Change Password

Your password must have 6 characters or more:.

  • a lower case character, 
  • an upper case character, 
  • a special character 

Password Changed Successfully

Your password has been changed

Create your account

Forget yout password.

Enter your email address below and we will send you the reset instructions

If the address matches an existing account you will receive an email with instructions to reset your password

Forgot your Username?

Enter your email address below and we will send you your username

If the address matches an existing account you will receive an email with instructions to retrieve your username

Psychiatry Online

  • April 01, 2024 | VOL. 181, NO. 4 CURRENT ISSUE pp.255-346
  • March 01, 2024 | VOL. 181, NO. 3 pp.171-254
  • February 01, 2024 | VOL. 181, NO. 2 pp.83-170
  • January 01, 2024 | VOL. 181, NO. 1 pp.1-82

The American Psychiatric Association (APA) has updated its Privacy Policy and Terms of Use , including with new information specifically addressed to individuals in the European Economic Area. As described in the Privacy Policy and Terms of Use, this website utilizes cookies, including for the purpose of offering an optimal online experience and services tailored to your preferences.

Please read the entire Privacy Policy and Terms of Use. By closing this message, browsing this website, continuing the navigation, or otherwise continuing to use the APA's websites, you confirm that you understand and accept the terms of the Privacy Policy and Terms of Use, including the utilization of cookies.

The Critical Relationship Between Anxiety and Depression

  • Ned H. Kalin , M.D.

Search for more papers by this author

Anxiety and depressive disorders are among the most common psychiatric illnesses; they are highly comorbid with each other, and together they are considered to belong to the broader category of internalizing disorders. Based on statistics from the Substance Abuse and Mental Health Services Administration, the 12-month prevalence of major depressive disorder in 2017 was estimated to be 7.1% for adults and 13.3% for adolescents ( 1 ). Data for anxiety disorders are less current, but in 2001–2003, their 12-month prevalence was estimated to be 19.1% in adults, and 2001–2004 data estimated that the lifetime prevalence in adolescents was 31.9% ( 2 , 3 ). Both anxiety and depressive disorders are more prevalent in women, with an approximate 2:1 ratio in women compared with men during women’s reproductive years ( 1 , 2 ).

Across all psychiatric disorders, comorbidity is the rule ( 4 ), which is definitely the case for anxiety and depressive disorders, as well as their symptoms. With respect to major depression, a worldwide survey reported that 45.7% of individuals with lifetime major depressive disorder had a lifetime history of one or more anxiety disorder ( 5 ). These disorders also commonly coexist during the same time frame, as 41.6% of individuals with 12-month major depression also had one or more anxiety disorder over the same 12-month period. From the perspective of anxiety disorders, the lifetime comorbidity with depression is estimated to range from 20% to 70% for patients with social anxiety disorder ( 6 ), 50% for patients with panic disorder ( 6 ), 48% for patients with posttraumatic stress disorder (PTSD) ( 7 ), and 43% for patients with generalized anxiety disorder ( 8 ). Data from the well-known Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study demonstrate comorbidity at the symptom level, as 53% of the patients with major depression had significant anxiety and were considered to have an anxious depression ( 9 ).

Anxiety and depressive disorders are moderately heritable (approximately 40%), and evidence suggests shared genetic risk across the internalizing disorders ( 10 ). Among internalizing disorders, the highest level of shared genetic risk appears to be between major depressive disorder and generalized anxiety disorder. Neuroticism is a personality trait or temperamental characteristic that is associated with the development of both anxiety and depression, and the genetic risk for developing neuroticism also appears to be shared with that of the internalizing disorders ( 11 ). Common nongenetic risk factors associated with the development of anxiety and depression include earlier life adversity, such as trauma or neglect, as well as parenting style and current stress exposure. At the level of neural circuits, alterations in prefrontal-limbic pathways that mediate emotion regulatory processes are common to anxiety and depressive disorders ( 12 , 13 ). These findings are consistent with meta-analyses that reveal shared structural and functional brain alterations across various psychiatric illnesses, including anxiety and major depression, in circuits involving emotion regulation ( 13 ), executive function ( 14 ), and cognitive control ( 15 ).

Anxiety disorders and major depression occur during development, with anxiety disorders commonly beginning during preadolescence and early adolescence and major depression tending to emerge during adolescence and early to mid-adulthood ( 16 – 18 ). In relation to the evolution of their comorbidity, studies demonstrate that anxiety disorders generally precede the presentation of major depressive disorder ( 17 ). A European community-based study revealed, beginning at age 15, the developmental relation between comorbid anxiety and major depression by specifically focusing on social phobia (based on DSM-IV criteria) and then asking the question regarding concurrent major depressive disorder ( 18 ). The findings revealed a 19% concurrent comorbidity between these disorders, and in 65% of the cases, social phobia preceded major depressive disorder by at least 2 years. In addition, initial presentation with social phobia was associated with a 5.7-fold increased risk of developing major depressive disorder. These associations between anxiety and depression can be traced back even earlier in life. For example, childhood behavioral inhibition in response to novelty or strangers, or an extreme anxious temperament, is associated with a three- to fourfold increase in the likelihood of developing social anxiety disorder, which in turn is associated with an increased risk to develop major depressive disorder and substance abuse ( 19 ).

It is important to emphasize that the presence of comor‐bid anxiety symptoms and disorders matters in relation to treatment. Across psychiatric disorders, the presence of significant anxiety symptoms generally predicts worse outcomes, and this has been well demonstrated for depression. In the STAR*D study, patients with anxious major depressive disorder were more likely to be severely depressed and to have more suicidal ideation ( 9 ). This is consistent with the study by Kessler and colleagues ( 5 ), in which patients with anxious major depressive disorder, compared with patients with nonanxious major depressive disorder, were found to have more severe role impairment and more suicidal ideation. Data from level 1 of the STAR*D study (citalopram treatment) nicely illustrate the impact of comorbid anxiety symptoms on treatment. Compared with patients with nonanxious major depressive disorder, those 53% of patients with an anxious depression were less likely to remit and also had a greater side effect burden ( 20 ). Other data examining patients with major depressive disorder and comorbid anxiety disorders support the greater difficulty and challenge in treating patients with these comorbidities ( 21 ).

This issue of the Journal presents new findings relevant to the issues discussed above in relation to understanding and treating anxiety and depressive disorders. Drs. Conor Liston and Timothy Spellman, from Weill Cornell Medicine, provide an overview for this issue ( 22 ) that is focused on understanding mechanisms at the neural circuit level that underlie the pathophysiology of depression. Their piece nicely integrates human neuroimaging studies with complementary data from animal models that allow for the manipulation of selective circuits to test hypotheses generated from the human data. Also included in this issue is a review of the data addressing the reemergence of the use of psychedelic drugs in psychiatry, particularly for the treatment of depression, anxiety, and PTSD ( 23 ). This timely piece, authored by Dr. Collin Reiff along with a subgroup from the APA Council of Research, provides the current state of evidence supporting the further exploration of these interventions. Dr. Alan Schatzberg, from Stanford University, contributes an editorial in which he comments on where the field is in relation to clinical trials with psychedelics and to some of the difficulties, such as adequate blinding, in reliably studying the efficacy of these drugs ( 24 ).

In an article by McTeague et al. ( 25 ), the authors use meta-analytic strategies to understand the neural alterations that are related to aberrant emotion processing that are shared across psychiatric disorders. Findings support alterations in the salience, reward, and lateral orbital nonreward networks as common across disorders, including anxiety and depressive disorders. These findings add to the growing body of work that supports the concept that there are common underlying factors across all types of psychopathology that include internalizing, externalizing, and thought disorder dimensions ( 26 ). Dr. Deanna Barch, from Washington University in St. Louis, writes an editorial commenting on these findings and, importantly, discusses criteria that should be met when we consider whether the findings are actually transdiagnostic ( 27 ).

Another article, from Gray and colleagues ( 28 ), addresses whether there is a convergence of findings, specifically in major depression, when examining data from different structural and functional neuroimaging modalities. The authors report that, consistent with what we know about regions involved in emotion processing, the subgenual anterior cingulate cortex, hippocampus, and amygdala were among the regions that showed convergence across multimodal imaging modalities.

In relation to treatment and building on our understanding of neural circuit alterations, Siddiqi et al. ( 29 ) present data suggesting that transcranial magnetic stimulation (TMS) targeting can be linked to symptom-specific treatments. Their findings identify different TMS targets in the left dorsolateral prefrontal cortex that modulate different downstream networks. The modulation of these different networks appears to be associated with a reduction in different types of symptoms. In an editorial, Drs. Sean Nestor and Daniel Blumberger, from the University of Toronto ( 30 ), comment on the novel approach used in this study to link the TMS-related engagement of circuits with symptom improvement. They also provide a perspective on how we can view these and other circuit-based findings in relation to conceptualizing personalized treatment approaches.

Kendler et al. ( 31 ), in this issue, contribute an article that demonstrates the important role of the rearing environment in the risk to develop major depression. Using a unique design from a Swedish sample, the analytic strategy involves comparing outcomes from high-risk full sibships and high-risk half sibships where at least one of the siblings was home reared and one was adopted out of the home. The findings support the importance of the quality of the rearing environment as well as the presence of parental depression in mitigating or enhancing the likelihood of developing major depression. In an accompanying editorial ( 32 ), Dr. Myrna Weissman, from Columbia University, reviews the methods and findings of the Kendler et al. article and also emphasizes the critical significance of the early nurturing environment in relation to general health.

This issue concludes with an intriguing article on anxiety disorders, by Gold and colleagues ( 33 ), that demonstrates neural alterations during extinction recall that differ in children relative to adults. With increasing age, and in relation to fear and safety cues, nonanxious adults demonstrated greater connectivity between the amygdala and the ventromedial prefrontal cortex compared with anxious adults, as the cues were being perceived as safer. In contrast, neural differences between anxious and nonanxious youths were more robust when rating the memory of faces that were associated with threat. Specifically, these differences were observed in the activation of the inferior temporal cortex. In their editorial ( 34 ), Dr. Dylan Gee and Sahana Kribakaran, from Yale University, emphasize the importance of developmental work in relation to understanding anxiety disorders, place these findings into the context of other work, and suggest the possibility that these and other data point to neuroscientifically informed age-specific interventions.

Taken together, the papers in this issue of the Journal present new findings that shed light onto alterations in neural function that underlie major depressive disorder and anxiety disorders. It is important to remember that these disorders are highly comorbid and that their symptoms are frequently not separable. The papers in this issue also provide a developmental perspective emphasizing the importance of early rearing in the risk to develop depression and age-related findings important for understanding threat processing in patients with anxiety disorders. From a treatment perspective, the papers introduce data supporting more selective prefrontal cortical TMS targeting in relation to different symptoms, address the potential and drawbacks for considering the future use of psychedelics in our treatments, and present new ideas supporting age-specific interventions for youths and adults with anxiety disorders.

Disclosures of Editors’ financial relationships appear in the April 2020 issue of the Journal .

1 Substance Abuse and Mental Health Services Administration (SAMHSA): Key substance use and mental health indicators in the United States: results from the 2017 National Survey on Drug Use and Health (HHS Publication No. SMA 18-5068, NSDUH Series H-53). Rockville, Md, Center for Behavioral Health Statistics and Quality, SAMHSA, 2018. https://www.samhsa.gov/data/sites/default/files/cbhsq-reports/NSDUHFFR2017/NSDUHFFR2017.htm Google Scholar

2 Kessler RC, Chiu WT, Demler O, et al. : Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication . Arch Gen Psychiatry 2005 ; 62:617–627, correction, 62:709 Crossref , Medline ,  Google Scholar

3 Merikangas KR, He JP, Burstein M, et al. : Lifetime prevalence of mental disorders in U.S. adolescents: results from the National Comorbidity Survey Replication–Adolescent Supplement (NCS-A) . J Am Acad Child Adolesc Psychiatry 2010 ; 49:980–989 Crossref , Medline ,  Google Scholar

4 Kessler RC, McGonagle KA, Zhao S, et al. : Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey . Arch Gen Psychiatry 1994 ; 51:8–19 Crossref , Medline ,  Google Scholar

5 Kessler RC, Sampson NA, Berglund P, et al. : Anxious and non-anxious major depressive disorder in the World Health Organization World Mental Health Surveys . Epidemiol Psychiatr Sci 2015 ; 24:210–226 Crossref , Medline ,  Google Scholar

6 Dunner DL : Management of anxiety disorders: the added challenge of comorbidity . Depress Anxiety 2001 ; 13:57–71 Crossref , Medline ,  Google Scholar

7 Kessler RC, Sonnega A, Bromet E, et al. : Posttraumatic stress disorder in the National Comorbidity Survey . Arch Gen Psychiatry 1995 ; 52:1048–1060 Crossref , Medline ,  Google Scholar

8 Brawman-Mintzer O, Lydiard RB, Emmanuel N, et al. : Psychiatric comorbidity in patients with generalized anxiety disorder . Am J Psychiatry 1993 ; 150:1216–1218 Link ,  Google Scholar

9 Fava M, Alpert JE, Carmin CN, et al. : Clinical correlates and symptom patterns of anxious depression among patients with major depressive disorder in STAR*D . Psychol Med 2004 ; 34:1299–1308 Crossref , Medline ,  Google Scholar

10 Hettema JM : What is the genetic relationship between anxiety and depression? Am J Med Genet C Semin Med Genet 2008 ; 148C:140–146 Crossref , Medline ,  Google Scholar

11 Hettema JM, Neale MC, Myers JM, et al. : A population-based twin study of the relationship between neuroticism and internalizing disorders . Am J Psychiatry 2006 ; 163:857–864 Link ,  Google Scholar

12 Kovner R, Oler JA, Kalin NH : Cortico-limbic interactions mediate adaptive and maladaptive responses relevant to psychopathology . Am J Psychiatry 2019 ; 176:987–999 Link ,  Google Scholar

13 Etkin A, Schatzberg AF : Common abnormalities and disorder-specific compensation during implicit regulation of emotional processing in generalized anxiety and major depressive disorders . Am J Psychiatry 2011 ; 168:968–978 Link ,  Google Scholar

14 Goodkind M, Eickhoff SB, Oathes DJ, et al. : Identification of a common neurobiological substrate for mental illness . JAMA Psychiatry 2015 ; 72:305–315 Crossref , Medline ,  Google Scholar

15 McTeague LM, Huemer J, Carreon DM, et al. : Identification of common neural circuit disruptions in cognitive control across psychiatric disorders . Am J Psychiatry 2017 ; 174:676–685 Link ,  Google Scholar

16 Beesdo K, Knappe S, Pine DS : Anxiety and anxiety disorders in children and adolescents: developmental issues and implications for DSM-V . Psychiatr Clin North Am 2009 ; 32:483–524 Crossref , Medline ,  Google Scholar

17 Kessler RC, Wang PS : The descriptive epidemiology of commonly occurring mental disorders in the United States . Annu Rev Public Health 2008 ; 29:115–129 Crossref , Medline ,  Google Scholar

18 Ohayon MM, Schatzberg AF : Social phobia and depression: prevalence and comorbidity . J Psychosom Res 2010 ; 68:235–243 Crossref , Medline ,  Google Scholar

19 Clauss JA, Blackford JU : Behavioral inhibition and risk for developing social anxiety disorder: a meta-analytic study . J Am Acad Child Adolesc Psychiatry 2012 ; 51:1066–1075 Crossref , Medline ,  Google Scholar

20 Fava M, Rush AJ, Alpert JE, et al. : Difference in treatment outcome in outpatients with anxious versus nonanxious depression: a STAR*D report . Am J Psychiatry 2008 ; 165:342–351 Link ,  Google Scholar

21 Dold M, Bartova L, Souery D, et al. : Clinical characteristics and treatment outcomes of patients with major depressive disorder and comorbid anxiety disorders: results from a European multicenter study . J Psychiatr Res 2017 ; 91:1–13 Crossref , Medline ,  Google Scholar

22 Spellman T, Liston C : Toward circuit mechanisms of pathophysiology in depression . Am J Psychiatry 2020 ; 177:381–390 Link ,  Google Scholar

23 Reiff CM, Richman EE, Nemeroff CB, et al. : Psychedelics and psychedelic-assisted psychotherapy . Am J Psychiatry 2020 ; 177:391–410 Link ,  Google Scholar

24 Schatzberg AF : Some comments on psychedelic research (editorial). Am J Psychiatry 2020 ; 177:368–369 Link ,  Google Scholar

25 McTeague LM, Rosenberg BM, Lopez JW, et al. : Identification of common neural circuit disruptions in emotional processing across psychiatric disorders . Am J Psychiatry 2020 ; 177:411–421 Link ,  Google Scholar

26 Caspi A, Moffitt TE : All for one and one for all: mental disorders in one dimension . Am J Psychiatry 2018 ; 175:831–844 Link ,  Google Scholar

27 Barch DM : What does it mean to be transdiagnostic and how would we know? (editorial). Am J Psychiatry 2020 ; 177:370–372 Abstract ,  Google Scholar

28 Gray JP, Müller VI, Eickhoff SB, et al. : Multimodal abnormalities of brain structure and function in major depressive disorder: a meta-analysis of neuroimaging studies . Am J Psychiatry 2020 ; 177:422–434 Link ,  Google Scholar

29 Siddiqi SH, Taylor SF, Cooke D, et al. : Distinct symptom-specific treatment targets for circuit-based neuromodulation . Am J Psychiatry 2020 ; 177:435–446 Link ,  Google Scholar

30 Nestor SM, Blumberger DM : Mapping symptom clusters to circuits: toward personalizing TMS targets to improve treatment outcomes in depression (editorial). Am J Psychiatry 2020 ; 177:373–375 Abstract ,  Google Scholar

31 Kendler KS, Ohlsson H, Sundquist J, et al. : The rearing environment and risk for major depression: a Swedish national high-risk home-reared and adopted-away co-sibling control study . Am J Psychiatry 2020 ; 177:447–453 Abstract ,  Google Scholar

32 Weissman MM : Is depression nature or nurture? Yes (editorial). Am J Psychiatry 2020 ; 177:376–377 Abstract ,  Google Scholar

33 Gold AL, Abend R, Britton JC, et al. : Age differences in the neural correlates of anxiety disorders: an fMRI study of response to learned threat . Am J Psychiatry 2020 ; 177:454–463 Link ,  Google Scholar

34 Gee DG, Kribakaran S : Developmental differences in neural responding to threat and safety: implications for treating youths with anxiety (editorial). Am J Psychiatry 2020 ; 177:378–380 Abstract ,  Google Scholar

  • Cited by None

research paper about depression and anxiety

  • Neuroanatomy
  • Neurochemistry
  • Neuroendocrinology
  • Other Research Areas

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 13 July 2021

Systematic review and meta-analysis of depression, anxiety, and suicidal ideation among Ph.D. students

  • Emily N. Satinsky 1 ,
  • Tomoki Kimura 2 ,
  • Mathew V. Kiang 3 , 4 ,
  • Rediet Abebe 5 , 6 ,
  • Scott Cunningham 7 ,
  • Hedwig Lee 8 ,
  • Xiaofei Lin 9 ,
  • Cindy H. Liu 10 , 11 ,
  • Igor Rudan 12 ,
  • Srijan Sen 13 ,
  • Mark Tomlinson 14 , 15 ,
  • Miranda Yaver 16 &
  • Alexander C. Tsai 1 , 11 , 17  

Scientific Reports volume  11 , Article number:  14370 ( 2021 ) Cite this article

86k Accesses

67 Citations

823 Altmetric

Metrics details

  • Epidemiology
  • Health policy
  • Quality of life

University administrators and mental health clinicians have raised concerns about depression and anxiety among Ph.D. students, yet no study has systematically synthesized the available evidence in this area. After searching the literature for studies reporting on depression, anxiety, and/or suicidal ideation among Ph.D. students, we included 32 articles. Among 16 studies reporting the prevalence of clinically significant symptoms of depression across 23,469 Ph.D. students, the pooled estimate of the proportion of students with depression was 0.24 (95% confidence interval [CI], 0.18–0.31; I 2  = 98.75%). In a meta-analysis of the nine studies reporting the prevalence of clinically significant symptoms of anxiety across 15,626 students, the estimated proportion of students with anxiety was 0.17 (95% CI, 0.12–0.23; I 2  = 98.05%). We conclude that depression and anxiety are highly prevalent among Ph.D. students. Data limitations precluded our ability to obtain a pooled estimate of suicidal ideation prevalence. Programs that systematically monitor and promote the mental health of Ph.D. students are urgently needed.

Similar content being viewed by others

research paper about depression and anxiety

Prevalence of depression among Chinese university students: a systematic review and meta-analysis

Li Gao, Yuanchen Xie, … Wei Wang

research paper about depression and anxiety

A repeated cross-sectional analysis assessing mental health conditions of adults as per student status during key periods of the COVID-19 epidemic in France

Melissa Macalli, Nathalie Texier, … Christophe Tzourio

research paper about depression and anxiety

Relationship between depression and quality of life among students: a systematic review and meta-analysis

Michele da Silva Valadão Fernandes, Carolina Rodrigues Mendonça, … Matias Noll

Introduction

Mental health problems among graduate students in doctoral degree programs have received increasing attention 1 , 2 , 3 , 4 . Ph.D. students (and students completing equivalent degrees, such as the Sc.D.) face training periods of unpredictable duration, financial insecurity and food insecurity, competitive markets for tenure-track positions, and unsparing publishing and funding models 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 —all of which may have greater adverse impacts on students from marginalized and underrepresented populations 13 , 14 , 15 . Ph.D. students’ mental health problems may negatively affect their physical health 16 , interpersonal relationships 17 , academic output, and work performance 18 , 19 , and may also contribute to program attrition 20 , 21 , 22 . As many as 30 to 50% of Ph.D. students drop out of their programs, depending on the country and discipline 23 , 24 , 25 , 26 , 27 . Further, while mental health problems among Ph.D. students raise concerns for the wellbeing of the individuals themselves and their personal networks, they also have broader repercussions for their institutions and academia as a whole 22 .

Despite the potential public health significance of this problem, most evidence syntheses on student mental health have focused on undergraduate students 28 , 29 or graduate students in professional degree programs (e.g., medical students) 30 . In non-systematic summaries, estimates of the prevalence of clinically significant depressive symptoms among Ph.D. students vary considerably 31 , 32 , 33 . Reliable estimates of depression and other mental health problems among Ph.D. students are needed to inform preventive, screening, or treatment efforts. To address this gap in the literature, we conducted a systematic review and meta-analysis to explore patterns of depression, anxiety, and suicidal ideation among Ph.D. students.

figure 1

Flowchart of included articles.

The evidence search yielded 886 articles, of which 286 were excluded as duplicates (Fig.  1 ). An additional nine articles were identified through reference lists or grey literature reports published on university websites. Following a title/abstract review and subsequent full-text review, 520 additional articles were excluded.

Of the 89 remaining articles, 74 were unclear about their definition of graduate students or grouped Ph.D. and non-Ph.D. students without disaggregating the estimates by degree level. We obtained contact information for the authors of most of these articles (69 [93%]), requesting additional data. Three authors clarified that their study samples only included Ph.D. students 34 , 35 , 36 . Fourteen authors confirmed that their study samples included both Ph.D. and non-Ph.D. students but provided us with data on the subsample of Ph.D. students 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 . Where authors clarified that the sample was limited to graduate students in non-doctoral degree programs, did not provide additional data on the subsample of Ph.D. students, or did not reply to our information requests, we excluded the studies due to insufficient information (Supplementary Table S1 ).

Ultimately, 32 articles describing the findings of 29 unique studies were identified and included in the review 16 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 (Table 1 ). Overall, 26 studies measured depression, 19 studies measured anxiety, and six studies measured suicidal ideation. Three pairs of articles reported data on the same sample of Ph.D. students 33 , 38 , 45 , 51 , 53 , 56 and were therefore grouped in Table 1 and reported as three studies. Publication dates ranged from 1979 to 2019, but most articles (22/32 [69%]) were published after 2015. Most studies were conducted in the United States (20/29 [69%]), with additional studies conducted in Australia, Belgium, China, Iran, Mexico, and South Korea. Two studies were conducted in cross-national settings representing 48 additional countries. None were conducted in sub-Saharan Africa or South America. Most studies included students completing their degrees in a mix of disciplines (17/29 [59%]), while 12 studies were limited to students in a specific field (e.g., biomedicine, education). The median sample size was 172 students (interquartile range [IQR], 68–654; range, 6–6405). Seven studies focused on mental health outcomes in demographic subgroups, including ethnic or racialized minority students 37 , 41 , 43 , international students 47 , 50 , and sexual and gender minority students 42 , 54 .

In all, 16 studies reported the prevalence of depression among a total of 23,469 Ph.D. students (Fig.  2 ; range, 10–47%). Of these, the most widely used depression scales were the PHQ-9 (9 studies) and variants of the Center for Epidemiologic Studies-Depression scale (CES-D, 4 studies) 63 , and all studies assessed clinically significant symptoms of depression over the past one to two weeks. Three of these studies reported findings based on data from different survey years of the same parent study (the Healthy Minds Study) 40 , 42 , 43 , but due to overlap in the survey years reported across articles, these data were pooled. Most of these studies were based on data collected through online surveys (13/16 [81%]). Ten studies (63%) used random or systematic sampling, four studies (25%) used convenience sampling, and two studies (13%) used multiple sampling techniques.

figure 2

Pooled estimate of the proportion of Ph.D. students with clinically significant symptoms of depression.

The estimated proportion of Ph.D. students assessed as having clinically significant symptoms of depression was 0.24 (95% confidence interval [CI], 0.18–0.31; 95% predictive interval [PI], 0.04–0.54), with significant evidence of between-study heterogeneity (I 2  = 98.75%). A subgroup analysis restricted to the twelve studies conducted in the United States yielded similar findings (pooled estimate [ES] = 0.23; 95% CI, 0.15–0.32; 95% PI, 0.01–0.60), with no appreciable difference in heterogeneity (I 2  = 98.91%). A subgroup analysis restricted to the studies that used the PHQ-9 to assess depression yielded a slightly lower prevalence estimate and a slight reduction in heterogeneity (ES = 0.18; 95% CI, 0.14–0.22; 95% PI, 0.07–0.34; I 2  = 90.59%).

Nine studies reported the prevalence of clinically significant symptoms of anxiety among a total of 15,626 Ph.D. students (Fig.  3 ; range 4–49%). Of these, the most widely used anxiety scale was the 7-item Generalized Anxiety Disorder scale (GAD-7, 5 studies) 64 . Data from three of the Healthy Minds Study articles were pooled into two estimates, because the scale used to measure anxiety changed midway through the parent study (i.e., the Patient Health Questionnaire-Generalized Anxiety Disorder [PHQ-GAD] scale was used from 2007 to 2012 and then switched to the GAD-7 in 2013 40 ). Most studies (8/9 [89%]) assessed clinically significant symptoms of anxiety over the past two to four weeks, with the one remaining study measuring anxiety over the past year. Again, most of these studies were based on data collected through online surveys (7/9 [78%]). Five studies (56%) used random or systematic sampling, two studies (22%) used convenience sampling, and two studies (22%) used multiple sampling techniques.

figure 3

Pooled estimate of the proportion of Ph.D. students with clinically significant symptoms of anxiety.

The estimated proportion of Ph.D. students assessed as having anxiety was 0.17 (95% CI, 0.12–0.23; 95% PI, 0.02–0.41), with significant evidence of between-study heterogeneity (I 2  = 98.05%). The subgroup analysis restricted to the five studies conducted in the United States yielded a slightly lower proportion of students assessed as having anxiety (ES = 0.14; 95% CI, 0.08–0.20; 95% PI, 0.00–0.43), with no appreciable difference in heterogeneity (I 2  = 98.54%).

Six studies reported the prevalence of suicidal ideation (range, 2–12%), but the recall windows varied greatly (e.g., ideation within the past 2 weeks vs. past year), precluding pooled estimation.

Additional stratified pooled estimates could not be obtained. One study of Ph.D. students across 54 countries found that phase of study was a significant moderator of mental health, with students in the comprehensive examination and dissertation phases more likely to experience distress compared with students primarily engaged in coursework 59 . Other studies identified a higher prevalence of mental ill-health among women 54 ; lesbian, gay, bisexual, transgender, and queer (LGBTQ) students 42 , 54 , 60 ; and students with multiple intersecting identities 54 .

Several studies identified correlates of mental health problems including: project- and supervisor-related issues, stress about productivity, and self-doubt 53 , 62 ; uncertain career prospects, poor living conditions, financial stressors, lack of sleep, feeling devalued, social isolation, and advisor relationships 61 ; financial challenges 38 ; difficulties with work-life balance 58 ; and feelings of isolation and loneliness 52 . Despite these challenges, help-seeking appeared to be limited, with only about one-quarter of Ph.D. students reporting mental health problems also reporting that they were receiving treatment 40 , 52 .

Risk of bias

Twenty-one of 32 articles were assessed as having low risk of bias (Supplementary Table S2 ). Five articles received one point for all five categories on the risk of bias assessment (lowest risk of bias), and one article received no points (highest risk). The mean risk of bias score was 3.22 (standard deviation, 1.34; median, 4; IQR, 2–4). Restricting the estimation sample to 12 studies assessed as having low risk of bias, the estimated proportion of Ph.D. students with depression was 0.25 (95% CI, 0.18–0.33; 95% PI, 0.04–0.57; I 2  = 99.11%), nearly identical to the primary estimate, with no reduction in heterogeneity. The estimated proportion of Ph.D. students with anxiety, among the 7 studies assessed as having low risk of bias, was 0.12 (95% CI, 0.07–0.17; 95% PI, 0.01–0.34; I 2  = 98.17%), again with no appreciable reduction in heterogeneity.

In our meta-analysis of 16 studies representing 23,469 Ph.D. students, we estimated that the pooled prevalence of clinically significant symptoms of depression was 24%. This estimate is consistent with estimated prevalence rates in other high-stress biomedical trainee populations, including medical students (27%) 30 , resident physicians (29%) 65 , and postdoctoral research fellows (29%) 66 . In the sample of nine studies representing 15,626 Ph.D. students, we estimated that the pooled prevalence of clinically significant symptoms of anxiety was 17%. While validated screening instruments tend to over-identify cases of depression (relative to structured clinical interviews) by approximately a factor of two 67 , 68 , our findings nonetheless point to a major public health problem among Ph.D. students. Available data suggest that the prevalence of depressive and anxiety disorders in the general population ranges from 5 to 7% worldwide 69 , 70 . In contrast, prevalence estimates of major depressive disorder among young adults have ranged from 13% (for young adults between the ages of 18 and 29 years in the 2012–2013 National Epidemiologic Survey on Alcohol and Related Conditions III 71 ) to 15% (for young adults between the ages of 18 and 25 in the 2019 U.S. National Survey on Drug Use and Health 72 ). Likewise, the prevalence of generalized anxiety disorder was estimated at 4% among young adults between the ages of 18 and 29 in the 2001–03 U.S. National Comorbidity Survey Replication 73 . Thus, even accounting for potential upward bias inherent in these studies’ use of screening instruments, our estimates suggest that the rates of recent clinically significant symptoms of depression and anxiety are greater among Ph.D. students compared with young adults in the general population.

Further underscoring the importance of this public health issue, Ph.D. students face unique stressors and uncertainties that may put them at increased risk for mental health and substance use problems. Students grapple with competing responsibilities, including coursework, teaching, and research, while also managing interpersonal relationships, social isolation, caregiving, and financial insecurity 3 , 10 . Increasing enrollment in doctoral degree programs has not been matched with a commensurate increase in tenure-track academic job opportunities, intensifying competition and pressure to find employment post-graduation 5 . Advisor-student power relations rarely offer options for recourse if and when such relationships become strained, particularly in the setting of sexual harassment, unwanted sexual attention, sexual coercion, and rape 74 , 75 , 76 , 77 , 78 . All of these stressors may be magnified—and compounded by stressors unrelated to graduate school—for subgroups of students who are underrepresented in doctoral degree programs and among whom mental health problems are either more prevalent and/or undertreated compared with the general population, including Black, indigenous, and other people of color 13 , 79 , 80 ; women 81 , 82 ; first-generation students 14 , 15 ; people who identify as LGBTQ 83 , 84 , 85 ; people with disabilities; and people with multiple intersecting identities.

Structural- and individual-level interventions will be needed to reduce the burden of mental ill-health among Ph.D. students worldwide 31 , 86 . Despite the high prevalence of mental health and substance use problems 87 , Ph.D. students demonstrate low rates of help-seeking 40 , 52 , 88 . Common barriers to help-seeking include fears of harming one’s academic career, financial insecurity, lack of time, and lack of awareness 89 , 90 , 91 , as well as health care systems-related barriers, including insufficient numbers of culturally competent counseling staff, limited access to psychological services beyond time-limited psychotherapies, and lack of programs that address the specific needs either of Ph.D. students in general 92 or of Ph.D. students belonging to marginalized groups 93 , 94 . Structural interventions focused solely on enhancing student resilience might include programs aimed at reducing stigma, fostering social cohesion, and reducing social isolation, while changing norms around help-seeking behavior 95 , 96 . However, structural interventions focused on changing stressogenic aspects of the graduate student environment itself are also needed 97 , beyond any enhancements to Ph.D. student resilience, including: undercutting power differentials between graduate students and individual faculty advisors, e.g., by diffusing power among multiple faculty advisors; eliminating racist, sexist, and other discriminatory behaviors by faculty advisors 74 , 75 , 98 ; valuing mentorship and other aspects of “invisible work” that are often disproportionately borne by women faculty and faculty of color 99 , 100 ; and training faculty members to emphasize the dignity of, and adequately prepare Ph.D. students for, non-academic careers 101 , 102 .

Our findings should be interpreted with several limitations in mind. First, the pooled estimates are characterized by a high degree of heterogeneity, similar to meta-analyses of depression prevalence in other populations 30 , 65 , 103 , 104 , 105 . Second, we were only able to aggregate depression prevalence across 16 studies and anxiety prevalence across nine studies (the majority of which were conducted in the U.S.) – far fewer than the 183 studies included in a meta-analysis of depression prevalence among medical students 30 and the 54 studies included in a meta-analysis of resident physicians 65 . These differences underscore the need for more rigorous study in this critical area. Many articles were either excluded from the review or from the meta-analyses for not meeting inclusion criteria or not reporting relevant statistics. Future research in this area should ensure the systematic collection of high-quality, clinically relevant data from a comprehensive set of institutions, across disciplines and countries, and disaggregated by graduate student type. As part of conducting research and addressing student mental health and wellbeing, university deans, provosts, and chancellors should partner with national survey and program institutions (e.g., Graduate Student Experience in the Research University [gradSERU] 106 , the American College Health Association National College Health Assessment [ACHA-NCHA], and HealthyMinds). Furthermore, federal agencies that oversee health and higher education should provide resources for these efforts, and accreditation agencies should require monitoring of mental health and programmatic responses to stressors among Ph.D. students.

Third, heterogeneity in reporting precluded a meta-analysis of the suicidality outcomes among the few studies that reported such data. While reducing the burden of mental health problems among graduate students is an important public health aim in itself, more research into understanding non-suicidal self-injurious behavior, suicide attempts, and completed suicide among Ph.D. students is warranted. Fourth, it is possible that the grey literature reports included in our meta-analysis are more likely to be undertaken at research-intensive institutions 52 , 60 , 61 . However, the direction of bias is unpredictable: mental health problems among Ph.D. students in research-intensive environments may be more prevalent due to detection bias, but such institutions may also have more resources devoted to preventive, screening, or treatment efforts 92 . Fifth, inclusion in this meta-analysis and systematic review was limited to those based on community samples. Inclusion of clinic-based samples, or of studies conducted before or after specific milestones (e.g., the qualifying examination or dissertation prospectus defense), likely would have yielded even higher pooled prevalence estimates of mental health problems. And finally, few studies provided disaggregated data according to sociodemographic factors, stage of training (e.g., first year, pre-prospectus defense, all-but-dissertation), or discipline of study. These factors might be investigated further for differences in mental health outcomes.

Clinically significant symptoms of depression and anxiety are pervasive among graduate students in doctoral degree programs, but these are understudied relative to other trainee populations. Structural and clinical interventions to systematically monitor and promote the mental health and wellbeing of Ph.D. students are urgently needed.

This systematic review and meta-analysis follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach (Supplementary Table S3 ) 107 . This study was based on data collected from publicly available bibliometric databases and did not require ethical approval from our institutional review boards.

Eligibility criteria

Studies were included if they provided data on either: (a) the number or proportion of Ph.D. students with clinically significant symptoms of depression or anxiety, ascertained using a validated scale; or (b) the mean depression or anxiety symptom severity score and its standard deviation among Ph.D. students. Suicidal ideation was examined as a secondary outcome.

We excluded studies that focused on graduate students in non-doctoral degree programs (e.g., Master of Public Health) or professional degree programs (e.g., Doctor of Medicine, Juris Doctor) because more is known about mental health problems in these populations 30 , 108 , 109 , 110 and because Ph.D. students face unique uncertainties. To minimize the potential for upward bias in our pooled prevalence estimates, we excluded studies that recruited students from campus counseling centers or other clinic-based settings. Studies that measured affective states, or state anxiety, before or after specific events (e.g., terrorist attacks, qualifying examinations) were also excluded.

If articles described the study sample in general terms (i.e., without clarifying the degree level of the participants), we contacted the authors by email for clarification. Similarly, if articles pooled results across graduate students in doctoral and non-doctoral degree programs (e.g., reporting a single estimate for a mixed sample of graduate students), we contacted the authors by email to request disaggregated data on the subsample of Ph.D. students. If authors did not reply after two contact attempts spaced over 2 months, or were unable to provide these data, we excluded these studies from further consideration.

Search strategy and data extraction

PubMed, Embase, PsycINFO, ERIC, and Business Source Complete were searched from inception of each database to November 5, 2019. The search strategy included terms related to mental health symptoms (e.g., depression, anxiety, suicide), the study population (e.g., graduate, doctoral), and measurement category (e.g., depression, Columbia-Suicide Severity Rating Scale) (Supplementary Table S4 ). In addition, we searched the reference lists and the grey literature.

After duplicates were removed, we screened the remaining titles and abstracts, followed by a full-text review. We excluded articles following the eligibility criteria listed above (i.e., those that were not focused on Ph.D. students; those that did not assess depression and/or anxiety using a validated screening tool; those that did not report relevant statistics of depression and/or anxiety; and those that recruited students from clinic-based settings). Reasons for exclusion were tracked at each stage. Following selection of included articles, two members of the research team extracted data and conducted risk of bias assessments. Discrepancies were discussed with a third member of the research team. Key extraction variables included: study design, geographic region, sample size, response rate, demographic characteristics of the sample, screening instrument(s) used for assessment, mean depression or anxiety symptom severity score (and its standard deviation), and the number (or proportion) of students experiencing clinically significant symptoms of depression or anxiety.

Risk of bias assessment

Following prior work 30 , 65 , the Newcastle–Ottawa Scale 111 was adapted and used to assess risk of bias in the included studies. Each study was assessed across 5 categories: sample representativeness, sample size, non-respondents, ascertainment of outcomes, and quality of descriptive statistics reporting (Supplementary Information S5 ). Studies were judged as having either low risk of bias (≥ 3 points) or high risk of bias (< 3 points).

Analysis and synthesis

Before pooling the estimated prevalence rates across studies, we first transformed the proportions using a variance-stabilizing double arcsine transformation 112 . We then computed pooled estimates of prevalence using a random effects model 113 . Study specific confidence intervals were estimated using the score method 114 , 115 . We estimated between-study heterogeneity using the I 2 statistic 116 . In an attempt to reduce the extent of heterogeneity, we re-estimated pooled prevalence restricting the analysis to studies conducted in the United States and to studies in which depression assessment was based on the 9-item Patient Health Questionnaire (PHQ-9) 117 . All analyses were conducted using Stata (version 16; StataCorp LP, College Station, Tex.). Where heterogeneity limited our ability to summarize the findings using meta-analysis, we synthesized the data using narrative review.

Woolston, C. Why mental health matters. Nature 557 , 129–131 (2018).

Article   ADS   CAS   Google Scholar  

Woolston, C. A love-hurt relationship. Nature 550 , 549–552 (2017).

Article   Google Scholar  

Woolston, C. PhD poll reveals fear and joy, contentment and anguish. Nature 575 , 403–406 (2019).

Article   ADS   CAS   PubMed   Google Scholar  

Byrom, N. COVID-19 and the research community: The challenges of lockdown for early-career researchers. Elife 9 , e59634 (2020).

Article   PubMed   PubMed Central   Google Scholar  

Alberts, B., Kirschner, M. W., Tilghman, S. & Varmus, H. Rescuing US biomedical research from its systemic flaws. Proc. Natl. Acad. Sci. USA 111 , 5773–5777 (2014).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

McDowell, G. S. et al. Shaping the future of research: A perspective from junior scientists. F1000Res 3 , 291 (2014).

Article   PubMed   Google Scholar  

Petersen, A. M., Riccaboni, M., Stanley, H. E. & Pammoli, F. Persistence and uncertainty in the academic career. Proc. Natl. Acad. Sci. USA 109 , 5213–5218 (2012).

Leshner, A. I. Rethinking graduate education. Science 349 , 349 (2015).

National Academies of Sciences Engineering and Medicine. Graduate STEM Education for the 21st Century (National Academies Press, 2018).

Google Scholar  

Charles, S. T., Karnaze, M. M. & Leslie, F. M. Positive factors related to graduate student mental health. J. Am. Coll. Health https://doi.org/10.1080/07448481.2020.1841207 (2021).

Riddle, E. S., Niles, M. T. & Nickerson, A. Prevalence and factors associated with food insecurity across an entire campus population. PLoS ONE 15 , e0237637 (2020).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Soldavini, J., Berner, M. & Da Silva, J. Rates of and characteristics associated with food insecurity differ among undergraduate and graduate students at a large public university in the Southeast United States. Prev. Med. Rep. 14 , 100836 (2019).

Clark, U. S. & Hurd, Y. L. Addressing racism and disparities in the biomedical sciences. Nat. Hum. Behav. 4 , 774–777 (2020).

Gardner, S. K. The challenges of first-generation doctoral students. New Dir. High. Educ. 2013 , 43–54 (2013).

Seay, S. E., Lifton, D. E., Wuensch, K. L., Bradshaw, L. K. & McDowelle, J. O. First-generation graduate students and attrition risks. J. Contin. High. Educ. 56 , 11–25 (2008).

Rummell, C. M. An exploratory study of psychology graduate student workload, health, and program satisfaction. Prof. Psychol. Res. Pract. 46 , 391–399 (2015).

Salzer, M. S. A comparative study of campus experiences of college students with mental illnesses versus a general college sample. J. Am. Coll. Health 60 , 1–7 (2012).

Hysenbegasi, A., Hass, S. & Rowland, C. The impact of depression on the academic productivity of university students. J. Ment. Health Policy Econ. 8 , 145–151 (2005).

PubMed   Google Scholar  

Harvey, S. et al. Depression and work performance: An ecological study using web-based screening. Occup. Med. (Lond.) 61 , 209–211 (2011).

Article   CAS   Google Scholar  

Eisenberg, D., Golberstein, E. & Hunt, J. B. Mental health and academic success in college. BE J. Econ. Anal. Policy 9 , 40 (2009).

Lovitts, B. E. Who is responsible for graduate student attrition--the individual or the institution? Toward an explanation of the high and persistent rate of attrition. In:  Annual Meeting of the American Education Research Association (New York, 1996). Available at: https://eric.ed.gov/?id=ED399878.

Gardner, S. K. Student and faculty attributions of attrition in high and low-completing doctoral programs in the United States. High. Educ. 58 , 97–112 (2009).

Lovitts, B. E. Leaving the Ivory Tower: The Causes and Consequences of Departure from Doctoral Study (Rowman & Littlefield Publishers, 2001).

Rigler Jr, K. L., Bowlin, L. K., Sweat, K., Watts, S. & Throne, R. Agency, socialization, and support: a critical review of doctoral student attrition. In:  Proceedings of the Third International Conference on Doctoral Education: Organizational Leadership and Impact , University of Central Florida, Orlando, (2017).

Golde, C. M. The role of the department and discipline in doctoral student attrition: Lessons from four departments. J. High. Educ. 76 , 669–700 (2005).

Council of Graduate Schools. PhD Completion and Attrition: Analysis of Baseline Program Data from the PhD Completion Project (Council of Graduate Schools, 2008).

National Research Council. A Data-Based Assessment of Research-Doctorate Programs in the United States (The National Academies Press, 2011).

Akhtar, P. et al. Prevalence of depression among university students in low and middle income countries (LMICs): A systematic review and meta-analysis. J. Affect. Disord. 274 , 911–919 (2020).

Mortier, P. et al. The prevalence of suicidal thoughts and behaviours among college students: A meta-analysis. Psychol. Med. 48 , 554–565 (2018).

Article   CAS   PubMed   Google Scholar  

Rotenstein, L. S. et al. Prevalence of depression, depressive symptoms, and suicidal ideation among medical students: A systematic review and meta-analysis. JAMA 316 , 2214–2236 (2016).

Tsai, J. W. & Muindi, F. Towards sustaining a culture of mental health and wellness for trainees in the biosciences. Nat. Biotechnol. 34 , 353–355 (2016).

Levecque, K., Anseel, F., De Beuckelaer, A., Van der Heyden, J. & Gisle, L. Work organization and mental health problems in PhD students. Res. Policy 46 , 868–879 (2017).

Nagy, G. A. et al. Burnout and mental health problems in biomedical doctoral students. CBE Life Sci. Educ. 18 , 1–14 (2019).

Garcia-Williams, A., Moffitt, L. & Kaslow, N. J. Mental health and suicidal behavior among graduate students. Acad. Psychiatry 28 , 554–560 (2014).

Sheldon, K. M. Emotionality differences between artists and scientists. J. Res. Pers. 28 , 481–491 (1994).

Lightstone, S. N., Swencionis, C. & Cohen, H. W. The effect of bioterrorism messages on anxiety levels. Int. Q. Community Health Educ. 24 , 111–122 (2006).

Clark, C. R., Mercer, S. H., Zeigler-Hill, V. & Dufrene, B. A. Barriers to the success of ethnic minority students in school psychology graduate programs. School Psych. Rev. 41 , 176–192 (2012).

Eisenberg, D., Gollust, S. E., Golberstein, E. & Hefner, J. L. Prevalence and correlates of depression, anxiety, and suicidality among university students. Am. J. Orthopsychiatry 77 , 534–542 (2007).

Farrer, L. M., Gulliver, A., Bennett, K., Fassnacht, D. B. & Griffiths, K. M. Demographic and psychosocial predictors of major depression and generalised anxiety disorder in Australian university students. BMC Psychiatry 16 , 241 (2016).

Lipson, S. K., Zhou, S., Wagner, B. III., Beck, K. & Eisenberg, D. Major differences: Variations in undergraduate and graduate student mental health and treatment utilization across academic disciplines. J. Coll. Stud. Psychother. 30 , 23–41 (2016).

Lilly, F. R. W. et al. The influence of racial microaggressions and social rank on risk for depression among minority graduate and professional students. Coll. Stud. J. 52 , 86–104 (2018).

Lipson, S. K., Raifman, J., Abelson, S. & Reisner, S. L. Gender minority mental health in the U.S.: Results of a national survey on college campuses. Am. J. Prev. Med. 57 , 293–301 (2019).

Lipson, S. K., Kern, A., Eisenberg, D. & Breland-Noble, A. M. Mental health disparities among college students of color. J. Adolesc. Health 63 , 348–356 (2018).

Baker, A. J. L. & Chambers, J. Adult recall of childhood exposure to parental conflict: Unpacking the black box of parental alienation. J. Divorce Remarriage 52 , 55–76 (2011).

Golberstein, E., Eisenberg, D. & Gollust, S. E. Perceived stigma and mental health care seeking. Psychiatr. Serv. 59 , 392–399 (2008).

Hindman, R. K., Glass, C. R., Arnkoff, D. B. & Maron, D. D. A comparison of formal and informal mindfulness programs for stress reduction in university students. Mindfulness 6 , 873–884 (2015).

Hirai, R., Frazier, P. & Syed, M. Psychological and sociocultural adjustment of first-year international students: Trajectories and predictors. J. Couns. Psychol. 62 , 438–452 (2015).

Lee, J. S. & Jeong, B. Having mentors and campus social networks moderates the impact of worries and video gaming on depressive symptoms: A moderated mediation analysis. BMC Public Health 14 , 1–12 (2014).

Corral-Frias, N. S., Velardez Soto, S. N., Frias-Armenta, M., Corona-Espinosa, A. & Watson, D. Concurrent validity and reliability of two short forms of the mood and anxiety symptom questionnaire in a student sample from Northwest Mexico. J. Psychopathol. Behav. Assess. 41 , 304–316 (2019).

Meghani, D. T. & Harvey, E. A. Asian Indian international students’ trajectories of depression, acculturation, and enculturation. Asian Am. J. Psychol. 7 , 1–14 (2016).

Barry, K. M., Woods, M., Martin, A., Stirling, C. & Warnecke, E. A randomized controlled trial of the effects of mindfulness practice on doctoral candidate psychological status. J. Am. Coll. Health 67 , 299–307 (2019).

Bolotnyy, V., Basilico, M. & Barreira, P. Graduate student mental health: lessons from American economics departments. J. Econ. Lit. (in press).

Barry, K. M., Woods, M., Warnecke, E., Stirling, C. & Martin, A. Psychological health of doctoral candidates, study-related challenges and perceived performance. High. Educ. Res. Dev. 37 , 468–483 (2018).

Boyle, K. M. & McKinzie, A. E. The prevalence and psychological cost of interpersonal violence in graduate and law school. J. Interpers. Violence   36 , 6319-6350 (2021).

Heinrich, D. L. The causal influence of anxiety on academic achievement for students of differing intellectual ability. Appl. Psychol. Meas. 3 , 351–359 (1979).

Hish, A. J. et al. Applying the stress process model to stress-burnout and stress-depression relationships in biomedical doctoral students: A cross-sectional pilot study. CBE Life Sci. Educ. 18 , 1–11 (2019).

Jamshidi, F. et al. A cross-sectional study of psychiatric disorders in medical sciences students. Mater. Sociomed. 29 , 188–191 (2017).

Liu, C. et al. Prevalence and associated factors of depression and anxiety among doctoral students: The mediating effect of mentoring relationships on the association between research self-efficacy and depression/anxiety. Psychol. Res. Behav. Manag. 12 , 195–208 (2019).

Sverdlik, A. & Hall, N. C. Not just a phase: Exploring the role of program stage on well-being and motivation in doctoral students. J. Adult Contin. Educ. 26 , 1–28 (2019).

University of California Office of the President. The University of California Graduate student Well-Being Survey Report (University of California, 2017).

The Graduate Assembly. Graduate Student Happiness & Well-Being Report (University of California at Berkeley, 2014).

Richardson, C. M., Trusty, W. T. & George, K. A. Trainee wellness: Self-critical perfectionism, self-compassion, depression, and burnout among doctoral trainees in psychology. Couns. Psychol. Q. 33 , 187-198 (2020).

Radloff, L. S. The CES-D Scale: A self-report depression scale for research in the general population. Appl. Psychol. Meas. 1 , 385–401 (1977).

Spitzer, R. L., Kroenke, K., Williams, J. B. W. & Lowe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 166 , 1092–1097 (2006).

Mata, D. A. et al. Prevalence of depression and depressive symptoms among residents physicians: A systematic review and meta-analysis. JAMA 314 , 2373–2383 (2015).

Gloria, C. T. & Steinhardt, M. A. Flourishing, languishing, and depressed postdoctoral fellows: Differences in stress, anxiety, and depressive symptoms. J. Postdoct. Aff. 3 , 1–9 (2013).

Levis, B. et al. Patient Health Questionnaire-9 scores do not accurately estimate depression prevalence: Individual participant data meta-analysis. J. Clin. Epidemiol. 122 , 115-128.e111 (2020).

Tsai, A. C. Reliability and validity of depression assessment among persons with HIV in sub-Saharan Africa: Systematic review and meta-analysis. J. Acquir. Immune Defic. Syndr. 66 , 503–511 (2014).

Baxter, A. J., Scott, K. M., Vos, T. & Whiteford, H. A. Global prevalence of anxiety disorders: A systematic review and meta-regression. Psychol. Med. 43 , 897–910 (2013).

Ferrari, A. et al. Global variation in the prevalence and incidence of major depressive disorder: A systematic review of the epidemiological literature. Psychol. Med. 43 , 471–481 (2013).

Hasin, D. S. et al. Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiatry   75 , 336–346 (2018).

US Substance Abuse and Mental Health Services Administration. Key Substance Use and Mental Health Indicators in the United States: Results from the 2019 National Survey on Drug Use and Health (Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration, 2020).

Kessler, R. C. et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62 , 593–602 (2005).

Working Group report to the Advisory Committee to the NIH Director. Changing the Culture to End Sexual Harassment (U. S. National Institutes of Health, 2019).

National Academies of Sciences Engineering and Medicine. Sexual Harassment of Women: Climate, Culture, and Consequences in Academic Sciences, Engineering, and Medicine (The National Academies Press, 2018).

Wadman, M. A hidden history. Science 360 , 480–485 (2018).

Hockfield, S., Magley, V. & Yoshino, K. Report of the External Review Committee to Review Sexual Harassment at Harvard University (External Review Committee to Review Sexual Harassment at Harvard University, 2021).

Bartlett, T. & Gluckman, N. She left Harvard. He got to stay. Chronicle High. Educ. 64 , A14 (2021). Available at: https://www.chronicle.com/article/she-left-harvard-he-got-to-stay/.

Tseng, M. et al. Strategies and support for Black, Indigenous, and people of colour in ecology and evolutionary biology. Nat. Ecol. Evol. 4 , 1288–1290 (2020).

Williams, D. R. et al. Prevalence and distribution of major depressive disorder in African Americans, Caribbean blacks, and non-Hispanic whites: Results from the National Survey of American Life. Arch. Gen. Psychiatry   64 , 305–315 (2007).

Wu, A. H. Gender bias in rumors among professionals: An identity-based interpretation. Rev. Econ. Stat. 102 , 867–880 (2020).

Kessler, R. C. Epidemiology of women and depression. J. Affect. Disord. 74 , 5–13 (2003).

Mattheis, A., Cruz-Ramirez De Arellano, D. & Yoder, J. B. A model of queer STEM identity in the workplace. J. Homosex 67 , 1839–1863 (2020).

Semlyen, J., King, M., Varney, J. & Hagger-Johnson, G. Sexual orientation and symptoms of common mental disorder or low wellbeing: Combined meta-analysis of 12 UK population health surveys. BMC Psychiatry 16 , 1–19 (2016).

Lark, J. S. & Croteau, J. M. Lesbian, gay, and bisexual doctoral students’ mentoring relationships with faculty in counseling psychology: A qualitative study. Couns. Psychol. 26 , 754–776 (1998).

Jaremka, L. M. et al. Common academic experiences no one talks about: Repeated rejection, imposter syndrome, and burnout. Perspect Psychol Sci 15 , 519–543 (2020).

Allen, H. K. et al. Substance use and mental health problems among graduate students: Individual and program-level correlates. J. Am. Coll. Health https://doi.org/10.1080/07448481.2020.1725020 (2020).

Turner, A. & Berry, T. Counseling center contributions to student retention and graduation: A longitudinal assessment. J. Coll. Stud. Dev. 41 , 627–636 (2000).

Dyrbye, L. N., Thomas, M. R. & Shanafelt, T. D. Medical student distress: Causes, consequences, and proposed solutions. Mayo Clin. Proc. 80 , 1613–1622 (2005).

Tija, J., Givens, J. L. & Shea, J. A. Factors associated with undertreatment of medical student depression. J. Am. Coll. Health 53 , 219–224 (2005).

Dearing, R., Maddux, J. & Tangney, J. Predictors of psychological help seeking in clinical and counseling psychology graduate students. Prof. Psychol. Res. Pract. 36 , 323–329 (2005).

Langin, K. Amid concerns about grad student mental health, one university takes a novel approach. Science https://doi.org/10.1126/science.caredit.aay7113 (2019).

Guillory, D. Combating anti-blackness in the AI community. arXiv , arXiv:2006.16879 (2020).

Galán, C. A. et al. A call to action for an antiracist clinical science. J. Clin. Child Adolesc. Psychol   50 , 12-57 (2021).

Wyman, P. A. et al. Effect of the Wingman-Connect upstream suicide prevention program for air force personnel in training: A cluster randomized clinical trial. JAMA Netw Open 3 , e2022532 (2020).

Knox, K. L. et al. The US Air Force Suicide Prevention Program: Implications for public health policy. Am. J. Public Health 100 , 2457–2463 (2010).

Inclusive Climate Subcommittee of the Government Department Climate Change Committee. Government Department Climate Change: Final Report and Recommendations (Government Department, Harvard University, 2019).

Inclusive Climate Subcommittee of the Government Department Climate Change Committee. Government Department Climate Survey Report (Government Department, Harvard University, 2019).

Magoqwana, B., Maqabuka, Q. & Tshoaedi, M. “Forced to care” at the neoliberal university: Invisible labour as academic labour performed by Black women academics in the South African university. S. Afr. Rev. Sociol. 50 , 6–21 (2019).

Jones, H. A., Perrin, P. B., Heller, M. B., Hailu, S. & Barnett, C. Black psychology graduate students’ lives matter: Using informal mentoring to create an inclusive climate amidst national race-related events. Prof. Psychol. Res. Pract. 49 , 75–82 (2018).

Mathur, A., Meyers, F. J., Chalkley, R., O’Brien, T. C. & Fuhrmann, C. N. Transforming training to reflect the workforce. Sci. Transl. Med. 7 , 285 (2015).

Scharff, V. Advice: Prepare your Ph.D.s for diverse career paths. Chronicle High. Educ. 65 , 30 (2018).

Beattie, T. S., Smilenova, B., Krishnaratne, S. & Mazzuca, A. Mental health problems among female sex workers in low- and middle-income countries: A systematic review and meta-analysis. PLoS Med. 17 , e1003297 (2020).

Ismail, Z. et al. Prevalence of depression in patients with mild cognitive impairment: A systematic review and meta-analysis. JAMA Psychiatry   74 , 58–67 (2017).

Lim, G. Y. et al. Prevalence of depression in the community from 30 countries between 1994 and 2014. Sci. Rep. 8 , 1–10 (2018).

Article   ADS   Google Scholar  

Jones-White, D. R., Soria, K. M., Tower, E. K. B. & Horner, O. G. Factors associated with anxiety and depression among U.S. doctoral students: Evidence from the gradSERU survey. J. Am. Coll. Health https://doi.org/10.1080/07448481.2020.1865975 (2021).

Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 151 , 264–269 (2009).

Helmers, K. F., Danoff, D., Steinert, Y., Leyton, M. & Young, S. N. Stress and depressed mood in medical students, law students, and graduate students at McGill University. Acad. Med. 72 , 708–714 (1997).

Rabkow, N. et al. Facing the truth: A report on the mental health situation of German law students. Int. J. Law Psychiatry 71 , 101599 (2020).

Bergin, A. & Pakenham, K. Law student stress: Relationships between academic demands, social isolation, career pressure, study/life imbalance and adjustment outcomes in law students. Psychiatr. Psychol. Law 22 , 388–406 (2015).

Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 25 , 603–605 (2010).

Freeman, M. F. & Tukey, J. W. Transformations related to the angular and the square root. Ann. Math. Stat. 21 , 607–611 (1950).

Article   MathSciNet   MATH   Google Scholar  

DerSimonian, R. & Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 7 , 177–188 (1986).

Wilson, E. B. Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 22 , 209–212 (1927).

Newcombe, R. G. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Stat. Med. 17 , 857–872 (1998).

Higgins, J. P. T. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21 , 1539–1558 (2002).

Kroenke, K., Spitzer, R. L. & Williams, J. B. W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 16 , 606–613 (2001).

Download references

Acknowledgements

We thank the following investigators for generously sharing their time and/or data: Gordon J. G. Asmundson, Ph.D., Amy J. L. Baker, Ph.D., Hillel W. Cohen, Dr.P.H., Alcir L. Dafre, Ph.D., Deborah Danoff, M.D., Daniel Eisenberg, Ph.D., Lou Farrer, Ph.D., Christy B. Fraenza, Ph.D., Patricia A. Frazier, Ph.D., Nadia Corral-Frías, Ph.D., Hanga Galfalvy, Ph.D., Edward E. Goldenberg, Ph.D., Robert K. Hindman, Ph.D., Jürgen Hoyer, Ph.D., Ayako Isato, Ph.D., Azharul Islam, Ph.D., Shanna E. Smith Jaggars, Ph.D., Bumseok Jeong, M.D., Ph.D., Ju R. Joeng, Nadine J. Kaslow, Ph.D., Rukhsana Kausar, Ph.D., Flavius R. W. Lilly, Ph.D., Sarah K. Lipson, Ph.D., Frances Meeten, D.Phil., D.Clin.Psy., Dhara T. Meghani, Ph.D., Sterett H. Mercer, Ph.D., Masaki Mori, Ph.D., Arif Musa, M.D., Shizar Nahidi, M.D., Ph.D., Arthur M. Nezu, Ph.D., D.H.L., Angelo Picardi, M.D., Nicole E. Rossi, Ph.D., Denise M. Saint Arnault, Ph.D., Sagar Sharma, Ph.D., Bryony Sheaves, D.Clin.Psy., Kennon M. Sheldon, Ph.D., Daniel Shepherd, Ph.D., Keisuke Takano, Ph.D., Sara Tement, Ph.D., Sherri Turner, Ph.D., Shawn O. Utsey, Ph.D., Ron Valle, Ph.D., Caleb Wang, B.S., Pengju Wang, Katsuyuki Yamasaki, Ph.D.

A.C.T. acknowledges funding from the Sullivan Family Foundation. This paper does not reflect an official statement or opinion from the County of San Mateo.  

Author information

Authors and affiliations.

Center for Global Health, Massachusetts General Hospital, Boston, MA, USA

Emily N. Satinsky & Alexander C. Tsai

San Mateo County Behavioral Health and Recovery Services, San Mateo, CA, USA

Tomoki Kimura

Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA, USA

Mathew V. Kiang

Center for Population Health Sciences, Stanford University School of Medicine, Palo Alto, CA, USA

Harvard Society of Fellows, Harvard University, Cambridge, MA, USA

Rediet Abebe

Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA, USA

Department of Economics, Hankamer School of Business, Baylor University, Waco, TX, USA

Scott Cunningham

Department of Sociology, Washington University in St. Louis, St. Louis, MO, USA

Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA

Xiaofei Lin

Departments of Newborn Medicine and Psychiatry, Brigham and Women’s Hospital, Boston, MA, USA

Cindy H. Liu

Harvard Medical School, Boston, MA, USA

Cindy H. Liu & Alexander C. Tsai

Centre for Global Health, Edinburgh Medical School, Usher Institute, University of Edinburgh, Edinburgh, Scotland, UK

Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA

Department of Global Health, Institute for Life Course Health Research, Stellenbosch University, Cape Town, South Africa

Mark Tomlinson

School of Nursing and Midwifery, Queens University, Belfast, UK

Fielding School of Public Health, Los Angeles Area Health Services Research Training Program, University of California Los Angeles, Los Angeles, CA, USA

Miranda Yaver

Mongan Institute, Massachusetts General Hospital, Boston, MA, USA

Alexander C. Tsai

You can also search for this author in PubMed   Google Scholar

Contributions

A.C.T. conceptualized the study and provided supervision. T.K. conducted the search. E.N.S. contacted authors for additional information not reported in published articles. E.N.S. and T.K. extracted data and performed the quality assessment appraisal. E.N.S. and A.C.T. conducted the statistical analysis and drafted the manuscript. T.K., M.V.K., R.A., S.C., H.L., X.L., C.H.L., I.R., S.S., M.T. and M.Y. contributed to the interpretation of the results. All authors provided critical feedback on drafts and approved the final manuscript.

Corresponding authors

Correspondence to Emily N. Satinsky or Alexander C. Tsai .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary information., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Satinsky, E.N., Kimura, T., Kiang, M.V. et al. Systematic review and meta-analysis of depression, anxiety, and suicidal ideation among Ph.D. students. Sci Rep 11 , 14370 (2021). https://doi.org/10.1038/s41598-021-93687-7

Download citation

Received : 31 March 2021

Accepted : 24 June 2021

Published : 13 July 2021

DOI : https://doi.org/10.1038/s41598-021-93687-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

How to improve academic well-being: an analysis of the leveraging factors based on the italian case.

  • Alice Tontodimamma
  • Emiliano del Gobbo
  • Antonio Aquino

Quality & Quantity (2024)

A single-center assessment of mental health and well-being in a biomedical sciences graduate program

  • Sarah K. Jachim
  • Bradley S. Bowles
  • Autumn J. Schulze

Nature Biotechnology (2023)

Mental Health Problems Among Graduate Students in Turkey: a Cross-Sectional Study

  • Cafer Kılıç
  • Faika Şanal Karahan

International Journal for the Advancement of Counselling (2023)

Suicidal affective risk among female college students: the impact of life satisfaction

  • Dawei Huang
  • Xianbin Wang

Current Psychology (2023)

A study in University of Ruhuna for investigating prevalence, risk factors and remedies for psychiatric illnesses among students

  • Patikiri Arachchige Don Shehan Nilm Wijesekara

Scientific Reports (2022)

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

research paper about depression and anxiety

Depression, Anxiety, and Stress as a Function of Psychological Strains: Towards an Etiological Theory of Mood Disorders and Psychopathologies

Affiliations.

  • 1 Central University of Finance and Economics School of Sociology and Psychology, Beijing, China; State University of New York Buffalo State Department of Sociology, USA.
  • 2 Department of Social Work and Social Administration, The University of Hong Kong, Hong Kong, China.
  • 3 Department of Social Psychology, Putra University of Malaysia, Malaysia.
  • 4 Eramishantsev City Clinical Hospital, Moscow, Russia.
  • 5 Department of Human Development and Family Study, Putra University of Malaysia, Malaysia.
  • 6 Faculty of Social Sciences & Liberal Arts, UCSI University, Kuala Lumpur, Malaysia.
  • 7 Department of Psychology and the Centre for Psychosocial Health,The Education University of Hong Kong, Hong Kong, China. Electronic address: [email protected].
  • PMID: 32479327
  • DOI: 10.1016/j.jad.2020.03.076

Background: The etiological factors of mood disorders and psychopathologies are understudied. In this paper, we explored whether social psychological strains are related to depression, anxiety, and stress in non-clinical populations.

Methods: 6,305 college students (39.3% men; 60.7% women) from six Chinese provincial-level jurisdictions completed a paper-and-pencil survey with Psychological Strain Scales (PSS-40) and Depression, Anxiety, and Stress Scales-21 (DASS-21), both validated in Chinese populations.

Results: Both PSS-40 and DASS-21 have high internal consistency reliabilities, and are highly correlated with each other. Hence, Chinese college students with greater psychological strains (value, aspiration, deprivation, or coping) have greater depression, anxiety, and stress. These results still held after controlling for relevant socio-demographic variables in the multiple regression models.

Limitations: This was a cross-sectional study, and the sample only included several provinces in mainland China, not a representative sample of all of them.

Conclusions: Mood disorders and psychopathologies are linked to suicidal thoughts and behaviors. The results of this study extend the Strain Theory of Suicide from explaining the risk factors of suicidality to mood disorders and psychopathologies. Hence, these findings can inform prevention measures among college students, and possibly the general population.

Keywords: Anxiety; China; College students; Depression; Psychological strains; Stress.

Copyright © 2020. Published by Elsevier B.V.

  • Anxiety / epidemiology
  • Anxiety / etiology
  • China / epidemiology
  • Cross-Sectional Studies
  • Depression* / epidemiology
  • Depression* / etiology
  • Mood Disorders* / epidemiology
  • Mood Disorders* / etiology
  • Stress, Psychological / epidemiology

Read our research on: Gun Policy | International Conflict | Election 2024

Regions & Countries

3. problems students are facing at public k-12 schools.

We asked teachers about how students are doing at their school. Overall, many teachers hold negative views about students’ academic performance and behavior.

  • 48% say the academic performance of most students at their school is fair or poor; a third say it’s good and only 17% say it’s excellent or very good.
  • 49% say students’ behavior at their school is fair or poor; 35% say it’s good and 13% rate it as excellent or very good.

Teachers in elementary, middle and high schools give similar answers when asked about students’ academic performance. But when it comes to students’ behavior, elementary and middle school teachers are more likely than high school teachers to say it’s fair or poor (51% and 54%, respectively, vs. 43%).

A horizontal stacked bar chart showing that many teachers hold negative views about students’ academic performance and behavior.

Teachers from high-poverty schools are more likely than those in medium- and low-poverty schools to say the academic performance and behavior of most students at their school are fair or poor.

The differences between high- and low-poverty schools are particularly striking. Most teachers from high-poverty schools say the academic performance (73%) and behavior (64%) of most students at their school are fair or poor. Much smaller shares of teachers from low-poverty schools say the same (27% for academic performance and 37% for behavior).

In turn, teachers from low-poverty schools are far more likely than those from high-poverty schools to say the academic performance and behavior of most students at their school are excellent or very good.

Lasting impact of the COVID-19 pandemic

A horizontal stacked bar chart showing that most teachers say the pandemic has had a lasting negative impact on students’ behavior, academic performance and emotional well-being.

Among those who have been teaching for at least a year, about eight-in-ten teachers say the lasting impact of the pandemic on students’ behavior, academic performance and emotional well-being has been very or somewhat negative. This includes about a third or more saying that the lasting impact has been very negative in each area.

Shares ranging from 11% to 15% of teachers say the pandemic has had no lasting impact on these aspects of students’ lives, or that the impact has been neither positive nor negative. Only about 5% say that the pandemic has had a positive lasting impact on these things.

A smaller majority of teachers (55%) say the pandemic has had a negative impact on the way parents interact with teachers, with 18% saying its lasting impact has been very negative.

These results are mostly consistent across teachers of different grade levels and school poverty levels.

Major problems at school

When we asked teachers about a range of problems that may affect students who attend their school, the following issues top the list:

  • Poverty (53% say this is a major problem at their school)
  • Chronic absenteeism – that is, students missing a substantial number of school days (49%)
  • Anxiety and depression (48%)

One-in-five say bullying is a major problem among students at their school. Smaller shares of teachers point to drug use (14%), school fights (12%), alcohol use (4%) and gangs (3%).

Differences by school level

A bar chart showing that high school teachers more likely to say chronic absenteeism, anxiety and depression are major problems.

Similar shares of teachers across grade levels say poverty is a major problem at their school, but other problems are more common in middle or high schools:

  • 61% of high school teachers say chronic absenteeism is a major problem at their school, compared with 43% of elementary school teachers and 46% of middle school teachers.
  • 69% of high school teachers and 57% of middle school teachers say anxiety and depression are a major problem, compared with 29% of elementary school teachers.
  • 34% of middle school teachers say bullying is a major problem, compared with 13% of elementary school teachers and 21% of high school teachers.

Not surprisingly, drug use, school fights, alcohol use and gangs are more likely to be viewed as major problems by secondary school teachers than by those teaching in elementary schools.

Differences by poverty level

A dot plot showing that majorities of teachers in medium- and high-poverty schools say chronic absenteeism is a major problem.

Teachers’ views on problems students face at their school also vary by school poverty level.

Majorities of teachers in high- and medium-poverty schools say chronic absenteeism is a major problem where they teach (66% and 58%, respectively). A much smaller share of teachers in low-poverty schools say this (34%).

Bullying, school fights and gangs are viewed as major problems by larger shares of teachers in high-poverty schools than in medium- and low-poverty schools.

When it comes to anxiety and depression, a slightly larger share of teachers in low-poverty schools (51%) than in high-poverty schools (44%) say these are a major problem among students where they teach.  

Discipline practices

A pie chart showing that a majority of teachers say discipline practices at their school are mild.

About two-thirds of teachers (66%) say that the current discipline practices at their school are very or somewhat mild – including 27% who say they’re very mild. Only 2% say the discipline practices at their school are very or somewhat harsh, while 31% say they are neither harsh nor mild.

We also asked teachers about the amount of influence different groups have when it comes to determining discipline practices at their school.

  • 67% say teachers themselves don’t have enough influence. Very few (2%) say teachers have too much influence, and 29% say their influence is about right.

A diverging bar chart showing that two-thirds of teachers say they don’t have enough influence over discipline practices at their school.

  • 31% of teachers say school administrators don’t have enough influence, 22% say they have too much, and 45% say their influence is about right.
  • On balance, teachers are more likely to say parents, their state government and the local school board have too much influence rather than not enough influence in determining discipline practices at their school. Still, substantial shares say these groups have about the right amount of influence.

Teachers from low- and medium-poverty schools (46% each) are more likely than those in high-poverty schools (36%) to say parents have too much influence over discipline practices.

In turn, teachers from high-poverty schools (34%) are more likely than those from low- and medium-poverty schools (17% and 18%, respectively) to say that parents don’t have enough influence.

Social Trends Monthly Newsletter

Sign up to to receive a monthly digest of the Center's latest research on the attitudes and behaviors of Americans in key realms of daily life

Report Materials

Table of contents, ‘back to school’ means anytime from late july to after labor day, depending on where in the u.s. you live, among many u.s. children, reading for fun has become less common, federal data shows, most european students learn english in school, for u.s. teens today, summer means more schooling and less leisure time than in the past, about one-in-six u.s. teachers work second jobs – and not just in the summer, most popular.

About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of The Pew Charitable Trusts .

  • Share full article

Advertisement

Supported by

What Doctors Want You to Know About Beta Blockers for Anxiety

Start-ups are making it easier to get the pills online, but experts warn they should be used with caution.

An illustration of a person lying curled up on the floor with vibrating lines, sweat droplets and lightning bolts to show their stressed state. Two halves of a pill are on either side of the person with hands emitting from each side to block the stress signals.

By Christina Caron

Anxious ahead of a big job interview? Worried about giving a speech? First date nerves?

The solution, some digital start-ups suggest, is a beta blocker, a type of medication that can slow heart rate and lower blood pressure — masking some of the physical symptoms of anxiety.

Typically a trip to the doctor’s office would be necessary to get a prescription, but a number of companies are now connecting patients with doctors for quick virtual visits and shipping the medication to people’s homes.

“No more ‘Shaky and Sweaty,’” one online ad promised. “Easy fast 15 minute intake.”

That worries Dr. Yvette I. Sheline, a professor of psychiatry at the University of Pennsylvania Perelman School of Medicine.

“The first question is: What is going on with this person?” Dr. Sheline said. Are they depressed in addition to anxious? Do they have chronic anxiety or is it just a temporary case of stage fright? “You don’t want to end up prescribing the wrong thing,” she added.

In addition, although beta blockers are generally considered safe, experts say they can carry unpleasant side effects and should be used with caution.

What are beta blockers?

Beta blockers such as propranolol hydrochloride have been approved by the Food and Drug Administration for chest pain, migraine prevention, involuntary tremors, abnormal heart rhythms and other uses.

Some are still prescribed for hypertension, although they’re no longer considered the preferred treatment , mainly because other medications are more effective in preventing stroke and death.

Beta blockers can ease the physical symptoms of the “fight or flight” response to stress, such as tremors, sweaty palms or a racing heart, but they are not F.D.A.-approved to treat anxiety disorders.

For decades, doctors have prescribed them for issues other than their approved uses, including for problems like stage fright. In recent years, celebrities like Robert Downey Jr. and Khloé Kardashian have said the medications helped them overcome performance anxiety.

How do they work?

When we start feeling anxious or stressed, our bodies produce adrenaline, which prepares us to respond to perceived danger. The hormone signals our heart to beat faster and narrows our blood vessels to redirect blood to important organs like the heart and lungs. Breathing quickens, and we start to sweat.

Beta blockers work by “blocking” the effects of adrenaline. They cause the heart to beat more slowly and with less force, which helps lower blood pressure.

But if you’re feeling especially anxious, “your mind is still going to race, you’re still going to ruminate and worry,” said Regine Galanti, a psychologist in Cedarhurst, N.Y., who treats people with anxiety disorders.

In other words, beta blockers are not going to address the root of your fears. “If it becomes like a weekly, ‘Oh, I’m just having a hard time in this course. I’ll just pop a beta blocker every single time.’ I would say, ‘What’s the long-term goal here?’” she added.

Patients are typically only prescribed a few pills for specific situations where they might experience performance anxiety, said Dr. Joseph Bienvenu, a professor of psychiatry at Johns Hopkins University School of Medicine. But some online companies dole out as many as 48 at a time.

Are there any side effects?

Yes. Beta blockers can make people feel dizzy. Other potential side effects include fatigue, cold hands or feet, trouble sleeping and nightmares. They can also cause stomach problems like nausea or diarrhea and, less often, difficulty breathing.

This is why some doctors tell their patients to avoid taking them for the first time on the day of a big event.

Dr. Bienvenu advises patients to initially try the medication on the weekend, or “when you don’t have anything else to do.”

“I just want people to know how it’s going to affect them,” he said.

Is it OK to take them for a potentially scary task, like a big presentation?

Possibly. But experts suggested visiting your general practitioner first.

Beta blockers may not be advised for some people with diabetes, low blood pressure or bradycardia, which is a slow heart beat — or people with asthma or another lung disease. And certain drugs, including some cholesterol and cardiovascular medications, can interact with them.

Online doctors do not have your full medical history and have not examined you in person, said Arthur Caplan, a professor of bioethics at the N.Y.U. Grossman School of Medicine.

Without a physical exam, some patients might not know that they have an underlying issue like an irregular heartbeat, he added. And they may not know who to call if they have questions after getting a prescription.

“You need to be managed on these kinds of drugs,” he said.

For those who often face anxiety-provoking tasks like public speaking, the experts said, it might be most beneficial to try breathing techniques or exposure therapy , which involves directly confronting what makes us anxious to break a pattern of fear and avoidance.

“Masking your anxiety symptoms is not going to teach you how to manage your anxiety symptoms,” Dr. Galanti said.

Christina Caron is a Times reporter covering mental health. More about Christina Caron

Managing Anxiety and Stress

Stay balanced in the face of stress and anxiety with our collection of tools and advice..

How are you, really? This self-guided check-in will help you take stock of your emotional well-being — and learn how to make changes .

These simple and proven strategies will help you manage stress , support your mental health and find meaning in the new year.

First, bring calm and clarity into your life with these 10 tips . Next, identify what you are dealing with: Is it worry, anxiety or stress ?

Persistent depressive disorder is underdiagnosed, and many who suffer from it have never heard of it. Here is what to know .

If you notice drastic shifts in your mood during certain times of the year, you could have seasonal affective disorder. Here are answers to your top questions about the condition .

How much anxiety is too much? Here is how to establish whether you should see a professional about it .

Taylor Swift Fans Spiral Over “the Hallway” After “Depression” Playlist Unveils a New Easter Egg

WHAT HAPPENED IN THE HALLWAY, TAYLOR?!?!

preview for Sabrina Carpenter Is Haunted By This Scene and Asks Us to "Burn It" | The Breakdown | Cosmopolitan

ICYMI (there's no way, but ya know ¯\_(ツ)_/¯), Taylor Swift dropped five new Apple Music playlists based on the Five Stages of Grief: Denial, Anger, Bargaining, Depression, and Acceptance. And now, fans are out here spiraling over a mysterious “hallway” that repeatedly shows up in the “Depression” playlist.

Taylor introduces the “Depression” playlist by musing, “We're going to be exploring the feelings of depression that often lace their way through my songs. In times like these, I'll write a song because I feel lonely or hopeless. And writing a song feels like the only way to process that intensity of an emotion. And while these things are really, really hard to go through, I often feel like when I'm either listening to songs or writing songs that deal with this intensity of loss and hopelessness, usually that's in the phase where I'm close to getting past that feeling.”

Anyway, in conclusion, as ever, HER MIND.

Your Essential Guide to 'The Tortured Poets Department'

taylor swift

Taylor Swift Announces New Album, ‘The Tortured Poets Department’

The Tortured Poets Department drops April 19!

taylor swift

Taylor Swift Reveals Bonus Track Title and New Album Cover for 'The Tortured Poets Department'

"I've never had an album where I needed songwriting more than I needed it on Tortured Poets ."

taylor swift

Taylor Swift Reveals Exact Timeline of When She Wrote 'The Tortured Poets Department'

Okay, this kiiiiinda disputes breakup album theories.

joe alwyn

Joe Alwyn Posts on Instagram for the First Time in Months Amid ‘Tortured Poets’ Speculation

Interesting timing!!!!!

taylor swift

All the Clues and Easter Eggs About Taylor Swift’s New Album, ‘The Tortured Poets Department’

Joe Alwyn found shaking.

taylor swift

Fans Think 'Tortured Poets' Is a Sister Album to 'Midnights' Thanks to Taylor Swift's Visual Easter Eggs

Once you see these side-by-sides, you will not be the same.

taylor swift joe alwyn

Swifties Spiral Over Potential Joe Alwyn Refs in the Tracklist for 'The Tortured Poets Department!'

"From 'london boy' to 'so long london'..."

taylor swift joe alwyn

Taylor Swift’s April 19 Album Release Date Makes So Much Sense Based on What Happened With Joe Alwyn That Day

Joe Alwyn has everything to do with April 19.

joe alwyn

Here’s Why Taylor Swift Fans Think Her New Album Is a Nod to Ex Joe Alwyn

It has to do with a group chat Joe has... 👀

anne hathaway and her husband adam shulman posing on a red carpet together

Beyoncé & Michelle Obama's Friendship Timeline

pippa middleton and james middleton

A Handy-Dandy Guide to Kate Middleton’s Siblings

the 57th annual cma awards arrivals

Chase Just Supported Kelsea at the CMT Awards!

charles and camilla in 1979 special fee applies

Inside King Charles and Camilla’s Scandalous ’Ship

beverly hills, ca march 04 actor sacha baron cohen l and actress isla fisher attend the 2018 vanity fair oscar party hosted by radhika jones at wallis annenberg center for the performing arts on march 4, 2018 in beverly hills, california photo by john shearergetty images

Isla Fisher and Sacha Baron Cohen Divorce

challengers paris photocall at maison de l'amerique latine

Zendaya Aces Tennis Prep in a Checkered Dress

taylor swift in new york city on may 22, 2023

Taylor Was Filmed Celebrating a Birthday in L.A.

hollywood, ca november 05 writer director producer actress angelina jolie pitt l and actor producer brad pitt attend the after party for the opening night gala premiere of universal pictures by the sea during afi fest 2015 presented by audi at tcl chinese 6 theatres on november 5, 2015 in hollywood, california photo by michael kovacgetty images for afi

Angelina Alleges Brad "History of Physical Abuse"

2017 mtv video music awards roaming show

Breaking Down the Messy Cyrus Family Feud

kardashians

The Kardashians Dropped a Slew of Bikini Pics

ariana grande, ethan

An Exact Timeline of Ariana and Ethan’s ‘Ship

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Dialogues Clin Neurosci
  • v.19(2); 2017 Jun

Anxiety disorders: a review of current literature

Florence thibaut.

University Hospital Cochin (Site Tarnier), Faculty of Medicine Paris Descartes, INSERM U 894, CNP, Paris, France

Anxiety disorders are the most prevalent psychiatric disorders. There is a high comorbidity between anxiety (especially generalized anxiety disorders or panic disorders) and depressive disorders or between anxiety disorders, which renders treatment more complex. Current guidelines do not recommend benzodiazepines as first-line treatments due to their potential side effects. Selective serotonin reuptake inhibitors and selective serotonin norepinephrine reuptake inhibitors are recommended as first-line treatments. Psychotherapy, in association with pharmacotherapy, is associated with better efficacy. Finally, a bio-psycho-social model is hypothesized in anxiety disorders.

Anxiety disorders are the most prevalent psychiatric disorders (with a current worldwide prevalence of 7.3% [4.8%-10.9%]—Stein et al, in this issue p 127). Among them, specific phobias are the most common, with a prevalence of 10.3%, then panic disorder (with or without agoraphobia) is the next most common with a prevalence of 6.0%, followed by social phobia (2.7%) and generalized anxiety disorder (2.2%). Evidence is lacking as to whether these disorders have become more prevalent in recent decades. Generally speaking, women are more prone to develop emotional disorders with an onset at adolescence; they are 1.5 to 2 times more likely than men to have an anxiety disorder (Bandelow et al. in this issue p 93). 1 , 2

There is a high comorbidity between anxiety (especially generalized anxiety disorders or panic disorders) and depressive disorders. Additionally, anxiety disorders are often associated, which renders treatment even more complex for nonspecialists. As a result, anxiety disorders often remain underdiagnosed and undertreated in primary care. 3

Both psychotherapy and pharmacotherapy have been shown to be more effective than placebo or waiting lists in the treatment of anxiety disorders. In a meta-analysis published in 2015 by Bandelow et al, and based on 234 randomized controlled studies, medications were associated with a significantly higher average pre-post effect size (Cohen's d =2.02) than psychotherapies ( d =1.22; P <0.0001); somehow, patients included in psychotherapy studies were less severely ill. 4 This meta-analysis also showed that psychotherapy in association with pharmacotherapy had a relatively high effect size ( d =2,12). Due to their good benefit/risk balance, selective serotonin reuptake inhibitors and selective serotonin norepinephrine reuptake inhibitors were recommended as first-line treatments. Current guidelines do not recommend benzodiazepines as first-line treatments due to their potential side effects. In fact, Parsaik et al, in a 2016 meta-analysis, 5 have reported a higher mortality rate among benzodiazepines users compared with nonusers. Underlying mechanisms need to be further studied. In addition, the development of tolerance and an increased risk for dependence were also reported in association with long-term use of benzodiazepine (which generally means ≥6 months). An increased risk of dementia was also claimed by several authors in long-term benzodiazepine users (pooled adjusted risk ratio for dementia of 1.55) compared with never users (for review, see ref 6). Finally, benzodiazepines do not treat depression, which is a common comorbid condition in anxiety disorders, and benzodiazepines may be associated with a higher suicide risk in case of comorbidity between anxiety and depressive disorders. 7

The current conceptualization of the etiology of anxiety disorders includes an interaction of psychosocial factors such as childhood adversity or stressful events, and a genetic vulnerability. Until now, there are few biomarkers available. 4 Domschke et al (in this issue, p 159) will summarize recent data about the genetic factors involved in anxiety disorders. The serotonergic and catecholaminergic systems, and neurotrophic signaling, are promising candidate genes in generalized anxiety disorders, even if the genetic risk remains moderate (heritability of approximately 30%). In addition, gene-environment studies have highlighted the importance of early developmental trauma and recent stressful life events in interaction with molecular plasticity markers. Among socio-environmental factors, parenting behavior may also play a role in the prevention of anxiety disorders (Aktar et al, in this issue p 137).

IMAGES

  1. A Study or Research on Depression and Anxiety Free Essay Example

    research paper about depression and anxiety

  2. 💌 Anxiety research paper. Anxiety Research Paper Outline. 2022-10-10

    research paper about depression and anxiety

  3. (PDF) Effects Of Depression On The Academic Learning Of Students At

    research paper about depression and anxiety

  4. Research On Generalized Anxiety Disorder

    research paper about depression and anxiety

  5. Depression Research Paper (600 Words)

    research paper about depression and anxiety

  6. (PDF) Impact of Anxiety and Depression Symptoms on Scholar Performance

    research paper about depression and anxiety

VIDEO

  1. Best way to deal with Anxiety and depression!#anxiety #depression #struggle #office #instareels

  2. Brain phycology🧠#shorts #viral #youtubeshorts #shortvideo #phycologyfact

  3. paper depression

  4. Is Recovery Possible from Anxiety and Depression? #depression #sciencefacts

  5. Journaling for anxiety, emotional healing and depression

  6. Sab kuch alag hai sab kuch naya hai|kal ho naa ho|Exam|Paper|Depression|anxiety|Bff buzz|

COMMENTS

  1. The Critical Relationship Between Anxiety and Depression

    The findings revealed a 19% concurrent comorbidity between these disorders, and in 65% of the cases, social phobia preceded major depressive disorder by at least 2 years. In addition, initial presentation with social phobia was associated with a 5.7-fold increased risk of developing major depressive disorder. These associations between anxiety ...

  2. Anxiety, Depression and Quality of Life—A Systematic Review of Evidence

    This article is a systematic review of the literature on the impact of anxiety and depression on health-related quality of life (HRQoL) in patients with various medical conditions. It summarizes the evidence from 42 studies and discusses the possible mechanisms, implications and limitations of the findings. The article aims to provide a comprehensive overview of the topic and suggest ...

  3. (PDF) Depression and anxiety

    population aged 16-85 years, 14.4% have an anxiety. disorder. The pre valence of depression is 6.2%, with the. prevalence of unipolar depressive episodes being 4.1%, dysthymia, 1.3%, and bipolar ...

  4. The relationship between anxiety and depression under the pandemic: The

    Meaning in life, anxiety and depression. Regarding the negative relationship between anxiety and meaning in life, there are at least two possible explanations. First, a high level of anxiety may make a person difficult to appreciate meaning in life because anxiety would make a person exhausted and confused.

  5. Biological, Psychological, and Social Determinants of Depression: A

    Depression is one of the most common mental health conditions, and, if left untreated, it can increase the risk for substance abuse, anxiety disorders, and suicide. In the past 20 years, a large number of studies on the risk and protective factors of depression have been undertaken in various fields, such as genetics, neurology, immunology, and ...

  6. PDF DEPRESSION AND ANXIETY Research Article

    At the same time, studies of trait anxiety suggest that moderate (vs. low) ELS is associated with greater self-reported anxiety. This study tested the hypothesis that stress inoculation effects are evident for implicit (nonconscious) but not explicit (conscious) aspects of anxiety. Methods: Ninety-seven healthy women were assessed for ELS and ...

  7. Treatment outcomes for depression: challenges and opportunities

    Depressive disorders are common, costly, have a strong effect on quality of life, and are associated with considerable morbidity and mortality. Effective treatments are available: antidepressant medication and talking therapies are included in most guidelines as first-line treatments. These treatments have changed the lives of countless patients worldwide for the better and will continue to do ...

  8. The neuroscience of depressive disorders: A brief review of the past

    Depression is a common and debilitating mental health condition whose underlying aetiology and pathophysiology is still relatively poorly understood. ... Implications for anxiety, depression, and social behaviors. Trends in Neurosciences 35(11): 649-659. Crossref. Google Scholar. Pariante CM, Lightman SL (2008) The HPA axis in major ...

  9. Systematic review and meta-analysis of depression, anxiety, and

    After searching the literature for studies reporting on depression, anxiety, and/or suicidal ideation among Ph.D. students, we included 32 articles. Among 16 studies reporting the prevalence of ...

  10. Anxiety disorders

    Anxiety disorders form the most common group of mental disorders and generally start before or in early adulthood. Core features include excessive fear and anxiety or avoidance of perceived threats that are persistent and impairing. Anxiety disorders involve dysfunction in brain circuits that respond to danger. Risk for anxiety disorders is influenced by genetic factors, environmental factors ...

  11. Depression and Anxiety

    Depression and Anxiety welcomes original research and synthetic review articles covering neurobiology (genetics and neuroimaging), epidemiology, experimental psychopathology, and treatment (psychotherapeutic and pharmacologic) aspects of mood and anxiety disorders and related phenomena in humans. Read the full Aims and Scope here.

  12. Depression and Anxiety

    Journal profile. Depression and Anxiety welcomes original research and review articles covering neurobiology (genetics and neuroimaging), epidemiology, experimental psychopathology, and treatment (psychotherapeutic and pharmacologic) aspects of mood and anxiety disorders and related phenomena in humans.

  13. Depression, Anxiety, and Stress as a Function of Psychological Strains

    Research paper. Depression, Anxiety, and Stress as a Function of Psychological Strains: Towards an Etiological Theory of Mood Disorders and Psychopathologies ... In estimating the prevalence rates, we defined the participants as having depression, anxiety, or stress disorders if their DASS-21 respective scale scores are larger or equal to 10, ...

  14. Depression and Anxiety: List of Issues

    DEPRESSION AND ANXIETY IN CHILDREN, ADOLESCENTS, AND YOUNG ADULTS. Pages: 453-547. June 2022. Volume 39, Issue 5 NEUROBIOLOGY AND TREATMENT OF DEPRESSION. Pages: 345-451. May 2022. Volume 39, Issue 4 FOCUS ON POSTTRAUMATIC STRESS DISORDER. Pages: 255-343. April 2022. Volume 39, Issue 3 ALL IN THE FAMILY.

  15. PDF The Impact of Anxiety, Depression, and Stress on Emotional ...

    level of anxiety, depression, and stress and second one to measure Emotional stability using a self-reported scale. The collected data was analyzed using SPSS version 22 to find result for this thesis. The results of the study outlined that there is a negative but significant correlation among depression, anxiety, and stress with emotional ...

  16. Research in child and adolescent anxiety and depression: treatment

    The prevalence of anxiety and depression increases during adolescence, and the comorbidity between these diagnoses is high among young people. 2 Almost 10% of adolescents will meet the criteria of an anxiety disorder. 3 The one-year prevalence rate of adolescent depression is estimated to be 5.6%.

  17. Depression, Anxiety, and Stress as a Function of Psychological Strains

    Methods: 6,305 college students (39.3% men; 60.7% women) from six Chinese provincial-level jurisdictions completed a paper-and-pencil survey with Psychological Strain Scales (PSS-40) and Depression, Anxiety, and Stress Scales-21 (DASS-21), both validated in Chinese populations.

  18. A systematic review: the influence of social media on depression

    In the 13 studies, depression was the most commonly measured outcome. The prominent risk factors for depression, anxiety and psychological distress emerging from this review comprised time spent on social media, activities such as repeated checking for messages, personal investment, and addictive or problematic use.

  19. Abilene Christian University Digital Commons @ ACU

    anxiety and depression on academic performance, as well as the role that social support has in relation to these variables. Research involving social support as it relates to academic achievement in college students is limited. Particularly, there is a gap in literature exploring this relationship with students that have anxiety and/or depression.

  20. The Influences of Social Media: Depression, Anxiety, and Self-Concept

    depression due to a sense of social capital. Yet, there is ample evidence to suggest that. social media is associated with depression and other problems, such as classroom. disruption, sleeping disturbances, anxiety, jealousy, and low self-esteem in young adults.

  21. Teens are spending nearly 5 hours daily on social media. Here are the

    41%. Percentage of teens with the highest social media use who rate their overall mental health as poor or very poor, compared with 23% of those with the lowest use. For example, 10% of the highest use group expressed suicidal intent or self-harm in the past 12 months compared with 5% of the lowest use group, and 17% of the highest users expressed poor body image compared with 6% of the lowest ...

  22. Prevalence of Depression, Anxiety and Stress among Adult Population

    DASS (Depression, Anxiety and Stress Scale) Questionnaire (short form) was used, which is a different, simple, and approved instrument for assessing depression, anxiety, and stress both in clinical settings and in the community (21, 22). DASS is a short screening tool that measures depression, anxiety, and stress by a 21-item self-report ...

  23. 3. Problems students are facing at public K-12 schools

    Major problems at school. When we asked teachers about a range of problems that may affect students who attend their school, the following issues top the list: Poverty (53% say this is a major problem at their school) Chronic absenteeism - that is, students missing a substantial number of school days (49%) Anxiety and depression (48%) One-in ...

  24. How the solar eclipse may affect the brain and bring people together

    In another study from the same research paper, the researchers asked a third of their participants to recall a time when they'd felt awe. Another third remembered a time when they'd been amused by ...

  25. What Doctors Want You to Know About Beta Blockers for Anxiety

    Beta blockers work by "blocking" the effects of adrenaline. They cause the heart to beat more slowly and with less force, which helps lower blood pressure. But if you're feeling especially ...

  26. Correlates of Quality of Life in Anxiety Disorders: Review of Recent

    Introduction. Anxiety disorders are estimated to have the highest lifetime prevalence rates of all psychiatric disorders (18.0-3.7%; []) and result in considerable functional impairment and economic burden [2•, 3, 4].As a result, anxiety disorders have a significant and detrimental impact on QOL across the lifespan, particularly when left untreated [5, 6].

  27. Taylor Swift Fans Spiral Over "The Hallway" After "Depression" Playlist

    ICYMI (there's no way, but ya know), Taylor Swift dropped five new Apple Music playlists based on the five stages of heartbreak: Denial, Anger, Bargaining, Depression, and Acceptance. And now fans ...

  28. Anxiety disorders: a review of current literature

    Abstract. Anxiety disorders are the most prevalent psychiatric disorders. There is a high comorbidity between anxiety (especially generalized anxiety disorders or panic disorders) and depressive disorders or between anxiety disorders, which renders treatment more complex. Current guidelines do not recommend benzodiazepines as first-line ...