Enago Academy

Bridging the Gap: Overcome these 7 flaws in descriptive research design

' src=

Descriptive research design is a powerful tool used by scientists and researchers to gather information about a particular group or phenomenon. This type of research provides a detailed and accurate picture of the characteristics and behaviors of a particular population or subject. By observing and collecting data on a given topic, descriptive research helps researchers gain a deeper understanding of a specific issue and provides valuable insights that can inform future studies.

In this blog, we will explore the definition, characteristics, and common flaws in descriptive research design, and provide tips on how to avoid these pitfalls to produce high-quality results. Whether you are a seasoned researcher or a student just starting, understanding the fundamentals of descriptive research design is essential to conducting successful scientific studies.

Table of Contents

What Is Descriptive Research Design?

The descriptive research design involves observing and collecting data on a given topic without attempting to infer cause-and-effect relationships. The goal of descriptive research is to provide a comprehensive and accurate picture of the population or phenomenon being studied and to describe the relationships, patterns, and trends that exist within the data.

Descriptive research methods can include surveys, observational studies , and case studies, and the data collected can be qualitative or quantitative . The findings from descriptive research provide valuable insights and inform future research, but do not establish cause-and-effect relationships.

Importance of Descriptive Research in Scientific Studies

1. understanding of a population or phenomenon.

Descriptive research provides a comprehensive picture of the characteristics and behaviors of a particular population or phenomenon, allowing researchers to gain a deeper understanding of the topic.

2. Baseline Information

The information gathered through descriptive research can serve as a baseline for future research and provide a foundation for further studies.

3. Informative Data

Descriptive research can provide valuable information and insights into a particular topic, which can inform future research, policy decisions, and programs.

4. Sampling Validation

Descriptive research can be used to validate sampling methods and to help researchers determine the best approach for their study.

5. Cost Effective

Descriptive research is often less expensive and less time-consuming than other research methods , making it a cost-effective way to gather information about a particular population or phenomenon.

6. Easy to Replicate

Descriptive research is straightforward to replicate, making it a reliable way to gather and compare information from multiple sources.

Key Characteristics of Descriptive Research Design

The primary purpose of descriptive research is to describe the characteristics, behaviors, and attributes of a particular population or phenomenon.

2. Participants and Sampling

Descriptive research studies a particular population or sample that is representative of the larger population being studied. Furthermore, sampling methods can include convenience, stratified, or random sampling.

3. Data Collection Techniques

Descriptive research typically involves the collection of both qualitative and quantitative data through methods such as surveys, observational studies, case studies, or focus groups.

4. Data Analysis

Descriptive research data is analyzed to identify patterns, relationships, and trends within the data. Statistical techniques , such as frequency distributions and descriptive statistics, are commonly used to summarize and describe the data.

5. Focus on Description

Descriptive research is focused on describing and summarizing the characteristics of a particular population or phenomenon. It does not make causal inferences.

6. Non-Experimental

Descriptive research is non-experimental, meaning that the researcher does not manipulate variables or control conditions. The researcher simply observes and collects data on the population or phenomenon being studied.

When Can a Researcher Conduct Descriptive Research?

A researcher can conduct descriptive research in the following situations:

  • To better understand a particular population or phenomenon
  • To describe the relationships between variables
  • To describe patterns and trends
  • To validate sampling methods and determine the best approach for a study
  • To compare data from multiple sources.

Types of Descriptive Research Design

1. survey research.

Surveys are a type of descriptive research that involves collecting data through self-administered or interviewer-administered questionnaires. Additionally, they can be administered in-person, by mail, or online, and can collect both qualitative and quantitative data.

2. Observational Research

Observational research involves observing and collecting data on a particular population or phenomenon without manipulating variables or controlling conditions. It can be conducted in naturalistic settings or controlled laboratory settings.

3. Case Study Research

Case study research is a type of descriptive research that focuses on a single individual, group, or event. It involves collecting detailed information on the subject through a variety of methods, including interviews, observations, and examination of documents.

4. Focus Group Research

Focus group research involves bringing together a small group of people to discuss a particular topic or product. Furthermore, the group is usually moderated by a researcher and the discussion is recorded for later analysis.

5. Ethnographic Research

Ethnographic research involves conducting detailed observations of a particular culture or community. It is often used to gain a deep understanding of the beliefs, behaviors, and practices of a particular group.

Advantages of Descriptive Research Design

1. provides a comprehensive understanding.

Descriptive research provides a comprehensive picture of the characteristics, behaviors, and attributes of a particular population or phenomenon, which can be useful in informing future research and policy decisions.

2. Non-invasive

Descriptive research is non-invasive and does not manipulate variables or control conditions, making it a suitable method for sensitive or ethical concerns.

3. Flexibility

Descriptive research allows for a wide range of data collection methods , including surveys, observational studies, case studies, and focus groups, making it a flexible and versatile research method.

4. Cost-effective

Descriptive research is often less expensive and less time-consuming than other research methods. Moreover, it gives a cost-effective option to many researchers.

5. Easy to Replicate

Descriptive research is easy to replicate, making it a reliable way to gather and compare information from multiple sources.

6. Informs Future Research

The insights gained from a descriptive research can inform future research and inform policy decisions and programs.

Disadvantages of Descriptive Research Design

1. limited scope.

Descriptive research only provides a snapshot of the current situation and cannot establish cause-and-effect relationships.

2. Dependence on Existing Data

Descriptive research relies on existing data, which may not always be comprehensive or accurate.

3. Lack of Control

Researchers have no control over the variables in descriptive research, which can limit the conclusions that can be drawn.

The researcher’s own biases and preconceptions can influence the interpretation of the data.

5. Lack of Generalizability

Descriptive research findings may not be applicable to other populations or situations.

6. Lack of Depth

Descriptive research provides a surface-level understanding of a phenomenon, rather than a deep understanding.

7. Time-consuming

Descriptive research often requires a large amount of data collection and analysis, which can be time-consuming and resource-intensive.

7 Ways to Avoid Common Flaws While Designing Descriptive Research

descriptive research design limitations

1. Clearly define the research question

A clearly defined research question is the foundation of any research study, and it is important to ensure that the question is both specific and relevant to the topic being studied.

2. Choose the appropriate research design

Choosing the appropriate research design for a study is crucial to the success of the study. Moreover, researchers should choose a design that best fits the research question and the type of data needed to answer it.

3. Select a representative sample

Selecting a representative sample is important to ensure that the findings of the study are generalizable to the population being studied. Researchers should use a sampling method that provides a random and representative sample of the population.

4. Use valid and reliable data collection methods

Using valid and reliable data collection methods is important to ensure that the data collected is accurate and can be used to answer the research question. Researchers should choose methods that are appropriate for the study and that can be administered consistently and systematically.

5. Minimize bias

Bias can significantly impact the validity and reliability of research findings.  Furthermore, it is important to minimize bias in all aspects of the study, from the selection of participants to the analysis of data.

6. Ensure adequate sample size

An adequate sample size is important to ensure that the results of the study are statistically significant and can be generalized to the population being studied.

7. Use appropriate data analysis techniques

The appropriate data analysis technique depends on the type of data collected and the research question being asked. Researchers should choose techniques that are appropriate for the data and the question being asked.

Have you worked on descriptive research designs? How was your experience creating a descriptive design? What challenges did you face? Do write to us or leave a comment below and share your insights on descriptive research designs!

' src=

extremely very educative

Indeed very educative and useful. Well explained. Thank you

Simple,easy to understand

Excellent and easy to understand queries and questions get answered easily. Its rather clear than any confusion. Thanks a million Shritika Sirisilla.

Easy to understand. Well written , educative and informative

Rate this article Cancel Reply

Your email address will not be published.

descriptive research design limitations

Enago Academy's Most Popular Articles

Graphical Abstracts vs. Infographics: Best Practices for Visuals - Enago

  • Promoting Research

Graphical Abstracts Vs. Infographics: Best practices for using visual illustrations for increased research impact

Dr. Sarah Chen stared at her computer screen, her eyes staring at her recently published…

10 Tips to Prevent Research Papers From Being Retracted - Enago

  • Publishing Research

10 Tips to Prevent Research Papers From Being Retracted

Research paper retractions represent a critical event in the scientific community. When a published article…

2024 Scholar Metrics: Unveiling research impact (2019-2023)

  • Industry News

Google Releases 2024 Scholar Metrics, Evaluates Impact of Scholarly Articles

Google has released its 2024 Scholar Metrics, assessing scholarly articles from 2019 to 2023. This…

What is Academic Integrity and How to Uphold it [FREE CHECKLIST]

Ensuring Academic Integrity and Transparency in Academic Research: A comprehensive checklist for researchers

Academic integrity is the foundation upon which the credibility and value of scientific findings are…

7 Step Guide for Optimizing Impactful Research Process

  • Reporting Research

How to Optimize Your Research Process: A step-by-step guide

For researchers across disciplines, the path to uncovering novel findings and insights is often filled…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

Research Recommendations – Guiding policy-makers for evidence-based decision making

descriptive research design limitations

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

  • AI in Academia
  • Career Corner
  • Diversity and Inclusion
  • Infographics
  • Expert Video Library
  • Other Resources
  • Enago Learn
  • Upcoming & On-Demand Webinars
  • Peer Review Week 2024
  • Open Access Week 2023
  • Conference Videos
  • Enago Report
  • Journal Finder
  • Enago Plagiarism & AI Grammar Check
  • Editing Services
  • Publication Support Services
  • Research Impact
  • Translation Services
  • Publication solutions
  • AI-Based Solutions
  • Thought Leadership
  • Call for Articles
  • Call for Speakers
  • Author Training
  • Edit Profile

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

descriptive research design limitations

What factors would influence the future of open access (OA) publishing?

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Descriptive Research | Definition, Types, Methods & Examples

Descriptive Research | Definition, Types, Methods & Examples

Published on May 15, 2019 by Shona McCombes . Revised on June 22, 2023.

Descriptive research aims to accurately and systematically describe a population, situation or phenomenon. It can answer what , where , when and how   questions , but not why questions.

A descriptive research design can use a wide variety of research methods  to investigate one or more variables . Unlike in experimental research , the researcher does not control or manipulate any of the variables, but only observes and measures them.

Table of contents

When to use a descriptive research design, descriptive research methods, other interesting articles.

Descriptive research is an appropriate choice when the research aim is to identify characteristics, frequencies, trends, and categories.

It is useful when not much is known yet about the topic or problem. Before you can research why something happens, you need to understand how, when and where it happens.

Descriptive research question examples

  • How has the Amsterdam housing market changed over the past 20 years?
  • Do customers of company X prefer product X or product Y?
  • What are the main genetic, behavioural and morphological differences between European wildcats and domestic cats?
  • What are the most popular online news sources among under-18s?
  • How prevalent is disease A in population B?

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

descriptive research design limitations

Descriptive research is usually defined as a type of quantitative research , though qualitative research can also be used for descriptive purposes. The research design should be carefully developed to ensure that the results are valid and reliable .

Survey research allows you to gather large volumes of data that can be analyzed for frequencies, averages and patterns. Common uses of surveys include:

  • Describing the demographics of a country or region
  • Gauging public opinion on political and social topics
  • Evaluating satisfaction with a company’s products or an organization’s services

Observations

Observations allow you to gather data on behaviours and phenomena without having to rely on the honesty and accuracy of respondents. This method is often used by psychological, social and market researchers to understand how people act in real-life situations.

Observation of physical entities and phenomena is also an important part of research in the natural sciences. Before you can develop testable hypotheses , models or theories, it’s necessary to observe and systematically describe the subject under investigation.

Case studies

A case study can be used to describe the characteristics of a specific subject (such as a person, group, event or organization). Instead of gathering a large volume of data to identify patterns across time or location, case studies gather detailed data to identify the characteristics of a narrowly defined subject.

Rather than aiming to describe generalizable facts, case studies often focus on unusual or interesting cases that challenge assumptions, add complexity, or reveal something new about a research problem .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, June 22). Descriptive Research | Definition, Types, Methods & Examples. Scribbr. Retrieved October 11, 2024, from https://www.scribbr.com/methodology/descriptive-research/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, what is quantitative research | definition, uses & methods, correlational research | when & how to use, descriptive statistics | definitions, types, examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Child Care and Early Education Research Connections

Descriptive research studies.

Descriptive research is a type of research that is used to describe the characteristics of a population. It collects data that are used to answer a wide range of what, when, and how questions pertaining to a particular population or group. For example, descriptive studies might be used to answer questions such as: What percentage of Head Start teachers have a bachelor's degree or higher? What is the average reading ability of 5-year-olds when they first enter kindergarten? What kinds of math activities are used in early childhood programs? When do children first receive regular child care from someone other than their parents? When are children with developmental disabilities first diagnosed and when do they first receive services? What factors do programs consider when making decisions about the type of assessments that will be used to assess the skills of the children in their programs? How do the types of services children receive from their early childhood program change as children age?

Descriptive research does not answer questions about why a certain phenomenon occurs or what the causes are. Answers to such questions are best obtained from  randomized and quasi-experimental studies . However, data from descriptive studies can be used to examine the relationships (correlations) among variables. While the findings from correlational analyses are not evidence of causality, they can help to distinguish variables that may be important in explaining a phenomenon from those that are not. Thus, descriptive research is often used to generate hypotheses that should be tested using more rigorous designs.

A variety of data collection methods may be used alone or in combination to answer the types of questions guiding descriptive research. Some of the more common methods include surveys, interviews, observations, case studies, and portfolios. The data collected through these methods can be either quantitative or qualitative. Quantitative data are typically analyzed and presenting using  descriptive statistics . Using quantitative data, researchers may describe the characteristics of a sample or population in terms of percentages (e.g., percentage of population that belong to different racial/ethnic groups, percentage of low-income families that receive different government services) or averages (e.g., average household income, average scores of reading, mathematics and language assessments). Quantitative data, such as narrative data collected as part of a case study, may be used to organize, classify, and used to identify patterns of behaviors, attitudes, and other characteristics of groups.

Descriptive studies have an important role in early care and education research. Studies such as the  National Survey of Early Care and Education  and the  National Household Education Surveys Program  have greatly increased our knowledge of the supply of and demand for child care in the U.S. The  Head Start Family and Child Experiences Survey  and the  Early Childhood Longitudinal Study Program  have provided researchers, policy makers and practitioners with rich information about school readiness skills of children in the U.S.

Each of the methods used to collect descriptive data have their own strengths and limitations. The following are some of the strengths and limitations of descriptive research studies in general.

Study participants are questioned or observed in a natural setting (e.g., their homes, child care or educational settings).

Study data can be used to identify the prevalence of particular problems and the need for new or additional services to address these problems.

Descriptive research may identify areas in need of additional research and relationships between variables that require future study. Descriptive research is often referred to as "hypothesis generating research."

Depending on the data collection method used, descriptive studies can generate rich datasets on large and diverse samples.

Limitations:

Descriptive studies cannot be used to establish cause and effect relationships.

Respondents may not be truthful when answering survey questions or may give socially desirable responses.

The choice and wording of questions on a questionnaire may influence the descriptive findings.

Depending on the type and size of sample, the findings may not be generalizable or produce an accurate description of the population of interest.

Instant insights, infinite possibilities

  • What is descriptive research?

Last updated

5 February 2023

Reviewed by

Cathy Heath

Short on time? Get an AI generated summary of this article instead

Descriptive research is a common investigatory model used by researchers in various fields, including social sciences, linguistics, and academia.

Read on to understand the characteristics of descriptive research and explore its underlying techniques, processes, and procedures.

Analyze your descriptive research

Dovetail streamlines analysis to help you uncover and share actionable insights

Descriptive research is an exploratory research method. It enables researchers to precisely and methodically describe a population, circumstance, or phenomenon.

As the name suggests, descriptive research describes the characteristics of the group, situation, or phenomenon being studied without manipulating variables or testing hypotheses . This can be reported using surveys , observational studies, and case studies. You can use both quantitative and qualitative methods to compile the data.

Besides making observations and then comparing and analyzing them, descriptive studies often develop knowledge concepts and provide solutions to critical issues. It always aims to answer how the event occurred, when it occurred, where it occurred, and what the problem or phenomenon is.

  • Characteristics of descriptive research

The following are some of the characteristics of descriptive research:

Quantitativeness

Descriptive research can be quantitative as it gathers quantifiable data to statistically analyze a population sample. These numbers can show patterns, connections, and trends over time and can be discovered using surveys, polls, and experiments.

Qualitativeness

Descriptive research can also be qualitative. It gives meaning and context to the numbers supplied by quantitative descriptive research .

Researchers can use tools like interviews, focus groups, and ethnographic studies to illustrate why things are what they are and help characterize the research problem. This is because it’s more explanatory than exploratory or experimental research.

Uncontrolled variables

Descriptive research differs from experimental research in that researchers cannot manipulate the variables. They are recognized, scrutinized, and quantified instead. This is one of its most prominent features.

Cross-sectional studies

Descriptive research is a cross-sectional study because it examines several areas of the same group. It involves obtaining data on multiple variables at the personal level during a certain period. It’s helpful when trying to understand a larger community’s habits or preferences.

Carried out in a natural environment

Descriptive studies are usually carried out in the participants’ everyday environment, which allows researchers to avoid influencing responders by collecting data in a natural setting. You can use online surveys or survey questions to collect data or observe.

Basis for further research

You can further dissect descriptive research’s outcomes and use them for different types of investigation. The outcomes also serve as a foundation for subsequent investigations and can guide future studies. For example, you can use the data obtained in descriptive research to help determine future research designs.

  • Descriptive research methods

There are three basic approaches for gathering data in descriptive research: observational, case study, and survey.

You can use surveys to gather data in descriptive research. This involves gathering information from many people using a questionnaire and interview .

Surveys remain the dominant research tool for descriptive research design. Researchers can conduct various investigations and collect multiple types of data (quantitative and qualitative) using surveys with diverse designs.

You can conduct surveys over the phone, online, or in person. Your survey might be a brief interview or conversation with a set of prepared questions intended to obtain quick information from the primary source.

Observation

This descriptive research method involves observing and gathering data on a population or phenomena without manipulating variables. It is employed in psychology, market research , and other social science studies to track and understand human behavior.

Observation is an essential component of descriptive research. It entails gathering data and analyzing it to see whether there is a relationship between the two variables in the study. This strategy usually allows for both qualitative and quantitative data analysis.

Case studies

A case study can outline a specific topic’s traits. The topic might be a person, group, event, or organization.

It involves using a subset of a larger group as a sample to characterize the features of that larger group.

You can generalize knowledge gained from studying a case study to benefit a broader audience.

This approach entails carefully examining a particular group, person, or event over time. You can learn something new about the study topic by using a small group to better understand the dynamics of the entire group.

  • Types of descriptive research

There are several types of descriptive study. The most well-known include cross-sectional studies, census surveys, sample surveys, case reports, and comparison studies.

Case reports and case series

In the healthcare and medical fields, a case report is used to explain a patient’s circumstances when suffering from an uncommon illness or displaying certain symptoms. Case reports and case series are both collections of related cases. They have aided the advancement of medical knowledge on countless occasions.

The normative component is an addition to the descriptive survey. In the descriptive–normative survey, you compare the study’s results to the norm.

Descriptive survey

This descriptive type of research employs surveys to collect information on various topics. This data aims to determine the degree to which certain conditions may be attained.

You can extrapolate or generalize the information you obtain from sample surveys to the larger group being researched.

Correlative survey

Correlative surveys help establish if there is a positive, negative, or neutral connection between two variables.

Performing census surveys involves gathering relevant data on several aspects of a given population. These units include individuals, families, organizations, objects, characteristics, and properties.

During descriptive research, you gather different degrees of interest over time from a specific population. Cross-sectional studies provide a glimpse of a phenomenon’s prevalence and features in a population. There are no ethical challenges with them and they are quite simple and inexpensive to carry out.

Comparative studies

These surveys compare the two subjects’ conditions or characteristics. The subjects may include research variables, organizations, plans, and people.

Comparison points, assumption of similarities, and criteria of comparison are three important variables that affect how well and accurately comparative studies are conducted.

For instance, descriptive research can help determine how many CEOs hold a bachelor’s degree and what proportion of low-income households receive government help.

  • Pros and cons

The primary advantage of descriptive research designs is that researchers can create a reliable and beneficial database for additional study. To conduct any inquiry, you need access to reliable information sources that can give you a firm understanding of a situation.

Quantitative studies are time- and resource-intensive, so knowing the hypotheses viable for testing is crucial. The basic overview of descriptive research provides helpful hints as to which variables are worth quantitatively examining. This is why it’s employed as a precursor to quantitative research designs.

Some experts view this research as untrustworthy and unscientific. However, there is no way to assess the findings because you don’t manipulate any variables statistically.

Cause-and-effect correlations also can’t be established through descriptive investigations. Additionally, observational study findings cannot be replicated, which prevents a review of the findings and their replication.

The absence of statistical and in-depth analysis and the rather superficial character of the investigative procedure are drawbacks of this research approach.

  • Descriptive research examples and applications

Several descriptive research examples are emphasized based on their types, purposes, and applications. Research questions often begin with “What is …” These studies help find solutions to practical issues in social science, physical science, and education.

Here are some examples and applications of descriptive research:

Determining consumer perception and behavior

Organizations use descriptive research designs to determine how various demographic groups react to a certain product or service.

For example, a business looking to sell to its target market should research the market’s behavior first. When researching human behavior in response to a cause or event, the researcher pays attention to the traits, actions, and responses before drawing a conclusion.

Scientific classification

Scientific descriptive research enables the classification of organisms and their traits and constituents.

Measuring data trends

A descriptive study design’s statistical capabilities allow researchers to track data trends over time. It’s frequently used to determine the study target’s current circumstances and underlying patterns.

Conduct comparison

Organizations can use a descriptive research approach to learn how various demographics react to a certain product or service. For example, you can study how the target market responds to a competitor’s product and use that information to infer their behavior.

  • Bottom line

A descriptive research design is suitable for exploring certain topics and serving as a prelude to larger quantitative investigations. It provides a comprehensive understanding of the “what” of the group or thing you’re investigating.

This research type acts as the cornerstone of other research methodologies . It is distinctive because it can use quantitative and qualitative research approaches at the same time.

What is descriptive research design?

Descriptive research design aims to systematically obtain information to describe a phenomenon, situation, or population. More specifically, it helps answer the what, when, where, and how questions regarding the research problem rather than the why.

How does descriptive research compare to qualitative research?

Despite certain parallels, descriptive research concentrates on describing phenomena, while qualitative research aims to understand people better.

How do you analyze descriptive research data?

Data analysis involves using various methodologies, enabling the researcher to evaluate and provide results regarding validity and reliability.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 30 September 2024

Last updated: 5 February 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

Educational resources and simple solutions for your research journey

What is Descriptive Research? Definition, Methods, Types and Examples

What is Descriptive Research? Definition, Methods, Types and Examples

Descriptive research is a methodological approach that seeks to depict the characteristics of a phenomenon or subject under investigation. In scientific inquiry, it serves as a foundational tool for researchers aiming to observe, record, and analyze the intricate details of a particular topic. This method provides a rich and detailed account that aids in understanding, categorizing, and interpreting the subject matter.

Descriptive research design is widely employed across diverse fields, and its primary objective is to systematically observe and document all variables and conditions influencing the phenomenon.

After this descriptive research definition, let’s look at this example. Consider a researcher working on climate change adaptation, who wants to understand water management trends in an arid village in a specific study area. She must conduct a demographic survey of the region, gather population data, and then conduct descriptive research on this demographic segment. The study will then uncover details on “what are the water management practices and trends in village X.” Note, however, that it will not cover any investigative information about “why” the patterns exist.

Table of Contents

What is descriptive research?

If you’ve been wondering “What is descriptive research,” we’ve got you covered in this post! In a nutshell, descriptive research is an exploratory research method that helps a researcher describe a population, circumstance, or phenomenon. It can help answer what , where , when and how questions, but not why questions. In other words, it does not involve changing the study variables and does not seek to establish cause-and-effect relationships.

descriptive research design limitations

Importance of descriptive research

Now, let’s delve into the importance of descriptive research. This research method acts as the cornerstone for various academic and applied disciplines. Its primary significance lies in its ability to provide a comprehensive overview of a phenomenon, enabling researchers to gain a nuanced understanding of the variables at play. This method aids in forming hypotheses, generating insights, and laying the groundwork for further in-depth investigations. The following points further illustrate its importance:

Provides insights into a population or phenomenon: Descriptive research furnishes a comprehensive overview of the characteristics and behaviors of a specific population or phenomenon, thereby guiding and shaping the research project.

Offers baseline data: The data acquired through this type of research acts as a reference for subsequent investigations, laying the groundwork for further studies.

Allows validation of sampling methods: Descriptive research validates sampling methods, aiding in the selection of the most effective approach for the study.

Helps reduce time and costs: It is cost-effective and time-efficient, making this an economical means of gathering information about a specific population or phenomenon.

Ensures replicability: Descriptive research is easily replicable, ensuring a reliable way to collect and compare information from various sources.

When to use descriptive research design?

Determining when to use descriptive research depends on the nature of the research question. Before diving into the reasons behind an occurrence, understanding the how, when, and where aspects is essential. Descriptive research design is a suitable option when the research objective is to discern characteristics, frequencies, trends, and categories without manipulating variables. It is therefore often employed in the initial stages of a study before progressing to more complex research designs. To put it in another way, descriptive research precedes the hypotheses of explanatory research. It is particularly valuable when there is limited existing knowledge about the subject.

Some examples are as follows, highlighting that these questions would arise before a clear outline of the research plan is established:

  • In the last two decades, what changes have occurred in patterns of urban gardening in Mumbai?
  • What are the differences in climate change perceptions of farmers in coastal versus inland villages in the Philippines?

Characteristics of descriptive research

Coming to the characteristics of descriptive research, this approach is characterized by its focus on observing and documenting the features of a subject. Specific characteristics are as below.

  • Quantitative nature: Some descriptive research types involve quantitative research methods to gather quantifiable information for statistical analysis of the population sample.
  • Qualitative nature: Some descriptive research examples include those using the qualitative research method to describe or explain the research problem.
  • Observational nature: This approach is non-invasive and observational because the study variables remain untouched. Researchers merely observe and report, without introducing interventions that could impact the subject(s).
  • Cross-sectional nature: In descriptive research, different sections belonging to the same group are studied, providing a “snapshot” of sorts.
  • Springboard for further research: The data collected are further studied and analyzed using different research techniques. This approach helps guide the suitable research methods to be employed.

Types of descriptive research

There are various descriptive research types, each suited to different research objectives. Take a look at the different types below.

  • Surveys: This involves collecting data through questionnaires or interviews to gather qualitative and quantitative data.
  • Observational studies: This involves observing and collecting data on a particular population or phenomenon without influencing the study variables or manipulating the conditions. These may be further divided into cohort studies, case studies, and cross-sectional studies:
  • Cohort studies: Also known as longitudinal studies, these studies involve the collection of data over an extended period, allowing researchers to track changes and trends.
  • Case studies: These deal with a single individual, group, or event, which might be rare or unusual.
  • Cross-sectional studies : A researcher collects data at a single point in time, in order to obtain a snapshot of a specific moment.
  • Focus groups: In this approach, a small group of people are brought together to discuss a topic. The researcher moderates and records the group discussion. This can also be considered a “participatory” observational method.
  • Descriptive classification: Relevant to the biological sciences, this type of approach may be used to classify living organisms.

Descriptive research methods

Several descriptive research methods can be employed, and these are more or less similar to the types of approaches mentioned above.

  • Surveys: This method involves the collection of data through questionnaires or interviews. Surveys may be done online or offline, and the target subjects might be hyper-local, regional, or global.
  • Observational studies: These entail the direct observation of subjects in their natural environment. These include case studies, dealing with a single case or individual, as well as cross-sectional and longitudinal studies, for a glimpse into a population or changes in trends over time, respectively. Participatory observational studies such as focus group discussions may also fall under this method.

Researchers must carefully consider descriptive research methods, types, and examples to harness their full potential in contributing to scientific knowledge.

Examples of descriptive research

Now, let’s consider some descriptive research examples.

  • In social sciences, an example could be a study analyzing the demographics of a specific community to understand its socio-economic characteristics.
  • In business, a market research survey aiming to describe consumer preferences would be a descriptive study.
  • In ecology, a researcher might undertake a survey of all the types of monocots naturally occurring in a region and classify them up to species level.

These examples showcase the versatility of descriptive research across diverse fields.

Advantages of descriptive research

There are several advantages to this approach, which every researcher must be aware of. These are as follows:

  • Owing to the numerous descriptive research methods and types, primary data can be obtained in diverse ways and be used for developing a research hypothesis .
  • It is a versatile research method and allows flexibility.
  • Detailed and comprehensive information can be obtained because the data collected can be qualitative or quantitative.
  • It is carried out in the natural environment, which greatly minimizes certain types of bias and ethical concerns.
  • It is an inexpensive and efficient approach, even with large sample sizes

Disadvantages of descriptive research

On the other hand, this design has some drawbacks as well:

  • It is limited in its scope as it does not determine cause-and-effect relationships.
  • The approach does not generate new information and simply depends on existing data.
  • Study variables are not manipulated or controlled, and this limits the conclusions to be drawn.
  • Descriptive research findings may not be generalizable to other populations.
  • Finally, it offers a preliminary understanding rather than an in-depth understanding.

To reiterate, the advantages of descriptive research lie in its ability to provide a comprehensive overview, aid hypothesis generation, and serve as a preliminary step in the research process. However, its limitations include a potential lack of depth, inability to establish cause-and-effect relationships, and susceptibility to bias.

Frequently asked questions

When should researchers conduct descriptive research.

Descriptive research is most appropriate when researchers aim to portray and understand the characteristics of a phenomenon without manipulating variables. It is particularly valuable in the early stages of a study.

What is the difference between descriptive and exploratory research?

Descriptive research focuses on providing a detailed depiction of a phenomenon, while exploratory research aims to explore and generate insights into an issue where little is known.

What is the difference between descriptive and experimental research?

Descriptive research observes and documents without manipulating variables, whereas experimental research involves intentional interventions to establish cause-and-effect relationships.

Is descriptive research only for social sciences?

No, various descriptive research types may be applicable to all fields of study, including social science, humanities, physical science, and biological science.

How important is descriptive research?

The importance of descriptive research lies in its ability to provide a glimpse of the current state of a phenomenon, offering valuable insights and establishing a basic understanding. Further, the advantages of descriptive research include its capacity to offer a straightforward depiction of a situation or phenomenon, facilitate the identification of patterns or trends, and serve as a useful starting point for more in-depth investigations. Additionally, descriptive research can contribute to the development of hypotheses and guide the formulation of research questions for subsequent studies.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

difference between journal and conference papers

Conference Paper vs. Journal Paper: What’s the Difference 

availability heuristic

What is Availability Heuristic (with Examples)

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • HHS Author Manuscripts

Logo of nihpa

Characteristics of Qualitative Descriptive Studies: A Systematic Review

MSN, CRNP, Doctoral Candidate, University of Pennsylvania School of Nursing

Justine S. Sefcik

MS, RN, Doctoral Candidate, University of Pennsylvania School of Nursing

Christine Bradway

PhD, CRNP, FAAN, Associate Professor of Gerontological Nursing, University of Pennsylvania School of Nursing

Qualitative description (QD) is a term that is widely used to describe qualitative studies of health care and nursing-related phenomena. However, limited discussions regarding QD are found in the existing literature. In this systematic review, we identified characteristics of methods and findings reported in research articles published in 2014 whose authors identified the work as QD. After searching and screening, data were extracted from the sample of 55 QD articles and examined to characterize research objectives, design justification, theoretical/philosophical frameworks, sampling and sample size, data collection and sources, data analysis, and presentation of findings. In this review, three primary findings were identified. First, despite inconsistencies, most articles included characteristics consistent with limited, available QD definitions and descriptions. Next, flexibility or variability of methods was common and desirable for obtaining rich data and achieving understanding of a phenomenon. Finally, justification for how a QD approach was chosen and why it would be an appropriate fit for a particular study was limited in the sample and, therefore, in need of increased attention. Based on these findings, recommendations include encouragement to researchers to provide as many details as possible regarding the methods of their QD study so that readers can determine whether the methods used were reasonable and effective in producing useful findings.

Qualitative description (QD) is a label used in qualitative research for studies which are descriptive in nature, particularly for examining health care and nursing-related phenomena ( Polit & Beck, 2009 , 2014 ). QD is a widely cited research tradition and has been identified as important and appropriate for research questions focused on discovering the who, what, and where of events or experiences and gaining insights from informants regarding a poorly understood phenomenon. It is also the label of choice when a straight description of a phenomenon is desired or information is sought to develop and refine questionnaires or interventions ( Neergaard et al., 2009 ; Sullivan-Bolyai et al., 2005 ).

Despite many strengths and frequent citations of its use, limited discussions regarding QD are found in qualitative research textbooks and publications. To the best of our knowledge, only seven articles include specific guidance on how to design, implement, analyze, or report the results of a QD study ( Milne & Oberle, 2005 ; Neergaard, Olesen, Andersen, & Sondergaard, 2009 ; Sandelowski, 2000 , 2010 ; Sullivan-Bolyai, Bova, & Harper, 2005 ; Vaismoradi, Turunen, & Bondas, 2013 ; Willis, Sullivan-Bolyai, Knafl, & Zichi-Cohen, 2016 ). Furthermore, little is known about characteristics of QD as reported in journal-published, nursing-related, qualitative studies. Therefore, the purpose of this systematic review was to describe specific characteristics of methods and findings of studies reported in journal articles (published in 2014) self-labeled as QD. In this review, we did not have a goal to judge whether QD was done correctly but rather to report on the features of the methods and findings.

Features of QD

Several QD design features and techniques have been described in the literature. First, researchers generally draw from a naturalistic perspective and examine a phenomenon in its natural state ( Sandelowski, 2000 ). Second, QD has been described as less theoretical compared to other qualitative approaches ( Neergaard et al., 2009 ), facilitating flexibility in commitment to a theory or framework when designing and conducting a study ( Sandelowski, 2000 , 2010 ). For example, researchers may or may not decide to begin with a theory of the targeted phenomenon and do not need to stay committed to a theory or framework if their investigations take them down another path ( Sandelowski, 2010 ). Third, data collection strategies typically involve individual and/or focus group interviews with minimal to semi-structured interview guides ( Neergaard et al., 2009 ; Sandelowski, 2000 ). Fourth, researchers commonly employ purposeful sampling techniques such as maximum variation sampling which has been described as being useful for obtaining broad insights and rich information ( Neergaard et al., 2009 ; Sandelowski, 2000 ). Fifth, content analysis (and in many cases, supplemented by descriptive quantitative data to describe the study sample) is considered a primary strategy for data analysis ( Neergaard et al., 2009 ; Sandelowski, 2000 ). In some instances thematic analysis may also be used to analyze data; however, experts suggest care should be taken that this type of analysis is not confused with content analysis ( Vaismoradi et al., 2013 ). These data analysis approaches allow researchers to stay close to the data and as such, interpretation is of low-inference ( Neergaard et al., 2009 ), meaning that different researchers will agree more readily on the same findings even if they do not choose to present the findings in the same way ( Sandelowski, 2000 ). Finally, representation of study findings in published reports is expected to be straightforward, including comprehensive descriptive summaries and accurate details of the data collected, and presented in a way that makes sense to the reader ( Neergaard et al., 2009 ; Sandelowski, 2000 ).

It is also important to acknowledge that variations in methods or techniques may be appropriate across QD studies ( Sandelowski, 2010 ). For example, when consistent with the study goals, decisions may be made to use techniques from other qualitative traditions, such as employing a constant comparative analytic approach typically associated with grounded theory ( Sandelowski, 2000 ).

Search Strategy and Study Screening

The PubMed electronic database was searched for articles written in English and published from January 1, 2014 to December 31, 2014, using the terms, “qualitative descriptive study,” “qualitative descriptive design,” and “qualitative description,” combined with “nursing.” This specific publication year, “2014,” was chosen because it was the most recent full year at the time of beginning this systematic review. As we did not intend to identify trends in QD approaches over time, it seemed reasonable to focus on the nursing QD studies published in a certain year. The inclusion criterion for this review was data-based, nursing-related, research articles in which authors used the terms QD, qualitative descriptive study, or qualitative descriptive design in their titles or abstracts as well as in the main texts of the publication.

All articles yielded through an initial search in PubMed were exported into EndNote X7 ( Thomson Reuters, 2014 ), a reference management software, and duplicates were removed. Next, titles and abstracts were reviewed to determine if the publication met inclusion criteria; all articles meeting inclusion criteria were then read independently in full by two authors (HK and JS) to determine if the terms – QD or qualitative descriptive study/design – were clearly stated in the main texts. Any articles in which researchers did not specifically state these key terms in the main text were then excluded, even if the terms had been used in the study title or abstract. In one article, for example, although “qualitative descriptive study” was reported in the published abstract, the researchers reported a “qualitative exploratory design” in the main text of the article ( Sundqvist & Carlsson, 2014 ); therefore, this article was excluded from our review. Despite the possibility that there may be other QD studies published in 2014 that were not labeled as such, to facilitate our screening process we only included articles where the researchers clearly used our search terms for their approach. Finally, the two authors compared, discussed, and reconciled their lists of articles with a third author (CB).

Study Selection

Initially, although the year 2014 was specifically requested, 95 articles were identified (due to ahead of print/Epub) and exported into the EndNote program. Three duplicate publications were removed and the 20 articles with final publication dates of 2015 were also excluded. The remaining 72 articles were then screened by examining titles, abstracts, and full-texts. Based on our inclusion criteria, 15 (of 72) were then excluded because QD or QD design/study was not identified in the main text. We then re-examined the remaining 57 articles and excluded two additional articles that did not meet inclusion criteria (e.g., QD was only reported as an analytic approach in the data analysis section). The remaining 55 publications met inclusion criteria and comprised the sample for our systematic review (see Figure 1 ).

An external file that holds a picture, illustration, etc.
Object name is nihms832592f1.jpg

Flow Diagram of Study Selection

Of the 55 publications, 23 originated from North America (17 in the United States; 6 in Canada), 12 from Asia, 11 from Europe, 7 from Australia and New Zealand, and 2 from South America. Eleven studies were part of larger research projects and two of them were reported as part of larger mixed-methods studies. Four were described as a secondary analysis.

Quality Appraisal Process

Following the identification of the 55 publications, two authors (HK and JS) independently examined each article using the Critical Appraisal Skills Programme (CASP) qualitative checklist ( CASP, 2013 ). The CASP was chosen to determine the general adequacy (or rigor) of the qualitative studies included in this review as the CASP criteria are generic and intend to be applied to qualitative studies in general. In addition, the CASP was useful because we were able to examine the internal consistency between study aims and methods and between study aims and findings as well as the usefulness of findings ( CASP, 2013 ). The CASP consists of 10 main questions with several sub-questions to consider when making a decision about the main question ( CASP, 2013 ). The first two questions have reviewers examine the clarity of study aims and appropriateness of using qualitative research to achieve the aims. With the next eight questions, reviewers assess study design, sampling, data collection, and analysis as well as the clarity of the study’s results statement and the value of the research. We used the seven questions and 17 sub-questions related to methods and statement of findings to evaluate the articles. The results of this process are presented in Table 1 .

CASP Questions and Quality Appraisal Results (N = 55)

CASP Questions
• CASP Subquestions
Results
YesNoCan’t tell
Was the research design appropriate to address the aims of the research?
• Did the researcher justify the research design?2647.32850.911.8
Was the recruitment strategy appropriate to the aims of the research?
• Did the researcher explain how the participants were selected?4480610.959.1
Was the data collected in a way that addressed the research issue?
• Was the setting for data collection justified?3156.42138.235.4
• Was it clear how data were collected e.g., focus group, semistructured interview etc.?5510000.000.0
• Did the researcher justify the methods chosen?1323.64174.511.8
• Did the researcher make the methods explicit e.g., for the interview method, was there an indication of how interviews were conducted, or did they use a topic guide?5192.747.300.0
• Was the form of data clear e.g., tape recordings, video materials, notes, etc.?5498.200.011.8
• Did the researcher discuss saturation of data?2036.43563.600.0
Has the relationship between researcher and participants been adequately considered?
• Did the researcher critically examine their own role, potential bias, and influence during data collection, including sample recruitment and choice of location47.35090.911.8
Have ethical issues been taken into consideration?
• Was there sufficient detail about how the research was explained to participants for the reader to assess whether ethical standards were maintained?4989.147.323.6
• Was approval sought from an ethics committee?5192.747.300.0
Was the data analysis sufficiently rigorous?
• Was there an in-depth description of the analysis process?4683.6916.400.0
• Was thematic or content analysis used. If so, was it clear how the categories/themes derived from the data?5192.735.511.8
• Did the researcher critically examine their own role, potential bias and influence during analysis and selection of data for presentation?2036.43054.559.1
Was there a clear statement of findings?
• Were the findings explicit?551000000
• Did the researcher discuss the credibility of their findings (e.g., triangulation)4683.6814.511.8
• Were the findings discussed in relation to the original research question?551000000

Note . The CASP questions are adapted from “10 questions to help you make sense of qualitative research,” by Critical Appraisal Skills Programme, 2013, retrieved from http://media.wix.com/ugd/dded87_29c5b002d99342f788c6ac670e49f274.pdf . Its license can be found at http://creativecommons.org/licenses/by-nc-sa/3.0/

Once articles were assessed by the two authors independently, all three authors discussed and reconciled our assessment. No articles were excluded based on CASP results; rather, results were used to depict the general adequacy (or rigor) of all 55 articles meeting inclusion criteria for our systematic review. In addition, the CASP was included to enhance our examination of the relationship between the methods and the usefulness of the findings documented in each of the QD articles included in this review.

Process for Data Extraction and Analysis

To further assess each of the 55 articles, data were extracted on: (a) research objectives, (b) design justification, (c) theoretical or philosophical framework, (d) sampling and sample size, (e) data collection and data sources, (f) data analysis, and (g) presentation of findings (see Table 2 ). We discussed extracted data and identified common and unique features in the articles included in our systematic review. Findings are described in detail below and in Table 3 .

Elements for Data Extraction

ElementsData Extraction
Research objectives• Verbs used in objectives or aims
• Focuses of study
Design justification• If the article cited references for qualitative description
• If the article offered rationale to choose qualitative description
• References cited
• Rationale reported
Theoretical or philosophical
frameworks
• If the article has theoretical or philosophical frameworks for study
• Theoretical or philosophical frameworks reported
• How the frameworks were used in data collection and analysis
Sampling and sample sizes• Sampling strategies (e.g., purposeful sampling, maximum variation)
• Sample size
Data collection and sources• Data collection techniques (e.g., individual or focus-group interviews, interview guide, surveys, field notes)
Data analysis• Data analysis techniques (e.g., qualitative content analysis, thematic analysis, constant comparison)
• If data saturation was achieved
Presentation of findings• Statement of findings
• Consistency with research objectives

Data Extraction and Analysis Results

Authors
Country
Research
Objectives
Design
justification
Theoretical/
philosophical
frameworks
Sampling/
sample size
Data collection
and data sources
Data analysisFindings

• USA
• Explore
• Responses to
communication
strategies
• (-) Reference
• (-) Rationale
Not reported
(NR)
• Purposive
sampling/
maximum
variation
• 32 family
members
• Interviews
• Observations
• Review of
daily flow sheet
• Demographics
• Inductive and
deductive
qualitative content
analysis
• (-) Data saturation
Five themes about
family members’
perceptions of
nursing
communication
approaches

• Sweden
• Describe
• Experiences of
using guidelines
in daily practice
• (-) Reference
• (+) Rationale
• Part of a
research
program
NR• Unspecified
• 8 care
providers
• Semistructured,
individual
interviews
• Interview guide
• Qualitative content
analysis
• (-) Data saturation
One theme and
seven subthemes
about care
providers’
experiences of
using guidelines in
daily practice

• USA
• Examine
• Culturally
specific views of
processes and
causes of midlife
weight gain
• (-) Reference
• (-) Rationale
Health belief
model and
Kleiman’s
explanatory
model
• Unspecified
• 19 adults
• Semistructured,
individual
interview
• Conventional
content analysis
• (-) Data saturation
Three main
categories (from the
model) and eight
subthemes about
causes of weight
gain in midlife

• Iran
• Explore
• Factors initiating
responsibility
among medical
trainees
• (-) Reference
• (+) Rationale
NR• Convenience,
snowball, and
maximum
variation
sampling
• 15 trainees
and other
professionals
• Semistructured,
individual
interview
• Interview guide
• Conventional
content analysis
• Constant
comparison
• (+) Data saturation
Two themes and
individual and non-
individual-based
factors per theme

• Iran
• Explore
• Factors related
to job satisfaction
and dissatisfaction
• (-) Reference
• (-) Rationale
NR• Convenience
sampling
• 85 nurses
• Semistructured
focus group
interviews
• Interview guide
• Thematic analysis
• (+) Data saturation
Three main themes
and associated
factors regarding
job satisfaction and
dissatisfaction

• Norway
• Describe
• Perceptions on
simulation-based
team training
• (-) Reference
• (-) Rationale
NR• Strategic
sampling
• 18 registered
nurses
• Semistructured
individual
interviews
• Inductive content
analysis
• (-) Data saturation
One main category,
three categories,
and six sub-
categories
regarding nurses’
perceptions on
simulation-based
team training

• USA
• Determine
• Barriers and
supports for
attending college
and nursing
school
• (-) Reference
• (-) Rationale
NR• Unspecified
• 45 students
• Focus-group
interviews
• Using
Photovoice and
SHOWeD
• Constant
comparison
• (-) Data saturation
Five themes about
facilitators and
barriers

• USA
• Explore
• Reasons for
choosing home
birth and birth
experiences
• (-) Reference
• (-) Rationale
NR• Purposeful
sampling
• 20 women
• Semistructured
focus-group
interviews
• Interview guide
• Field notes
• Qualitative content
analysis
• (+) Data saturation
Five common themes
and concepts about
reasons for choosing
home birth based on
their birth
experiences

• New Zealand
• Explore
• Normal fetal
activity related to
hunger and
satiation
• (+) Reference
• (+) Rationale

• Denzin & Lincoln (2011)
NR• Purposive
sampling
• 19 pregnant
women
• Semistructured
individual
interviews
• Open-ended
questions
• Inductive
qualitative content
analysis
• Descriptive
statistical analysis
• (+) Data saturation
Four patterns
regarding fetal
activities in
relation to meal
anticipation,
maternal hunger,
maternal meal
consummation,
and maternal
satiety

• Italy
• Explore,
describe, and
compare
• perceptions of
nursing caring
• (+) Reference
• (-) Rationale
NR• Purposive
sampling
• 20 nurses and
20 patients
• Semistructured
individual
interviews
• Interview guide
• Field notes
during
interviews
• Unspecified
various analytic
strategies including
constant comparison
• (-) Data saturation
Nursing caring
from both patients’
and nurses’
perspectives – a
summary of data in
visible caring and
invisible caring

• Hong Kong
• Address
• How to reduce
coronary heart
disease risks
• (+) Reference
• (+) Rationale
• Secondary
analysis

NR• Convenience
and snowball
sampling
• 105 patients
• Focus-group
interviews
• Interview guide
• Content analysis
• (+) Data saturation
Four categories about
patients’ abilities to
reduce coronary heart
disease

• Taiwan
• Explore
• Reasons for
young–old people
not killing
themselves
• (-) Reference
• (-) Rationale
NR• Convenience
sampling
• 31 older
adults
• Semistructured
individual
interviews
• Interview guide
• Observation
with
memos/reflective
journal
• Content analysis
• (+) Data saturation
Six themes regarding
reasons for not
committing to suicide

• USA
• Explore
• Neonatal
intensive care unit
experiences
• (+) Reference
• (+) Rationale
NR• Purposive
sampling and
convenience
sample
• 15 mothers
• Semistructured
individual
interviews
• Interview guide
• Qualitative content
analysis
• (+) Data saturation
Four themes about
participants’
experiences of
neonatal intensive
care unit

• Colombia
• Investigate
• Barriers/facilitators
to implementing
evidence-based
nursing
• (+) Reference
• (-) Rationale
Ottawa model
for research
use:
knowledge
translation
framework
• Convenience
sampling
• 13 nursing
professionals
• Semistructured
individual
interviews
• Interview guide
• Inductive
qualitative content
analysis
• Constant
comparison
• (-) Data saturation
Four main barriers
and potential
facilitators to
evidence-based
nursing

• Australia
• Explore
• Perceptions and
utilization of
diaries
• (+) Reference
• (-) Rationale
NR• Unspecified
• 19 patients
and families
• Responses to
open-ended
questions on
survey
• Unspecified
analysis strategy
• (-) Data saturation
Five themes
regarding perceptions
on use of diaries and
descriptive statistics
using frequencies of
utilization

• USA
• Explore
• Knowledge,
attitudes, and
beliefs about
sexual consent
• (-) Reference
• (-) Rationale
• Part of a larger
mixed-method
study
Theory of
planned
behavior
• Purposive
sampling
• snowball
sampling
• 26 women
• Semistructured
focus-group
interviews
• Interview guide
• Content analysis
• (+) Data saturation
Three main
categories and
subthemes regarding
sexual consent

• Sweden
• Describe
• Experiences of
knowledge
development in
wound
management
• (+) Reference
• (+) Rationale:
weak
NR• Purposive
sampling
• 16 district
nurses
• Individual
interviews
• Interview guide
• Qualitative content
analysis
• (-) Data saturation
Three categories and
eleven sub-categories
about knowledge
development
experiences in wound
management

• USA
• Describe
• Parental-pain
journey, beliefs
about pain, and
attitudes/behaviors
related to
children’s
responses
• (+) Reference
• (+) Rationale


• Part of a larger
mixed methods
study
NR• Purposive
sampling
• 9 parents
• Individual
interviews
• One open-
ended question
• Qualitative content
analysis
• (+) Data saturation
Two main themes,
categories, and
subcategories about
parents’ experiences
of observing
children’s pain

• USA
• Describe
• Challenges and
barriers in
providing
culturally
competent care
• (+) Reference
• (+) Rationale

• Secondary
analysis
NR• Stratified
sampling
• 253 nurses
• Written
responses to 2
open-ended
questions on
survey
• Thematic analysis
• (-) Data saturation
Three themes
regarding
challenges/barriers

• Denmark
• Describe
• Experiences of
childbirth
• (-) Reference
• (-) Rationale
• A substudy
NR• Purposive
sampling with
maximum
variation
• Partners of 10
women
• Semistructured,
individual
interviews
• Interview guide
• Thematic analysis
• (+) Data saturation
Three themes and
four subthemes about
partners’ experiences
of women’s
childbirth

• Australia
• Explore
• Perceptions
about medical
nutrition and
hydration at the
end of life
• (+) Reference
• (+) Rationale
NR• Purposeful
sampling
• 10 nurses
• Focus-group
interviews
• “analyzed
thematically”
• (-) Data saturation
One main theme and
four subthemes
regarding nurses’
perceptions on EOL-
related medical
nutrition and
hydration

• USA
• Describe
• Reasons for
leaving a home
visiting program
early
• (-) Reference
• (-) Rationale
NR• Convenience
sample
• 32 mothers,
nurses, and
nurse
supervisors
• Semistructured,
individual
interviews
• Focus-group
interviews
• Interview guide
• Inductive content
analysis
• Constant
comparison
approach
• (+) Data saturation
Three sets of reasons
for leaving a home
visiting program

• Sweden
• Explore and
describe
• Beliefs and
attitudes around
the decision for a
caesarean section
• (+) Reference
• (+) Rationale

NR• Unspecified
• 21 males
• Individual
telephone
interviews
• Thematic analysis
• Constant
comparison
approach
• (-) Data saturation
Two themes and
subthemes in relation
to the research
objective

• Taiwan
• Explore
• Illness
experiences of
early onset of
knee osteoarthritis
• (+) Reference
• (+) Rationale


• Part of a large
research series
NR• Purposive
sampling
• 17 adults
• Semistructured,
Individual
interviews
• Interview guide
• Memo/field
notes
(observations)
• Inductive content
analysis
• (+) Data saturation
Three major themes
and nine subthemes
regarding
experiences of early
onset-knee
osteoarthritis

• Australia
• Explore
• Perceptions
about bedside
handover (new
model) by nurses
• (+) Reference
• (+) Rationale

NR• Purposive
sampling
• 30 patients
• Semistructured,
individual
interviews
• Interview guide
• Thematic content
analysis
• (-) Data analysis
Two dominant
themes and related
subthemes regarding
patients’ thoughts
about nurses’ bedside
handover

• Sweden
• Identify
• Patterns in
learning when
living with
diabetes
• (-) Reference
• (-) Rationale
NR• Purposive
sampling with
variations in
age and sex
• 13
participants
• Semistructured,
individual interviews (3
times over 3
years)

analysis process
• Inductive
qualitative content
analysis
• (-) Data saturation
Five main patterns of
learning when living
with diabetes for
three years following
diagnosis

• Canada
• Evaluate
• Book chat
intervention based
on a novel
• (-) Reference
• (-) Rationale
• Part of a larger
research project
NR• Unspecified
• 11 long-term-
care staff
• Questionnaire
with two open-
ended questions
• Thematic content
analysis
• (-) Data saturation
Five themes (positive
comments) about the
book chat with brief
description

• Taiwan
• Explore
• Facilitators and
barriers to
implementing
smoking-
cessation
counseling
services
• (-) Reference
• (-) Rationale
NR• Unspecified
• 16 nurse-
counselors
• Semistructured
individual
interviews
• Interview guide
• Inductive content
analysis
• Constant
comparison
• (-) Data saturation
Two themes and
eight subthemes
about facilitators and
barriers described
using 2-4 quotations
per subtheme

• USA
• Identify
• Educational
strategies to
manage disruptive
behavior
• (-) Reference
• (-) Rationale
• Part of a larger
study
NR• Unspecified
• 9 nurses
• Semistructured,
individual
interviews
• Interview guide
• Content analysis
procedures
• (-) Data saturation
Two main themes
regarding education
strategies for nurse
educators

• USA
• Explore
• Experiences of
difficulty
resolving patient-
related concerns
• (-) Reference
• (-) Rationale
• Secondary
analysis
NR• Unspecified
• 1932
physician,
nursing, and
midwifery
professionals
• E-mail survey
with multiple-
choice and free-
text responses
• Inductive thematic
analysis
• Descriptive
statistics
• (-) Data saturation
One overarching
theme and four
subthemes about
professionals’
experiences of
difficulty resolving
patient-related
concerns

• Singapore
• Explicate
• Experience of
quality of life for
older adults
• (+) Reference
• (+) Rationale
Parse’s human
becoming
paradigm
• Unspecified
• 10 elderly
residents
• Individual
interviews
• Interview
questions
presented (Parse)
• Unspecified
analysis techniques
• (-) Data saturation
Three themes
presented using both
participants’
language and the
researcher’s language

• China
• Explore
• Perspectives on
learning about
caring
• (-) Reference
• (-) Rationale
NR• Purposeful
sampling
• 20 nursing
students
• Focus-group
interviews
• Interview guide
• Conventional
content analysis
• (-) Data saturation
Four categories and
associated
subcategories about
facilitators and
challenges to learning
about caring

• Poland
• Describe and
assess
• Components of
the patient–nurse
relationship and
pediatric-ward
amenities
• (+) Reference
• (-) Rationale
NR• Purposeful,
maximum
variation
sampling
• 26 parents or
caregivers and
22 children
• Individual
interviews
• Qualitative content
analysis
• (-) Data saturation
Five main topics
described from the
perspectives of
children and parents

• Canada
• Evaluate
• Acceptability
and feasibility of
hand-massage
therapy
• (-) Reference
• (-) Rationale
• Secondary to a
RCT
Focused on
feasibility and
acceptability
• Unspecified
• 40 patients
• Semistructured,
individual
interviews
• Field notes
• Video
recording
• Thematic analysis
for acceptability
• Quantitative
ratings of video
items for feasibility
• (-) Data analysis
Summary of data
focusing on
predetermined
indicators of
acceptability and
descriptive statistics
to present feasibility

• USA
• Understand
• Challenges
occurring during
transitions of care
• (+) Reference
• (+) Rationale

• Part of a larger study
NR• Convenience
sample
• 22 nurses
• Focus groups
• Interview guide
• Qualitative content
analysis methods
• (+) Data analysis
Three themes about
challenges regarding
transitions of care:

• Canada
• Understand
• Factors that
influence nurses’
retention in their
current job
• (-) Reference
• (-) Rationale
NR• Purposeful
sampling
• 41 nurses
• Focus-group
interviews
• Interview guide
• Directed content
analysis
• (+) Data saturation
Nurses’ reasons to
stay and leave their
current job

• Australia
• Extend
• Understanding
of caregivers’
views on advance
care planning
• (+) Reference
• (+) Rationale

• Grounded
theory overtone
NR• Theoretical
sampling
• 18 caregivers
• Semistructured
focus group and
individual
interviews
• Interview guide
• Vignette
technique
• Inductive, cyclic,
and constant
comparative
analysis
• (-) Data analysis
Three themes
regarding caregivers’
perceptions on
advance care
planning

• USA
• Describe
• Outcomes older
adults with
epilepsy hope to
achieve in
management
• (-) Reference
• (-) Rationale
NR• Unspecified
• 20 patients
• Individual
interview
• Conventional
content analysis
• (-) Data saturation
Six main themes and
associated subthemes
regarding what older
adults hoped to
achieve in
management of their
epilepsy

• The Netherlands
• Gain
• Experience of
personal dignity
and factors
influencing it
• (+) Reference
• (-) Rationale
Model of
dignity in
illness
• Maximum
variation
sampling
• 30 nursing
home residents
• Individual
interviews
• Interview guide
• Thematic analysis
• Constant
comparison
• (+) Data saturation
The threatening
effect of illness and
three domains being
threatened by illness
in relation to
participants’
experiences of
personal dignity

• USA
• Identify and
describe
• Needs in mental
health services
and “ideal”
program
• (+) Reference
• (+) Rationale

• There is a
primary study
NR• Unspecified
• 52 family
members
• Semistructured,
individual and
focus-group
interviews
• “Standard content
analytic procedures”
with case-ordered
meta-matrix
• (-) Data saturation
Two main topics –
(a) intervention
modalities that would
fit family members’
needs in mental
health services and
(b) topics that
programs should
address

• USA
• “What are the
perceptions of
staff nurses
regarding
palliative
care…?”
• (-) Reference
• (-) Rationale
NR• Purposive,
convenience
sampling
• 18 nurses
• Semistructured
and focus-group
interviews
• Interview guide
• Ritchie and
Spencer’s
framework for data
analysis
• (-) Data saturation
Five thematic
categories and
associated
subcategories about
nurses’ perceptions
of palliative care

• Canada
• Describe
• Experience of
caring for a
relative with
dementia
• (+) Reference
• (+) Rationale
• Sandelowski ( ; )
• Secondary
analysis
• Phenomenological
overtone
NR• Purposive
sampling
• 11 bereaved
family
members
• Individual
interviews
• 27 transcripts
from the primary
study
• Unspecified
• (-) Data saturation
Five major themes
regarding the journey
with dementia from
the time prior to
diagnosis and into
bereavement

• Canada
• Describe
Experience of
fetal fibronectin
testing
• (+) Reference
• (+) Rationale

NR• Unspecified
• 17 women
• Semistructured
individual
interviews
• Interview guide
• Conventional
content analysis
• (+) Data saturation
One overarching
theme, three themes,
and six subthemes
about women’s
experiences of fetal
fibronectin testing

• New Zealand
• Explore
• Role of nurses in
providing
palliative and
end-of-life care
• (+) Reference
• (+) Rationale

• Part of a larger study
NR• Purposeful
sampling
• 21 nurses
• Semistructured
individual
interviews
• Thematic analysis
• (-) Data saturation
Three themes about
practice nurses’
experiences in
providing palliative
and end-of-life care

• Brazil
• Understand
• Experience with
postnatal
depression
• (+) Reference
• (-) Rationale
NR• Purposeful,
criterion
sampling
• 15 women
with postnatal
depression
• Minimally
structured,
individual
interviews
• Thematic analysis
• (+) Data saturation
Two themes –
women’s “bad
thoughts” and their
four types of
responses to fear of
harm (with
frequencies)

• Australia
• Understand
• Experience of
peripherally
inserted central
catheter insertion
• (+) Reference
• (+) Rationale
NR• Purposeful
sampling
• 10 patients
• Semistructured,
individual
interviews
• Interview guide
• Thematic analysis
• (+) Data saturation
Four themes
regarding patients’
experiences of
peripherally inserted
central catheter
insertion

• USA
• Discover
• Context, values,
and background
meaning of
cultural
competency
• (+) Reference
• (+) Rationale
Focused on
cultural
competence
• Purposive,
maximum
variation, and
network
• 20 experts
• Semistructured,
individual
interviews
• Within-case and
across-case analysis
• (-) Data saturation
Three themes
regarding cultural
competency

• USA
• Explore and
describe
• Cancer experience
• (+) Reference
• (+) Rationale
NR• Unspecified
• 15 patients
• Longitudinal
individual
interviews (4
time points)
• 40 interviews
• Inductive content
analysis
• (-) Data saturation
Processes and themes
about adolescent
identify work and
cancer identify work
across the illness
trajectory

• Sweden
• Explore
• Experiences of
giving support to
patients during
the transition
• (-) Reference
• (-) Rationale
Focused on
support and
transition
• Unspecified
(but likely
purposeful
sampling)
• 8 nurses
• Semistructured
Individual
interviews
• Interview guide
• Content analysis
• (-) Data saturation
One theme, three
main categories, and
eight associated
categories

• Taiwan
• Describe
• Process of
women’s recovery
from stillbirth
• (+) Reference
• (+) Rationale
NR• Purposeful
sampling
• 21 women
• Individual
interview
techniques
• Inductive analytic
approaches ( )
• (+) Data saturation
Three stages (themes)
regarding the
recovery process of
Taiwanese women
with stillbirth

• Iran
• Describe
• Perspectives of
causes of
medication errors
• (+) Reference
• (+) Rationale
NR• Purposeful
sampling
• 24 nursing
students
• Focus-group
interviews
• Observations
with notes
• Content analysis
• (-) Data saturation
Two main themes
about nursing
students’ perceptions
on causes of
medication errors

• Iran
• Explore
• Image of nursing
• (-) Reference
• (-) Rationale
NR• Purposeful
sampling
• 18 male
nurses
• Semistructured
individual,
interviews
• Field notes
• Content analysis
• (-) Data saturation
Two main views
(themes) on nursing
presented with
subthemes per view

• Spain
• Ascertain
• Barriers to
sexual expression
• (-) Reference
• (-) Rationale
NR• Maximum
variation
• 100 staff and
residents
• Semistructured,
individual
interview
• Content analysis
• (-) Data saturation
40% of participants
without identification
of barriers and 60%
with seven most cited
barriers to sexual
expression in the
long-term care setting

• Canada
• Explore
• Perceptions of
empowerment in
academic nursing
environments
• (+) Reference
• (+) Rationale
• Sandelowski ( , )
Theories of
structural
power in
organizations
and
psychological
empowerment
• Unspecified
• 8 clinical
instructors
• Semistructured,
individual
• interview guide
• Unspecified (but
used pre-determined
concepts)
• (+) Data saturation
Structural
empowerment and
psychological
empowerment
described using
predetermined
concepts

• China
• Investigate
• Meaning of life
and health
experience with
chronic illness
• (+) Reference
• (+) Rationale
• Sandelowski ( , )
Positive health
philosophy
• Purposive,
convenience
sampling
• 11 patients
• Individual
interviews
• Observations
of daily behavior
with field notes
• Thematic analysis
• (-) Data saturation
Four themes
regarding the
meaning of life and
health when living
with chronic illnesses

Note . NR = not reported

Quality Appraisal Results

Justification for use of a QD design was evident in close to half (47.3%) of the 55 publications. While most researchers clearly described recruitment strategies (80%) and data collection methods (100%), justification for how the study setting was selected was only identified in 38.2% of the articles and almost 75% of the articles did not include any reason for the choice of data collection methods (e.g., focus-group interviews). In the vast majority (90.9%) of the articles, researchers did not explain their involvement and positionality during the process of recruitment and data collection or during data analysis (63.6%). Ethical standards were reported in greater than 89% of all articles and most articles included an in-depth description of data analysis (83.6%) and development of categories or themes (92.7%). Finally, all researchers clearly stated their findings in relation to research questions/objectives. Researchers of 83.3% of the articles discussed the credibility of their findings (see Table 1 ).

Research Objectives

In statements of study objectives and/or questions, the most frequently used verbs were “explore” ( n = 22) and “describe” ( n = 17). Researchers also used “identify” ( n = 3), “understand” ( n = 4), or “investigate” ( n = 2). Most articles focused on participants’ experiences related to certain phenomena ( n = 18), facilitators/challenges/factors/reasons ( n = 14), perceptions about specific care/nursing practice/interventions ( n = 11), and knowledge/attitudes/beliefs ( n = 3).

Design Justification

A total of 30 articles included references for QD. The most frequently cited references ( n = 23) were “Whatever happened to qualitative description?” ( Sandelowski, 2000 ) and “What’s in a name? Qualitative description revisited” ( Sandelowski, 2010 ). Other references cited included “Qualitative description – the poor cousin of health research?” ( Neergaard et al., 2009 ), “Reaching the parts other methods cannot reach: an introduction to qualitative methods in health and health services research” ( Pope & Mays, 1995 ), and general research textbooks ( Polit & Beck, 2004 , 2012 ).

In 26 articles (and not necessarily the same as those citing specific references to QD), researchers provided a rationale for selecting QD. Most researchers chose QD because this approach aims to produce a straight description and comprehensive summary of the phenomenon of interest using participants’ language and staying close to the data (or using low inference).

Authors of two articles distinctly stated a QD design, yet also acknowledged grounded-theory or phenomenological overtones by adopting some techniques from these qualitative traditions ( Michael, O'Callaghan, Baird, Hiscock, & Clayton, 2014 ; Peacock, Hammond-Collins, & Forbes, 2014 ). For example, Michael et al. (2014 , p. 1066) reported:

The research used a qualitative descriptive design with grounded theory overtones ( Sandelowski, 2000 ). We sought to provide a comprehensive summary of participants’ views through theoretical sampling; multiple data sources (focus groups [FGs] and interviews); inductive, cyclic, and constant comparative analysis; and condensation of data into thematic representations ( Corbin & Strauss, 1990 , 2008 ).

Authors of four additional articles included language suggestive of a grounded-theory or phenomenological tradition, e.g., by employing a constant comparison technique or translating themes stated in participants’ language into the primary language of the researchers during data analysis ( Asemani et al., 2014 ; Li, Lee, Chen, Jeng, & Chen, 2014 ; Ma, 2014 ; Soule, 2014 ). Additionally, Li et al. (2014) specifically reported use of a grounded-theory approach.

Theoretical or Philosophical Framework

In most (n = 48) articles, researchers did not specify any theoretical or philosophical framework. Of those articles in which a framework or philosophical stance was included, the authors of five articles described the framework as guiding the development of an interview guide ( Al-Zadjali, Keller, Larkey, & Evans, 2014 ; DeBruyn, Ochoa-Marin, & Semenic, 2014 ; Fantasia, Sutherland, Fontenot, & Ierardi, 2014 ; Ma, 2014 ; Wiens, Babenko-Mould, & Iwasiw, 2014 ). In two articles, data analysis was described as including key concepts of a framework being used as pre-determined codes or categories ( Al-Zadjali et al., 2014 ; Wiens et al., 2014 ). Oosterveld-Vlug et al. (2014) and Zhang, Shan, and Jiang (2014) discussed a conceptual model and underlying philosophy in detail in the background or discussion section, although the model and philosophy were not described as being used in developing interview questions or analyzing data.

Sampling and Sample Size

In 38 of the 55 articles, researchers reported ‘purposeful sampling’ or some derivation of purposeful sampling such as convenience ( n = 10), maximum variation ( n = 8), snowball ( n = 3), and theoretical sampling ( n = 1). In three instances ( Asemani et al., 2014 ; Chan & Lopez, 2014 ; Soule, 2014 ), multiple sampling strategies were described, for example, a combination of snowball, convenience, and maximum variation sampling. In articles where maximum variation sampling was employed, “variation” referred to seeking diversity in participants’ demographics ( n = 7; e.g., age, gender, and education level), while one article did not include details regarding how their maximum variation sampling strategy was operationalized ( Marcinowicz, Abramowicz, Zarzycka, Abramowicz, & Konstantynowicz, 2014 ). Authors of 17 articles did not specify their sampling techniques.

Sample sizes ranged from 8 to 1,932 with nine studies in the 8–10 participant range and 24 studies in the 11–20 participant range. The participant range of 21–30 and 31–50 was reported in eight articles each. Six studies included more than 50 participants. Two of these articles depicted quite large sample sizes (N=253, Hart & Mareno, 2014 ; N=1,932, Lyndon et al., 2014 ) and the authors of these articles described the use of survey instruments and analysis of responses to open-ended questions. This was in contrast to studies with smaller sample sizes where individual interviews and focus groups were more commonly employed.

Data Collection and Data Sources

In a majority of studies, researchers collected data through individual ( n = 39) and/or focus-group ( n = 14) interviews that were semistructured. Most researchers reported that interviews were audiotaped ( n = 51) and interview guides were described as the primary data collection tool in 29 of the 51 studies. In some cases, researchers also described additional data sources, for example, taking memos or field notes during participant observation sessions or as a way to reflect their thoughts about interviews ( n = 10). Written responses to open-ended questions in survey questionnaires were another type of data source in a small number of studies ( n = 4).

Data Analysis

The analysis strategy most commonly used in the QD studies included in this review was qualitative content analysis ( n = 30). Among the studies where this technique was used, most researchers described an inductive approach; researchers of two studies analyzed data both inductively and deductively. Thematic analysis was adopted in 14 studies and the constant comparison technique in 10 studies. In nine studies, researchers employed multiple techniques to analyze data including qualitative content analysis with constant comparison ( Asemani et al., 2014 ; DeBruyn et al., 2014 ; Holland, Christensen, Shone, Kearney, & Kitzman, 2014 ; Li et al., 2014 ) and thematic analysis with constant comparison ( Johansson, Hildingsson, & Fenwick, 2014 ; Oosterveld-Vlug et al., 2014 ). In addition, five teams conducted descriptive statistical analysis using both quantitative and qualitative data and counting the frequencies of codes/themes ( Ewens, Chapman, Tulloch, & Hendricks, 2014 ; Miller, 2014 ; Santos, Sandelowski, & Gualda, 2014 ; Villar, Celdran, Faba, & Serrat, 2014 ) or targeted events through video monitoring ( Martorella, Boitor, Michaud, & Gelinas, 2014 ). Tseng, Chen, and Wang (2014) cited Thorne, Reimer Kirkham, and O’Flynn-Magee (2004)’s interpretive description as the inductive analytic approach. In five out of 55 articles, researchers did not specifically name their analysis strategies, despite including descriptions about procedural aspects of data analysis. Researchers of 20 studies reported that data saturation for their themes was achieved.

Presentation of Findings

Researchers described participants’ experiences of health care, interventions, or illnesses in 18 articles and presented straightforward, focused, detailed descriptions of facilitators, challenges, factors, reasons, and causes in 15 articles. Participants’ perceptions of specific care, interventions, or programs were described in detail in 11 articles. All researchers presented their findings with extensive descriptions including themes or categories. In 25 of 55 articles, figures or tables were also presented to illustrate or summarize the findings. In addition, the authors of three articles summarized, organized, and described their data using key concepts of conceptual models ( Al-Zadjali et al., 2014 ; Oosterveld-Vlug et al., 2014 ; Wiens et al., 2014 ). Martorella et al. (2014) assessed acceptability and feasibility of hand massage therapy and arranged their findings in relation to pre-determined indicators of acceptability and feasibility. In one longitudinal QD study ( Kneck, Fagerberg, Eriksson, & Lundman, 2014 ), the researchers presented the findings as several key patterns of learning for persons living with diabetes; in another longitudinal QD study ( Stegenga & Macpherson, 2014 ), findings were presented as processes and themes regarding patients’ identity work across the cancer trajectory. In another two studies, the researchers described and compared themes or categories from two different perspectives, such as patients and nurses ( Canzan, Heilemann, Saiani, Mortari, & Ambrosi, 2014 ) or parents and children ( Marcinowicz et al., 2014 ). Additionally, Ma (2014) reported themes using both participants’ language and the researcher’s language.

In this systematic review, we examined and reported specific characteristics of methods and findings reported in journal articles self-identified as QD and published during one calendar year. To accomplish this we identified 55 articles that met inclusion criteria, performed a quality appraisal following CASP guidelines, and extracted and analyzed data focusing on QD features. In general, three primary findings emerged. First, despite inconsistencies, most QD publications had the characteristics that were originally observed by Sandelowski (2000) and summarized by other limited available QD literature. Next, there are no clear boundaries in methods used in the QD studies included in this review; in a number of studies, researchers adopted and combined techniques originating from other qualitative traditions to obtain rich data and increase their understanding of the phenomenon under investigation. Finally, justification for how QD was chosen and why it would be an appropriate fit for a particular study is an area in need of increased attention.

In general, the overall characteristics were consistent with design features of QD studies described in the literature ( Neergaard et al., 2009 ; Sandelowski, 2000 , 2010 ; Vaismoradi et al., 2013 ). For example, many authors reported that study objectives were to describe or explore participants’ experiences and factors related to certain phenomena, events, or interventions. In most cases, these authors cited Sandelowski (2000) as a reference for this particular characteristic. It was rare that theoretical or philosophical frameworks were identified, which also is consistent with descriptions of QD. In most studies, researchers used purposeful sampling and its derivative sampling techniques, collected data through interviews, and analyzed data using qualitative content analysis or thematic analysis. Moreover, all researchers presented focused or comprehensive, descriptive summaries of data including themes or categories answering their research questions. These characteristics do not indicate that there are correct ways to do QD studies; rather, they demonstrate how others designed and produced QD studies.

In several studies, researchers combined techniques that originated from other qualitative traditions for sampling, data collection, and analysis. This flexibility or variability, a key feature of recently published QD studies, may indicate that there are no clear boundaries in designing QD studies. Sandelowski (2010) articulated: “in the actual world of research practice, methods bleed into each other; they are so much messier than textbook depictions” (p. 81). Hammersley (2007) also observed:

“We are not so much faced with a set of clearly differentiated qualitative approaches as with a complex landscape of variable practice in which the inhabitants use a range of labels (‘ethnography’, ‘discourse analysis’, ‘life history work’, narrative study’, ……, and so on) in diverse and open-ended ways in order to characterize their orientation, and probably do this somewhat differently across audiences and occasions” (p. 293).

This concept of having no clear boundaries in methods when designing a QD study should enable researchers to obtain rich data and produce a comprehensive summary of data through various data collection and analysis approaches to answer their research questions. For example, using an ethnographical approach (e.g., participant observation) in data collection for a QD study may facilitate an in-depth description of participants’ nonverbal expressions and interactions with others and their environment as well as situations or events in which researchers are interested ( Kawulich, 2005 ). One example found in our review is that Adams et al. (2014) explored family members’ responses to nursing communication strategies for patients in intensive care units (ICUs). In this study, researchers conducted interviews with family members, observed interactions between healthcare providers, patients, and family members in ICUs, attended ICU rounds and family meetings, and took field notes about their observations and reflections. Accordingly, the variability in methods provided Adams and colleagues (2014) with many different aspects of data that were then used to complement participants’ interviews (i.e., data triangulation). Moreover, by using a constant comparison technique in addition to qualitative content analysis or thematic analysis in QD studies, researchers compare each case with others looking for similarities and differences as well as reasoning why differences exist, to generate more general understanding of phenomena of interest ( Thorne, 2000 ). In fact, this constant comparison analysis is compatible with qualitative content analysis and thematic analysis and we found several examples of using this approach in studies we reviewed ( Asemani et al., 2014 ; DeBruyn et al., 2014 ; Holland et al., 2014 ; Johansson et al., 2014 ; Li et al., 2014 ; Oosterveld-Vlug et al., 2014 ).

However, this flexibility or variability in methods of QD studies may cause readers’ as well as researchers’ confusion in designing and often labeling qualitative studies ( Neergaard et al., 2009 ). Especially, it could be difficult for scholars unfamiliar with qualitative studies to differentiate QD studies with “hues, tones, and textures” of qualitative traditions ( Sandelowski, 2000 , p. 337) from grounded theory, phenomenological, and ethnographical research. In fact, the major difference is in the presentation of the findings (or outcomes of qualitative research) ( Neergaard et al., 2009 ; Sandelowski, 2000 ). The final products of grounded theory, phenomenological, and ethnographical research are a generation of a theory, a description of the meaning or essence of people’s lived experience, and an in-depth, narrative description about certain culture, respectively, through researchers’ intensive/deep interpretations, reflections, and/or transformation of data ( Streubert & Carpenter, 2011 ). In contrast, QD studies result in “a rich, straight description” of experiences, perceptions, or events using language from the collected data ( Neergaard et al., 2009 ) through low-inference (or data-near) interpretations during data analysis ( Sandelowski, 2000 , 2010 ). This feature is consistent with our finding regarding presentation of findings: in all QD articles included in this systematic review, the researchers presented focused or comprehensive, descriptive summaries to their research questions.

Finally, an explanation or justification of why a QD approach was chosen or appropriate for the study aims was not found in more than half of studies in the sample. While other qualitative approaches, including grounded theory, phenomenology, ethnography, and narrative analysis, are used to better understand people’s thoughts, behaviors, and situations regarding certain phenomena ( Sullivan-Bolyai et al., 2005 ), as noted above, the results will likely read differently than those for a QD study ( Carter & Little, 2007 ). Therefore, it is important that researchers accurately label and justify their choices of approach, particularly for studies focused on participants’ experiences, which could be addressed with other qualitative traditions. Justifying one’s research epistemology, methodology, and methods allows readers to evaluate these choices for internal consistency, provides context to assist in understanding the findings, and contributes to the transparency of choices, all of which enhance the rigor of the study ( Carter & Little, 2007 ; Wu, Thompson, Aroian, McQuaid, & Deatrick, 2016 ).

Use of the CASP tool drew our attention to the credibility and usefulness of the findings of the QD studies included in this review. Although justification for study design and methods was lacking in many articles, most authors reported techniques of recruitment, data collection, and analysis that appeared. Internal consistencies among study objectives, methods, and findings were achieved in most studies, increasing readers’ confidence that the findings of these studies are credible and useful in understanding under-explored phenomenon of interest.

In summary, our findings support the notion that many scholars employ QD and include a variety of commonly observed characteristics in their study design and subsequent publications. Based on our review, we found that QD as a scholarly approach allows flexibility as research questions and study findings emerge. We encourage authors to provide as many details as possible regarding how QD was chosen for a particular study as well as details regarding methods to facilitate readers’ understanding and evaluation of the study design and rigor. We acknowledge the challenge of strict word limitation with submissions to print journals; potential solutions include collaboration with journal editors and staff to consider creative use of charts or tables, or using more citations and less text in background sections so that methods sections are robust.

Limitations

Several limitations of this review deserve mention. First, only articles where researchers explicitly stated in the main body of the article that a QD design was employed were included. In contrast, articles labeled as QD in only the title or abstract, or without their research design named were not examined due to the lack of certainty that the researchers actually carried out a QD study. As a result, we may have excluded some studies where a QD design was followed. Second, only one database was searched and therefore we did not identify or describe potential studies following a QD approach that were published in non-PubMed databases. Third, our review is limited by reliance on what was included in the published version of a study. In some cases, this may have been a result of word limits or specific styles imposed by journals, or inconsistent reporting preferences of authors and may have limited our ability to appraise the general adequacy with the CASP tool and examine specific characteristics of these studies.

Conclusions

A systematic review was conducted by examining QD research articles focused on nursing-related phenomena and published in one calendar year. Current patterns include some characteristics of QD studies consistent with the previous observations described in the literature, a focus on the flexibility or variability of methods in QD studies, and a need for increased explanations of why QD was an appropriate label for a particular study. Based on these findings, recommendations include encouragement to authors to provide as many details as possible regarding the methods of their QD study. In this way, readers can thoroughly consider and examine if the methods used were effective and reasonable in producing credible and useful findings.

Acknowledgments

This work was supported in part by the John A. Hartford Foundation’s National Hartford Centers of Gerontological Nursing Excellence Award Program.

Hyejin Kim is a Ruth L. Kirschstein NRSA Predoctoral Fellow (F31NR015702) and 2013–2015 National Hartford Centers of Gerontological Nursing Excellence Patricia G. Archbold Scholar. Justine Sefcik is a Ruth L. Kirschstein Predoctoral Fellow (F31NR015693) through the National Institutes of Health, National Institute of Nursing Research.

Conflict of Interest Statement

The Authors declare that there is no conflict of interest.

Contributor Information

Hyejin Kim, MSN, CRNP, Doctoral Candidate, University of Pennsylvania School of Nursing.

Justine S. Sefcik, MS, RN, Doctoral Candidate, University of Pennsylvania School of Nursing.

Christine Bradway, PhD, CRNP, FAAN, Associate Professor of Gerontological Nursing, University of Pennsylvania School of Nursing.

  • Adams JA, Anderson RA, Docherty SL, Tulsky JA, Steinhauser KE, Bailey DE., Jr Nursing strategies to support family members of ICU patients at high risk of dying. Heart & Lung. 2014; 43 (5):406–415. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Ahlin J, Ericson-Lidman E, Norberg A, Strandberg G. Care providers' experiences of guidelines in daily work at a municipal residential care facility for older people. Scandinavian Journal of Caring Sciences. 2014; 28 (2):355–363. [ PubMed ] [ Google Scholar ]
  • Al-Zadjali M, Keller C, Larkey L, Evans B. GCC women: causes and processes of midlife weight gain. Health Care for Women International. 2014; 35 (11–12):1267–1286. [ PubMed ] [ Google Scholar ]
  • Asemani O, Iman MT, Moattari M, Tabei SZ, Sharif F, Khayyer M. An exploratory study on the elements that might affect medical students' and residents' responsibility during clinical training. Journal of Medical Ethics and History of Medicine. 2014; 7 :8. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Atefi N, Abdullah KL, Wong LP, Mazlom R. Factors influencing registered nurses perception of their overall job satisfaction: a qualitative study. International Nursing Review. 2014; 61 (3):352–360. [ PubMed ] [ Google Scholar ]
  • Ballangrud R, Hall-Lord ML, Persenius M, Hedelin B. Intensive care nurses' perceptions of simulation-based team training for building patient safety in intensive care: a descriptive qualitative study. Intensive and Critical Care Nursing. 2014; 30 (4):179–187. [ PubMed ] [ Google Scholar ]
  • Benavides-Vaello S, Katz JR, Peterson JC, Allen CB, Paul R, Charette-Bluff AL, Morris P. Nursing and health sciences workforce diversity research using. PhotoVoice: a college and high school student participatory project. Journal of Nursing Education. 2014; 53 (4):217–222. [ PubMed ] [ Google Scholar ]
  • Bernhard C, Zielinski R, Ackerson K, English J. Home birth after hospital birth: women's choices and reflections. Journal of Midwifery and Women's Health. 2014; 59 (2):160–166. [ PubMed ] [ Google Scholar ]
  • Borbasi S, Jackson D, Langford RW. Navigating the maze of nursing research: An interactive learning adventure. 2nd. New South Wales, Australia: Mosby/Elsevier; 2008. [ Google Scholar ]
  • Bradford B, Maude R. Fetal response to maternal hunger and satiation - novel finding from a qualitative descriptive study of maternal perception of fetal movements. BMC Pregnancy and Childbirth. 2014; 14 :288. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Burns N, Grove SK. The practice of nursing research: Conduct, critique, & utilization. 5th. Philadelphia, PA: Elsevier/Saunders; 2005. [ Google Scholar ]
  • Canzan F, Heilemann MV, Saiani L, Mortari L, Ambrosi E. Visible and invisible caring in nursing from the perspectives of patients and nurses in the gerontological context. Scandinavian Journal of Caring Sciences. 2014; 28 (4):732–740. [ PubMed ] [ Google Scholar ]
  • Carter SM, Littler M. Justifying knowledge, justifying methods, taking action: Epistemologies, methodologies, and methods in qualitative research. Qualitative Health Research. 2007; 17 (10):1316–1328. [ PubMed ] [ Google Scholar ]
  • Critical Appraisal Skills Programme (CASP 2013) 10 questions to help you make sense of qualitative research. Oxford: CASP; 2013. Retrieved from http://media.wix.com/ugd/dded87_29c5b002d99342f788c6ac670e49f274.pdf . [ Google Scholar ]
  • Chan CW, Lopez V. A qualitative descriptive study of risk reduction for coronary disease among the Hong Kong Chinese. Public Health Nursing. 2014; 31 (4):327–335. [ PubMed ] [ Google Scholar ]
  • Chen YJ, Tsai YF, Lee SH, Lee HL. Protective factors against suicide among young-old Chinese outpatients. BMC Public Health. 2014; 14 :372. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Cleveland LM, Bonugli R. Experiences of mothers of infants with neonatal abstinence syndrome in the neonatal intensive care unit. Journal of Obstetric Gynecologic, & Neonatal Nursing. 2014; 43 (3):318–329. [ PubMed ] [ Google Scholar ]
  • Corbin J, Strauss A. Basics of qualitative research: Techniques and procedures for developing grounded theory. 3rd. Thousand Oaks, CA: Sage Publications; 2008. [ Google Scholar ]
  • Corbin JM, Strauss A. Grounded theory research: Procedures, canons and evaluation criteria. Qualitative Sociology. 1990; 13 (1):3–21. [ Google Scholar ]
  • DeBruyn RR, Ochoa-Marin SC, Semenic S. Barriers and facilitators to evidence-based nursing in Colombia: perspectives of nurse educators, nurse researchers and graduate students. Investigación y Educación en Enfermería. 2014; 32 (1):9–21. [ PubMed ] [ Google Scholar ]
  • Denzin NK, Lincoln YS. The Discipline and practice of qualitative research. In: Denzin NK, Lincoln YS, editors. Handbook of qualitative research. 2nd. Thousand Oaks, CA: Sage Publications; 2000. pp. 1–28. [ Google Scholar ]
  • Ewens B, Chapman R, Tulloch A, Hendricks JM. ICU survivors' utilisation of diaries post discharge: a qualitative descriptive study. Australian Critical Care. 2014; 27 (1):28–35. [ PubMed ] [ Google Scholar ]
  • Fantasia HC, Sutherland MA, Fontenot H, Ierardi JA. Knowledge, attitudes and beliefs about contraceptive and sexual consent negotiation among college women. Journal of Forensic Nursing. 2014; 10 (4):199–207. [ PubMed ] [ Google Scholar ]
  • Friman A, Wahlberg AC, Mattiasson AC, Ebbeskog B. District nurses' knowledge development in wound management: ongoing learning without organizational support. Primary Health Care Research & Development. 2014; 15 (4):386–395. [ PubMed ] [ Google Scholar ]
  • Gaughan V, Logan D, Sethna N, Mott S. Parents' perspective of their journey caring for a child with chronic neuropathic pain. Pain Management Nursing. 2014; 15 (1):246–257. [ PubMed ] [ Google Scholar ]
  • Hammersley M. The issue of quality in qualitative research. International Journal of Research & Method in Education. 2007; 30 (3):287–305. [ Google Scholar ]
  • Hart PL, Mareno N. Cultural challenges and barriers through the voices of nurses. Journal of Clinical Nursing. 2014; 23 (15–16):2223–2232. [ PubMed ] [ Google Scholar ]
  • Hasman K, Kjaergaard H, Esbensen BA. Fathers' experience of childbirth when non-progressive labour occurs and augmentation is established. A qualitative study. Sexual & Reproductive HealthCare. 2014; 5 (2):69–73. [ PubMed ] [ Google Scholar ]
  • Higgins I, van der Riet P, Sneesby L, Good P. Nutrition and hydration in dying patients: the perceptions of acute care nurses. Journal of Clinical Nursing. 2014; 23 (17–18):2609–2617. [ PubMed ] [ Google Scholar ]
  • Holland ML, Christensen JJ, Shone LP, Kearney MH, Kitzman HJ. Women's reasons for attrition from a nurse home visiting program. Journal of Obstetric, Gynecologic, & Neonatal Nursing. 2014; 43 (1):61–70. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Johansson M, Hildingsson I, Fenwick J. 'As long as they are safe--birth mode does not matter' Swedish fathers' experiences of decision-making around caesarean section. Women and Birth. 2014; 27 (3):208–213. [ PubMed ] [ Google Scholar ]
  • Kao MH, Tsai YF. Illness experiences in middle-aged adults with early-stage knee osteoarthritis: findings from a qualitative study. Journal of Advanced Nursing. 2014; 70 (7):1564–1572. [ PubMed ] [ Google Scholar ]
  • Kawulich BB. Participant observation as a data collection method. Forum: Qualitative Social Research. 2005; 6 (2) Art. 43. Retrieved from http://www.qualitative-research.net/index.php/fqs/article/view/466/997 . [ Google Scholar ]
  • Kerr D, McKay K, Klim S, Kelly AM, McCann T. Attitudes of emergency department patients about handover at the bedside. Journal of Clinical Nursing. 2014; 23 (11–12):1685–1693. [ PubMed ] [ Google Scholar ]
  • Kneck A, Fagerberg I, Eriksson LE, Lundman B. Living with diabetes - development of learning patterns over a 3-year period. International Journal of Qualitative Studies on Health and Well-being. 2014; 9 :24375. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Krippendorf K. Content analysis: An introduction to its methodology. 2nd. Thousand Oaks, CA: Sage Publications; 2004. [ Google Scholar ]
  • Larocque N, Schotsman C, Kaasalainen S, Crawshaw D, McAiney C, Brazil E. Using a book chat to improve attitudes and perceptions of long-term care staff about dementia. Journal of Gerontological Nursing. 2014; 40 (5):46–52. [ PubMed ] [ Google Scholar ]
  • Li IC, Lee SY, Chen CY, Jeng YQ, Chen YC. Facilitators and barriers to effective smoking cessation: counselling services for inpatients from nurse-counsellors' perspectives--a qualitative study. International Journal of Environmental Research and Public Health. 2014; 11 (5):4782–4798. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Lux KM, Hutcheson JB, Peden AR. Ending disruptive behavior: staff nurse recommendations to nurse educators. Nurse Education in Practice. 2014; 14 (1):37–42. [ PubMed ] [ Google Scholar ]
  • Lyndon A, Zlatnik MG, Maxfield DG, Lewis A, McMillan C, Kennedy HP. Contributions of clinical disconnections and unresolved conflict to failures in intrapartum safety. Journal of Obstetric, Gynecologic, & Neonatal Nursing. 2014; 43 (1):2–12. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Ma F, Li J, Liang H, Bai Y, Song J. Baccalaureate nursing students' perspectives on learning about caring in China: a qualitative descriptive study. BMC Medical Education. 2014; 14 :42. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Ma L. A humanbecoming qualitative descriptive study on quality of life with older adults. Nursing Science Quarterly. 2014; 27 (2):132–141. [ PubMed ] [ Google Scholar ]
  • Marcinowicz L, Abramowicz P, Zarzycka D, Abramowicz M, Konstantynowicz J. How hospitalized children and parents perceive nurses and hospital amenities: A qualitative descriptive study in Poland. Journal of Child Health Care. 2014 [ PubMed ] [ Google Scholar ]
  • Martorella G, Boitor M, Michaud C, Gelinas C. Feasibility and acceptability of hand massage therapy for pain management of postoperative cardiac surgery patients in the intensive care unit. Heart & Lung. 2014; 43 (5):437–444. [ PubMed ] [ Google Scholar ]
  • McDonough A, Callans KM, Carroll DL. Understanding the challenges during transitions of care for children with critical airway conditions. ORL Head and Neck Nursing. 2014; 32 (4):12–17. [ PubMed ] [ Google Scholar ]
  • McGilton KS, Boscart VM, Brown M, Bowers B. Making tradeoffs between the reasons to leave and reasons to stay employed in long-term care homes: perspectives of licensed nursing staff. International Journal of Nursing Studies. 2014; 51 (6):917–926. [ PubMed ] [ Google Scholar ]
  • Michael N, O'Callaghan C, Baird A, Hiscock N, Clayton J. Cancer caregivers advocate a patient- and family-centered approach to advance care planning. Journal of Pain and Symptom Management. 2014; 47 (6):1064–1077. [ PubMed ] [ Google Scholar ]
  • Miller WR. Patient-centered outcomes in older adults with epilepsy. Seizure. 2014; 23 (8):592–597. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Milne J, Oberle K. Enhancing rigor in qualitative description: a case study. Journal of Wound Ostomy & Continence Nursing. 2005; 32 (6):413–420. [ PubMed ] [ Google Scholar ]
  • Neergaard MA, Olesen F, Andersen RS, Sondergaard J. Qualitative description - the poor cousin of health research? BMC Medical Research Methodology. 2009; 9 :52. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • O'Shea MF. Staff nurses' perceptions regarding palliative care for hospitalized older adults. The American Journal of Nursing. 2014; 114 (11):26–34. [ PubMed ] [ Google Scholar ]
  • Oosterveld-Vlug MG, Pasman HR, van Gennip IE, Muller MT, Willems DL, Onwuteaka-Philipsen BD. Dignity and the factors that influence it according to nursing home residents: a qualitative interview study. Journal of Advanced Nursing. 2014; 70 (1):97–106. [ PubMed ] [ Google Scholar ]
  • Oruche UM, Draucker C, Alkhattab H, Knopf A, Mazurcyk J. Interventions for family members of adolescents with disruptive behavior disorders. Journal of Child and Adolescent Psychiatric Nursing. 2014; 27 (3):99–108. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Parse RR. Qualitative inquiry: The path of sciencing. Sudbury, MA: Jones and Barlett; 2001. [ Google Scholar ]
  • Peacock SC, Hammond-Collins K, Forbes DA. The journey with dementia from the perspective of bereaved family caregivers: a qualitative descriptive study. BMC Nursing. 2014; 13 (1):42. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Peterson WE, Sprague AE, Reszel J, Walker M, Fell DB, Perkins SL, Johnson M. Women's perspectives of the fetal fibronectin testing process: a qualitative descriptive study. BMC Pregnancy and Childbirth. 2014; 14 :190. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Polit DF, Beck CT. Nursing research: principles and methods. 7. Philadelphia, PA: Lippincott Williams & Wilkins; 2004. [ Google Scholar ]
  • Polit DF, Beck CT. International differences in nursing research, 2005–2006. Journal of Nursing Scholarship. 2009; 41 (1):44–53. [ PubMed ] [ Google Scholar ]
  • Polit DF, Beck CT. Nursing research: generating and assessing evidence for nursing practice. 9. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012. [ Google Scholar ]
  • Polit DF, Beck CT. Essentials of Nursing Research: Appraising Evidence for Nursing Practice. 8. Philadelphia, PA: Wolters Kluwer Health; Lippincott Willians & Wilkins; 2014. Supplement for Chapter 14: Qualitative Descriptive Studies. Retrieved from http://downloads.lww.com/wolterskluwer_vitalstream_com/sample-content/9781451176797_Polit/samples/CS_Chapter_14.pdf . [ Google Scholar ]
  • Pope C, Mays N. Qualitative research in health care. 3rd. Victoria, Australia: Blackwell Publishing; 2006. [ Google Scholar ]
  • Pope C, Mays N. Reaching the parts other methods cannot reach: an introduction to qualitative methods in health and health services research. BMJ. 1995; 311 (6996):42–45. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Raphael D, Waterworth S, Gott M. The role of practice nurses in providing palliative and end-of-life care to older patients with long-term conditions. International Journal of Palliative Nursing. 2014; 20 (8):373–379. [ PubMed ] [ Google Scholar ]
  • Saldana J. Longitudinal qualitative research: Analyzing change through time. Walnut Creek, CA: AltaMira Press; 2003. [ Google Scholar ]
  • Sandelowski M. Whatever happened to qualitative description? Research in Nursing & Health. 2000; 23 (4):334–340. [ PubMed ] [ Google Scholar ]
  • Sandelowski M. What's in a name? Qualitative description revisited. Research in Nursing & Health. 2010; 33 (1):77–84. [ PubMed ] [ Google Scholar ]
  • Santos HP, Jr, Sandelowski M, Gualda DM. Bad thoughts: Brazilian women's responses to mothering while experiencing postnatal depression. Midwifery. 2014; 30 (6):788–794. [ PubMed ] [ Google Scholar ]
  • Sharp R, Grech C, Fielder A, Mikocka-Walus A, Cummings M, Esterman A. The patient experience of a peripherally inserted central catheter (PICC): A qualitative descriptive study. Contemporary Nurse. 2014; 48 (1):26–35. [ PubMed ] [ Google Scholar ]
  • Soule I. Cultural competence in health care: an emerging theory. ANS Advances in Nursing Science. 2014; 37 (1):48–60. [ PubMed ] [ Google Scholar ]
  • Stegenga K, Macpherson CF. "I'm a survivor, go study that word and you'll see my name": adolescent and cancer identity work over the first year after diagnosis. Cancer Nursing. 2014; 37 (6):418–428. [ PubMed ] [ Google Scholar ]
  • Streubert HJ, Carpenter DR. Qualitative research in nursing: Advancing the humanistic imperative. 5th. Philadelphia, PA: Lippincott Williams & Wilkins; 2011. [ Google Scholar ]
  • Sturesson A, Ziegert K. Prepare the patient for future challenges when facing hemodialysis: nurses' experiences. International Journal of Qualitative Studies on Health and Well-being. 2014; 9 :22952. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Sullivan-Bolyai S, Bova C, Harper D. Developing and refining interventions in persons with health disparities: the use of qualitative description. Nursing Outlook. 2005; 53 (3):127–133. [ PubMed ] [ Google Scholar ]
  • Sundqvist AS, Carlsson AA. Holding the patient's life in my hands: Swedish registered nurse anaesthetists' perspective of advocacy. Scandinavian Journal of Caring Sciences. 2014; 28 (2):281–288. [ PubMed ] [ Google Scholar ]
  • Thomson Reuters. EndNote X7. 2014 Retrieved from http://endnote.com/product-details/x7 .
  • Thorne S. Data analysis in qualitative research. Evidence Based Nursing. 2000; 3 :68–70. [ Google Scholar ]
  • Thorne S, Reimer Kirkham S, O’Flynn-Magee K. The analytic challenge in interpretive description. International Journal of Qualitative Methods. 2004; 3 (1):1–11. [ Google Scholar ]
  • Tseng YF, Chen CH, Wang HH. Taiwanese women's process of recovery from stillbirth: a qualitative descriptive study. Research in Nursing & Health. 2014; 37 (3):219–228. [ PubMed ] [ Google Scholar ]
  • Vaismoradi M, Jordan S, Turunen H, Bondas T. Nursing students' perspectives of the cause of medication errors. Nurse Education Today. 2014; 34 (3):434–440. [ PubMed ] [ Google Scholar ]
  • Vaismoradi M, Turunen H, Bondas T. Content analysis and thematic analysis: Implications for conducting a qualitative descriptive study. Nursing & Health Sciences. 2013; 15 (3):398–405. [ PubMed ] [ Google Scholar ]
  • Valizadeh L, Zamanzadeh V, Fooladi MM, Azadi A, Negarandeh R, Monadi M. The image of nursing, as perceived by Iranian male nurses. Nursing & Health Sciences. 2014; 16 (3):307–313. [ PubMed ] [ Google Scholar ]
  • Villar F, Celdran M, Faba J, Serrat R. Barriers to sexual expression in residential aged care facilities (RACFs): comparison of staff and residents' views. Journal of Advanced Nursing. 2014; 70 (11):2518–2527. [ PubMed ] [ Google Scholar ]
  • Wiens S, Babenko-Mould Y, Iwasiw C. Clinical instructors' perceptions of structural and psychological empowerment in academic nursing environments. Journal of Nursing Education. 2014; 53 (5):265–270. [ PubMed ] [ Google Scholar ]
  • Willis DG, Sullivan-Bolyai S, Knafl K, Zichi-Cohen M. Distinguishing Features and Similarities Between Descriptive Phenomenological and Qualitative Description Research. West J Nurs Res. 2016 [ PubMed ] [ Google Scholar ]
  • Wu YP, Thompson D, Aroian KJ, McQuaid EL, Deatrick JA. Commentary: Writing and Evaluating Qualitative Research Reports. J Pediatr Psychol. 2016; 41 (5):493–505. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Zhang H, Shan W, Jiang A. The meaning of life and health experience for the Chinese elderly with chronic illness: a qualitative study from positive health philosophy. International Journal of Nursing Practice. 2014; 20 (5):530–539. [ PubMed ] [ Google Scholar ]

descriptive research design limitations

  • Get new issue alerts Get alerts
  • Submit a Manuscript

Secondary Logo

Journal logo.

Colleague's E-mail is Invalid

Your message has been successfully sent to your colleague.

Save my selection

Study designs

Part 2 – descriptive studies.

Aggarwal, Rakesh; Ranganathan, Priya 1

Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

1 Department of Anaesthesiology, Tata Memorial Centre, Mumbai, Maharashtra, India

Address for correspondence: Dr. Rakesh Aggarwal, Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India. E-mail: [email protected]

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

One of the first steps in planning a research study is the choice of study design. The available study designs are divided broadly into two types – observational and interventional. Of the various observational study designs, the descriptive design is the simplest. It allows the researcher to study and describe the distribution of one or more variables, without regard to any causal or other hypotheses. This article discusses the subtypes of descriptive study design, and their strengths and limitations.

INTRODUCTION

In our previous article in this series,[ 1 ] we introduced the concept of “study designs”– as “the set of methods and procedures used to collect and analyze data on variables specified in a particular research question.” Study designs are primarily of two types – observational and interventional, with the former being loosely divided into “descriptive” and “analytical.” In this article, we discuss the descriptive study designs.

WHAT IS A DESCRIPTIVE STUDY?

A descriptive study is one that is designed to describe the distribution of one or more variables, without regard to any causal or other hypothesis.

TYPES OF DESCRIPTIVE STUDIES

Descriptive studies can be of several types, namely, case reports, case series, cross-sectional studies, and ecological studies. In the first three of these, data are collected on individuals, whereas the last one uses aggregated data for groups.

Case reports and case series

A case report refers to the description of a patient with an unusual disease or with simultaneous occurrence of more than one condition. A case series is similar, except that it is an aggregation of multiple (often only a few) similar cases. Many case reports and case series are anecdotal and of limited value. However, some of these bring to the fore a hitherto unrecognized disease and play an important role in advancing medical science. For instance, HIV/AIDS was first recognized through a case report of disseminated Kaposi's sarcoma in a young homosexual man,[ 2 ] and a case series of such men with Pneumocystis carinii pneumonia.[ 3 ]

In other cases, description of a chance observation may open an entirely new line of investigation. Some examples include: fatal disseminated Bacillus Calmette–Guérin infection in a baby born to a mother taking infliximab for Crohn's disease suggesting that adminstration of infliximab may bring about reactivation of tuberculosis,[ 4 ] progressive multifocal leukoencephalopathy following natalizumab treatment – describing a new adverse effect of drugs that target cell adhesion molecule α4-integrin,[ 5 ] and demonstration of a tumor caused by invasive transformed cancer cells from a colonizing tapeworm in an HIV-infected person.[ 6 ]

Cross-sectional studies

Studies with a cross-sectional study design involve the collection of information on the presence or level of one or more variables of interest (health-related characteristic), whether exposure (e.g., a risk factor) or outcome (e.g., a disease) as they exist in a defined population at one particular time. If these data are analyzed only to determine the distribution of one or more variables, these are “descriptive.” However, often, in a cross-sectional study, the investigator also assesses the relationship between the presence of an exposure and that of an outcome. Such cross-sectional studies are referred to as “analytical” and will be discussed in the next article in this series.

Cross-sectional studies can be thought of as providing a “snapshot” of the frequency and characteristics of a disease in a population at a particular point in time. These are very good for measuring the prevalence of a disease or of a risk factor in a population. Thus, these are very helpful in assessing the disease burden and healthcare needs.

Let us look at a study that was aimed to assess the prevalence of myopia among Indian children.[ 7 ] In this study, trained health workers visited schools in Delhi and tested visual acuity in all children studying in classes 1–9. Of the 9884 children screened, 1297 (13.1%) had myopia (defined as spherical refractive error of −0.50 diopters (D) or worse in either or both eyes), and the mean myopic error was −1.86 ± 1.4 D. Furthermore, overall, 322 (3.3%), 247 (2.5%) and 3 children had mild, moderate, and severe visual impairment, respectively. These parts of the study looked at the prevalence and degree of myopia or of visual impairment, and did not assess the relationship of one variable with another or test a causative hypothesis – these qualify as a descriptive cross-sectional study. These data would be helpful to a health planner to assess the need for a school eye health program, and to know the proportion of children in her jurisdiction who would need corrective glasses.

The authors did, subsequently in the paper, look at the relationship of myopia (an outcome) with children's age, gender, socioeconomic status, type of school, mother's education, etc. (each of which qualifies as an exposure). Those parts of the paper look at the relationship between different variables and thus qualify as having “analytical” cross-sectional design.

Sometimes, cross-sectional studies are repeated after a time interval in the same population (using the same subjects as were included in the initial study, or a fresh sample) to identify temporal trends in the occurrence of one or more variables, and to determine the incidence of a disease (i.e., number of new cases) or its natural history. Indeed, the investigators in the myopia study above visited the same children and reassessed them a year later. This separate follow-up study[ 8 ] showed that “new” myopia had developed in 3.4% of children (incidence rate), with a mean change of −1.09 ± 0.55 D. Among those with myopia at the time of the initial survey, 49.2% showed progression of myopia with a mean change of −0.27 ± 0.42 D.

Cross-sectional studies are usually simple to do and inexpensive. Furthermore, these usually do not pose much of a challenge from an ethics viewpoint.

However, this design does carry a risk of bias, i.e., the results of the study may not represent the true situation in the population. This could arise from either selection bias or measurement bias. The former relates to differences between the population and the sample studied. The myopia study included only those children who attended school, and the prevalence of myopia could have been different in those did not attend school (e.g., those with severe myopia may not be able to see the blackboard and hence may have been more likely to drop out of school). The measurement bias in this study would relate to the accuracy of measurement and the cutoff used. If the investigators had used a cutoff of −0.25 D (instead of −0.50 D) to define myopia, the prevalence would have been higher. Furthermore, if the measurements were not done accurately, some cases with myopia could have been missed, or vice versa, affecting the study results.

Ecological studies

Ecological (also sometimes called as correlational) study design involves looking for association between an exposure and an outcome across populations rather than in individuals. For instance, a study in the United States found a relation between household firearm ownership in various states and the firearm death rates during the period 2007–2010.[ 9 ] Thus, in this study, the unit of assessment was a state and not an individual.

These studies are convenient to do since the data have often already been collected and are available from a reliable source. This design is particularly useful when the differences in exposure between individuals within a group are much smaller than the differences in exposure between groups. For instance, the intake of particular food items is likely to vary less between people in a particular group but can vary widely across groups, for example, people living in different countries.

However, the ecological study design has some important limitations. First, an association between exposure and outcome at the group level may not be true at the individual level (a phenomenon also referred to as “ecological fallacy”).[ 10 ] Second, the association may be related to a third factor which in turn is related to both the exposure and the outcome, the so-called “confounding”. For instance, an ecological association between higher income level and greater cardiovascular mortality across countries may be related to a higher prevalence of obesity. Third, migration of people between regions with different exposure levels may also introduce an error. A fourth consideration may be the use of differing definitions for exposure, outcome or both in different populations.

Descriptive studies, irrespective of the subtype, are often very easy to conduct. For case reports, case series, and ecological studies, the data are already available. For cross-sectional studies, these can be easily collected (usually in one encounter). Thus, these study designs are often inexpensive, quick and do not need too much effort. Furthermore, these studies often do not face serious ethics scrutiny, except if the information sought to be collected is of confidential nature (e.g., sexual practices, substance use, etc.).

Descriptive studies are useful for estimating the burden of disease (e.g., prevalence or incidence) in a population. This information is useful for resource planning. For instance, information on prevalence of cataract in a city may help the government decide on the appropriate number of ophthalmologic facilities. Data from descriptive studies done in different populations or done at different times in the same population may help identify geographic variation and temporal change in the frequency of disease. This may help generate hypotheses regarding the cause of the disease, which can then be verified using another, more complex design.

DISADVANTAGES

As with other study designs, descriptive studies have their own pitfalls. Case reports and case-series refer to a solitary patient or to only a few cases, who may represent a chance occurrence. Hence, conclusions based on these run the risk of being non-representative, and hence unreliable. In cross-sectional studies, the validity of results is highly dependent on whether the study sample is well representative of the population proposed to be studied, and whether all the individual measurements were made using an accurate and identical tool, or not. If the information on a variable cannot be obtained accurately, for instance in a study where the participants are asked about socially unacceptable (e.g., promiscuity) or illegal (e.g., substance use) behavior, the results are unlikely to be reliable.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

  • Cited Here |
  • Google Scholar
  • View Full Text | PubMed | CrossRef |
  • PubMed | CrossRef |

Epidemiologic methods; observational studies; research design

  • + Favorites
  • View in Gallery

Readers Of this Article Also Read

Study designs: part 1 – an overview and classification, study designs: part 3 - analytical observational studies, research studies on screening tests, introduction to qualitative research methods – part i, designing and validating a research questionnaire - part 1.

IMAGES

  1. Descriptive Research Design

    descriptive research design limitations

  2. Understanding the Descriptive/ Diagnostic Research Design

    descriptive research design limitations

  3. Descriptive Research Design

    descriptive research design limitations

  4. What is Descriptive Survey Design

    descriptive research design limitations

  5. Advantages And Disadvantages Of Descriptive Research Design

    descriptive research design limitations

  6. Descriptive Research Examples

    descriptive research design limitations

VIDEO

  1. Marketing Research: Descriptive Research Design

  2. (Part-1)All about Descriptive Research/Types of Descriptive Research by-Dr.Shraddha Mishra #ntanet

  3. Descriptive Research Design #researchmethodology

  4. Types of Research Design

  5. Descriptive research design

  6. ResearchTalk-215 Descriptive Research Design: Key Concepts and Features

COMMENTS

  1. Study designs: Part 2 – Descriptive studies - PMC

    This article discusses the subtypes of descriptive study design, and their strengths and limitations. Keywords: Epidemiologic methods, observational studies, research design INTRODUCTION

  2. Descriptive Research | Definition, Types, and Flaws to avoid

    In this blog, we will explore the definition, characteristics, and common flaws in descriptive research design, and provide tips on how to avoid these pitfalls to produce high-quality results. Whether you are a seasoned researcher or a student just starting, understanding the fundamentals of descriptive research design is essential to ...

  3. Descriptive Research Design - Types, Methods and Examples

    Some of the main limitations of descriptive research design are: Cannot establish cause and effect: Descriptive research design cannot establish cause and effect relationships between variables. It only provides a description of the characteristics of the population or phenomenon of interest.

  4. Descriptive Research | Definition, Types, Methods & Examples

    Descriptive research aims to accurately and systematically describe a population, situation or phenomenon. It can answer what, where, when and how questions, but not why questions. A descriptive research design can use a wide variety of research methods to investigate one or more variables.

  5. Understanding Research Study Designs - PMC

    Descriptive studies describe the characteristics of interest in the study population (also referred to as sample, to differentiate it from the entire population in the universe). These studies do not have a comparison group. The simplest type of descriptive study is the case report.

  6. Descriptive Research Studies

    Limitations: Descriptive studies cannot be used to establish cause and effect relationships. Respondents may not be truthful when answering survey questions or may give socially desirable responses. The choice and wording of questions on a questionnaire may influence the descriptive findings.

  7. Descriptive Research: Design, Methods, Examples, and FAQs

    Descriptive research design aims to systematically obtain information to describe a phenomenon, situation, or population. More specifically, it helps answer the what, when, where, and how questions regarding the research problem rather than the why.

  8. What is Descriptive Research? Definition, Methods, Types and ...

    Frequently asked questions. When should researchers conduct descriptive research? What is the difference between descriptive and exploratory research? What is the difference between descriptive and experimental research? Is descriptive research only for social sciences? How important is descriptive research? What is descriptive research?

  9. Characteristics of Qualitative Descriptive Studies: A ...

    The research used a qualitative descriptive design with grounded theory overtones (Sandelowski, 2000). We sought to provide a comprehensive summary of participants’ views through theoretical sampling; multiple data sources (focus groups [FGs] and interviews); inductive, cyclic, and constant comparative analysis; and condensation of data into ...

  10. Perspectives in Clinical Research - LWW

    This article discusses the subtypes of descriptive study design, and their strengths and limitations. INTRODUCTION. In our previous article in this series, [1] we introduced the concept of “study designs”– as “the set of methods and procedures used to collect and analyze data on variables specified in a particular research question.”