Issue Cover

  • Previous Article
  • Next Article

Promises and Pitfalls of Technology

Politics and privacy, private-sector influence and big tech, state competition and conflict, author biography, how is technology changing the world, and how should the world change technology.

[email protected]

  • Split-Screen
  • Article contents
  • Figures & tables
  • Supplementary Data
  • Peer Review
  • Open the PDF for in another window
  • Guest Access
  • Get Permissions
  • Cite Icon Cite
  • Search Site

Josephine Wolff; How Is Technology Changing the World, and How Should the World Change Technology?. Global Perspectives 1 February 2021; 2 (1): 27353. doi: https://doi.org/10.1525/gp.2021.27353

Download citation file:

  • Ris (Zotero)
  • Reference Manager

Technologies are becoming increasingly complicated and increasingly interconnected. Cars, airplanes, medical devices, financial transactions, and electricity systems all rely on more computer software than they ever have before, making them seem both harder to understand and, in some cases, harder to control. Government and corporate surveillance of individuals and information processing relies largely on digital technologies and artificial intelligence, and therefore involves less human-to-human contact than ever before and more opportunities for biases to be embedded and codified in our technological systems in ways we may not even be able to identify or recognize. Bioengineering advances are opening up new terrain for challenging philosophical, political, and economic questions regarding human-natural relations. Additionally, the management of these large and small devices and systems is increasingly done through the cloud, so that control over them is both very remote and removed from direct human or social control. The study of how to make technologies like artificial intelligence or the Internet of Things “explainable” has become its own area of research because it is so difficult to understand how they work or what is at fault when something goes wrong (Gunning and Aha 2019) .

This growing complexity makes it more difficult than ever—and more imperative than ever—for scholars to probe how technological advancements are altering life around the world in both positive and negative ways and what social, political, and legal tools are needed to help shape the development and design of technology in beneficial directions. This can seem like an impossible task in light of the rapid pace of technological change and the sense that its continued advancement is inevitable, but many countries around the world are only just beginning to take significant steps toward regulating computer technologies and are still in the process of radically rethinking the rules governing global data flows and exchange of technology across borders.

These are exciting times not just for technological development but also for technology policy—our technologies may be more advanced and complicated than ever but so, too, are our understandings of how they can best be leveraged, protected, and even constrained. The structures of technological systems as determined largely by government and institutional policies and those structures have tremendous implications for social organization and agency, ranging from open source, open systems that are highly distributed and decentralized, to those that are tightly controlled and closed, structured according to stricter and more hierarchical models. And just as our understanding of the governance of technology is developing in new and interesting ways, so, too, is our understanding of the social, cultural, environmental, and political dimensions of emerging technologies. We are realizing both the challenges and the importance of mapping out the full range of ways that technology is changing our society, what we want those changes to look like, and what tools we have to try to influence and guide those shifts.

Technology can be a source of tremendous optimism. It can help overcome some of the greatest challenges our society faces, including climate change, famine, and disease. For those who believe in the power of innovation and the promise of creative destruction to advance economic development and lead to better quality of life, technology is a vital economic driver (Schumpeter 1942) . But it can also be a tool of tremendous fear and oppression, embedding biases in automated decision-making processes and information-processing algorithms, exacerbating economic and social inequalities within and between countries to a staggering degree, or creating new weapons and avenues for attack unlike any we have had to face in the past. Scholars have even contended that the emergence of the term technology in the nineteenth and twentieth centuries marked a shift from viewing individual pieces of machinery as a means to achieving political and social progress to the more dangerous, or hazardous, view that larger-scale, more complex technological systems were a semiautonomous form of progress in and of themselves (Marx 2010) . More recently, technologists have sharply criticized what they view as a wave of new Luddites, people intent on slowing the development of technology and turning back the clock on innovation as a means of mitigating the societal impacts of technological change (Marlowe 1970) .

At the heart of fights over new technologies and their resulting global changes are often two conflicting visions of technology: a fundamentally optimistic one that believes humans use it as a tool to achieve greater goals, and a fundamentally pessimistic one that holds that technological systems have reached a point beyond our control. Technology philosophers have argued that neither of these views is wholly accurate and that a purely optimistic or pessimistic view of technology is insufficient to capture the nuances and complexity of our relationship to technology (Oberdiek and Tiles 1995) . Understanding technology and how we can make better decisions about designing, deploying, and refining it requires capturing that nuance and complexity through in-depth analysis of the impacts of different technological advancements and the ways they have played out in all their complicated and controversial messiness across the world.

These impacts are often unpredictable as technologies are adopted in new contexts and come to be used in ways that sometimes diverge significantly from the use cases envisioned by their designers. The internet, designed to help transmit information between computer networks, became a crucial vehicle for commerce, introducing unexpected avenues for crime and financial fraud. Social media platforms like Facebook and Twitter, designed to connect friends and families through sharing photographs and life updates, became focal points of election controversies and political influence. Cryptocurrencies, originally intended as a means of decentralized digital cash, have become a significant environmental hazard as more and more computing resources are devoted to mining these forms of virtual money. One of the crucial challenges in this area is therefore recognizing, documenting, and even anticipating some of these unexpected consequences and providing mechanisms to technologists for how to think through the impacts of their work, as well as possible other paths to different outcomes (Verbeek 2006) . And just as technological innovations can cause unexpected harm, they can also bring about extraordinary benefits—new vaccines and medicines to address global pandemics and save thousands of lives, new sources of energy that can drastically reduce emissions and help combat climate change, new modes of education that can reach people who would otherwise have no access to schooling. Regulating technology therefore requires a careful balance of mitigating risks without overly restricting potentially beneficial innovations.

Nations around the world have taken very different approaches to governing emerging technologies and have adopted a range of different technologies themselves in pursuit of more modern governance structures and processes (Braman 2009) . In Europe, the precautionary principle has guided much more anticipatory regulation aimed at addressing the risks presented by technologies even before they are fully realized. For instance, the European Union’s General Data Protection Regulation focuses on the responsibilities of data controllers and processors to provide individuals with access to their data and information about how that data is being used not just as a means of addressing existing security and privacy threats, such as data breaches, but also to protect against future developments and uses of that data for artificial intelligence and automated decision-making purposes. In Germany, Technische Überwachungsvereine, or TÜVs, perform regular tests and inspections of technological systems to assess and minimize risks over time, as the tech landscape evolves. In the United States, by contrast, there is much greater reliance on litigation and liability regimes to address safety and security failings after-the-fact. These different approaches reflect not just the different legal and regulatory mechanisms and philosophies of different nations but also the different ways those nations prioritize rapid development of the technology industry versus safety, security, and individual control. Typically, governance innovations move much more slowly than technological innovations, and regulations can lag years, or even decades, behind the technologies they aim to govern.

In addition to this varied set of national regulatory approaches, a variety of international and nongovernmental organizations also contribute to the process of developing standards, rules, and norms for new technologies, including the International Organization for Standardization­ and the International Telecommunication Union. These multilateral and NGO actors play an especially important role in trying to define appropriate boundaries for the use of new technologies by governments as instruments of control for the state.

At the same time that policymakers are under scrutiny both for their decisions about how to regulate technology as well as their decisions about how and when to adopt technologies like facial recognition themselves, technology firms and designers have also come under increasing criticism. Growing recognition that the design of technologies can have far-reaching social and political implications means that there is more pressure on technologists to take into consideration the consequences of their decisions early on in the design process (Vincenti 1993; Winner 1980) . The question of how technologists should incorporate these social dimensions into their design and development processes is an old one, and debate on these issues dates back to the 1970s, but it remains an urgent and often overlooked part of the puzzle because so many of the supposedly systematic mechanisms for assessing the impacts of new technologies in both the private and public sectors are primarily bureaucratic, symbolic processes rather than carrying any real weight or influence.

Technologists are often ill-equipped or unwilling to respond to the sorts of social problems that their creations have—often unwittingly—exacerbated, and instead point to governments and lawmakers to address those problems (Zuckerberg 2019) . But governments often have few incentives to engage in this area. This is because setting clear standards and rules for an ever-evolving technological landscape can be extremely challenging, because enforcement of those rules can be a significant undertaking requiring considerable expertise, and because the tech sector is a major source of jobs and revenue for many countries that may fear losing those benefits if they constrain companies too much. This indicates not just a need for clearer incentives and better policies for both private- and public-sector entities but also a need for new mechanisms whereby the technology development and design process can be influenced and assessed by people with a wider range of experiences and expertise. If we want technologies to be designed with an eye to their impacts, who is responsible for predicting, measuring, and mitigating those impacts throughout the design process? Involving policymakers in that process in a more meaningful way will also require training them to have the analytic and technical capacity to more fully engage with technologists and understand more fully the implications of their decisions.

At the same time that tech companies seem unwilling or unable to rein in their creations, many also fear they wield too much power, in some cases all but replacing governments and international organizations in their ability to make decisions that affect millions of people worldwide and control access to information, platforms, and audiences (Kilovaty 2020) . Regulators around the world have begun considering whether some of these companies have become so powerful that they violate the tenets of antitrust laws, but it can be difficult for governments to identify exactly what those violations are, especially in the context of an industry where the largest players often provide their customers with free services. And the platforms and services developed by tech companies are often wielded most powerfully and dangerously not directly by their private-sector creators and operators but instead by states themselves for widespread misinformation campaigns that serve political purposes (Nye 2018) .

Since the largest private entities in the tech sector operate in many countries, they are often better poised to implement global changes to the technological ecosystem than individual states or regulatory bodies, creating new challenges to existing governance structures and hierarchies. Just as it can be challenging to provide oversight for government use of technologies, so, too, oversight of the biggest tech companies, which have more resources, reach, and power than many nations, can prove to be a daunting task. The rise of network forms of organization and the growing gig economy have added to these challenges, making it even harder for regulators to fully address the breadth of these companies’ operations (Powell 1990) . The private-public partnerships that have emerged around energy, transportation, medical, and cyber technologies further complicate this picture, blurring the line between the public and private sectors and raising critical questions about the role of each in providing critical infrastructure, health care, and security. How can and should private tech companies operating in these different sectors be governed, and what types of influence do they exert over regulators? How feasible are different policy proposals aimed at technological innovation, and what potential unintended consequences might they have?

Conflict between countries has also spilled over significantly into the private sector in recent years, most notably in the case of tensions between the United States and China over which technologies developed in each country will be permitted by the other and which will be purchased by other customers, outside those two countries. Countries competing to develop the best technology is not a new phenomenon, but the current conflicts have major international ramifications and will influence the infrastructure that is installed and used around the world for years to come. Untangling the different factors that feed into these tussles as well as whom they benefit and whom they leave at a disadvantage is crucial for understanding how governments can most effectively foster technological innovation and invention domestically as well as the global consequences of those efforts. As much of the world is forced to choose between buying technology from the United States or from China, how should we understand the long-term impacts of those choices and the options available to people in countries without robust domestic tech industries? Does the global spread of technologies help fuel further innovation in countries with smaller tech markets, or does it reinforce the dominance of the states that are already most prominent in this sector? How can research universities maintain global collaborations and research communities in light of these national competitions, and what role does government research and development spending play in fostering innovation within its own borders and worldwide? How should intellectual property protections evolve to meet the demands of the technology industry, and how can those protections be enforced globally?

These conflicts between countries sometimes appear to challenge the feasibility of truly global technologies and networks that operate across all countries through standardized protocols and design features. Organizations like the International Organization for Standardization, the World Intellectual Property Organization, the United Nations Industrial Development Organization, and many others have tried to harmonize these policies and protocols across different countries for years, but have met with limited success when it comes to resolving the issues of greatest tension and disagreement among nations. For technology to operate in a global environment, there is a need for a much greater degree of coordination among countries and the development of common standards and norms, but governments continue to struggle to agree not just on those norms themselves but even the appropriate venue and processes for developing them. Without greater global cooperation, is it possible to maintain a global network like the internet or to promote the spread of new technologies around the world to address challenges of sustainability? What might help incentivize that cooperation moving forward, and what could new structures and process for governance of global technologies look like? Why has the tech industry’s self-regulation culture persisted? Do the same traditional drivers for public policy, such as politics of harmonization and path dependency in policy-making, still sufficiently explain policy outcomes in this space? As new technologies and their applications spread across the globe in uneven ways, how and when do they create forces of change from unexpected places?

These are some of the questions that we hope to address in the Technology and Global Change section through articles that tackle new dimensions of the global landscape of designing, developing, deploying, and assessing new technologies to address major challenges the world faces. Understanding these processes requires synthesizing knowledge from a range of different fields, including sociology, political science, economics, and history, as well as technical fields such as engineering, climate science, and computer science. A crucial part of understanding how technology has created global change and, in turn, how global changes have influenced the development of new technologies is understanding the technologies themselves in all their richness and complexity—how they work, the limits of what they can do, what they were designed to do, how they are actually used. Just as technologies themselves are becoming more complicated, so are their embeddings and relationships to the larger social, political, and legal contexts in which they exist. Scholars across all disciplines are encouraged to join us in untangling those complexities.

Josephine Wolff is an associate professor of cybersecurity policy at the Fletcher School of Law and Diplomacy at Tufts University. Her book You’ll See This Message When It Is Too Late: The Legal and Economic Aftermath of Cybersecurity Breaches was published by MIT Press in 2018.

Recipient(s) will receive an email with a link to 'How Is Technology Changing the World, and How Should the World Change Technology?' and will not need an account to access the content.

Subject: How Is Technology Changing the World, and How Should the World Change Technology?

(Optional message may have a maximum of 1000 characters.)

Citing articles via

Email alerts, affiliations.

  • Special Collections
  • Review Symposia
  • Info for Authors
  • Info for Librarians
  • Editorial Team
  • Emerging Scholars Forum
  • Open Access
  • Online ISSN 2575-7350
  • Copyright © 2024 The Regents of the University of California. All Rights Reserved.

Stay Informed

Disciplines.

  • Ancient World
  • Anthropology
  • Communication
  • Criminology & Criminal Justice
  • Film & Media Studies
  • Food & Wine
  • Browse All Disciplines
  • Browse All Courses
  • Book Authors
  • Booksellers
  • Instructions
  • Journal Authors
  • Journal Editors
  • Media & Journalists
  • Planned Giving

About UC Press

  • Press Releases
  • Seasonal Catalog
  • Acquisitions Editors
  • Customer Service
  • Exam/Desk Requests
  • Media Inquiries
  • Print-Disability
  • Rights & Permissions
  • UC Press Foundation
  • © Copyright 2024 by the Regents of the University of California. All rights reserved. Privacy policy    Accessibility

This Feature Is Available To Subscribers Only

Sign In or Create an Account

Stanford University

Search form

  • Find Stories
  • For Journalists

We all have the power to shape the future of technology, say Stanford scholars

Three Stanford professors want people to press control-alt-delete on how we think about our relationship to Big Tech. In a new book, they seek to empower all of us to create a technological future that supports human flourishing and democratic values.

Technology is such a ubiquitous part of modern life that it can often feel like a force of nature, a powerful tidal wave that users and consumers can ride but have little power to guide its direction. It doesn’t have to be that way.

Go to the web site to view the video.

Stanford scholars say that technological innovation is not an inevitable force that exercises power over us. Instead, in a new book, they seek to empower all of us to create a technological future that supports human flourishing and democratic values.

Rather than just accept the idea that the effects of technology are beyond our control, we must recognize the powerful role it plays in our everyday lives and decide what we want to do about it, said Rob Reich , Mehran Sahami and Jeremy Weinstein in their new book System Error: Where Big Tech Went Wrong and How We Can Reboot (Harper Collins, 2021). The book integrates each of the scholars’ unique perspectives – Reich as a philosopher, Sahami as a technologist and Weinstein as a policy expert and social scientist – to show how we can collectively shape a technological future that supports human flourishing and democratic values.

Reich, Sahami and Weinstein first came together in 2018 to teach the popular computer science class, CS 181: Computers, Ethics and Public Policy . Their class morphed into the course CS182: Ethics, Public Policy and Technological Change , which puts students into the role of the engineer, policymaker and philosopher to better understand the inescapable ethical dimensions of new technologies and their impact on society.

Now, building on the class materials and their experiences teaching the content both to Stanford students and professional engineers, the authors show readers how we can work together to address the negative impacts and unintended consequences of technology on our lives and in society.

“We need to change the very operating system of how technology products get developed, distributed and used by millions and even billions of people,” said Reich, a professor of political science in the School of Humanities and Sciences and faculty director of the McCoy Family Center for Ethics in Society . “The way we do that is to activate the agency not merely of builders of technology but of users and citizens as well.”

How technology amplifies values

Without a doubt, there are many advantages of having technology in our lives. But instead of blindly celebrating or critiquing it, the scholars urge a debate about the unintended consequences and harmful impacts that can unfold from these powerful new tools and platforms.

One way to examine technology’s effects is to explore how values become embedded in our devices. Every day, engineers and the tech companies they work for make decisions, often motivated by a desire for optimization and efficiency, about the products they develop. Their decisions often come with trade-offs – prioritizing one objective at the cost of another – that might not reflect other worthy objectives.

For instance, users are often drawn to sensational headlines, even if that content, known as “ clickbait ,” is not useful information or even truthful. Some platforms have used click-through rates as a metric to prioritize what content their users see. But in doing so, they are making a trade-off that values the click rather than the content of that click. As a result, this may lead to a less-informed society, the scholars warn.

essay on future technology

“In recognizing that those are choices, it then opens up for us a sense that those are choices that could be made differently,” said Weinstein, a professor of political science in the School of Humanities & Sciences, who previously served as deputy to the U.S. ambassador to the United Nations and on the National Security Council Staff at the White House during the Obama administration.

Another example of embedded values in technology highlighted in the book is user privacy.

Legislation adopted in the 1990s, as the U.S. government sought to speed progress toward the information superhighway, enabled what the scholars call “a Wild West in Silicon Valley” that opened the door for companies to monetize the personal data they collect from users. With little regulation, digital platforms have been able to gather information about their users in a variety of ways, from what people read to whom they interact with to where they go. These are all details about people’s lives that they may consider incredibly personal, even confidential.

When data is gathered at scale, the potential loss of privacy gets dramatically amplified; it is no longer just an individual issue, but becomes a larger, social one as well, said Sahami, the James and Ellenor Chesebrough Professor in the School of Engineering and a former research scientist at Google.

“I might want to share some personal information with my friends, but if that information now becomes accessible by a large fraction of the planet who likewise have their information shared, it means that a large fraction of the planet doesn’t have privacy anymore,” said Sahami. “Thinking through these impacts early on, not when we get to a billion people, is one of the things that engineers need to understand when they build these technologies.”

Even though people can change some of their privacy settings to be more restrictive, these features can sometimes be difficult to find on the platforms. In other instances, users may not even be aware of the privacy they are giving away when they agree to a company’s terms of service or privacy policy, which often take the form of lengthy agreements filled with legalese.

“When you are going to have privacy settings in an application, it shouldn’t be buried five screens down where they are hard to find and hard to understand,” Sahami said. “It should be as a high-level, readily available process that says, ‘What is the privacy you care about? Let me explain it to you in a way that makes sense.’ ”

Others may decide to use more private and secure methods for communication, like encrypted messaging platforms such as WhatsApp or Signal. On these channels, only the sender and receiver can see what they share with one another – but issues can surface here as well.

By guaranteeing absolute privacy, the possibility for people working in intelligence to scan those messages for planned terrorist attacks, child sex trafficking or other incitements of violence is foreclosed. In this case, Reich said, engineers are prioritizing individual privacy over personal safety and national security, since the use of encryption can not only ensure private communication but can also allow for the undetected organization of criminal or terrorist activity.

“The balance that is struck in the technology company between trying to guarantee privacy while also trying to guarantee personal safety or national security is something that technologists are making on their own but the rest of us also have a stake in,” Reich said.

Others may decide to take further control over their privacy and refuse to use some digital platforms altogether. For example, there are increasing calls from tech critics that users should “delete Facebook.” But in today’s world where technology is so much a part of daily life, avoiding social apps and other digital platforms is not a realistic solution. It would be like addressing the hazards of automotive safety by asking people to just stop driving, the scholars said.

“As the pandemic most powerfully reminded us, you can’t go off the grid,” Weinstein said. “Our society is now hardwired to rely on new technologies, whether it’s the phone that you carry around, the computer that you use to produce your work, or the Zoom chats that are your way of interacting with your colleagues. Withdrawal from technology really isn’t an option for most people in the 21st century.”

Moreover, stepping back is not enough to remove oneself from Big Tech. For example, while a person may not have a presence on social media, they can still be affected by it, Sahami pointed out. “Just because you don’t use social media doesn’t mean that you are not still getting the downstream impacts of the misinformation that everyone else is getting,” he said.

Rebooting through regulatory changes

The scholars also urge a new approach to regulation. Just as there are rules of the road to make driving safer, new policies are needed to mitigate the harmful effects of technology.

While the European Union has passed the comprehensive General Data Protection Regulation (known as the GDPR) that requires organizations to safeguard their users’ data, there is no U.S. equivalent. States are trying to cobble their own legislation – like California’s recent Consumer Privacy Act – but it is not enough, the authors contend.

It’s up to all of us to make these changes, said Weinstein. Just as companies are complicit in some of the negative outcomes that have arisen, so is our government for permitting companies to behave as they do without a regulatory response.

“In saying that our democracy is complicit, it’s not only a critique of the politicians. It’s also a critique of all of us as citizens in not recognizing the power that we have as individuals, as voters, as active participants in society,” Weinstein said. “All of us have a stake in those outcomes and we have to harness democracy to make those decisions together.”

System Error: Where Big Tech Went Wrong and How We Can Reboot is available Sept. 7, 2021.

Logo

Essay on Future Technology

Students are often asked to write an essay on Future Technology in their schools and colleges. And if you’re also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic.

Let’s take a look…

100 Words Essay on Future Technology

What is future technology.

Future technology means the new inventions and ideas that will change how we live. Think of robots, smart cars, and computers that can learn. These things are not common now, but in the future, they might be everywhere, helping us in ways we can’t imagine yet.

Robots in Daily Life

Imagine having a robot friend who can do chores, help with homework, or even play games with you. In the future, robots could be a big part of our daily lives, making things easier and more fun for us.

Cars that drive themselves are being tested today. In the future, these smart cars could take us places safely while we read, talk, or relax. No need to worry about traffic or parking – the car does it all.

Health and Medicine

Doctors might use tiny machines to fix our bodies without big surgeries. We could wear gadgets that tell us if we are sick before we even feel bad. This means we can stay healthy without much trouble.

Learning with Technology

Schools of the future could use virtual reality to show us space or history up close. Homework could be more like a game, making learning fun and easy to remember. Technology will make education exciting.

Protecting the Environment

Future technology will also help our planet. We’ll have better ways to make clean energy and recycle. This means we can use less from nature and keep our world beautiful and safe for animals and people.

250 Words Essay on Future Technology

Future technology is all about the new tools and machines that people are creating to make life easier and more fun. Think of robots that can clean your room, glasses that let you play games in the air, or cars that drive themselves!

Robots and AI

Robots are getting smarter and can do more things by themselves. They can learn from what they do and get better over time. This is because of something called AI, which stands for artificial intelligence. It’s like teaching a computer to think and learn like a human.

Traveling in the Future

In the future, we might travel in new ways. There could be cars that fly or super-fast trains that go under the ocean. Going to far places could take much less time than it does now.

Doctors will use future technology to keep us healthier. Tiny machines might go inside our bodies to fix problems without needing big operations. Also, we might have special watches that tell us if we are getting sick and need to see a doctor.

Learning and Fun

Schools will be very different with future technology. You might wear special glasses to see things that aren’t really there, like dinosaurs or planets, to help you learn. Games will be more real and exciting, too, because you might be able to step inside them!

Future technology is exciting and will change how we live, travel, stay healthy, and have fun. It’s like a big adventure that we are all going to be a part of!

500 Words Essay on Future Technology

Future technology means the new inventions and discoveries that will change how we live and work. Imagine things that seem like magic today becoming real tomorrow. These technologies are being made by smart people who are thinking about ways to make life better and easier.

Smart Gadgets Everywhere

In the future, our homes, schools, and parks will be filled with smart gadgets. These are like the phones and computers we have now, but they can do much more. They can talk to each other and make decisions to help us. For example, a smart fridge could tell us when we need to buy milk, or a smart car could drive us to school safely without needing a driver.

Robots as Helpers

Robots are going to be a big part of our future. They won’t just be in movies; they’ll be helping us with our daily tasks. There might be robots that clean our houses, help us learn in school, or even play games with us. They will be designed to be friendly and helpful, making sure we have more time to enjoy fun activities.

Going Green with Technology

The future of technology isn’t just about cool gadgets; it’s also about taking care of our planet. New technologies will help us use less energy and make less pollution. We’ll have cars that run on electricity or even sunlight, and factories that make things without harming the air or water. This means we can look forward to a cleaner, greener world.

Medicine Gets Smarter

Doctors and scientists are working on new ways to keep us healthy. In the future, tiny machines called nanobots could go inside our bodies to fix problems and fight diseases. We might even have special glasses that can show us information about our health. This will help us stay healthy and get better faster if we do get sick.

Schools in the future will use technology to teach in exciting ways. Instead of just reading books, students might use virtual reality to explore ancient cities or outer space. Learning could become a fun adventure, with games and simulations helping students understand difficult concepts.

Challenges and Solutions

With all these new technologies, there will be challenges too. We’ll need to make sure that everyone can use these technologies, not just the rich. We also have to keep our information safe from hackers. But the smart people creating these technologies are also thinking about these problems and working on ways to fix them.

Future technology is like a window into a world where life is more fun, work is easier, and the earth is healthier. It’s an exciting time to be alive because we will see many of these amazing changes. It’s important for us to learn about these technologies and think about how we can use them to make a better future for everyone.

That’s it! I hope the essay helped you.

If you’re looking for more, here are essays on other interesting topics:

  • Essay on Future Of Space Exploration
  • Essay on Future Of Our Planet
  • Essay on Expression On The Internet

Apart from these, you can look at all the essays by clicking here .

Happy studying!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Feb 13, 2023

200-500 Word Example Essays about Technology

Got an essay assignment about technology check out these examples to inspire you.

Technology is a rapidly evolving field that has completely changed the way we live, work, and interact with one another. Technology has profoundly impacted our daily lives, from how we communicate with friends and family to how we access information and complete tasks. As a result, it's no surprise that technology is a popular topic for students writing essays.

But writing a technology essay can be challenging, especially for those needing more time or help with writer's block. This is where Jenni.ai comes in. Jenni.ai is an innovative AI tool explicitly designed for students who need help writing essays. With Jenni.ai, students can quickly and easily generate essays on various topics, including technology.

This blog post aims to provide readers with various example essays on technology, all generated by Jenni.ai. These essays will be a valuable resource for students looking for inspiration or guidance as they work on their essays. By reading through these example essays, students can better understand how technology can be approached and discussed in an essay.

Moreover, by signing up for a free trial with Jenni.ai, students can take advantage of this innovative tool and receive even more support as they work on their essays. Jenni.ai is designed to help students write essays faster and more efficiently, so they can focus on what truly matters – learning and growing as a student. Whether you're a student who is struggling with writer's block or simply looking for a convenient way to generate essays on a wide range of topics, Jenni.ai is the perfect solution.

The Impact of Technology on Society and Culture

Introduction:.

Technology has become an integral part of our daily lives and has dramatically impacted how we interact, communicate, and carry out various activities. Technological advancements have brought positive and negative changes to society and culture. In this article, we will explore the impact of technology on society and culture and how it has influenced different aspects of our lives.

Positive impact on communication:

Technology has dramatically improved communication and made it easier for people to connect from anywhere in the world. Social media platforms, instant messaging, and video conferencing have brought people closer, bridging geographical distances and cultural differences. This has made it easier for people to share information, exchange ideas, and collaborate on projects.

Positive impact on education:

Students and instructors now have access to a multitude of knowledge and resources because of the effect of technology on education . Students may now study at their speed and from any location thanks to online learning platforms, educational applications, and digital textbooks.

Negative impact on critical thinking and creativity:

Technological advancements have resulted in a reduction in critical thinking and creativity. With so much information at our fingertips, individuals have become more passive in their learning, relying on the internet for solutions rather than logic and inventiveness. As a result, independent thinking and problem-solving abilities have declined.

Positive impact on entertainment:

Technology has transformed how we access and consume entertainment. People may now access a wide range of entertainment alternatives from the comfort of their own homes thanks to streaming services, gaming platforms, and online content makers. The entertainment business has entered a new age of creativity and invention as a result of this.

Negative impact on attention span:

However, the continual bombardment of information and technological stimulation has also reduced attention span and the capacity to focus. People are easily distracted and need help focusing on a single activity for a long time. This has hampered productivity and the ability to accomplish duties.

The Ethics of Artificial Intelligence And Machine Learning

The development of artificial intelligence (AI) and machine learning (ML) technologies has been one of the most significant technological developments of the past several decades. These cutting-edge technologies have the potential to alter several sectors of society, including commerce, industry, healthcare, and entertainment. 

As with any new and quickly advancing technology, AI and ML ethics must be carefully studied. The usage of these technologies presents significant concerns around privacy, accountability, and command. As the use of AI and ML grows more ubiquitous, we must assess their possible influence on society and investigate the ethical issues that must be taken into account as these technologies continue to develop.

What are Artificial Intelligence and Machine Learning?

Artificial Intelligence is the simulation of human intelligence in machines designed to think and act like humans. Machine learning is a subfield of AI that enables computers to learn from data and improve their performance over time without being explicitly programmed.

The impact of AI and ML on Society

The use of AI and ML in various industries, such as healthcare, finance, and retail, has brought many benefits. For example, AI-powered medical diagnosis systems can identify diseases faster and more accurately than human doctors. However, there are also concerns about job displacement and the potential for AI to perpetuate societal biases.

The Ethical Considerations of AI and ML

A. Bias in AI algorithms

One of the critical ethical concerns about AI and ML is the potential for algorithms to perpetuate existing biases. This can occur if the data used to train these algorithms reflects the preferences of the people who created it. As a result, AI systems can perpetuate these biases and discriminate against certain groups of people.

B. Responsibility for AI-generated decisions

Another ethical concern is the responsibility for decisions made by AI systems. For example, who is responsible for the damage if a self-driving car causes an accident? The manufacturer of the vehicle, the software developer, or the AI algorithm itself?

C. The potential for misuse of AI and ML

AI and ML can also be used for malicious purposes, such as cyberattacks and misinformation. The need for more regulation and oversight in developing and using these technologies makes it difficult to prevent misuse.

The developments in AI and ML have given numerous benefits to humanity, but they also present significant ethical concerns that must be addressed. We must assess the repercussions of new technologies on society, implement methods to limit the associated dangers, and guarantee that they are utilized for the greater good. As AI and ML continue to play an ever-increasing role in our daily lives, we must engage in an open and frank discussion regarding their ethics.

The Future of Work And Automation

Rapid technological breakthroughs in recent years have brought about considerable changes in our way of life and work. Concerns regarding the influence of artificial intelligence and machine learning on the future of work and employment have increased alongside the development of these technologies. This article will examine the possible advantages and disadvantages of automation and its influence on the labor market, employees, and the economy.

The Advantages of Automation

Automation in the workplace offers various benefits, including higher efficiency and production, fewer mistakes, and enhanced precision. Automated processes may accomplish repetitive jobs quickly and precisely, allowing employees to concentrate on more complex and creative activities. Additionally, automation may save organizations money since it removes the need to pay for labor and minimizes the danger of workplace accidents.

The Potential Disadvantages of Automation

However, automation has significant disadvantages, including job loss and income stagnation. As robots and computers replace human labor in particular industries, there is a danger that many workers may lose their jobs, resulting in higher unemployment and more significant economic disparity. Moreover, if automation is not adequately regulated and managed, it might lead to stagnant wages and a deterioration in employees' standard of life.

The Future of Work and Automation

Despite these difficulties, automation will likely influence how labor is done. As a result, firms, employees, and governments must take early measures to solve possible issues and reap the rewards of automation. This might entail funding worker retraining programs, enhancing education and skill development, and implementing regulations that support equality and justice at work.

IV. The Need for Ethical Considerations

We must consider the ethical ramifications of automation and its effects on society as technology develops. The impact on employees and their rights, possible hazards to privacy and security, and the duty of corporations and governments to ensure that automation is utilized responsibly and ethically are all factors to be taken into account.

Conclusion:

To summarise, the future of employment and automation will most certainly be defined by a complex interaction of technological advances, economic trends, and cultural ideals. All stakeholders must work together to handle the problems and possibilities presented by automation and ensure that technology is employed to benefit society as a whole.

The Role of Technology in Education

Introduction.

Nearly every part of our lives has been transformed by technology, and education is no different. Today's students have greater access to knowledge, opportunities, and resources than ever before, and technology is becoming a more significant part of their educational experience. Technology is transforming how we think about education and creating new opportunities for learners of all ages, from online courses and virtual classrooms to instructional applications and augmented reality.

Technology's Benefits for Education

The capacity to tailor learning is one of technology's most significant benefits in education. Students may customize their education to meet their unique needs and interests since they can access online information and tools. 

For instance, people can enroll in online classes on topics they are interested in, get tailored feedback on their work, and engage in virtual discussions with peers and subject matter experts worldwide. As a result, pupils are better able to acquire and develop the abilities and information necessary for success.

Challenges and Concerns

Despite the numerous advantages of technology in education, there are also obstacles and considerations to consider. One issue is the growing reliance on technology and the possibility that pupils would become overly dependent on it. This might result in a lack of critical thinking and problem-solving abilities, as students may become passive learners who only follow instructions and rely on technology to complete their assignments.

Another obstacle is the digital divide between those who have access to technology and those who do not. This division can exacerbate the achievement gap between pupils and produce uneven educational and professional growth chances. To reduce these consequences, all students must have access to the technology and resources necessary for success.

In conclusion, technology is rapidly becoming an integral part of the classroom experience and has the potential to alter the way we learn radically. 

Technology can help students flourish and realize their full potential by giving them access to individualized instruction, tools, and opportunities. While the benefits of technology in the classroom are undeniable, it's crucial to be mindful of the risks and take precautions to guarantee that all kids have access to the tools they need to thrive.

The Influence of Technology On Personal Relationships And Communication 

Technological advancements have profoundly altered how individuals connect and exchange information. It has changed the world in many ways in only a few decades. Because of the rise of the internet and various social media sites, maintaining relationships with people from all walks of life is now simpler than ever. 

However, concerns about how these developments may affect interpersonal connections and dialogue are inevitable in an era of rapid technological growth. In this piece, we'll discuss how the prevalence of digital media has altered our interpersonal connections and the language we use to express ourselves.

Direct Effect on Direct Interaction:

The disruption of face-to-face communication is a particularly stark example of how technology has impacted human connections. The quality of interpersonal connections has suffered due to people's growing preference for digital over human communication. Technology has been demonstrated to reduce the usage of nonverbal signs such as facial expressions, tone of voice, and other indicators of emotional investment in the connection.

Positive Impact on Long-Distance Relationships:

Yet there are positives to be found as well. Long-distance relationships have also benefited from technological advancements. The development of technologies such as video conferencing, instant messaging, and social media has made it possible for individuals to keep in touch with distant loved ones. It has become simpler for individuals to stay in touch and feel connected despite geographical distance.

The Effects of Social Media on Personal Connections:

The widespread use of social media has had far-reaching consequences, especially on the quality of interpersonal interactions. Social media has positive and harmful effects on relationships since it allows people to keep in touch and share life's milestones.

Unfortunately, social media has made it all too easy to compare oneself to others, which may lead to emotions of jealousy and a general decline in confidence. Furthermore, social media might cause people to have inflated expectations of themselves and their relationships.

A Personal Perspective on the Intersection of Technology and Romance

Technological advancements have also altered physical touch and closeness. Virtual reality and other technologies have allowed people to feel physical contact and familiarity in a digital setting. This might be a promising breakthrough, but it has some potential downsides. 

Experts are concerned that people's growing dependence on technology for intimacy may lead to less time spent communicating face-to-face and less emphasis on physical contact, both of which are important for maintaining good relationships.

In conclusion, technological advancements have significantly affected the quality of interpersonal connections and the exchange of information. Even though technology has made it simpler to maintain personal relationships, it has chilled interpersonal interactions between people. 

Keeping tabs on how technology is changing our lives and making adjustments as necessary is essential as we move forward. Boundaries and prioritizing in-person conversation and physical touch in close relationships may help reduce the harm it causes.

The Security and Privacy Implications of Increased Technology Use and Data Collection

The fast development of technology over the past few decades has made its way into every aspect of our life. Technology has improved many facets of our life, from communication to commerce. However, significant privacy and security problems have emerged due to the broad adoption of technology. In this essay, we'll look at how the widespread use of technological solutions and the subsequent explosion in collected data affects our right to privacy and security.

Data Mining and Privacy Concerns

Risk of Cyber Attacks and Data Loss

The Widespread Use of Encryption and Other Safety Mechanisms

The Privacy and Security of the Future in a Globalized Information Age

Obtaining and Using Individual Information

The acquisition and use of private information is a significant cause for privacy alarm in the digital age. Data about their customers' online habits, interests, and personal information is a valuable commodity for many internet firms. Besides tailored advertising, this information may be used for other, less desirable things like identity theft or cyber assaults.

Moreover, many individuals need to be made aware of what data is being gathered from them or how it is being utilized because of the lack of transparency around gathering personal information. Privacy and data security have become increasingly contentious as a result.

Data breaches and other forms of cyber-attack pose a severe risk.

The risk of cyber assaults and data breaches is another big issue of worry. More people are using more devices, which means more opportunities for cybercriminals to steal private information like credit card numbers and other identifying data. This may cause monetary damages and harm one's reputation or identity.

Many high-profile data breaches have occurred in recent years, exposing the personal information of millions of individuals and raising serious concerns about the safety of this information. Companies and governments have responded to this problem by adopting new security methods like encryption and multi-factor authentication.

Many businesses now use encryption and other security measures to protect themselves from cybercriminals and data thieves. Encryption keeps sensitive information hidden by encoding it so that only those possessing the corresponding key can decipher it. This prevents private information like bank account numbers or social security numbers from falling into the wrong hands.

Firewalls, virus scanners, and two-factor authentication are all additional security precautions that may be used with encryption. While these safeguards do much to stave against cyber assaults, they are not entirely impregnable, and data breaches are still possible.

The Future of Privacy and Security in a Technologically Advanced World

There's little doubt that concerns about privacy and security will persist even as technology improves. There must be strict safeguards to secure people's private information as more and more of it is transferred and kept digitally. To achieve this goal, it may be necessary to implement novel technologies and heightened levels of protection and to revise the rules and regulations regulating the collection and storage of private information.

Individuals and businesses are understandably concerned about the security and privacy consequences of widespread technological use and data collecting. There are numerous obstacles to overcome in a society where technology plays an increasingly important role, from acquiring and using personal data to the risk of cyber-attacks and data breaches. Companies and governments must keep spending money on security measures and working to educate people about the significance of privacy and security if personal data is to remain safe.

In conclusion, technology has profoundly impacted virtually every aspect of our lives, including society and culture, ethics, work, education, personal relationships, and security and privacy. The rise of artificial intelligence and machine learning has presented new ethical considerations, while automation is transforming the future of work. 

In education, technology has revolutionized the way we learn and access information. At the same time, our dependence on technology has brought new challenges in terms of personal relationships, communication, security, and privacy.

Jenni.ai is an AI tool that can help students write essays easily and quickly. Whether you're looking, for example, for essays on any of these topics or are seeking assistance in writing your essay, Jenni.ai offers a convenient solution. Sign up for a free trial today and experience the benefits of AI-powered writing assistance for yourself.

Try Jenni for free today

Create your first piece of content with Jenni today and never look back

Tech at the edge: Trends reshaping the future of IT and business

It is easy to become numb to the onslaught of new technologies hitting the market, each with its own promise of changing (more often “revolutionizing”) the business world. But our analysis of some of the more meaningful tech trends lays out a convincing case that something significant is happening. 1 Michael Chui, Roger Roberts, and Lareina Yee, “ McKinsey Technology Trends Outlook 2022 ,” McKinsey, August 24, 2022.

These tech trends are generally accelerating the primary characteristics that have defined the digital era: granularity, speed, and scale. But it’s the magnitude of these changes—in computing power, bandwidth, and analytical sophistication—that is opening the door to new innovations, businesses, and business models.

The emergence of cloud and 5G , for example, exponentially increases compute power and network speeds that can enable greater innovation. Developments in the metaverse of augmented and virtual reality open the doors to virtual R&D via digital twins , for example, and immersive learning. Advances in AI, machine learning, and software 2.0 (machine-written code) bring a range of new services and products, from autonomous vehicles to connected homes, well within reach.

Much ink has been spilled on identifying tech trends, but less attention has been paid to the implications of those changes. To help understand how management will need to adapt in the face of these technology trends in the next three to five years, we spoke to business leaders and leading thinkers on the topic. We weren’t looking for prognostications; we wanted to explore realistic scenarios, their implications, and what senior executives might do to get ready.

The discussions pinpointed some broad, interrelated shifts, such as how technology’s radically increasing power is exerting a centrifugal force on the organization, pushing innovation to expert networks at the edges of the company; how the pace and proliferation of these innovations calls for radical new approaches to continuous learning built around skills deployed at points of need; how these democratizing forces mean that IT can no longer act as a centralized controller of technology deployment and operations but instead needs to become a master enabler and influencer; and how these new technologies are creating more data about, and touchpoints with, customers, which is reshaping the boundaries of trust and requiring a much broader understanding of a company’s security responsibilities.

1. Innovation at the edge

Key tech trends.

We estimate that 70 percent of companies will employ hybrid or multicloud management technologies, tools, and processes . 2 “ The top trends in tech ,” McKinsey, June 15, 2021. At the same time, 5G will deliver network speeds that are about ten times faster than current speeds on 4G LTE networks, 3 Irina Ivanova, “What consumers need to know about this week’s AT&T–Verizon 5G rollout,” CBS News, January 20, 2022. with expectations of speeds that are up to 100 times faster with 40 times faster latency. 4 “5G speed: 5G vs. 4G performance compared,” Tom’s Guide, June 1, 2021. By 2024, more than 50 percent of user touches will be augmented by AI-driven speech, written word, or computer-vision algorithms , 5 “ The top trends in tech ,” June 15, 2021. while global data creation is projected to grow to more than 180 zettabytes by 2025, up from 64.2 zettabytes in 2020. 6 “Amount of data created, consumed, and stored 2010–2025,” Statista Research Department, May 23, 2022. The low-code development platform market‘s compound annual growth rate (CAGR) is projected at about 30 percent through 2030. 7 “Global $187 billion low-code development platform market to 2030,” GlobeNewswire, November 10, 2020.

Shift: Innovation develops around personal networks of experts at the porous edge of the organization and is supported by capabilities that scale the benefits across the business.

These technologies promise access to virtually unlimited compute power and massive data sets, as well as a huge leap in bandwidth at low cost, making it cheaper and easier to test, launch, and scale innovations quickly. The resulting acceleration in innovation will mean that companies can expect more disruptions from more sources. Centralized strategic and innovation functions cannot hope to keep pace on their own. Companies will need to be much more involved in networks outside their organizations to spot, invest in, and even acquire promising opportunities.

Corporate venture-capital (VC) funds with centralized teams have looked to find and fund innovation, but their track record has been spotty, often because the teams lack the requisite skills and are simply too far removed from the constantly evolving needs of individual business units. Instead, companies will need to figure out how to tap their front lines, particularly business domain experts and technologists, to enable them to act, in effect, as the business’s VC arm. That’s because the people who are writing code and building solutions are often well plugged into strong external networks in their fields and have the expertise to evaluate new developments. One pharma company, for example, taps its own expert researchers in various fields, such as gene expression, who know well the people outside the company who are leaders in the field.

While companies will need to create incentives and opportunities for engineers to build up and engage with their networks, the key focus must be on empowering teams so they can spend their allocated budget as they see fit—for example, experimenting and failing without penalty (within boundaries) and deciding on technologies to meet their goals (within prescribed guidelines).

The IT organization of the future can play an important role in building up a scaling capability to make that innovation work for the business, something that has traditionally been a challenge. Individual developers or small teams working fast don’t tend to naturally think about how to scale an application. That issue is likely to be exacerbated as nontechnical users working in pockets across organizations use low-code/no-code (LC/NC) applications to design and build programs with point-and-click or pull-down-menu interfaces.

One pharma company has taken this idea to heart by giving local business units the flexibility to run with a nonstandard idea when it has proven to be better than what the company is already doing. In return for that flexibility, the business unit must commit to helping the rest of the organization use the new idea, and IT builds it into the company’s standards.

In considering how this scaling capability might work, companies could, for example, assign advanced developers to “productize” applications by refactoring code so they can scale. IT leadership can provide tools and platforms, reusable-code libraries that are easily accessible, and flexible, standards-based architecture so that innovations can be scaled across the business more easily.

Questions for leadership

  • What incentives will best encourage engineers and domain experts to develop, maintain, and tap into their networks?
  • What processes are in place for tracking and managing VC activity at the edge?
  • What capabilities do you need to identify innovation opportunities and “industrialize” the best ones so they can be shared across the organization?

For more on how to empower workers at the edge, see “ Tech companies innovate at the edge. Legacy companies can too ,” in Harvard Business Review.

Would you like to learn more about McKinsey Digital ?

2. a perpetual-learning culture.

Advances in AI, machine learning, robotics, and other technologies have increased the pace of change tenfold . By 2025, we estimate that 50 billion devices will be connected to the Industrial Internet of Things (IIoT), while 70 percent of manufacturers are expected to be using digital twins regularly (by 2022). 8 “ The top trends in tech ,” June 15, 2021. Some 70 percent of new applications will use LC/NC technologies by 2025, up from less than 25 percent in 2020. 9 “Gartner says cloud will be the centerpiece of new digital experiences,” Gartner, November 10, 2021. The global metaverse revenue opportunity could approach $800 billion in 2024, up from about $500 billion in 2020. 10 Bloomberg Intelligence, “Metaverse may be $800 billion market, next tech platform,” Bloomberg, December 1, 2021. This proliferation of technological innovations means we can expect to experience more progress in the next decade than in the past 100 years combined, according to entrepreneur and futurist Peter Diamandis. 11 Peter Diamandis and Steven Kotler, The Future Is Faster than You Think: How Converging Technologies Are Transforming Business, Industries, and Our Lives , New York: Simon & Schuster, 2020.

Shift: Tech literacy becomes core to every role, requiring learning to be continuous and built at the level of individual skills that are deployed at the point of need.

With the pace and proliferation of technologies pushing innovation to the edge of the organization, businesses need to be ready to incorporate the most promising options from across the front lines. This will create huge opportunities, but only for those companies that develop true tech intelligence through a perpetual-learning culture. The cornerstone of this effort includes training all levels of personnel, from “citizen developers” working with easy-to-use LC/NC tools or in entirely new environments such as the metaverse, to full-stack developers and engineers, who will need to continually evolve their skills to keep up with changing technologies. We’re already seeing situations where poorly trained employees use LC/NC to churn out suboptimal products.

While there will always be a need for more formalized paths for foundational learning, we anticipate an acceleration in the shift from teaching curricula periodically to continuous learning that can deliver varying technical skills across the entire organization. In practice, that will mean orienting employee development around delivering skills. This requires breaking down a capability into its smallest sets of composite skills. One large tech company, for example, created 146,000 skills data points for the 1,200 technical skills it was assessing.

The key point is that these skills “snippets”—such as a block of code or a video of a specific negotiating tactic—need to be integrated into the workflow so that they’re delivered when needed. This might be called a “LearnOps” approach, where learning is built into the operations. This integration mentality is established at Netflix, where data scientists partner directly with product managers, engineering teams, and other business units to design, execute, and learn from experiments. 12 Netflix Technology Blog , “Experimentation is a major focus of data science across Netflix,” blog entry by Martin Tingley et al., January 11, 2022.

As important as being able to deploy learning is building a learning culture by making continuous learning expected and easy to do. The way top engineers learn can be instructive. This is a community that is highly aware of the need to keep their skills up to date. They have ingrained habits of sharing code, and they gravitate to projects where they can learn. One advantage of using open source, for example, is the built-in community that constantly updates and reviews code. In the same spirit, we’re seeing companies budget extra time to allow people to try new tools or technologies when they’re building a product. Other companies are budgeting for “learning buffers” to allow for setbacks in product development that teams can learn from. 13 “ The big boost: How incumbents successfully scale their new businesses ,” McKinsey, August 27, 2020.

Netflix, which makes broad, open, and deliberate information sharing a core value, built the Netflix experimentation platform as an internal product that acts as a repository of solutions for future teams to reuse. It has a product manager and innovation road map, with the goal of making experimentation a simple and integrated part of the product life cycle. 14 Netflix Technology Blog , “Netflix: A culture of learning,” blog entry by Martin Tingley et al., January 25, 2022.

To support this kind of continuous learning and experimentation, companies will need to accept mistakes. The art will be in limiting the impact of potentially costly mistakes, such as the loss or misuse of customer data. IT will need to architect protocols, incentives, and systems to encourage good behaviors and reduce bad ones. Many companies are beginning to adopt practices such as automated testing to keep mistakes from happening in the first place ; creating spaces where mistakes won’t affect other applications or systems, such as isolation zones in cloud environments ; and building in resiliency protocols.

  • Do you have a list of the most important skills your business needs?
  • What is the minimum level of learning needed for advanced users of analytics and manipulators of data?
  • How do you track what people are learning and whether that learning is effective and translating into better performance?

3. IT as a service

It is estimated that the global cloud microservices platform market will generate $4.2 billion in revenue by 2028, up from $952 million in 2020. 15 Cloud microservice platform market report , Research Dive, November 2021. GitHub has more than 200 million code repositories and expects 100 million software developers by 2025. 16 Paul Krill, “GitHub expects more than 100 million software developers by 2025,” InfoWorld, December 3, 2020. Nearly 90 percent of developers already use APIs. 17 Christina Voskoglou, “APIs have taken over software development,” Nordic APIs, October 27, 2020. Software 2.0 creates new ways of writing software and reduces complexity. Software sourced by companies from cloud-service platforms, open repositories, and software as a service (SaaS) is growing at a CAGR of 27.5 percent from 2021 to 2028. 18 Software as a service (SaaS) market, 2021–2028 , Fortune Business Insights, January 2022.

Shift: IT becomes the enabler of product innovation by serving small, interoperable blocks of code.

When innovation is pushed to the edge and a perpetual-learning culture permeates an organization, the role of IT shifts dramatically. IT can’t support this dynamic environment by sticking to its traditional role as a controlling entity managing technology at the center. The premium will now be on IT’s ability to enable innovation, requiring a shift in its traditional role as protector of big tech assets to a purveyor of small blocks of code. The gold standard of IT effectiveness will be its ability to help people stitch together snippets of code into a useful product.

We are already seeing what that might look like. Employees at G&J Pepsi-Cola Bottlers with little to no experience at software development created an app that examines images of a store shelf to identify the number and type of bottles on it, then automatically restocks it based on historic trends. 19 Adam Burden, “Low code/no code could reshape business innovation,” VentureBeat, February 5, 2022. One pharmaceutical company grew its low-code platform base from eight users to 1,400 in just one year . Business users outside of IT are now building applications with thousands of monthly sessions. 20 Shivam Srivastava, Kartik Trehan, Dilip Wagle, and Jane Wang, “ Developer Velocity: How software excellence fuels business performance ,” McKinsey, April 20, 2020. Companies that empower “citizen developers” score 33 percent higher on innovation compared with bottom-quartile companies that don’t provide that level of support, according to a McKinsey survey. 21 Shivam Srivastava, Kartik Trehan, Dilip Wagle, and Jane Wang, “ Developer Velocity: How software excellence fuels business performance ,” McKinsey, April 20, 2020.

These developments point toward much more of a “buffet” approach to technology, where IT builds useful blocks of reusable code, sometimes assembles them into specific products, and makes them available through a user-friendly cataloging system for the business to use to create the products it needs. IT provides guiderails, such as API standards and directives on the environments in which the code might be most useful; protects the most sensitive information, such as customer data and financial records; and tracks their adoption. This tracking capability will become particularly crucial as bots, AI, algorithms, and APIs proliferate. Transparency isn’t sufficient. IT will need to make sense of all the activity through advanced tech performance and management capabilities and the development of new roles, such as data diagnosticians and bot managers.

This IT-as-a-service approach puts the product at the center of the operating model, requiring a commitment to organizing IT around product management . Some companies have been moving in this direction. But reaching the scale needed to support fast-paced and more diffuse innovation will require a deeper commitment to product owners, working with leaders in the business side of the house, to run teams with real P&L responsibility. Many organizations, from traditional enterprises to digital natives, have found that putting in place product leaders who set overall product and portfolio strategy, drive execution, and empower product owners to drive innovation aligned with business outcomes and P&L metrics can increase the return on the funding that flows to technology delivery and quicken the pace of innovation.

  • Do you have a vision for how the role of the IT organization will change to enable democratization of technology?
  • How will you elevate the role of the technology product manager, and do you have a road map for developing that role?
  • What systems will you need to put in place to manage and track the use, reuse, and performance of code?

A profile of a woman with her hand up to her chin in a thoughtful pose.  A galaxy bursting with light is superimposed over profile, centered over her mind.

McKinsey Technology Trends Outlook 2022

4. expanded trust boundaries.

It was estimated that almost 100 percent of biometrics-capable devices (such as smartphones) will be using biometrics for transactions by 2022. 22 “Usage of biometric technology in transactions with mobile devices worldwide 2016–2022”, Statista Research Department, June 13, 2022. The effectiveness of these technologies has advanced dramatically, with the best facial-identification algorithms having improved 50 times since 2014. 23 William Crumpler, “How accurate are facial recognition systems—and why does it matter?” Center for Strategies and International Studies (CSIS), April 14, 2020. These developments are contributing to profound unease in the relationship between technology and consumers of technology. The Pearson Institute and the Associated Press-NORC Center for Public Affairs Research shows that “about two-thirds of Americans are very or extremely concerned about hacking that involves their personal information, financial institutions, government agencies, or certain utilities.” 24 Chuck Brooks, “More alarming cybersecurity stats for 2021!” Forbes , October 24, 2021.

Shift: Trust expands to cover a broader array of stakeholder concerns and become an enterprise-wide responsibility.

These enormous shifts in technology power and capacity will create many more touchpoints with customers and an exponential wave of new data about customers. Even as IT’s role within the organization becomes more that of an enabler, the expanding digital landscape means that IT must broaden its trust capabilities around security, privacy, and cyber . To date, consumers have largely embraced the convenience that technology provides, from ordering a product online to adjusting the temperature in their homes remotely to monitoring their health through personal devices. In exchange for these conveniences, consumers have traditionally been willing to provide some personal information. But a steady undercurrent of privacy and trust concerns around these ever-more-sophisticated conveniences is raising the stakes on the broad topic of trust. Consumers are becoming more aware of their identity rights, making decisions based on values, and demanding the ethical use of data and responsible AI .

The most obvious concern is around cybersecurity , an ongoing issue that is already on the board-level agenda. But tech-driven trust issues are much broader and are driven by three characteristics. One is the sheer quantity of personal data, such as biometrics, that companies and governments collect, creating concerns about privacy and data misuse. The second is that personal security issues are becoming more pervasive in the physical world. Wired homes, connected cars, and the Internet of Medical Things, for example, are all vectors for attack that can affect people’s well-being. Third is the issue that advanced analytics seem too complex to be understood and controlled, leading to deep unease about people’s relationship with technology. This issue is driving the development of “ explainable AI ” and the movement to debias AI.

Adding to the complexity is the frequent need to manage and secure trust across an entire ecosystem of technologies. Take the wired home, for example. The proliferation of devices—think virtual assistants, security, communications, power management, and entertainment systems—means that a large group of providers will need to agree on standards for managing, in effect, an interconnected security net in the home.

These developments require a complex extension of the boundaries of trust. The significant advantages that many incumbents enjoy—existing relationships with customers and proprietary data—are at risk unless businesses rethink how they manage and nurture that trust. Companies need to consider putting identity and trust management at the core of their customer experience and business processes. That can happen effectively only when companies assign a dedicated leader with real power and board-level prioritization with enterprise-wide responsibility across the entire trust and security landscape. Given the tech underpinnings of this trust environment, IT will need to play a key role in monitoring and remediating, such as assessing the impact of new legislation on AI algorithms, tracking incidents, identifying the number and nature of high-risk data-processing activities and automated decisions, and—perhaps most important—monitoring consumer trust levels and the issues that affect them.

  • Who is responsible for the enterprise-wide trust and risk landscape?
  • How have you integrated your efforts around customer trust with overall cybersecurity processes?
  • What privacy, trust, and security processes are in place to manage the entire life cycle of your data?

It is inevitable that the pace of technological change will continue to accelerate. The successful technology leader of the future will not simply need to adopt new technologies but to build capabilities to absorb continuous change and make it a source of competitive advantage.

Steve Van Kuiken is a senior partner in McKinsey’s New Jersey office.

Explore a career with us

Related articles.

Five interconnected scenes of the enterprise metaverse, each showing people in different work environments.

Digital twins: From one twin to the enterprise metaverse

" "

Why digital trust truly matters

Hands holding electronic device

IoT value set to accelerate through 2030: Where and how to capture it

  • Subscribe to BBC Science Focus Magazine
  • Previous Issues
  • Future tech
  • Everyday science
  • Planet Earth
  • Newsletters

Future technology: 22 ideas about to change our world

The future is coming, and sooner than you think. These emerging technologies will change the way we live, how we look after our bodies and help us avert a climate disaster.

Technology moves at a relentlessly fast pace in the modern world. It can sometimes feel like every single day there are new technologies and innovations that will change our futures forever. But in a steady stream of announcements about new massive futuristic technological upgrades and cool gadgets , it is easy to lose track of the amazing ways the world is progressing.

For instance, there are artificial intelligence programs writing poems from scratch and making images from nothing more than a worded prompt. There are 3D-printed eyes, new holograms, lab-grown food and brain-reading robots.

All of this just scratches the surface of what is out there, so we've curated a guide to the most exciting future technologies, listing them all below.

Necrobotics

© Preston Innovation Laboratory/Rice University

Sometimes new future technologies can offer amazing development, with the possibility of changing the future... while also being incredibly creepy.

This is one way to describe the idea of necrobotics which, as the name suggests, involves turning dead things into robots . While this sounds like a plot to a creepy horror film, this is a technology being explored at Rice University.

A team of researchers turned a dead spider into a robot-like gripper, given the ability to pick up other objects. To achieve this, they take a spider and inject it with air. This works because spiders use hydraulics to force their version of blood (haemolymph) into their limbs, making them extend.

Right now this concept is in its infant stages, but it could mean a future where dead animals are used to further science... it all feels very Frankeinstein-like!

Sand batteries

© Edwin Remsberg

Not every technology bettering our future has to be complicated, some are simple, yet extremely effective.

One of these kind of technologies has come from some Finnish engineers who have found a way to turn sand into a giant battery.

These engineers piled 100 tons of sand into a 4 x 7 metre steel container. All of this sand was then heated up using wind and solar energy.

This heat can then be distributed by a local energy company to provide warmth to buildings in nearby areas. Energy can be stored this way for long periods of time.

All of this occurs through a concept known as resistive heating. This is where a material is heated by the friction of electrical currents.

Sand and any other non-super conductor are warmed by the electricity passing through them generated heat than can be used for energy.

E-skin could help us hug long-distance friends

While modern technology allows us to communicate verbally and visually almost anywhere in the world, there is currently no reliable method of sharing the sense of touch across long distances. Now, a wireless soft e-skin developed by engineers at the City University of Hong Kong could one day make giving and receiving hugs over the internet a reality.

The e-skin is studded with flexible actuators that sense the wearer’s movements and convert them into electrical signals. These signals can then be sent to another e-skin system via Bluetooth, where the actuators convert them into mechanical vibrations that mimic the initial movements. The system could be used to allow friends and family to ‘feel’ each other over long distances, the researchers say.

Researchers at the City University of Hong Kong (CityU) recently invented what they're calling a 'novel, wireless, skin-interfaced olfactory feedback system '. In other words, VR attachments that let you smell stuff.

The smells are generated by the devices heating and melting odorous wax that releases adjustable concentrations of stink. There are two versions of this tech. One is 'mounted' on your upper lip for easy access to your nostrils, and the other is a facemask-like design with hundreds of different odour combinations.

The university said their new tech has a broad range of applications that includes online teaching and 4D movie watching. That's right, in the future, you'll not only be able to watch your favourite movies in VR, you'll also be able to smell them. Now that's immersion!

Catapulting satellites into space

© Spinlaunch

Who would have thought the best way to get satellites into space was with a makeshift catapult! Okay, it is a lot smarter than a catapult but the technology exists in a similar way.

SpinLaunch is a prototype system for getting satellites or other payloads up into space. It does this by using kinetic energy instead of the usual technique of using chemical fuel found in traditional rockets. This technology could be capable of spinning payloads at 8,000km/h and 10,000G, then launching them skyward through a large launch tube.

Of course, small rocket engines will still be required for payloads to reach orbit, but SpinLaunch has claimed this system cuts down on the fuel and infrastructure by an impressive 70 per cent.

The company has signed an agreement with NASA and is now testing the system.

Xenotransplantation

© University of Maryland School of Medicine

Inserting the heart of a pig into a human feels like a bad idea, and yet, this is one of the latest medical procedures that is seeing rapid progress.

Xenotransplantation - the procedure of transplanting, implementing or infusing a human with cells, tissues or organs from an animal source - has the potential to revolutionise surgery.

One of the most common procedures performed so far is the insertion of a pig's heart into a human. This has now successfully happened twice. However, one of the patients was only alive for a few months, and the second is still being observed.

In these surgeries, the heart cannot be instantly put into a human, gene-editing needs to take place first. Certain genes need to be knocked out of the heart and human genes need to be added, mainly around immune acceptance and genes to prevent excessive growth of heart tissue.

Right now, these surgeries are risky and there is no certainty around success. However, in the near future, we could see xenotransplants happening on a regular basis, providing hearts or tissues from animals to humans in need of it.

AI image-generation

© OpenAI

As artificial intelligence continues to perform jobs just as well as humans, there is a new industry to add to the list – the world of art. Researchers at the company OpenAI have created a software that is able to create images from just worded prompts.

Type in ‘a dog wearing a cowboy hat singing in the rain’ and you’ll get a host of completely original images that fit that description. You can even choose what style of art your request will come back in. However, the technology isn't perfected and still has issues, like when we gave it poor prompts on designing cartoon characters .

This technology known as Dall-E is now its second iteration and the team behind it plans to continue developing it further. In the future, we could see this technology used to create art exhibitions, for companies to get quick, original illustrations or of course, to revolutionise the way we create memes on the internet.

There is also technology known as Midjourney , a AI image generator that creates gothic masterpieces with a simple text prompt. We are truly living in the future.

Brain reading robots

Robot arm being used with brain signals

No longer a science fiction trope, the use of brain reading technology has improved hugely in recent years. One of the most interesting and practical uses we’ve seen tested so far comes from researchers at the Swiss Federal Institute of Technology Lausanne (EPFL).

Thanks to a machine-learning algorithm, a robot arm and a brain-computer interface, these researchers have managed to create a means for tetraplegic patients (those who can’t move their upper or lower body) to interact with the world .

In tests, the robot arm would perform simple tasks like moving around an obstacle. The algorithm would then interprets signals from the brain using an EEG cap and automatically determine when the arm had made a move that the brain considered incorrect, for example moving too close to the obstacle or going too fast.

Over time the algorithm can then adjust to the individuals preferences and brain signals. In the future this could lead to wheelchairs controlled by the brain or assistance machines for tetraplegic patients.

3D printed bones

© Ossiform

3D printing is an industry promising everything from cheap house building through to affordable rugged armour, but one of the most interesting uses of the technology is the building of 3D printed bones.

The company Ossiform specialises in medical 3D printing, creating patient-specific replacements of different bones from tricalcium phosphate – a material with similar properties to human bones.

Using these 3D printed bones is surprisingly easy. A hospital can perform an MRI which is then sent to Ossiform who create a 3D model of the patient-specific implant that is needed. The surgeon accepts the design and then once it is printed, it can be used in surgery.

What is special about these 3D printed bones is that because of the use of tricalcium phosphate, the body will remodel the implants into vascularised bone. That means they will enable the full restoration of function that the bone it is replacing had. To achieve the best integration possible, the implants are of a porous structure and feature large pores and canals for cells to attach to and reform bone.

3D-printed food that takes the cake

3D printed cake

What’s for dinner tonight? Soon it could be a piece of 3D-printed, laser-cooked cake. Researchers at Columbia University School of Engineering have created a device that can construct a seven-ingredient cheesecake using food inks and then cook it to perfection using a laser.

Their creation contained banana, jam, peanut butter and Nutella. Tasty. The technology could one day be used to create personalised meals for everyone from professional athletes to patients with dietary conditions, or could be useful for those who are simply short on time.

Natural language Processing

Natural language processing is the big new trend taking over the internet. While you've most likely seen it in use in Google's autocomplete software, or when your smartphone offers a prediction of what you are trying to type, it is capable of much smarter things.

OpenAI is a company that is at the forefront of artificial intelligence, originally taking the internet by storm with its image generator Dall-E 2 . Now it is back, making a chatbot known as ChatGPT , creating poems from scratch, explaining complex theories with ease and having full-length conversations like it is a human.

ChatGPT is powered by a software known as GPT-3, trained on billions of examples of texts, then taught how to form coherent and logical sentences.

ChatGPT is an example of AI and its future. It has proven its ability to make completely new websites from scratch, write entire length books and even make jokes... although, it clearly still hasn't mastered humour yet.

Boom-free supersonic flight

Nasa's X-59 aircraft

NASA’s X-59 ‘quiet’ supersonic aircraft is set to take to the skies for its first test flight at the Armstrong Flight Research Center later this year. The plane is currently being assembled in a hangar at Lockheed Martin’s Skunk Works facility in Palmdale, California.

Its fuselage, wings and tail have been specially designed to control the airflow around the plane as it flies, with the ultimate aim of preventing a loud sonic boom from disturbing people on the ground below when it breaks the sound barrier. If the initial test goes to plan, the space agency aims to carry out further test flights over inhabited areas to gauge the public’s response to aircraft in 2024.

Digital "twins" that track your health

Q Bio dashboard

In Star Trek , where many of our ideas of future technology germinated, human beings can walk into the medbay and have their entire body digitally scanned for signs of illness and injury. Doing that in real life would, say the makers of Q Bio, improve health outcomes and alleviate the load on doctors at the same time.

The US company has built a scanner that will measure hundreds of biomarkers in around an hour, from hormone levels to the fat building up in your liver to the markers of inflammation or any number of cancers. It intends to use this data to produce a 3D digital avatar of a patient's body – known as a digital twin – that can be tracked over time and updated with each new scan.

Q Bio CEO Jeff Kaditz hopes it will lead to a new era of preventative, personalised medicine in which the vast amounts of data collected not only help doctors prioritise which patients need to be seen most urgently, but also to develop more sophisticated ways of diagnosing illness. Read an interview with him here.

Direct air capture

Through the process of photosynthesis, trees have remained one of the best ways to reduce the levels of CO2 in the atmosphere. However, new technology could perform the same role as trees, absorbing carbon dioxide at greater levels while also taking up less land.

This technology is known as Direct Air Capture (DAC). It involves taking carbon dioxide from the air and either storing the CO 2 in deep geological caves under ground, or using it in combination with hydrogen to produce synthetic fuels.

While this technology has great potential, it has a lot of complications right now. There are now direct air capture facilities up and running, but the current models require a huge amount of energy to run. If the energy levels can be reduced in the future, DAC could prove to be one of the best technological advances for the future of the environment.

Green funerals

Sustainable living is becoming a priority for individuals squaring up to the realities of the climate crisis, but what about eco-friendly dying? Death tends to be a carbon-heavy process, one last stamp of our ecological footprint. The average cremation reportedly releases 400kg of carbon dioxide into the atmosphere, for example. So what's a greener way to go?

In Washington State in the US, you could be composted instead. Bodies are laid in chambers with bark, soil, straw and other compounds that promote natural decomposition. Within 30 days, your body is reduced to soil that can be returned to a garden or woodland. Recompose, the company behind the process, claims it uses an eighth of the carbon dioxide of a cremation.

An alternative technology uses fungi. In 2019, the late actor Luke Perry was buried in a bespoke "mushroom suit" designed by a start-up called Coeio. The company claims its suit, made with mushrooms and other microorganisms that aid decomposition and neutralise toxins that are realised when a body usually decays.

Most alternative ways of disposing of our bodies after death are not based on new technology; they're just waiting for societal acceptance to catch up. Another example is alkaline hydrolysis, which involves breaking the body down into its chemical components over a six-hour process in a pressurised chamber. It's legal in a number of US states and uses fewer emissions compared with more traditional methods.

Energy storing bricks

Scientists have found a way to store energy in the red bricks that are used to build houses.

Researchers led by Washington University in St Louis, in Missouri, US, have developed a method that can turn the cheap and widely available building material into “smart bricks” that can store energy like a battery.

Although the research is still in the proof-of-concept stage, the scientists claim that walls made of these bricks “could store a substantial amount of energy” and can “be recharged hundreds of thousands of times within an hour”.

Red brick device developed by chemists at Washington University in St. Louis lights up a green light-emitting diode (D'Arcy laboratory: Washington University in St. Louis)

The researchers developed a method to convert red bricks into a type of energy storage device called a supercapacitor.

This involved putting a conducting coating, known as Pedot, onto brick samples, which then seeped through the fired bricks’ porous structure, converting them into “energy storing electrodes”.

Iron oxide, which is the red pigment in the bricks, helped with the process, the researchers said.

Self-healing 'living concrete'

Bacteria growing and mineralising in the sand-hydrogel structure © Colorado University Boulder/PA

Scientists have developed what they call living concrete by using sand, gel and bacteria.

Researchers said this building material has structural load-bearing function, is capable of self-healing and is more environmentally friendly than concrete – which is the second most-consumed material on Earth after water.

The team from the University of Colorado Boulder believe their work paves the way for future building structures that could “heal their own cracks, suck up dangerous toxins from the air or even glow on command”.

Fuel from thin air

Chemical engineers from Switzerland’s École Polytechnique Fédérale de Lausanne have created a prototype device that can produce hydrogen fuel from the water found in air.

Inspired by leaves, the device is made from semiconducting materials that harvest energy from sunlight and use it to produce hydrogen gas from water molecules found in the atmosphere. The gas could then, potentially, be converted for use as liquid fuels.

Internet for everyone

A miniture satellite

We can’t seem to live without the internet (how else would you read sciencefocus.com?), but still only around half the world’s population is connected. There are many reasons for this, including economic and social reasons, but for some the internet just isn’t accessible because they have no connection.

Google is slowly trying to solve the problem using helium balloons to beam the internet to inaccessible areas, while Facebook has abandoned plans to do the same using drones, which means companies like Hiber are stealing a march. They have taken a different approach by launching their own network of shoebox-sized microsatellites into low Earth orbit, which wake up a modem plugged into your computer or device when it flies over and delivers your data.

Their satellites orbit the Earth 16 times a day and are already being used by organisations like The British Antarctic Survey to provide internet access to very extreme of our planet.

Read more about future technology:

  • Dude, where’s my flying car? 11 future technologies we’re still waiting for
  • Exciting new green technology of the future
  • Future tech: The most exciting innovations from CES 2022

3D-printed eye tissue

Researchers at the National Eye Institute in the US have produced retinal tissue using stem cells and 3D bioprinting. The new technique may help scientists model the human eye to better understand – and develop treatments for – diseases and conditions that affect people’s vision, such as age-related macular degeneration (AMD).

The researchers created tissue found in the outer blood-retina barrier, which is the area AMD is known to start in, by printing stem cells taken from patients into a gel and allowing them to grow over several weeks. They are currently using the tissue to study the progression of AMD and are experimenting with adding additional cell types to model more of the human eye.

Car batteries that charge in 10 minutes

This picture shows a fast charging battery invented by Chao-Yang Wang Group ©Chao-Yang Wang Group

Fast-charging of electric vehicles is seen as key to their take-up, so motorists can stop at a service station and fully charge their car in the time it takes to get a coffee and use the toilet – taking no longer than a conventional break.

But rapid charging of lithium-ion batteries can degrade the batteries, researchers at Penn State University in the US say.This is because the flow of lithium particles known as ions from oneelectrode to another to charge the unit and hold the energy ready for use does not happen smoothly with rapid charging at lower temperatures.

However, they have now found that if the batteries could heat to 60°C for just 10 minutes and then rapidly cool again to ambient temperatures, lithium spikes would not form and heat damage would be avoided.

The battery design they have come up with is self-heating, using a thin nickel foil which creates an electrical circuit that heats in less than 30 seconds to warm the inside of the battery.The rapid cooling that would be needed after the battery is charged would be done using the cooling system designed into the car.

Their study, published in the journal Joule , showed they could fully charge an electrical vehicle in 10 minutes.

Artificial neurons on silicon chips

artificial neurons in its protective casing on a fingertip

Scientists have found a way to attach artificial neurons onto silicon chips, mimicking the neurons in our nervous system and copying their electrical properties.

“Until now neurons have been like black boxes, but we have managed to open the black box and peer inside,” said Professor Alain Nogaret , from the University of Bath, who led the project.

“Our work is paradigm-changing because it provides a robust method to reproduce the electrical properties of real neurons in minute detail.

“But it’s wider than that, because our neurons only need 140 nanowatts of power. That’s a billionth the power requirement of a microprocessor, which other attempts to make synthetic neurons have used.

Researchers hope their work could be used in medical implants to treat conditions such as heart failure and Alzheimer’s as it requires so little power.

  • 11 future technologies we’re still waiting for
  • CES 2023: The 10 gadgets that will change the future
  • Disco fridges and tech that wants you to pee on it: The 7 weirdest gadgets announced at CES 2023

Share this article

essay on future technology

  • Terms & Conditions
  • Privacy policy
  • Cookies policy
  • Code of conduct
  • Magazine subscriptions
  • Manage preferences

Home — Essay Samples — Information Science and Technology — Digital Era — Futurism: Technology In The Future

test_template

Futurism: Technology in The Future

  • Categories: Digital Era Information Technology Innovation

About this sample

close

Words: 1366 |

Published: Feb 8, 2022

Words: 1366 | Pages: 3 | 7 min read

Future technology (essay)

Works cited.

  • Certification Partners. (n.d.). Certified in Convergent Network Technologies (CCNT).
  • EcoWorth. (n.d.). Clean drinking water for all. Retrieved from https://www.ecoworth-tech.com/
  • Gurnani, R. (2019). The AI revolution is here: Are businesses ready? Forbes. Retrieved from https://www.forbes.com/sites/forbestechcouncil/2019/08/28/the-ai-revolution-is-here-are-businesses-ready/?sh=79d19dd7798d
  • Makeblock. (n.d.). Educational robots. Retrieved from https://www.makeblock.com/
  • OpenAI. (n.d.). Language models.
  • Telecommunications Industry Association (TIA). (n.d.).
  • WateROAM. (n.d.). Clean water for everyone.
  • World Health Organization. (n.d.). Water, sanitation, and hygiene.

Image of Alex Wood

Cite this Essay

Let us write you an essay from scratch

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Get high-quality help

author

Dr Jacklynne

Verified writer

  • Expert in: Information Science and Technology Science

writer

+ 120 experts online

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

Related Essays

2 pages / 972 words

2 pages / 683 words

1 pages / 653 words

2 pages / 985 words

Remember! This is just a sample.

You can get your custom paper by one of our expert writers.

121 writers online

Futurism: Technology in The Future Essay

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled

Related Essays on Digital Era

The question of whether students should have limited access to the internet is a complex and timely one, given the pervasive role of technology in education. While the internet offers a wealth of information and resources, [...]

Clarke, Roger. 'Dataveillance by Governments: The Technique of Computer Matching.' In Information Systems and Dataveillance, edited by Roger Clarke and Richard Wright, 129-142. Sydney, Australia: Australian Computer Society, [...]

The provision of free internet access is a topic of growing importance in our increasingly digital society. The internet has transformed the way we communicate, access information, and engage with the world. However, access to [...]

In the digital age, we find ourselves immersed in a sea of information and entertainment, bombarded by a constant stream of images, videos, and messages. Neil Postman's prophetic book, "Amusing Ourselves to Death," published in [...]

It was a time when personal computer was a set consisting of monitor and single choice of technology, but it wasn’t good like using only one thing on technology. And after that was a revolutionary change of different computing [...]

Technology revolves around us; our lives have improved considerably with technology but, relying on them too much can have harmful effects. A research has shown that people can be addicted to these devices very much like [...]

Related Topics

By clicking “Send”, you agree to our Terms of service and Privacy statement . We will occasionally send you account related emails.

Where do you want us to send this sample?

By clicking “Continue”, you agree to our terms of service and privacy policy.

Be careful. This essay is not unique

This essay was donated by a student and is likely to have been used and submitted before

Download this Sample

Free samples may contain mistakes and not unique parts

Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.

Please check your inbox.

We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!

Get Your Personalized Essay in 3 Hours or Less!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

essay on future technology

Study Like a Boss

Future Technology Essay

People often think that future is all about flying cars, robots and space travelling. Maybe it will be like that, who knows, but at least until this day the changes havent been remarkable. Companies are all the time investing more money on research and development. This indicates that companies and government are interested to achieve and find new technological inventions that would change the markets. All ready one of the computer related inventions, Internet, has changed the spreading of information globally.

E-companies are stocks are rising in the stock markets like rockets. This is a great example how future technology will change the economics around the world as it affects greatly our everyday life . Internet is worldwide network of connected computers . This network enables you to communicate with the rest of the world in different ways. (1) Has been approximated that the total amount of information globally doubles every 18 months, which indicates that internet, as an important part of media nowadays, affects everyone of us though we might not have a possibility to be on-line.

The approximated number of people who are on-line daily is more than 18%. As you can imagine and as you probably may have seen, there are a lot companies. You can find the big ones like Coca-Cola, Disney, Xerox, IBM. Apart from supplying (product) information and amusement, they mostly use the web for name and product branding (recognition). There’s a completely new industry with lots and lots of Net based companies like the search engines , banner exchanges, hosting services, (Net) marketers and software enterprises.

And there are others, which have expanded their originally offline business field to the Net ( Credit Card companies, Researchers, Marketers, Yellow Pages). Small and medium usiness companies selling to consumers. A great part of them use the Net to expand their offline business, others try to make a living on it. And some of them see the necessity to transfer from one to the other in the future. Business-to-business companies are also found on the Net. In short, all kind of enterprises have taken the step to the online world.

Internet is not only a way to spend time surfing, but it is also an very good way to make money by transforming products, services and markets. It is an easy way to reach people when thinking advertising and it is an easy way to people to reach the nformation wanted, but the competition between companies in the virtual reality of Internet, is as hard as in the real world. Governments space program also influences and will influence economics of the future. U. S. overnments NASA ( North American Space Association) has done great job exploring space and research new opportunities in outer space and other planets.

The question is how the new future technology will change the direction of economics and by that our living on Earth or maybe on some other planet The world population is growing fast. The room to live on earth might be a problem in future, and Earth might ot be able to feed the upcoming population. This is one of the reasons why we have to explore the space for new opportunities. The problem is the money. Are taxpayers willing to pay?

After the resent failure of sending a $266 million Pathfinder to Mars, taxpayers started doubt is the space program worth it, but mistakes that are caused by understaffed and overworked space teams are not unique to interplanetary missions , like NASAs Pathfinder mission. A single broken cord can turn to a $400 million cost, but who said it is not risky. Is this $450 billion plan going to give taxpayers their moneys back? No, because the new technology will help their children and grandchildren to live their everyday lives in polluted and overpopulated environment caused by the past generations.

In recent years , cost-reduction efforts throughout Americas space industry have had profound effects on the workforce. Older and more experienced workers were the predominant target of cost-conscious layoffs or of contract swapping prior to retirement-benefits vesting. But even the younger workers, supposedly their eventual replacement, were victimized by the cuts. (3)This is what the taxpayers should understand; their selfish use of oney on researching new technology might be a threat for the future generations.

If we were to bring back a rock in 2005 that clearly shows evidence of ancient life on the planet or fi we were to find evidence of life on Mars, that would be great impetus for a human program. A manned mission must have a compelling scientific or economic rationale, said Alan Ladwig, NASAs associate administrator. (4) The greatest effect of future technology has is on the productivity. Technological change, or innovation, is a contributor to the growth of productivity. From the development of plows to the nvention of computers, history shows many example of technologies that have increased productivity .

New products, new methods of production, new ways of organizing production(Fords assembly line) or marketing products and new methods of communication can each demonstrate how productivity increases. And when productivity increases faster than the population, standard of living increases. This makes peoples everyday life easier and the quality of living is higher. One example how technological change has changed our living past 10 years have been reusable products and materials. Recycling and reusable aterials have made our quality of living better by minimizing the production of trash.

Also the technological changes in agriculture have increased productivity of our basic need products. One of the most dramatic high-tech developments arriving at the millenium is the obsolescence of money. The advent of the Internet and other new media marketplaces, like interactive TV, demands a new kind of currency that is secure, virtual, global, and digital. The death of hard cash, and its rebirth as digital currency, will transform all transactions in society and touch industry worldwide.

The emerging digital market and the new interactive consumer challenge our assumptions about how to conduct business. 30 million people today with a spending power of over$100 billion, represents a serious market no business can afford to ignore. This new consumer is virtual, global, interactive and multimedia-driven. (5) The digital money has taken over. The simple cash has changed into numbers on the computers. People pay their bills from home by using computers and Internet, people pay their grocery with a plastic credit card and people go shopping from home and they dont ven have to move, just use the keyboard. A huge problem in the future will be the energy.

Already we are noticing that our sources of energy will be empty someday. A team of scientists and engineers have predicted that the technological trends that will shape the world in next 50 years will be high powered energy packages. On the energy front are highpower energy packages such as microgenerators of electricity that will make electronic products and appliances highly mobile; environmentally clean, decentralized power sources; batteries linked to solar power; and small generators fueled by natural as.

As the population of the Earth keeps increasing we have to figure out how to feed all the people who are going to live here. Globally thinking we are already suffering of the lack of the food. All over the world hunger is a big problem . Clean water will be a problem too if technological changes wont help us. Designer foods, genetically engineered foods that are environmentally friendly and highly nutritious, will fill the stores. Even cotton and wool will be genetically engineered . Water worldwide will be safe and inexpensive because echnology will provide advanced filtering, processing, and delivery.

Desalination and water extraction from air are also possible. In the years ahead new technologies will become much more personalized, and they will closely affect almost every aspect of our lives. (7) This was an very optimistic prediction of the future, but until then we have to keep people worldwide alive without the new innovations. The money countries are using to military should go to the people who suffer hunger and to the research of cures of globally spread diseases like HIV and cancer.

No one knows whats going to happen in the future, but the new future technology can at least give us a direction. Our actions have a great effect how we and the upcoming generations are going to live on Earth. Putting money now on research and development gives a better economic base that we can rely on. The biggestchange to our economic will have the increased productivity. By increased productivity our standard of living will be higher and our everyday life will be easier. May everyone of us be there to witness the flying cars and talking robots, so that we can be proud of our achievements.

To export a reference to this article please select a referencing style below:

Related posts:

  • Technology Changing the Workforce
  • Technology: The Way Of The Future?
  • Technology and the Future of Work
  • A Ticking Timebomba Question Of Technology
  • The technology of today
  • The technology of Superstitions
  • Technology Development In The Last Two Decades
  • Fragmentation, Dependence On Technology
  • Books and Technology: Is the Future of Printed Books in Jeopardy
  • The Role of Technology in Management Leadership
  • Brave New World – Technology
  • Organizational Technology Essay
  • Frankenstein: Technology Essay

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Talk to our experts

1800-120-456-456

  • Technology Essay

ffImage

Essay on Technology

The word "technology" and its uses have immensely changed since the 20th century, and with time, it has continued to evolve ever since. We are living in a world driven by technology. The advancement of technology has played an important role in the development of human civilization, along with cultural changes. Technology provides innovative ways of doing work through various smart and innovative means. 

Electronic appliances, gadgets, faster modes of communication, and transport have added to the comfort factor in our lives. It has helped in improving the productivity of individuals and different business enterprises. Technology has brought a revolution in many operational fields. It has undoubtedly made a very important contribution to the progress that mankind has made over the years.

The Advancement of Technology:

Technology has reduced the effort and time and increased the efficiency of the production requirements in every field. It has made our lives easy, comfortable, healthy, and enjoyable. It has brought a revolution in transport and communication. The advancement of technology, along with science, has helped us to become self-reliant in all spheres of life. With the innovation of a particular technology, it becomes part of society and integral to human lives after a point in time.

Technology is Our Part of Life:

Technology has changed our day-to-day lives. Technology has brought the world closer and better connected. Those days have passed when only the rich could afford such luxuries. Because of the rise of globalisation and liberalisation, all luxuries are now within the reach of the average person. Today, an average middle-class family can afford a mobile phone, a television, a washing machine, a refrigerator, a computer, the Internet, etc. At the touch of a switch, a man can witness any event that is happening in far-off places.  

Benefits of Technology in All Fields: 

We cannot escape technology; it has improved the quality of life and brought about revolutions in various fields of modern-day society, be it communication, transportation, education, healthcare, and many more. Let us learn about it.

Technology in Communication:

With the advent of technology in communication, which includes telephones, fax machines, cellular phones, the Internet, multimedia, and email, communication has become much faster and easier. It has transformed and influenced relationships in many ways. We no longer need to rely on sending physical letters and waiting for several days for a response. Technology has made communication so simple that you can connect with anyone from anywhere by calling them via mobile phone or messaging them using different messaging apps that are easy to download.

Innovation in communication technology has had an immense influence on social life. Human socialising has become easier by using social networking sites, dating, and even matrimonial services available on mobile applications and websites.

Today, the Internet is used for shopping, paying utility bills, credit card bills, admission fees, e-commerce, and online banking. In the world of marketing, many companies are marketing and selling their products and creating brands over the internet. 

In the field of travel, cities, towns, states, and countries are using the web to post detailed tourist and event information. Travellers across the globe can easily find information on tourism, sightseeing, places to stay, weather, maps, timings for events, transportation schedules, and buy tickets to various tourist spots and destinations.

Technology in the Office or Workplace:

Technology has increased efficiency and flexibility in the workspace. Technology has made it easy to work remotely, which has increased the productivity of the employees. External and internal communication has become faster through emails and apps. Automation has saved time, and there is also a reduction in redundancy in tasks. Robots are now being used to manufacture products that consistently deliver the same product without defect until the robot itself fails. Artificial Intelligence and Machine Learning technology are innovations that are being deployed across industries to reap benefits.

Technology has wiped out the manual way of storing files. Now files are stored in the cloud, which can be accessed at any time and from anywhere. With technology, companies can make quick decisions, act faster towards solutions, and remain adaptable. Technology has optimised the usage of resources and connected businesses worldwide. For example, if the customer is based in America, he can have the services delivered from India. They can communicate with each other in an instant. Every company uses business technology like virtual meeting tools, corporate social networks, tablets, and smart customer relationship management applications that accelerate the fast movement of data and information.

Technology in Education:

Technology is making the education industry improve over time. With technology, students and parents have a variety of learning tools at their fingertips. Teachers can coordinate with classrooms across the world and share their ideas and resources online. Students can get immediate access to an abundance of good information on the Internet. Teachers and students can access plenty of resources available on the web and utilise them for their project work, research, etc. Online learning has changed our perception of education. 

The COVID-19 pandemic brought a paradigm shift using technology where school-going kids continued their studies from home and schools facilitated imparting education by their teachers online from home. Students have learned and used 21st-century skills and tools, like virtual classrooms, AR (Augmented Reality), robots, etc. All these have increased communication and collaboration significantly. 

Technology in Banking:

Technology and banking are now inseparable. Technology has boosted digital transformation in how the banking industry works and has vastly improved banking services for their customers across the globe.

Technology has made banking operations very sophisticated and has reduced errors to almost nil, which were somewhat prevalent with manual human activities. Banks are adopting Artificial Intelligence (AI) to increase their efficiency and profits. With the emergence of Internet banking, self-service tools have replaced the traditional methods of banking. 

You can now access your money, handle transactions like paying bills, money transfers, and online purchases from merchants, and monitor your bank statements anytime and from anywhere in the world. Technology has made banking more secure and safe. You do not need to carry cash in your pocket or wallet; the payments can be made digitally using e-wallets. Mobile banking, banking apps, and cybersecurity are changing the face of the banking industry.

Manufacturing and Production Industry Automation:

At present, manufacturing industries are using all the latest technologies, ranging from big data analytics to artificial intelligence. Big data, ARVR (Augmented Reality and Virtual Reality), and IoT (Internet of Things) are the biggest manufacturing industry players. Automation has increased the level of productivity in various fields. It has reduced labour costs, increased efficiency, and reduced the cost of production.

For example, 3D printing is used to design and develop prototypes in the automobile industry. Repetitive work is being done easily with the help of robots without any waste of time. This has also reduced the cost of the products. 

Technology in the Healthcare Industry:

Technological advancements in the healthcare industry have not only improved our personal quality of life and longevity; they have also improved the lives of many medical professionals and students who are training to become medical experts. It has allowed much faster access to the medical records of each patient. 

The Internet has drastically transformed patients' and doctors’ relationships. Everyone can stay up to date on the latest medical discoveries, share treatment information, and offer one another support when dealing with medical issues. Modern technology has allowed us to contact doctors from the comfort of our homes. There are many sites and apps through which we can contact doctors and get medical help. 

Breakthrough innovations in surgery, artificial organs, brain implants, and networked sensors are examples of transformative developments in the healthcare industry. Hospitals use different tools and applications to perform their administrative tasks, using digital marketing to promote their services.

Technology in Agriculture:

Today, farmers work very differently than they would have decades ago. Data analytics and robotics have built a productive food system. Digital innovations are being used for plant breeding and harvesting equipment. Software and mobile devices are helping farmers harvest better. With various data and information available to farmers, they can make better-informed decisions, for example, tracking the amount of carbon stored in soil and helping with climate change.

Disadvantages of Technology:

People have become dependent on various gadgets and machines, resulting in a lack of physical activity and tempting people to lead an increasingly sedentary lifestyle. Even though technology has increased the productivity of individuals, organisations, and the nation, it has not increased the efficiency of machines. Machines cannot plan and think beyond the instructions that are fed into their system. Technology alone is not enough for progress and prosperity. Management is required, and management is a human act. Technology is largely dependent on human intervention. 

Computers and smartphones have led to an increase in social isolation. Young children are spending more time surfing the internet, playing games, and ignoring their real lives. Usage of technology is also resulting in job losses and distracting students from learning. Technology has been a reason for the production of weapons of destruction.

Dependency on technology is also increasing privacy concerns and cyber crimes, giving way to hackers.

arrow-right

FAQs on Technology Essay

1. What is technology?

Technology refers to innovative ways of doing work through various smart means. The advancement of technology has played an important role in the development of human civilization. It has helped in improving the productivity of individuals and businesses.

2. How has technology changed the face of banking?

Technology has made banking operations very sophisticated. With the emergence of Internet banking, self-service tools have replaced the traditional methods of banking. You can now access your money, handle transactions, and monitor your bank statements anytime and from anywhere in the world. Technology has made banking more secure and safe.

3. How has technology brought a revolution in the medical field?

Patients and doctors keep each other up to date on the most recent medical discoveries, share treatment information, and offer each other support when dealing with medical issues. It has allowed much faster access to the medical records of each patient. Modern technology has allowed us to contact doctors from the comfort of our homes. There are many websites and mobile apps through which we can contact doctors and get medical help.

4. Are we dependent on technology?

Yes, today, we are becoming increasingly dependent on technology. Computers, smartphones, and modern technology have helped humanity achieve success and progress. However, in hindsight, people need to continuously build a healthy lifestyle, sorting out personal problems that arise due to technological advancements in different aspects of human life.

  • Research Article
  • Open access
  • Published: 03 April 2022

Young people’s technological images of the future: implications for science and technology education

  • Tapio Rasa   ORCID: orcid.org/0000-0003-1315-5207 1 &
  • Antti Laherto   ORCID: orcid.org/0000-0001-5062-7571 2  

European Journal of Futures Research volume  10 , Article number:  4 ( 2022 ) Cite this article

12k Accesses

11 Citations

2 Altmetric

Metrics details

Modern technology has had and continues to have various impacts on societies and human life in general. While technology in some ways defines the ‘digital age’ of today, discourses of ‘technological progress’ may dominate discussions of tomorrow. Conceptions of technology and futures seem to be intertwined, as technology has been predicted by experts to lead us anywhere between utopia and extinction within as little as a century. Understandably, hopes and fears regarding technology may also dominate images of the future for our current generation of young people. Meanwhile, global trends in science and technology education have increasingly emphasised goals such as agency, anticipation and active citizenship. As one’s agency is connected to one’s future perceptions, young people’s views of technological change are highly relevant to these educational goals. However, students’ images of technological futures have not yet been used to inform the development of science and technology education. We set out to address this issue by investigating 58 secondary school students’ essays describing a typical day in 2035 or 2040, focusing on technological surroundings. Qualitative content analysis showed that students’ images of the future feature technological changes ranging from improved everyday devices to large-scale technologisation. A variety of effects was attributed to technology, relating to convenience, environment, employment, privacy, general societal progress and more. Technology was discussed both in positive and negative terms, as imagined technological futures were problematised to differing extents. We conclude by discussing the potential implications of the results for the development of future-oriented science and technology education.

Introduction

Modern technology has had and continues to have an impact on human life and civilisation that is hard to overstate. While technology in some ways defines the ‘digital age’ of today, discourses of ‘technological progress’ may dominate discussions of tomorrow. Meanwhile, predicting the ‘real future’ and figuring out how to do it well is a field in itself, and experts within and outside specific technological fields project a wide range of predictions for the coming decades: technology has been predicted to lead us anywhere between human extinction [ 10 ] and planet-sized self-aware computers [ 32 ] within the timescale of a century, with more cautious predictions forecasting a ‘third industrial revolution’ by 2030 ([ 16 ], p. 33). Understandably, hopes and fears regarding technology may also dominate the images of the future for our current generation of young people (see, e.g. [ 3 , 36 ]).

Obviously, the fact that developments in science and technology can have great desirable and undesirable societal implications is reflected in science education. This element is central to research currents such as STSE (science, technology, society, environment—see, e.g. [ 6 ]), SSI (socioscientific issues—e.g. [ 49 ]) and the various visions of scientific literacy (e.g. [ 45 ]). Interestingly, however, these socioscientific leanings rarely address explicitly the temporal aspects of socioscientific thinking. Thus, even if local and global SSIs ‘are all related to important aspects of our future’ ([ 44 ], pp. 2–3) and environmental education should address ‘Where do we want to go?—knowledge about alternatives and visions’ ([ 28 ], p. 331), the connection to futures thinking is often unaddressed when contextualising science as societally relevant. For example, the focus of STSE has been applying science and technology in social (more or less real-world) contexts, understanding the sociocultural embeddedness of such activity and exploring holistic, value-centred approaches to evaluating technoscientific issues [ 39 ]. These aspects of scientific literacy certainly have a ‘time component’, but seem to lack a more nuanced relationship with futures. This oversight seems to reflect a general pattern in education (see, e.g. [ 24 ]).

Understandably this ‘blind spot’ has been criticised in the futures field: according to Gidley & Hampson [ 22 ],

[s]chool education seems to be mostly stuck in an outdated industrial era worldview, unable to sufficiently address the significance and increasing rapidity of changes to humanity that are upon us. An integrated forward-looking view should, now more than ever, be of central importance in how we educate. Yet there is little sign that – unlike corporations – school systems are recognising the true value of futures studies.

While the field of science education has seen some recent initiatives for developing students’ futures thinking [ 29 , 34 , 35 , 36 , 38 , 41 ], much work remains to be done in communicating between the two fields. One approach to strengthening the foothold of futures thinking in schools may be identifying practical contexts for future-oriented education and joining with natural ‘allies’ within the range of educational fields [ 23 ], or formalising the concept of ‘futures literacy’ in education, eliciting students’ images of the future, and supporting their agency [ 24 ]. A further goal may be formalising relevant capacities to also enable evaluation of learning processes and outcomes, where constructions such as ‘futures consciousness’ [ 1 ] may prove useful.

Meanwhile, young people’s future thinking has been analysed in several studies (e.g. [ 3 , 15 , 43 ]), revealing both pessimistic and optimistic future outlooks. Such studies also support the notion that technology is strongly associated with imagined future worlds—a connection embodied in science fiction, which arguably could also be called ‘technology fiction’ or ‘future fiction’, demonstrating a strong association between the concepts. Within futures studies, this link may seem obvious (see, e.g. the role of technology in the ‘future archetypes’ of [ 27 ]), but it is underrepresented in science education literature; students’ hopes, fears and expectations regarding the future are rarely addressed.

There may also exist a discontinuity between the approaches taken when addressing socioscientific thinking within education, and those taken when studying young people’s perceptions of the future. Namely, societally oriented science education research and practice may tend to be based on individual issues [ 6 ] and case studies, while research on young people’s perceptions of technology may look at technology more generally [ 7 ].

Thus our goal in this paper is to explore the following question:

What kinds of technology and what desirable and undesirable impacts of technology are present in upper-secondary school students’ images of the future?

Specifically, we examine a set of Finnish upper secondary school students’ essays that describe imagined future worlds, set in years 2035 and 2040. We analyse what technologies are present in these essays, what aspects of the world and human life are affected by technology and whether these effects are framed as positive, negative or in neutral or conflicted terms.

Our goal is to diversify the meaning of the term ‘technology’ in (young) people’s futures thinking by providing an exploratory study on expectations, hopes and fears associated with specific envisioned technological developments or the processes of technologisation in general. Finally, we conclude by discussing potential implications of the results for the development of science and technology education, and the potential of using socioscientific and sociotechnical issues as a context for futures thinking in education.

Definitions and rationale

In this paper, we examine the role of technology in upper-secondary school students’ images of the future. By images of the future we mean ‘snapshots of the major features of interest at various points in time’ ([ 42 ], p. 14). Images of the future do not necessarily contain ‘an account of the flow of events leading to such future conditions’ (Ibid., p. 14); this temporal perspective would turn an image into a scenario (which are more commonly explored in futures studies and also in future-oriented science education—see, e.g. [ 35 ]).

Images of the future are widely addressed in futures studies. However, as they exist in people’s imaginations and are by nature complex, they are difficult to fully pin down. Perceptions about the future are an integral part of one’s worldview [ 36 ], and at least in the case of nonexpert futures thinking, they can be expected to lack some systematicity. Imagined futures are often inconsistent [ 30 ] and can perhaps be better understood as reflecting the present [ 9 ]. An example of inconsistency is the common finding of a disconnection between optimistic personal and gloomy global futures [ 15 , 43 , 47 ].

In the case of images of technological futures, one’s understanding of technology is naturally a component, but only one of many. To quote Zeidler et al. [ 49 ], p. 360, ‘knowledge and understanding of the interconnections among science, technology, society, and the environment (...) do not exist independently of students’ personal beliefs’. For our purposes, no attempt to separate these components is necessary: our goal is to give voice to the image that emerges from these influences.

Defining technology is something of an arduous task, partly because the meaning of the word seems to vary greatly between contexts—it is a ‘slippery term’ ([ 5 ], p. 7). Thus for example the ‘T’ of STS (Science and technology studies) may be different from the ‘T’ of STEM (science, technology, engineering and mathematics). The students who wrote the essays that form the dataset for our study were asked to address the role of technology in their image of the future, and no theoretical definition was provided with this prompt. We expect students to have relied on some commonsense meaning of the word, and for the purposes of our study, we consider technology to be related to artefacts, tools, methods and systems that are based on the application of knowledge specific to STEM subjects. We expect this meaning to correspond to some extent with students’ thinking.

This study uses a unified view of science and technology education, or scientific and technological literacy (see, e.g. [ 33 ]) that is typical in current trends of interdisciplinary and societally oriented science education, or STEM education (see, e.g. [ 12 ]). As a clarification, we do not wish to convey the idea that the relationship between science and technology is obvious and uncomplicated (see, e.g. [ 4 ]). However, this is a context-dependent issue: firstly, technology experts and technologically literate citizens are expected to gain much of their education within science education, and secondly, the boundary between science and technology tends to disappear (or lose some of its meaning) in societal and future-oriented contexts [ 26 ]. Thus, studies of students’ images of technological futures can be expected to provide insight into the expectations, opportunities and sociotechnical thinking that will eventually be reflected in both the practice of technology experts and the actions of nonexpert citizens [ 31 ].

Perceptions of (technological) futures

Research on young people’s futures thinking has shown that science and technology are typical ingredients in young people’s dystopian views [ 13 ] but also central to their hopes of sustainable or otherwise progressive futures [ 15 , 36 ]. According to Cook ([ 15 ], p. 528), young people may generally feel ‘a loss of faith in the notion that humanity is progressing towards a positive future’—and thus society is ‘due for another break through’ with the help of technology.

Similarly, according to a study by Heikkilä et al. [ 25 ], Finnish people aged 16-20 seem to feel positively about technology amid a general trajectory of societal decline—while being reserved towards many areas of technology or new technologies in general, and feeling mostly optimistic about their own futures. In their study, young people’s images of the future involved robots, entertainment technology, home automation and new ways to travel, but also considerations against using robots as workforce, and in favour of ecological energy production and general ‘high technology’. It is notable that while such attitudes towards technology may be vague and inconsistent, they are nearly universal: in a nationwide survey, the increasing significance of technology was the most common future belief for Finnish 15- to 29-year-olds [ 37 ].

In Angheloiu et al.’s [ 3 ] paper, young people (ages 16-17) were found to mostly see an optimistic future where technology is strongly embedded in people’s daily lives, improving their quality of life and creating sustainability. However, optimism was not universal: some youth were found to e.g. fear environmental or health crises that would give rise to totalitarian regimes. In fact, the authors (p. 5) recognised the motif of “trade-offs between tech that makes our lives convenient at the price of ‘ethics and morals’”. This corresponds with the common discourses of technology as a ‘double-edged sword’ or ‘Faustian bargain’ (see, e.g. [ 14 ]). Across many outlooks, young people in Angheloiu et al.’s [ 3 ] study shared worries of accelerating inequality and increasing social isolation, also caused largely by technology, with similar findings reported by e.g. Kaboli & Tapio [ 30 ].

At a population-wide scale, van der Duin et al. [ 48 ] analysed Dutch adults’ views of the year 2040 (similarly to the present paper). They focused especially on societal, economical, environmental and technological issues. In the last category, questions of robotisation, digitisation and biotechnology were specifically addressed in both likelihood and desirability. Perhaps unsurprisingly, Dutch people (88%) believe science and technology to greatly advance in the next few decades, while their attitude towards technology was almost evenly split between positive, neutral and negative. Expectations of ‘making life easier’ and ‘having a positive impact’ were reported: examples include electric transport and automatised household tasks, but to a lesser extent also advances such as teleportation and colonisation of other planets. The respondents’ technological worries related to cybersecurity, privacy, behaviour prediction systems, robotisation, diminishing human contact and ‘unnatural’ outcomes, among others.

At an even wider scope, Special Eurobarometer 419 [ 18 ] found that Finnish people and Europeans in general (aged 15 and over) expect technology (or ‘science and innovation’) to contribute to many important issues in the near future. These included health, jobs, education, skills, environment, energy supply, security and inequality. Interestingly, with the exception of inequality, in all of these issues, Europeans expect ‘science and innovation’ to contribute more to progress than ‘people’s actions’. In a similar manner, general opinion on futures was more divided than the role of technology in futures, which was seen in mostly positive light (opinions were most divided on cybersecurity). This connects well with Cook’s [ 15 ] notion of technology as a ‘refuge of hope’.

More recently, in Standard Eurobarometer 94 [ 19 ] it was found that Europeans’ general future perspectives are somewhat gloomy, even if inconsistent: future generations are expected to face more difficulties, and nations are seen as going downhill, even if these feelings coexist with ‘confidence in the future’ (p. T118 in Data Annex).

Most people indeed believe that ‘science has a positive impact on society’, and especially young people feel informed with technological developments ([ 17 ], p.5). Technology is expected to make life easier, more comfortable and healthier, even if the rapid pace of development is perceived somewhat negatively by the majority. However, as Kerschner & Ehlers [ 31 ] have pointed out, these attitudes seem to be diversifying, and Eurobarometer surveys may address this issue too superficially. To quote Kerschner & Ehlers (p. 139):

In the past any diversion from unquestioned optimism was interpreted as a bad sign and attributed to the public's ignorance. Today it is often welcomed as a sign of an increasingly emancipated public.

Accordingly, we emphasise the point that critical attitudes are not simply ‘luddite pessimism’, nor are hopeful attitudes always ‘sci-fi romanticism’—and attempt in this paper to give adequate voice to both critical and enthusiastic views.

Some scholars have also argued that attitudes towards technology may be different from attitudes towards any specific area of technology [ 7 ], or that there is no single direction in which sociotechnical transitions can take us, or metric by which to judge them [ 46 ]. In this paper, we address both general and specific views of future technology with the explicit intention of diversifying discourses of sociotechnical conceptions.

Thus there is considerable even if in some ways limited literature on how people perceive technology and technological futures. Similar questions have been a matter of some discourse in educational research as well, even if not as exhaustively. For instance, Clough [ 14 ] has noted that the pedagogies around the nature of technology should address how technology may impact behaviour, thinking, privacy and values among other facets of life, Hodson [ 26 ] has discussed connections between technological and scientific literacy and sociopolitical action, and Aikenhead & Ryan [ 2 ] have long before suggested researching students’ conceptions on the many impacts technology has. Equipping students with tools to understand how socioscientific and sociotechnical issues shape their lives is certainly one of the goals of modern science education. However, as Facer ([ 20 ], p. 99) has argued,

[r]hetoric about young people’s ‘ownership’ of future socio-technical change is a familiar part of much educational and political discourse. This does not, however, translate in practice into a meaningful dialogue with young people about the sorts of futures they might wish to see emerge.

We wish to argue that while emphasising the societal relevance of science and allowing students to practice socioscientific argumentation in the classroom is worthwhile, these questions should be adequately linked to students’ perceptions of the future, and specifically their own future.

Data collection

The data for this paper consists of 58 student essays. These were collected from 57 Finnish upper-secondary students from schools in the Helsinki region. 20 essays were collected in 2018 with the title ‘A typical summer day in 2035’ and 38 in 2019 with the title ‘A typical summer day in 2040’. One student wrote two different essays in two consecutive years.

In addition to the topic, students were given the instruction to describe what kind of general and technological environment they would like to live in (i.e. a preferable future—see, e.g. [ 8 ]). They were prompted to approach this task by addressing the topics of what one’s life is like, the problems one and one’s communities face, the opportunities one perceives, what items and objects are present, what kind of the city or country lives in and the social life one leads. Finally, they were asked to fill in sentences beginning with ‘my dream is’, ‘my dream place is/has’, ‘my ideal world is/has’, and ‘my biggest fears and concerns are’.

The data collection took part within the European Erasmus+ project ‘I SEE’ (2016-2019) [ 35 ]. The essays were collected as prerequisites for volunteers attending experimental courses, i.e. before any teaching intervention took place. All essays were translated into English before analysis, with student names replaced with pseudonyms. All these students (or with underage students, also their guardian) gave written consent to participate in the research.

In order to analyse what technologies and effects of technology are present in students’ images of the future, we employed thematic analysis [ 11 ] with inductive coding. We began by cataloguing passages in the essays based on the subject matter. A total of 385 passages relating to technology were identified, forming the set of our analysis units. Typically, an analysis unit would be one to five sentences long, and describe one (although sometimes more) technology, and one (or more) effects of the technology in one continuous argument. Many passages were also found to discuss technology generally without further specification.

The effects of technology were identified strictly by what was addressed in the essays. For example, a unit that mentioned ‘greener air travel’ was seen as discussing ‘transportation technology’ with effects relating to ‘the environment’ while another passage that described casual commuting between Finland and Italy was seen linking transportation technology to increased mobility. As these examples also demonstrate, by ‘effect of technology’ we mean aspects of life, society and the world that are influenced in some way by technology or technological change. The focus on ‘technology’ and ‘effect’ is employed here for analytic simplicity: for some students, technology seemed to drive change, but for some, expectations of sociotechnical transformation were also drivers of technology. Thus ‘effect’ covers a range of causal systems. By definition, every unit of analysis discusses either one or more specific technologies or technology in general. However, in some cases, no clear effects were addressed within the text. An example is the short unit ‘I own an electric car’.

These categories were formed inductively based on multiple rounds of coding, which included some redefinition, combination and subdivision of initial coding categories. The specificity of each technology or effect (e.g. coding both greener aeroplanes and electric cars under the technology code ‘transportation’) was done by the authors with the intention of creating codes with meaningfully different contents.

Finally, we separated the analysis units into three categories, based on whether the effects of the technology were phrased in terms that convey these effects as desirable, undesirable or whether they are discussed in neutral terms. To be precise, we checked each unit against the following criteria:

Positive: Changes described or framed as mostly positive—improvement, desirable effects, solved problems
Neutral: indifference; neutral descriptions; positive and negative aspects balance out
Negative: Changes described or framed as mostly negative—problems, reluctance, disequilibration

The authors negotiated codes for unclear units until consensus was found. In addition, every unit was checked against coding criteria to eliminate mistakes and inconsistencies. The codes with less than eight occurrences were also merged with other, similar codes. Finally, to structure the presentation of our results, the final set of technologies, as well as the set of effects of technology, were grouped into 5 and 6 sections respectively (see Tables 1 and 2 ).

General observations

A somewhat wide range of images of the future presents itself in our data. Ranging from highly imaginative to conservative, and simplistic to highly detailed, the essays cover many societal transformations and systemic interactions within society, but focus mainly on technology and the routines of adult life. Derek (all student names given here are pseudonyms) imagined a post-scarcity world, Andre thought that ‘most problems are solved’ in 2035, and Damian imagined himself in the future, missing the ‘old days’ before overtechnologisation. Some students described worlds where climate change is ‘solved’, while in others’ images increasing climate issues serve as a looming backdrop. Quite interestingly, a ‘typical summer day’ in a preferable future also included a wealth of worries related to technology.

Almost all students described in some detail the technological advances apparent on a day in 2035 or 2040. For some students, these were creative, fantastic or narratively distant (ranging from a hub of sky-high glass tubes that serves as public transport to living on a Mars colony ruled by AI). For others, advances were more modest, such as longer-lasting smartphone batteries. Interestingly, a few students stated or implied that technology will likely not impact their lives: Thomas likened new innovations to useless things like ‘electric nailclippers’, while Robyn focused solely on changes in social issues such as human rights and (non-technologically) sustainable lifestyles. We also noted that some students addressed, even in length, aspects of the social construction of technology, such as risk-benefit analysis or democratisation of technological development. Such meanings students gave to technology in their essays will be presented elsewhere [ 40 ]—here we focus on the types of technology and the fields of influence, as described above.

Future technology and its effects

Overview of the analysis.

Various types of technology were identified from the data, ranging from general discussion of technology to smartwatches and from fusion reactors to neural implants. All the technology types in our coding are shown in Table 1 .

In essence, discussions of technology typically focused on everyday devices (e.g. phones, cars, household machines), technological systems and broad categories of technology (e.g. vague or general use of the word ‘technology’, energy production systems, large-scale automation of service jobs). Elements resembling typical science fiction scenarios were found to be relatively rare: these included advances in robotics, artificial intelligence and a few mentions of spacefaring or brain-computer interfaces. The full range of technologies present in students’ images was thus found to be somewhat conservative, perhaps reflecting the given time span of two decades, or perhaps due to the context of imagining one’s own future.

Despite students’ restraints in describing more imaginative or fantastical technological changes, the effects of technology show notable variation. Technology was usually seen as affecting everyday convenience (often specifically household activities), the structure of job markets and environmental issues. Technology was also associated with social life, equality, health and privacy, or connected with larger issues such as overtechnologisation or general progress (for a full list of our effect codes, see Table 2 ).

As the examples selected for Table 2 demonstrate, technology was depicted influencing the world in both positive and negative ways, again showing considerable range: at one extreme are nuclear wars and ‘loss of humanity’, at the other are happiness and ‘a better future’. In total, 244 units were coded as positive, 55 as negative and 86 as neutral. However, it is notable that students were instructed to focus on a preferable future. Thus, while valence counts are reported in Tables 1 and 2 , the goal of our exploratory study is to analyse qualitatively various themes identified in the dataset.

Let us now look at how the technology and effect codes interconnect. Our analysis revealed a somewhat complex web of connections between technology, impacts of technology, and the desirability of such developments. This is illustrated by Fig. 1 , a Sankey diagram of the entire coded dataset. As one notices by looking at the diagram, due to constraints of space we cannot in this paper give examples of every type of connection in the data. Instead, we will present some key findings in the following sections, moving from more obvious roles of technology (practical uses) to more complex ones (societal challenges and the systemic effects of technology).

figure 1

The connections between technologies and their effects. The width of the lines indicates the frequency of the connection. Green colour indicates positively, yellow neutrally and red negatively depicted change

Everyday life and relationships

Some of the connections are rather unsurprising, such as the idea that smart home technology has a positive effect on everyday convenience. In fact, the ‘easier everyday life’ of the future is one of the most salient features in our data. These imagined technological advances were related to handing tasks such as household chores over to robots, paying purchases with one’s phone more often, faster commuting and self-driving cars, wireless phone chargers or a more general expectation of adult life that is not limited or burdened by mundane tasks.

Laptops would also be paper-thin and easy to carry with you. (Willow)
Unless I wanted to, I would not have to do anything to maintain my house. In the modern world, everything revolves very closely around technology. Life is easy, because everything that is ‘unpleasant’ is handled by artificial intelligence. (Andre)

While in students’ visions technology often makes life easier and frees up time for more fulfilling activities, self-actualisation was rarely seen as stemming directly from technology. Similarly, technology was depicted providing an easy way of managing one’s social life, but it could not replace social activity not mediated by technology. In fact, some students saw technology as a force driving people apart: either by creating a culture of superficial acquaintances or by allowing people to retreat into lonely virtual worlds. However, the technologies students proposed as future ways of communication were typically not radically different from technologies that exist today.

I would like to live in a technologically advanced environment where a single lightweight, easy-to-carry device could be used to accomplish a lot of things. (...) one downside to this may be that our social life is likely to become more distant. (Oliver)

Environment

Alongside hopes of easier everyday life, other technological impacts that were seen positively were those relating to the environment. As Fig. 1 clearly shows, the connection between technology and environment was overwhelmingly positive. This was sometimes discussed as ‘solving’ climate change, and sometimes simply as a more incremental move towards greener technologies:

Climate change and other environmental problems have already been solved successfully, and all energy production is renewable or utilizes, for example, fusion power. (Manuel)
Electric cars are used for long-distance travel, since they are ecological. (Claire)

Technologies relevant in overcoming environmental unsustainability included energy production, recycling, production and transportation, but also geoengineering. While some students regarded fighting climate change as a hopeless battle against indifference, in most students’ essays climate and sustainability issues were discussed as either ‘solved’ problems or tackled by ongoing action:

However, new technologies have solved many climate-related problems, such as carbon dioxide and sulphur emissions. These can now be removed from the atmosphere to the surrounding space in a controlled way. (Natalie)
Despite technological development efforts, climate change is still a very relevant problem, and we will probably have had to create global technological solutions to slow it down. (Lily)

Not all efforts to mitigate climate change were based on new technologies—other kinds of sociotechnical change, such as banning cars and increased demand for green energy production were also mentioned. However, while students often discussed climate change mitigation in their essays, almost none of them imagined any technologies related to adapting to a changed climate, with the following exception:

While the worst of the predicted climate catastrophe is yet to come, these new automated fans that follow along with you are just not enough. (Isabella)

Employment, equality and privacy

While students saw potential in technology impacting environmental issues positively, in many other societal issues technology was linked to worries and fears. These included questions of privacy, the risks and vulnerabilities of digital systems, people becoming passive consumers of entertainment or losing the ability to concentrate, increasing social inequality (often caused by the automation of entire professions) and sometimes an AI catastrophe, technological weapons or misuse of mind-reading technology. For example, in Nina’s vision, society was still recovering from ‘the big data leak of 2037’, a nationwide data security catastrophe, and in Derek’s future, people ‘spend their time brainlessly staring at the screen’.

A large portion of the essays depicted a society dealing with impending or ongoing mass unemployment of people in automated service or manual work sectors:

There are not so many jobs these days, so many people are working in research and technology, just like me. Many of the professions that required human contact in the past have been replaced by robots that do the work as well as humans, except they are cheaper and more efficient. (Zelda)

Typically more intellectual jobs were expected to remain viable, including those in science, design, cybersecurity, innovation, programming or undefined ‘new professions’. In these visions, working life was often portrayed as competitive and hectic, with a constant need to keep up with changing demands:

Through social media, you are in contact with every organization in the world, and every organization is in contact with you. If you know what is expected of you (…) you can be very successful in this world. (Aurora)

Many students foresaw technology causing inequality in the future. This effect took place mostly through the unemployment in large work sectors discussed above. Students also expressed fears that technology could marginalise less educated people or ‘widen the gap between the rich and the poor and enable the latter to be oppressed on a global scale’. In fact, even in more positive visions, the connection between technology and equality was sometimes phrased in ways that seem to imply concern:

I want to live in a place where technology benefits everyone, not just those who are more fortunate than others. (Mel)

Divisions, overtechnologisation and progress

Technology (and the increasing embeddedness of technology in human life) was also connected with what appear to be technomoral questions. In other words, technology was not only seen benefiting various stakeholders or communities differently, but also as an issue where values and beliefs surface, creating societal and cultural tensions and polarisation:

By 2040 (...) technology used to study the brain and the functional systems of digital devices will be tightly integrated, and information technology can often be used just by thinking a few thoughts. (...) Our society is divided into groups: those who see nothing bad or unpredictably dangerous in this technology, and those who oppose it completely. (Aurora)

Curiously, similar mind-reading technology was described in solely positive terms by other students, but in these cases it was contextualised as easy-to-use interfaces for smart devices. This illustrates how some students seemed to concentrate on new possibilities, while others (even in a ‘desirable future’ framing) seemed to be more trade-off oriented, especially in larger, society-wide contexts. A similar pattern is seen in the way individual innovations were often discussed as positive developments, while forecasts of larger technological trends were more often paired with some worry. This is most clearly reflected in discourses of ‘overtechnologisation’:

The biggest fear is that with the advancement of technology and electronics, we might lose our humanity (…). (Brian)
(...) I do not want to live on technology’s terms in a world that is chock-full of technology. (Emilia)

Similar developments are possibly implied by students who emphasised that they wanted to live in cities where greenery has ‘not been replaced’, or surrounded by nontechnological objects. In fact, many students had written about a balance between technology and nature (or humans), whether in conjunction with overtechnologisation or not. Relatedly, students pictured futures in which one needs to consciously ‘unplug’ from time to time to retain connection with other facets of life:

It is important to me to not spend my entire life surrounded by machines, even though they make my life easier. (Mel)

Thus, technology was associated with a dangerous allure that individuals or humankind as a whole should guard against. However, the general fear related to the direction of humanity’s technological progress is in stark contrast to ideas centred on possibilities and progress. Several students expressed general trust or hope in technology being a part of a better future, or even a sign of humanity’s success:

I am sure we will live in the era of amazing technology. We can expect huge breakthroughs in physics and information technology that can benefit everyone. The place where I want to live is a place where you can clearly see the development of technology and humanity as a whole (...). (Malcolm)
I would wake up in the morning and, instead of waking up to the news of how humanity is failing, I would wake up to news of new technology being invented. (Lianna)

Lianna’s comparison between humanity’s failings and new technology—as well as Malcolm’s pairing of development of technology and development of humanity—seems far removed from fears of overtechnologisation or loss of humanity. Furthermore, Lianna described only exponential positive progress, while in Malcolm’s image of the future technology also creates unemployment. This exemplifies how students’ images of technological futures seem to reflect views of technology in general, hopes and fears of the overall future of humanity, and mediation between such elements.

Systems perspectives and complexity of sociotechnical change

The causal links between technology and effects also showed diversity. A contrast can be seen, for example, in two quotations provided earlier: Aurora’s complicated narrative of computer-brain interfaces stirring cultural polarisation and Manuel’s straightforward recounting of solving climate change. Technological change was not always seen influencing the world in immediate and instrumentalist ways, but also through systemic, higher order effects. This is a key observation and is well worth another example. Caden saw the future becoming even more globalised via technology-driven location independence and explained this process in some depth:

As communication and traffic systems evolve, I believe that travelling and exchanging thoughts and information across the world will be very common in the future. As a result of globalization, cultures and states will become more and more alike in the future, citizens will continue to move from place to place, and states will no longer exist in their traditional form. (Caden)

These somewhat ‘historical’ narratives were constructed around both positive and negative developments. On the clearly positive side, Lex imagined technology creating prosperity which allows universal basic income, ushering in a new age of people working for passion rather than money. However, for some students the intended use of technology and its direct effects were overshadowed by collateral damage to society, as in this rather dystopic vision:

(...) our society is unstable and environmental problems are a major problem, but people are not interested, because they are locked into their own bubbles. In their own virtual worlds. Sometimes I miss the old days. (Damian)

This quotation was extracted from a relatively rich context: the rather unrecognisable sci-fi cityscape in Damian’s vision and his portrayal of himself as a protagonist who is ‘ready to change the world’ (through his scientific career, in a time where most jobs are automated) is a powerful representation of the range of meanings science and technology may take in young people’s futures views. For some students, these meanings seemed to cause some dissonance that was sometimes addressed or resolved in the essays, for example by weighing the excitement of robot waiters against the perspective of the unemployed service staff. In the case of conflicted feelings towards technology, some students reflected on their positions either by identifying as their future self or explaining their hopes and fears from the present perspective:

I am grateful for all the inventions and technologies that I get to use today. But at the same time I am a little worried – for example life is no longer as private as it used to be. In the past, I might have been somewhat shocked if I had seen the present-day society. I talk a lot about this with my friends and family, and they, too, completely agree on both the opportunities and concerns. (Claire)
I believe there are both good and bad aspects to technology, and I cannot imagine a future where only one or the other would occur. (Natalie)

Conclusions

Discussion of results.

In our study, we examined Finnish upper-secondary school students’ images of desirable technological futures. As Tables 1 and 2 and diagram 1 summarise, students’ futures thinking shows a somewhat wide range of technological futures thinking. While students’ images involve an arguably limited perspective of areas of technology that may be relevant for their futures, these technologies, and technology in general, were associated with a fairly wide range of effects. Of these effects, most salient were hopes of easy day-to-day life, advances in environmental issues, and the automation of jobs.

Students’ views correspond to a large extent to the results of earlier studies on images of the future. Technological points of interest that students examine in their essays included robots and automation, smart homes, transportation and energy (cf. [ 25 , 48 ]), technology for sustainability (cf. [ 3 , 15 ]), the role of technology in everyday life (cf. [ 3 , 17 , 48 ]), inequality and isolation (cf. [ 30 , 48 ]), privacy and cybersecurity (cf. [ 18 ,  48 ]), and technology as progress as opposed to fall or stagnation (cf. [ 15 , 25 ]). Our study builds on these results firstly by not predetermining what technologies should be addressed in imagined futures, thus allowing respondents to construct a vision based on their own ideas, and secondly by explicitly addressing the difference and the associations between technological change and its societal or individual effects. Furthermore, by utilising a written assignment as the basis of the study, we were able to elicit students’ own sense-making of these connections both in the context of specific technologies that they associated with their own future, and the wider trend of technologisation.

Our results demonstrate how some students quite readily problematise sociotechnical change, identifying moral questions, considering trade-offs, stakeholder perspectives and systemic long-term effects. Technology was given both instrumentalist and unproblematic meanings (such as increased convenience) and much wider and more abstract meanings such as general progress or a dangerous trajectory leading to overtechnologisation of life. Interestingly, positive effects were commonly attributed to incremental improvements of existing technologies or specific new innovations, while the larger trends of automation, digitalisation and technologisation were seen in more conflicted terms.

These elements in students’ essays form a somewhat multifaceted picture of the roles technology may take in young people’s futures thinking; no single element captures the multitude of these roles and meanings. For example, it is not straightforward to determine whether students’ images of technological futures are overall ‘positive’ or ‘negative’. Given that students were asked to describe the kind of technological future they would like to see, it is worthwhile to note the frequency of both negative expectations and the ‘Faustian bargain’ discourse. On some level, many students seem to share the belief that positive and negative aspects go hand in hand. However, it is equally worthwhile to note that 24 student essays did not contain any negative effect codes, and of these eight discussed only positive effects. For example, Violet’s technological future featured smooth everyday life, the tools ‘to cure deadly diseases’, an atmospheric cleaner, fusion power and superhuman AI with endless uses.

The difference between purely positive and mixed images of technological futures could be attributed to variation in students’ views, but it is equally arguable that the difference may stem from students focusing to different degrees on ‘preferable’ (as opposed to ‘probable’ or ‘plausible’) futures—i.e. whether students focused on possibilities or critical perspectives. It is partly because of this interpretative ambiguity that we have here focused on analysing the ‘micro-level’ roles of technology in images of the future rather than the overall sociotechnical futures (i.e. each essay as a whole), with the intention of capturing the diversity of students’ ideas, hopes and fears about technology.

Limitations of this study and opportunities of further research

As the writing prompt given to students asked for a description of a desirable future, the strong leaning on positive effects of technology does not necessarily signify technological optimism. Similarly, asking students to think of a typical day may have primed students to think primarily of familiar (i.e. conservative) future worlds. However, perceptions of the future are complex, and any singular image is only a component of a larger whole. Further research is needed on the way individuals navigate various or even contradicting ideas about the future that they may simultaneously hold. As a related challenge, the essays analysed here can be seen exhibiting varying degrees of perceived ‘realness’ to the students. For example, one very short essay described the author living on a Mars colony ruled by an AI system. For us, this entry seemed unserious, possibly indicating some challenge in imagining (or writing about) one’s actual future. Thus, further research may need to gauge how likely students believe their imagined futures are to actually manifest.

Our study tentatively indicates that there are multiple layers of the entanglement of technology and futures that may exist in young people’s thinking: the everyday devices and general technological landscape of one’s life, various positive and negative societal transformations related to technological change, and general trends of technologisation that indicate whether humanity is ‘headed in the right direction’. Further research is needed to identify and operationalise how images of the future are constructed with relation to specific and general beliefs, hopes and fears about technology. An additional key issue unexplored by the present study is the sources from where young people draw elements of their images of the future.

Accordingly, there is much room for similar work to be carried out with various focus points. Here we have operated on the level of individual connections between technology, its effects and their desirability in order to reveal some of the complexity of students’ images of the future. Further studies could investigate students’ beliefs regarding the agents that drive sociotechnical change, the values they associate with these changes (see, e.g. [ 21 ]), and how they connect larger trends to their own lives and their own agency. For this end, this paper lays groundwork for further work carried out in the FEDORA project to discuss the desirable effects of technology in the light of students' values [ 40 ].

In addition, it may be worthwhile to examine what kinds of (science) pedagogies could meaningfully address students’ future views. Such initiatives have been carried out, for example the I SEE project (2016-2019) (see e.g. [ 35 , 41 ]) and the FEDORA project (fedora-project.eu). The implications of the present study for science education are discussed in the following section.

Finally, we note that the sampling is very likely not representative of Finnish youth, as the participants of the study were volunteers enrolling for an additional science course on futures thinking. Thus, they were likely to be interested in science subjects and think positively about scientific ideas. Our study may underrepresent views of the future that are common to other cohorts. The frequency of various perceptions among different age groups, genders and cultural backgrounds also demands broader samples and is left for further investigations.

Implications for science education

As our results demonstrate, images of the future provide a rich perspective into the interaction of students’ futures thinking and sociotechnical thinking. However, as we have shown, images of technological futures differ in many ways from each other. Therefore, science education oriented towards socio-scientific issues (SSIs) [ 49 ] should not address the future as a separate SSI but integrate it in a variety of scientific, social, cultural, ethical, environmental and economic aspects. Our results on the breadth and connectedness of students’ sociotechnical future visions give support and contribute to the holistic type of SSI teaching suggested by Rundgren and Rundgren [ 44 ] and invite science education researchers and practitioners to develop tools to help students connect their technological and socioscientific reasoning with their future outlooks and their futures thinking skills.

Such tools have already been developed for science classrooms in a few initiatives during the past two decades [ 29 , 36 , 38 ]. In Europe, future-oriented science education has been advanced in the I SEE project. The research presented here lays the groundwork and contributes to initiatives of this type by building a more nuanced understanding of students’ images of the future with relation to science and technology.

For science educators, a particularly interesting phenomenon seen in the data reported here concerns the depth of students’ spontaneous socioscientific thinking. In vastly different ideas such as Caden’s technologically united globe, Aurora’s polarising neurotechnology and Damian’s world of VR-induced indifference, a seemingly limited area of technology has effects that range well beyond the immediately obvious. This illustrates how complex and multilayered one’s future perception can be: even a singular and tightly expressed image of the future may contain a wealth of interacting beliefs and ideas. When constructing an image of the world students went beyond addressing simplistic cause-effect socioscientific discourse and engaged in thinking of systemic, higher order effects of sociotechnical change.

Thus, our results imply that constructing images of the future can be a pedagogically rich and meaningful task that taps into the transversal learning objectives in science curricula. While such future-oriented pedagogies face the challenge of addressing the inherently unknowable, in the context of science education they can also harness students’ curiosity about the future, their existing futures thinking skills, and the prevalent idea that scientific and technological ideas may come to determine the future to a great extent. As Facer (2012) [ 20 ] has argued, framing the future as ‘lived’ and ‘local’ seems to encourage students to think meaningfully and critically of sociotechnical change. This approach could also address the need to help students contextualise the ‘core knowledge’ of science, which is a focus of STSE and SSI education (see, e.g. [ 6 ]), to promote scientific literacy (see, e.g. [ 45 ]), and to give students a more nuanced representation of the nature of technology (see, e.g. Clough et al., 2013).

Our results also brought out a variety of technology-related hopes and fears that students may typically hold. In order to foster students’ agency, science and technology education should find ways to address and elaborate such feelings and escape simplistic visions that may be either dystopian, utopian or static. Teachers should help students perceive both opportunities and pitfalls in technology and, for example, problematise the naïve expectations of ‘technological fix’ for sustainability challenges. Relatedly, the diversifying attitudes towards technology should be linked to a belief in the malleability of (sociotechnical) futures through informed agency.

Our study offers evidence that upper-secondary students can be quite capable of engaging in futures thinking in a manner that combines creativity, value-based evaluation, a systems perspective and scientific literacy. However, for the purposes of science education, and the goal of understanding young people’s futures perceptions, it may prove useful for educators and researchers to distinguish between different types of sociotechnical transformations, such as complex systemic transformations (relevant from the SSI perspective) and more incremental and limited technological change (e.g. from a problem-solving, instrumentalist perspective).

Finally, it seems reasonable that practicing formulating images of desirable futures is necessary to acquire the skills needed for technology experts’ reflective practice (see, e.g. [ 4 ]), or steering technology towards sustainability. After all, ‘[w]hen students’ images of possible futures are elicited, valued and acted upon students are empowered to work towards a future they would prefer’ [ 36 ]. This goal requires further exploration of young people’s conceptions and pedagogies inspired by futures studies to evoke and evolve these conceptions—a task that we hope to have demonstrated to be feasible, fruitful and necessary. However, for this purpose there needs to be much more dialogue between the fields of futures studies and educational research.

Availability of data and materials

The dataset analysed during the current study is available in the Zenodo.org repository, https://doi.org/10.5281/zenodo.5517595 .

Ahvenharju S, Lalot F, Minkkinen M, Quiamzade A (2021) Individual futures consciousness: psychology behind the five-dimensional futures consciousness scale. Futures 128:102708. https://doi.org/10.1016/j.futures.2021.102708

Article   Google Scholar  

Aikenhead GS, Ryan AG (1992) The development of a new instrument: ‘views on science—technology—society’ (VOSTS). Sci Educ 76(5):477–491. https://doi.org/10.1002/sce.3730760503

Angheloiu C, Sheldrick L, Tennant M (2020) Future tense: exploring dissonance in young people’s images of the future through design futures methods. Futures 117:102527. https://doi.org/10.1016/j.futures.2020.102527

Ankiewicz P, De Swardt E, De Vries MJ (2006) Some implications of the philosophy of technology for science, technology and society (STS) studies. Int J Technol Des Educ 16(2):117–141. https://doi.org/10.1007/s10798-005-3595-x

Bauchspies W, Croissant J, Restivo S (2006) Science, technology, and society: a sociological approach. Blackwell Publishing

Google Scholar  

Bencze L, Pouliot C, Pedretti E, Simonneaux L, Simonneaux J, Zeidler D (2020) SAQ, SSI and STSE education: defending and extending “science-in-context”. Cult Stud Sci Educ 15:825–851. https://doi.org/10.1007/s11422-019-09962-7

Besley JC (2013) The state of public opinion research on attitudes and understanding of science and technology. Bull Sci Technol Soc 33(1-2):12–20. https://doi.org/10.1177/0270467613496723

Börjeson L, Höjer M, Dreborg KH, Ekvall T, Finnveden G (2006) Scenario types and techniques: towards a user’s guide. Futures 38(7):723–739. https://doi.org/10.1016/j.futures.2005.12.002

Borup M, Brown N, Konrad K, Van Lente H (2006) The sociology of expectations in science and technology. Technol Anal Strateg Manag 18(3–4):285–298. https://doi.org/10.1080/09537320600777002

Bostrom N (2013) Existential risk prevention as global priority. Glob Policy 4(1):15–31. https://doi.org/10.1111/1758-5899.12002

Braun V, Clarke V (2006) Using thematic analysis in psychology. Qual Res Psychol 3(2):77–101. https://doi.org/10.1191/1478088706qp063oa

Bybee RW (2013) The case for STEM education: challenges and opportunities. NSTA press, Arlington

Carter L, Smith C (2003) Revisioning science education from a science studies and futures perspective. J Futures Stud 7(4):45–54. https://doi.org/10.1080/03057260408560205

Clough MP (2013) Teaching about the nature of technology: issues and pedagogical practices. In: Clough MP, Olson JK, Niederhauser DS (eds) The nature of technology: implications for learning and teaching. Springer Science & Business Media, Rotterdam

Chapter   Google Scholar  

Cook J (2016) Young adults’ hopes for the long-term future: from re-enchantment with technology to faith in humanity. J Youth Stud 19(4):517–532. https://doi.org/10.1080/13676261.2015.1083959

ESPAS (2015) Global trends to 2030: can the EU meet the challenges ahead? An inter-institutional EU project. Publications Office of the European Union, Luxembourg

European Commission (2013) Special Eurobarometer 401: responsible research and innovation (RRI), science and technology (no. 401). European Commission, Brussels

European Commission (2014) Special Eurobarometer 419: public perceptions of science, research and innovation. Office for Publications of the European Commission, Luxembourg

European Commission (2021) Standard Eurobarometer 94: public opinion in the European Union. European Union, Brussels

Facer K (2012) Taking the 21st century seriously: young people, education and socio-technical futures. Oxf Rev Educ 38(1):97–113.  https://doi.org/10.1080/03054985.2011.577951

Feenberg A (2009) What is philosophy of technology? In: Jones AT, de Vries MJ (eds) International handbook of Research and Development in technology education. Brill Sense, Rotterdam, pp 159–166

Gidley JM, Hampson GP (2005) The evolution of futures in school education. Futures 37(4):255–271. https://doi.org/10.1016/j.futures.2004.07.005

Hicks D (2008) A futures perspective: lessons from the school room. In: Bussey M, Inayatullah S, Milojevic I (eds) Alternative educational futures: pedagogies for emergent worlds. Sense, Rotterdam, pp 75–90

Häggström M, Schmidt C (2021) Futures literacy – to belong, participate and act!: an educational perspective. Futures 132:102813. https://doi.org/10.1016/j.futures.2021.102813

Heikkilä K, Nevala T, Ahokas I, Hyttinen L, Ollila J (2017) Nuorten tulevaisuuskuvat 2067. Näkökulmia suomalisen yhteiskunnan kehittämiseksi, TUTU, Turku

Hodson D (2011) Looking to the future. Building a curriculum for social activism. Sense, Rotterdam

Book   Google Scholar  

Inayatullah S (2008) Six pillars: futures thinking for transforming. Foresight 10:4–21. https://doi.org/10.1108/14636680810855991

Jensen BB (2002) Knowledge, action and pro-environmental behaviour. Environ Educ Res 8(3):325–334. https://doi.org/10.1080/13504620220145474

Jones A, Buntting C, Hipkins R, McKim A, Conner L, Saunders K (2012) Developing students’ futures thinking in science education. Res Sci Educ 42(4):687–708. https://doi.org/10.1007/s11165-011-9214-9

Kaboli SA, Tapio P (2018) How late-modern nomads imagine tomorrow? A causal layered analysis practice to explore the images of the future of young adults. Futures 96:32–43. https://doi.org/10.1016/j.futures.2017.11.004

Kerschner C, Ehlers MH (2016) A framework of attitudes towards technology in theory and practice. Ecol Econ 126:139–151. https://doi.org/10.1016/j.ecolecon.2016.02.010

Kurzweil R (2005) The singularity is near: when humans transcend biology. Viking, New York

Laherto A (2010) An analysis of the educational significance of nanoscience and nanotechnology in scientific and technological literacy. Sci Educ Int 21(3):160–175.

Levrini O, Tasquier G, Branchetti L, Barelli E (2019) Developing future-scaffolding skills through science education. Int J Sci Educ 41(18):2647–2674. https://doi.org/10.1080/09500693.2019.1693080

Levrini O, Tasquier G, Barelli E, Laherto A, Palmgren E, Branchetti L, Wilson C (2021) Recognition and operationalization of future‐scaffolding skills: Results from an empirical study of a teaching–learning module on climate change and futures thinking. Sci Educ 105(2):281–308.  https://doi.org/10.1002/sce.21612

Lloyd D, Wallace J (2004) Imaging the future of science education: the case for making futures studies explicit in student learning. Stud Sci Educ 40(1):139–177. https://doi.org/10.1080/03057260408560205

Myllyniemi S (2017) Katse tulevaisuudessa. Nuorisobarometri 2016. Grano, Helsinki

Paige K, Lloyd D (2016) Use of future scenarios as a pedagogical approach for science teacher education. Res Sci Educ 46(2):263–285. https://doi.org/10.1007/s11165-015-9505-7

Pedretti E, Nazir J (2011) Currents in STSE education: mapping a complex field, 40 years on. Sci Educ 95(4):601–626. https://doi.org/10.1002/sce.20435

Rasa T, Lavonen J, Laherto A (2022) Agency and transformative potential of technology in upper-secondary students’ images of the future: Role of futures in scientific literacy [Unpublished manuscript]. Department of Education, University of Helsinki.

Rasa T, Palmgren E, Laherto A (2022) Futurising science education: students’ experiences from a course on futures thinking and quantum computing. Instr Sci p. 1–23. https://doi.org/10.1007/s11251-021-09572-3

Raskin P, Banuri T, Gallopin G, Gutman P, Hammond A, Kates R, Swart R (2002) Great transition: the promise and lure of the times ahead, vol 1. Stockholm Environmental Institute, Boston

Rubin A (2013) Hidden, inconsistent, and influential: images of the future in changing times. Futures 45:S38–S44. https://doi.org/10.1016/j.futures.2012.11.011

Rundgren SNC (2010) Rundgren CJ (2010) SEE-SEP: from a separate to a holistic view of socioscientific issues. In: Asia-Pacific forum on science learning and teaching, the Education University of Hong Kong, department of science and environmental studies

Sjöström J, Frerichs N, Zuin V, Eilks I (2017) Use of the concept of Bildung in the international science education literature, its potential, and implications for teaching and learning. Stud Sci Educ 53(2):165–192. https://doi.org/10.1080/03057267.2017.1384649

Stirling A (2011) Pluralising progress: from integrative transitions to transformative diversity. Environm Innov Soc Trans 1(1):82–88. https://doi.org/10.1016/j.eist.2011.03.005

Threadgold S (2012) ‘I reckon my life will be easy, but my kids will be buggered’: ambivalence in young people's positive perceptions of individual futures and their visions of environmental collapse. J Youth Stud 15(1):17–32. https://doi.org/10.1080/13676261.2011.618490

van der Duin P, Lodder P, Snijders D (2020) Dutch doubts and desires. Exploring citizen opinions on future and technology. Futures 124:102637. https://doi.org/10.1016/j.futures.2020.102637

Zeidler DL, Sadler TD, Simmons ML, Howes EV (2005) Beyond STS: a research-based framework for socioscientific issues education. Sci Educ 89(3):357–377. https://doi.org/10.1002/sce.20048

Download references

Acknowledgements

We acknowledge Elina Palmgren for organising the data collection, Paula Pekkala for assisting in the coding process and Pia Erkko for translating the essays. We also thank Prof. Jari Lavonen for some helpful comments on the manuscript and the partners of the FEDORA project, coordinated by Prof. Olivia Levrini in University of Bologna, for their helpful comments on the design of the study. We also thank Steve Bogart for the free SankeyMATIC tool that was used for Fig. 1 . Finally, our warmest thanks to the upper secondary school students who participated in the research.

The collection of the data analysed in this study was supported by the European Commission Erasmus+ programme under Grant Agreement no. 2016-1-IT02-KA201-024373 (project "I SEE").

The analysis of the data and writing of the manuscript was supported by the European Commission Horizon2020 programme under Grant Agreement no. 872841 (project "FEDORA"). Open access funded by Helsinki University Library.

Author information

Authors and affiliations.

Department of Education, University of Helsinki, Siltavuorenpenger 5 A, 00014 Helsingin yliopisto, Helsinki, Finland

Antti Laherto

You can also search for this author in PubMed   Google Scholar

Contributions

TR carried out the data analysis and was the main contributor in all parts of the manuscript. AL planned and lead the data collection in the I SEE project and framing the research in the FEDORA project and helped with writing the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Tapio Rasa .

Ethics declarations

Ethics approval and consent to participate.

Participating in the study was voluntary. All participating students (in the case of underage students, also their guardian) gave a written consent to participate in the research. The need for an ethics approval for the study was waived.

Consent for publication

The participants have consented for essays written by them to be used and commented on in the study.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Rasa, T., Laherto, A. Young people’s technological images of the future: implications for science and technology education. Eur J Futures Res 10 , 4 (2022). https://doi.org/10.1186/s40309-022-00190-x

Download citation

Received : 28 September 2021

Accepted : 13 January 2022

Published : 03 April 2022

DOI : https://doi.org/10.1186/s40309-022-00190-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Images of the future
  • Science education
  • Technology education
  • Student perceptions
  • Future-oriented science education

essay on future technology

Technology and Its Impact in the World Essay

Introduction, technology impacts, works cited.

Technology is defined as the use of tools, techniques and methods of organization in solving real world problems, which aims at performing specific tasks.

Technology has a profound root in the society; this is because today’s world relies on the advances in technology. These advances in technology in today’s world has sped people’s lives and made the world a smaller place to live in as it makes different locations closer to one another.

In addition, the fact that technology has become omnipresent in the world today due to its widespread use, is vital because it helps people in carrying out their chores in their daily livelihood. It is therefore important that the technology that exists be easily adaptable and able to solve the current world issues as human progress rate is increasing at an alarming rate (Oak 1).

The advances in technology have brought huge changes in the world today. Some of the areas where technology has brought important changes are as follows. First, technology has enabled the world in automating its critical processes in industries and households. The automobile industry has evolved from mechanical to automated automobiles simply because of the driving force that is technology.

Technology is applicable in performing tasks that are not accessible to man and are vital in automating crucial industrial processes. The technologies that are applicable when performing these crucial tasks include the use of robotics and artificial intelligence in carrying out challenging tasks such as space exploration and mining (Oak 1).

Another positive effect of technology is that it has changed the manner of communication. This has been made possible through the use computer technology; computers have the ability to process huge chunks of data at one go. Information digitization has proved to be a vital technology platform since it has made it possible in storing information and helps in enriching the information quality.

The advances in technology enable harnessing of water from natural sources to homes through robust transmission systems. Technology has brought the discovery of electricity that is important in lighting up the world. Electricity is easily generated by using renewable energy resources.

On the other hand, with all the advances in technology, it is unimaginable that technology has its side effects in the society even when the world is at the epitome of technology. In the medical technology world, technology can affect and also harm patients in cases where it involves a machine that has radiation rays.

On environmental technology, there is a lot of waste in terms of chemicals, which directly go back to the environment. Lastly, technology has a negative impact on people since they tend to be lazy and rely mostly on technology (Oak 1).

In conclusion, the advances brought about by technologies, which are the Internet, cell phones, and notebook computers are vital necessity for daily living. Due to these advances, it is easy for us to forget about those who suffer while attempting to provide for their basic needs, such as clean water, food and health care.

It is a good gesture by the developed world to make use of their technologies to help the underprivileged groups of people in the society. Through the continuous use of these technologies, there are advances that targets medical services, improved economy based on the Internet, emerging technologies in information systems sector, advanced farming methods and industrial sectors.

More importantly, educational needs for the people are taken into consideration by these technologies, since they help them become prosperous nations who do not require help from others but are able to get their own resources. Moreover, transferring technology from the developed world to the developing world has various benefits. There will be improvement in living standards, production efficiency and become a base for economic growth (Oak 1).

Oak, Manali. “ Positive Effects of Technology on Society .” Buzzle. 2011. Web.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2023, October 31). Technology and Its Impact in the World. https://ivypanda.com/essays/impact-of-technology-in-the-world/

"Technology and Its Impact in the World." IvyPanda , 31 Oct. 2023, ivypanda.com/essays/impact-of-technology-in-the-world/.

IvyPanda . (2023) 'Technology and Its Impact in the World'. 31 October.

IvyPanda . 2023. "Technology and Its Impact in the World." October 31, 2023. https://ivypanda.com/essays/impact-of-technology-in-the-world/.

1. IvyPanda . "Technology and Its Impact in the World." October 31, 2023. https://ivypanda.com/essays/impact-of-technology-in-the-world/.

Bibliography

IvyPanda . "Technology and Its Impact in the World." October 31, 2023. https://ivypanda.com/essays/impact-of-technology-in-the-world/.

  • Automation in the Aviation Industry
  • Concept of Automation of Services and their Effect on Unemployment
  • The Fighter Cockpit Automation Functions
  • Saltman’s “The Employee of the Month Has a Battery”
  • The New Version of GPT-3 Instrument
  • How Organizations Use IS/IT
  • Artificial Intelligence as Technological Advancement
  • Business Processes and Automation
  • Telecommunications: The Case of SewWorld
  • The Evolution of Electricity
  • How Computers Affect Our Lives
  • Nanotechnology and its Perspectives in Connecticut
  • Purchasing or Leasing Computer Equipment: Advantages and Disadvantages
  • Ethical and Illegal Computer Hacking
  • Autonomous Controller Robotics: The Future of Robots

Exclusive: Behind the plot to break Nvidia's grip on AI by targeting software

Illustration shows NVIDIA logo

NEARLY 100 STARTUPS

The Technology Roundup newsletter brings the latest news and trends straight to your inbox. Sign up here.

Reporting by Max A. Cherney in San Francisco Editing by Kenneth Li and Matthew Lewis

Our Standards: The Thomson Reuters Trust Principles. , opens new tab

Illustration shows Reddit logo

Exclusive: Targeting Chinese chips, US to push Dutch on ASML service contracts

President Joe Biden's administration plans to press the Netherlands next week to stop its top chipmaking equipment maker ASML from servicing some tools in China, two people familiar with the matter said, as the U.S. leans on allies in its bid to hobble Beijing's tech sector.

The Delivery Hero's logo is pictured at its headquarters in Berlin

6 expert essays on the future of biotech

biotech

Big data, big potential in the field of biotech Image:  Photo by National Cancer Institute on Unsplash

What exactly is biotechnology, and how could it change our approach to human health?

As the age of big data transforms the potential of this emerging field, members of the World Economic Forum's Global Future Council on Biotechnology tell you everything you need to know.

Elizabeth Baca, Specialist Leader, Deloitte Consulting, and former Deputy Director, California Governor’s Office of Planning and Research & Elizabeth O’Day, Founder, Olaris, Inc

What if your doctor could predict your heart attack before you had it – and prevent it? Or what if we could cure a child’s cancer by exploiting the bacteria in their gut?

These types of biotechnology solutions aimed at improving human health are already being explored. As more and more data (so called “big data") is available across disparate domains such as electronic health records, genomics, metabolomics , and even life-style information, further insights and opportunities for biotechnology will become apparent. However, to achieve the maximal potential both technical and ethical issues will need to be addressed.

As we look to the future, let’s first revisit previous examples of where combining data with scientific understanding has led to new health solutions.

Biotechnology is a rapidly changing field that continues to transform both in scope and impact. Karl Ereky first coined the term biotechnology in 1919. However, biotechnology’s roots trace back to as early as the 1600s when a Prussian physician, Georg Ernst Stahl, pioneered a new fermentation technology referred to as “zymotechnology.”

Over the next few centuries, “biotechnology” was primarily focused on improving fermentation processes to make alcohol and later food production. With the discovery of penicillin, new applications emerged for human health. In 1981, the Organization for Economic Cooperation and Development (OECD) defined biotechnology as, “the application of scientific and engineering principles to the processing of materials by biological agents to provide the goods and services.”

Today, the Biotechnology Innovation Organization (BIO) defines biotechnology as “technology based on biology - biotechnology harnesses cellular and biomolecular processes to develop technologies and products that help improve our lives and the health of our planet.

In the Fourth Industrial Revolution, biotechnology is poised for its next transformation. It is estimated that between 2010 and 2020 there will be a 50-fold growth of data .

Just a decade ago, many did not even see a need for a smart phone, whereas today, each click, step we take, meal we eat, and more is documented, logged and analyzed on a level of granularity not possible a decade ago.

Concurrent with the collection of personal data, we are also amassing a mountain of biological data (such as genomics, microbiome, proteomics, exposome, transcriptome, and metabolome). This biological-big-data coupled with advanced analytical tools has led to a deeper understanding about fundamental human biology. Further, digitization is revolutionizing health care, allowing for patient reported symptoms, feelings, health outcomes and records such as radiographs and pathology images to be captured as mineable data.

As these datasets grow and have the opportunity to be combined, what is the potential impact to biotechnology and human health? And better still, what is the impact on individual privacy?

Disclaimer: The authors above do not necessarily reflect the policies or positions of the organizations with which they are affiliated.

Infographic developed by the California Biotechnology Foundation: A special thank you to Patricia Cooper, Executive Director, California Biotechnology Foundation

Daniel Heath, Senior Lecturer in the University of Melbourne's Department of Biomedical Engineering & Elizabeth Baca & Elizabeth O’Day

One of the most fundamental and powerful data sets for human health is the human genome. DNA is our biological instruction set composed of billions of repeating chemical groups (thymine, adenine, guanine, and cytosine) that are connected to form a code. A person’s genome is the complete set of his or her DNA code, ie the complete instructions to make that individual.

DNA acts as a template to produce a separate molecule called RNA through the process of transcription. Many RNA molecules in turn act as a template for the production of proteins, a process referred to as translation. These proteins then go on to carry out many of the fundamental cellular tasks required for life. Therefore any unwanted changes in DNA can have downstream effects on RNA and proteins. This can have little to no effect or result in a wide range of diseases such as Huntington’s disease, cystic fibrosis, sickle cell anaemia, and many more.

Genomic sequencing involves mapping the complete set, or part of individual’s DNA code. Being able to detect unwanted changes in DNA not only provides powerful insight to understand disease but can also lead to new diagnostic and therapeutic interventions.

The first human genome sequence was finished in 2003, took 13 years to complete, and cost billions of dollars. Today due to biotech and computational advancements, sequencing a person’s genome costs approximately $1,000 and can be completed in about a day.

Important milestones in the history of genomics

1869 - DNA was first identified

1953 - Structure of DNA established

1977 - DNA Sequencing by chemical degradation

1986 - The first semi-automated DNA sequencing machine produced

2003 - Human genome project sequenced first entire genome at the cost of $3 billion

2005 - Canada launches personal genome project

2007 - 23andMe markets first direct to consumer genetic testing for ancestry of autosomal DNA

2008 - First personal genome sequenced

2012 - England launched (and finished in 2018) 100K genome project

2013 - Saudi Arabia launched the Saudi Human Genome Program

2015 - US launched plan to sequence one million genomes

2015 - Korea launched plan to sequence 10K genomes

2016 - US launched All of Us Research cohort to enroll one million or more participants to collect lifestyle, environment, genetic, and biologic data

2016 - China launched the Precision Medicine initiative with 60 billion RMB

2016 - France started Genomic Medicine 2025 Project

Treatments available today due to DNA technology

Knowing the structure and function of DNA has also enabled us to develop breakthrough biotechnology solutions that have greatly improved the quality of life of countless individuals. A few examples include:

Genetic screenings for diseases. An individual can scan his or her DNA code to look for known mutations linked to disease. Newborns are often screened at birth to identify treatable genetic disorders. For instance, all newborns in the US are screened for a disease called severe combined immunodeficiency (SCID). Individuals with this genetic disease lack a fully functional immune system and usually die within a year, if not treated. However, due to regular screenings, these newborns can receive a bone marrow transplant, which has a more than 90% of success rate to treat SCID. A well-known example in adults is screening women for mutations in the BRCA1 and BRCA2 genes as risk factor for developing breast cancer or ovarian cancer.

Recombinant protein production. This technology allows scientists to introduce human genes into microorganisms to produce human proteins that can be introduced back to patients to carry out vital functions. In 1978, the company Genentech developed a process to recombinantly produce human insulin, a protein needed to regulate blood glucose. Recombinant insulin is still used to treat diabetes.

CAR T cells . CAR T cell therapy is a technique to help your immune system recognize and kill cancer cells. Immune cells, called T-cells, from a cancer patient are isolated and genetically engineered to express receptors that allow them to identify cancer cells. When these modified T cells are put back into the patient they can help find and kill the cancer cells. Kymriah, used to treat a type of leukemia, and Yescarta, used to treat a type of lymphoma are examples of FDA approved CAR T cell treatments.

Gene therapy. The goal of gene therapy is to replace a missing or defective gene with a normal one to correct the disorder. The first in vivo gene therapy drug, Luxterna, was approved by the FDA in 2017 to treat an inherited degenerative eye disease called Leber’s congenital amaurosis.

Disclaimer: The authors above do not necessarily reflect the policies or positions of the organizations with which they are affiliated .

Frontiers in DNA technology

Our understanding of genetic data continues to lead to new and exciting technologies with the potential to revolutionize and improve our health outcomes. A few examples being developed are described below.

Organoids for drug screening . Organoids are miniature and simplified organs that can be developed outside the body with a defined genome. Organoid systems may one day be used to discover new drugs, tailor treatments to a particular person’s disease or even as treatments themselves.

CRISPR-Cas9 . This is a form of gene therapy - also known as genetic engineering - where the genome is cut at a desired location and existing genes can either be turned off or modified. Animal models have shown that this technique has great promise in the treatment of many hereditary diseases such as sickle cell disease, haemophilia, Huntington’s disease, and more.

We believe sequencing will become a mainstay in the future of human health.

While genomic data is incredibly insightful, it is important to realize, genomics rarely tells the complete story.

Except for rare cases, just because an individual has a particular genetic mutation does not mean they will develop a disease. Genomics provides information on “what could happen” to an individual. Additional datasets such the microbiome, metabolome, lifestyle data and others are needed to answer what will happen.

Elizabeth O’Day & Elizabeth Baca

The microbiome is sometimes referred to as the 'essential organ', the'forgotten organ', our 'second genome' or even our 'second brain'. It includes the catalog of approximately 10-100 trillion microbial cells (bacteria, archea, fungi, virus and eukaryotic microbes) and their genes that reside in each of us. Estimates suggest we have 150 times more microbial DNA from more than 10,000 different species of known bacteria than human DNA.

Microbes reside everywhere (mouth, stomach, intestinal tract, colon, skin, genitals, and possibly even the placenta). The function of the microbiome differs according to different locations in the body and with different ages, sexes, races and diets of the host. Bacteria in the gut digest foods, absorb nutrients, and produce beneficial products that would otherwise not be accessible. In the skin, microbes provide a physical barrier protecting against foreign pathogens through competitive exclusion, and production of antimicrobial substances. In addition, microbes help regulate and influence the immune system. When there is an imbalance in the microbiome, known as dysbiosis, disease can develop. Chronic diseases such as obesity, inflammatory bowel disease, diabetes mellitus, metabolic syndrome, atherosclerosis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), cirrhosis, hepatocellular carcinoma and other conditions are linked to improper microbiome functioning.

Milestones in our understanding of the microbiome

1680s - Dutch scientist Antonie van Leeuwenhoek compared his oral and fecal microbiota. He noted striking differences in microbes between these two habitats and also between samples from individuals in different states of health.

1885 - Theodor Escherich first describes and isolates Escherichia coli (E. coli) from the feces of newborns in Germany

1908 - Elie Metchnikoff, Russian zoologist, theorized health could be enhanced and senility delayed by bacteria found in yogurt

1959 - Germ-free animals (mice, rats, rabbits, guinea pigs, and chicks) reared in stainless steel in plastic housing to study the effects of health in microbe-free environments

1970 - Dr. Thomas D. Luckey estimates 100 billion colonies of microbes in one gram of human intestinal fluid or feces.

1995 - Craig Venter and a team of researchers sequence the genome of bacterium Haemophilus influenza, making it the first organism to have its genome completely sequenced.

1996 - The first human fecal sample is sequenced using 16S rRNA sequencing.

2001- Scientist Joshua Lederberg credited with coining term “microbiome”.

2005 - Researchers identify bacteria in amniotic fluid of babies born via C-section

2006- First metagenomic analysis of the human gut microbiome is conducted

2007- NIH sponsored Human Microbiome Project (HMP) launches a study to define how the microbial species affect humans and their relationships to health

2009- First microbiome study showing an association between gut microbiome in lean and obese adults

2011- German researchers identify 3 enterotypes in the human gut microbiome: Baceroids, Prevotella, and Ruminococcus

2011- Gosalbes performed the first metatransciptomic analysis of healthy human gut microbiota

2012 - HMP unveils first “map” of microbes inhabiting healthy humans. Results generated from 80 collaborating scientific institutions found more than 10,000 microbial species occupy the human ecosystem, comprising trillions of cells and making up 1-3% of the body’s mass.

2012 - American Gut Project founded, providing an open-to-the-public platform for citizen scientists seeking to analyze their microbiome and compare it to the microbiomes of others.

2014 - The Integrative Human Microbiome Project (iHMP), begins with goal of studying 3 microbiome-associated conditions.

2016 - The Flemish Gut Flora Project, one of the world’s largest population-wide studies on variations in gut microbiota publishes analysis on more than 1,100 human stool samples.

2018 - The American Gut Project publishes the largest study to date on the microbiome. The results include microbial sequence data from 15,096 samples provided by11,336 participants across the US, UK, Australia and 42 other countries.

What solutions are alre ady (or could be) derived from this dataset?

Biotechnology solutions based off microbiome data have already been developed or are in the process of development. A few key examples are highlighted below:

Probiotics . Probiotics are beneficial bacteria that may prevent or treat certain disease. They were first theorized in 1908 and are now a common food additive. From yogurts to supplements, various probiotics are available for purchase in grocery stores and pharmacies, claiming various benefits. For example probiotic VSL#3 has been shown to reduce liver disease severity and hospitalization in patients with cirrhosis.

Diagnostics . Changes in composition of particular microbes are noted as potential biomarkers. An example includes the ratio of Bifidobacterium to Enterobacteriaceae know as the B/E ratio. A B/E greater than 1 suggests a healthy microbiome and a B/E less than 1 could suggest cirrhosis or particular types of infection.

Fecal Microbiome transplantation (FMT). Although not FDA-approved, fecal microbiome transplantation (FMT) is a widely used method where a fecal preparation from a healthy stool donor is transplanted into the colon of patient via colonoscopy, naso-enteric tube, or capsules. FMT has been used to treat Clostridium difficile infections with 80-90% cure rates (far better efficacy than antibiotics).

Therapeutics. The microbiome dataset is also producing several innovative therapies. Development of bacteria consortia and single strains (both natural and engineered) are in clinical development. Efforts are also underway to identify and isolate microbiome metabolites with important function, such as the methicillin-resistant antibiotics that were identified by primary sequencing of the human gut microbiome.

By continuing to build the microbiome dataset and expand our knowledge of host-microbiome interactions, we may be able correct various states of disease and improve human health.

Pam Randhawa, CEO and founder of Empiriko Corporation, Andrew Steinberg, Watson Institute for International and Public Affairs, Brown University, Elizabeth Baca & Elizabeth O’Day

For centuries, physicians were limited by the data they were able to obtain via external examination of an individual patient or an autopsy.

More recently, technological advancements have enabled clinicians to identify and monitor internal processes which were previously hidden within living patients.

One of the earliest examples of applied technology occurred in the 1890s when German physicist Wilhelm Röntgen discovered the potential medical applications of X-rays.

Since that time, new technologies have expanded clinical knowledge in imaging, genomics, biomarkers, response to medications, and the microbiome. Collectively, this extended database of high quality, granular information has enhanced the physician’s diagnostic capabilities and has translated into improved clinical outcomes.

Clinical diagnosis

Today’s clinicians increasingly rely on medical imaging and other technology- based diagnostic tools to non-invasively look below the surface to monitor treatment efficacy and screen for pathologic processes, often before clinical symptoms appear.

In addition, the clinician’s senses can be extended by electronic data capture systems, IVRS, wearable devices, remote monitoring systems, sensors and iPhone applications. Despite access to this new technology, physicians continue to obtain a patient’s history in real-time followed by a hands-on assessment of physical findings, an approach which can be limited by communication barriers, time, and the physician’s ability to gather or collate data.

One of the largest examples of clinical data collection, integration and analysis occurred in the 1940s with the National Heart Act which created the National Heart Institute and the Framingham Heart Study. The Framingham Original Cohort was started in 1948 with 5,209 men and women between the ages of 30-62 with no history of heart attack or stroke.

Over the next 71 years, the study evolved to gather clinical data for cardiovascular and other medical conditions over several generations. Prior to that time the concepts of preventive medicine and risk factors (a term coined by the Framingham study) were not part of the medical lexicon. The Framingham study enabled physicians to harness observations gathered from individuals’ physical examination findings, biomarkers, imaging and other physiologic data on a scale which was unparalleled.

The adoption of electronic medical records helped improve data access, but in their earliest iterations only partially addressed the challenges of data compartmentalization and interoperability (silos).

Recent advances in AI applications, EMR data structure and interoperability have enabled clinicians and researchers to improve their clinical decision making. However, accessibility, cost and delays in implementing global interoperability standards have limited data accessibility from disparate systems and have delayed introduction of EMRs in some segments of the medical community.

To this day, limited interoperability, the learning curve and costs associated with implementation are cited as major contributors to physician frustration, burnout and providers retiring early from patient care settings.

However, an interoperability platform known as Fast Healthcare Interoperability Resources (FHIR, pronounced "FIRE") is being developed to exchange electronic health records and unlock silos. The objective of FHIR is to facilitate interoperability between legacy health care systems. The platform facilitates easier access to health data on a variety of devices (e.g., computers, tablets, cell phones), and allows developers to provide medical applications which can be easily integrated into existing systems.

As the capacity to gather information becomes more meaningful, the collection, integration, analysis and format of clinical data submission requires standardization. In the late 1990s, the Clinical Data Interchange Standards Consortium (CDISC) was formed “to develop and support global, platform-independent data standards which enable information system interoperability to improve medical research”. Over the past several years, CDISC has developed several models to support the organization of clinical trial data.

Milestones in the discovery/development of clinical data and technologies

500BC - The world's first clinical trial recorded in the “Book of Daniel” in The Bible

1747 - Lind’s Scurvy trial which contained most characteristics of a controlled trial

1928 - American College of Surgeons sought to improve record standards in clinical settings

1943 - First double blinded controlled trial of patulin for common cold (UK Medical Research Council)

1946 - First randomized controlled trial of streptomycin in pulmonary tuberculosis conducted (UK Medical Research Council)

1946 - American physicists Edward Purcell and Felix Bloch independently discover nuclear magnetic resonance (NMR).

1947 - First International guidance on the ethics of medical research involving human subjects – Nuremberg Code

1955 - Scottish physician Ian Donald begins to investigate the use of gynecologic ultrasound.

1960 - First use of endoscopy to examine a patient’s stomach.

1964 - World Medical Association guidelines on use of human subjects in medical research (Helsinki Declaration)

1967 - 1971 - English electrical engineer Godfrey Hounsfield conceives the idea for computed tomography. First CT scanner installed in Atkinson Morley Hospital, Wimbledon, England. First patient brain scan performed - October 1971.

1972 - First Electronic Health Record designed

1973 - American chemist Paul Lauterbur produces the first magnetic resonance image (MRI) using nuclear magnetic resonance data and computer calculations of tomography.

1974 - American Michael Phelps develops the first positron emission tomography (PET) camera and the first whole-body system for human and animal studies.

1977 - First MRI body scan is performed on a human using an MRI machine developed by American doctors Raymond Damadian, Larry Minkoff and Michael Goldsmith.

1990 - Ultrasound becomes a routine procedure to check fetal development and diagnose abnormalities.

Early-Mid 1990 - Development of electronic data capture (EDC) system for clinical trials (electronic case report forms)

1996 - International Conference on Harmonization published Good Clinical Practice which has become the universal standard for ethical conduct of clinical trials.

Late 1990s - The Clinical Data Interchange Standards Consortium (CDISC) was formed with the mission “to develop and support global, platform-independent data standards that enable information system interoperability to improve medical research”

2009 - American Recovery and Reinvestment Act of 2009 passed including $19.2 Billion of funding for hospitals and physicians to adopt EHRs

2014 - HL-7 International published FHIR as a "Draft Standard for Trial Use" (DSTU)

Emerging Solutions

The convergence of scientific knowledge, robust clinical data, and engineering in the digital age has resulted in the development of dynamic healthcare technologies which allow for earlier and more accurate disease detection and therapeutic efficacy in individuals and populations.

The emergence of miniaturized technologies such as handheld ultrasound, sleep tracking, cardiac monitoring and lab-on-a-chip technologies will likely accelerate this trend. Among the most rapidly evolving fields in data collection, has been in clinical laboratory medicine where continuous point-of-care testing, portable mass spectrometers, flow analysis, PCR, and use of MALDI-TOF mass spectrometry for pathogen identification provide insight into numerous clinically relevant biomarkers.

Coupled with high resolution and functional medical imaging the tracking of these biomarkers gives a metabolic fingerprint of disease, thereby opening a new frontier in “Precision Medicine”.

Beyond these capabilities, artificial intelligence (AI) applications are being developed to leverage the sensory and analytic capabilities of humans via medical image reconstruction and noise reduction. AI solutions for computer-aided detection and radiogenomics enable clinicians to better predict risk and patient outcomes.

These technologies stratify patients into cohorts for more precise diagnosis and treatment. As AI technology evolves, the emergence of the “virtual radiologist” could become a reality. Since the humans cannot gather, collate and quickly analyze this volume of granular information, these innovations will replace time-intensive data gathering with more cost-effective analytic approaches to clinical decision-making.

As the population ages and lives longer, increasing numbers of people will be impacted by multiple chronic conditions which will be treated contemporaneously with multiple medications. Optimally these conditions will be monitored at home or in another remote setting outside of a hospital.

Platforms are under development where the next generation of laboratory technologies will be integrated into an interoperable system which includes miniaturized instruments and biosensors. This will be coupled with AI driven clinical translation models to assess disease progression and drug effectiveness.

This digital data will be communicated in real time to the patient’s electronic medical record. This type of system will shift clinical medicine from reactive to proactive care and provide more precise clinical decision-making.

With this enhanced ability to receive more granular, high quality clinical information comes an opportunity and a challenge. In the future, the ability to leverage the power of computational modeling, artificial intelligence will facilitate a logarithmic explosion of clinically relevant correlations.

This will enable discovery of new therapies and novel markers which will empower clinicians to more precisely manage risk for individuals and populations. This form of precision medicine and predictive modeling will likely occur across the disease timeline, potentially even before birth.

Stakeholders will need to pay close attention to maintaining the privacy and security of patient data as it moves across different platforms and devices.

However, the potential benefits of this interoperability far outweigh the risks. This will raise a host of ethical questions, but also the potential for a series of efficiencies which will make healthcare more accessible and affordable to a greater number of people.

Jessica Shen, Vice President at Royal Philips, Elizabeth Baca & Elizabeth O’Day

In medicine and public health there is often tension between the effect of genetics verses the effect of the environment, and which plays a bigger role in health outcomes. But rather than an either or approach, science supports that both factors are at play and contribute to health and disease.

For instance, one can be genetically at risk for diabetes, but with excellent diet and exercise and a healthy lifestyle, the disease can still be avoided.

In fact, many people who are newly diabetic or pre-diabetic can reverse the course of their disease through lifestyle modifications. Alternatively, someone at risk of asthma who is exposed to bad air quality can go on to develop the disease, but then become relatively asymptomatic in an environment with less triggers.

The growing literature on the importance of lifestyle, behaviours, stressors, social, economic, and environmental factors, (the latter also known as the social determinants of health), have been relatively hard to capture for real time clinical information.

It has been especially challenging to integrate all of the data together for better insight. However, that is changing. In this new data frontier, the growth of data in the lifestyle and environment area offer huge potential to bridge gaps, increase understanding of health in daily life, and tailor treatments for a precision health approach.

1881 - Blood pressure cuff invented

2010 - Asthmapolis founded with sensor to track environmental data on Asthma/COPD rescue inhalers

2011 - First digital FDA blood pressure cuff approved and links to digital phone

2012 - AliveCor receives FDA approval for EKG monitor with Iphone

2017 - 325,000 mobile health apps

2017 - FDA releases Digital Health Innovation Action Plan

2018 - FDA approves first continuous glucose monitor via implantable sensor and mobile app interface

What are some of the benefits suggested with the use of lifestyle data?

Mobile technology has enabled more continuous monitoring in daily life outside of the clinic and in real world settings. As an example the traditional blood pressure cuff invented over 130 years ago was only updated in the last decade to allow remote readings which are digitally captured.

Sensors are now being included to measure environmental factors such as air quality, humidity, and temperature. Other innovations are allowing mood to be captured in real time, brain waves for biofeedback, and other biometrics to improve fitness, nutrition, sleep, and even fertility.

The personal analytics capabilities of devices designed to collect lifestyle data can contribute to health by aiding preventive care and help with the management of ongoing health problems.

Identification of health problems through routine monitoring may evolve into a broad system encompassing many physiologic functions; such as:

  • sleep disturbances (severe snoring; apnea)
  • neuromuscular conditions (identification of early Parkinson’s with the analysis of muscular motion)
  • cardiac problems such as arrhythmias including atrial fibrillation
  • sensors to detect early Alzheimer’s disease via voice changes

The Apple Watch has provided documentation on the use of the device for arrhythmia detection, the series 4 version can generate a ECG similar to a Lead 1 electrocardiogram; claims related to these functions were cleared by FDA (Class II, de Novo). Additional wearable technologies are likely to incorporate such functions in the future.

The instant feedback available with the use of a wearable sensory device can serve as an aid to the management of many chronic conditions including but not limited to diabetes, pulmonary problems, and hypertension.

Many studies have documented the cardiovascular benefits of life-long physical activity. Several biotechnology solutions, designed to track activity with analytical feedback tools provide the opportunity to encourage physical activity to promote health, perhaps even modifying behaviour. A Cochrane Review (Bravata, 2007. PMID 18029834) concluded there was short-term evidence of significant physical activity increase and associated health improvement with the use of a pedometer to increase activity. The feedback associated with today’s data driven health improvement applications should increase the effectiveness over a simple mechanical pedometer. Studies are underway in multiple settings to support the use of activity trackers and feedback-providing analysis tools as beneficial to longer-term health.

Use in research settings

In many circumstances, the collection of clinical data for a formal trial or for use in longitudinal studies is facilitated by direct observation as provided by a network-attached sensor system.

What may future developments support?

The development of ‘smart clothing’ and wearable tech-enabled jewellery as well as implantable devices will lead to less obtrusive observation instruments recording many more physiological indicators.

Wireless networking, both fixed and mobile, continue their stepwise jumps in speed and this capacity growth (5G and Wifi-6 with megabit internet) will support massive increases in the volume of manageable data.

Connecting sensor derived observations to other indicators of health such as medical history and genetics will further expand our understanding of disease and how to live our most healthy lives.

However, for this potential to be realized significant technical and ethical issues must first be addressed.

Elissa Prichep, Precision Medicine Lead at the World Economic Forum, Elizabeth Baca & Elizabeth O’Day

The Global Future Council on biotechnology has examined the exponential growth of data across different areas which has lead to breakthrough technologies transforming human health and medicine. Yet let us be clear: it was not some abstract understanding of data that lead to these solutions, it was real data, derived from real individuals, individuals like you. Your data, or data from someone like you, led to those solutions. Did you know that? Did you consent to that?

We believe individuals should feel empowered by contributing to these datasets. You are changing human health- there’s perhaps nothing more important. However, in going through this analysis we were repeatedly concerned about the whether the individuals (“data-contributors”) were properly informed or consented by “data collectors” to use their data?

As we have documented here, amazing, breakthrough technologies and medicines can arise from these datasets. However, there are nefarious situations that could develop as well.

We believe new norms between "data-collectors" and "data contributors"need to be established if we want data to continue to drive the development of biotech solutions to improve human health.

How we think about privacy will change

Although the emergence of digital data through electronic health records, mobile applications, cloud storage and more have had great benefits, there are also privacy risks.

The identification of parties associated with ‘anonymous’ data becomes more likely as more sophisticated algorithms are developed; data that is secure and private today may not be so in the future. Data privacy concerns and data theft along with device hacking are a serious concern today and will only become more so as the volume and types of data collected increase.

As more data is combined, there is a greater risk of reidentification or privacy breaches. For example, when a Harvard professor was able to reidentify more than 40% of the participants in the anonymous genetic study, The Personal Genome Project.

Additionally, as other types of data are added in for health purposes, in retail for example, there is the risk that reidentification can expose private health details, for example when Target identified the pregnancy of a teenage girl to her family.

There must be value from these solutions to entertain the risks associated with combining the data. Integrating patient and participants at the centre of design ensures informed consent and a better likelihood of value that balances the risks and trade-offs.

Inclusion of diverse populations is important for the new insights to have a positive impact

The benefits and risks a patient can expect from an intervention can depend heavily on that person’s unique biological make-up. A 2015 study found that roughly 20% of new drugs approved in the previous six years demonstrated different responses across different racial and ethnic groups.

However, therapeutics are often put on the market without an understanding of the variability in efficacy and safety across patients because that is not assessed in clinical trials, either due to lack of diversity in the trial, lack of asking the right questions, or both. In the US, it is estimated that 80-90% of clinical trial participants are white despite FDA efforts to expand recruitment.

Without an intentional effort, the amassed new knowledge through biotech solutions, if not done with a diverse population, will not yield accurate insight. If the biotech solutions are not representative of the population, there is the potential to increase health disparities.

For example, genetic studies incorrectly inferred an increased risk of hypertrophic cardiomyopathy for African Americans since the genetic insights were largely gathered from anglo populations.

There are many reasons that participation has been so low in research, but authentic engagement, understanding the historical context, and intentionally funding research to increase participation and improve diversity in translational efforts are already on their way such as the All of Us Cohort and the California Initiative to Advance Precision Medicine.

Inclusive participation will help understand where people truly are in their health journey

In the clinical setting, patient centeredness also needs to occur. Healthy individuals are amassing more and more data about themselves and patients with chronic disease are also starting to rely on applications to track everything from sleep to environmental exposures to mood, but this is currently not used to increase insight for health and illness.

As patients and healthy people take charge of their data, it can only be used if they agree to share it. As biotech solutions are developed, integrating data across all the various areas will be vital to truly have an impact.

Next Steps in Biotech Health Solutions

At the start of this series, we asked: what if your doctor could predict your heart attack before you had it? Research is underway to do just that through combining data from the proteome, patient reported symptoms, and biosensors.

Big data analysis is also already yielding new leads to paediatric cancer when looking at the genetic information of tumors. In the future, this is likely to move beyond better treatment to better prevention and earlier detection. And in the case where treatment is needed, a more tailored option could be offered.

The impact of this data on improved health is exciting and impacts each of us. As data grows, increased understanding does as well. Each of us has the opportunity to be a partner in the new data frontier.

References:

- History of ‘Biotechnogy.’ Nature article Feb 1989 - Allan T. Bull, Geoffrey Holt, and Malcolm D. Lilly, Biotechnology: International Trends and Perspectives (Paris: OECD, 1982) - https://www.bio.org/what-biotechnology - https://insidebigdata.com/2017/02/16/the-exponential-growth-of-data/ - Goodrich, et al. 2014. Human genetics shapes the gut microbiome. Cell. 159(4): 789-99. - https://ghr.nlm.nih.gov/primer/traits/longevity - https://www.forbes.com/sites/adamtanner/2013/04/25/harvard-professor-re-identifies-anonymous-volunteers-in-dna-study/#203da9c992c9 - https://slate.com/human-interest/2014/06/big-data-whats-even-creepier-than-target-guessing-that-youre-pregnant.html - https://www.healio.com/cardiology/genetics-genomics/news/online/%7B006969bb-6ca2-44aa-843a-31c12874b0dc%7D/genetic-tests-may-be-misdiagnosing-hypertrophic-cardiomyopathy-in-black-americans - http://opr.ca.gov/ciapm/ https://allofus.nih.gov - http://opr.ca.gov/ciapm/ - http://opr.ca.gov/ciapm/projects/2016/Early_Prediction_Cardiovascular_Events.html - http://opr.ca.gov/ciapm/projects/2015/California_Kids_Cancer_Comparison.html

Related topics:

Essay on Technology – A Boon or Bane for Students

500+ words essay on technology for students.

In this essay on technology, we are going to discuss what technology is, what are its uses, and also what technology can do? First of all, technology refers to the use of technical and scientific knowledge to create, monitor, and design machinery. Also, technology helps in making other goods that aid mankind.

Essay on Technology – A Boon or Bane?

Experts are debating on this topic for years. Also, the technology covered a long way to make human life easier but the negative aspect of it can’t be ignored. Over the years technological advancement has caused a severe rise in pollution . Also, pollution has become a major cause of many health issues. Besides, it has cut off people from society rather than connecting them. Above all, it has taken away many jobs from the workers class.

Essay on technology

Familiarity between Technology and Science

As they are completely different fields but they are interdependent on each other. Also, it is due to science contribution we can create new innovation and build new technological tools. Apart from that, the research conducted in laboratories contributes a lot to the development of technologies. On the other hand, technology extends the agenda of science.

Vital Part of our Life

Regularly evolving technology has become an important part of our lives. Also, newer technologies are taking the market by storm and the people are getting used to them in no time. Above all, technological advancement has led to the growth and development of nations.

Negative Aspect of Technology

Although technology is a good thing, everything has two sides. Technology also has two sides one is good and the other is bad. Here are some negative aspects of technology that we are going to discuss.

Get the huge list of more than 500 Essay Topics and Ideas

With new technology the industrialization increases which give birth to many pollutions like air, water, soil, and noise. Also, they cause many health-related issues in animals, birds, and human beings.

Exhaustion of Natural Resources

New technology requires new resources for which the balance is disturbed. Eventually, this will lead to over-exploitation of natural resources which ultimately disturbs the balance of nature.

Unemployment

A single machine can replace many workers. Also, machines can do work at a constant pace for several hours or days without stopping. Due to this, many workers lost their job which ultimately increases unemployment .

Types of Technology

Generally, we judge technology on the same scale but in reality, technology is divided into various types. This includes information technology, industrial technology , architectural technology, creative technology and many more. Let’s discuss these technologies in brief.

Industrial Technology

This technology organizes engineering and manufacturing technology for the manufacturing of machines. Also, this makes the production process easier and convenient.

Creative Technology

This process includes art, advertising, and product design which are made with the help of software. Also, it comprises of 3D printers , virtual reality, computer graphics, and other wearable technologies.

Information Technology

This technology involves the use of telecommunication and computer to send, receive and store information. Internet is the best example of Information technology.

essay on future technology

FAQs on Essay on Technology

Q.1 What is Information technology?

A –  It is a form of technology that uses telecommunication and computer systems for study. Also, they send, retrieve, and store data.

Q.2 Is technology harmful to humans?

 A – No, technology is not harmful to human beings until it is used properly. But, misuses of technology can be harmful and deadly.

Download Toppr – Best Learning App for Class 5 to 12

Toppr provides free study materials, last 10 years of question papers, 1000+ hours of video lectures, live 24/7 doubts solving, and much more for FREE! Download Toppr app for Android and iOS or signup for free.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

All About Technology Essay

Personal Technology Essay Blog

Home » Education » Writing an Essay About Future Technology

Writing an Essay About Future Technology

A Technology Past Present and Future Essay is a type of essay that is written to answer questions such as: What is the importance of technology in the future? How can technology affect people’s lives today? Who will benefit from the future of technology?

There are many different types of technology that exist today. Some of these include computers, radio, television, cellular phones, and satellite television. Each of these has their own unique characteristics, and each is very useful in society.

These different things have been developed over time, and the information about all of these things is constantly changing. Some things are important, while others are not. Technology is always changing. As a writer, you must keep up with the changing times so that your essays will be timeless and still relevant.

One of the best ways to write a technology essay is to discuss all of the different topics that are relevant to the topic. This way, you will have information about what was around when the technology was developed, and you can explain the various characteristics that were discovered. This will also allow for an argument as to why certain things are important today, while others were not known about at the time.

In your essay, you must describe the development of the technologies that you are discussing, including how the development progressed over time. You must also explain the different reasons that people used the technology. It is important to show a progression of technology from past to present, and then to the future.

Past technology that is being discussed is always going to be considered. Because technology has changed so much, there is always a different way to think about technology than there was in the past. For example, you might have a technology essay about how the computer changed the world, or you might have an essay about how the cell phone changed the world. There are several different types of technology that are used in society, and everyone should have an opportunity to use them.

Because of the technological advancements that are happening each day, people in society have more opportunity to use these things that have changed. People who are not familiar with a new invention can become knowledgeable about the invention through the use of an internet. The Internet is one of the most widely used inventions in society, and is used for both research and learning.

The future of technology is in everyone’s hands. If you write an essay about the future of technology, it is very important that you understand the future of technology, and how it will affect the world. The people that will read this essay will be able to predict the future of the technologies that will be available to them and what they will do.

When you talk about the future of technology, you must give yourself some time to write your essay. You need to consider how the future will change the present and what changes it will bring about. It is important to write your essay in such a way that it is interesting to read. A good way to learn about the future is to read the past in order to see what the past has taught us.

Some people think that writing about the future is a bit difficult. While some people think that it is, other people think that it is not. There are some people who believe that there are many different opinions on the future of technology, and how it affects the present. It is true that there are many different people that believe that there are two different visions of the future of technology, and they have a good reason for this.

Some people may think that current technology has gotten better because they have been able to develop the latest gadgets and tools. They are right in some cases, but there are also many people that believe that these gadgets are not as useful as they used to be. This is because the technology has changed, and the tools that were once helpful are now obsolete.

When you write your essay , it is very important to consider the future. Whether you write it for school or for a school assignment, you want to give your readers some hope. You want to give your readers a clear picture of what their lives will be like in the future, so that they can know if the future is something that is exciting.

Technology Advantages and Disadvantages Essay

Essay on Effects of Technology on Human Beings

essay on future technology

Exploring the Hopeful Aspects of Technology in ‘A Brief History of the Future’ Documentary

A midst a sea of skepticism commonly seen in tech journalism, a glimmer of optimism shines through with the documentary series “A Brief History of the Future,” hosted by Ari Wallach, presented by PBS without cost. This show offers an alternative narrative that focuses on the positive impacts of technology and innovation alongside its potential risks.

Host Ari Wallach delves into conversations with various thought leaders and innovators, attempting to counter the pervasive fear of technology predominant in society. Instead of concentrating solely on the perils technology may bring, Wallach presents an intervention that addresses the prospective benefits and opportunities for a better future.

Despite their acquaintance, my interaction with Wallach revealed the show’s mission to transcend negative stereotypes portrayed in the media and consider the productive ways individuals and organizations are shaping our collective future through their groundbreaking work, spanning topics from sustainable materials to complex social services.

Comprising six episodes, the documentary showcases personal stories and initiatives aimed at confronting the challenges of a changing world, with an emphasis on action and agency over mere profitability.

“A Brief History of the Future” touches on diverse themes including advanced technology, environmental sustainability, and even philosophical discourse on governance and societal values.

While acknowledging the scalability issues that innovative solutions often face, Wallach highlights how these inspirational cases serve as models for thinking creatively about tomorrow’s possibilities, not just for venture capital gains but for addressing urgent global concerns.

The documentary has garnered international attention and features influential figures such as politicians and artists, fostering discussions around the future’s potential rather than its threats. Wallach’s experiences and interviews span from Japanese professors to researchers in prestigious labs and end-of-life care professionals.

Funded by the Public Broadcasting Service, the documentary is freely accessible on PBS.org , YouTube, and national television, broadening its reach to diverse audiences, including those who may not partake in the latest digital streaming trends.

An educational variant is also available, accompanying a nationwide curriculum aimed at fostering discussion among students on the pertinent issues tackled in the series.

Wallach’s reflective commentary underscores the documentary’s influence and its aspiration to join the ranks of transformative television programming that shape our perspectives on the cosmos, mythology, and ultimately, our future.

FAQs About ‘A Brief History of the Future’

Who hosts the documentary series ‘A Brief History of the Future’?

Ari Wallach hosts the documentary series.

What is the main objective of ‘A Brief History of the Future’?

The series aims to present a more optimistic view of technology’s role in shaping the future, as opposed to the common narrative of fear.

How many episodes does the series have, and what topics does it cover?

There are six episodes covering a range of topics from technology to art, ecology, and existential themes.

Can I watch the series for free?

Yes, the series is available for free streaming on PBS.org, YouTube, and scheduled television broadcasts.

Is there an educational version of the series?

Yes, an educational version with accompanying resources has been developed for classroom use.

The documentary series “A Brief History of the Future” tackles the prevalent perspective of pessimism in the tech industry by spotlighting stories of hope and progress. Led by Ari Wallach, the series reassures viewers that despite the undeniable challenges technology presents, there is also a wealth of ingenuity and determination driving us towards a brighter tomorrow. The series, available to the masses without charge thanks to PBS, not only entertains but also educates, inspiring a sense of possibility and responsibility about our shared future. In the vein of influential programs of the past, Wallach and his team forge a path for viewers to consider the vast potential that the future holds, making “A Brief History of the Future” a necessary watch for optimists and skeptics alike.

brief history poster

The End of Foreign-Language Education

Thanks to AI, people may no longer feel the need to learn a second language.

Listen to this article

Produced by ElevenLabs and News Over Audio (NOA) using AI narration.

A few days ago, I watched a video of myself talking in perfect Chinese. I’ve been studying the language on and off for only a few years, and I’m far from fluent. But there I was, pronouncing each character flawlessly in the correct tone, just as a native speaker would. Gone were my grammar mistakes and awkward pauses, replaced by a smooth and slightly alien-sounding voice. “My favorite food is sushi,” I said— wo zui xihuan de shiwu shi shousi —with no hint of excitement or joy.

I’d created the video using software from a Los Angeles–based artificial-intelligence start-up called HeyGen. It allows users to generate deepfake videos of real people “saying” almost anything based on a single picture of their face and a script, which is paired with a synthetic voice and can be translated into more than 40 languages. By merely uploading a selfie taken on my iPhone, I was able to glimpse a level of Mandarin fluency that may elude me for the rest of my life.

HeyGen’s visuals are flawed—the way it animates selfies almost reminded me of the animatronics in Disney’s It’s a Small World ride—but its language technology is good enough to make me question whether learning Mandarin is a wasted effort. Neural networks, the machine-learning systems that power generative-AI programs such as ChatGPT, have rapidly improved the quality of automatic translation over the past several years, making even older tools like Google Translate far more accurate.

At the same time, the number of students studying foreign languages in the U.S. and other countries is shrinking. Total enrollment in language courses other than English at American colleges decreased 29.3 percent from 2009 to 2021, according to the latest data from the Modern Language Association, better known as the MLA. In Australia, only 8.6 percent of high-school seniors were studying a foreign language in 2021—a historic low. In South Korea and New Zealand , universities are closing their French, German, and Italian departments. One recent study from the education company EF Education First found that English proficiency is decreasing among young people in some places.

Many factors could help explain the downward trend, including pandemic-related school disruptions, growing isolationism, and funding cuts to humanities programs. But whether the cause of the shift is political, cultural, or some mix of things, it’s clear that people are turning away from language learning just as automatic translation becomes ubiquitous across the internet.

Read: High-school English needed a makeover before ChatGPT

Within a few years, AI translation may become so commonplace and frictionless that billions of people take for granted the fact that the emails they receive, videos they watch, and albums they listen to were originally produced in a language other than their native one. Something enormous will be lost in exchange for that convenience. Studies have suggested that language shapes the way people interpret reality. Learning a different way to speak, read, and write helps people discover new ways to see the world—experts I spoke with likened it to discovering a new way to think. No machine can replace such a profoundly human experience. Yet tech companies are weaving automatic translation into more and more products. As the technology becomes normalized, we may find that we’ve allowed deep human connections to be replaced by communication that’s technically proficient but ultimately hollow.

AI language tools are now in social-media apps, messaging platforms, and streaming sites. Spotify is experimenting with using a voice-generation tool from the ChatGPT maker OpenAI to translate podcasts in the host’s own voice, while Samsung is touting that its new Galaxy S24 smartphone can translate phone calls as they’re occurring . Roblox, meanwhile, claimed last month that its AI translation tool is so fast and accurate , its English-speaking users might not realize that their conversation partner “is actually in Korea.” The technology—which works especially well for “ high-resource languages ” such as English and Chinese, and less so for languages such as Swahili and Urdu—is being used in much more high-stakes situations as well, such as translating the testimony of asylum seekers and firsthand accounts from conflict zones. Musicians are already using it to translate songs , and at least one couple credited it with helping them to fall in love.

One of the most telling use cases comes from a start-up called Jumpspeak, which makes a language-learning app similar to Duolingo and Babbel. Instead of hiring actual bilingual actors, Jumpspeak appears to have used AI-generated “people” reading AI-translated scripts in at least four ads on Instagram and Facebook. At least some of the personas shown in the ads appear to be default characters available on HeyGen’s platform. “I struggled to learn languages my whole life. Then I learned Spanish in six months, I got a job opportunity in France, and I learned French. I learned Mandarin before visiting China,” a synthetic avatar says in one of the ads, while switching between all three languages. Even a language-learning app is surrendering to the allure of AI, at least in its marketing.

Alexandru Voica, a communications professional who works for another video-generating AI service, told me he came across Jumpspeak’s ads while looking for a program to teach his children Romanian, the language spoken by their grandparents. He argued that the ads demonstrated how deepfakes and automated-translation software could be used to mislead or deceive people. “I'm worried that some in the industry are currently in a race to the bottom on AI safety,” he told me in an email. (The ads were taken down after I started reporting this story, but it’s not clear if Meta or Jumpspeak removed them; neither company returned requests for comment. HeyGen also did not immediately respond to a request for comment about its product being used in Jumpspeak’s marketing.)

The world is already seeing how all of this can go wrong. Earlier this month, a far-right conspiracy theorist shared several AI-generated clips on X of Adolf Hitler giving a 1939 speech in English instead of the original German. The videos, which were purportedly produced using software from a company called ElevenLabs, featured a re-creation of Hitler’s own voice. It was a strange experience, hearing Hitler speak in English, and some people left comments suggesting that they found him easy to empathize with: “It sounds like these people cared about their country above all else,” one X user reportedly wrote in response to the videos. ElevenLabs did not immediately respond to a request for comment. ( The Atlantic uses ElevenLabs’ AI voice generator to narrate some articles.)

Read: The last frontier of machine translation

Gabriel Nicholas, a research fellow at the nonprofit Center for Democracy and Technology, told me that part of the problem with machine-translation programs is that they’re often falsely perceived as being neutral, rather than “bringing their own perspective upon how to move text from one language to another.” The truth is that there is no single right or correct way to transpose a sentence from French to Russian or any other language—it’s an art rather than a science. “Students will ask, ‘How do you say this in Spanish?’ and I’ll say, ‘You just don’t say it the same way in Spanish; the way you would approach it is different,’” Deborah Cohn, a Spanish- and Portuguese-language professor at Indiana University Bloomington who has written about the importance of language learning for bolstering U.S. national security , told me.

I recently came across a beautiful and particularly illustrative example of this fact in an article written by a translator in China named Anne. “Building a ladder between widely different languages, such as Chinese and English, is sometimes as difficult as a doctor building a bridge in a patient's heart,” she wrote. The metaphor initially struck me as slightly odd, but thankfully I wasn’t relying on ChatGPT to translate Anne’s words from their original Mandarin. I was reading a human translation by a professor named Jeffrey Ding, who helpfully noted that Anne may have been referring to a type of heart surgery that has recently become common in China. It's a small detail, but understanding that context brought me much closer to the true meaning of what Anne was trying to say.

Read: The college essay is dead

But most students will likely never achieve anything close to the fluency required to tell whether a translation rings close enough to the original or not. If professors accept that automated technology will far outpace the technical skills of the average Russian or Arabic major, their focus would ideally shift from grammar drills to developing cultural competency , or understanding the beliefs and practices of people from different backgrounds. Instead of cutting language courses in response to AI, schools should “stress more than ever the intercultural components of language learning that tremendously benefit the students taking these classes,” Jen William, the head of the School of Languages and Cultures at Purdue University and a member of the executive committee of the Association of Language Departments, told me.

Paula Krebs, the executive director of the MLA, referenced a beloved 1991 episode of Star Trek: The Next Generation to make a similar point. In “Darmok,” the crew aboard the starship Enterprise struggles to communicate with aliens living on a planet called El-Adrel IV. They have access to a “universal translator” that allows them to understand the basic syntax and semantics of what the Tamarians are saying, but the greater meaning of their utterances remains a mystery.

It later becomes clear that their language revolves around allegories rooted in the Tamarians’ unique history and practices. Even though Captain Picard was translating all the words they were saying, he “couldn’t understand the metaphors of their culture,” Krebs told me. More than 30 years later, something like a universal translator is now being developed on Earth. But it similarly doesn’t have the power to bridge cultural divides the way that humans can.

ScienceDaily

Using 'time travel' to think about technology from the perspective of future generations

The world approaches an environmental tipping point, and our decisions now regarding energy, resources, and the environment will have profound consequences for the future. Despite this, most sustainable thought tends to be limited to the viewpoint of current generations.

In a study published in Technological Forecasting and Social Change , researchers from Osaka University have revealed that adopting the perspective of "imaginary future generations" (IFGs) can yield fascinating insights into long-term social and technological trends.

The researchers organized a series of four workshops at Osaka University, with participants drawn from the faculty and student body of the Graduate School of Engineering. The workshops discussed the state of future society and manufacturing in general, and also looked at one technology in particular: hydrothermally produced porous glass. During the workshops, the participants were asked to think about this technology from the perspective of IFGs, to imagine how this technology might be adopted in the future and to assess its future potentiality.

"We chose hydrothermally produced porous glass for the case study because of the generational trade-offs involved," says lead author of the study Keishiro Hara. "Porous glass is incredibly useful as either a filter for removing impurities or an insulator for buildings. Also, it can be recycled into new porous glass more or less indefinitely. The problem is that making it takes a lot of energy -- both to pulverize waste glass and to heat water to very high temperatures. There's a striking trade-off between costs now and gains in the future."

In the workshops, the participants first looked at issues involving society and manufacturing from the perspective of the present and were then asked to imagine themselves in the shoes of their counterparts in 2040.

"The future the participants imagined was quite different from the future as seen from the perspective of the current generation," explains Toshihiro Tanaka, senior author. "Most groups described a future in which sustainability has become a central concern for society. Meanwhile, advances in renewal energy mean that energy is abundant, as are resources, as frontiers such as the moon and deep ocean are opened to exploration. In this context, hydrothermally produced porous glass comes into its own as a sustainable way to recycle glass, and the energy needed to produce it is readily available."

The participants were surveyed between workshops and asked to rank indicators related to the future potentiality of the technology. Interestingly, these rankings looked quite different after the workshops in which the participants were asked to take on the perspective of "imaginary future generations."

"We noticed that when the "imaginary future generations" method, which has been proven to be effective in facilitating long-term thinking, was adopted, participants perceived the feasibility of this technology differently, and their adoption scenarios changed accordingly," says Hara.

The study suggests that the simple act of putting ourselves in the position of future generations may provide new perspectives on issues of sustainability and technology, helping us to rethink our priorities and set new directions for research and development.

  • Energy Technology
  • Energy and Resources
  • Engineering and Construction
  • Educational Technology
  • Information Technology
  • Computer Science
  • Environmental Policies
  • STEM Education
  • Energy Issues
  • Emerging technologies
  • Engineering
  • Nanomedicine
  • Scientific method
  • Liquid nitrogen economy
  • Earth science

Story Source:

Materials provided by Osaka University . Note: Content may be edited for style and length.

Journal Reference :

  • Keishiro Hara, Iori Miura, Masanori Suzuki, Toshihiro Tanaka. Assessing future potentiality of technologies from the perspective of “imaginary future generations” – A case study of hydrothermal technology . Technological Forecasting and Social Change , 2024; 202: 123289 DOI: 10.1016/j.techfore.2024.123289

Cite This Page :

Explore More

  • 100 Kilometers of Quantum-Encrypted Transfer
  • Intelligent Liquid
  • New Approach to Searching for Dark Matter
  • We've Had Bird Evolution All Wrong
  • Physical Activity Protects Against Chronic Pain
  • Australia On Track for Decades-Long Megadroughts
  • Speed of Visual Perception Ranges Widely
  • 3D Printed Replica of an Adult Human Ear
  • Extremely Fast Wound Healing: New Treatment
  • Micro-Lisa! Novel Nano-Scale Laser Writing

Trending Topics

Strange & offbeat.

IMAGES

  1. Technology and Its Impact on Society Essay Example

    essay on future technology

  2. Importance of Technology Essay

    essay on future technology

  3. Navigating the Future: Balancing Innovation and Tradition Free Essay

    essay on future technology

  4. Essay on Technology

    essay on future technology

  5. Advancement of Technology has Improved Our Lives Free Essay Example

    essay on future technology

  6. Technology in Healthcare Free Essay Example

    essay on future technology

VIDEO

  1. Information Technology Essay writing in English..Short Essay on Technology Information in 150 words

  2. Easy essay on impact of technology on society/How Technology change the society/impact of technology

  3. Advance Future Technology, Must See (By Aditya)

  4. Transportation in 2050: A Glimpse into the Future

  5. Technology Essay in English For Students|ESSAY ON TECHNOLOGY IN 250 WORDS #Technology#tech#techno

  6. The Industrial Revolution F**KED Us!!!!

COMMENTS

  1. How Is Technology Changing the World, and How Should the World Change

    This growing complexity makes it more difficult than ever—and more imperative than ever—for scholars to probe how technological advancements are altering life around the world in both positive and negative ways and what social, political, and legal tools are needed to help shape the development and design of technology in beneficial directions.

  2. 8 ways technology will impact our lives in the future

    Industrial applications will particularly benefit due to their larger capacity. "In the meanwhile, people will get used to better connections, higher speeds, and lower latency for their regular devices as well," he adds, before warning: "It's going to cost a lot of money.". 5. ChatGPT-like tech will become the norm.

  3. How to change the future of technology

    September 7, 2021 We all have the power to shape the future of technology, say Stanford scholars. Three Stanford professors want people to press control-alt-delete on how we think about our ...

  4. Essay on Future Technology

    100 Words Essay on Future Technology What is Future Technology? Future technology means the new inventions and ideas that will change how we live. Think of robots, smart cars, and computers that can learn. These things are not common now, but in the future, they might be everywhere, helping us in ways we can't imagine yet. ...

  5. How the top 10 emerging technologies of 2023 will affect us

    The World Economic Forum's newly-launched 'Top 10 Emerging Technologies of 2023' report lists this year's most impactful emerging technologies. The Top 10 list includes environmental innovations, such as sustainable aviation fuels and wearable plant sensors. Other emerging technologies range from innovations harnessing the power of AI to ...

  6. 200-500 Word Example Essays about Technology

    But writing a technology essay can be challenging, especially for those needing more time or help with writer's block. ... while automation is transforming the future of work. In education, technology has revolutionized the way we learn and access information. At the same time, our dependence on technology has brought new challenges in terms of ...

  7. 17 ways technology could change the world by 2027

    By 2027, major food, beverage, and consumer packaged goods manufacturers will use AI-driven supply chain technology to see future disruption and act before weather, labour issues, and other incidents can harm the global food supply. Contingency plans will be needed far less often because companies will have advanced insights exposing how future ...

  8. Tech trends reshaping the future of IT and business

    Key tech trends. We estimate that 70 percent of companies will employ hybrid or multicloud management technologies, tools, and processes. 2 At the same time, 5G will deliver network speeds that are about ten times faster than current speeds on 4G LTE networks, 3 with expectations of speeds that are up to 100 times faster with 40 times faster ...

  9. Future technology: 22 ideas about to change our world

    The future is coming, and sooner than you think. These emerging technologies will change the way we live, how we look after our bodies and help us avert a climate disaster.

  10. Futurism: Technology In The Future: [Essay Example], 1366 words

    Science has profoundly modified education. For one, technology has notably multiplied get right of entry to education. In medieval times, books had been uncommon and only an elite few had to get admission to academic opportunities. Individuals had to tour to centers of learning to get an education.

  11. Science and Technology Will Change Our Future Essay

    Changes in travel. Innovation in Science and Technology will also change travel. People will be traveling on sky car that will be cruising comfortably at a speed of 300Miles per hour using regular fuel. The sky car will be equipped with onboard computers and will be fully automated. This means that one will not need a license to fly the sky car.

  12. Society

    essay. Future of technology. Learn from machine learning. The world is a black box full of extreme specificity: it might be predictable but that doesn't mean it is understandable. ... essay. Technology and the self. Zoom and gloom. Sitting in a videoconference is a uniformly crap experience. Instead of corroding our humanity, let's design ...

  13. Technological Advancement Essay

    How do I start an essay about technology It is a good idea to start your technology advancement with a hook. One option is to use a quote, like the following one by Albert Einstein: "It has become appallingly obvious that our technology has exceeded our humanity." One more option is to use an exciting fact like the following one: Over 6,000 ...

  14. Future Technology Essay Essay

    Future Technology Essay. People often think that future is all about flying cars, robots and space travelling. Maybe it will be like that, who knows, but at least until this day the changes havent been remarkable. Companies are all the time investing more money on research and development. This indicates that companies and government are ...

  15. Technology Essay for Students in English

    Essay on Technology. The word "technology" and its uses have immensely changed since the 20th century, and with time, it has continued to evolve ever since. We are living in a world driven by technology. The advancement of technology has played an important role in the development of human civilization, along with cultural changes.

  16. Young people's technological images of the future: implications for

    Modern technology has had and continues to have various impacts on societies and human life in general. While technology in some ways defines the 'digital age' of today, discourses of 'technological progress' may dominate discussions of tomorrow. Conceptions of technology and futures seem to be intertwined, as technology has been predicted by experts to lead us anywhere between utopia ...

  17. Technology and Its Impact in the World

    Technology is defined as the use of tools, techniques and methods of organization in solving real world problems, which aims at performing specific tasks. Technology has a profound root in the society; this is because today's world relies on the advances in technology. These advances in technology in today's world has sped people's lives ...

  18. Exclusive: Behind the plot to break Nvidia's grip on AI by targeting

    Starting with a piece of technology developed by Intel , opens new tab called OneAPI, the UXL Foundation, a consortium of tech companies, plans to build a suite of software and tools that will be ...

  19. 6 expert essays on the future of biotech

    Today due to biotech and computational advancements, sequencing a person's genome costs approximately $1,000 and can be completed in about a day. Important milestones in the history of genomics. 1869 - DNA was first identified. 1953 - Structure of DNA established.

  20. Essay on Technology

    FAQs on Essay on Technology. Q.1 What is Information technology? A - It is a form of technology that uses telecommunication and computer systems for study. Also, they send, retrieve, and store data. Q.2 Is technology harmful to humans? A - No, technology is not harmful to human beings until it is used properly.

  21. Essay on the Future of Computer Technology

    The second focus will be in the form of optical computers. The computers we use today use transistors and semiconductors to control electricity. Computers of the future may utilize crystals and meta-materials to control light. Optical computers make use of light particles called photons (which are parts of an atom).

  22. Essay on Technology For Students In English

    Essay on Technology: 500+ Words Essay on Technology is provided here to help students get familiar with the advantages and disadvantages of technology and use it in the right direction. Go through it and write more essays on similar topics. ... The future of technology seems to be exciting but also scary. Futuristic predictions in technology ...

  23. Writing an Essay About Future Technology

    If you write an essay about the future of technology, it is very important that you understand the future of technology, and how it will affect the world. The people that will read this essay will be able to predict the future of the technologies that will be available to them and what they will do. When you talk about the future of technology ...

  24. Exploring the Hopeful Aspects of Technology in 'A Brief History ...

    Amidst a sea of skepticism commonly seen in tech journalism, a glimmer of optimism shines through with the documentary series "A Brief History of the Future," hosted by Ari Wallach, presented ...

  25. The End of Foreign-Language Education

    The technology—which works especially well for "high-resource languages" such as English and Chinese, and less so for languages such as Swahili and Urdu—is being used in much more high ...

  26. Essay on Technology in the Future

    They became bigger, better, more intelligent, and more efficient as technology progressed. As robots begin to grow in size they also grew more intelligent, they seemed to be taking over the world. Robots have slowly yet surely been taking over the world. Everywhere you look these days there seem to be robots at every corner.

  27. Drone Swarms Are About to Change the Balance of Military Power

    Essay; Drone Swarms Are About to Change the Balance of Military Power On today's battlefields, drones are a manageable threat. When hundreds of them can be harnessed to AI technology, they will ...

  28. Using 'time travel' to think about technology from the perspective of

    Using 'time travel' to think about technology from the perspective of future generations Date: March 26, 2024 Source: Osaka University Summary: Researchers have conducted a series of participatory ...

  29. Fahrenheit 451 Technology Essay

    Fahrenheit 451 Technology Essay. 925 Words4 Pages. Fahrenheit 451 is a dystopian novel by Ray Bradbury set in a future society where books are outlawed and the "firemen" burn any that are found. It follows the protagonist, Guy Montag, a fireman who begins questioning his cruel society and rebels against it.