop a coherent and meaningful coding scheme that captures the richness and complexity of the participants' experiences and helps answer the research questions.

  9. PDF The SAGE Encyclopedia of Qualitative Research Methods

    procedures for coding that may be abstracted from the growing literature on qualitative research methods. Coding Strategies A number of methodologists distinguish between two main strategies by which codes and categories are derived. In vivo codes are those obtained directly from the data, for example, terms used by interviewees.

  10. General Coding and Analysis in Qualitative Research

    Subscribe. Coding and analysis are central to qualitative research, moving the researcher from study design and data collection to discovery, theorizing, and writing up the findings in some form (e.g., a journal article, report, book chapter or book). Analysis is a systematic way of approaching data for the purpose of better understanding it.

  11. Essential Guide to Coding Qualitative Data

    Here are some methods of coding qualitative data that are commonly used in second-round coding and beyond. Read about various types of coding. Thematic Analysis Coding. ... It is an inductive research method that begins with specific examples and uses them to develop broader theories. IPA researchers collect data (e.g. via interviews) and ...

  12. PDF 1 An Introduction to Codes and Coding

    Chapter Summary. This chapter first presents the purposes and goals of The Coding Manual for Qualitative Researchers. It then provides definitions and examples of codes and categories and their roles in qualitative data analysis. The procedures and mechanics of coding follow, along with discussions of analytic software and team collaboration.

  13. Coding qualitative data: a synthesis guiding the novice

    Having pooled our ex perience in coding qualitative material and teaching students how to. code, in this paper we synthesize the extensive literature on coding in the form of a hands-on. review ...

  14. The Coding Manual for Qualitative Researchers

    With this expanded fourth edition of The Coding Manual for Qualitative Researchers, Saldaña has proved to be an exemplary archivist of the field of qualitative methods, whilst never losing sight of the practical issues involved in inducting new researchers to the variety of coding methods available to them. His text provides great worked examples which build up understanding, skills and ...

  15. (PDF) The Coding Manual for Qualitative Researchers

    In The Coding Manual for Qualitative Researchers, Johnny Saldaña presents a. developmental summary of qualitative coding techniques (2021). The fourt h edition is reformatted. to fifteen chapters ...

  16. Qualitative Data Analysis

    Coding is one method for creating analytic files and documenting and validating data across all members of the research team. It is a process of assigning codes, words, or phrases that identify to which topics or issues portions of the data refer, and organizing the data in a way that is useful for further analysis (Bailey 2007).

  17. To live (code) or to not: A new method for coding in qualitative research

    In this article, we propose an alternative to coding with transcripts using a method called live coding which allows for simultaneous manual coding while listening or watching audio or video recording. We compared the method of live coding with transcript coding of text using focus group data from a perinatal telehealth group addressing depression.

  18. Content Analysis

    Content analysis is a research method used to identify patterns in recorded communication. To conduct content analysis, you systematically collect data from a set of texts, which can be written, ... Coding involves organizing the units of meaning into the previously defined categories. Especially with more conceptual categories, it's ...

  19. Coding (social sciences)

    As coding methods are applied across various texts, the researcher is able to apply axial coding, which is the process of selecting core thematic categories present in several documents to discover common patterns and relations. ... The objective is to attempt to give the participants a voice in the research. Process Coding: this method uses ...

  20. (PDF) Qualitative Data Coding

    2. WORKSHOP. Qualitative Data Coding. ABSTRACT. In the quest to address a research problem, meeting the purpose of the study, and answer ing. qualitative research question (s), we actively look ...

  21. Data Coding in Research Methodology

    Research methodology is the backbone of any scientific investigation. It provides a systematic framework for gathering, organizing, and analyzing data to draw meaningful conclusions. Among the many crucial steps in the research process, data coding stands out as a fundamental technique that helps researchers make sense of the information they ...

  22. How to Do Thematic Analysis

    How to Do Thematic Analysis | Step-by-Step Guide & Examples. Published on September 6, 2019 by Jack Caulfield.Revised on June 22, 2023. Thematic analysis is a method of analyzing qualitative data.It is usually applied to a set of texts, such as an interview or transcripts.The researcher closely examines the data to identify common themes - topics, ideas and patterns of meaning that come up ...

  23. What Is Research Methodology? Definition + Examples

    Learn exactly what a research methodology is with Grad Coach's plain language, easy-to-understand explanation, including examples and videos. About Us; Services. 1-On-1 Coaching. ... Qualitative data analysis all begins with data coding, after which an analysis method is applied. In some cases, more than one analysis method is used, ...

  24. Data Coding in Research Methodology

    Research methodology is the foundation of any scientific study. It gives us a structured way to gather, sort, and make sense of data so we can draw meaningful conclusions. One critical step in research is called "data coding."

  25. The modality of mathematics lesson observations: comparing the results

    International Journal of Research & Method in Education Latest Articles. Submit an article Journal homepage. 0 Views 0 ... video observations of the same mathematics classroom lessons to identify similarities and differences in the resultant coding between the two modalities. Our findings suggest there are some dimensions of mathematics ...

  26. 8 Types of Coding Jobs (+ Tips to Get Hired)

    Coding ranks among the most in-demand job skills. If you know how to code, you could succeed in a range of jobs both in and out of the tech industry. In this article, we'll review several types of coding jobs to consider and offer tips on what coding languages to learn to get the job you want. Consider the below languages as a starting point.