• Engineering Mathematics
  • Discrete Mathematics
  • Operating System
  • Computer Networks
  • Digital Logic and Design
  • C Programming
  • Data Structures
  • Theory of Computation
  • Compiler Design
  • Computer Org and Architecture
  • Computer Network Tutorial

Basics of Computer Network

  • Basics of Computer Networking
  • Introduction to basic Networking Terminology
  • Goals of Networks
  • Basic characteristics of Computer Networks
  • Challenges of Computer Network
  • Physical Components of Computer Network

Network Hardware and Software

  • Types of Computer Networks
  • LAN Full Form
  • How to Set Up a LAN Network?
  • MAN Full Form in Computer Networking
  • MAN Full Form
  • WAN Full Form
  • Introduction of Internetworking
  • Difference between Internet, Intranet and Extranet
  • Protocol Hierarchies in Computer Network
  • Network Devices (Hub, Repeater, Bridge, Switch, Router, Gateways and Brouter)
  • Introduction of a Router
  • Introduction of Gateways
  • What is a network switch, and how does it work?

Network Topology

  • Types of Network Topology
  • Difference between Physical and Logical Topology
  • What is OSI Model? - Layers of OSI Model
  • Physical Layer in OSI Model
  • Data Link Layer
  • Session Layer in OSI model

Presentation Layer in OSI model

  • Application Layer in OSI Model
  • Protocol and Standard in Computer Networks
  • Examples of Data Link Layer Protocols
  • TCP/IP Model
  • TCP/IP Ports and Its Applications
  • What is Transmission Control Protocol (TCP)?
  • TCP 3-Way Handshake Process
  • Services and Segment structure in TCP
  • TCP Connection Establishment
  • TCP Connection Termination
  • Fast Recovery Technique For Loss Recovery in TCP
  • Difference Between OSI Model and TCP/IP Model

Medium Access Control

  • MAC Full Form
  • Channel Allocation Problem in Computer Network
  • Multiple Access Protocols in Computer Network
  • Carrier Sense Multiple Access (CSMA)
  • Collision Detection in CSMA/CD
  • Controlled Access Protocols in Computer Network

SLIDING WINDOW PROTOCOLS

  • Stop and Wait ARQ
  • Sliding Window Protocol | Set 3 (Selective Repeat)
  • Piggybacking in Computer Networks

IP Addressing

  • What is IPv4?
  • What is IPv6?
  • Introduction of Classful IP Addressing
  • Classless Addressing in IP Addressing
  • Classful Vs Classless Addressing
  • Classless Inter Domain Routing (CIDR)
  • Supernetting in Network Layer
  • Introduction To Subnetting
  • Difference between Subnetting and Supernetting
  • Types of Routing
  • Difference between Static and Dynamic Routing
  • Unicast Routing - Link State Routing
  • Distance Vector Routing (DVR) Protocol
  • Fixed and Flooding Routing algorithms
  • Introduction of Firewall in Computer Network

Congestion Control Algorithms

  • Congestion Control in Computer Networks
  • Congestion Control techniques in Computer Networks
  • Computer Network | Leaky bucket algorithm
  • TCP Congestion Control

Network Switching

  • Circuit Switching in Computer Network
  • Message switching techniques
  • Packet Switching and Delays in Computer Network
  • Differences Between Virtual Circuits and Datagram Networks

Application Layer:DNS

  • Domain Name System (DNS) in Application Layer
  • Details on DNS
  • Introduction to Electronic Mail
  • E-Mail Format
  • World Wide Web (WWW)
  • HTTP Full Form
  • Streaming Stored Video
  • What is a Content Distribution Network and how does it work?

CN Interview Quetions

  • Top 50 Networking Interview Questions (2024)
  • Top 50 TCP/IP interview questions and answers
  • Top 50 IP addressing interview questions and answers
  • Last Minute Notes - Computer Networks
  • Computer Network - Cheat Sheet
  • Network Layer
  • Transport Layer
  • Application Layer

Prerequisite : OSI Model

Introduction : Presentation Layer is the 6th layer in the Open System Interconnection (OSI) model. This layer is also known as Translation layer, as this layer serves as a data translator for the network. The data which this layer receives from the Application Layer is extracted and manipulated here as per the required format to transmit over the network. The main responsibility of this layer is to provide or define the data format and encryption. The presentation layer is also called as Syntax layer since it is responsible for maintaining the proper syntax of the data which it either receives or transmits to other layer(s).

Functions of Presentation Layer :

The presentation layer, being the 6th layer in the OSI model, performs several types of functions, which are described below-

  • Presentation layer format and encrypts data to be sent across the network.
  • This layer takes care that the data is sent in such a way that the receiver will understand the information (data) and will be able to use the data efficiently and effectively.
  • This layer manages the abstract data structures and allows high-level data structures (example- banking records), which are to be defined or exchanged.
  • This layer carries out the encryption at the transmitter and decryption at the receiver.
  • This layer carries out data compression to reduce the bandwidth of the data to be transmitted (the primary goal of data compression is to reduce the number of bits which is to be transmitted).
  • This layer is responsible for interoperability (ability of computers to exchange and make use of information) between encoding methods as different computers use different encoding methods.
  • This layer basically deals with the presentation part of the data.
  • Presentation layer, carries out the data compression (number of bits reduction while transmission), which in return improves the data throughput.
  • This layer also deals with the issues of string representation.
  • The presentation layer is also responsible for integrating all the formats into a standardized format for efficient and effective communication.
  • This layer encodes the message from the user-dependent format to the common format and vice-versa for communication between dissimilar systems.
  • This layer deals with the syntax and semantics of the messages.
  • This layer also ensures that the messages which are to be presented to the upper as well as the lower layer should be standardized as well as in an accurate format too.
  • Presentation layer is also responsible for translation, formatting, and delivery of information for processing or display.
  • This layer also performs serialization (process of translating a data structure or an object into a format that can be stored or transmitted easily).

Features of Presentation Layer in the OSI model: Presentation layer, being the 6th layer in the OSI model, plays a vital role while communication is taking place between two devices in a network.

List of features which are provided by the presentation layer are:

  • Presentation layer could apply certain sophisticated compression techniques, so fewer bytes of data are required to represent the information when it is sent over the network.
  • If two or more devices are communicating over an encrypted connection, then this presentation layer is responsible for adding encryption on the sender’s end as well as the decoding the encryption on the receiver’s end so that it can represent the application layer with unencrypted, readable data.
  • This layer formats and encrypts data to be sent over a network, providing freedom from compatibility problems.
  • This presentation layer also negotiates the Transfer Syntax.
  • This presentation layer is also responsible for compressing data it receives from the application layer before delivering it to the session layer (which is the 5th layer in the OSI model) and thus improves the speed as well as the efficiency of communication by minimizing the amount of the data to be transferred.

Working of Presentation Layer in the OSI model : Presentation layer in the OSI model, as a translator, converts the data sent by the application layer of the transmitting node into an acceptable and compatible data format based on the applicable network protocol and architecture.  Upon arrival at the receiving computer, the presentation layer translates data into an acceptable format usable by the application layer. Basically, in other words, this layer takes care of any issues occurring when transmitted data must be viewed in a format different from the original format. Being the functional part of the OSI mode, the presentation layer performs a multitude (large number of) data conversion algorithms and character translation functions. Mainly, this layer is responsible for managing two network characteristics: protocol (set of rules) and architecture.

Presentation Layer Protocols : Presentation layer being the 6th layer, but the most important layer in the OSI model performs several types of functionalities, which makes sure that data which is being transferred or received should be accurate or clear to all the devices which are there in a closed network. Presentation Layer, for performing translations or other specified functions, needs to use certain protocols which are defined below –

  • Apple Filing Protocol (AFP): Apple Filing Protocol is the proprietary network protocol (communications protocol) that offers services to macOS or the classic macOS. This is basically the network file control protocol specifically designed for Mac-based platforms.
  • Lightweight Presentation Protocol (LPP): Lightweight Presentation Protocol is that protocol which is used to provide ISO presentation services on the top of TCP/IP based protocol stacks.
  • NetWare Core Protocol (NCP): NetWare Core Protocol is the network protocol which is used to access file, print, directory, clock synchronization, messaging, remote command execution and other network service functions.
  • Network Data Representation (NDR): Network Data Representation is basically the implementation of the presentation layer in the OSI model, which provides or defines various primitive data types, constructed data types and also several types of data representations.
  • External Data Representation (XDR): External Data Representation (XDR) is the standard for the description and encoding of data. It is useful for transferring data between computer architectures and has been used to communicate data between very diverse machines. Converting from local representation to XDR is called encoding, whereas converting XDR into local representation is called decoding.
  • Secure Socket Layer (SSL): The Secure Socket Layer protocol provides security to the data that is being transferred between the web browser and the server. SSL encrypts the link between a web server and a browser, which ensures that all data passed between them remains private and free from attacks.

Please Login to comment...

Similar reads.

author

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Presentation Layer: Protocols, Examples, Services | Functions of Presentation Layer

Presentation Layer is the 6th layer in the Open System Interconnection (OSI) model where all application programmer consider data structure and presentation, beyond of simply sending the data into form of datagram otherwise packets in between the hosts. Now, we will explain about what is presentation layer with its protocols, example, service ; involving with major functions of presentation Layer with ease. At the end of this article, you will completely educate about What is Presentation Layer in OSI Model without any hassle.

  • What is Presentation Layer?

Definition : Presentation layer is 6th layer in the OSI model , and its main objective is to present all messages to upper layer as a standardized format. It is also known as the “ Translation layer “.  This layer takes care of syntax and semantics of messages exchanged in between two communication systems. Presentation layer has responsible that receiver can understand all data, and it will be to implement all data languages can be dissimilar of two communication system.

presentation layer

Presentation layer is capable to handle abstract data structures, and further it helps to defined and exchange of higher-level data structures.

Presentation Layer Tutorial Headlines:

In this section, we will show you all headlines about this entire article; you can check them as your choice; below shown all:

  • Functions of Presentation Layer

Protocols of Presentation Layer

  • Example of Presentation Layer Protocols

Presentation Layer Services

Design issues with presentation layer, faqs (frequently asked questions), what is meant by presentation layer in osi model, what protocols are used in the presentation layer, can you explain some presentation layer examples, what are the main functions of the presentation layer, what are services of presentation layer in osi, let’s get started,   functions of presentation layer.

Presentation layer performs various functions in the OSI model ; below explain each one – 

  • Presentation layer helps to translate from American standard code for information interchange (ASCII) to the extended binary code decimal interchange code (EBCDIC).
  • It deals with user interface as well as supporting for several services such as email and file transfer.
  • It provides encoding mechanism for translating all messages from user dependent format with common format and vice – versa.
  • It’s main goal for data encryption and decryption of entire data before they are getting transmission over all common platforms.
  • It provides data compression mechanism for source point to decrease the all bits which are transmitted. Due to this data compression system, user are able to transmit enlarge multimedia file at fastest file transfer rate.
  • Due to use of Data Encryption and Decryption algorithm, presentation layer provides more network protection and confidentiality while transmission data over the entire network.
  • This layer offers best flexibility for data translation for making connections with various kinds of servers , computers, and mainframes over the similar network.
  • Presentation layer has responsible to fix all translations in between all network systems .

Presentation layer is used various protocols; below list is available –

  • Multipurpose Internet Mail Extensions
  • File Transfer Protocol
  • Network News Transfer Protocol
  • Apple Filing Protocol (AFP)
  • Independent Computing Architecture (ICA), the Citrix system core protocol
  • Lightweight Presentation Protocol (LPP)
  • NetWare Core Protocol (NCP)
  • Network Data Representation (NDR)
  • Telnet (a remote terminal access protocol)
  • Tox Protocol
  • eXternal Data Representation (XDR)
  • 25 Packet Assembler/Disassembler Protocol (PAD)

Example of Presentation Layer Protocols:

Here, we will discuss all examples of presentation layer protocols; below explain each one –  

Multipurpose Internet Mail Extensions (MIME) : MIME protocol was introduced by Bell Communications in 1991, and it is an internet standard that provides scalable capable of email for attaching of images, sounds and text in a message.

File Transfer Protocol (FTP) : FTP is a internet protocol, and its main goal is to transmit all files in between one host to other hosts over the internet on TCP/IP connections.

Network News Transfer Protocol (NNTP) : This protocol is used to make connection with Usenet server and transmit all newsgroup articles in between system over internet.

Apple Filing Protocol (AFP ) : AFP protocol is designed by Apple company for sharing all files over the entire network .

Lightweight Presentation Protocol (LPP) : This protocol is used to offer ISO presentation services on top of TCP/IP based protocol stacks.

NetWare Core Protocol (NCP) : NCP is a Novell client server model protocol that is designed especially for Local Area Network (LAN). It is capable to perform several functions like as file/print-sharing, clock synchronization, remote processing and messaging.

Network Data Representation (NDR) : NDR is an data encoding standard, and it is implement in the Distributed Computing Environment (DCE).

Telnet (Telecommunication Network) : Telnet protocol was introduced in 1969, and it offers the command line interface for making communication along with remote device or server .

Tox : The Tox protocol is sometimes regarded as part of both the presentation and application layer , and it is used for sending peer-to-peer instant-messaging as well as video calling.

eXternal Data Representation (XDR) : This protocol provides the description and encoding of entire data, and  it’s main goal is to transfer data in between dissimilar computer architecture.

25 Packet Assembler/Disassembler Protocol (PAD) : Main objective of this protocol is to obtain all data from group of terminal and allots the data into X. 25 packets.

Presentation layer provides several services like as –

  • Data conversion
  • Character code translation
  • Compression
  • Encryption and Decryption
  • It helps to handle and maintain Syntax and Semantics of the message transmitted.
  • Encoding data can be done as standard agreed like as String, double, date, and more.
  • Standard Encoding can be done on wire.

Presentation Layer is the 6th layer in the Open System Interconnection (OSI) model that is the lowest layer, where all application programmer consider data structure and presentation, beyond of simply sending the data into form of datagram otherwise packets in between the hosts.

Presentation layer is used various protocols like as:

Yes! In this article, already we have been explained many examples of presentation layer; you can check them.

Presentation layer has a responsibility for formatting, translation, and delivery of the information for getting to process otherwise display .

Now, i hope that you have completely learnt about what is presentation layer with its protocols, example, service ; involving with major functions of presentation Layer with ease. If this post is useful for you, then please share it along with your friends, family members or relatives over social media platforms like as Facebook, Instagram, Linked In, Twitter, and more.

Also Read: Data Link Layer: Protocols, Examples | Functions of Data Link Layer

If you have any experience, tips, tricks, or query regarding this issue? You can drop a comment!

Related Posts

transport layer

  Layer 6 Presentation Layer

De/Encryption, Encoding, String representation

The presentation layer (data presentation layer, data provision level) sets the system-dependent representation of the data (for example, ASCII, EBCDIC) into an independent form, enabling the syntactically correct data exchange between different systems. Also, functions such as data compression and encryption are guaranteed that data to be sent by the application layer of a system that can be read by the application layer of another system to the layer 6. The presentation layer. If necessary, the presentation layer acts as a translator between different data formats, by making an understandable for both systems data format, the ASN.1 (Abstract Syntax Notation One) used.

OSI Layer 6 - Presentation Layer

The presentation layer is responsible for the delivery and formatting of information to the application layer for further processing or display. It relieves the application layer of concern regarding syntactical differences in data representation within the end-user systems. An example of a presentation service would be the conversion of an EBCDIC-coded text computer file to an ASCII-coded file. The presentation layer is the lowest layer at which application programmers consider data structure and presentation, instead of simply sending data in the form of datagrams or packets between hosts. This layer deals with issues of string representation - whether they use the Pascal method (an integer length field followed by the specified amount of bytes) or the C/C++ method (null-terminated strings, e.g. "thisisastring\0"). The idea is that the application layer should be able to point at the data to be moved, and the presentation layer will deal with the rest. Serialization of complex data structures into flat byte-strings (using mechanisms such as TLV or XML) can be thought of as the key functionality of the presentation layer. Encryption is typically done at this level too, although it can be done on the application, session, transport, or network layers, each having its own advantages and disadvantages. Decryption is also handled at the presentation layer. For example, when logging on to bank account sites the presentation layer will decrypt the data as it is received.[1] Another example is representing structure, which is normally standardized at this level, often by using XML. As well as simple pieces of data, like strings, more complicated things are standardized in this layer. Two common examples are 'objects' in object-oriented programming, and the exact way that streaming video is transmitted. In many widely used applications and protocols, no distinction is made between the presentation and application layers. For example, HyperText Transfer Protocol (HTTP), generally regarded as an application-layer protocol, has presentation-layer aspects such as the ability to identify character encoding for proper conversion, which is then done in the application layer. Within the service layering semantics of the OSI network architecture, the presentation layer responds to service requests from the application layer and issues service requests to the session layer. In the OSI model: the presentation layer ensures the information that the application layer of one system sends out is readable by the application layer of another system. For example, a PC program communicates with another computer, one using extended binary coded decimal interchange code (EBCDIC) and the other using ASCII to represent the same characters. If necessary, the presentation layer might be able to translate between multiple data formats by using a common format. Wikipedia
  • Data conversion
  • Character code translation
  • Compression
  • Encryption and Decryption

The Presentation OSI Layer is usually composed of 2 sublayers that are:

CASE common application service element

Sase specific application service element, layer 7   application layer, layer 6   presentation layer, layer 5   session layer, layer 4   transport layer, layer 3   network layer, layer 2   data link layer, layer 1   physical layer.

Guru99

OSI Model Layers and Protocols in Computer Network

Lawrence Williams

What is OSI Model?

The OSI Model is a logical and conceptual model that defines network communication used by systems open to interconnection and communication with other systems. The Open System Interconnection (OSI Model) also defines a logical network and effectively describes computer packet transfer by using various layers of protocols.

Characteristics of OSI Model

Here are some important characteristics of the OSI model:

  • A layer should only be created where the definite levels of abstraction are needed.
  • The function of each layer should be selected as per the internationally standardized protocols.
  • The number of layers should be large so that separate functions should not be put in the same layer. At the same time, it should be small enough so that architecture doesn’t become very complicated.
  • In the OSI model, each layer relies on the next lower layer to perform primitive functions. Every level should able to provide services to the next higher layer
  • Changes made in one layer should not need changes in other lavers.

Why of OSI Model?

  • Helps you to understand communication over a network
  • Troubleshooting is easier by separating functions into different network layers.
  • Helps you to understand new technologies as they are developed.
  • Allows you to compare primary functional relationships on various network layers.

History of OSI Model

Here are essential landmarks from the history of OSI model:

  • In the late 1970s, the ISO conducted a program to develop general standards and methods of networking.
  • In 1973, an Experimental Packet Switched System in the UK identified the requirement for defining the higher-level protocols.
  • In the year 1983, OSI model was initially intended to be a detailed specification of actual interfaces.
  • In 1984, the OSI architecture was formally adopted by ISO as an international standard

7 Layers of the OSI Model

OSI model is a layered server architecture system in which each layer is defined according to a specific function to perform. All these seven layers work collaboratively to transmit the data from one layer to another.

  • The Upper Layers : It deals with application issues and mostly implemented only in software. The highest is closest to the end system user. In this layer, communication from one end-user to another begins by using the interaction between the application layer. It will process all the way to end-user.
  • The Lower Layers : These layers handle activities related to data transport. The physical layer and datalink layers also implemented in software and hardware.

Upper and Lower layers further divide network architecture into seven different layers as below

  • Application
  • Presentation
  • Network, Data-link
  • Physical layers

7 Layers of the OSI Model

Let’s Study each layer in detail:

Physical Layer

The physical layer helps you to define the electrical and physical specifications of the data connection. This level establishes the relationship between a device and a physical transmission medium. The physical layer is not concerned with protocols or other such higher-layer items. One example of a technology that operates at the physical layer in telecommunications is PRI (Primary Rate Interface). To learn more about PRI and how it works , you can visit this informative article.

Examples of hardware in the physical layer are network adapters, ethernet, repeaters, networking hubs, etc.

Data Link Layer

Data link layer corrects errors which can occur at the physical layer. The layer allows you to define the protocol to establish and terminates a connection between two connected network devices.

It is IP address understandable layer, which helps you to define logical addressing so that any endpoint should be identified.

The layer also helps you implement routing of packets through a network. It helps you to define the best path, which allows you to take data from the source to the destination.

The data link layer is subdivided into two types of sublayers:

  • Media Access Control (MAC) layer- It is responsible for controlling how device in a network gain access to medium and permits to transmit data.
  • Logical link control layer- This layer is responsible for identity and encapsulating network-layer protocols and allows you to find the error.

Important Functions of Datalink Layer

  • Framing which divides the data from Network layer into frames.
  • Allows you to add header to the frame to define the physical address of the source and the destination machine
  • Adds Logical addresses of the sender and receivers
  • It is also responsible for the sourcing process to the destination process delivery of the entire message.
  • It also offers a system for error control in which it detects retransmits damage or lost frames.
  • Datalink layer also provides a mechanism to transmit data over independent networks which are linked together.

Transport Layer

The transport layer builds on the network layer to provide data transport from a process on a source machine to a process on a destination machine. It is hosted using single or multiple networks, and also maintains the quality of service functions.

It determines how much data should be sent where and at what rate. This layer builds on the message which are received from the application layer. It helps ensure that data units are delivered error-free and in sequence.

Transport layer helps you to control the reliability of a link through flow control, error control, and segmentation or desegmentation.

The transport layer also offers an acknowledgment of the successful data transmission and sends the next data in case no errors occurred. TCP is the best-known example of the transport layer.

Important functions of Transport Layers

  • It divides the message received from the session layer into segments and numbers them to make a sequence.
  • Transport layer makes sure that the message is delivered to the correct process on the destination machine.
  • It also makes sure that the entire message arrives without any error else it should be retransmitted.

Network Layer

The network layer provides the functional and procedural means of transferring variable length data sequences from one node to another connected in “different networks”.

Message delivery at the network layer does not give any guaranteed to be reliable network layer protocol.

Layer-management protocols that belong to the network layer are:

  • routing protocols
  • multicast group management
  • network-layer address assignment.

Session Layer

Session Layer controls the dialogues between computers. It helps you to establish starting and terminating the connections between the local and remote application.

This layer request for a logical connection which should be established on end user’s requirement. This layer handles all the important log-on or password validation.

Session layer offers services like dialog discipline, which can be duplex or half-duplex. It is mostly implemented in application environments that use remote procedure calls.

Important function of Session Layer

  • It establishes, maintains, and ends a session.
  • Session layer enables two systems to enter into a dialog
  • It also allows a process to add a checkpoint to steam of data.

Presentation Layer

Presentation layer allows you to define the form in which the data is to exchange between the two communicating entities. It also helps you to handles data compression and data encryption.

This layer transforms data into the form which is accepted by the application. It also formats and encrypts data which should be sent across all the networks. This layer is also known as a syntax layer .

The function of Presentation Layers

  • Character code translation from ASCII to EBCDIC.
  • Data compression: Allows to reduce the number of bits that needs to be transmitted on the network.
  • Data encryption: Helps you to encrypt data for security purposes — for example, password encryption.
  • It provides a user interface and support for services like email and file transfer.

Application Layer

Application layer interacts with an application program, which is the highest level of OSI model. The application layer is the OSI layer, which is closest to the end-user. It means OSI application layer allows users to interact with other software application.

Application layer interacts with software applications to implement a communicating component. The interpretation of data by the application program is always outside the scope of the OSI model.

Example of the application layer is an application such as file transfer, email, remote login, etc.

The function of the Application Layers are

  • Application-layer helps you to identify communication partners, determining resource availability, and synchronizing communication.
  • It allows users to log on to a remote host
  • This layer provides various e-mail services
  • This application offers distributed database sources and access for global information about various objects and services.

Interaction Between OSI Model Layers

Information sent from a one computer application to another needs to pass through each of the OSI layers.

This is explained in the below-given example:

  • Every layer within an OSI model communicates with the other two layers which are below it and its peer layer in some another networked computing system.
  • In the below-given diagram, you can see that the data link layer of the first system communicates with two layers, the network layer and the physical layer of the system. It also helps you to communicate with the data link layer of, the second system.

Interaction Between OSI Model Layers

Protocols supported at various levels

Differences between osi & tcp/ip.

Differences between OSI & TCP/IP

Here, are some important differences between the OSI & TCP/IP model:

Advantages of the OSI Model

Here, are major benefits/pros of using the OSI model :

  • It helps you to standardize router, switch, motherboard, and other hardware
  • Reduces complexity and standardizes interfaces
  • Facilitates modular engineering
  • Helps you to ensure interoperable technology
  • Helps you to accelerate the evolution
  • Protocols can be replaced by new protocols when technology changes.
  • Provide support for connection-oriented services as well as connectionless service.
  • It is a standard model in computer networking.
  • Supports connectionless and connection-oriented services.
  • Offers flexibility to adapt to various types of protocols

Disadvantages of the OSI Model

Here are some cons/ drawbacks of using OSI Model:

  • Fitting of protocols is a tedious task.
  • You can only use it as a reference model.
  • Doesn’t define any specific protocol.
  • In the OSI network layer model, some services are duplicated in many layers such as the transport and data link layers
  • Layers can’t work in parallel as each layer need to wait to obtain data from the previous layer.
  • The OSI Model is a logical and conceptual model that defines network communication which is used by systems open to interconnection and communication with other systems
  • In OSI model, layer should only be created where the definite levels of abstraction are needed.
  • OSI layer helps you to understand communication over a network
  • Straight Through Cables vs Crossover Cables
  • Address Resolution Protocol: What is ARP Header in Networking
  • VLAN Trunking Protocol: What is VTP in Networking & Benefits
  • STP – Spanning Tree Protocol Explained
  • What is IP Routing? Types, Routing Table, Protocols, Commands
  • Layer 2 Switch vs Layer 3 Switch
  • Subnetting: What is Subnet Mask?
  • What is Wildcard Mask? How to Calculate Wildcard Mask
Please Whitelist This Site? I know everyone hates ads. But please understand that I am providing premium content for free that takes hundreds of hours of time to research and write. I don't want to go to a pay-only model like some sites, but when more and more people block ads, I end up working for free. And I have a family to support, just like you. :) If you like The TCP/IP Guide, please consider the download version . It's priced very economically and you can read all of it in a convenient format without ads. If you want to use this site for free, I'd be grateful if you could add the site to the whitelist for Adblock. To do so, just open the Adblock menu and select "Disable on tcpipguide.com". Or go to the Tools menu and select "Adblock Plus Preferences...". Then click "Add Filter..." at the bottom, and add this string: "@@||tcpipguide.com^$document". Then just click OK. Thanks for your understanding! Sincerely, Charles Kozierok Author and Publisher, The TCP/IP Guide

The presentation layer is the sixth layer of the OSI Reference Model protocol stack, and second from the top. It is different from the other layers in two key respects. First, it has a much more limited and specific function than the other layers; it's actually somewhat easy to describe, hurray! Second, it is used much less often than the other layers; in many types of connections it is not required.

The name of this layer suggests its main function as well: it deals with the presentation of data. More specifically, the presentation layer is charged with taking care of any issues that might arise where data sent from one system needs to be viewed in a different way by the other system. It also takes care of any special processing that must be done to data from the time an application tries to send it until the time it is sent over the network.

Here are some of the specific types of data handling issues that the presentation layer handles:

The reason that the presentation layer is not always used in network communications is that the jobs mentioned above are simply not always needed. Compression and encryption are usually considered “optional”, and translation features are also only needed in certain circumstances. Another reason why the presentation layer is sometimes not mentioned is that its functions may be performed as part of the application layer.

The fact that the translation job done by the presentation layer isn't always needed means that it is common for it to be “skipped” by actual protocol stack implementations. This means that protocols at layer seven may talk directly with those at layer five. Once again, this is part of the reason why all of the functions of layers five through seven may be included together in the same software package, as described in the overview of layers and layer groupings .

OSI Presentation and Application Layers

Cite this chapter.

protocols of presentation layer in osi model

  • Paul D. Bartoli 3  

Part of the book series: Applications of Communications Theory ((ACTH))

251 Accesses

This chapter discusses the Application and Presentation Layers of the Reference Model of Open Systems Interconnection (OSI) [1]. The Application and Presentation Layers perform functions necessary to exchange information between application processes; the Application Layer is concerned with the semantic aspects of the information exchange, while the Presentation Layer is concerned with the syntactic aspects. The ability to manage the semantic and syntactic elements of the information to be exchanged is key to ensuring that the information can be interpreted by the communicants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Unable to display preview.  Download preview PDF.

ISO 7498, “Information processing systems—Open Systems Interconnection—Basic Reference Model,” 1984. CCITT Recommendation X.200, “Reference model of open systems interconnection for CCITT applications,” 1984 (updated expected in 1988).

Google Scholar  

ISO DIS 9545, “Information processing systems—Open Systems Interconnection—Application Layer structure,” September 1988.

ISO TR 9007, “Concepts and terminology for the conceptual schema and the information base,” 1985.

ISO 8649, “Information processing systems—Open systems interconnection—Service definition for the association control service element,” 1988. ISO 8650, “Information processing systems—Open systems interconnection—Protocol specification for the association control service element,” 1988. CCITT Recommendation X.217, “Association control service definition for open systems interconnection for CCITT applications,” 1988. CCITT Recommendation X.227, “Association control protocol specification for open systems interconnection for CCITT applications,” final text December, 1987.

ISO 8571, “Information processing systems—Open systems interconnection—File transfer, access, and management,” Parts 1–4, 1988.

ISO/DIS 9804, “Information processing systems”Open systems interconnection—Service definition for commitment, concurrency, and recovery,” 1988 (text in SC 21 N 2573, March, 1988). ISO DIS 9805, “Information processing systems—Open systems interconnection—Protocol specification for commitment, concurrency, and recovery,” 1988 (text in SC 21 N 2574, March, 1988). CCITT Recommendation X.237, “Commitment, concurrency, and recovery service definition,” Draft Text, 1988. CCITT Recommendation X.247, “Commitment, concurrency, and recovery protocol specification, Draft Text, 1988.

ISO DIS 9040, “Information processing systems—Open systems interconnection—Virtual terminal service—Basic class,” 1988 (text in SC 21 N 2615, March, 1988). ISO DIS 9041, “Information processing systems—Open systems interconnection—Virtual terminal protocol—Basic class,” 1988 (text in SC 21 N 2616, March, 1988).

ISO DIS 9066–1, “Reliable transfer service”, 1988 (text in SC 18 N 1408, March, 1988). ISO DIS 9066–2, “Reliable transfer protocol specification,” 1988 (text in SC 18 N 1409). CCITT Recommendation X.218, “Reliable transfer: Model and service definition,” 1988. CCITT Recommendation X.228, “Reliable transfer: Protocol specification,” 1988.

ISO DIS 9072–1, “Remote operations service,” 1988 (text in SC 18 N 1410, March, 1988). ISO DIS 9072–2, “Remote operations protocol specification,” 1988 (text in SC 18 N 1411, March, 1988). CCITT Recommendation X.219, “Remote operations: Model, notation, and service definition,” 1988. CCITT Recommendation X.229, “Remote operations: Protocol specification,” 1988.

ISO DIS 9594, “Information processing—Open systems interconnection—The directory,” parts 1–8, 1988 (text in SC 21 N 2751 through N 2758, April, 1988). CCITT X.500, “Series recommendations on directory,” November, 1987.

ISO DIS 10021, “Information processing—Text communication—Message oriented text interchange system,” 1988 (text in SC 18 N 1487 through N 1493, May, 1988). CCITT X.400, “Series recommendations for message handling systems,” 1988.

ISO 8613/1–8, “Office document architecture and interchange format,” 1988, awaiting publication. CCITT T.400, “Series recommendations for document architecture, transfer, and manipulation,” 1988.

ISO 8824, “Information processing systems—Open systems interconnection—Specification of abstract syntax notation one (ASN.1),” 1987; and ISO 8824/PDAD 1, “Information processing systems—Open systems interconnection—Specification for ASN.1: Proposed draft Addendum 1 on ASN.1 extensions,” 1988 (final text in SC 21 N 2341 Revised, April, 1988). CCITT Recommendation X.208, “Specification of abstract syntax notation one (ASN.1),” 1988.

ISO 8822, “Information processing systems—Open systems interconnection—Connection oriented presentation service definition,” 1988. CCITT Recommendation X.216, “Presentation service definition for open systems interconnection for CCITT applications,” 1988.

ISO 8825, “Information processing—Open systems interconnection—Specification of basic encoding rules for abstract syntax notation one (ASN.1),” 1987; and ISO 8825/ PDAD 1, “Information processing systems—Open systems interconnection—Specification of basic encoding rules for ASN.1: Proposed draft addendum 1 on ASN.1 extensions,” 1988 (text in SC 21 N 2342 Revised, April, 1988). CCITT Recommendation X.209, “Specification of basic encoding rules for abstract syntax notation one (ASN.1),” 1988.

ISO 8823, “Information processing systems—Open systems interconnection—Connection oriented presentation protocol specification,” 1988. CCITT Recommendation X.226, “Presentation protocol specification for open systems interconnection for CCITT applications,” 1988.

ISO 8326, “Information processing systems—Open systems interconnection—Basic connection oriented session service definition,” 1987; and ISO 8326/AD 2, “Information processing systems—Open systems interconnection—Basic connection oriented session service definition—Addendum 2: Incorporation of unlimited user data,” 1988. ISO 8327, “Information processing systems—Open systems interconnection—Basic connection oriented session protocol specification,” 1987; and ISO 8327/AD 2, “Information processing systems—Open systems interconnection—Basic connection oriented session protocol specification—Addendum 2: Unlimited session user data protocol specification,” 1988.

CCITT Recommendation X.215, “Session service definition for open systems interconnection for CCITT applications,” 1988. CCITT Recommendation X.225, “Session protocol specification for open systems interconnection for CCITT applications,” 1988.

Download references

Author information

Authors and affiliations.

AT&T Bell Laboratories, 07733, Holmdel, New Jersey, USA

Paul D. Bartoli

You can also search for this author in PubMed   Google Scholar

Editor information

Editors and affiliations.

Unisys West Coast Research Center, Santa Monica, 90406, California, USA

Carl A. Sunshine

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Bartoli, P.D. (1989). OSI Presentation and Application Layers. In: Sunshine, C.A. (eds) Computer Network Architectures and Protocols. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0809-6_13

Download citation

DOI : https://doi.org/10.1007/978-1-4613-0809-6_13

Publisher Name : Springer, Boston, MA

Print ISBN : 978-1-4612-8093-4

Online ISBN : 978-1-4613-0809-6

eBook Packages : Springer Book Archive

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

The OSI Model – The 7 Layers of Networking Explained in Plain English

Chloe Tucker

This article explains the Open Systems Interconnection (OSI) model and the 7 layers of networking, in plain English.

The OSI model is a conceptual framework that is used to describe how a network functions. In plain English, the OSI model helped standardize the way computer systems send information to each other.

Learning networking is a bit like learning a language - there are lots of standards and then some exceptions. Therefore, it’s important to really understand that the OSI model is not a set of rules. It is a tool for understanding how networks function.

Once you learn the OSI model, you will be able to further understand and appreciate this glorious entity we call the Internet, as well as be able to troubleshoot networking issues with greater fluency and ease.

All hail the Internet!

Prerequisites

You don’t need any prior programming or networking experience to understand this article. However, you will need:

  • Basic familiarity with common networking terms (explained below)
  • A curiosity about how things work :)

Learning Objectives

Over the course of this article, you will learn:

  • What the OSI model is
  • The purpose of each of the 7 layers
  • The problems that can happen at each of the 7 layers
  • The difference between TCP/IP model and the OSI model

Common Networking Terms

Here are some common networking terms that you should be familiar with to get the most out of this article. I’ll use these terms when I talk about OSI layers next.

A node is a physical electronic device hooked up to a network, for example a computer, printer, router, and so on. If set up properly, a node is capable of sending and/or receiving information over a network.

Nodes may be set up adjacent to one other, wherein Node A can connect directly to Node B, or there may be an intermediate node, like a switch or a router, set up between Node A and Node B.

Typically, routers connect networks to the Internet and switches operate within a network to facilitate intra-network communication. Learn more about hub vs. switch vs. router.

Here's an example:

1-Router-Image

For the nitpicky among us (yep, I see you), host is another term that you will encounter in networking. I will define a host as a type of node that requires an IP address. All hosts are nodes, but not all nodes are hosts. Please Tweet angrily at me if you disagree.

Links connect nodes on a network. Links can be wired, like Ethernet, or cable-free, like WiFi.

Links to can either be point-to-point, where Node A is connected to Node B, or multipoint, where Node A is connected to Node B and Node C.

When we’re talking about information being transmitted, this may also be described as a one-to-one vs. a one-to-many relationship.

A protocol is a mutually agreed upon set of rules that allows two nodes on a network to exchange data.

“A protocol defines the rules governing the syntax (what can be communicated), semantics (how it can be communicated), and synchronization (when and at what speed it can be communicated) of the communications procedure. Protocols can be implemented on hardware, software, or a combination of both. Protocols can be created by anyone, but the most widely adopted protocols are based on standards.” - The Illustrated Network.

Both wired and cable-free links can have protocols.

While anyone can create a protocol, the most widely adopted protocols are often based on standards published by Internet organizations such as the Internet Engineering Task Force (IETF).

A network is a general term for a group of computers, printers, or any other device that wants to share data.

Network types include LAN, HAN, CAN, MAN, WAN, BAN, or VPN. Think I’m just randomly rhyming things with the word can ? I can ’t say I am - these are all real network types. Learn more here .

Topology describes how nodes and links fit together in a network configuration, often depicted in a diagram. Here are some common network topology types:

What is Network Topology? Best Guides to Types & Diagrams - DNSstuff

A network consists of nodes, links between nodes, and protocols that govern data transmission between nodes.

At whatever scale and complexity networks get to, you will understand what’s happening in all computer networks by learning the OSI model and 7 layers of networking.

What is the OSI Model?

The OSI model consists of 7 layers of networking.

First, what’s a layer?

Cave, Dragon's Lair, mountains

No, a layer - not a lair . Here there are no dragons.

A layer is a way of categorizing and grouping functionality and behavior on and of a network.

In the OSI model, layers are organized from the most tangible and most physical, to less tangible and less physical but closer to the end user.

Each layer abstracts lower level functionality away until by the time you get to the highest layer. All the details and inner workings of all the other layers are hidden from the end user.

How to remember all the names of the layers? Easy.

  • Please | Physical Layer
  • Do | Data Link Layer
  • Not | Network Layer
  • Tell (the) | Transport Layer
  • Secret | Session Layer
  • Password (to) | Presentation Layer
  • Anyone | Application Layer

Keep in mind that while certain technologies, like protocols, may logically “belong to” one layer more than another, not all technologies fit neatly into a single layer in the OSI model. For example, Ethernet, 802.11 (Wifi) and the Address Resolution Protocol (ARP) procedure operate on >1 layer.

The OSI is a model and a tool, not a set of rules.

OSI Layer 1

Layer 1 is the physical layer . There’s a lot of technology in Layer 1 - everything from physical network devices, cabling, to how the cables hook up to the devices. Plus if we don’t need cables, what the signal type and transmission methods are (for example, wireless broadband).

Instead of listing every type of technology in Layer 1, I’ve created broader categories for these technologies. I encourage readers to learn more about each of these categories:

  • Nodes (devices) and networking hardware components. Devices include hubs, repeaters, routers, computers, printers, and so on. Hardware components that live inside of these devices include antennas, amplifiers, Network Interface Cards (NICs), and more.
  • Device interface mechanics. How and where does a cable connect to a device (cable connector and device socket)? What is the size and shape of the connector, and how many pins does it have? What dictates when a pin is active or inactive?
  • Functional and procedural logic. What is the function of each pin in the connector - send or receive? What procedural logic dictates the sequence of events so a node can start to communicate with another node on Layer 2?
  • Cabling protocols and specifications. Ethernet (CAT), USB, Digital Subscriber Line (DSL) , and more. Specifications include maximum cable length, modulation techniques, radio specifications, line coding, and bits synchronization (more on that below).
  • Cable types. Options include shielded or unshielded twisted pair, untwisted pair, coaxial and so on. Learn more about cable types here .
  • Signal type. Baseband is a single bit stream at a time, like a railway track - one-way only. Broadband consists of multiple bit streams at the same time, like a bi-directional highway.
  • Signal transmission method (may be wired or cable-free). Options include electrical (Ethernet), light (optical networks, fiber optics), radio waves (802.11 WiFi, a/b/g/n/ac/ax variants or Bluetooth). If cable-free, then also consider frequency: 2.5 GHz vs. 5 GHz. If it’s cabled, consider voltage. If cabled and Ethernet, also consider networking standards like 100BASE-T and related standards.

The data unit on Layer 1 is the bit.

A bit the smallest unit of transmittable digital information. Bits are binary, so either a 0 or a 1. Bytes, consisting of 8 bits, are used to represent single characters, like a letter, numeral, or symbol.

Bits are sent to and from hardware devices in accordance with the supported data rate (transmission rate, in number of bits per second or millisecond) and are synchronized so the number of bits sent and received per unit of time remains consistent (this is called bit synchronization). The way bits are transmitted depends on the signal transmission method.

Nodes can send, receive, or send and receive bits. If they can only do one, then the node uses a simplex mode. If they can do both, then the node uses a duplex mode. If a node can send and receive at the same time, it’s full-duplex – if not, it’s just half-duplex.

The original Ethernet was half-duplex. Full-duplex Ethernet is an option now, given the right equipment.

How to Troubleshoot OSI Layer 1 Problems

Here are some Layer 1 problems to watch out for:

  • Defunct cables, for example damaged wires or broken connectors
  • Broken hardware network devices, for example damaged circuits
  • Stuff being unplugged (...we’ve all been there)

If there are issues in Layer 1, anything beyond Layer 1 will not function properly.

Layer 1 contains the infrastructure that makes communication on networks possible.

It defines the electrical, mechanical, procedural, and functional specifications for activating, maintaining, and deactivating physical links between network devices. - Source

Fun fact: deep-sea communications cables transmit data around the world. This map will blow your mind: https://www.submarinecablemap.com/

And because you made it this far, here’s a koala:

Closeup of a Koala

OSI Layer 2

Layer 2 is the data link layer . Layer 2 defines how data is formatted for transmission, how much data can flow between nodes, for how long, and what to do when errors are detected in this flow.

In more official tech terms:

  • Line discipline. Who should talk for how long? How long should nodes be able to transit information for?
  • Flow control. How much data should be transmitted?
  • Error control - detection and correction . All data transmission methods have potential for errors, from electrical spikes to dirty connectors. Once Layer 2 technologies tell network administrators about an issue on Layer 2 or Layer 1, the system administrator can correct for those errors on subsequent layers. Layer 2 is mostly concerned with error detection, not error correction. ( Source )

There are two distinct sublayers within Layer 2:

  • Media Access Control (MAC): the MAC sublayer handles the assignment of a hardware identification number, called a MAC address, that uniquely identifies each device on a network. No two devices should have the same MAC address. The MAC address is assigned at the point of manufacturing. It is automatically recognized by most networks. MAC addresses live on Network Interface Cards (NICs). Switches keep track of all MAC addresses on a network. Learn more about MAC addresses on PC Mag and in this article . Learn more about network switches here .
  • Logical Link Control (LLC): the LLC sublayer handles framing addressing and flow control. The speed depends on the link between nodes, for example Ethernet or Wifi.

The data unit on Layer 2 is a frame .

Each frame contains a frame header, body, and a frame trailer:

  • Header: typically includes MAC addresses for the source and destination nodes.
  • Body: consists of the bits being transmitted.
  • Trailer: includes error detection information. When errors are detected, and depending on the implementation or configuration of a network or protocol, frames may be discarded or the error may be reported up to higher layers for further error correction. Examples of error detection mechanisms: Cyclic Redundancy Check (CRC) and Frame Check Sequence (FCS). Learn more about error detection techniques here .

Example of frames, the network layer, and the physical layer

Typically there is a maximum frame size limit, called an Maximum Transmission Unit, MTU. Jumbo frames exceed the standard MTU, learn more about jumbo frames here .

How to Troubleshoot OSI Layer 2 Problems

Here are some Layer 2 problems to watch out for:

  • All the problems that can occur on Layer 1
  • Unsuccessful connections (sessions) between two nodes
  • Sessions that are successfully established but intermittently fail
  • Frame collisions

The Data Link Layer allows nodes to communicate with each other within a local area network. The foundations of line discipline, flow control, and error control are established in this layer.

OSI Layer 3

Layer 3 is the network layer . This is where we send information between and across networks through the use of routers. Instead of just node-to-node communication, we can now do network-to-network communication.

Routers are the workhorse of Layer 3 - we couldn’t have Layer 3 without them. They move data packets across multiple networks.

Not only do they connect to Internet Service Providers (ISPs) to provide access to the Internet, they also keep track of what’s on its network (remember that switches keep track of all MAC addresses on a network), what other networks it’s connected to, and the different paths for routing data packets across these networks.

Routers store all of this addressing and routing information in routing tables.

Here’s a simple example of a routing table:

A routing table showing the destination, subnet mask, and interface

The data unit on Layer 3 is the data packet . Typically, each data packet contains a frame plus an IP address information wrapper. In other words, frames are encapsulated by Layer 3 addressing information.

The data being transmitted in a packet is also sometimes called the payload . While each packet has everything it needs to get to its destination, whether or not it makes it there is another story.

Layer 3 transmissions are connectionless, or best effort - they don't do anything but send the traffic where it’s supposed to go. More on data transport protocols on Layer 4.

Once a node is connected to the Internet, it is assigned an Internet Protocol (IP) address, which looks either like 172.16. 254.1 (IPv4 address convention) or like 2001:0db8:85a3:0000:0000:8a2e:0370:7334 (IPv6 address convention). Routers use IP addresses in their routing tables.

IP addresses are associated with the physical node’s MAC address via the Address Resolution Protocol (ARP), which resolves MAC addresses with the node’s corresponding IP address.

ARP is conventionally considered part of Layer 2, but since IP addresses don’t exist until Layer 3, it’s also part of Layer 3.

How to Troubleshoot OSI Layer 3 Problems

Here are some Layer 3 problems to watch out for:

  • All the problems that can crop up on previous layers :)
  • Faulty or non-functional router or other node
  • IP address is incorrectly configured

Many answers to Layer 3 questions will require the use of command-line tools like ping , trace , show ip route , or show ip protocols . Learn more about troubleshooting on layer 1-3 here .

The Network Layer allows nodes to connect to the Internet and send information across different networks.

OSI Layer 4

Layer 4 is the transport layer . This where we dive into the nitty gritty specifics of the connection between two nodes and how information is transmitted between them. It builds on the functions of Layer 2 - line discipline, flow control, and error control.

This layer is also responsible for data packet segmentation, or how data packets are broken up and sent over the network.

Unlike the previous layer, Layer 4 also has an understanding of the whole message, not just the contents of each individual data packet. With this understanding, Layer 4 is able to manage network congestion by not sending all the packets at once.

The data units of Layer 4 go by a few names. For TCP, the data unit is a packet. For UDP, a packet is referred to as a datagram. I’ll just use the term data packet here for the sake of simplicity.

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are two of the most well-known protocols in Layer 4.

TCP, a connection-oriented protocol, prioritizes data quality over speed.

TCP explicitly establishes a connection with the destination node and requires a handshake between the source and destination nodes when data is transmitted. The handshake confirms that data was received. If the destination node does not receive all of the data, TCP will ask for a retry.

TCP also ensures that packets are delivered or reassembled in the correct order. Learn more about TCP here .

UDP, a connectionless protocol, prioritizes speed over data quality. UDP does not require a handshake, which is why it’s called connectionless.

Because UDP doesn’t have to wait for this acknowledgement, it can send data at a faster rate, but not all of the data may be successfully transmitted and we’d never know.

If information is split up into multiple datagrams, unless those datagrams contain a sequence number, UDP does not ensure that packets are reassembled in the correct order. Learn more about UDP here .

TCP and UDP both send data to specific ports on a network device, which has an IP address. The combination of the IP address and the port number is called a socket.

Learn more about sockets here .

Learn more about the differences and similarities between these two protocols here .

How to Troubleshoot OSI Layer 4 Problems

Here are some Layer 4 problems to watch out for:

  • Blocked ports - check your Access Control Lists (ACL) & firewalls
  • Quality of Service (QoS) settings. QoS is a feature of routers/switches that can prioritize traffic, and they can really muck things up. Learn more about QoS here .

The Transport Layer provides end-to-end transmission of a message by segmenting a message into multiple data packets; the layer supports connection-oriented and connectionless communication.

OSI Layer 5

Layer 5 is the session layer . This layer establishes, maintains, and terminates sessions.

A session is a mutually agreed upon connection that is established between two network applications. Not two nodes! Nope, we’ve moved on from nodes. They were so Layer 4.

Just kidding, we still have nodes, but Layer 5 doesn’t need to retain the concept of a node because that’s been abstracted out (taken care of) by previous layers.

So a session is a connection that is established between two specific end-user applications. There are two important concepts to consider here:

  • Client and server model: the application requesting the information is called the client, and the application that has the requested information is called the server.
  • Request and response model: while a session is being established and during a session, there is a constant back-and-forth of requests for information and responses containing that information or “hey, I don’t have what you’re requesting.”

Sessions may be open for a very short amount of time or a long amount of time. They may fail sometimes, too.

Depending on the protocol in question, various failure resolution processes may kick in. Depending on the applications/protocols/hardware in use, sessions may support simplex, half-duplex, or full-duplex modes.

Examples of protocols on Layer 5 include Network Basic Input Output System (NetBIOS) and Remote Procedure Call Protocol (RPC), and many others.

From here on out (layer 5 and up), networks are focused on ways of making connections to end-user applications and displaying data to the user.

How to Troubleshoot OSI Layer 5 Problems

Here are some Layer 5 problems to watch out for:

  • Servers are unavailable
  • Servers are incorrectly configured, for example Apache or PHP configs
  • Session failure - disconnect, timeout, and so on.

The Session Layer initiates, maintains, and terminates connections between two end-user applications. It responds to requests from the presentation layer and issues requests to the transport layer.

OSI Layer 6

Layer 6 is the presentation layer . This layer is responsible for data formatting, such as character encoding and conversions, and data encryption.

The operating system that hosts the end-user application is typically involved in Layer 6 processes. This functionality is not always implemented in a network protocol.

Layer 6 makes sure that end-user applications operating on Layer 7 can successfully consume data and, of course, eventually display it.

There are three data formatting methods to be aware of:

  • American Standard Code for Information Interchange (ASCII): this 7-bit encoding technique is the most widely used standard for character encoding. One superset is ISO-8859-1, which provides most of the characters necessary for languages spoken in Western Europe.
  • Extended Binary-Coded Decimal Interchange Code (EBDCIC): designed by IBM for mainframe usage. This encoding is incompatible with other character encoding methods.
  • Unicode: character encodings can be done with 32-, 16-, or 8-bit characters and attempts to accommodate every known, written alphabet.

Learn more about character encoding methods in this article , and also here .

Encryption: SSL or TLS encryption protocols live on Layer 6. These encryption protocols help ensure that transmitted data is less vulnerable to malicious actors by providing authentication and data encryption for nodes operating on a network. TLS is the successor to SSL.

How to Troubleshoot OSI Layer 6 Problems

Here are some Layer 6 problems to watch out for:

  • Non-existent or corrupted drivers
  • Incorrect OS user access level

The Presentation Layer formats and encrypts data.

OSI Layer 7

Layer 7 is the application layer .

True to its name, this is the layer that is ultimately responsible for supporting services used by end-user applications. Applications include software programs that are installed on the operating system, like Internet browsers (for example, Firefox) or word processing programs (for example, Microsoft Word).

Applications can perform specialized network functions under the hood and require specialized services that fall under the umbrella of Layer 7.

Electronic mail programs, for example, are specifically created to run over a network and utilize networking functionality, such as email protocols, which fall under Layer 7.

Applications will also control end-user interaction, such as security checks (for example, MFA), identification of two participants, initiation of an exchange of information, and so on.

Protocols that operate on this level include File Transfer Protocol (FTP), Secure Shell (SSH), Simple Mail Transfer Protocol (SMTP), Internet Message Access Protocol (IMAP), Domain Name Service (DNS), and Hypertext Transfer Protocol (HTTP).

While each of these protocols serve different functions and operate differently, on a high level they all facilitate the communication of information. ( Source )

How to Troubleshoot OSI Layer 7 Problems

Here are some Layer 7 problems to watch out for:

  • All issues on previous layers
  • Incorrectly configured software applications
  • User error (... we’ve all been there)

The Application Layer owns the services and functions that end-user applications need to work. It does not include the applications themselves.

Our Layer 1 koala is all grown up.

Koala with Photoshopped makeup

Learning check - can you apply makeup to a koala?

Don’t have a koala?

Well - answer these questions instead. It’s the next best thing, I promise.

  • What is the OSI model?
  • What are each of the layers?
  • How could I use this information to troubleshoot networking issues?

Congratulations - you’ve taken one step farther to understanding the glorious entity we call the Internet.

Learning Resources

Many, very smart people have written entire books about the OSI model or entire books about specific layers. I encourage readers to check out any O’Reilly-published books about the subject or about network engineering in general.

Here are some resources I used when writing this article:

  • The Illustrated Network, 2nd Edition
  • Protocol Data Unit (PDU): https://www.geeksforgeeks.org/difference-between-segments-packets-and-frames/
  • Troubleshooting Along the OSI Model: https://www.pearsonitcertification.com/articles/article.aspx?p=1730891
  • The OSI Model Demystified: https://www.youtube.com/watch?v=HEEnLZV2wGI
  • OSI Model for Dummies: https://www.dummies.com/programming/networking/layers-in-the-osi-model-of-a-computer-network/

Chloe Tucker is an artist and computer science enthusiast based in Portland, Oregon. As a former educator, she's continuously searching for the intersection of learning and teaching, or technology and art. Reach out to her on Twitter @_chloetucker and check out her website at chloe.dev .

Read more posts .

If you read this far, thank the author to show them you care. Say Thanks

Learn to code for free. freeCodeCamp's open source curriculum has helped more than 40,000 people get jobs as developers. Get started

Presentation layer and Session layer of the OSI model

There are two popular networking models: the OSI layers model and the TCP/IP layers model. The presentation layer and session layer exist only in the OSI layers models. The TCP/IP layers model merges them into the application layer.

The Presentation Layer

The presentation layer is the sixth layer of the OSI Reference model. It defines how data and information is transmitted and presented to the user. It translates data and format code in such a way that it is correctly used by the application layer.

It identifies the syntaxes that different applications use and formats data using those syntaxes. For example, a web browser receives a web page from a web server in the HTML language. HTML language includes many tags and markup that have no meaning for the end user but they have special meaning for the web browser. the web browser uses the presentation layer's logic to read those syntaxes and format data in such a way the web server wants it to be present to the user.

presentation layer

On the sender device, it encapsulates and compresses data before sending it to the network to increase the speed and security of the network. On the receiver device, it de-encapsulates and decompresses data before presenting it to the user.

Examples of the presentation layer

Example standards for representing graphical information: JPEG, GIF, JPEG, and TIFF.

Example standards for representing audio information: WAV, MIDI, MP3.

Example standards for representing video information: WMV, MOV, MP4, MPEG.

Example standards for representing text information: doc, xls, txt, pdf.

Functions of the presentation layer

  • It formats and presents data and information.
  • It encrypts and compresses data before giving it to the session layer.
  • It de-encrypts and decompresses the encrypted and compressed data it receives from the session layer.

Session layer

The session layer is the fifth layer of the OSI layers model. It is responsible for initiating, establishing, managing, and terminating sessions between the local application and the remote applications.

It defines standards for three modes of communication: full duplex, half-duplex, and simplex.

duplex modes

In the full duplex mode, both devices can send and receive data simultaneously. The internet connection is an example of the full duplex mode.

In the half duplex mode, only one device can send data at a time. A telephone conversation is an example of the half-duplex mode.

In the simplex mode, only one device can send data. A radio broadcast is an example of the simplex mode.

Functions of the session layer

  • It is responsible for terminating sessions, creating checkpoints, and recovering data when sessions are interrupted.
  • It opens and maintains logical communication channels between network applications running on the local host and network applications running on the remote host.
  • If a network application uses an authentication mechanism before it opens a logical communication channel (session) with the remote host, it handles the authentication process.

OSI network model for beginners: device, layers, protocols

OSI network model for beginners: device, layers, protocols

What is the OSI model

Today, the OSI seven-layer model is still a very popular basis that is used to build network interaction in all computer systems.

OSI (Open Systems Interconnection) is a specially developed model, the main function of which is to build a logical diagram of interaction between computer systems, which allows them to freely interact with other similar systems.

No less important functions of this model are the determination of the logic of network operation and efficient description of the computer packet transmission using protocols of various levels. In other words, the main purpose of the OSI model is to provide a visual explanation of how various elements and technologies interact to transmit data over a network.

History of creation

OSI network model for beginners: device, layers, protocols

The idea of creating the OSI model arose after realizing the need for a reliable tool for visualizing the various components of a network system. Computer systems needed a universal way to interact with various companies and areas of activity (including business processes). As a result, the OSI model provided a reliable way to describe and analyze network structures.

Initially, 2 large projects were in the development process:

  • International Telegraph and Telephone Consultative Committee (CCITT).
  • International Organization for Standardization (IOS).

In 1983, all prepared documents were combined, and in 1984 ISO published them as a single framework. It was named OSI (Basic Reference Model for Open Systems Interconnection).

Thus, OSI Model has become a recognized international standard, which is not inferior in popularity to the most popular standard among network equipment manufacturers – TCP/IP model.

Differences between OSI and TCP/IP models

TCP/IP model was developed in the 1970s. Transmission Control Protocol (TCP) and Internet Protocol (IP) are the basis for the name of the TCP/IP model.

OSI network model for beginners: device, layers, protocols

Let's consider the first difference – the number of levels.

  • OSI has seven layers.
  • TCP/IP combines OSI layers 1-2 into the network interface layer and OSI layers 5-7 into one application layer.

OSI is a more general model (describes network interaction in general).

TCP/IP model simulates the operation of communication protocols with maximum accuracy (it is an excellent option for public networks).

Next difference – work profile.

  • TCP/IP is better for practical operations (all levels of this model can be used by appropriate applications.
  • The OSI model allows applications to use only a few layers (layers 1-3 are required for data transfer).

OSI model operation

This process can be visually represented as follows:

There are two servers whose interaction requires data exchange. To do this, data blocks travel down the network layers and eventually reach the transmission line. This process must also be performed in reverse order (until it reaches the receiving app).

Next, we will consider several basic concepts that can be used to explain the data path:

  • Service Data Units (SDU) . They indicate the content of adjacent upper-layer PDUs, which is equivalent to the payload when transmitted to the lower network layer.
  • Protocol Data Units (PDU) . They are transmitted between equivalent network objects. They include protocol-specific and user data (+Protocol body / payload, + Protocol header, + Protocol trailer).

With each subsequent transition from some level N to any other level N-1, the level N PDU becomes a new N-1 SDU. This payload may be located in a level N-1 PDU including appropriate trailers and headers. Data travels up the chain at the opposite end. In the transition process they unfold at each necessary stage until they become just a payload. This payload can be used by an appropriate level N device.

OSI Model layers and their functions

OSI network model for beginners: device, layers, protocols

There are 7 separate layers of the OSI network model, which are united by a common protocol stack. General rules and guidelines are the basis of each level. They simplify the processes of creating and operating network technologies.

Each OSI model layer is essentially an associated critical data transfer process. Steps in such a path may include packet creation, flow control, encryption and presentation.

Layers in the OSI model describe the stages in which an idealized data packet passes through a communications system. More often, data is transferred from the L-7 OSI Application Layer down to the L-1 OSI Physical Layer. After that, they are transmitted in reverse order to the L-7 OSI layer. At the top level the data can be used by recipients.

L-7 OSI Application Layer

OSI network model for beginners: device, layers, protocols

Data transfer format (PDU) : message.

Purpose : to provide the user with access to network resources.

Basic protocols : Domain Name System (DNS), Hypertext Transfer Protocol (HTTP), Simple Mail Transfer Protocol (SMTP), Secure Shell (SSH), File Transfer Protocol (FTP), Simple Network Management Protocol (SNMP), Telnet.

This level is characterized by user interaction with data. L-7 makes it possible to receive data for use by software (or another option – preparing data before sending it through the chain of layers of the OSI model). The application layer of the OSI model includes software (it allows network applications to function).

Important L-7 OSI functions:

  • Directory services.
  • Working with protocols and data formatting tools.
  • Post services.
  • FTAM (File Transfer Access & Management) – access to file transfer and management.
  • Network virtual terminal.

L-6 OSI Presentation Layer

OSI network model for beginners: device, layers, protocols

Data transmission format (PDU) : message.

Purpose : translation, encryption and compression of data.

Basic protocols : Transport Layer Security (TLS), MPEG Media Transport Protocol (MMTP), Multipurpose Internet Mail Extensions (MIME), Asymmetric Synchronous Channel Hopping (ASCH).

Raw data is located on the Presentation Layer. The main job of this layer is to process the data before it can be used by the OSI application layer. At this level, necessary data is encrypted and compressed (or vice versa, decrypted and unpacked). This process ensures secure data transfer. Transfer of large amounts of data at high speed is ensured by its compression.

Important L-6 OSI functions :

  • Compression—reducing the number of bits transmitted over a network.
  • Data conversion.
  • Data encryption/decryption using a key value.

L-5 OSI Session Layer

OSI network model for beginners: device, layers, protocols

Purpose : opening, managing and closing a session.

Device : network gateway.

Basic protocols : Session Announcement Protocol (SAP), Network Basic Input/Output System (NetBIOS).

The main purpose of L5 OSI is to define the rules for data transmission and authentication. The Session Layer also performs the function of establishing communication between devices. L5 OSI determines the accuracy of data transfer and the duration of sessions. It is also necessary to mention data checkpoints or data synchronization points. Checkpoints are used to divide data into smaller segments. Before closing the session, each segment is checked for correctness and reliability.

Important L-5 OSI functions :

  • Data synchronization using checkpoints.
  • Security (it is necessary to quickly end sessions and enable the authentication system).
  • The most efficient data transfer with minimal use of resources.
  • Dialogue controller (2 systems can communicate in half-duplex or full-duplex mode).

OSI Session Layer Tools :

Application toolkit can be applied by users. For example, let`s consider the FileZilla FTP application: it offers logs and debug menus, which helps resolve FTP connection problems at the session level.

L-4 OSI Transport Layer

OSI network model for beginners: device, layers, protocols

Data transfer format (PDU) : fragment.

Purpose : Transfer data from a process on the source computer to a process on the target computer.

Device : network firewall.

Basic protocols : User Datagram Protocol (UDP), Transmission Control Protocol (TCP).

L-4 OSI is responsible for setting up direct communication between connected devices. Its main task is to ensure continuous data transfer (they must be sent and received in the same form).

Special tools used at this layer determine the correct data transfer rate (taking into account the connection speed of the devices used, data transfer speed may vary). The OSI transport layer controls the flow of data in end-to-end communications.

Important L-4 OSI functions :

  • Error control by evaluating data packets at the receiving device. L-4 OSI service providers may request retransmission if the data did not arrive in the correct form.
  • Segmentation and reassembly. The received message from a higher level is divided into smaller blocks (each of these blocks has a header associated with it). At the final destination, all fragments are reassembled into a message.
  • Service Point Addressing. The L4 OSI header has an address type called service point address or port address (ensures that the message is sent to the correct process).

OSI Transport Layer Tools :

For Linux, separate solutions are used for certain protocols, since no special tools have been developed. For TCP there is a utility tcptrack , which performs the function of displaying lists of current sessions. tcptrack can be installed using the apt command:

sudo apt install tcptrack

To make active interface connections available, you must use the -i option and the interface name:

sudo tcptrack -i eth0

Monitoring of outgoing and incoming packets on a specific interface is available thanks to the tcpdump packet analyzer. The eth0 interface is used by default. The -i attribute displays the listening interface:

sudo tcpdump

L-3 OSI Network Layer

OSI network model for beginners: device, layers, protocols

Data transmission format (PDU) : packet.

Purpose : data transfer from one host to another on different networks.

Device : router.

Basic protocols : Internet Group Management Protocol (IGMP), Internet Protocol (IP), Internet Control Message Protocol (ICMP), Multiprotocol Label Switching (MPLS), Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).

The main task of L-3 OSI is to create and support the stability of network connections. The OSI Network Layer performs the function of transferring data between connected devices. The data is divided into packets ready for transmission over the network. The original data is restored by combining packets at the receiving end of the transmission

Important L-3 OSI Functions :

Logical addressing – placing the sender and recipient IP addresses in the header helps define the addressing scheme for each unique device on the network.

Routing – hardware and software determine the optimal path for transmitting data between various networks.

OSI Network Layer Tools :

For any problems at network level, the ip command is useful. The ip addr show command shows the IP address associated with each interface:

ip addr show

To view the contents of the system routing table the following command can be used:

ip route show

ping and traceroute commands help you track the path along which a packet is sent to its destination. They can be used with the IP address or router name:

ping wikipedia.org

L-2 OSI Link Layer

OSI network model for beginners: device, layers, protocols

Data transmission format (PDU): frame.

Purpose : organize bits into frames to enable local data transfer.

Device : network bridge (switch).

Basic protocols : Asynchronous Transfer Mode (ATM), Rapid Assessment of Physical Activity (RAPA), Frame Relay (FR), Point-to-Point Protocol (PPP), fiber optic cable.

The L-2 OSI layer is closely related to the Network layer. However, it is most often referred to as communication between locally connected devices.

At this level, after receiving, all data is divided into frames. These frames interact with two sublayers of the L-2 OSI layer:

  • Media Access Control (MAC) – connects appropriate local devices and controls the flow rate on the network.
  • Logical Link Control (LLC) – establishes the logical basis for local data transfer.

Important L-2 OSI Functions :

  • Access control (determining control priority between used devices).
  • Framing (transmission of the desired set of data is possible by attaching specific combinations of bits to the beginning and end of the frame).
  • Data rate control (competent distribution of information flows).
  • Physical addressing (adding the MAC address of the sender and/or recipient to the headers of created frames).
  • Error control mechanism (transmission of data containing any errors will be repeated).

OSI Link Layer Tool s:

To display information about network interfaces on the server, you will need the next command:

ip link show

The nast packet utility can be used to analyze local network traffic. This utility can be installed using the apt command:

sudo apt install nast

Next step – you should run the command with superuser rights and specify the interface to listen to using the -i parameter:

sudo nast -i eth0

The configuration and capabilities of each network interface can be viewed using the following command:

L-1 OSI Physical Layer

OSI network model for beginners: device, layers, protocols

Data transmission format (PDU) : bit.

Purpose : providing electrical and mechanical resources for transmitting bits in networks.

Devices : modem, RF links, cables, hub, repeater, voltage regulators and routing devices.

Basic protocols : Integrated Services Digital Network (ISDN), Recommended Standard 232 (RS232/EIA232), 100BaseTX.

The L-1 OSI layer includes all physical infrastructure and necessary equipment used to transmit data. The digital bit stream that is converted to L2 OSI is formed from 1s and 0s at the physical layer. Before transmission, the form of this bit stream is confirmed between the two devices. This makes it possible to reconstruct the data at the receiving end.

The most common errors and network problems occur at the physical OSI layer, but they can be eliminated quite simply.

Important L-1 OSI Functions :

  • Selecting a data transfer mode (simplex, half duplex and full duplex modes are included).
  • Synchronization of sender and receiver bits.
  • Determination of the physical topologies of network devices.
  • Data transfer rate control.

OSI Physical Layer Tools :

There are no practical ways to debug problems at this level. Eliminating existing problems usually requires a series of trial and errors in the process of replacing physical ports, connectors and cables.

Cross-level functions

Cross-layer functions are different layers combined in the OSI hierarchy. These functions include the most important services for certain parts of the data transfer process. Some of these services include:

  • Common security architecture recommended by ITU x.800 standard.
  • Protocols for converting IP addresses to MAC addresses (they operate at the network and data link layers).
  • Security management tools for configuring and controlling the process of data exchange between network devices.
  • Domain Name System (DNS) lookup services.
  • Multi-protocol label switching (MPLS) for transferring data frames between networks.

Cross-layer functions monitor and regulate traffic, ensuring secure and reliable data transmission. Cross-layer functions operate at different network layers and resolve problems as they arise. Thus, cross-layer services are the basis of network security planning.

The process of transferring data across the layers of the OSI model

L-7 OSI . At the Application Layer, the web browser client interacts with the application protocol. The user's request takes the form of an HTTP or HTTPS message. The DNS protocol applies to resolving a domain name to an IP address.

L-6 OSI . When using HTTPS, the Presentation Layer encrypts the outgoing request with the help of TLS socket. The data may also be encoded or translated into another character set.

L-5 OSI . At the Session Layer, a session is defined for sending and receiving HTTP/HTTPS messages. Because web browsing requires reliable data transmission, the L-5 OSI layer most often opens a TCP session. Some streaming applications may also choose a UDP session for use.

L-4 OSI . The Transport Layer TCP protocol initiates a connection with the target server. During a session, packets are transmitted in their original order, as well as being sent and received. UDP sends all packets without a direct connection and without waiting for confirmation. In some cases, data packets may be segmented into smaller parts. Further, all outgoing packets are sent to the Network layer.

L-3 OSI . Routing protocols select the output interface to use based on the destination address. The data, including address information, is encapsulated in an IP packet, which is then forwarded to the Link Layer.

L-2 OSI . The link layer converts IP packets into frames (this may lead to their fragmentation). Frames are created based on the data link protocol, which is used.

L-1 OSI . At the physical layer, frames are converted into a stream of bits and transmitted to the media.

OSI model and DDoS protection

The OSI Network model is the primary method for countering serious cyberattacks such as DDoS. Each OSI layer is distinguished by certain types of DDoS attacks and methods for eliminating them:

L-7 OSI . Common types of DDoS: "slow session" attacks, hacking the BGP protocol, HTTP(S) GET/POST flood. Protection methods: monitoring applications and tracking zero-day attacks and cyber attacks at this OSI layer.

L-6 OSI . Common types of DDoS: sending false or incorrect SSL requests. Protection methods: cleaning, filtering, and routing SSL traffic.

L-5 OSI . Common types of DDoS: attacks through vulnerabilities in network protocols for terminal interfaces. Protection methods: regularly updating software versions, restricting access to network equipment.

L-4 OSI . Common types of DDoS: SMURF attacks, SYN flood (TCP/SYN), UDP flood. Protection methods: filtering and limiting the number of connections from certain sources.

L-3 OSI . Common types of DDoS: SMURF attacks, POD (ping of death), ICMP flood (ping flood). Protection methods: using heuristic algorithms, false traffic is filtered and redirected.

L-2 OSI . Common types of DDoS: manipulation of data in the SRC/MAC and DST/MAC fields leads to disruption of the standard network data flow between devices. Protection methods: applying modern managed switches.

L-1 OSI . Common types of DDoS: any damage to the equipment or disruption of its performance. Protection methods: using the system for restricting and controlling access to equipment.

OSI Model Advantages

Cybersecurity . The OSI system makes it possible to identify security weaknesses. Information security specialists classify risks in accordance with OSI levels, which allows them to select suitable data protection tools after determining data location in the network hierarchy.

Troubleshooting . The OSI hierarchy makes it possible to detect network defects at an early stage. This model can be used by professionals to detect application problems, network-wide problems, or physical hardware failures. OSI offers a reliable way to divide problems into manageable parts.

Software development . The OSI model plays an important role in the planning and coding stages. Applications operating at different levels can be simulated by specialists. The layer model defines an algorithm for interaction of the application with other network components and tools from different vendors.

Marketing . By providing detailed product feature descriptions, marketers can accurately explain to customers where their products fit in the OSI hierarchy. Buyers can figure out how these products will fit into the network architecture.

OSI Model Disadvantages

  • There is a bit of chaos due to the fact that certain functions span different OSI layers.
  • Presence of redundant elements in the 7-level model is also a minus.
  • Statements by many experts that the OSI system is outdated. It is believed that today the division of network structures into seven different levels is not effective anymore. The Internet is less compliant with the OSI model, which is why it never became the main industry standard among network equipment manufacturers.

Although OSI is a convenient learning model, it is rather abstract in nature. The OSI model protocols are most often used in conjunction with the TCP/IP stack.

However, a large number of popular network tools still map to different OSI layers, making the OSI model an essential part of many network techniques. Moreover, the conceptual principles of this model can be the basis for creating cybersecurity systems and protection against distributed network attacks.

Let's not forget that OSI became a successful result of an attempt to standardize a network language. This gave experts a common language to discuss IT network architecture. This hierarchy also made it easier to compare hardware profiles, protocols, applications, etc.

Thus, the OSI model is still relevant in many areas of activity and is used all over the world.

Related Information:

The amount of RAM required for the server

Discover the crucial role of RAM in server stability and efficiency. Learn how to determine the right amount of RAM, avoid performance bottlenecks, and optimize your server's performance for seamless online operations.

Selecting a Dell PowerEdge Server: Strategies and expert recommendations

Learn how to choose the right Dell PowerEdge server for your business needs. Explore model ranges, technical specs, and expert strategies for optimal server selection.

What's behind websites, apps, and VPNs: the most important things about servers

Delve into the world of servers, vital for websites, apps, and VPNs. Learn how they operate, their classifications, and why they're essential for online services. Discover how servers impact your online experience.

  • Network Fundamentals
  • Network Cabling
  • Ethernet Protocol
  • TCP-UDP Protocol
  • IP Protocol
  • Supernetting & CIDR
  • ICMP Protocol
  • Domain Name System (DNS)
  • Spanning Tree Protocol (STP)
  • VLAN Networks
  • Network Address Translation
  • Cisco Routers
  • Cisco Switches
  • Cisco Firewalls
  • Cisco Wireless
  • Cisco CallManager-CCME
  • Cisco Data Center (Nexus/UCS)
  • Cisco Services & Technologies
  • Palo Alto Networks
  • F5 Networks
  • Microsoft 365 Security
  • SASE & SD-WAN
  • Security Service Edge (SSE)
  • Web Application Vulnerability Scanners
  • VPN Services & Guides
  • Windows Servers
  • Windows Workstations (XP, 7, 8, 10, 11)
  • Linux - Unix
  • Virtualization & VM Backup
  • OpManager - Network Monitoring & Management
  • ManageEngine Firewall Analyzer

EventLog Analyzer

  • Network Protocol Analyzers
  • IP PBX - Unified Communications
  • Security Articles
  • Reviews & Interviews
  • GFI Network Security
  • OpenMosix - Linux Supercomputer
  • More Reading

Firewall.cx

All-in-one protection

protocols of presentation layer in osi model

Free Download

Ransomware protection.

protocols of presentation layer in osi model

Download Now!

protocols of presentation layer in osi model

Free Download!

Get 2 vms for free.

protocols of presentation layer in osi model

Manage your Network!

The osi model: layer 6 - presentation layer.

The Presentation Layer gets its name from its purpose: It presents data to the Application layer. It's basically a translator and provides coding and conversion functions. A successful data transfer technique is to adapt the data into a standard format before transmission. Computers are configured to receive this generically formatted data and then convert the data back into its native format for reading. By providing translation services, the Presentation layer ensures that data transferred from the Application layer of one system can be read by the Application layer of another host.

JPEG: The Joint Photographic Experts Group brings these photo standards to us.

MIDI: The Musical Intrument Digital Interface is used for digitized music.

MPEG: The Moving Pictures Experts Group's standard for the compression and coding of motion video for CD's is very popular.

QuickTime: This is for use with Machintosh or Power PC programs, it manages audio and video applications.

The last 3 layers of the OSI model are reffered to the "Upper" layers. These layers are responsible for applications communicating between hosts. None of the upper layers know anything about networking or network addresses.

There are no protocols which work specificly at the Presentation layer, but the protocols which work at the Application layer are said to work on all 3 upper layers.

Next:   The OSI Model: Layer 7 - Application Layer

Your IP address:

185.194.105.172

  • All-in-one protection for Microsoft 365

All-in-one protection for Microsoft 365

FREE Hyper-V & VMware Backup

FREE Hyper-V & VMware Backup

Wi-Fi Key Generator

Follow firewall.cx.

Please enable the javascript to submit this form

Network and Server Monitoring

Network and Server Monitoring

Recommended Downloads

  • Network Management - Monitor & Alert
  • Free Hyper-V & VMware Backup

Bandwidth Monitor

  • Patch Manager Plus

Firewall Analyzer

Cisco password crack.

Decrypt Cisco Type-7 Passwords on the fly!

Decrypt Now!

Bandwidth Monitor

Free PatchManager

Free PatchManager

Security Podcast

Hornet-Security-The-Swarm-Podcast

Related Articles

The osi model: layer 5 - session layer, the osi model: layer 1 - physical layer, the osi model: layer 4 - transport layer, the osi model: layer 2 - datalink layer, the osi model: layer 7 - application layer.

The OSI Model’s 7 Layers, Explained

The seven layers in the Open Systems Interconnection (OSI) model each serve a specific function and work together to create an efficient network communication system.

Andrei Neacsu

The Open Systems Interconnection (OSI) model is a framework in network communication that simplifies complex network interactions into a structured format. 

What Is the OSI Model?

The Open Systems Interconnection model is a framework in network communication designed to simplify complex network interactions into a structured format. This architecture has seven layers, each of which serves a specific function. All seven layers work together to create a robust and efficient network communication system.

Each of its seven layers has a distinct role, ensuring efficient data transfer from one device to another . The OSI model is essential for understanding how data is transmitted in a network and is also a practical guide for network protocol design and problem solving.

learn more about cybersecurity An Introduction to Microsegmentation in Network Security

The OSI model, developed by the International Organization for Standardization , outlines the essential functions of networking and telecommunications systems for practical application. It plays a crucial role in telecommunications, where vendors use it to define the features and capabilities of their products and services.

This approach allows for a detailed explanation of different aspects of network communication, including transport protocols, addressing schemes and data packaging methods. As a result, the OSI model resolves the complexities of network communication and fosters a more integrated and coherent digital world .

The 7 Layers of the OSI Model

Each layer of the OSI model serves a specific function, yet they work in harmony to create a robust and efficient network communication system. Understanding these layers provides valuable insights into the complexities of network design and operation, showcasing the intricate nature of modern digital communication.  

Layer 7: Application Layer

Functionality: The Application Layer is the closest to the end user. It facilitates user interaction with networked systems, providing interfaces and protocols for web browsers, email clients and other applications.

Key protocols: Protocols like HTTP, FTP and SMTP operate at this layer, enabling services such as web browsing, file transfers and email communications.

Layer 6: Presentation Layer

Role: The Presentation Layer acts as a translator, converting data formats from the application layer into a network-compatible format and vice versa. It ensures that data sent from one system is readable by another.

Data formatting: This layer is responsible for data encryption and compression, playing a significant role in maintaining data privacy and efficient transmission.

Layer 5: Session Layer

Managing sessions: It establishes, manages and terminates sessions between applications. This layer ensures that sessions are maintained for the duration of the communication.

Coordination: The Session Layer coordinates communication between systems, managing dialogues and synchronizing data exchange.

Layer 4: Transport Layer

Data segmentation and control: The Transport Layer is crucial for segmenting data into smaller packets. It ensures end-to-end data integrity and delivery, managing flow control, error correction and sequencing.

Protocols: TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are key protocols in this layer, differing in their approach to data transmission.

Layer 3: Network Layer

Routing and addressing: This layer is responsible for logical addressing and routing data packets across different networks. It determines the best path for data to travel from source to destination.

Internet protocol: The Internet Protocol (IP), fundamental for internet data exchange, operates at this layer.

Layer 2: Data Link Layer

Framing and MAC addressing: The Data Link Layer frames data into packets. It handles physical addressing through MAC addresses, ensuring that data is directed to the correct hardware.

Error detection: This layer is also involved in error detection and handling, improving overall data transmission reliability.

Layer 1: Physical Layer

Physical transmission: The Physical Layer deals with the physical aspects of data transmission, including cable types, electrical signals and data rates.

Hardware components: It involves hardware components like cables, switches and network interface cards, forming the foundation of network communication.

How Data Flows in the OSI Model

Understanding this data flow process is crucial for professionals, as it aids in diagnosing and troubleshooting network issues, designing efficient network solutions and ensuring robust data security and management.

Encapsulation Process

When data is sent, it begins at the Application Layer and moves down through the layers. At each stage, it is encapsulated with the necessary headers, trailers, and other control information relevant to that layer. For instance, at the Transport Layer, data is segmented and encapsulated with port numbers, while at the Network Layer, IP addresses are added.

Each layer plays a role in preparing the data for transmission. The Presentation Layer may encrypt the data for security, while the Data Link Layer ensures it is formatted into frames suitable for physical transmission.

Data Transmission Across the Network

The Physical Layer transmits the raw bits over a physical medium, such as a cable or wireless network. This transmission is the actual movement of data across the network. In cases where data must move across different networks, the Network Layer’s routing functionalities become crucial. It ensures that data packets find the most efficient path to their destination.

Decapsulation Process

Upon reaching the destination, the data moves up the OSI model, with each layer removing its respective encapsulation. The Data Link Layer, for instance, removes framing, and the Transport Layer checks for transmission errors and reassembles the data segments. Once the data reaches the Application Layer, it is in its original format and ready to be used by the receiving application, whether it’s an email client, a web browser or any other networked software.

Seamless Data Flow

The OSI model ensures that each layer only communicates with its immediate upper and lower layers, creating a seamless flow. This layered approach means changes in one layer’s protocols or functionalities can occur without disrupting the entire network.

OSI Model Advantages

The OSI model is a cornerstone in network architecture for several reasons:

Simplification of network design

The OSI model’s layered approach breaks down complex network processes, making design and operation more manageable. Each layer focuses on a specific aspect of communication, allowing for independent development and easier troubleshooting.

Standardization and interoperability

It establishes universal standards for network communication, enabling different technologies to interact seamlessly. This interoperability is crucial for the efficient functioning of diverse network devices and applications.

Flexibility and Scalability

Adaptable to technological advancements, the OSI model allows individual layers to evolve without overhauling the entire system. This scalability makes it suitable for various network sizes and types.

Enhanced Security

Security measures are integrated at multiple layers, providing a robust defense against threats. Each layer can address specific security concerns, leading to comprehensive network protection.

Real-World Applications of the OSI Model

The OSI model’s influence extends well beyond theoretical concepts, playing a crucial role in various practical aspects of networking:

Network Design and Protocol Development

Network professionals use the OSI model as a blueprint for structuring and developing robust networks. It guides the creation of new protocols, ensuring seamless integration and functionality across different network layers.

Efficient Troubleshooting and Management

In troubleshooting, the OSI model provides a systematic approach for identifying issues, from physical connectivity to application-level errors. It also aids in network maintenance and performance optimization, addressing each layer to enhance overall efficiency.

Cybersecurity Strategy

The model is foundational in crafting layered security strategies . By implementing security measures at different layers, it offers comprehensive protection against various cyber threats. Understanding the OSI layers is key in detecting and mitigating attacks targeting specific network segments.

Educational and Training Tool

It serves as an essential framework in networking education, helping students and professionals alike understand complex network operations. The OSI model is a cornerstone in training programs , emphasizing the intricacies of network architecture and security.

safety first When and How to Run a Phishing Simulation

OSI Model vs. TCP/IP Model

While the OSI model offers a detailed conceptual framework, the TCP/IP model is recognized for its practical application in today’s internet-driven world.

Structural Differences

OSI model : Introduced as a comprehensive, protocol-independent framework, the OSI model details seven distinct layers, offering a more granular approach to network communication.

TCP/IP model : Developed earlier by the U.S. Department of Defense, the TCP/IP model consists of four layers (Application, Transport, Internet and Network Access), combining certain OSI layers.

Theoretical vs. Practical Approach

OSI model : Developed as a theoretical and universal networking model, it’s used more for educational purposes to explain how networks operate.

TCP/IP model : This model is designed around specific standard protocols, focusing on solving practical communication issues. It leaves sequencing and acknowledgment functions to the transport layer, differing from the OSI approach.

Adoption and Use

OSI model: While not widely implemented in its entirety, the OSI model’s clear layer separation is influential in protocol design and network education; simpler applications in the OSI framework may not utilize all seven layers, with only the first three layers (Physical, Data Link, and Network) being mandatory for basic data communication.

TCP/IP model : The dominant model used in most network architectures today, especially in internet-related communications. In TCP/IP, most applications engage all layers for communication.

Frequently Asked Questions

Why is the osi model important.

The OSI model is crucial for standardizing network communication and ensuring interoperability between various devices and systems. It simplifies network design and troubleshooting and serves as a fundamental educational tool in networking.

What are the 7 layers of the OSI model?

Layer 1: Physical Layer — Transmits raw data.

Layer 2: Data Link Layer — Manages direct links and framing.

Layer 3: Network Layer — Handles addressing and routing.

Layer 4: Transport Layer — Ensures reliable data transfer.

Layer 5: Session Layer — Manages connections.

Layer 6: Presentation Layer — Translates data formats.

Layer 7: Application Layer — Interfaces with applications.

Recent Expert Contributors Articles

Is Your Startup Idea Truly Innovative?

COMPUTER NETWORK BASICS

  • Introduction To Computer Networks
  • Uses of Computer Networks
  • Line Configuration
  • Types of Network Topology
  • Transmission Modes
  • Transmission Mediums
  • Bounded/Guided Transmission Media
  • UnBounded/UnGuided Transmission Media
  • Types of Communication Networks
  • Connection Oriented and Connectionless Services
  • Network Layer
  • Quality of Service(QoS)
  • IGMP Protocol
  • Reference Models

Physical Layer

  • Digital Transmission
  • Multiplexing
  • Circuit-Switched
  • Message-Switched Networks
  • Packet Switching

Data link layer

  • Error Correction
  • Data Link Control
  • Flow and Error
  • Simplest Protocol
  • Stop-and-Wait Protocol
  • Go-Back-N Automatic Repeat
  • Sliding Window Protocol
  • HDLC Protocol
  • Point-to-Point Protocol
  • Multiple Access in DL
  • Channelization Protocols
  • Gigabit Ethernet
  • Random Access Protocol
  • Controlled Access Protocols
  • Carrier Sense Multiple Access

Transport layer

  • Transport Layer
  • Telnet vs SSH
  • UDP Protocol
  • TCP - Protocol

ISO/OSI REFERENCE MODEL

  • Introduction to Reference Models
  • OSI Model: Physical Layer
  • OSI Model: Datalink Layer
  • OSI Model: Network Layer
  • OSI Model: Transport Layer
  • OSI Model: Session Layer
  • OSI Model: Presentation Layer
  • OSI Model: Application Layer

TCP/IP REFERENCE MODELCOMPUTER NETWORKS

  • The TCP/IP Reference Model
  • Difference between OSI and TCP/IP Model
  • Key Terms - Computer Network

Session layer

  • Session Layer

Computer Networks

  • Components of Computer Networks
  • Features of Computer Network
  • Protocols and Standards
  • Connection Oriented and Connectionless
  • OSI Vs TCP/IP

Presentation layer

  • Presentation Layer

Application layer

  • HTTP Protocol
  • FTP Protocol
  • SMTP Protocol
  • POP Protocol
  • SNMP Protocol
  • Electronic Mail
  • MIME Protocol
  • World Wide Web
  • DNS Protocol

Presentation Layer - OSI Model

The primary goal of this layer is to take care of the syntax and semantics of the information exchanged between two communicating systems. Presentation layer takes care that the data is sent in such a way that the receiver will understand the information(data) and will be able to use the data. Languages(syntax) can be different of the two communicating systems. Under this condition presentation layer plays a role translator.

In order to make it possible for computers with different data representations to communicate, the data structures to be exchanged can be defined in an abstract way. The presentation layer manages these abstract data structures and allows higher-level data structures(eg: banking records), to be defined and exchanged.

Functions of Presentation Layer

  • Translation: Before being transmitted, information in the form of characters and numbers should be changed to bit streams. The presentation layer is responsible for interoperability between encoding methods as different computers use different encoding methods. It translates data between the formats the network requires and the format the computer.
  • Encryption: It carries out encryption at the transmitter and decryption at the receiver.
  • Compression: It carries out data compression to reduce the bandwidth of the data to be transmitted. The primary role of Data compression is to reduce the number of bits to be 0transmitted. It is important in transmitting multimedia such as audio, video, text etc.

Presentation Layer in ISO-OSI Model

Design Issues with Presentation Layer

  • To manage and maintain the Syntax and Semantics of the information transmitted.
  • Encoding data in a standard agreed upon way. Eg: String, double, date, etc.
  • Perform Standard Encoding on wire.
  • ← Prev
  • Next →

  CN MCQ Tests

  gate interview tests.

PrepBytes Blog

ONE-STOP RESOURCE FOR EVERYTHING RELATED TO CODING

Sign in to your account

Forgot your password?

Login via OTP

We will send you an one time password on your mobile number

An OTP has been sent to your mobile number please verify it below

Register with PrepBytes

Presentation layer in osi model.

' src=

Last Updated on March 7, 2024 by Abhishek Sharma

protocols of presentation layer in osi model

The OSI (Open Systems Interconnection) model is a conceptual framework used to understand the functions of a telecommunication or computing system. It consists of seven layers, each responsible for specific tasks. The sixth layer, known as the Presentation Layer, plays a crucial role in ensuring that data exchanged between systems is readable and usable. Let’s explore the functions and importance of the Presentation Layer in the OSI model.

What is Presentation Layer in OSI Model?

The Presentation Layer, the sixth layer of the OSI (Open Systems Interconnection) model, is responsible for ensuring that data exchanged between systems is in a format that can be interpreted and used by the receiving system. It performs various functions, including data translation, encryption, compression, and formatting, to facilitate efficient and secure communication between networked devices.

Functions of the Presentation Layer

Below are some of the functions of the Presentation Layer in OSI Model:

  • Data Translation: The Presentation Layer translates data from the format used by the application layer into a format that can be transmitted over the network. This includes encoding, compression, and encryption.
  • Data Formatting: It ensures that data is formatted according to the specifications of the application layer. This includes converting between different character sets, such as ASCII and Unicode.
  • Data Compression: The Presentation Layer compresses data to reduce the amount of bandwidth required for transmission, improving network efficiency.
  • Data Encryption: It encrypts data to ensure that it remains secure during transmission, protecting it from unauthorized access.
  • Data Syntax: The Presentation Layer defines the syntax for data representation, ensuring that both the sender and receiver understand the structure of the data being exchanged.

Importance of the Presentation Layer

Importance of Presentation Layer are:

  • Data Integrity: By ensuring that data is formatted correctly and encrypted, the Presentation Layer helps maintain the integrity of data during transmission.
  • Interoperability: The Presentation Layer enables different systems to communicate with each other by ensuring that data is translated into a common format that both systems understand.
  • Efficiency: Data compression reduces the amount of data that needs to be transmitted, improving network efficiency and reducing bandwidth requirements.
  • Security: Encryption provided by the Presentation Layer ensures that data remains secure and protected from unauthorized access.

Conclusion The Presentation Layer is a crucial component of the OSI model, responsible for ensuring that data exchanged between systems is in a format that can be understood and used. By performing functions such as data translation, formatting, compression, and encryption, the Presentation Layer plays a vital role in maintaining data integrity, facilitating interoperability, and ensuring the security of data during transmission.

FAQs related to Presentation Layer in OSI Model

Here are some of the FAQs related to Presentation Layer in OSI Model:

Q1: What is the role of the Presentation Layer in the OSI model? The Presentation Layer ensures that data exchanged between systems is in a usable format, performing functions such as data translation, encryption, compression, and formatting.

Q2: How does the Presentation Layer ensure data security? The Presentation Layer encrypts data before transmission, making it unreadable to unauthorized parties, thus ensuring data security.

Q3: Why is data compression important in the Presentation Layer? Data compression reduces the size of data packets, leading to faster transmission speeds and optimized bandwidth usage, which is crucial in high-traffic networks.

Q4: How does the Presentation Layer facilitate interoperability between systems? By translating data into a common format that both sender and receiver understand, the Presentation Layer enables different systems to communicate with each other seamlessly.

Q5: Can the Presentation Layer be bypassed in data transmission? While it is possible to bypass the Presentation Layer in some cases, doing so can lead to compatibility issues between systems and is not recommended.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Linked List
  • Segment Tree
  • Backtracking
  • Dynamic Programming
  • Greedy Algorithm
  • Operating System
  • Company Placement
  • Interview Tips
  • General Interview Questions
  • Data Structure
  • Other Topics
  • Computational Geometry
  • Game Theory

Related Post

Quantum cryptography, introduction to sniffers, multiplexing and demultiplexing in transport layer, transport layer responsibilities, tacacs+ and radius.

Javatpoint Logo

Computer Network

  • Operating Systems
  • Computer Fundamentals
  • Interview Q

Physical Layer

Data link layer, network layer, routing algorithm, transport layer, application layer, application protocols, network security.

Interview Questions

JavaTpoint

  • Send your Feedback to [email protected]

Help Others, Please Share

facebook

Learn Latest Tutorials

Splunk tutorial

Transact-SQL

Tumblr tutorial

Reinforcement Learning

R Programming tutorial

R Programming

RxJS tutorial

React Native

Python Design Patterns

Python Design Patterns

Python Pillow tutorial

Python Pillow

Python Turtle tutorial

Python Turtle

Keras tutorial

Preparation

Aptitude

Verbal Ability

Interview Questions

Company Questions

Trending Technologies

Artificial Intelligence

Artificial Intelligence

AWS Tutorial

Cloud Computing

Hadoop tutorial

Data Science

Angular 7 Tutorial

Machine Learning

DevOps Tutorial

B.Tech / MCA

DBMS tutorial

Data Structures

DAA tutorial

Operating System

Computer Network tutorial

Compiler Design

Computer Organization and Architecture

Computer Organization

Discrete Mathematics Tutorial

Discrete Mathematics

Ethical Hacking

Ethical Hacking

Computer Graphics Tutorial

Computer Graphics

Software Engineering

Software Engineering

html tutorial

Web Technology

Cyber Security tutorial

Cyber Security

Automata Tutorial

C Programming

C++ tutorial

Control System

Data Mining Tutorial

Data Mining

Data Warehouse Tutorial

Data Warehouse

RSS Feed

IMAGES

  1. OSI model layers functions and protocols

    protocols of presentation layer in osi model

  2. Presentation Layer

    protocols of presentation layer in osi model

  3. OSI Model Reference Guide (With Examples)

    protocols of presentation layer in osi model

  4. What is OSI Model & Its Definition?

    protocols of presentation layer in osi model

  5. Presentation Layer of the OSI Model

    protocols of presentation layer in osi model

  6. Presentation Layer of OSI Reference Model

    protocols of presentation layer in osi model

VIDEO

  1. OSI model

  2. Design issues of presentation layer

  3. The OSI Layers and Protocol Stacks Networking Course

  4. Presentation layer in OSI Model ( Malayalam)

  5. Full CCST NETWORKING-DAY 04

  6. OSI Model (Part 2)

COMMENTS

  1. Presentation Layer in OSI model

    Prerequisite : OSI Model. Introduction : Presentation Layer is the 6th layer in the Open System Interconnection (OSI) model. This layer is also known as Translation layer, as this layer serves as a data translator for the network. The data which this layer receives from the Application Layer is extracted and manipulated here as per the required ...

  2. Presentation Layer: Protocols, Examples, Services

    What is Presentation Layer? Definition: Presentation layer is 6th layer in the OSI model, and its main objective is to present all messages to upper layer as a standardized format.It is also known as the "Translation layer". This layer takes care of syntax and semantics of messages exchanged in between two communication systems. Presentation layer has responsible that receiver can ...

  3. Presentation Layer

    The presentation layer is the lowest layer at which application programmers consider data structure and presentation, instead of simply sending data in the form of datagrams or packets between hosts. This layer deals with issues of string representation - whether they use the Pascal method (an integer length field followed by the specified ...

  4. Presentation layer

    The presentation layer establishes the way in which information is presented, typically for display or printing. Data encryption and character set conversion (such as ASCII to EBCDIC) are usually associated with this layer. Category: OSI model.

  5. OSI Model Layers and Protocols in Computer Network

    OSI model, the transport layer is only connection-oriented. A layer of the TCP/IP model is both connection-oriented and connectionless. In OSI model, data link layer and physical are separate layers. In TCP data link layer and physical layer are combined as a single host-to-network layer. The minimum size of the OSI header is 5 bytes.

  6. Presentation Layer of the OSI Model

    The presentation layer in the OSI model has five main functions within the frame of presentation layer protocols. Character Code Translation A character code is a representation of text using a ...

  7. What is presentation layer?

    The presentation layer is located at Layer 6 of the OSI model. The tool that manages Hypertext Transfer Protocol ( HTTP) is an example of a program that loosely adheres to the presentation layer of OSI. Although it's technically considered an application-layer protocol per the TCP/IP model, HTTP includes presentation layer services within it.

  8. The TCP/IP Guide

    The presentation layer is the sixth layer of the OSI Reference Model protocol stack, and second from the top. It is different from the other layers in two key respects. First, it has a much more limited and specific function than the other layers; it's actually somewhat easy to describe, hurray! Second, it is used much less often than the other ...

  9. The OSI Model

    Some common Layer 6 protocols are ASCII, JPEG, GIF, MPEG, and PNG. Another main function of the presentation layer is the encryption and decryption of data sent across a network. Most encryption communication protocols straddle multiple layers of the OSI model, but the actual encryption function is Layer 6.

  10. PDF 13 OSI Presentation and Application Layers

    Reference Model of Open Systems Interconnection (OSI) [1]. The Applica­ tion and Presentation Layers perform functions necessary to exchange information between application processes; the Application Layer is con­ cerned with the semantic aspects of the information exchange, while the Presentation Layer is concerned with the syntactic aspects ...

  11. OSI Presentation and Application Layers

    Abstract. This chapter discusses the Application and Presentation Layers of the Reference Model of Open Systems Interconnection (OSI) [1]. The Application and Presentation Layers perform functions necessary to exchange information between application processes; the Application Layer is concerned with the semantic aspects of the information ...

  12. The OSI Model

    Chloe Tucker. This article explains the Open Systems Interconnection (OSI) model and the 7 layers of networking, in plain English. The OSI model is a conceptual framework that is used to describe how a network functions. In plain English, the OSI model helped standardize the way computer systems send information to each other.

  13. OSI Seven Layers Model Explained with Examples

    The sixth layer of the OSI model is the Presentation layer. Applications running on the local system may or may not understand the format that is used to transmit the data over the network. The presentation layer works as a translator. ... This way, a data packet is always delivered to the same network layer protocol from which it was sent.

  14. Presentation layer and Session layer of the OSI model

    The presentation layer is the sixth layer of the OSI Reference model. It defines how data and information is transmitted and presented to the user. It translates data and format code in such a way that it is correctly used by the application layer. It identifies the syntaxes that different applications use and formats data using those syntaxes.

  15. OSI Network Model Basics: Layers, Devices, & Protocols

    OSI has seven layers. TCP/IP combines OSI layers 1-2 into the network interface layer and OSI layers 5-7 into one application layer. OSI is a more general model (describes network interaction in general). TCP/IP model simulates the operation of communication protocols with maximum accuracy (it is an excellent option for public networks).

  16. The OSI Model: Layer 6

    None of the upper layers know anything about networking or network addresses. There are no protocols which work specificly at the Presentation layer, but the protocols which work at the Application layer are said to work on all 3 upper layers. Next: The OSI Model: Layer 7 - Application Layer

  17. A Guide to the Presentation Layer

    The presentation layer is the sixth layer in the OSI model. Known as a translator, the presentation layer converts data into an accurate, well-defined, standard format after it receives it from the application layer. The converted format varies, however, based on the type of data received. Some formats include:

  18. The OSI Model's 7 Layers Explained

    OSI model: Introduced as a comprehensive, protocol-independent framework, the OSI model details seven distinct layers, offering a more granular approach to network communication. TCP/IP model: Developed earlier by the U.S. Department of Defense, the TCP/IP model consists of four layers (Application, Transport, Internet and Network Access ...

  19. Presentation Layer of OSI Reference Model

    Presentation Layer - OSI Model. The primary goal of this layer is to take care of the syntax and semantics of the information exchanged between two communicating systems. Presentation layer takes care that the data is sent in such a way that the receiver will understand the information (data) and will be able to use the data.

  20. Presentation Layer in OSI Model

    The Presentation Layer is a crucial component of the OSI model, responsible for ensuring that data exchanged between systems is in a format that can be understood and used. By performing functions such as data translation, formatting, compression, and encryption, the Presentation Layer plays a vital role in maintaining data integrity ...

  21. Presentation Layer in OSI Model

    The presentation layer is the 6 th layer from the bottom in the OSI model. This layer presents the incoming data from the application layer of the sender machine to the receiver machine. It converts one format of data to another format of data if both sender and receiver understand different formats; hence this layer is also called the ...

  22. OSI Model

    The presentation layer handles the conversion of data between a Standards-based or platform independant formats to a format understood by the local machine. This allows for data to be transported between devices and still be understood. The presentation layer performs the folowing functions: . Communication with the application layer above.; Translation of data conforming to cross-platform ...

  23. OSI model

    The session layer is meant to store states between two connections, like what we use cookies for when working with web programming. The presentation layer is meant to convert between different formats. This was simpler when the only format that was worried about was character encoding, ie ASCII and EBCDIC. When you consider all of the different ...

  24. Application layer

    Application layer. {communication protocol]]s and interface methods used by hosts in a communications network. [1] An application layer abstraction is specified in both the Internet Protocol Suite (TCP/IP) and the OSI model. [2] Although both models use the same term for their respective highest-level layer, the detailed definitions and ...