How to Write the Discussion Section of a Research Paper

The discussion section of a research paper analyzes and interprets the findings, provides context, compares them with previous studies, identifies limitations, and suggests future research directions.

Updated on September 15, 2023

researchers writing the discussion section of their research paper

Structure your discussion section right, and you’ll be cited more often while doing a greater service to the scientific community. So, what actually goes into the discussion section? And how do you write it?

The discussion section of your research paper is where you let the reader know how your study is positioned in the literature, what to take away from your paper, and how your work helps them. It can also include your conclusions and suggestions for future studies.

First, we’ll define all the parts of your discussion paper, and then look into how to write a strong, effective discussion section for your paper or manuscript.

Discussion section: what is it, what it does

The discussion section comes later in your paper, following the introduction, methods, and results. The discussion sets up your study’s conclusions. Its main goals are to present, interpret, and provide a context for your results.

What is it?

The discussion section provides an analysis and interpretation of the findings, compares them with previous studies, identifies limitations, and suggests future directions for research.

This section combines information from the preceding parts of your paper into a coherent story. By this point, the reader already knows why you did your study (introduction), how you did it (methods), and what happened (results). In the discussion, you’ll help the reader connect the ideas from these sections.

Why is it necessary?

The discussion provides context and interpretations for the results. It also answers the questions posed in the introduction. While the results section describes your findings, the discussion explains what they say. This is also where you can describe the impact or implications of your research.

Adds context for your results

Most research studies aim to answer a question, replicate a finding, or address limitations in the literature. These goals are first described in the introduction. However, in the discussion section, the author can refer back to them to explain how the study's objective was achieved. 

Shows what your results actually mean and real-world implications

The discussion can also describe the effect of your findings on research or practice. How are your results significant for readers, other researchers, or policymakers?

What to include in your discussion (in the correct order)

A complete and effective discussion section should at least touch on the points described below.

Summary of key findings

The discussion should begin with a brief factual summary of the results. Concisely overview the main results you obtained.

Begin with key findings with supporting evidence

Your results section described a list of findings, but what message do they send when you look at them all together?

Your findings were detailed in the results section, so there’s no need to repeat them here, but do provide at least a few highlights. This will help refresh the reader’s memory and help them focus on the big picture.

Read the first paragraph of the discussion section in this article (PDF) for an example of how to start this part of your paper. Notice how the authors break down their results and follow each description sentence with an explanation of why each finding is relevant. 

State clearly and concisely

Following a clear and direct writing style is especially important in the discussion section. After all, this is where you will make some of the most impactful points in your paper. While the results section often contains technical vocabulary, such as statistical terms, the discussion section lets you describe your findings more clearly. 

Interpretation of results

Once you’ve given your reader an overview of your results, you need to interpret those results. In other words, what do your results mean? Discuss the findings’ implications and significance in relation to your research question or hypothesis.

Analyze and interpret your findings

Look into your findings and explore what’s behind them or what may have caused them. If your introduction cited theories or studies that could explain your findings, use these sources as a basis to discuss your results.

For example, look at the second paragraph in the discussion section of this article on waggling honey bees. Here, the authors explore their results based on information from the literature.

Unexpected or contradictory results

Sometimes, your findings are not what you expect. Here’s where you describe this and try to find a reason for it. Could it be because of the method you used? Does it have something to do with the variables analyzed? Comparing your methods with those of other similar studies can help with this task.

Context and comparison with previous work

Refer to related studies to place your research in a larger context and the literature. Compare and contrast your findings with existing literature, highlighting similarities, differences, and/or contradictions.

How your work compares or contrasts with previous work

Studies with similar findings to yours can be cited to show the strength of your findings. Information from these studies can also be used to help explain your results. Differences between your findings and others in the literature can also be discussed here. 

How to divide this section into subsections

If you have more than one objective in your study or many key findings, you can dedicate a separate section to each of these. Here’s an example of this approach. You can see that the discussion section is divided into topics and even has a separate heading for each of them. 

Limitations

Many journals require you to include the limitations of your study in the discussion. Even if they don’t, there are good reasons to mention these in your paper.

Why limitations don’t have a negative connotation

A study’s limitations are points to be improved upon in future research. While some of these may be flaws in your method, many may be due to factors you couldn’t predict.

Examples include time constraints or small sample sizes. Pointing this out will help future researchers avoid or address these issues. This part of the discussion can also include any attempts you have made to reduce the impact of these limitations, as in this study .

How limitations add to a researcher's credibility

Pointing out the limitations of your study demonstrates transparency. It also shows that you know your methods well and can conduct a critical assessment of them.  

Implications and significance

The final paragraph of the discussion section should contain the take-home messages for your study. It can also cite the “strong points” of your study, to contrast with the limitations section.

Restate your hypothesis

Remind the reader what your hypothesis was before you conducted the study. 

How was it proven or disproven?

Identify your main findings and describe how they relate to your hypothesis.

How your results contribute to the literature

Were you able to answer your research question? Or address a gap in the literature?

Future implications of your research

Describe the impact that your results may have on the topic of study. Your results may show, for instance, that there are still limitations in the literature for future studies to address. There may be a need for studies that extend your findings in a specific way. You also may need additional research to corroborate your findings. 

Sample discussion section

This fictitious example covers all the aspects discussed above. Your actual discussion section will probably be much longer, but you can read this to get an idea of everything your discussion should cover.

Our results showed that the presence of cats in a household is associated with higher levels of perceived happiness by its human occupants. These findings support our hypothesis and demonstrate the association between pet ownership and well-being. 

The present findings align with those of Bao and Schreer (2016) and Hardie et al. (2023), who observed greater life satisfaction in pet owners relative to non-owners. Although the present study did not directly evaluate life satisfaction, this factor may explain the association between happiness and cat ownership observed in our sample.

Our findings must be interpreted in light of some limitations, such as the focus on cat ownership only rather than pets as a whole. This may limit the generalizability of our results.

Nevertheless, this study had several strengths. These include its strict exclusion criteria and use of a standardized assessment instrument to investigate the relationships between pets and owners. These attributes bolster the accuracy of our results and reduce the influence of confounding factors, increasing the strength of our conclusions. Future studies may examine the factors that mediate the association between pet ownership and happiness to better comprehend this phenomenon.

This brief discussion begins with a quick summary of the results and hypothesis. The next paragraph cites previous research and compares its findings to those of this study. Information from previous studies is also used to help interpret the findings. After discussing the results of the study, some limitations are pointed out. The paper also explains why these limitations may influence the interpretation of results. Then, final conclusions are drawn based on the study, and directions for future research are suggested.

How to make your discussion flow naturally

If you find writing in scientific English challenging, the discussion and conclusions are often the hardest parts of the paper to write. That’s because you’re not just listing up studies, methods, and outcomes. You’re actually expressing your thoughts and interpretations in words.

  • How formal should it be?
  • What words should you use, or not use?
  • How do you meet strict word limits, or make it longer and more informative?

Always give it your best, but sometimes a helping hand can, well, help. Getting a professional edit can help clarify your work’s importance while improving the English used to explain it. When readers know the value of your work, they’ll cite it. We’ll assign your study to an expert editor knowledgeable in your area of research. Their work will clarify your discussion, helping it to tell your story. Find out more about AJE Editing.

Adam Goulston, Science Marketing Consultant, PsyD, Human and Organizational Behavior, Scize

Adam Goulston, PsyD, MS, MBA, MISD, ELS

Science Marketing Consultant

See our "Privacy Policy"

Ensure your structure and ideas are consistent and clearly communicated

Pair your Premium Editing with our add-on service Presubmission Review for an overall assessment of your manuscript.

Editorial Manager, our manuscript submissions site will be unavailable between 12pm April 5, 2024 and 12pm April 8 2024 (Pacific Standard Time). We apologize for any inconvenience this may cause.

When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open.

  • PLOS Biology
  • PLOS Climate
  • PLOS Complex Systems
  • PLOS Computational Biology
  • PLOS Digital Health
  • PLOS Genetics
  • PLOS Global Public Health
  • PLOS Medicine
  • PLOS Mental Health
  • PLOS Neglected Tropical Diseases
  • PLOS Pathogens
  • PLOS Sustainability and Transformation
  • PLOS Collections
  • How to Write Discussions and Conclusions

How to Write Discussions and Conclusions

The discussion section contains the results and outcomes of a study. An effective discussion informs readers what can be learned from your experiment and provides context for the results.

What makes an effective discussion?

When you’re ready to write your discussion, you’ve already introduced the purpose of your study and provided an in-depth description of the methodology. The discussion informs readers about the larger implications of your study based on the results. Highlighting these implications while not overstating the findings can be challenging, especially when you’re submitting to a journal that selects articles based on novelty or potential impact. Regardless of what journal you are submitting to, the discussion section always serves the same purpose: concluding what your study results actually mean.

A successful discussion section puts your findings in context. It should include:

  • the results of your research,
  • a discussion of related research, and
  • a comparison between your results and initial hypothesis.

Tip: Not all journals share the same naming conventions.

You can apply the advice in this article to the conclusion, results or discussion sections of your manuscript.

Our Early Career Researcher community tells us that the conclusion is often considered the most difficult aspect of a manuscript to write. To help, this guide provides questions to ask yourself, a basic structure to model your discussion off of and examples from published manuscripts. 

how to write variable discussion in research

Questions to ask yourself:

  • Was my hypothesis correct?
  • If my hypothesis is partially correct or entirely different, what can be learned from the results? 
  • How do the conclusions reshape or add onto the existing knowledge in the field? What does previous research say about the topic? 
  • Why are the results important or relevant to your audience? Do they add further evidence to a scientific consensus or disprove prior studies? 
  • How can future research build on these observations? What are the key experiments that must be done? 
  • What is the “take-home” message you want your reader to leave with?

How to structure a discussion

Trying to fit a complete discussion into a single paragraph can add unnecessary stress to the writing process. If possible, you’ll want to give yourself two or three paragraphs to give the reader a comprehensive understanding of your study as a whole. Here’s one way to structure an effective discussion:

how to write variable discussion in research

Writing Tips

While the above sections can help you brainstorm and structure your discussion, there are many common mistakes that writers revert to when having difficulties with their paper. Writing a discussion can be a delicate balance between summarizing your results, providing proper context for your research and avoiding introducing new information. Remember that your paper should be both confident and honest about the results! 

What to do

  • Read the journal’s guidelines on the discussion and conclusion sections. If possible, learn about the guidelines before writing the discussion to ensure you’re writing to meet their expectations. 
  • Begin with a clear statement of the principal findings. This will reinforce the main take-away for the reader and set up the rest of the discussion. 
  • Explain why the outcomes of your study are important to the reader. Discuss the implications of your findings realistically based on previous literature, highlighting both the strengths and limitations of the research. 
  • State whether the results prove or disprove your hypothesis. If your hypothesis was disproved, what might be the reasons? 
  • Introduce new or expanded ways to think about the research question. Indicate what next steps can be taken to further pursue any unresolved questions. 
  • If dealing with a contemporary or ongoing problem, such as climate change, discuss possible consequences if the problem is avoided. 
  • Be concise. Adding unnecessary detail can distract from the main findings. 

What not to do

Don’t

  • Rewrite your abstract. Statements with “we investigated” or “we studied” generally do not belong in the discussion. 
  • Include new arguments or evidence not previously discussed. Necessary information and evidence should be introduced in the main body of the paper. 
  • Apologize. Even if your research contains significant limitations, don’t undermine your authority by including statements that doubt your methodology or execution. 
  • Shy away from speaking on limitations or negative results. Including limitations and negative results will give readers a complete understanding of the presented research. Potential limitations include sources of potential bias, threats to internal or external validity, barriers to implementing an intervention and other issues inherent to the study design. 
  • Overstate the importance of your findings. Making grand statements about how a study will fully resolve large questions can lead readers to doubt the success of the research. 

Snippets of Effective Discussions:

Consumer-based actions to reduce plastic pollution in rivers: A multi-criteria decision analysis approach

Identifying reliable indicators of fitness in polar bears

  • How to Write a Great Title
  • How to Write an Abstract
  • How to Write Your Methods
  • How to Report Statistics
  • How to Edit Your Work

The contents of the Peer Review Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

The contents of the Writing Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

There’s a lot to consider when deciding where to submit your work. Learn how to choose a journal that will help your study reach its audience, while reflecting your values as a researcher…

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.
  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write a Discussion Section for a Research Paper

how to write variable discussion in research

We’ve talked about several useful writing tips that authors should consider while drafting or editing their research papers. In particular, we’ve focused on  figures and legends , as well as the Introduction ,  Methods , and  Results . Now that we’ve addressed the more technical portions of your journal manuscript, let’s turn to the analytical segments of your research article. In this article, we’ll provide tips on how to write a strong Discussion section that best portrays the significance of your research contributions.

What is the Discussion section of a research paper?

In a nutshell,  your Discussion fulfills the promise you made to readers in your Introduction . At the beginning of your paper, you tell us why we should care about your research. You then guide us through a series of intricate images and graphs that capture all the relevant data you collected during your research. We may be dazzled and impressed at first, but none of that matters if you deliver an anti-climactic conclusion in the Discussion section!

Are you feeling pressured? Don’t worry. To be honest, you will edit the Discussion section of your manuscript numerous times. After all, in as little as one to two paragraphs ( Nature ‘s suggestion  based on their 3,000-word main body text limit), you have to explain how your research moves us from point A (issues you raise in the Introduction) to point B (our new understanding of these matters). You must also recommend how we might get to point C (i.e., identify what you think is the next direction for research in this field). That’s a lot to say in two paragraphs!

So, how do you do that? Let’s take a closer look.

What should I include in the Discussion section?

As we stated above, the goal of your Discussion section is to  answer the questions you raise in your Introduction by using the results you collected during your research . The content you include in the Discussions segment should include the following information:

  • Remind us why we should be interested in this research project.
  • Describe the nature of the knowledge gap you were trying to fill using the results of your study.
  • Don’t repeat your Introduction. Instead, focus on why  this  particular study was needed to fill the gap you noticed and why that gap needed filling in the first place.
  • Mainly, you want to remind us of how your research will increase our knowledge base and inspire others to conduct further research.
  • Clearly tell us what that piece of missing knowledge was.
  • Answer each of the questions you asked in your Introduction and explain how your results support those conclusions.
  • Make sure to factor in all results relevant to the questions (even if those results were not statistically significant).
  • Focus on the significance of the most noteworthy results.
  • If conflicting inferences can be drawn from your results, evaluate the merits of all of them.
  • Don’t rehash what you said earlier in the Results section. Rather, discuss your findings in the context of answering your hypothesis. Instead of making statements like “[The first result] was this…,” say, “[The first result] suggests [conclusion].”
  • Do your conclusions line up with existing literature?
  • Discuss whether your findings agree with current knowledge and expectations.
  • Keep in mind good persuasive argument skills, such as explaining the strengths of your arguments and highlighting the weaknesses of contrary opinions.
  • If you discovered something unexpected, offer reasons. If your conclusions aren’t aligned with current literature, explain.
  • Address any limitations of your study and how relevant they are to interpreting your results and validating your findings.
  • Make sure to acknowledge any weaknesses in your conclusions and suggest room for further research concerning that aspect of your analysis.
  • Make sure your suggestions aren’t ones that should have been conducted during your research! Doing so might raise questions about your initial research design and protocols.
  • Similarly, maintain a critical but unapologetic tone. You want to instill confidence in your readers that you have thoroughly examined your results and have objectively assessed them in a way that would benefit the scientific community’s desire to expand our knowledge base.
  • Recommend next steps.
  • Your suggestions should inspire other researchers to conduct follow-up studies to build upon the knowledge you have shared with them.
  • Keep the list short (no more than two).

How to Write the Discussion Section

The above list of what to include in the Discussion section gives an overall idea of what you need to focus on throughout the section. Below are some tips and general suggestions about the technical aspects of writing and organization that you might find useful as you draft or revise the contents we’ve outlined above.

Technical writing elements

  • Embrace active voice because it eliminates the awkward phrasing and wordiness that accompanies passive voice.
  • Use the present tense, which should also be employed in the Introduction.
  • Sprinkle with first person pronouns if needed, but generally, avoid it. We want to focus on your findings.
  • Maintain an objective and analytical tone.

Discussion section organization

  • Keep the same flow across the Results, Methods, and Discussion sections.
  • We develop a rhythm as we read and parallel structures facilitate our comprehension. When you organize information the same way in each of these related parts of your journal manuscript, we can quickly see how a certain result was interpreted and quickly verify the particular methods used to produce that result.
  • Notice how using parallel structure will eliminate extra narration in the Discussion part since we can anticipate the flow of your ideas based on what we read in the Results segment. Reducing wordiness is important when you only have a few paragraphs to devote to the Discussion section!
  • Within each subpart of a Discussion, the information should flow as follows: (A) conclusion first, (B) relevant results and how they relate to that conclusion and (C) relevant literature.
  • End with a concise summary explaining the big-picture impact of your study on our understanding of the subject matter. At the beginning of your Discussion section, you stated why  this  particular study was needed to fill the gap you noticed and why that gap needed filling in the first place. Now, it is time to end with “how your research filled that gap.”

Discussion Part 1: Summarizing Key Findings

Begin the Discussion section by restating your  statement of the problem  and briefly summarizing the major results. Do not simply repeat your findings. Rather, try to create a concise statement of the main results that directly answer the central research question that you stated in the Introduction section . This content should not be longer than one paragraph in length.

Many researchers struggle with understanding the precise differences between a Discussion section and a Results section . The most important thing to remember here is that your Discussion section should subjectively evaluate the findings presented in the Results section, and in relatively the same order. Keep these sections distinct by making sure that you do not repeat the findings without providing an interpretation.

Phrase examples: Summarizing the results

  • The findings indicate that …
  • These results suggest a correlation between A and B …
  • The data present here suggest that …
  • An interpretation of the findings reveals a connection between…

Discussion Part 2: Interpreting the Findings

What do the results mean? It may seem obvious to you, but simply looking at the figures in the Results section will not necessarily convey to readers the importance of the findings in answering your research questions.

The exact structure of interpretations depends on the type of research being conducted. Here are some common approaches to interpreting data:

  • Identifying correlations and relationships in the findings
  • Explaining whether the results confirm or undermine your research hypothesis
  • Giving the findings context within the history of similar research studies
  • Discussing unexpected results and analyzing their significance to your study or general research
  • Offering alternative explanations and arguing for your position

Organize the Discussion section around key arguments, themes, hypotheses, or research questions or problems. Again, make sure to follow the same order as you did in the Results section.

Discussion Part 3: Discussing the Implications

In addition to providing your own interpretations, show how your results fit into the wider scholarly literature you surveyed in the  literature review section. This section is called the implications of the study . Show where and how these results fit into existing knowledge, what additional insights they contribute, and any possible consequences that might arise from this knowledge, both in the specific research topic and in the wider scientific domain.

Questions to ask yourself when dealing with potential implications:

  • Do your findings fall in line with existing theories, or do they challenge these theories or findings? What new information do they contribute to the literature, if any? How exactly do these findings impact or conflict with existing theories or models?
  • What are the practical implications on actual subjects or demographics?
  • What are the methodological implications for similar studies conducted either in the past or future?

Your purpose in giving the implications is to spell out exactly what your study has contributed and why researchers and other readers should be interested.

Phrase examples: Discussing the implications of the research

  • These results confirm the existing evidence in X studies…
  • The results are not in line with the foregoing theory that…
  • This experiment provides new insights into the connection between…
  • These findings present a more nuanced understanding of…
  • While previous studies have focused on X, these results demonstrate that Y.

Step 4: Acknowledging the limitations

All research has study limitations of one sort or another. Acknowledging limitations in methodology or approach helps strengthen your credibility as a researcher. Study limitations are not simply a list of mistakes made in the study. Rather, limitations help provide a more detailed picture of what can or cannot be concluded from your findings. In essence, they help temper and qualify the study implications you listed previously.

Study limitations can relate to research design, specific methodological or material choices, or unexpected issues that emerged while you conducted the research. Mention only those limitations directly relate to your research questions, and explain what impact these limitations had on how your study was conducted and the validity of any interpretations.

Possible types of study limitations:

  • Insufficient sample size for statistical measurements
  • Lack of previous research studies on the topic
  • Methods/instruments/techniques used to collect the data
  • Limited access to data
  • Time constraints in properly preparing and executing the study

After discussing the study limitations, you can also stress that your results are still valid. Give some specific reasons why the limitations do not necessarily handicap your study or narrow its scope.

Phrase examples: Limitations sentence beginners

  • “There may be some possible limitations in this study.”
  • “The findings of this study have to be seen in light of some limitations.”
  •  “The first limitation is the…The second limitation concerns the…”
  •  “The empirical results reported herein should be considered in the light of some limitations.”
  • “This research, however, is subject to several limitations.”
  • “The primary limitation to the generalization of these results is…”
  • “Nonetheless, these results must be interpreted with caution and a number of limitations should be borne in mind.”

Discussion Part 5: Giving Recommendations for Further Research

Based on your interpretation and discussion of the findings, your recommendations can include practical changes to the study or specific further research to be conducted to clarify the research questions. Recommendations are often listed in a separate Conclusion section , but often this is just the final paragraph of the Discussion section.

Suggestions for further research often stem directly from the limitations outlined. Rather than simply stating that “further research should be conducted,” provide concrete specifics for how future can help answer questions that your research could not.

Phrase examples: Recommendation sentence beginners

  • Further research is needed to establish …
  • There is abundant space for further progress in analyzing…
  • A further study with more focus on X should be done to investigate…
  • Further studies of X that account for these variables must be undertaken.

Consider Receiving Professional Language Editing

As you edit or draft your research manuscript, we hope that you implement these guidelines to produce a more effective Discussion section. And after completing your draft, don’t forget to submit your work to a professional proofreading and English editing service like Wordvice, including our manuscript editing service for  paper editing , cover letter editing , SOP editing , and personal statement proofreading services. Language editors not only proofread and correct errors in grammar, punctuation, mechanics, and formatting but also improve terms and revise phrases so they read more naturally. Wordvice is an industry leader in providing high-quality revision for all types of academic documents.

For additional information about how to write a strong research paper, make sure to check out our full  research writing series !

Wordvice Writing Resources

  • How to Write a Research Paper Introduction 
  • Which Verb Tenses to Use in a Research Paper
  • How to Write an Abstract for a Research Paper
  • How to Write a Research Paper Title
  • Useful Phrases for Academic Writing
  • Common Transition Terms in Academic Papers
  • Active and Passive Voice in Research Papers
  • 100+ Verbs That Will Make Your Research Writing Amazing
  • Tips for Paraphrasing in Research Papers

Additional Academic Resources

  •   Guide for Authors.  (Elsevier)
  •  How to Write the Results Section of a Research Paper.  (Bates College)
  •   Structure of a Research Paper.  (University of Minnesota Biomedical Library)
  •   How to Choose a Target Journal  (Springer)
  •   How to Write Figures and Tables  (UNC Writing Center)
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Independent and Dependent Variables
  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Definitions

Dependent Variable The variable that depends on other factors that are measured. These variables are expected to change as a result of an experimental manipulation of the independent variable or variables. It is the presumed effect.

Independent Variable The variable that is stable and unaffected by the other variables you are trying to measure. It refers to the condition of an experiment that is systematically manipulated by the investigator. It is the presumed cause.

Cramer, Duncan and Dennis Howitt. The SAGE Dictionary of Statistics . London: SAGE, 2004; Penslar, Robin Levin and Joan P. Porter. Institutional Review Board Guidebook: Introduction . Washington, DC: United States Department of Health and Human Services, 2010; "What are Dependent and Independent Variables?" Graphic Tutorial.

Identifying Dependent and Independent Variables

Don't feel bad if you are confused about what is the dependent variable and what is the independent variable in social and behavioral sciences research . However, it's important that you learn the difference because framing a study using these variables is a common approach to organizing the elements of a social sciences research study in order to discover relevant and meaningful results. Specifically, it is important for these two reasons:

  • You need to understand and be able to evaluate their application in other people's research.
  • You need to apply them correctly in your own research.

A variable in research simply refers to a person, place, thing, or phenomenon that you are trying to measure in some way. The best way to understand the difference between a dependent and independent variable is that the meaning of each is implied by what the words tell us about the variable you are using. You can do this with a simple exercise from the website, Graphic Tutorial. Take the sentence, "The [independent variable] causes a change in [dependent variable] and it is not possible that [dependent variable] could cause a change in [independent variable]." Insert the names of variables you are using in the sentence in the way that makes the most sense. This will help you identify each type of variable. If you're still not sure, consult with your professor before you begin to write.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349;

Structure and Writing Style

The process of examining a research problem in the social and behavioral sciences is often framed around methods of analysis that compare, contrast, correlate, average, or integrate relationships between or among variables . Techniques include associations, sampling, random selection, and blind selection. Designation of the dependent and independent variable involves unpacking the research problem in a way that identifies a general cause and effect and classifying these variables as either independent or dependent.

The variables should be outlined in the introduction of your paper and explained in more detail in the methods section . There are no rules about the structure and style for writing about independent or dependent variables but, as with any academic writing, clarity and being succinct is most important.

After you have described the research problem and its significance in relation to prior research, explain why you have chosen to examine the problem using a method of analysis that investigates the relationships between or among independent and dependent variables . State what it is about the research problem that lends itself to this type of analysis. For example, if you are investigating the relationship between corporate environmental sustainability efforts [the independent variable] and dependent variables associated with measuring employee satisfaction at work using a survey instrument, you would first identify each variable and then provide background information about the variables. What is meant by "environmental sustainability"? Are you looking at a particular company [e.g., General Motors] or are you investigating an industry [e.g., the meat packing industry]? Why is employee satisfaction in the workplace important? How does a company make their employees aware of sustainability efforts and why would a company even care that its employees know about these efforts?

Identify each variable for the reader and define each . In the introduction, this information can be presented in a paragraph or two when you describe how you are going to study the research problem. In the methods section, you build on the literature review of prior studies about the research problem to describe in detail background about each variable, breaking each down for measurement and analysis. For example, what activities do you examine that reflect a company's commitment to environmental sustainability? Levels of employee satisfaction can be measured by a survey that asks about things like volunteerism or a desire to stay at the company for a long time.

The structure and writing style of describing the variables and their application to analyzing the research problem should be stated and unpacked in such a way that the reader obtains a clear understanding of the relationships between the variables and why they are important. This is also important so that the study can be replicated in the future using the same variables but applied in a different way.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; “Case Example for Independent and Dependent Variables.” ORI Curriculum Examples. U.S. Department of Health and Human Services, Office of Research Integrity; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349; “Independent Variables and Dependent Variables.” Karl L. Wuensch, Department of Psychology, East Carolina University [posted email exchange]; “Variables.” Elements of Research. Dr. Camille Nebeker, San Diego State University.

  • << Previous: Design Flaws to Avoid
  • Next: Glossary of Research Terms >>
  • Last Updated: Apr 9, 2024 1:19 PM
  • URL: https://libguides.usc.edu/writingguide

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Dissertation
  • How to Write a Discussion Section | Tips & Examples

How to Write a Discussion Section | Tips & Examples

Published on 21 August 2022 by Shona McCombes . Revised on 25 October 2022.

Discussion section flow chart

The discussion section is where you delve into the meaning, importance, and relevance of your results .

It should focus on explaining and evaluating what you found, showing how it relates to your literature review , and making an argument in support of your overall conclusion . It should not be a second results section .

There are different ways to write this section, but you can focus your writing around these key elements:

  • Summary: A brief recap of your key results
  • Interpretations: What do your results mean?
  • Implications: Why do your results matter?
  • Limitations: What can’t your results tell us?
  • Recommendations: Avenues for further studies or analyses

Instantly correct all language mistakes in your text

Be assured that you'll submit flawless writing. Upload your document to correct all your mistakes.

upload-your-document-ai-proofreader

Table of contents

What not to include in your discussion section, step 1: summarise your key findings, step 2: give your interpretations, step 3: discuss the implications, step 4: acknowledge the limitations, step 5: share your recommendations, discussion section example.

There are a few common mistakes to avoid when writing the discussion section of your paper.

  • Don’t introduce new results: You should only discuss the data that you have already reported in your results section .
  • Don’t make inflated claims: Avoid overinterpretation and speculation that isn’t directly supported by your data.
  • Don’t undermine your research: The discussion of limitations should aim to strengthen your credibility, not emphasise weaknesses or failures.

Prevent plagiarism, run a free check.

Start this section by reiterating your research problem  and concisely summarising your major findings. Don’t just repeat all the data you have already reported – aim for a clear statement of the overall result that directly answers your main  research question . This should be no more than one paragraph.

Many students struggle with the differences between a discussion section and a results section . The crux of the matter is that your results sections should present your results, and your discussion section should subjectively evaluate them. Try not to blend elements of these two sections, in order to keep your paper sharp.

  • The results indicate that …
  • The study demonstrates a correlation between …
  • This analysis supports the theory that …
  • The data suggest  that …

The meaning of your results may seem obvious to you, but it’s important to spell out their significance for your reader, showing exactly how they answer your research question.

The form of your interpretations will depend on the type of research, but some typical approaches to interpreting the data include:

  • Identifying correlations , patterns, and relationships among the data
  • Discussing whether the results met your expectations or supported your hypotheses
  • Contextualising your findings within previous research and theory
  • Explaining unexpected results and evaluating their significance
  • Considering possible alternative explanations and making an argument for your position

You can organise your discussion around key themes, hypotheses, or research questions, following the same structure as your results section. Alternatively, you can also begin by highlighting the most significant or unexpected results.

  • In line with the hypothesis …
  • Contrary to the hypothesised association …
  • The results contradict the claims of Smith (2007) that …
  • The results might suggest that x . However, based on the findings of similar studies, a more plausible explanation is x .

As well as giving your own interpretations, make sure to relate your results back to the scholarly work that you surveyed in the literature review . The discussion should show how your findings fit with existing knowledge, what new insights they contribute, and what consequences they have for theory or practice.

Ask yourself these questions:

  • Do your results support or challenge existing theories? If they support existing theories, what new information do they contribute? If they challenge existing theories, why do you think that is?
  • Are there any practical implications?

Your overall aim is to show the reader exactly what your research has contributed, and why they should care.

  • These results build on existing evidence of …
  • The results do not fit with the theory that …
  • The experiment provides a new insight into the relationship between …
  • These results should be taken into account when considering how to …
  • The data contribute a clearer understanding of …
  • While previous research has focused on  x , these results demonstrate that y .

Even the best research has its limitations. Acknowledging these is important to demonstrate your credibility. Limitations aren’t about listing your errors, but about providing an accurate picture of what can and cannot be concluded from your study.

Limitations might be due to your overall research design, specific methodological choices , or unanticipated obstacles that emerged during your research process.

Here are a few common possibilities:

  • If your sample size was small or limited to a specific group of people, explain how generalisability is limited.
  • If you encountered problems when gathering or analysing data, explain how these influenced the results.
  • If there are potential confounding variables that you were unable to control, acknowledge the effect these may have had.

After noting the limitations, you can reiterate why the results are nonetheless valid for the purpose of answering your research question.

  • The generalisability of the results is limited by …
  • The reliability of these data is impacted by …
  • Due to the lack of data on x , the results cannot confirm …
  • The methodological choices were constrained by …
  • It is beyond the scope of this study to …

Based on the discussion of your results, you can make recommendations for practical implementation or further research. Sometimes, the recommendations are saved for the conclusion .

Suggestions for further research can lead directly from the limitations. Don’t just state that more studies should be done – give concrete ideas for how future work can build on areas that your own research was unable to address.

  • Further research is needed to establish …
  • Future studies should take into account …
  • Avenues for future research include …

Discussion section example

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, October 25). How to Write a Discussion Section | Tips & Examples. Scribbr. Retrieved 9 April 2024, from https://www.scribbr.co.uk/thesis-dissertation/discussion/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to write a results section | tips & examples, research paper appendix | example & templates, how to write a thesis or dissertation introduction.

Logo for Iowa State University Digital Press

Chapter 6: Discussion/Conclusion Section(s)

Chapter 6 Synopsis: Writing the Discussion/Conclusion

In this chapter, we learned how to finalize a research article. The four main goals and their strategies were discussed and exemplified along with some advice about what language you can use. To review, let’s look again at the four goals:

  • Re-establish the territory
  • Frame the principal findings
  • Reshape the territory
  • Establish additional territory

Through these goals, writers provide readers with extended analyses and interpretations of the results by evaluating their implications and situating them within the existing literature. While the two specific middle sections of a research paper focus mainly on what’s happening inside the research project, the Discussion/Conclusion section tends to expand the meaning beyond or outside of the research at hand. In other words, writers must indicate how the results add or relate to existing knowledge within the discipline, which points out the value of the work. The final section of the manuscript is also the last aspect of your work that your readers will examine, so it must convincingly finalize the scientific argument that has been unfolding through each section.

According to the Phrasebank website, Discussions/ Conclusions usually carry the following functions:

  • To review and compile ideas and arguments, which may include a kind of retrospective view of the main areas covered in the writing;
  • To evaluate the research overall, which could also involve recommending improvements and considering coming trends.

Table reviewing the goals and strategies for discussion/conclusion sections. Outlined goals are "re-establishing a territory," "framing principal findings," "reshaping the territory," and "establishing additional territory"

Key Takeaways

Explore + apply.

Before you begin applying what you’ve learned in this chapter to your Discussion/Conclusion section, explore published writing in your discipline or in a target journal that you’ve identified. Look for the goals and strategies presented here to see where you might find similarities and differences that are discipline- or journal-specific. Next, try outlining your next Discussion/Conclusion section using the structuring and placement of those goals and strategies as a model.

Preparing to Publish Copyright © 2023 by Sarah Huffman; Elena Cotos; and Kimberly Becker is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

how to write variable discussion in research

The Plagiarism Checker Online For Your Academic Work

Start Plagiarism Check

Editing & Proofreading for Your Research Paper

Get it proofread now

Online Printing & Binding with Free Express Delivery

Configure binding now

  • Academic essay overview
  • The writing process
  • Structuring academic essays
  • Types of academic essays
  • Academic writing overview
  • Sentence structure
  • Academic writing process
  • Improving your academic writing
  • Titles and headings
  • APA style overview
  • APA citation & referencing
  • APA structure & sections
  • Citation & referencing
  • Structure and sections
  • APA examples overview
  • Commonly used citations
  • Other examples
  • British English vs. American English
  • Chicago style overview
  • Chicago citation & referencing
  • Chicago structure & sections
  • Chicago style examples
  • Citing sources overview
  • Citation format
  • Citation examples
  • College essay overview
  • Application
  • How to write a college essay
  • Types of college essays
  • Commonly confused words
  • Definitions
  • Dissertation overview
  • Dissertation structure & sections
  • Dissertation writing process
  • Graduate school overview
  • Application & admission
  • Study abroad
  • Master degree
  • Harvard referencing overview
  • Language rules overview
  • Grammatical rules & structures
  • Parts of speech
  • Punctuation
  • Methodology overview
  • Analyzing data
  • Experiments
  • Observations
  • Inductive vs. Deductive
  • Qualitative vs. Quantitative
  • Types of validity
  • Types of reliability
  • Sampling methods
  • Theories & Concepts
  • Types of research studies
  • Types of variables
  • MLA style overview
  • MLA examples
  • MLA citation & referencing
  • MLA structure & sections
  • Plagiarism overview
  • Plagiarism checker
  • Types of plagiarism
  • Printing production overview
  • Research bias overview
  • Types of research bias
  • Example sections
  • Types of research papers
  • Research process overview
  • Problem statement
  • Research proposal
  • Research topic
  • Statistics overview
  • Levels of measurment
  • Frequency distribution
  • Measures of central tendency
  • Measures of variability
  • Hypothesis testing
  • Parameters & test statistics
  • Types of distributions
  • Correlation
  • Effect size
  • Hypothesis testing assumptions
  • Types of ANOVAs
  • Types of chi-square
  • Statistical data
  • Statistical models
  • Spelling mistakes
  • Tips overview
  • Academic writing tips
  • Dissertation tips
  • Sources tips
  • Working with sources overview
  • Evaluating sources
  • Finding sources
  • Including sources
  • Types of sources

Your Step to Success

Plagiarism Check within 10min

Printing & Binding with 3D Live Preview

Research Discussion – Importance & How To Write It

How do you like this article cancel reply.

Save my name, email, and website in this browser for the next time I comment.

Research-Discussion-01

The research discussion section of a dissertation is a vital element that compiles the significance of your results in the context of your overall study. It allows you to interpret your findings, draw conclusions, relate your outcomes to existing literature, and suggest potential further research. This guide provides detailed insights into composing an influential research discussion. We will explore key findings, interpretation, implications and limitations, and Dos and Don’ts.

Inhaltsverzeichnis

  • 1 Research Discussion – In a Nutshell
  • 2 Definition: Research discussion
  • 3 Key findings in the research discussion
  • 4 Interpretations in the research discussion
  • 5 Implications in the research discussion
  • 6 Limitations of the research discussion
  • 7 Recommendations in the research discussion
  • 8 Research Discussion: Dos and Don’ts

Research Discussion – In a Nutshell

  • The research discussion critically analyzes and interprets the results of your study.
  • The interpretation of the results, the implication of the study, and the limitations.
  • The research discussion is one of the final parts of your research paper process.
  • It ties everything back to the research question.

Definition: Research discussion

The research discussion comes just before the conclusion. It informs readers about what they can learn from the experiment or research, and it also offers context for the research results.

In the discussion chapter, you can interpret the data included in the research results section of the study.

Key findings in the research discussion

You should start the research discussion by summarizing the key findings of the study. Instead of repeating all the data you have reported, you should write a concise statement that answers the main research question. The summary should only cover one paragraph.

  • The data suggests that…
  • The study results indicate that…
  • The study shows a correlation between…
  • The results support the hypothesis that…

Interpretations in the research discussion

After stating your research results, you need to explain to your readers why the results are significant to the study. You should show how they answer the research question.

Here are some methods of interpreting the results of the research:

  • Determine if the data shows relationships like correlations
  • Explain whether the data collected supported your hypothesis
  • Use previous research and theories to put your findings into context
  • Evaluate the unexpected findings
  • Find other explanations for your findings
  • Contrary to the hypothesized association…
  • In contrast to the claims by Jacob (1992)….
  • In line with the hypothesis…
  • While the results might suggest x, findings by similar studies suggest that a more realistic explanation is y…

Implications in the research discussion

One of the biggest mistakes people make when writing research discussions is failing to indicate how the research results fill a gap in the field. You should show how the results relate back to the scholarly works that were used in the study.

You can even simply show that the results reinforce the current edge of knowledge. It is worth noting that the research gap needs to also be mentioned in the introduction, as this will make the study logical.

The discussion chapter will help to show readers what the research has contributed to the field.

To write this section of the research discussion effectively, you can ask the following questions:

  • Are there any practical implications?
  • Do the study results add further evidence to support existing scientific consensus?
  • Do the results further the comprehension of the topic?
  • How do the study results advance knowledge in the field?
  • The results do not fit with the theory that…
  • The results provide further evidence that…
  • Past studies have mostly focused on x, but our results indicate that y.
  • The results have advanced our knowledge on…
  • This study provides further understanding of the relationship between…
  • The results challenge the scientific consensus that…

Limitations of the research discussion

Next, in the research discussion chapter, you have to point out any limitations in the study. It is important to avoid apologizing or undermining your study, even if it contains significant limitations. You should simply state the limitations in an objective way so that the reader gets a complete understanding of the study results. Some common limitations include bias, threats to internal validity or external validity, and confounding variables that you couldn’t control in the study. You should only mention limitations that are relevant to the research objectives. At the end of it all, reiterate why the study results are still valid and that they can be used to improve our understanding of the research question.

  • It is beyond the scope of this study to…
  • The team couldn’t get access to x, so the study couldn’t confirm that…
  • The generalizability of the study was impacted by…
  • The choice of methodology was limited by…
  • The reliability of the research results was limited by…

Recommendations in the research discussion

In this section of the research discussion, you should make recommendations for further research or practical implementations. It is common for researchers to make recommendations based on their limitations. When giving recommendations, you should state exactly how future researchers can fill in the gaps in your study.

  • Our research opens up new avenues of research in…
  • Extra research is necessary to prove…
  • The study points out the need for…

Research Discussion: Dos and Don’ts

What is included in the discussion chapter of a dissertation.

The research discussion covers the actual meaning of your study, as well as its implications in other areas of research.

You can also suggest improvements that can be made to further develop the concerns of your study.

Is the research discussion chapter the same as the conclusion?

No, the research discussion interprets the results and answers the research question. On the other hand, the conclusion mostly summarizes the research paper.

Which are the main parts of the research discussion?

The main sections of the research discussion are:

  • Interpretation of the results
  • Implication of the study
  • Limitations
  • Recommendations

Is the research results chapter similar to the research discussion?

No, the results chapter only covers the findings of the study. On the other hand, the research discussion interprets the results and provides recommendations.

We use cookies on our website. Some of them are essential, while others help us to improve this website and your experience.

  • External Media

Individual Privacy Preferences

Cookie Details Privacy Policy Imprint

Here you will find an overview of all cookies used. You can give your consent to whole categories or display further information and select certain cookies.

Accept all Save

Essential cookies enable basic functions and are necessary for the proper function of the website.

Show Cookie Information Hide Cookie Information

Statistics cookies collect information anonymously. This information helps us to understand how our visitors use our website.

Content from video platforms and social media platforms is blocked by default. If External Media cookies are accepted, access to those contents no longer requires manual consent.

Privacy Policy Imprint

How to Write the Discussion?

  • Open Access
  • First Online: 24 October 2021

Cite this chapter

You have full access to this open access chapter

Book cover

  • Samiran Nundy 4 ,
  • Atul Kakar 5 &
  • Zulfiqar A. Bhutta 6  

32k Accesses

1 Citations

Many authors, and editors, think this is the most difficult part of a paper to write well and have described it variously to be the ‘narrating the story of your research’, ‘the movie or the main scientific script’ and the ‘proof of the pudding’. The idea of a discussion is to communicate to the readers the importance of your observations and the results of all your hard work. In this section, you are expected to infer their meaning and explain the importance of your results and finally provide specific suggestions for future research [1, 2]. The discussion places the outcome into a larger context and mentions the implications of the inferences for theoretical and practical purposes [3].

That then is the first draft and you should never think of having fewer than six drafts Stephen Lock, BMJ editor in chief (1929–…)

You have full access to this open access chapter,  Download chapter PDF

Similar content being viewed by others

how to write variable discussion in research

Discussion Section

how to write variable discussion in research

Chasing a Dream

how to write variable discussion in research

Conclusions

1 what is the importance of the discussion.

Many authors, and editors, think this is the most difficult part of a paper to write well and have described it variously to be the ‘narrating the story of your research’, ‘the movie or the main scientific script’ and the ‘proof of the pudding’. The idea of a discussion is to communicate to the readers the importance of your observations and the results of all your hard work. In this section, you are expected to infer their meaning and explain the importance of your results and finally provide specific suggestions for future research [ 1 , 2 ]. The discussion places the outcome into a larger context and mentions the implications of the inferences for theoretical and practical purposes [ 3 ].

figure a

2 How Should I Structure the Discussion Section?

There are three major portions for the discussion of a manuscript.

The first paragraph should baldly state the key findings of your research. Use the same key concept you gave in the introduction. It is generally not necessary to repeat the citations which have already been used in the Introduction. According to the ‘serial position effect’, themes mentioned at the beginning and end of a paragraph are more likely to be remembered than those in the middle [ 1 ]. However, one should remember that the discussion should not look like a second introduction, and all the ancillary information which has been previously cited should not be repeated [ 4 ].

For example, in a paper on the ‘Role of sulfasalazine in the Chikungunya arthritis outbreak of 2016’, the review may start with, ‘Our key findings suggest that chikungunya arthralgia is a self-limiting disorder. Persistent arthritis was recorded in only 10% of the affected population and in those who received sulfasalazine, clinical improvement both in tender and swollen joints, was recorded in 95% of the subjects’.

The middle portion should consist of the body of the discussion. This section interprets the important results, discusses their implications and explains how your data is similar to or different from those that have been published previously.

Discuss in fair detail studies supporting your findings and group them together, against those offering a different perspective (e.g., Western experience, smaller numbers, non-randomized studies, etc.). An explanation should be offered on how your work is similar to others or how it is different from the others. This should be followed by a review of the core research papers. The results should now be divided thematically and analyzed. The discussion should also contain why the study is new, why it is true, and why it is important for future clinical practice [ 4 , 5 , 6 ].

For the above research mention the clinical features, patterns of joint involvement, how long arthritis persisted, and any role of disease-modifying agents. Have any other researchers found different findings under the same circumstances.

The final paragraph should include a ‘take home message’ (about one or two) and point to future directions for investigation that have resulted from this study.

The discussion can be concluded in two ways:

By again mentioning the response to the research question [ 5 , 7 ]

By indicating the significance of the study [ 2 , 4 ]

You can use both methods to end this section. Most importantly you should remember that the last paragraph of the discussion should be ‘strong, clear, and crisp’ and focus on the main research question addressed in the manuscript. This should be strengthened by the data which clearly states whether or not your findings support your initial hypothesis [ 1 , 5 , 8 , 9 , 10 ].

3 What Are the General Considerations for Writing a Discussion? [ 3 , 10 , 11 ]

Start the discussion with the ‘specific’ problems and move to the ‘general’ implications (Fig. 21.1 ).

The discussion should not look like a mass of unrelated information. Rather, it should be easy to understand and compare data from different studies.

Include only recent publications on the topic, preferably from the last 10 years.

Make certain that all the sources of information are cited and correctly referenced.

Check to make sure that you have not plagiarized by using words quoted directly from a source.

The written text written should be easily understood, crisp, and brief. Long descriptive and informal language should be avoided.

The sentences should flow smoothly and logically.

You need not refer to all the available literature in the field, discuss only the most relevant papers.

figure 1

How a discussion should look. First arrow—Mention your key results/findings; Second arrow—Discuss your results with their explanations\step by step; Third Arrow—Enumerate your studies limitations and strengths; Last arrow—Suggest future directions for investigation

4 Discussion Is Not a War of Words

figure b

5 How Long Should the Discussion in the Manuscript Be?

Most journals do not mention any limits for discussion as long as it is brief and relevant (Fig. 21.2 ). As a rule, ‘The length of the discussion section should not exceed the sum of other parts-introduction, materials and methods, and results’. [ 3 ] In any good article, the discussion section is 3–4 pages, 6–7 paragraphs, or approximately 10 paragraphs, and 1000–1500 words [ 1 , 5 , 8 , 12 ].

figure 2

Discussion pyramid

6 What Should Be Written in the Conclusion Section?

The conclusion is the last paragraph and has the carry-home message for the reader. It is the powerful and meaningful end piece of the script. It states what change has the paper made to science and it also contains recommendations for future studies.

7 Conclusions

Discussion is not a stand-alone section, it intertwines the objectives of the study with how and what was achieved.

The major results are described and compared with other studies.

The author’s own work is critically analysed in comparison with that of others.

The limitations and strengths of the study are highlighted.

Masic I. How to write an efficient discussion? Mediev Archaeol. 2018;72(4):306–7.

Google Scholar  

Bagga A. Discussion: the heart of the paper. Indian Pediatr. 2016;53(10):901–4.

Article   Google Scholar  

Ghasemi A, Bahadoran Z, Mirmiran P, Hosseinpanah F, Shiva N, Zadeh-Vakili A. The principles of biomedical scientific writing: discussion. Int J Endocrinol Metab. 2019;17:e95415.

Zeiger M. Essentials of writing biomedical research papers. Canadian J Stud Discourse Writing. 2000;11:33–6.

Bavdekar SB. Writing the discussion section: describing the significance of the study findings. J Assoc Physicians India. 2015;63:40–2.

PubMed   Google Scholar  

Foote M. The proof of the pudding: how to report results and write a good discussion. Chest. 2009;135(3):866–8.

Alexandrov AV. How to write a research paper? Cerebrovasc Dis. 2004;18(2):135–8.

Annesley TM. The discussion section: your closing argument. Clin Chem. 2010;56(11):1671–4.

Article   CAS   Google Scholar  

Ng KH, Peh WC. Writing the discussion. Singap Med J. 2009;50:458–60.

CAS   Google Scholar  

Coverdale JH, Roberts LW, Balon R, Beresin EV. Writing for academia: Getting your research into print: AMEE guide No. 74. Med Teach. 2013;35:e926–34.

Araujo CG. Detailing the writing of scientific manuscripts: 25–30 paragraphs. Arq Bras Cardiol. 2014;102(2):e21–3.

PubMed   PubMed Central   Google Scholar  

Kearney MH. The discussion section tells us where we are. Res Nurs Health. 2017;40(4):289–91.

Download references

Author information

Authors and affiliations.

Department of Surgical Gastroenterology and Liver Transplantation, Sir Ganga Ram Hospital, New Delhi, India

Samiran Nundy

Department of Internal Medicine, Sir Ganga Ram Hospital, New Delhi, India

Institute for Global Health and Development, The Aga Khan University, South Central Asia, East Africa and United Kingdom, Karachi, Pakistan

Zulfiqar A. Bhutta

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2022 The Author(s)

About this chapter

Nundy, S., Kakar, A., Bhutta, Z.A. (2022). How to Write the Discussion?. In: How to Practice Academic Medicine and Publish from Developing Countries?. Springer, Singapore. https://doi.org/10.1007/978-981-16-5248-6_21

Download citation

DOI : https://doi.org/10.1007/978-981-16-5248-6_21

Published : 24 October 2021

Publisher Name : Springer, Singapore

Print ISBN : 978-981-16-5247-9

Online ISBN : 978-981-16-5248-6

eBook Packages : Medicine Medicine (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Types of Variables in Research & Statistics | Examples

Types of Variables in Research & Statistics | Examples

Published on September 19, 2022 by Rebecca Bevans . Revised on June 21, 2023.

In statistical research , a variable is defined as an attribute of an object of study. Choosing which variables to measure is central to good experimental design .

If you want to test whether some plant species are more salt-tolerant than others, some key variables you might measure include the amount of salt you add to the water, the species of plants being studied, and variables related to plant health like growth and wilting .

You need to know which types of variables you are working with in order to choose appropriate statistical tests and interpret the results of your study.

You can usually identify the type of variable by asking two questions:

  • What type of data does the variable contain?
  • What part of the experiment does the variable represent?

Table of contents

Types of data: quantitative vs categorical variables, parts of the experiment: independent vs dependent variables, other common types of variables, other interesting articles, frequently asked questions about variables.

Data is a specific measurement of a variable – it is the value you record in your data sheet. Data is generally divided into two categories:

  • Quantitative data represents amounts
  • Categorical data represents groupings

A variable that contains quantitative data is a quantitative variable ; a variable that contains categorical data is a categorical variable . Each of these types of variables can be broken down into further types.

Quantitative variables

When you collect quantitative data, the numbers you record represent real amounts that can be added, subtracted, divided, etc. There are two types of quantitative variables: discrete and continuous .

Categorical variables

Categorical variables represent groupings of some kind. They are sometimes recorded as numbers, but the numbers represent categories rather than actual amounts of things.

There are three types of categorical variables: binary , nominal , and ordinal variables .

*Note that sometimes a variable can work as more than one type! An ordinal variable can also be used as a quantitative variable if the scale is numeric and doesn’t need to be kept as discrete integers. For example, star ratings on product reviews are ordinal (1 to 5 stars), but the average star rating is quantitative.

Example data sheet

To keep track of your salt-tolerance experiment, you make a data sheet where you record information about the variables in the experiment, like salt addition and plant health.

To gather information about plant responses over time, you can fill out the same data sheet every few days until the end of the experiment. This example sheet is color-coded according to the type of variable: nominal , continuous , ordinal , and binary .

Example data sheet showing types of variables in a plant salt tolerance experiment

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

how to write variable discussion in research

Experiments are usually designed to find out what effect one variable has on another – in our example, the effect of salt addition on plant growth.

You manipulate the independent variable (the one you think might be the cause ) and then measure the dependent variable (the one you think might be the effect ) to find out what this effect might be.

You will probably also have variables that you hold constant ( control variables ) in order to focus on your experimental treatment.

In this experiment, we have one independent and three dependent variables.

The other variables in the sheet can’t be classified as independent or dependent, but they do contain data that you will need in order to interpret your dependent and independent variables.

Example of a data sheet showing dependent and independent variables for a plant salt tolerance experiment.

What about correlational research?

When you do correlational research , the terms “dependent” and “independent” don’t apply, because you are not trying to establish a cause and effect relationship ( causation ).

However, there might be cases where one variable clearly precedes the other (for example, rainfall leads to mud, rather than the other way around). In these cases you may call the preceding variable (i.e., the rainfall) the predictor variable and the following variable (i.e. the mud) the outcome variable .

Once you have defined your independent and dependent variables and determined whether they are categorical or quantitative, you will be able to choose the correct statistical test .

But there are many other ways of describing variables that help with interpreting your results. Some useful types of variables are listed below.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Likert scale

Research bias

  • Implicit bias
  • Framing effect
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g. the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g. water volume or weight).

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 21). Types of Variables in Research & Statistics | Examples. Scribbr. Retrieved April 9, 2024, from https://www.scribbr.com/methodology/types-of-variables/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, independent vs. dependent variables | definition & examples, confounding variables | definition, examples & controls, control variables | what are they & why do they matter, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

25 Questions (and Answers!) About the Great North American Eclipse

The McDonald Observatory’s guide to one of nature’s most beautiful and astounding events: What you might see, how to view it safely, how astronomers will study it, how animals might react, and some of the mythology and superstitions about the Sun’s great disappearing act.

different-eclipses-NASA

1. What’s happening?

The Moon will cross directly between Earth and the Sun, temporarily blocking the Sun from view along a narrow path across Mexico, the United States, and Canada. Viewers across the rest of the United States will see a partial eclipse, with the Moon covering only part of the Sun’s disk.

2. When will it happen?

The eclipse takes place on April 8. It will get underway at 10:42 a.m. CDT, when the Moon’s shadow first touches Earth’s surface, creating a partial eclipse. The Big Show—totality—begins at about 11:39 a.m., over the south-central Pacific Ocean. The shadow will first touch North America an hour and a half later, on the Pacific coast of Mexico. Moving at more than 1,600 miles (2,575 km) per hour, the path of totality will enter the United States at Eagle Pass, Texas, at 1:27 p.m. CDT. The lunar shadow will exit the United States and enter the Canadian province of New Brunswick near Houlton, Maine, at 2:35 p.m. (3:35 p.m. EDT).

3. How long will totality last?

The exact timing depends on your location. The maximum length is 4 minutes, 27 seconds near Torreon, Mexico. In the United States, several towns in southwestern Texas will see 4 minutes, 24 seconds of totality. The closer a location is to the centerline of the path of totality, the longer the eclipse will last.

4. What will it look like?

Eclipse veterans say there’s nothing quite like a total solar eclipse. In the last moments before the Sun disappears behind the Moon, bits of sunlight filter through the lunar mountains and canyons, forming bright points of light known as Baily’s beads. The last of the beads provides a brief blaze known as a diamond ring effect. When it fades away, the sky turns dark and the corona comes into view— million-degree plasma expelled from the Sun’s surface. It forms silvery filaments that radiate away from the Sun. Solar prominences, which are fountains of gas from the surface, form smaller, redder streamers on the rim of the Sun’s disk.

5. What safety precautions do I need to take?

It’s perfectly safe to look at the total phase of the eclipse with your eyes alone. In fact, experts say it’s the best way to enjoy the spectacle. The corona, which surrounds the intervening Moon with silvery tendrils of light, is only about as bright as a full Moon.

During the partial phases of the eclipse, however, including the final moments before and first moments after totality, your eyes need protection from the Sun’s blinding light. Even a 99-percent-eclipsed Sun is thousands of times brighter than a full Moon, so even a tiny sliver of direct sunlight can be dangerous!

To stay safe, use commercially available eclipse viewers, which can look like eyeglasses or can be embedded in a flat sheet that you hold in front of your face. Make sure your viewer meets the proper safety standards, and inspect it before you use it to make sure there are no scratches to let in unfiltered sunlight.

You also can view the eclipse through a piece of welder’s glass (No. 14 or darker), or stand under a leafy tree and look at the ground; the gaps between leaves act as lenses, projecting a view of the eclipse on the ground. With an especially leafy tree you can see hundreds of images of the eclipse at once. (You can also use a colander or similar piece of gear to create the same effect.)

One final mode of eclipse watching is with a pinhole camera. You can make one by poking a small hole in an index card, file folder, or piece of stiff cardboard. Let the Sun shine through the hole onto the ground or a piece of paper, but don’t look at the Sun through the hole! The hole projects an image of the eclipsed Sun, allowing you to follow the entire sequence, from the moment of first contact through the Moon’s disappearance hours later.

6. Where can I see the eclipse?

In the United States, the path of totality will extend from Eagle Pass, Texas, to Houlton, Maine. It will cross 15 states: Texas, Oklahoma, Arkansas, Missouri, Illinois, Indiana, Kentucky, Ohio, Pennsylvania, New York, Vermont, New Hampshire, Maine, Tennessee, and Michigan (although it barely nicks the last two).

In Texas, the eclipse will darken the sky over Austin, Waco, and Dallas—the most populous city in the path, where totality (the period when the Sun is totally eclipsed) will last 3 minutes, 51 seconds.

Other large cities along the path include Little Rock; Indianapolis; Dayton, Toledo, and Cleveland, Ohio; Erie, Pennsylvania; Buffalo and Rochester, New York; and Burlington, Vermont.

Outside the path of totality, American skywatchers will see a partial eclipse, in which the Sun covers only part of the Sun’s disk. The sky will grow dusky and the air will get cooler, but the partially eclipsed Sun is still too bright to look at without proper eye protection. The closer to the path of totality, the greater the extent of the eclipse. From Memphis and Nashville, for example, the Moon will cover more than 95 percent of the Sun’s disk. From Denver and Phoenix, it’s about 65 percent. And for the unlucky skywatchers in Seattle, far to the northwest of the eclipse centerline, it’s a meager 20 percent.

The total eclipse path also crosses Mexico, from the Pacific coast, at Mazatlán, to the Texas border. It also crosses a small portion of Canada, barely including Hamilton, Ontario. Eclipse Details for Locations Around the United States • aa.usno.navy.mil/data/Eclipse2024 • eclipse.aas.org • GreatAmericanEclipse.com

7. What causes solar eclipses?

These awe-inspiring spectacles are the result of a pleasant celestial coincidence: The Sun and Moon appear almost exactly the same size in Earth’s sky. The Sun is actually about 400 times wider than the Moon but it’s also about 400 times farther, so when the new Moon passes directly between Earth and the Sun—an alignment known as syzygy—it can cover the Sun’s disk, blocking it from view.

8. Why don’t we see an eclipse at every new Moon?

The Moon’s orbit around Earth is tilted a bit with respect to the Sun’s path across the sky, known as the ecliptic. Because of that angle, the Moon passes north or south of the Sun most months, so there’s no eclipse. When the geometry is just right, however, the Moon casts its shadow on Earth’s surface, creating a solar eclipse. Not all eclipses are total. The Moon’s distance from Earth varies a bit, as does Earth’s distance from the Sun. If the Moon passes directly between Earth and the Sun when the Moon is at its farthest, we see an annular eclipse, in which a ring of sunlight encircles the Moon. Regardless of the distance, if the SunMoon-Earth alignment is off by a small amount, the Moon can cover only a portion of the Sun’s disk, creating a partial eclipse.

9. How often do solar eclipses happen?

Earth sees as least two solar eclipses per year, and, rarely, as many as five. Only three eclipses per two years are total. In addition, total eclipses are visible only along narrow paths. According to Belgian astronomer Jean Meuss, who specializes in calculating such things, any given place on Earth will see a total solar eclipse, on average, once every 375 years. That number is averaged over many centuries, so the exact gap varies. It might be centuries between succeeding eclipses, or it might be only a few years. A small region of Illinois, Missouri, and Kentucky, close to the southeast of St. Louis, for example, saw the total eclipse of 2017 and will experience this year’s eclipse as well. Overall, though, you don’t want to wait for a total eclipse to come to you. If you have a chance to travel to an eclipse path, take it!

10. What is the limit for the length of totality?

Astronomers have calculated the length of totality for eclipses thousands of years into the future. Their calculations show that the greatest extent of totality will come during the eclipse of July 16, 2186, at 7 minutes, 29 seconds, in the Atlantic Ocean, near the coast of South America. The eclipse will occur when the Moon is near its closest point to Earth, so it appears largest in the sky, and Earth is near its farthest point from the Sun, so the Sun appears smaller than average. That eclipse, by the way, belongs to the same Saros cycle as this year’s.

11. When will the next total eclipse be seen from the United States?

The next total eclipse visible from anywhere in the United States will take place on March 30, 2033, across Alaska. On August 22, 2044, a total eclipse will be visible across parts of Montana, North Dakota, and South Dakota. The next eclipse to cross the entire country will take place on August 12, 2045, streaking from northern California to southern Florida. Here are the other total solar eclipses visible from the contiguous U.S. this century:

March 30, 2052 Florida, Georgia, tip of South Carolina May 11, 2078 From Louisiana to North Carolina May 1, 2079 From Philadelphia up the Atlantic coast to Maine September 14, 2099 From North Dakota to the Virginia-North Carolina border

12. What is the origin of the word ‘eclipse?’

The word first appeared in English writings in the late 13th century. It traces its roots, however, to the Greek words “ecleipsis” or “ekleipein.” According to various sources, the meaning was “to leave out, fail to appear,” “a failing, forsaking,” or “abandon, cease, die.”

13. Do solar eclipses follow any kind of pattern?

The Moon goes through several cycles. The best known is its 29.5-day cycle of phases, from new through full and back again. Other cycles include its distance from Earth (which varies by about 30,000 miles (50,000 km) over 27.5 days) and its relationship to the Sun’s path across the sky, known as the ecliptic (27.2 days), among others. These three cycles overlap every 6,585.3 days, which is 18 years, 11 days, and 8 hours.

This cycle of cycles is known as a Saros (a word created by Babylonians). The circumstances for each succeeding eclipse in a Saros are similar—the Moon is about the same distance from Earth, for example, and they occur at the same time of year. Each eclipse occurs one-third of the way around Earth from the previous one, however; the next eclipse in this Saros, for example, will be visible from parts of the Pacific Ocean.

Each Saros begins with a partial eclipse. A portion of the Moon just nips the northern edge of the Sun, for example, blocking only a fraction of the Sun’s light. With each succeeding eclipse in the cycle, the Moon covers a larger fraction of the solar disk, eventually creating dozens of total eclipses. The Moon then slides out of alignment again, this time in the opposite direction, creating more partial eclipses. The series ends with a grazing partial eclipse on the opposite hemisphere (the southern tip, for example).

Several Saros cycles churn along simultaneously (40 are active now), so Earth doesn’t have to wait 18 years between eclipses. They can occur at intervals of one, five, six, or seven months.

The April 8 eclipse is the 30th of Saros 139, a series of 71 events that began with a partial eclipse, in the far north, and will end with another partial eclipse, this time in the far southern hemisphere. The next eclipse in this Saros, also total, will take place on April 20, 2042.

First eclipse May 17, 1501

First total eclipse December 21, 1843

Final total eclipse March 26, 2601

Longest total eclipse July 16, 2186,  7 minutes, 29 seconds

Final partial eclipse July 3, 2763

All eclipses 71 (43 total, 16 partial, 12 hybrid)

Source: NASA Catalog of Solar Eclipses: eclipse.gsfc.nasa.gov/SEsaros/SEsaros139.html

14. What about eclipse seasons?

Eclipses occur in “seasons,” with two or three eclipses (lunar and solar) in a period of about five weeks. Individual eclipses are separated by two weeks: a lunar eclipse at full Moon, a solar eclipse at new Moon (the sequence can occur in either order). If the first eclipse in a season occurs during the first few days of the window, then the season will have three eclipses. When one eclipse in the season is poor, the other usually is much better.

That’s certainly the case with the season that includes the April 8 eclipse. It begins with a penumbral lunar eclipse on the night of March 24, in which the Moon will pass through Earth’s outer shadow. The eclipse will cover the Americas, although the shadow is so faint that most skywatchers won’t notice it.

how to write variable discussion in research

This article was previously published in the March/April 2024 issue of StarDate  magazine, a publication of The University of Texas at Austin’s McDonald Observatory. Catch StarDate’s daily radio program on more than 300 stations nationwide or subscribe online at  stardate.org .

15. How can astronomers forecast eclipses so accurately?

They’ve been recording eclipses and the motions of the Moon for millennia. And over the past half century they’ve been bouncing laser beams off of special reflectors carried to the Moon by Apollo astronauts and Soviet rovers. Those observations reveal the Moon’s position to within a fraction of an inch. Using a combination of the Earth-Moon distance, the Moon’s precise shape, Earth’s rotation and its distance from the Sun, and other factors, astronomers can predict the timing of an eclipse to within a fraction of a second many centuries into the future.

Edmond Halley made the first confirmed solar eclipse prediction, using the laws of gravity devised only a few decades earlier by Isaac Newton. Halley forecast that an eclipse would cross England on May 3, 1715. He missed the timing by just four minutes and the path by 20 miles, so the eclipse is known as Halley’s Eclipse.

16. What are the types of solar eclipses?

Total : the Moon completely covers the Sun.

Annular : the Moon is too far away to completely cover the Sun, leaving a bright ring of sunlight around it.

Partial : the Moon covers only part of the Sun’s disk.

Hybrid : an eclipse that is annular at its beginning and end, but total at its peak.

17. What are Baily’s beads?

During the minute or two before or after totality, bits of the Sun shine through canyons and other features on the limb of the Moon, producing “beads” of sunlight. They were first recorded and explained by Edmond Halley, in 1715. During a presentation to the Royal Academy of Sciences more than a century later, however, astronomer Frances Baily first described them as “a string of beads,” so they’ve been known as Baily’s beads ever since. Please note that Baily’s beads are too bright to look at without eye protection!

18. Will Earth always see total solar eclipses?

No, it will not. The Moon is moving away from Earth at about 1.5 inches (3.8 cm) per year. Based on that rate of recession, in about 600 million years the Moon would have moved so far from Earth that it would no longer appear large enough to cover the Sun. The speed at which the Moon separates from Earth changes over the eons, however, so scientists aren’t sure just when Earth will see its final total solar eclipse.

19. How will the eclipse affect solar power?

If your solar-powered house is in or near the path of totality, the lights truly will go out, as they do at night. For large power grids, the eclipse will temporarily reduce the total amount of electricity contributed by solar generation. During the October 14, 2023, annular eclipse, available solar power plummeted in California and Texas. At the same time, demand increased as individual Sun-powered homes and other buildings began drawing electricity from the power grid. Both networks were able to compensate with stations powered by natural gas and other sources.

The power drop during this year’s eclipse could be more dramatic because there will be less sunlight at the peak of the eclipse.

20. What are some of the myths and superstitions associated with solar eclipses?

Most ancient cultures created stories to explain the Sun’s mysterious and terrifying disappearances.

In China and elsewhere, it was thought the Sun was being devoured by a dragon. Other cultures blamed a hungry frog (Vietnam), a giant wolf loosed by the god Loki (Scandinavia), or the severed head of a monster (India). Still others saw an eclipse as a quarrel (or a reunion) between Sun and Moon. Some peoples shot flaming arrows into the sky to scare away the monster or to rekindle the solar fire. One especially intriguing story, from Transylvania, said that an eclipse occurred when the Sun covered her face in disgust at bad human behavior.

Eclipses have been seen as omens of evil deeds to come. In August 1133, King Henry I left England for Normandy one day before a lengthy solar eclipse, bringing prophesies of doom. The country later was plunged into civil war, and Henry died before he could return home, strengthening the impression that solar eclipses were bad mojo.

Ancient superstitions claimed that eclipses could cause plague and other maladies. Modern superstitions say that food prepared during an eclipse is poison and that an eclipse will damage the babies of pregnant women who look at it. None of that is true, of course. There’s nothing at all to fear from this beautiful natural event.

21. How do animals react to solar eclipses?

Scientists haven’t studied the topic very thoroughly, but they do have some general conclusions. Many daytime animals start their evening rituals, while many nighttime animals wake up when the eclipse is over, perhaps cursing their alarm clocks for letting them sleep so late!

During the 2017 total eclipse, scientists observed 17 species at Riverbanks Zoo in Columbia, South Carolina. About three-quarters of the species showed some response as the sky darkened. Some animals acted nervous, while others simply headed for bed. A species of gibbon had the most unusual reaction, moving excitedly and chattering in ways the zookeepers hadn’t seen before.

Other studies have reported that bats and owls sometimes come out during totality, hippos move toward their nighttime feeding grounds, and spiders tear down their webs, only to rebuild them when the Sun returns. Bees have been seen to return to their hives during totality and not budge until the next day, crickets begin their evening chorus, and, unfortunately, mosquitoes emerge, ready to dine on unsuspecting eclipse watchers.

A NASA project, Eclipse Soundscapes, is using volunteers around the country to learn more about how animals react to the changes. The project collected audio recordings and observations by participants during the annular eclipse last year, and will repeat the observations this year. Volunteers can sign up at eclipsesoundscapes.org

22. How will scientists study this year’s eclipse?

Astronomers don’t pay quite as much professional attention to solar eclipses as they did in decades and centuries past. However, they still schedule special observations to add to their knowledge of the Sun and especially the inner edge of the corona.

Sun-watching satellites create artificial eclipses by placing a small disk across the face of the Sun, blocking the Sun’s disk and revealing the corona, solar prominences, and big explosions of charged particles known as coronal mass ejections.

Because of the way light travels around the edges of an eclipsing disk, however, it’s difficult to observe the region just above the Sun’s visible surface, which is where much of the action takes place. The corona is heated to millions of degrees there, and the constant flow of particles known as the solar wind is accelerated to a million miles per hour or faster, so solar astronomers really want to see that region in detail. The eclipsing Moon doesn’t create the same effects around the limb of the Sun, so a solar eclipse still provides the best way to look close to the Sun’s surface.

For this year’s eclipse, some scientists will repeat a series of experiments they conducted in 2017 using a pair of highaltitude WB-57 aircraft to “tag team” through the lunar shadow, providing several extra minutes of observations.

Other scientists will use the eclipse to study Earth’s ionosphere, an electrically charged layer of the atmosphere that “bends” radio waves, allowing them to travel thousands of miles around the planet. Sunlight rips apart atoms and molecules during the day, intensifying the charge. At night, the atoms and molecules recombine, reducing the charge.

Physicists want to understand how the ionosphere reacts to the temporary loss of sunlight during an eclipse. They will do so with the help of thousands of volunteer ham radio operators, who will exchange messages with others around the planet. During last October’s annular eclipse, when the Moon covered most but not all of the Sun, the experiment showed a large and immediate change in the ionosphere as the sunlight dimmed.

NASA also will launch three small “sounding” rockets, which loft instruments into space for a few minutes, to probe the ionosphere shortly before, during, and shortly after the eclipse.

Another project will use radar to study changes in the interactions between the solar wind and Earth’s atmosphere, while yet another will use a radio telescope to map sunspots and surrounding regions as the Moon passes across them.

One project will piece together images of the eclipse snapped through more than 40 identical telescopes spaced along the path of totality to create a one-hour movie of the eclipse. The telescopes will be equipped with instruments that see the three-dimensional structure of the corona, allowing solar scientists to plot how the corona changes.

23. What have astronomers learned from eclipses?

Solar eclipses have been powerful tools for studying the Sun, the layout of the solar system, and the physics of the universe.

Until the Space Age, astronomers could see the Sun’s corona only during eclipses, so they traveled around the world to catch these brief glimpses of it.

Eclipses also offered a chance to refine the scale of the solar system. Watching an eclipse from different spots on Earth and comparing the angles of the Moon and Sun helped reveal the relative sizes and distances of both bodies, which were important steps in understanding their true distances.

During an eclipse in 1868, two astronomers discovered a new element in the corona. It was named helium, after Helios, a Greek name for the Sun. The element wasn’t discovered on Earth until a quarter of a century later.

An eclipse in 1919 helped confirm General Relativity, which was Albert Einstein’s theory of gravity. The theory predicted that the gravity of a massive body should deflect the path of light rays flying near its surface. During the eclipse, astronomers found that the positions of background stars that appeared near the Sun were shifted by a tiny amount, which was in perfect agreement with Einstein’s equations.

Today, astronomers are using records of eclipses dating back thousands of years to measure changes in Earth’s rotation rate and the distance to the Moon.

24. How did astronomers study eclipses in the past?

With great effort! From the time they could accurately predict when and where solar eclipses would be visible, they organized expeditions that took them to every continent except Antarctica, on trips that lasted months and that sometimes were spoiled by clouds or problems both technical and human.

During the American Revolution, for example, a group of Harvard scientists led by Samuel Williams received safe passage from the British army to view an eclipse from Penobscot Bay, Maine, on October 21, 1780. Williams slightly miscalculated the eclipse path, though, so the group missed totality by a few miles. (The expedition did make some useful observations, however.)

In 1860, an expedition headed by Simon Newcomb, one of America’s top astronomers, journeyed up the Saskatchewan River, hundreds of miles from the nearest city, braving rapids, mosquitoes, and bad weather. After five grueling weeks, they had to stop short of their planned viewing site, although at a location still inside the eclipse path. Clouds covered the Sun until almost the end of totality, however, so the expedition came up empty.

King Mongkut of Siam invited a French expedition and hundreds of other dignitaries to view an eclipse from present-day Thailand in 1868. He built an observatory and a large compound to house his guests at a site Mongkut himself had selected as the best viewing spot. The eclipse came off perfectly, but many visitors contracted malaria. So did Mongkut, who died a few weeks later.

An expedition in 1914, to Russia, was plagued by both clouds and the start of World War I. The team abandoned its instruments at a Russian observatory and escaped through Scandinavia.

The eclipse of July 29, 1878, offered fewer impediments. In fact, it was a scientific and social extravaganza. The eclipse path stretched from Montana Territory to Texas. Teams of astronomers from the United States and Europe spread out along the path. Thomas Edison stationed his group in Wyoming, where he used a tasimeter, a device of his own creation, to try to measure the temperature of the corona. Samuel Pierpoint Langley, a future secretary of the Smithsonian, was atop Pikes Peak in Colorado. Maria Mitchell, perhaps America’s leading female scientist, decamped to Denver. And Asaph Hall, who had discovered the moons of Mars just the year before, journeyed to the flatlands of eastern Colorado.

Thousands of average Americans joined the festivities, paying outrageous prices for some of the best viewing spots. Some things, it seems, never change.

25. What about lunar eclipses?

While solar eclipses happen during new Moon, lunar eclipses occur when the Moon is full, so it aligns opposite the Sun in our sky. The Moon passes through Earth’s shadow. In a total eclipse, the entire lunar disk turns orange or red. In a partial eclipse, Earth’s inner shadow covers only a portion of the Moon. And during a penumbral eclipse, the Moon passes through the outer portion of Earth’s shadow, darkening the Moon so little that most people don’t even notice it.

Lunar eclipses happen as often as solar eclipses—at least twice per year. This is a poor year for lunar eclipses, however. There is a penumbral eclipse on the night of March 24, with the Moon slipping through Earth’s faint outer shadow, and a partial eclipse on the night of September 17, in which the Moon barely dips into the darker inner shadow. Both eclipses will be visible from most of the United States.

Explore Latest Articles

Apr 10, 2024

Clint Dawson and Stephen Vladeck Honored With President’s Research Impact Award

how to write variable discussion in research

Apr 09, 2024

UT’s Excellence and Impact On Display in Latest Graduate School Rankings

how to write variable discussion in research

Apr 05, 2024

A UTotal Solar Eclipse

how to write variable discussion in research

IMAGES

  1. How to Write a Discussion Section

    how to write variable discussion in research

  2. Types of Research Variable in Research with Example

    how to write variable discussion in research

  3. Discussion in Research

    how to write variable discussion in research

  4. How to write variables in research paper

    how to write variable discussion in research

  5. How to Write Your Results and Discussion Section for a research article

    how to write variable discussion in research

  6. A Guide on Writing A Discussion Section Of A Research Paper

    how to write variable discussion in research

VIDEO

  1. Variable Discussion in the Literature Review and using Google Scholar for Search

  2. INDEPENDENT AND DEPENDENT VARIABLES: Experimental Research Variables

  3. VARIABLES USED IN RESEARCH WRITING: DEPENDENT AND INDEPENDENT VARIABLES +MORE

  4. Types of Variables in Research and Their Uses (Practical Research 2)

  5. Dissertation Discussion Chapter: How To Write It In 6 Steps (With Examples)

  6. how to write a discussion section in a research paper

COMMENTS

  1. How to Write a Discussion Section

    Table of contents. What not to include in your discussion section. Step 1: Summarize your key findings. Step 2: Give your interpretations. Step 3: Discuss the implications. Step 4: Acknowledge the limitations. Step 5: Share your recommendations. Discussion section example. Other interesting articles.

  2. 8. The Discussion

    II. The Content. The content of the discussion section of your paper most often includes:. Explanation of results: Comment on whether or not the results were expected for each set of findings; go into greater depth to explain findings that were unexpected or especially profound.If appropriate, note any unusual or unanticipated patterns or trends that emerged from your results and explain their ...

  3. How to Write the Discussion Section of a Research Paper

    The discussion section provides an analysis and interpretation of the findings, compares them with previous studies, identifies limitations, and suggests future directions for research. This section combines information from the preceding parts of your paper into a coherent story. By this point, the reader already knows why you did your study ...

  4. How to Write Discussions and Conclusions

    Begin with a clear statement of the principal findings. This will reinforce the main take-away for the reader and set up the rest of the discussion. Explain why the outcomes of your study are important to the reader. Discuss the implications of your findings realistically based on previous literature, highlighting both the strengths and ...

  5. Writing a discussion section: how to integrate substantive and

    Main body. To get the best possible conclusion, substantive and statistical expertise have to be integrated on the basis of reasonable assumptions. While statistics should raise questions on the mechanisms that have presumably created the data, substantive knowledge should answer them. Building on the related principle of Bayesian thinking, we ...

  6. Variable Discussion in the Literature Review and using Google ...

    The session focuses on Variable Discussion in the Literature Review and using Google Scholar for Searching each of the elements. How to use Google Scholar at...

  7. PDF Discussion Section for Research Papers

    The discussion reviews the findings and puts them into the context of the overall research. It brings together all the sections that came before it and allows a reader to see the connections between each part of the research paper. In a discussion section, the author engages in three necessary steps: interpretation, analysis, and explanation.

  8. How Do I Write the Discussion Chapter?

    The Discussion chapter brings an opportunity to write an academic argument that contains a detailed critical evaluation and analysis of your research findings. This chapter addresses the purpose and critical nature of the discussion, contains a guide to selecting key results to discuss, and details how best to structure the discussion with ...

  9. Guide to Writing the Results and Discussion Sections of a ...

    Tips to Write the Results Section. Direct the reader to the research data and explain the meaning of the data. Avoid using a repetitive sentence structure to explain a new set of data. Write and highlight important findings in your results. Use the same order as the subheadings of the methods section.

  10. PDF How to Write a Strong Discussion in Scientific Manuscripts

    A strong Discussion section provides a great deal of analytical depth. Your goal should be to critically analyze and interpret the findings of your study. You should place your findings in the context of published literature and describe how your study moves the field forward. It is often easy to organize the key elements of a Discussion ...

  11. Q: How to write the Discussion section in a qualitative paper?

    1. Begin by discussing the research question and talking about whether it was answered in the research paper based on the results. 2. Highlight any unexpected and/or exciting results and link them to the research question. 3. Point out some previous studies and draw comparisons on how your study is different. 4.

  12. A Practical Guide to Writing Quantitative and Qualitative Research

    Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question.1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study.5

  13. How to Write a Discussion Section for a Research Paper

    Begin the Discussion section by restating your statement of the problem and briefly summarizing the major results. Do not simply repeat your findings. Rather, try to create a concise statement of the main results that directly answer the central research question that you stated in the Introduction section.

  14. Organizing Your Social Sciences Research Paper

    Dependent Variable The variable that depends on other factors that are measured. These variables are expected to change as a result of an experimental manipulation of the independent variable or variables. It is the presumed effect. Independent Variable The variable that is stable and unaffected by the other variables you are trying to measure.

  15. How to Write an Effective Discussion in a Research Paper; a Guide to

    Discussion is mainly the section in a research paper that makes the readers understand the exact meaning of the results achieved in a study by exploring the significant points of the research, its ...

  16. (PDF) How to Write an Effective Discussion

    Acknowledge the Study's Limitations. Make Suggestions for Further Research. Give the "Take-Home Message" in the Form of a Conclusion. Things to Avoid When Writing the Discussion ...

  17. How to Write a Discussion Section

    Table of contents. What not to include in your discussion section. Step 1: Summarise your key findings. Step 2: Give your interpretations. Step 3: Discuss the implications. Step 4: Acknowledge the limitations. Step 5: Share your recommendations. Discussion section example.

  18. Chapter 6 Synopsis: Writing the Discussion/Conclusion

    Chapter 6 Synopsis: Writing the Discussion/Conclusion. In this chapter, we learned how to finalize a research article. The four main goals and their strategies were discussed and exemplified along with some advice about what language you can use. To review, let's look again at the four goals: Through these goals, writers provide readers with ...

  19. PDF Selecting and Describing Your Research Instruments

    part of a research group discussion. The first two chapters in this guide discuss how to identify the con-structs and variables and the types of instruments available for you to consider using in your studies. Some information in Chapters 1 and 2 will be familiar to you. I find it helpful to review these concepts frequently.

  20. Research Discussion ~ Importance & How To Write It

    The research discussion section of a dissertation is a vital element that compiles the significance of your results in the context of your overall study. It allows you to interpret your findings, draw conclusions, relate your outcomes to existing literature, and suggest potential further research. This guide provides detailed insights into ...

  21. How to Write the Discussion?

    Fig. 21.1. How a discussion should look. First arrow—Mention your key results/findings; Second arrow—Discuss your results with their explanations\step by step; Third Arrow—Enumerate your studies limitations and strengths; Last arrow—Suggest future directions for investigation. Full size image.

  22. How to Write a Literature Review

    Examples of literature reviews. Step 1 - Search for relevant literature. Step 2 - Evaluate and select sources. Step 3 - Identify themes, debates, and gaps. Step 4 - Outline your literature review's structure. Step 5 - Write your literature review.

  23. Types of Variables in Research & Statistics

    Examples. Discrete variables (aka integer variables) Counts of individual items or values. Number of students in a class. Number of different tree species in a forest. Continuous variables (aka ratio variables) Measurements of continuous or non-finite values. Distance.

  24. 25 Questions (and Answers!) About the Great North American Eclipse

    The April 8 eclipse is the 30th of Saros 139, a series of 71 events that began with a partial eclipse, in the far north, and will end with another partial eclipse, this time in the far southern hemisphere. The next eclipse in this Saros, also total, will take place on April 20, 2042.