Digital Commons @ University of South Florida

  • USF Research
  • USF Libraries

Digital Commons @ USF > College of Arts and Sciences > Mathematics and Statistics > Theses and Dissertations

Mathematics and Statistics Theses and Dissertations

Theses/dissertations from 2023 2023.

Classification of Finite Topological Quandles and Shelves via Posets , Hitakshi Lahrani

Applied Analysis for Learning Architectures , Himanshu Singh

Rational Functions of Degree Five That Permute the Projective Line Over a Finite Field , Christopher Sze

Theses/Dissertations from 2022 2022

New Developments in Statistical Optimal Designs for Physical and Computer Experiments , Damola M. Akinlana

Advances and Applications of Optimal Polynomial Approximants , Raymond Centner

Data-Driven Analytical Predictive Modeling for Pancreatic Cancer, Financial & Social Systems , Aditya Chakraborty

On Simultaneous Similarity of d-tuples of Commuting Square Matrices , Corey Connelly

Symbolic Computation of Lump Solutions to a Combined (2+1)-dimensional Nonlinear Evolution Equation , Jingwei He

Boundary behavior of analytic functions and Approximation Theory , Spyros Pasias

Stability Analysis of Delay-Driven Coupled Cantilevers Using the Lambert W-Function , Daniel Siebel-Cortopassi

A Functional Optimization Approach to Stochastic Process Sampling , Ryan Matthew Thurman

Theses/Dissertations from 2021 2021

Riemann-Hilbert Problems for Nonlocal Reverse-Time Nonlinear Second-order and Fourth-order AKNS Systems of Multiple Components and Exact Soliton Solutions , Alle Adjiri

Zeros of Harmonic Polynomials and Related Applications , Azizah Alrajhi

Combination of Time Series Analysis and Sentiment Analysis for Stock Market Forecasting , Hsiao-Chuan Chou

Uncertainty Quantification in Deep and Statistical Learning with applications in Bio-Medical Image Analysis , K. Ruwani M. Fernando

Data-Driven Analytical Modeling of Multiple Myeloma Cancer, U.S. Crop Production and Monitoring Process , Lohuwa Mamudu

Long-time Asymptotics for mKdV Type Reduced Equations of the AKNS Hierarchy in Weighted L 2 Sobolev Spaces , Fudong Wang

Online and Adjusted Human Activities Recognition with Statistical Learning , Yanjia Zhang

Theses/Dissertations from 2020 2020

Bayesian Reliability Analysis of The Power Law Process and Statistical Modeling of Computer and Network Vulnerabilities with Cybersecurity Application , Freeh N. Alenezi

Discrete Models and Algorithms for Analyzing DNA Rearrangements , Jasper Braun

Bayesian Reliability Analysis for Optical Media Using Accelerated Degradation Test Data , Kun Bu

On the p(x)-Laplace equation in Carnot groups , Robert D. Freeman

Clustering methods for gene expression data of Oxytricha trifallax , Kyle Houfek

Gradient Boosting for Survival Analysis with Applications in Oncology , Nam Phuong Nguyen

Global and Stochastic Dynamics of Diffusive Hindmarsh-Rose Equations in Neurodynamics , Chi Phan

Restricted Isometric Projections for Differentiable Manifolds and Applications , Vasile Pop

On Some Problems on Polynomial Interpolation in Several Variables , Brian Jon Tuesink

Numerical Study of Gap Distributions in Determinantal Point Process on Low Dimensional Spheres: L -Ensemble of O ( n ) Model Type for n = 2 and n = 3 , Xiankui Yang

Non-Associative Algebraic Structures in Knot Theory , Emanuele Zappala

Theses/Dissertations from 2019 2019

Field Quantization for Radiative Decay of Plasmons in Finite and Infinite Geometries , Maryam Bagherian

Probabilistic Modeling of Democracy, Corruption, Hemophilia A and Prediabetes Data , A. K. M. Raquibul Bashar

Generalized Derivations of Ternary Lie Algebras and n-BiHom-Lie Algebras , Amine Ben Abdeljelil

Fractional Random Weighted Bootstrapping for Classification on Imbalanced Data with Ensemble Decision Tree Methods , Sean Charles Carter

Hierarchical Self-Assembly and Substitution Rules , Daniel Alejandro Cruz

Statistical Learning of Biomedical Non-Stationary Signals and Quality of Life Modeling , Mahdi Goudarzi

Probabilistic and Statistical Prediction Models for Alzheimer’s Disease and Statistical Analysis of Global Warming , Maryam Ibrahim Habadi

Essays on Time Series and Machine Learning Techniques for Risk Management , Michael Kotarinos

The Systems of Post and Post Algebras: A Demonstration of an Obvious Fact , Daviel Leyva

Reconstruction of Radar Images by Using Spherical Mean and Regular Radon Transforms , Ozan Pirbudak

Analyses of Unorthodox Overlapping Gene Segments in Oxytricha Trifallax , Shannon Stich

An Optimal Medium-Strength Regularity Algorithm for 3-uniform Hypergraphs , John Theado

Power Graphs of Quasigroups , DayVon L. Walker

Theses/Dissertations from 2018 2018

Groups Generated by Automata Arising from Transformations of the Boundaries of Rooted Trees , Elsayed Ahmed

Non-equilibrium Phase Transitions in Interacting Diffusions , Wael Al-Sawai

A Hybrid Dynamic Modeling of Time-to-event Processes and Applications , Emmanuel A. Appiah

Lump Solutions and Riemann-Hilbert Approach to Soliton Equations , Sumayah A. Batwa

Developing a Model to Predict Prevalence of Compulsive Behavior in Individuals with OCD , Lindsay D. Fields

Generalizations of Quandles and their cohomologies , Matthew J. Green

Hamiltonian structures and Riemann-Hilbert problems of integrable systems , Xiang Gu

Optimal Latin Hypercube Designs for Computer Experiments Based on Multiple Objectives , Ruizhe Hou

Human Activity Recognition Based on Transfer Learning , Jinyong Pang

Signal Detection of Adverse Drug Reaction using the Adverse Event Reporting System: Literature Review and Novel Methods , Minh H. Pham

Statistical Analysis and Modeling of Cyber Security and Health Sciences , Nawa Raj Pokhrel

Machine Learning Methods for Network Intrusion Detection and Intrusion Prevention Systems , Zheni Svetoslavova Stefanova

Orthogonal Polynomials With Respect to the Measure Supported Over the Whole Complex Plane , Meng Yang

Theses/Dissertations from 2017 2017

Modeling in Finance and Insurance With Levy-It'o Driven Dynamic Processes under Semi Markov-type Switching Regimes and Time Domains , Patrick Armand Assonken Tonfack

Prevalence of Typical Images in High School Geometry Textbooks , Megan N. Cannon

On Extending Hansel's Theorem to Hypergraphs , Gregory Sutton Churchill

Contributions to Quandle Theory: A Study of f-Quandles, Extensions, and Cohomology , Indu Rasika U. Churchill

Linear Extremal Problems in the Hardy Space H p for 0 p , Robert Christopher Connelly

Statistical Analysis and Modeling of Ovarian and Breast Cancer , Muditha V. Devamitta Perera

Statistical Analysis and Modeling of Stomach Cancer Data , Chao Gao

Structural Analysis of Poloidal and Toroidal Plasmons and Fields of Multilayer Nanorings , Kumar Vijay Garapati

Dynamics of Multicultural Social Networks , Kristina B. Hilton

Cybersecurity: Stochastic Analysis and Modelling of Vulnerabilities to Determine the Network Security and Attackers Behavior , Pubudu Kalpani Kaluarachchi

Generalized D-Kaup-Newell integrable systems and their integrable couplings and Darboux transformations , Morgan Ashley McAnally

Patterns in Words Related to DNA Rearrangements , Lukas Nabergall

Time Series Online Empirical Bayesian Kernel Density Segmentation: Applications in Real Time Activity Recognition Using Smartphone Accelerometer , Shuang Na

Schreier Graphs of Thompson's Group T , Allen Pennington

Cybersecurity: Probabilistic Behavior of Vulnerability and Life Cycle , Sasith Maduranga Rajasooriya

Bayesian Artificial Neural Networks in Health and Cybersecurity , Hansapani Sarasepa Rodrigo

Real-time Classification of Biomedical Signals, Parkinson’s Analytical Model , Abolfazl Saghafi

Lump, complexiton and algebro-geometric solutions to soliton equations , Yuan Zhou

Theses/Dissertations from 2016 2016

A Statistical Analysis of Hurricanes in the Atlantic Basin and Sinkholes in Florida , Joy Marie D'andrea

Statistical Analysis of a Risk Factor in Finance and Environmental Models for Belize , Sherlene Enriquez-Savery

Putnam's Inequality and Analytic Content in the Bergman Space , Matthew Fleeman

On the Number of Colors in Quandle Knot Colorings , Jeremy William Kerr

Statistical Modeling of Carbon Dioxide and Cluster Analysis of Time Dependent Information: Lag Target Time Series Clustering, Multi-Factor Time Series Clustering, and Multi-Level Time Series Clustering , Doo Young Kim

Some Results Concerning Permutation Polynomials over Finite Fields , Stephen Lappano

Hamiltonian Formulations and Symmetry Constraints of Soliton Hierarchies of (1+1)-Dimensional Nonlinear Evolution Equations , Solomon Manukure

Modeling and Survival Analysis of Breast Cancer: A Statistical, Artificial Neural Network, and Decision Tree Approach , Venkateswara Rao Mudunuru

Generalized Phase Retrieval: Isometries in Vector Spaces , Josiah Park

Leonard Systems and their Friends , Jonathan Spiewak

Resonant Solutions to (3+1)-dimensional Bilinear Differential Equations , Yue Sun

Statistical Analysis and Modeling Health Data: A Longitudinal Study , Bhikhari Prasad Tharu

Global Attractors and Random Attractors of Reaction-Diffusion Systems , Junyi Tu

Time Dependent Kernel Density Estimation: A New Parameter Estimation Algorithm, Applications in Time Series Classification and Clustering , Xing Wang

On Spectral Properties of Single Layer Potentials , Seyed Zoalroshd

Theses/Dissertations from 2015 2015

Analysis of Rheumatoid Arthritis Data using Logistic Regression and Penalized Approach , Wei Chen

Active Tile Self-assembly and Simulations of Computational Systems , Daria Karpenko

Nearest Neighbor Foreign Exchange Rate Forecasting with Mahalanobis Distance , Vindya Kumari Pathirana

Statistical Learning with Artificial Neural Network Applied to Health and Environmental Data , Taysseer Sharaf

Radial Versus Othogonal and Minimal Projections onto Hyperplanes in l_4^3 , Richard Alan Warner

Ensemble Learning Method on Machine Maintenance Data , Xiaochuang Zhao

Theses/Dissertations from 2014 2014

Properties of Graphs Used to Model DNA Recombination , Ryan Arredondo

Recursive Methods in Number Theory, Combinatorial Graph Theory, and Probability , Jonathan Burns

On the Classification of Groups Generated by Automata with 4 States over a 2-Letter Alphabet , Louis Caponi

Statistical Analysis, Modeling, and Algorithms for Pharmaceutical and Cancer Systems , Bong-Jin Choi

Topological Data Analysis of Properties of Four-Regular Rigid Vertex Graphs , Grant Mcneil Conine

Trend Analysis and Modeling of Health and Environmental Data: Joinpoint and Functional Approach , Ram C. Kafle

Advanced Search

  • Email Notifications and RSS
  • All Collections
  • USF Faculty Publications
  • Open Access Journals
  • Conferences and Events
  • Theses and Dissertations
  • Textbooks Collection

Useful Links

  • Mathematics and Statistics Department
  • Rights Information
  • SelectedWorks
  • Submit Research

Home | About | Help | My Account | Accessibility Statement | Language and Diversity Statements

Privacy Copyright

Grad Coach

How To Write The Results/Findings Chapter

For quantitative studies (dissertations & theses).

By: Derek Jansen (MBA) | Expert Reviewed By: Kerryn Warren (PhD) | July 2021

So, you’ve completed your quantitative data analysis and it’s time to report on your findings. But where do you start? In this post, we’ll walk you through the results chapter (also called the findings or analysis chapter), step by step, so that you can craft this section of your dissertation or thesis with confidence. If you’re looking for information regarding the results chapter for qualitative studies, you can find that here .

Overview: Quantitative Results Chapter

  • What exactly the results chapter is
  • What you need to include in your chapter
  • How to structure the chapter
  • Tips and tricks for writing a top-notch chapter
  • Free results chapter template

What exactly is the results chapter?

The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you’ve found in terms of the quantitative data you’ve collected. It presents the data using a clear text narrative, supported by tables, graphs and charts. In doing so, it also highlights any potential issues (such as outliers or unusual findings) you’ve come across.

But how’s that different from the discussion chapter?

Well, in the results chapter, you only present your statistical findings. Only the numbers, so to speak – no more, no less. Contrasted to this, in the discussion chapter , you interpret your findings and link them to prior research (i.e. your literature review), as well as your research objectives and research questions . In other words, the results chapter presents and describes the data, while the discussion chapter interprets the data.

Let’s look at an example.

In your results chapter, you may have a plot that shows how respondents to a survey  responded: the numbers of respondents per category, for instance. You may also state whether this supports a hypothesis by using a p-value from a statistical test. But it is only in the discussion chapter where you will say why this is relevant or how it compares with the literature or the broader picture. So, in your results chapter, make sure that you don’t present anything other than the hard facts – this is not the place for subjectivity.

It’s worth mentioning that some universities prefer you to combine the results and discussion chapters. Even so, it is good practice to separate the results and discussion elements within the chapter, as this ensures your findings are fully described. Typically, though, the results and discussion chapters are split up in quantitative studies. If you’re unsure, chat with your research supervisor or chair to find out what their preference is.

Free template for results section of a dissertation or thesis

What should you include in the results chapter?

Following your analysis, it’s likely you’ll have far more data than are necessary to include in your chapter. In all likelihood, you’ll have a mountain of SPSS or R output data, and it’s your job to decide what’s most relevant. You’ll need to cut through the noise and focus on the data that matters.

This doesn’t mean that those analyses were a waste of time – on the contrary, those analyses ensure that you have a good understanding of your dataset and how to interpret it. However, that doesn’t mean your reader or examiner needs to see the 165 histograms you created! Relevance is key.

How do I decide what’s relevant?

At this point, it can be difficult to strike a balance between what is and isn’t important. But the most important thing is to ensure your results reflect and align with the purpose of your study .  So, you need to revisit your research aims, objectives and research questions and use these as a litmus test for relevance. Make sure that you refer back to these constantly when writing up your chapter so that you stay on track.

There must be alignment between your research aims objectives and questions

As a general guide, your results chapter will typically include the following:

  • Some demographic data about your sample
  • Reliability tests (if you used measurement scales)
  • Descriptive statistics
  • Inferential statistics (if your research objectives and questions require these)
  • Hypothesis tests (again, if your research objectives and questions require these)

We’ll discuss each of these points in more detail in the next section.

Importantly, your results chapter needs to lay the foundation for your discussion chapter . This means that, in your results chapter, you need to include all the data that you will use as the basis for your interpretation in the discussion chapter.

For example, if you plan to highlight the strong relationship between Variable X and Variable Y in your discussion chapter, you need to present the respective analysis in your results chapter – perhaps a correlation or regression analysis.

Need a helping hand?

thesis on statistical analysis

How do I write the results chapter?

There are multiple steps involved in writing up the results chapter for your quantitative research. The exact number of steps applicable to you will vary from study to study and will depend on the nature of the research aims, objectives and research questions . However, we’ll outline the generic steps below.

Step 1 – Revisit your research questions

The first step in writing your results chapter is to revisit your research objectives and research questions . These will be (or at least, should be!) the driving force behind your results and discussion chapters, so you need to review them and then ask yourself which statistical analyses and tests (from your mountain of data) would specifically help you address these . For each research objective and research question, list the specific piece (or pieces) of analysis that address it.

At this stage, it’s also useful to think about the key points that you want to raise in your discussion chapter and note these down so that you have a clear reminder of which data points and analyses you want to highlight in the results chapter. Again, list your points and then list the specific piece of analysis that addresses each point. 

Next, you should draw up a rough outline of how you plan to structure your chapter . Which analyses and statistical tests will you present and in what order? We’ll discuss the “standard structure” in more detail later, but it’s worth mentioning now that it’s always useful to draw up a rough outline before you start writing (this advice applies to any chapter).

Step 2 – Craft an overview introduction

As with all chapters in your dissertation or thesis, you should start your quantitative results chapter by providing a brief overview of what you’ll do in the chapter and why . For example, you’d explain that you will start by presenting demographic data to understand the representativeness of the sample, before moving onto X, Y and Z.

This section shouldn’t be lengthy – a paragraph or two maximum. Also, it’s a good idea to weave the research questions into this section so that there’s a golden thread that runs through the document.

Your chapter must have a golden thread

Step 3 – Present the sample demographic data

The first set of data that you’ll present is an overview of the sample demographics – in other words, the demographics of your respondents.

For example:

  • What age range are they?
  • How is gender distributed?
  • How is ethnicity distributed?
  • What areas do the participants live in?

The purpose of this is to assess how representative the sample is of the broader population. This is important for the sake of the generalisability of the results. If your sample is not representative of the population, you will not be able to generalise your findings. This is not necessarily the end of the world, but it is a limitation you’ll need to acknowledge.

Of course, to make this representativeness assessment, you’ll need to have a clear view of the demographics of the population. So, make sure that you design your survey to capture the correct demographic information that you will compare your sample to.

But what if I’m not interested in generalisability?

Well, even if your purpose is not necessarily to extrapolate your findings to the broader population, understanding your sample will allow you to interpret your findings appropriately, considering who responded. In other words, it will help you contextualise your findings . For example, if 80% of your sample was aged over 65, this may be a significant contextual factor to consider when interpreting the data. Therefore, it’s important to understand and present the demographic data.

 Step 4 – Review composite measures and the data “shape”.

Before you undertake any statistical analysis, you’ll need to do some checks to ensure that your data are suitable for the analysis methods and techniques you plan to use. If you try to analyse data that doesn’t meet the assumptions of a specific statistical technique, your results will be largely meaningless. Therefore, you may need to show that the methods and techniques you’ll use are “allowed”.

Most commonly, there are two areas you need to pay attention to:

#1: Composite measures

The first is when you have multiple scale-based measures that combine to capture one construct – this is called a composite measure .  For example, you may have four Likert scale-based measures that (should) all measure the same thing, but in different ways. In other words, in a survey, these four scales should all receive similar ratings. This is called “ internal consistency ”.

Internal consistency is not guaranteed though (especially if you developed the measures yourself), so you need to assess the reliability of each composite measure using a test. Typically, Cronbach’s Alpha is a common test used to assess internal consistency – i.e., to show that the items you’re combining are more or less saying the same thing. A high alpha score means that your measure is internally consistent. A low alpha score means you may need to consider scrapping one or more of the measures.

#2: Data shape

The second matter that you should address early on in your results chapter is data shape. In other words, you need to assess whether the data in your set are symmetrical (i.e. normally distributed) or not, as this will directly impact what type of analyses you can use. For many common inferential tests such as T-tests or ANOVAs (we’ll discuss these a bit later), your data needs to be normally distributed. If it’s not, you’ll need to adjust your strategy and use alternative tests.

To assess the shape of the data, you’ll usually assess a variety of descriptive statistics (such as the mean, median and skewness), which is what we’ll look at next.

Descriptive statistics

Step 5 – Present the descriptive statistics

Now that you’ve laid the foundation by discussing the representativeness of your sample, as well as the reliability of your measures and the shape of your data, you can get started with the actual statistical analysis. The first step is to present the descriptive statistics for your variables.

For scaled data, this usually includes statistics such as:

  • The mean – this is simply the mathematical average of a range of numbers.
  • The median – this is the midpoint in a range of numbers when the numbers are arranged in order.
  • The mode – this is the most commonly repeated number in the data set.
  • Standard deviation – this metric indicates how dispersed a range of numbers is. In other words, how close all the numbers are to the mean (the average).
  • Skewness – this indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph (this is called a normal or parametric distribution), or do they lean to the left or right (this is called a non-normal or non-parametric distribution).
  • Kurtosis – this metric indicates whether the data are heavily or lightly-tailed, relative to the normal distribution. In other words, how peaked or flat the distribution is.

A large table that indicates all the above for multiple variables can be a very effective way to present your data economically. You can also use colour coding to help make the data more easily digestible.

For categorical data, where you show the percentage of people who chose or fit into a category, for instance, you can either just plain describe the percentages or numbers of people who responded to something or use graphs and charts (such as bar graphs and pie charts) to present your data in this section of the chapter.

When using figures, make sure that you label them simply and clearly , so that your reader can easily understand them. There’s nothing more frustrating than a graph that’s missing axis labels! Keep in mind that although you’ll be presenting charts and graphs, your text content needs to present a clear narrative that can stand on its own. In other words, don’t rely purely on your figures and tables to convey your key points: highlight the crucial trends and values in the text. Figures and tables should complement the writing, not carry it .

Depending on your research aims, objectives and research questions, you may stop your analysis at this point (i.e. descriptive statistics). However, if your study requires inferential statistics, then it’s time to deep dive into those .

Dive into the inferential statistics

Step 6 – Present the inferential statistics

Inferential statistics are used to make generalisations about a population , whereas descriptive statistics focus purely on the sample . Inferential statistical techniques, broadly speaking, can be broken down into two groups .

First, there are those that compare measurements between groups , such as t-tests (which measure differences between two groups) and ANOVAs (which measure differences between multiple groups). Second, there are techniques that assess the relationships between variables , such as correlation analysis and regression analysis. Within each of these, some tests can be used for normally distributed (parametric) data and some tests are designed specifically for use on non-parametric data.

There are a seemingly endless number of tests that you can use to crunch your data, so it’s easy to run down a rabbit hole and end up with piles of test data. Ultimately, the most important thing is to make sure that you adopt the tests and techniques that allow you to achieve your research objectives and answer your research questions .

In this section of the results chapter, you should try to make use of figures and visual components as effectively as possible. For example, if you present a correlation table, use colour coding to highlight the significance of the correlation values, or scatterplots to visually demonstrate what the trend is. The easier you make it for your reader to digest your findings, the more effectively you’ll be able to make your arguments in the next chapter.

make it easy for your reader to understand your quantitative results

Step 7 – Test your hypotheses

If your study requires it, the next stage is hypothesis testing. A hypothesis is a statement , often indicating a difference between groups or relationship between variables, that can be supported or rejected by a statistical test. However, not all studies will involve hypotheses (again, it depends on the research objectives), so don’t feel like you “must” present and test hypotheses just because you’re undertaking quantitative research.

The basic process for hypothesis testing is as follows:

  • Specify your null hypothesis (for example, “The chemical psilocybin has no effect on time perception).
  • Specify your alternative hypothesis (e.g., “The chemical psilocybin has an effect on time perception)
  • Set your significance level (this is usually 0.05)
  • Calculate your statistics and find your p-value (e.g., p=0.01)
  • Draw your conclusions (e.g., “The chemical psilocybin does have an effect on time perception”)

Finally, if the aim of your study is to develop and test a conceptual framework , this is the time to present it, following the testing of your hypotheses. While you don’t need to develop or discuss these findings further in the results chapter, indicating whether the tests (and their p-values) support or reject the hypotheses is crucial.

Step 8 – Provide a chapter summary

To wrap up your results chapter and transition to the discussion chapter, you should provide a brief summary of the key findings . “Brief” is the keyword here – much like the chapter introduction, this shouldn’t be lengthy – a paragraph or two maximum. Highlight the findings most relevant to your research objectives and research questions, and wrap it up.

Some final thoughts, tips and tricks

Now that you’ve got the essentials down, here are a few tips and tricks to make your quantitative results chapter shine:

  • When writing your results chapter, report your findings in the past tense . You’re talking about what you’ve found in your data, not what you are currently looking for or trying to find.
  • Structure your results chapter systematically and sequentially . If you had two experiments where findings from the one generated inputs into the other, report on them in order.
  • Make your own tables and graphs rather than copying and pasting them from statistical analysis programmes like SPSS. Check out the DataIsBeautiful reddit for some inspiration.
  • Once you’re done writing, review your work to make sure that you have provided enough information to answer your research questions , but also that you didn’t include superfluous information.

If you’ve got any questions about writing up the quantitative results chapter, please leave a comment below. If you’d like 1-on-1 assistance with your quantitative analysis and discussion, check out our hands-on coaching service , or book a free consultation with a friendly coach.

thesis on statistical analysis

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

How to write the results chapter in a qualitative thesis

Thank you. I will try my best to write my results.

Lord

Awesome content 👏🏾

Tshepiso

this was great explaination

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Statistical Methods in Theses: Guidelines and Explanations

Signed August 2018 Naseem Al-Aidroos, PhD, Christopher Fiacconi, PhD Deborah Powell, PhD, Harvey Marmurek, PhD, Ian Newby-Clark, PhD, Jeffrey Spence, PhD, David Stanley, PhD, Lana Trick, PhD

Version:  2.00

This document is an organizational aid, and workbook, for students. We encourage students to take this document to meetings with their advisor and committee. This guide should enhance a committee’s ability to assess key areas of a student’s work. 

In recent years a number of well-known and apparently well-established findings have  failed to replicate , resulting in what is commonly referred to as the replication crisis. The APA Publication Manual 6 th Edition notes that “The essence of the scientific method involves observations that can be repeated and verified by others.” (p. 12). However, a systematic investigation of the replicability of psychology findings published in  Science  revealed that over half of psychology findings do not replicate (see a related commentary in  Nature ). Even more disturbing, a  Bayesian reanalysis of the reproducibility project  showed that 64% of studies had sample sizes so small that strong evidence for or against the null or alternative hypotheses did not exist. Indeed, Morey and Lakens (2016) concluded that most of psychology is statistically unfalsifiable due to small sample sizes and correspondingly low power (see  article ). Our discipline’s reputation is suffering. News of the replication crisis has reached the popular press (e.g.,  The Atlantic ,   The Economist ,   Slate , Last Week Tonight ).

An increasing number of psychologists have responded by promoting new research standards that involve open science and the elimination of  Questionable Research Practices . The open science perspective is made manifest in the  Transparency and Openness Promotion (TOP) guidelines  for journal publications. These guidelines were adopted some time ago by the  Association for Psychological Science . More recently, the guidelines were adopted by American Psychological Association journals ( see details ) and journals published by Elsevier ( see details ). It appears likely that, in the very near future, most journals in psychology will be using an open science approach. We strongly advise readers to take a moment to inspect the  TOP Guidelines Summary Table . 

A key aspect of open science and the TOP guidelines is the sharing of data associated with published research (with respect to medical research, see point #35 in the  World Medical Association Declaration of Helsinki ). This practice is viewed widely as highly important. Indeed, open science is recommended by  all G7 science ministers . All Tri-Agency grants must include a data-management plan that includes plans for sharing: “ research data resulting from agency funding should normally be preserved in a publicly accessible, secure and curated repository or other platform for discovery and reuse by others.”  Moreover, a 2017 editorial published in the  New England Journal of Medicine announced that the  International Committee of Medical Journal Editors believes there is  “an ethical obligation to responsibly share data.”  As of this writing,  60% of highly ranked psychology journals require or encourage data sharing .

The increasing importance of demonstrating that findings are replicable is reflected in calls to make replication a requirement for the promotion of faculty (see details in  Nature ) and experts in open science are now refereeing applications for tenure and promotion (see details at the  Center for Open Science  and  this article ). Most dramatically, in one instance, a paper resulting from a dissertation was retracted due to misleading findings attributable to Questionable Research Practices. Subsequent to the retraction, the Ohio State University’s Board of Trustees unanimously revoked the PhD of the graduate student who wrote the dissertation ( see details ). Thus, the academic environment is changing and it is important to work toward using new best practices in lieu of older practices—many of which are synonymous with Questionable Research Practices. Doing so should help you avoid later career regrets and subsequent  public mea culpas . One way to achieve your research objectives in this new academic environment is  to incorporate replications into your research . Replications are becoming more common and there are even websites dedicated to helping students conduct replications (e.g.,  Psychology Science Accelerator ) and indexing the success of replications (e.g., Curate Science ). You might even consider conducting a replication for your thesis (subject to committee approval).

As early-career researchers, it is important to be aware of the changing academic environment. Senior principal investigators may be  reluctant to engage in open science  (see this student perspective in a  blog post  and  podcast ) and research on resistance to data sharing indicates that one of the barriers to sharing data is that researchers do not feel that they have knowledge of  how to share data online . This document is an educational aid and resource to provide students with introductory knowledge of how to participate in open science and online data sharing to start their education on these subjects. 

Guidelines and Explanations

In light of the changes in psychology, faculty members who teach statistics/methods have reviewed the literature and generated this guide for graduate students. The guide is intended to enhance the quality of student theses by facilitating their engagement in open and transparent research practices and by helping them avoid Questionable Research Practices, many of which are now deemed unethical and covered in the ethics section of textbooks.

This document is an informational tool.

How to Start

In order to follow best practices, some first steps need to be followed. Here is a list of things to do:

  • Get an Open Science account. Registration at  osf.io  is easy!
  • If conducting confirmatory hypothesis testing for your thesis, pre-register your hypotheses (see Section 1-Hypothesizing). The Open Science Foundation website has helpful  tutorials  and  guides  to get you going.
  • Also, pre-register your data analysis plan. Pre-registration typically includes how and when you will stop collecting data, how you will deal with violations of statistical assumptions and points of influence (“outliers”), the specific measures you will use, and the analyses you will use to test each hypothesis, possibly including the analysis script. Again, there is a lot of help available for this. 

Exploratory and Confirmatory Research Are Both of Value, But Do Not Confuse the Two

We note that this document largely concerns confirmatory research (i.e., testing hypotheses). We by no means intend to devalue exploratory research. Indeed, it is one of the primary ways that hypotheses are generated for (possible) confirmation. Instead, we emphasize that it is important that you clearly indicate what of your research is exploratory and what is confirmatory. Be clear in your writing and in your preregistration plan. You should explicitly indicate which of your analyses are exploratory and which are confirmatory. Please note also that if you are engaged in exploratory research, then Null Hypothesis Significance Testing (NHST) should probably be avoided (see rationale in  Gigerenzer  (2004) and  Wagenmakers et al., (2012) ). 

This document is structured around the stages of thesis work:  hypothesizing, design, data collection, analyses, and reporting – consistent with the headings used by Wicherts et al. (2016). We also list the Questionable Research Practices associated with each stage and provide suggestions for avoiding them. We strongly advise going through all of these sections during thesis/dissertation proposal meetings because a priori decisions need to be made prior to data collection (including analysis decisions). 

To help to ensure that the student has informed the committee about key decisions at each stage, there are check boxes at the end of each section.

How to Use This Document in a Proposal Meeting

  • Print off a copy of this document and take it to the proposal meeting.
  • During the meeting, use the document to seek assistance from faculty to address potential problems.
  • Revisit responses to issues raised by this document (especially the Analysis and Reporting Stages) when you are seeking approval to proceed to defense.

Consultation and Help Line

Note that the Center for Open Science now has a help line (for individual researchers and labs) you can call for help with open science issues. They also have training workshops. Please see their  website  for details.

  • Hypothesizing
  • Data Collection
  • Printer-friendly version
  • PDF version

Secondary Menu

  • Master's Thesis

As an integral component of the Master of Science in Statistical Science program, you can submit and defend a Master's Thesis. Your Master's Committee administers this oral examination. If you choose to defend a thesis, it is advisable to commence your research early, ideally during your second semester or the summer following your first year in the program. It's essential to allocate sufficient time for the thesis writing process. Your thesis advisor, who also serves as the committee chair, must approve both your thesis title and proposal. The final thesis work necessitates approval from all committee members and must adhere to the  Master's thesis requirements  set forth by the Duke University Graduate School.

Master’s BEST Award 

Each second-year Duke Master’s of Statistical Science (MSS) student defending their MSS thesis may be eligible for the  Master’s BEST Award . The Statistical Science faculty BEST Award Committee selects the awardee based on the submitted thesis of MSS thesis students, and the award is presented at the departmental graduation ceremony. 

Thesis Proposal

All second-year students choosing to do a thesis must submit a proposal (not more than two pages) approved by their thesis advisor to the Master's Director via Qualtrics by November 10th.  The thesis proposal should include a title,  the thesis advisor, committee members, and a description of your work. The description must introduce the research topic, outline its main objectives, and emphasize the significance of the research and its implications while identifying gaps in existing statistical literature. In addition, it can include some of the preliminary results. 

Committee members

MSS Students will have a thesis committee, which includes three faculty members - two must be departmental primary faculty, and the third could be from an external department in an applied area of the student’s interest, which must be a  Term Graduate Faculty through the Graduate School or have a secondary appointment with the Department of Statistical Science. All Committee members must be familiar with the Student’s work.  The department coordinates Committee approval. The thesis defense committee must be approved at least 30 days before the defense date.

Thesis Timeline and  Departmental Process:

Before defense:.

Intent to Graduate: Students must file an Intent to Graduate in ACES, specifying "Thesis Defense" during the application. For graduation deadlines, please refer to https://gradschool.duke.edu/academics/preparing-graduate .

Scheduling Thesis Defense: The student collaborates with the committee to set the date and time for the defense and communicates this information to the department, along with the thesis title. The defense must be scheduled during regular class sessions. Be sure to review the thesis defense and submission deadlines at https://gradschool.duke.edu/academics/theses-and-dissertations/

Room Reservations: The department arranges room reservations and sends confirmation details to the student, who informs committee members of the location.

Defense Announcement: The department prepares a defense announcement, providing a copy to the student and chair. After approval, it is signed by the Master's Director and submitted to the Graduate School. Copies are also posted on department bulletin boards.

Initial Thesis Submission: Two weeks before the defense, the student submits the initial thesis to the committee and the Graduate School. Detailed thesis formatting guidelines can be found at https://gradschool.duke.edu/academics/theses-and-dissertations.

Advisor Notification: The student requests that the advisor email [email protected] , confirming the candidate's readiness for defense. This step should be completed before the exam card appointment.

Format Check Appointment: One week before the defense, the Graduate School contacts the student to schedule a format check appointment. Upon approval, the Graduate School provides the Student Master’s Exam Card, which enables the student to send a revised thesis copy to committee members.

MSS Annual Report Form: The department provides the student with the MSS Annual Report Form to be presented at the defense.

Post Defense:

Communication of Defense Outcome: The committee chair conveys the defense results to the student, including any necessary follow-up actions in case of an unsuccessful defense.

In Case of Failure: If a student does not pass the thesis defense, the committee's decision to fail the student must be accompanied by explicit and clear comments from the chair, specifying deficiencies and areas that require attention for improvement.

Documentation: The student should ensure that the committee signs the Title Page, Abstract Page, and Exam Card.

Annual Report Form: The committee chair completes the Annual Report Form.

Master's Director Approval: The Master's director must provide their approval by signing the Exam Card.

Form Submission: Lastly, the committee chair is responsible for returning all completed and signed forms to the Department.

Final Thesis Submission: The student must meet the Graduate School requirement by submitting the final version of their Thesis to the Graduate School via ProQuest before the specified deadline. For detailed information, visit https://gradschool.duke.edu/academics/preparinggraduate .

  • The Stochastic Proximal Distance Algorithm
  • Logistic-tree Normal Mixture for Clustering Microbiome Compositions
  • Inference for Dynamic Treatment Regimes using Overlapping Sampling Splitting
  • Bayesian Modeling for Identifying Selection in B Cell Maturation
  • Differentially Private Verification with Survey Weights
  • Stable Variable Selection for Sparse Linear Regression in a Non-uniqueness Regime  
  • A Cost-Sensitive, Semi-Supervised, and Active Learning Approach for Priority Outlier Investigation
  • Bayesian Decoupling: A Decision Theory-Based Approach to Bayesian Variable Selection
  • A Differentially Private Bayesian Approach to Replication Analysis
  • Numerical Approximation of Gaussian-Smoothed Optimal Transport
  • Computational Challenges to Bayesian Density Discontinuity Regression
  • Hierarchical Signal Propagation for Household Level Sales in Bayesian Dynamic Models
  • Logistic Tree Gaussian Processes (LoTgGaP) for Microbiome Dynamics and Treatment Effects
  • Bayesian Inference on Ratios Subject to Differentially Private Noise
  • Multiple Imputation Inferences for Count Data
  • An Euler Characteristic Curve Based Representation of 3D Shapes in Statistical Analysis
  • An Investigation Into the Bias & Variance of Almost Matching Exactly Methods
  • Comparison of Bayesian Inference Methods for Probit Network Models
  • Differentially Private Counts with Additive Constraints
  • Multi-Scale Graph Principal Component Analysis for Connectomics
  • MCMC Sampling Geospatial Partitions for Linear Models
  • Bayesian Dynamic Network Modeling with Censored Flow Data  
  • An Application of Graph Diffusion for Gesture Classification
  • Easy and Efficient Bayesian Infinite Factor Analysis
  • Analyzing Amazon CD Reviews with Bayesian Monitoring and Machine Learning Methods
  • Missing Data Imputation for Voter Turnout Using Auxiliary Margins
  • Generalized and Scalable Optimal Sparse Decision Trees
  • Construction of Objective Bayesian Prior from Bertrand’s Paradox and the Principle of Indifference
  • Rethinking Non-Linear Instrumental Variables
  • Clustering-Enhanced Stochastic Gradient MCMC for Hidden Markov Models
  • Optimal Sparse Decision Trees
  • Bayesian Density Regression with a Jump Discontinuity at a Given Threshold
  • Forecasting the Term Structure of Interest Rates: A Bayesian Dynamic Graphical Modeling Approach
  • Testing Between Different Types of Poisson Mixtures with Applications to Neuroscience
  • Multiple Imputation of Missing Covariates in Randomized Controlled Trials
  • A Bayesian Strategy to the 20 Question Game with Applications to Recommender Systems
  • Applied Factor Dynamic Analysis for Macroeconomic Forecasting
  • A Theory of Statistical Inference for Ensuring the Robustness of Scientific Results
  • Bayesian Inference Via Partitioning Under Differential Privacy
  • A Bayesian Forward Simulation Approach to Establishing a Realistic Prior Model for Complex Geometrical Objects
  • Two Applications of Summary Statistics: Integrating Information Across Genes and Confidence Intervals with Missing Data
  • Our Mission
  • Diversity, Equity, and Inclusion
  • International Recognition
  • Department History
  • Past Recipients
  • Considering a Statistical Science major at Duke?
  • Careers for Statisticians
  • Typical Pathways
  • Applied Electives for BS
  • Interdepartmental Majors
  • Minor in Statistical Science
  • Getting Started with Statistics
  • Student Learning Outcomes
  • Study Abroad
  • Course Help & Tutoring
  • Past Theses
  • Research Teams
  • Independent Study
  • Transfer Credit
  • Conference Funding for Research
  • Statistical Science Majors Union
  • Duke Actuarial Society
  • Duke Sports Analytics Club
  • Trinity Ambassadors
  • Frequently Asked Questions
  • Summer Session Courses
  • How to Apply
  • Financial Support
  • Graduate Placements
  • Living in Durham
  • Preliminary Examination
  • Dissertation
  • English Language Requirement
  • TA Guidelines
  • Progress Toward Completion
  • Ph.D. Committees
  • Terminal MS Degree
  • Student Governance
  • Program Requirements
  • PhD / Research
  • Data Science & Analytics
  • Health Data Science
  • Finance & Economics
  • Marketing Research & Business Analytics
  • Social Science & Policy
  • Admission Statistics
  • Portfolio of Work
  • Capstone Project
  • Statistical Science Proseminar
  • Primary Faculty
  • Secondary Faculty
  • Visiting Faculty
  • Postdoctoral Fellows
  • Ph.D. Students
  • M.S. Students
  • Theory, Methods, and Computation
  • Interdisciplinary Collaborations
  • Statistical Consulting Center
  • Alumni Profiles
  • For Current Students
  • Assisting Duke Students
  • StatSci Alumni Network
  • Ph.D. Student - Alumni Fund
  • Our Ph.D. Alums
  • Our M.S. Alums
  • Our Undergrad Alums
  • Our Postdoc Alums
  • Utility Menu

University Logo

Department of Statistics

4c69b3a36a33a4c1c5b5cd3ef5360949.

  • Open Positions

What do senior theses in Statistics look like?

This is a brief overview of thesis writing; for more information, please see our  complete guide here . Senior theses in Statistics cover a wide range of topics, across the spectrum from applied to theoretical. Typically, senior theses are expected to have one of the following three flavors:                                                                                                            

1. Novel statistical theory or methodology, supported by extensive mathematical and/or simulation results, along with a clear account of how the research extends or relates to previous related work.

2. An analysis of a complex data set that advances understanding in a related field, such as public health, economics, government, or genetics. Such a thesis may rely entirely on existing methods, but should give useful results and insights into an interesting applied problem.                                                                                 

3. An analysis of a complex data set in which new methods or modifications of published methods are required. While the thesis does not necessarily contain an extensive mathematical study of the new methods, it should contain strong plausibility arguments or simulations supporting the use of the new methods.

A good thesis is clear, readable, and well-motivated, justifying the applicability of the methods used rather than, for example, mechanically running regressions without discussing the assumptions (and whether they are plausible), performing diagnostics, and checking whether the conclusions make sense. 

Recent FAQs

  • What is a qualified applicant's likelihood for admission?
  • What is the application deadline?
  • Can I start the program in the spring?
  • Can I apply to two different GSAS degree programs at the same time?
  • Is a Math or Stats major required for admission?
  • Is the GRE required?
  • Faculty of Arts and Sciences
  • FAS Theses and Dissertations
  • Browsing FAS Theses and Dissertations by FAS Department
  • Communities & Collections
  • By Issue Date
  • FAS Department
  • Quick submit
  • Waiver Generator
  • DASH Stories
  • Accessibility
  • COVID-related Research
  • Terms of Use
  • Privacy Policy
  • By Collections
  • By Departments

Browsing FAS Theses and Dissertations by FAS Department "Statistics"

title issue date submit date

ascending descending

5 10 20 40 60 80 100

Now showing items 1-20 of 52

  • submit date

A Grand Journey of Statistical Hierarchical Modelling 

Advances in empirical bayes modeling and bayesian computation , advances in statistical network modeling and nonlinear time series modeling , advances in the normal-normal hierarchical model , analysis, modeling, and optimal experimental design under uncertainty: from carbon nano-structures to 3d printing , bayesian biclustering on discrete data: variable selection methods , bayesian learning of relationships , a bayesian perspective on factorial experiments using potential outcomes , building interpretable models: from bayesian networks to neural networks , causal inference under network interference: a framework for experiments on social networks , complications in causal inference: incorporating information observed after treatment is assigned , diagnostic tools in missing data and causal inference on time series , dilemmas in design: from neyman and fisher to 3d printing , distributed and multiphase inference in theory and practice: principles, modeling, and computation for high-throughput science , essays in causal inference and public policy , expediting scientific discoveries with bayesian statistical methods , exploring objective causal inference in case-noncase studies under the rubin causal model , exploring the role of randomization in causal inference , extensions of randomization-based methods for causal inference , g-squared statistic for detecting dependence, additive modeling, and calibration concordance for astrophysical data .

Have a thesis expert improve your writing

Check your thesis for plagiarism in 10 minutes, generate your apa citations for free.

  • Knowledge Base

The Beginner's Guide to Statistical Analysis | 5 Steps & Examples

Statistical analysis means investigating trends, patterns, and relationships using quantitative data . It is an important research tool used by scientists, governments, businesses, and other organisations.

To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process . You need to specify your hypotheses and make decisions about your research design, sample size, and sampling procedure.

After collecting data from your sample, you can organise and summarise the data using descriptive statistics . Then, you can use inferential statistics to formally test hypotheses and make estimates about the population. Finally, you can interpret and generalise your findings.

This article is a practical introduction to statistical analysis for students and researchers. We’ll walk you through the steps using two research examples. The first investigates a potential cause-and-effect relationship, while the second investigates a potential correlation between variables.

Table of contents

Step 1: write your hypotheses and plan your research design, step 2: collect data from a sample, step 3: summarise your data with descriptive statistics, step 4: test hypotheses or make estimates with inferential statistics, step 5: interpret your results, frequently asked questions about statistics.

To collect valid data for statistical analysis, you first need to specify your hypotheses and plan out your research design.

Writing statistical hypotheses

The goal of research is often to investigate a relationship between variables within a population . You start with a prediction, and use statistical analysis to test that prediction.

A statistical hypothesis is a formal way of writing a prediction about a population. Every research prediction is rephrased into null and alternative hypotheses that can be tested using sample data.

While the null hypothesis always predicts no effect or no relationship between variables, the alternative hypothesis states your research prediction of an effect or relationship.

  • Null hypothesis: A 5-minute meditation exercise will have no effect on math test scores in teenagers.
  • Alternative hypothesis: A 5-minute meditation exercise will improve math test scores in teenagers.
  • Null hypothesis: Parental income and GPA have no relationship with each other in college students.
  • Alternative hypothesis: Parental income and GPA are positively correlated in college students.

Planning your research design

A research design is your overall strategy for data collection and analysis. It determines the statistical tests you can use to test your hypothesis later on.

First, decide whether your research will use a descriptive, correlational, or experimental design. Experiments directly influence variables, whereas descriptive and correlational studies only measure variables.

  • In an experimental design , you can assess a cause-and-effect relationship (e.g., the effect of meditation on test scores) using statistical tests of comparison or regression.
  • In a correlational design , you can explore relationships between variables (e.g., parental income and GPA) without any assumption of causality using correlation coefficients and significance tests.
  • In a descriptive design , you can study the characteristics of a population or phenomenon (e.g., the prevalence of anxiety in U.S. college students) using statistical tests to draw inferences from sample data.

Your research design also concerns whether you’ll compare participants at the group level or individual level, or both.

  • In a between-subjects design , you compare the group-level outcomes of participants who have been exposed to different treatments (e.g., those who performed a meditation exercise vs those who didn’t).
  • In a within-subjects design , you compare repeated measures from participants who have participated in all treatments of a study (e.g., scores from before and after performing a meditation exercise).
  • In a mixed (factorial) design , one variable is altered between subjects and another is altered within subjects (e.g., pretest and posttest scores from participants who either did or didn’t do a meditation exercise).
  • Experimental
  • Correlational

First, you’ll take baseline test scores from participants. Then, your participants will undergo a 5-minute meditation exercise. Finally, you’ll record participants’ scores from a second math test.

In this experiment, the independent variable is the 5-minute meditation exercise, and the dependent variable is the math test score from before and after the intervention. Example: Correlational research design In a correlational study, you test whether there is a relationship between parental income and GPA in graduating college students. To collect your data, you will ask participants to fill in a survey and self-report their parents’ incomes and their own GPA.

Measuring variables

When planning a research design, you should operationalise your variables and decide exactly how you will measure them.

For statistical analysis, it’s important to consider the level of measurement of your variables, which tells you what kind of data they contain:

  • Categorical data represents groupings. These may be nominal (e.g., gender) or ordinal (e.g. level of language ability).
  • Quantitative data represents amounts. These may be on an interval scale (e.g. test score) or a ratio scale (e.g. age).

Many variables can be measured at different levels of precision. For example, age data can be quantitative (8 years old) or categorical (young). If a variable is coded numerically (e.g., level of agreement from 1–5), it doesn’t automatically mean that it’s quantitative instead of categorical.

Identifying the measurement level is important for choosing appropriate statistics and hypothesis tests. For example, you can calculate a mean score with quantitative data, but not with categorical data.

In a research study, along with measures of your variables of interest, you’ll often collect data on relevant participant characteristics.

Population vs sample

In most cases, it’s too difficult or expensive to collect data from every member of the population you’re interested in studying. Instead, you’ll collect data from a sample.

Statistical analysis allows you to apply your findings beyond your own sample as long as you use appropriate sampling procedures . You should aim for a sample that is representative of the population.

Sampling for statistical analysis

There are two main approaches to selecting a sample.

  • Probability sampling: every member of the population has a chance of being selected for the study through random selection.
  • Non-probability sampling: some members of the population are more likely than others to be selected for the study because of criteria such as convenience or voluntary self-selection.

In theory, for highly generalisable findings, you should use a probability sampling method. Random selection reduces sampling bias and ensures that data from your sample is actually typical of the population. Parametric tests can be used to make strong statistical inferences when data are collected using probability sampling.

But in practice, it’s rarely possible to gather the ideal sample. While non-probability samples are more likely to be biased, they are much easier to recruit and collect data from. Non-parametric tests are more appropriate for non-probability samples, but they result in weaker inferences about the population.

If you want to use parametric tests for non-probability samples, you have to make the case that:

  • your sample is representative of the population you’re generalising your findings to.
  • your sample lacks systematic bias.

Keep in mind that external validity means that you can only generalise your conclusions to others who share the characteristics of your sample. For instance, results from Western, Educated, Industrialised, Rich and Democratic samples (e.g., college students in the US) aren’t automatically applicable to all non-WEIRD populations.

If you apply parametric tests to data from non-probability samples, be sure to elaborate on the limitations of how far your results can be generalised in your discussion section .

Create an appropriate sampling procedure

Based on the resources available for your research, decide on how you’ll recruit participants.

  • Will you have resources to advertise your study widely, including outside of your university setting?
  • Will you have the means to recruit a diverse sample that represents a broad population?
  • Do you have time to contact and follow up with members of hard-to-reach groups?

Your participants are self-selected by their schools. Although you’re using a non-probability sample, you aim for a diverse and representative sample. Example: Sampling (correlational study) Your main population of interest is male college students in the US. Using social media advertising, you recruit senior-year male college students from a smaller subpopulation: seven universities in the Boston area.

Calculate sufficient sample size

Before recruiting participants, decide on your sample size either by looking at other studies in your field or using statistics. A sample that’s too small may be unrepresentative of the sample, while a sample that’s too large will be more costly than necessary.

There are many sample size calculators online. Different formulas are used depending on whether you have subgroups or how rigorous your study should be (e.g., in clinical research). As a rule of thumb, a minimum of 30 units or more per subgroup is necessary.

To use these calculators, you have to understand and input these key components:

  • Significance level (alpha): the risk of rejecting a true null hypothesis that you are willing to take, usually set at 5%.
  • Statistical power : the probability of your study detecting an effect of a certain size if there is one, usually 80% or higher.
  • Expected effect size : a standardised indication of how large the expected result of your study will be, usually based on other similar studies.
  • Population standard deviation: an estimate of the population parameter based on a previous study or a pilot study of your own.

Once you’ve collected all of your data, you can inspect them and calculate descriptive statistics that summarise them.

Inspect your data

There are various ways to inspect your data, including the following:

  • Organising data from each variable in frequency distribution tables .
  • Displaying data from a key variable in a bar chart to view the distribution of responses.
  • Visualising the relationship between two variables using a scatter plot .

By visualising your data in tables and graphs, you can assess whether your data follow a skewed or normal distribution and whether there are any outliers or missing data.

A normal distribution means that your data are symmetrically distributed around a center where most values lie, with the values tapering off at the tail ends.

Mean, median, mode, and standard deviation in a normal distribution

In contrast, a skewed distribution is asymmetric and has more values on one end than the other. The shape of the distribution is important to keep in mind because only some descriptive statistics should be used with skewed distributions.

Extreme outliers can also produce misleading statistics, so you may need a systematic approach to dealing with these values.

Calculate measures of central tendency

Measures of central tendency describe where most of the values in a data set lie. Three main measures of central tendency are often reported:

  • Mode : the most popular response or value in the data set.
  • Median : the value in the exact middle of the data set when ordered from low to high.
  • Mean : the sum of all values divided by the number of values.

However, depending on the shape of the distribution and level of measurement, only one or two of these measures may be appropriate. For example, many demographic characteristics can only be described using the mode or proportions, while a variable like reaction time may not have a mode at all.

Calculate measures of variability

Measures of variability tell you how spread out the values in a data set are. Four main measures of variability are often reported:

  • Range : the highest value minus the lowest value of the data set.
  • Interquartile range : the range of the middle half of the data set.
  • Standard deviation : the average distance between each value in your data set and the mean.
  • Variance : the square of the standard deviation.

Once again, the shape of the distribution and level of measurement should guide your choice of variability statistics. The interquartile range is the best measure for skewed distributions, while standard deviation and variance provide the best information for normal distributions.

Using your table, you should check whether the units of the descriptive statistics are comparable for pretest and posttest scores. For example, are the variance levels similar across the groups? Are there any extreme values? If there are, you may need to identify and remove extreme outliers in your data set or transform your data before performing a statistical test.

From this table, we can see that the mean score increased after the meditation exercise, and the variances of the two scores are comparable. Next, we can perform a statistical test to find out if this improvement in test scores is statistically significant in the population. Example: Descriptive statistics (correlational study) After collecting data from 653 students, you tabulate descriptive statistics for annual parental income and GPA.

It’s important to check whether you have a broad range of data points. If you don’t, your data may be skewed towards some groups more than others (e.g., high academic achievers), and only limited inferences can be made about a relationship.

A number that describes a sample is called a statistic , while a number describing a population is called a parameter . Using inferential statistics , you can make conclusions about population parameters based on sample statistics.

Researchers often use two main methods (simultaneously) to make inferences in statistics.

  • Estimation: calculating population parameters based on sample statistics.
  • Hypothesis testing: a formal process for testing research predictions about the population using samples.

You can make two types of estimates of population parameters from sample statistics:

  • A point estimate : a value that represents your best guess of the exact parameter.
  • An interval estimate : a range of values that represent your best guess of where the parameter lies.

If your aim is to infer and report population characteristics from sample data, it’s best to use both point and interval estimates in your paper.

You can consider a sample statistic a point estimate for the population parameter when you have a representative sample (e.g., in a wide public opinion poll, the proportion of a sample that supports the current government is taken as the population proportion of government supporters).

There’s always error involved in estimation, so you should also provide a confidence interval as an interval estimate to show the variability around a point estimate.

A confidence interval uses the standard error and the z score from the standard normal distribution to convey where you’d generally expect to find the population parameter most of the time.

Hypothesis testing

Using data from a sample, you can test hypotheses about relationships between variables in the population. Hypothesis testing starts with the assumption that the null hypothesis is true in the population, and you use statistical tests to assess whether the null hypothesis can be rejected or not.

Statistical tests determine where your sample data would lie on an expected distribution of sample data if the null hypothesis were true. These tests give two main outputs:

  • A test statistic tells you how much your data differs from the null hypothesis of the test.
  • A p value tells you the likelihood of obtaining your results if the null hypothesis is actually true in the population.

Statistical tests come in three main varieties:

  • Comparison tests assess group differences in outcomes.
  • Regression tests assess cause-and-effect relationships between variables.
  • Correlation tests assess relationships between variables without assuming causation.

Your choice of statistical test depends on your research questions, research design, sampling method, and data characteristics.

Parametric tests

Parametric tests make powerful inferences about the population based on sample data. But to use them, some assumptions must be met, and only some types of variables can be used. If your data violate these assumptions, you can perform appropriate data transformations or use alternative non-parametric tests instead.

A regression models the extent to which changes in a predictor variable results in changes in outcome variable(s).

  • A simple linear regression includes one predictor variable and one outcome variable.
  • A multiple linear regression includes two or more predictor variables and one outcome variable.

Comparison tests usually compare the means of groups. These may be the means of different groups within a sample (e.g., a treatment and control group), the means of one sample group taken at different times (e.g., pretest and posttest scores), or a sample mean and a population mean.

  • A t test is for exactly 1 or 2 groups when the sample is small (30 or less).
  • A z test is for exactly 1 or 2 groups when the sample is large.
  • An ANOVA is for 3 or more groups.

The z and t tests have subtypes based on the number and types of samples and the hypotheses:

  • If you have only one sample that you want to compare to a population mean, use a one-sample test .
  • If you have paired measurements (within-subjects design), use a dependent (paired) samples test .
  • If you have completely separate measurements from two unmatched groups (between-subjects design), use an independent (unpaired) samples test .
  • If you expect a difference between groups in a specific direction, use a one-tailed test .
  • If you don’t have any expectations for the direction of a difference between groups, use a two-tailed test .

The only parametric correlation test is Pearson’s r . The correlation coefficient ( r ) tells you the strength of a linear relationship between two quantitative variables.

However, to test whether the correlation in the sample is strong enough to be important in the population, you also need to perform a significance test of the correlation coefficient, usually a t test, to obtain a p value. This test uses your sample size to calculate how much the correlation coefficient differs from zero in the population.

You use a dependent-samples, one-tailed t test to assess whether the meditation exercise significantly improved math test scores. The test gives you:

  • a t value (test statistic) of 3.00
  • a p value of 0.0028

Although Pearson’s r is a test statistic, it doesn’t tell you anything about how significant the correlation is in the population. You also need to test whether this sample correlation coefficient is large enough to demonstrate a correlation in the population.

A t test can also determine how significantly a correlation coefficient differs from zero based on sample size. Since you expect a positive correlation between parental income and GPA, you use a one-sample, one-tailed t test. The t test gives you:

  • a t value of 3.08
  • a p value of 0.001

The final step of statistical analysis is interpreting your results.

Statistical significance

In hypothesis testing, statistical significance is the main criterion for forming conclusions. You compare your p value to a set significance level (usually 0.05) to decide whether your results are statistically significant or non-significant.

Statistically significant results are considered unlikely to have arisen solely due to chance. There is only a very low chance of such a result occurring if the null hypothesis is true in the population.

This means that you believe the meditation intervention, rather than random factors, directly caused the increase in test scores. Example: Interpret your results (correlational study) You compare your p value of 0.001 to your significance threshold of 0.05. With a p value under this threshold, you can reject the null hypothesis. This indicates a statistically significant correlation between parental income and GPA in male college students.

Note that correlation doesn’t always mean causation, because there are often many underlying factors contributing to a complex variable like GPA. Even if one variable is related to another, this may be because of a third variable influencing both of them, or indirect links between the two variables.

Effect size

A statistically significant result doesn’t necessarily mean that there are important real life applications or clinical outcomes for a finding.

In contrast, the effect size indicates the practical significance of your results. It’s important to report effect sizes along with your inferential statistics for a complete picture of your results. You should also report interval estimates of effect sizes if you’re writing an APA style paper .

With a Cohen’s d of 0.72, there’s medium to high practical significance to your finding that the meditation exercise improved test scores. Example: Effect size (correlational study) To determine the effect size of the correlation coefficient, you compare your Pearson’s r value to Cohen’s effect size criteria.

Decision errors

Type I and Type II errors are mistakes made in research conclusions. A Type I error means rejecting the null hypothesis when it’s actually true, while a Type II error means failing to reject the null hypothesis when it’s false.

You can aim to minimise the risk of these errors by selecting an optimal significance level and ensuring high power . However, there’s a trade-off between the two errors, so a fine balance is necessary.

Frequentist versus Bayesian statistics

Traditionally, frequentist statistics emphasises null hypothesis significance testing and always starts with the assumption of a true null hypothesis.

However, Bayesian statistics has grown in popularity as an alternative approach in the last few decades. In this approach, you use previous research to continually update your hypotheses based on your expectations and observations.

Bayes factor compares the relative strength of evidence for the null versus the alternative hypothesis rather than making a conclusion about rejecting the null hypothesis or not.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Statistical analysis is the main method for analyzing quantitative research data . It uses probabilities and models to test predictions about a population from sample data.

Is this article helpful?

Other students also liked, a quick guide to experimental design | 5 steps & examples, controlled experiments | methods & examples of control, between-subjects design | examples, pros & cons, more interesting articles.

  • Central Limit Theorem | Formula, Definition & Examples
  • Central Tendency | Understanding the Mean, Median & Mode
  • Correlation Coefficient | Types, Formulas & Examples
  • Descriptive Statistics | Definitions, Types, Examples
  • How to Calculate Standard Deviation (Guide) | Calculator & Examples
  • How to Calculate Variance | Calculator, Analysis & Examples
  • How to Find Degrees of Freedom | Definition & Formula
  • How to Find Interquartile Range (IQR) | Calculator & Examples
  • How to Find Outliers | Meaning, Formula & Examples
  • How to Find the Geometric Mean | Calculator & Formula
  • How to Find the Mean | Definition, Examples & Calculator
  • How to Find the Median | Definition, Examples & Calculator
  • How to Find the Range of a Data Set | Calculator & Formula
  • Inferential Statistics | An Easy Introduction & Examples
  • Levels of measurement: Nominal, ordinal, interval, ratio
  • Missing Data | Types, Explanation, & Imputation
  • Normal Distribution | Examples, Formulas, & Uses
  • Null and Alternative Hypotheses | Definitions & Examples
  • Poisson Distributions | Definition, Formula & Examples
  • Skewness | Definition, Examples & Formula
  • T-Distribution | What It Is and How To Use It (With Examples)
  • The Standard Normal Distribution | Calculator, Examples & Uses
  • Type I & Type II Errors | Differences, Examples, Visualizations
  • Understanding Confidence Intervals | Easy Examples & Formulas
  • Variability | Calculating Range, IQR, Variance, Standard Deviation
  • What is Effect Size and Why Does It Matter? (Examples)
  • What Is Interval Data? | Examples & Definition
  • What Is Nominal Data? | Examples & Definition
  • What Is Ordinal Data? | Examples & Definition
  • What Is Ratio Data? | Examples & Definition
  • What Is the Mode in Statistics? | Definition, Examples & Calculator
  • How it works

service image 										book imgae

Dissertation Statistical Analysis Samples and Examples

Are you done with the rest of your dissertation but unable to perform the statistical analysis? To help you overcome this issue, our professionals have gathered a list of samples of dissertation statistical analysis for you to take inspiration from and start working on your dissertation. These high-quality dissertation statistical analysis samples have been specially prepared to provide students with a path to follow. Our writers can work with all statistical analysis softwares, including SPSS, Stata, SAS, R, MATLAB, JMP, Python, and Excel.

Dissertation Statistical Analysis Sample

Discipline: Linguistic

Quality: 2:1 / 69%

Discipline: Public Health

Based on the graphical representation, at least 49% of the total participants have a household..

Statistical Analysis

Geography Statistical

The graphs below show the distribution companies’ operating margins..

Our dissertation statistical analysis service features, subject specialists.

We have writers specialising in their respective subjects to ensure high quality.

Thoroughly Researched

We make sure that the content is thoroughly researched and referenced.

Analysis Software

We work in all statistical softwares and can use the one according to your requirements.

Free Revisions

We offer free unlimited revisions until the client is satisfied with the results.

Our focus is on providing services that are affordable to everyone to help the majority of people.

On-Time Delivery

We deliver work timely, and if for some reason we fail, our refund policy is smooth.

Loved by over 100,000 students

Thousands of students have used ResearchProspect academic support services to improve their grades. Why are you waiting?

sitejabber

“I couldn’t figure out how to do statistical analysis for my literature dissertation. I saw their dissertation statistical analysis sample and placed my order. Very happy with the results!"

review image

Law Student

“I want to thank ResearchProspect for my excellent grades in my dissertation. Their statistical analysis was very helpful."

review image

Economics Student

Frequently Ask Questions?

How our statistical analysis samples can help.

Statistical analysis is a critical aspect of a dissertation and makes up the fourth chapter of a thesis, i.e., results and findings. Statistical analysis is the collection and interpretation of data to reveal trends and patterns or test a hypothesis.

SPSS, STATA, reviews, R, Nvivo, SAS, and others are some of the most commonly used statistical analysis software in colleges and universities worldwide.

When conducting statistical analysis for your dissertation, you can expect to work with numbers, descriptions, and themes. Accurately identify your research variables in the preceding chapters. The data interpretation stems from establishing the aim and objectives.

Choosing the correct variables will help you group data according to your research objectives and conduct statistical analysis accurately.

Your topic, academic level, and academic subjective determine what type of statistical test you should conduct. Based on your research aim and objective, you will have to decide which tests should be conducted.

We suggest that you start your data analysis off by considering the following seven statistical techniques before moving to more complex techniques for quantitative data.

  • Arithmetic Mean Statistical Analysis Technique
  • Standard Deviation Statistical Analysis Technique
  • Skewness Statistical Analysis Technique
  • Hypothesis Testing Statistical Analysis Technique
  • Regression Statistical Analysis Technique
  • Correlation Statistical Analysis Technique
  • Monte Carlo Simulation Statistical Analysis Technique

Interpret the results after statistical analysis. Include all relevant tables, graphs, and charts to present your data and results explicitly. You must provide a brief explanation justifying the relevance and signification of each table, graph, and chart.

Your data interpretation and results explanation should be simple and easy to understand so that readers can comprehend all results.

The  dissertation statistical analysis  is the meat of your study. After you have presented and interpreted the results, it is recommended that you crosscheck the data and the results. Errors in data handling can lead to incorrect analysis and interpretation.

Recheck the identified variables to make sure they are appropriate. Validate whether the data input process was error-free and the results obtained are reliable.

Finally, make sure to move any less relevant graphics and visuals to the appendices section.

Do not be hasty when conducting statistical analysis because readers are particularly interested in your research findings. Presenting incorrect data and misleading patterns can undermine your academic integrity. Make sure that you verify your data and results immediately after running tests.

How ResearchProspect can help?

Are you stuck with the statistical analysis of your dissertation? Unsure about the accuracy of the results? Whatever your situation is, get in touch with our team now if you have hit the dead end.

Our statistical analysis experts and highly qualified writers are here to help! We will handle your data collection and testing woes. The statistical analysis will be exactly in line with your research question or hypothesis and make your dissertation stand out.

What is the dissertation statistical analysis process?

On receiving your order, our customer services team will get in touch. We request prompt payment to avoid delays. We’ll find a suitable writer to get into your statistical analysis. It will require input from you so we can conduct appropriate analysis on your complete and uncontaminated data. This is how we can produce the cleanest most concise results.

What are the features of our dissertation statistical analysis service?

  • Using our dissertation statistics service means you can be sure your data analysis will be completed by a writer with the relevant skills and experience.
  • Every statistical analysis order we fulfil is measured against our strict quality control process. This ensures it’s in line with the necessary academic standards.
  • You can specify the software you prefer the writer to use to carry out the statistical analysis: SPSS, Excel, STATA, eViews… we are familiar with them all.
  • The dissertation statistical analysis service allows you free unlimited revisions until you are fully satisfied with the work. This is a standard part of the services we offer.
  • When you receive your analysis, you will also get a plagiarism report, produced by our in-house plagiarism-checking software. It will confirm that your work is totally original and free of plagiarism.

Explore More Samples

View our professional samples to be certain that we have the portofilio and capabilities to deliver what you need.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works
  • Open access
  • Published: 08 May 2024

Measurement and analysis of change in research scholars’ knowledge and attitudes toward statistics after PhD coursework

  • Mariyamma Philip 1  

BMC Medical Education volume  24 , Article number:  512 ( 2024 ) Cite this article

134 Accesses

Metrics details

Knowledge of statistics is highly important for research scholars, as they are expected to submit a thesis based on original research as part of a PhD program. As statistics play a major role in the analysis and interpretation of scientific data, intensive training at the beginning of a PhD programme is essential. PhD coursework is mandatory in universities and higher education institutes in India. This study aimed to compare the scores of knowledge in statistics and attitudes towards statistics among the research scholars of an institute of medical higher education in South India at different time points of their PhD (i.e., before, soon after and 2–3 years after the coursework) to determine whether intensive training programs such as PhD coursework can change their knowledge or attitudes toward statistics.

One hundred and thirty research scholars who had completed PhD coursework in the last three years were invited by e-mail to be part of the study. Knowledge and attitudes toward statistics before and soon after the coursework were already assessed as part of the coursework module. Knowledge and attitudes towards statistics 2–3 years after the coursework were assessed using Google forms. Participation was voluntary, and informed consent was also sought.

Knowledge and attitude scores improved significantly subsequent to the coursework (i.e., soon after, percentage of change: 77%, 43% respectively). However, there was significant reduction in knowledge and attitude scores 2–3 years after coursework compared to the scores soon after coursework; knowledge and attitude scores have decreased by 10%, 37% respectively.

The study concluded that the coursework program was beneficial for improving research scholars’ knowledge and attitudes toward statistics. A refresher program 2–3 years after the coursework would greatly benefit the research scholars. Statistics educators must be empathetic to understanding scholars’ anxiety and attitudes toward statistics and its influence on learning outcomes.

Peer Review reports

A PhD degree is a research degree, and research scholars submit a thesis based on original research in their chosen field. Doctor of Philosophy (PhD) degrees are awarded in a wide range of academic disciplines, and the PhD students are usually referred as research scholars. A comprehensive understanding of statistics allows research scholars to add rigour to their research. This approach helps them evaluate the current practices and draw informed conclusions from studies that were undertaken to generate their own hypotheses and to design, analyse and interpret complex clinical decisions. Therefore, intensive training at the beginning of the PhD journey is essential, as intensive training in research methodology and statistics in the early stages of research helps scholars design and plan their studies efficiently.

The University Grants Commission of India has taken various initiatives to introduce academic reforms to higher education institutions in India and mandated in 2009 that coursework be treated as a prerequisite for PhD preparation and that a minimum of four credits be assigned to one or more courses on research methodology, which could cover areas such as quantitative methods, computer applications, and research ethics. UGC also clearly states that all candidates admitted to PhD programmes shall be required to complete the prescribed coursework during the initial two semesters [ 1 ]. National Institute of Mental Health and Neurosciences (NIMHANS) at Bangalore, a tertiary care hospital and medical higher education institute in South India, that trains students in higher education in clinical fields, also introduced coursework in the PhD program for research scholars from various backgrounds, such as basic, behavioral and neurosciences, as per the UGC mandate. Research scholars undertake coursework programs soon after admission, which consist of several modules that include research methodology and statistical software training, among others.

Most scholars approach a course in statistics with the prejudice that statistics is uninteresting, demanding, complex or involve much mathematics and, most importantly, it is not relevant to their career goals. They approach statistics with considerable apprehension and negative attitudes, probably because of their inability to grasp the relevance of the application of the methods in their fields of study. This could be resolved by providing sufficient and relevant examples of the application of statistical techniques from various fields of medical research and by providing hands-on experience to learn how these techniques are applied and interpreted on real data. Hence, research methodology and statistical methods and the application of statistical methods using software have been given much importance and are taught as two modules, named Research Methodology and Statistics and Statistical Software Training, at this institute of medical higher education that trains research scholars in fields as diverse as basic, behavioural and neurosciences. Approximately 50% of the coursework curriculum focused on these two modules. Research scholars were thus given an opportunity to understand the theoretical aspects of the research methodology and statistical methods. They were also given hands-on training on statistical software to analyse the data using these methods and to interpret the findings. The coursework program was designed in this specific manner, as this intensive training would enable the research scholars to design their research studies more effectively and analyse their data in a better manner.

It is important to study attitudes toward statistics because attitudes are known to impact the learning process. Also, most importantly, these scholars are expected to utilize the skills in statistics and research methods to design research projects or guide postgraduate students and research scholars in the near future. Several authors have assessed attitudes toward statistics among various students and examined how attitudes affect academic achievement, how attitudes are correlated with knowledge in statistics and how attitudes change after a training program. There are studies on attitudes toward statistics among graduate [ 2 , 3 , 4 ] and postgraduate [ 5 ] medical students, politics, sociology, ( 6 – 7 ) psychology [ 8 , 9 , 10 ], social work [ 11 ], and management students [ 12 ]. However, there is a dearth of related literature on research scholars, and there are only two studies on the attitudes of research scholars. In their study of doctoral students in education-related fields, Cook & Catanzaro (2022) investigated the factors that contribute to statistics anxiety and attitudes toward statistics and how anxiety, attitudes and plans for future research use are connected among doctoral students [ 13 ]. Another study by Sohrabi et al. (2018) on research scholars assessed the change in knowledge and attitude towards teaching and educational design of basic science PhD students at a Medical University after a two-day workshop on empowerment and familiarity with the teaching and learning principles [ 14 ]. There were no studies that assessed changes in the attitudes or knowledge of research scholars across the PhD training period or after intensive training programmes such as PhD coursework. Even though PhD coursework has been established in institutes of higher education in India for more than a decade, there are no published research on the effectiveness of coursework from Indian universities or institutes of higher education.

This study aimed to determine the effectiveness of PhD coursework and whether intensive training programs such as PhD coursework can influence the knowledge and attitudes toward statistics of research scholars. Additionally, it would be interesting to know if the acquired knowledge could be retained longer, especially 2–3 years after the coursework, the crucial time of PhD data analysis. Hence, this study compares the scores of knowledge in statistics and attitude toward statistics of the research scholars at different time points of their PhD training, i.e., before, soon after and 2–3 years after the coursework.

Participants

This is an observational study of single group with repeated assessments. The institute offers a three-month coursework program consisting of seven modules, the first module is ethics; the fifth is research methodology and statistics; and the last is neurosciences. The study was conducted in January 2020. All research scholars of the institute who had completed PhD coursework in the last three years were considered for this study ( n  = 130). Knowledge and attitudes toward statistics before and soon after the coursework module were assessed as part of the coursework program. They were collected on the first and last day of the program respectively. The author who was also the coordinator of the research methodology and statistics module of the coursework have obtained the necessary permission to use the data for this study. The scholars invited to be part of the study by e-mail. Knowledge and attitude towards statistics 2–3 years after the coursework were assessed online using Google forms. They were also administered a semi structured questionnaire to elicit details about the usefulness of coursework. Participation was voluntary, and consent was also sought online. The confidentiality of the data was assured. Data were not collected from research scholars of Biostatistics or from research scholars who had more than a decade of experience or who had been working in the institute as faculty, assuming that their scores could be higher and could bias the findings. This non funded study was reviewed and approved by the Institute Ethics Committee.

Instruments

Knowledge in Statistics was assessed by a questionnaire prepared by the author and was used as part of the coursework evaluation. The survey included 25 questions that assessed the knowledge of statistics on areas such as descriptive statistics, sampling methods, study design, parametric and nonparametric tests and multivariate analyses. Right answers were assigned a score of 1, and wrong answers were assigned a score of 0. Total scores ranged from 0 to 25. Statistics attitudes were assessed by the Survey of Attitudes toward Statistics (SATS) scale. The SATS is a 36-item scale that measures 6 domains of attitudes towards statistics. The possible range of scores for each item is between 1 and 7. The total score was calculated by dividing the summed score by the number of items. Higher scores indicate more positive attitudes. The SAT-36 is a copyrighted scale, and researchers are allowed to use it only with prior permission. ( 15 – 16 ) The author obtained permission for use in the coursework evaluation and this study. A semi structured questionnaire was also used to elicit details about the usefulness of coursework.

Statistical analysis

Descriptive statistics such as mean, standard deviation, number and percentages were used to describe the socio-demographic data. General Linear Model Repeated Measures of Analysis of variance was used to compare knowledge and attitude scores across assessments. Categorical data from the semi structured questionnaire are presented as percentages. All the statistical tests were two-tailed, and a p value < 0.05 was set a priori as the threshold for statistical significance. IBM SPSS (28.0) was used to analyse the data.

One hundred and thirty research scholars who had completed coursework (CW) in the last 2–3 years were considered for the study. These scholars were sent Google forms to assess their knowledge and attitudes 2–3 years after coursework. 81 scholars responded (62%), and 4 scholars did not consent to participate in the study. The data of 77 scholars were merged with the data obtained during the coursework program (before and soon after CW). Socio-demographic characteristics of the scholars are presented in Table  1 .

The age of the respondents ranged from 23 to 36 years, with an average of 28.7 years (3.01), and the majority of the respondents were females (65%). Years of experience (i.e., after masters) before joining a PhD programme ranged from 0.5 to 9 years, and half of them had less than three years of experience before joining the PhD programme (median-3). More than half of those who responded were research scholars from the behavioural sciences (55%), while approximately 30% were from the basic sciences (29%).

General Linear Model Repeated Measures of Analysis of variance was used to compare the knowledge and attitude scores of scholars before, soon after and 2–3 after the coursework (will now be referred as “later the CW”), and the results are presented below (Table  2 ; Fig.  1 ).

figure 1

Comparison of knowledge and attitude scores across the assessments. Later the CW – 2–3 years after the coursework

The scores for knowledge and attitude differed significantly across time. Scores of knowledge and attitude increased soon after the coursework; the percentage of change was 77% and 43% respectively. However, significant reductions in knowledge and attitude scores were observed 2–3 years after the coursework compared to scores soon after the coursework. The reduction was higher for attitude scores; knowledge and attitude scores have decreased by 10% and 37% respectively. The change in scores across assessments is evident from the graph, and clearly the effect size is higher for attitude than knowledge.

The scores of knowledge or attitude before the coursework did not significantly differ with respect to gender or age or were not correlated with years of experience. Hence, they were not considered as covariates in the above analysis.

A semi structured questionnaire with open ended questions was also administered to elicit in-depth information about the usefulness of the coursework programme, in which they were also asked to self- rate their knowledge. The data were mostly categorical or narratives. Research scholars’ self-rated knowledge scores (on a scale of 0–10) also showed similar changes; knowledge improved significantly and was retained even after the training (Fig.  2 ).

figure 2

Self-rated knowledge scores of research scholars over time. Later the CW – 2–3 years after the coursework

The response to the question “ How has coursework changed your attitude toward statistics?”, is presented in Fig.  3 . The responses were Yes, positively, Yes - Negatively, No change – still apprehensive, No change – still appreciate, No change – still hate statistics. The majority of the scholars (70%) reported a positive change in their attitude toward statistics. Moreover, none of the scholars reported negative changes. Approximately 9% of the scholars reported that they were still apprehensive about statistics or hate statistics after the coursework.

figure 3

How has coursework changed your attitude toward statistics?

Those scholars who reported that they were apprehensive about statistics or hate statistics noted the complexity of the subject, lack of clarity, improper instructions and fear of mathematics as major reasons for their attitude. Some responses are listed below.

“The statistical concepts were not taught in an understandable manner from the UG level” , “I am weak in mathematical concepts. The equations and formulae in statistics scare me”. “Lack of knowledge about the importance of statistics and fear of mathematical equations”. “The preconceived notion that Statistics is difficult to learn” . “In most of the places, it is not taught properly and conceptual clarity is not focused on, and because of this an avoidance builds up, which might be a reason for the negative attitude”.

Majority of the scholars (92%) felt that coursework has helped them in their PhD, and they were happy to recommend it for other research scholars (97%). The responses of the scholars to the question “ How was coursework helpful in your PhD journey ?”, are listed below.

“Course work gave a fair idea on various things related to research as well as statistics” . “Creating the best design while planning methodology, which is learnt form course work, will increase efficiency in completing the thesis, thereby making it faster”. “Course work give better idea of how to proceed in many areas like literature search, referencing, choosing statistical methods, and learning about research procedures”. “Course work gave a good idea of research methodology, biostatistics and ethics. This would help in writing a better protocol and a better thesis”. “It helps us to plan our research well and to formulate, collect and plan for analysis”. “It makes people to plan their statistical analysis well in advance” .

This study evaluated the effectiveness of the existing coursework programme in an institution of higher medical education, and investigated whether the coursework programme benefits research scholars by improving their knowledge of statistics and attitudes towards statistics. The study concluded that the coursework program was beneficial for improving scholars’ knowledge about statistics and attitudes toward statistics.

Unlike other studies that have assessed attitudes toward statistics, the study participants in this study were research scholars. Research scholars need extensive training in statistics, as they need to apply statistical tests and use statistical reasoning in their research thesis, and in their profession to design research projects or their future student dissertations. Notably, no studies have assessed the attitudes or knowledge of research scholars in statistics either across the PhD training period or after intensive statistics training programs. However, the findings of this study are consistent with the findings of a study that compared the knowledge and attitudes toward teaching and education design of PhD students after a two-day educational course and instructional design workshop [ 14 ].

Statistics educators need not only impart knowledge but they should also motivate the learners to appreciate the role of statistics and to continue to learn the quantitative skills that is needed in their professional lives. Therefore, the role of learners’ attitudes toward statistics requires special attention. Since PhD coursework is possibly a major contributor to creating a statistically literate research community, scholars’ attitudes toward statistics need to be considered important and given special attention. Passionate and engaging statistics educators who have adequate experience in illustrating relatable examples could help scholars feel less anxious and build competence and better attitudes toward statistics. Statistics educators should be aware of scholars’ anxiety, fears and attitudes toward statistics and about its influence on learning outcomes and further interest in the subject.

Strengths and limitations

Analysis of changes in knowledge and attitudes scores across various time points of PhD training is the major strength of the study. Additionally, this study evaluates the effectiveness of intensive statistical courses for research scholars in terms of changes in knowledge and attitudes. This study has its own limitations: the data were collected through online platforms, and the nonresponse rate was about 38%. Ability in mathematics or prior learning experience in statistics, interest in the subject, statistics anxiety or performance in coursework were not assessed; hence, their influence could not be studied. The reliability and validity of the knowledge questionnaire have not been established at the time of this study. However, author who had prepared the questionnaire had ensured questions from different areas of statistics that were covered during the coursework, it has also been used as part of the coursework evaluation. Despite these limitations, this study highlights the changes in attitudes and knowledge following an intensive training program. Future research could investigate the roles of age, sex, mathematical ability, achievement or performance outcomes and statistics anxiety.

The study concluded that a rigorous and intensive training program such as PhD coursework was beneficial for improving knowledge about statistics and attitudes toward statistics. However, the significant reduction in attitude and knowledge scores after 2–3 years of coursework indicates that a refresher program might be helpful for research scholars as they approach the analysis stage of their thesis. Statistics educators must develop innovative methods to teach research scholars from nonstatistical backgrounds. They also must be empathetic to understanding scholars’ anxiety, fears and attitudes toward statistics and to understand its influence on learning outcomes and further interest in the subject.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

UGC Regulations on Minimum Standards and Procedure for the award of, M.Phil/Ph D, Degree R. 2009. Ugc.ac.in. [cited 2023 Oct 26]. https://www.ugc.ac.in/oldpdf/regulations/mphilphdclarification.pdf .

Althubaiti A. Attitudes of medical students toward statistics in medical research: Evidence from Saudi Arabia. J Stat Data Sci Educ [Internet]. 2021;29(1):115–21. https://doi.org/10.1080/10691898.2020.1850220 .

Hannigan A, Hegarty AC, McGrath D. Attitudes towards statistics of graduate entry medical students: the role of prior learning experiences. BMC Med Educ [Internet]. 2014;14(1):70. https://doi.org/10.1186/1472-6920-14-70 .

Hasabo EA, Ahmed GEM, Alkhalifa RM, Mahmoud MD, Emad S, Albashir RB et al. Statistics for undergraduate medical students in Sudan: associated factors for using statistical analysis software and attitude toward statistics among undergraduate medical students in Sudan. BMC Med Educ [Internet]. 2022;22(1):889. https://doi.org/10.1186/s12909-022-03960-0 .

Zhang Y, Shang L, Wang R, Zhao Q, Li C, Xu Y et al. Attitudes toward statistics in medical postgraduates: measuring, evaluating and monitoring. BMC Med Educ [Internet]. 2012;12(1):117. https://doi.org/10.1186/1472-6920-12-117 .

Bechrakis T, Gialamas V, Barkatsas A. Survey of attitudes towards statistics (SATS): an investigation of its construct validity and its factor structure invariance by gender. Int J Theoretical Educational Pract. 2011;1(1):1–15.

Google Scholar  

Khavenson T, Orel E, Tryakshina M. Adaptation of survey of attitudes towards statistics (SATS 36) for Russian sample. Procedia Soc Behav Sci [Internet]. 2012; 46:2126–9. https://doi.org/10.1016/j.sbspro.2012.05.440 .

Coetzee S, Van Der Merwe P. Industrial psychology students’ attitudes towards statistics. J Industrial Psychol. 2010;36(1):843–51.

Francesca C, Primi C. Assessing statistics attitudes among College Students: Psychometric properties of the Italian version of the Survey of attitudes toward statistics (SATS). Learn Individual Differences. 2009;2:309–13.

Counsell A, Cribbie RA. Students’ attitudes toward learning statistics with R. Psychol Teach Rev [Internet]. 2020;26(2):36–56. https://doi.org/10.53841/bpsptr.2020.26.2.36 .

Yoon E, Lee J. Attitudes toward learning statistics among social work students: Predictors for future professional use of statistics. J Teach Soc Work [Internet]. 2022;42(1):65–81. https://doi.org/10.1080/08841233.2021.2014018 .

Melad AF. Students’ attitude and academic achievement in statistics: a Correlational Study. J Posit School Psychol. 2022;6(2):4640–6.

Cook KD, Catanzaro BA. Constantly Working on My Attitude Towards Statistics! Education Doctoral Students’ Experiences with and Motivations for Learning Statistics. Innov High Educ. 2023; 48:257–84. https://doi.org/10.1007/s10755-022-09621-w .

Sohrabi Z, Koohestani HR, Nahardani SZ, Keshavarzi MH. Data on the knowledge, attitude, and performance of Ph.D. students attending an educational course (Tehran, Iran). Data Brief [Internet]. 2018; 21:1325–8. https://doi.org/10.1016/j.dib.2018.08.081 .

Chau C, Stevens J, Dauphine T. Del V. A: The development and validation of the survey of attitudes toward statistics. Educ Psychol Meas. 1995;(5):868–75.

Student attitude surveys. and online educational consulting [Internet]. Evaluationandstatistics.com. [cited 2023 Oct 26]. https://www.evaluationandstatistics.com/ .

Download references

Acknowledgements

The author would like to thank the participants of the study and peers and experts who examined the content of the questionnaire for their time and effort.

This research did not receive any grants from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and affiliations.

Department of Biostatistics, Dr. M.V. Govindaswamy Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560 029, India

Mariyamma Philip

You can also search for this author in PubMed   Google Scholar

Contributions

Mariyamma Philip: Conceptualization, Methodology, Validation, Investigation, Writing- Original draft, Reviewing and Editing.

Corresponding author

Correspondence to Mariyamma Philip .

Ethics declarations

Ethics approval and consent to participate.

This study used data already collected data (before and soon after coursework). The data pertaining to knowledge and attitude towards statistics 2–3 years after coursework were collected from research scholars through the online survey platform Google forms. The participants were invited to participate in the survey through e-mail. The study was explained in detail, and participation in the study was completely voluntary. Informed consent was obtained online in the form of a statement of consent. The confidentiality of the data was assured, even though identifiable personal information was not collected. This non-funded study was reviewed and approved by NIMHANS Institute Ethics Committee (No. NIMHANS/21st IEC (BS&NS Div.)

Consent for publication

Not applicable because there is no personal information or images that could lead to the identification of a study participant.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Philip, M. Measurement and analysis of change in research scholars’ knowledge and attitudes toward statistics after PhD coursework. BMC Med Educ 24 , 512 (2024). https://doi.org/10.1186/s12909-024-05487-y

Download citation

Received : 27 October 2023

Accepted : 29 April 2024

Published : 08 May 2024

DOI : https://doi.org/10.1186/s12909-024-05487-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Knowledge of statistics
  • Attitude towards statistics
  • PhD coursework
  • Research scholars

BMC Medical Education

ISSN: 1472-6920

thesis on statistical analysis

  • How It Works

Statistical Analysis for Thesis

Statistical Analysis for Thesis: Elevate Your Research with Our Customized Statistics, Methodology, and Results Writing Services. Specializing in SPSS, R, STATA, JASP, Nvivo, and More for Comprehensive Assistance.

Top-Tier Statisticians 👩‍🔬 | Free Unlimited Revisions 🔄 | NDA-Protected Service 🛡️ | Plagiarism-Free Work 🎓 | On-Time Delivery 🎯 | 24/7 Support 🕒 | Strict Privacy Assured 🔒 | Satisfaction with Every Data Analysis ✅

thesis on statistical analysis

Our Expertise Recognized by Students at Leading Universities:

roehampton-university-london

Comprehensive Statistical Services for Academic Research

Statistical data analysis help for thesis is a comprehensive service tailored to meet the specific needs of your academic research, ensuring that you receive expert support in the following key areas:

  • Methodology Writing : We develop a detailed plan for your research approach, outlining the statistical methods to be used in your study. This foundational step ensures that your research is built on a robust methodological framework.
  • Data Management : Our services include importing your data into the preferred statistical software, recoding variables to suit analysis requirements, and data cleaning to ensure accuracy and reliability. This process prepares your data for meaningful analysis, setting the stage for insightful findings.
  • Data Analysis & Hypothesis Testing: Whether your research calls for quantitative data analysis or qualitative data analysis , our experts are equipped to handle it. We apply appropriate statistical tests for your hypothesis and techniques to analyse your data, uncovering the patterns and insights that support your research objectives.
  • Results Writing: We present your findings in a clear and academically rigorous format, adhering to APA, Harvard , or other academic styles as required. This includes preparing tables and graphs that effectively communicate your results , making them accessible to your intended audience.

Let us help you transform raw data into insightful, coherent findings that propel your research forward.  Get a Free Quote Now!

Why Choose Us Choosing SPSSanalysis.com for your dissertation statistical analysis comes with a set of clear promises and benefits, designed to ensure your absolute satisfaction and confidence in our services

Experienced statisticians.

Our team comprises PhD-holding statisticians with a minimum of 7+ years of experience in a variety of fields

Privacy Guarantee

We pledge never to share your details or data with any third party, maintaining the anonymity of your project.

Plagiarism-Free Work

We provide work that is completely free from plagiarism, adhering to the highest standards of academic integrity.

On-Time Delivery

We commit to meeting your deadlines, ensuring that your project is completed within the agreed timeframe.

Free Unlimited Revisions

Your satisfaction is our priority. We offer unlimited revisions until your expectations are fully met.

24/7 Support Service

Our support team is available around the clock to answer your questions and provide assistance whenever you need it.

Thesis Stats Service: How It Works

thesis on statistical analysis

1. Submit Your Data Task

Start by clicking on  GET a FREE QUOTE  button. Indicate the instructions, the requirements, and the deadline, and upload supporting files for your  Thesis Statistics Task .

thesis on statistical analysis

2. Make the Payment

Our experts will review and update the quote for your  qualitative or quantitative dissertation task. Once you agree, make a secure payment via PayPal, which secures a safe transaction

thesis on statistical analysis

3. Get the Results

Once your thesis statistics results is ready, we’ll email you the original solution attachment. You will receive a high-quality result that is 100% plagiarism-free within the promised deadline.

Introduction

At SPSSanalysis.com , we empower PhD students, researchers, and academics by offering customised services in statistical data analysis and consulting . Our platform simplifies the complex process of statistical analysis, making it accessible for projects of any scale. From Data Processing to Reporting, our expertise spans across leading statistical software such as SPSS , R, STATA, and JASP. By connecting you with seasoned statisticians, we ensure your project is not just completed, but comprehensively understood and expertly presented.

Embarking on your statistical journey with us involves three straightforward steps, designed to integrate seamlessly into your research workflow. This simplicity, coupled with our deep commitment to accuracy and insight, makes SPSSanalysis.com the go-to destination for those seeking Thesis Statistics Help . Dive into a world where data becomes decisions, and analysis reveals insights, all tailored to propel your academic and research projects forward.

thesis on statistical analysis

Discover how our expert statistical services can transform your project by visiting our Get a Free Quote page, where detailing your data analysis needs allows us to provide tailored assistance.

1. Understanding Statistics Help

Thesis Statistics Help is a crucial support system for students grappling with the statistical elements of their research. This service streamlines the process of data analysis , from identifying the correct statistical tests to interpreting the results accurately. It’s not just about crunching numbers; it’s about leveraging statistical insight to bolster your research’s validity and reliability. With the right support, students can transform their data into compelling evidence that supports their thesis argument .

Navigating the complexities of statistical analysis can be daunting, especially for those without a strong background in statistics . This is where Thesis Statistics Help becomes invaluable, providing expert guidance to demystify the process. By tapping into this resource, students can ensure their thesis stands on a solid foundation of accurately analyzed data, enhancing their research’s overall quality and impact.

Navigate the complexities of your thesis with confidence by seeking our expert advice; simply submit your requirements for thesis statistics help on our Get a Free Quote page for personalized support.

  How to Get Thesis Support

Our process for thesis statistics help  is straightforward and efficient, encapsulated in  three simple steps :

  • Get a Free Quote :  First, Fill out the form on our website detailing your project requirements. This step helps us understand your needs and provide a precise quote.
  • Make a Payment : If you’re satisfied with the quote, proceed with payment through our secure PayPal system to initiate your project.
  • Receive Your Results:  Our experts will then conduct the statistical analysis, ensuring high-quality results directly to your email by the set deadline.

thesis on statistical analysis

2. Statistical Analysis Services 

Our  Thesis Statistics Help  services cater to a diverse clientele, ensuring that anyone in need of statistical assistance can benefit. This includes:

  • PhD Students:  Enhancing their research with advanced statistical analysis.
  • Academicians:  Supporting their scholarly work with precise data interpretation.
  • Researchers:  Empowering their investigations with robust statistical tools.
  • Master Students:  Assisting in the completion of their thesis with accurate data analysis.
  • Individuals:  Offering personal projects the benefit of statistical expertise.
  • Companies:  Improving business decisions through data-driven insights.

thesis on statistical analysis

Regardless of your academic or professional background, our services are designed to meet your  statistical analysis  needs . We cater to projects of all sizes and complexities, ensuring that every client receives the support necessary to elevate their research. Thesis Statistics Help for Get a Free Quote Now!

3. PhD Data Analysis Help: For Master’s and PhD Candidates

PhD Thesis Statistics Help is an essential service tailored specifically for Master’s and PhD candidates who are embarking on the rigorous journey of thesis writing. This specialized support goes beyond basic statistical analysis, addressing the unique challenges and expectations faced at the doctoral level. Expert statisticians can provide guidance on advanced statistical methods, help in interpreting complex data sets, and offer advice on presenting findings clearly and compellingly. This level of support is invaluable for candidates looking to make a significant contribution to their field of study.

thesis on statistical analysis

Elevate your PhD or Master’s thesis with our advanced statistical support. Visit our Get a Free Quote page, where our experts are ready to address your complex data analysis challenges.

4. Exploring Quantitative Theses

Quantitative theses are characterized by their use of statistical methods to analyze numerical data, offering a clear, objective lens through which research questions can be explored. This approach is integral to many fields, particularly the sciences and social sciences, where quantifiable evidence is paramount. Students embarking on quantitative dissertations must develop a strong understanding of statistical principles to apply the correct methodologies and interpret their data effectively.

The backbone of a quantitative thesis is its reliance on empirical evidence derived from statistical analysis . This requires a meticulous approach to data collection, from designing surveys to conducting experiments. Each step must be carefully planned to ensure the integrity of the data, which in turn, supports the validity of the thesis’s conclusions. Mastery of statistical tools and techniques is essential, turning raw data into meaningful insights that drive research forward.

Utilizing Statistics in Quantitative Theses

In quantitative theses, statistics are not just tools but critical components that shape the research narrative. The proper application of statistical methods enables researchers to test hypotheses, identify patterns, and draw conclusions with confidence. This process begins with selecting the right statistical tests, which must align with the research design and objectives. It’s a step that demands not only technical skill but also a strategic understanding of the thesis’s goals.

For precise and insightful quantitative analysis, visit our Get a Free Quote page. Tell us about your data, and we’ll craft a statistical approach that illuminates your research.

5. The Nature of Qualitative Theses

Qualitative theses explore the depth of human experiences, beliefs, and interactions, offering a nuanced understanding of research questions. This approach values the complexity of social phenomena, seeking to uncover the meanings and motivations behind human behavior. Through interviews, observations, and textual analysis, the qualitative dissertation provides a rich tapestry of insights that numerical data alone cannot capture. It challenges researchers to look beyond the surface, engaging with the subjective experiences of their subjects.

The strength of a qualitative thesis lies in its ability to provide detailed, context-rich insights that illuminate the intricacies of its subject matter. This requires a delicate balance between data collection and interpretation, where the researcher’s skill in analyzing and presenting data becomes paramount. Qualitative research demands not just technical proficiency but also empathy and an open mind, allowing for a deep connection with the research topic and participants. It’s a journey into the heart of the subject matter, where statistics complement narratives to build a compelling argument.

Applying Statistics in Qualitative Theses

While qualitative theses primarily focus on narrative and thematic analysis, integrating statistical elements can significantly enhance their depth and validity. Statistics in qualitative research are not about reducing experiences to numbers but about supporting and validating the emerging themes with quantifiable evidence. This complementary approach can illuminate patterns and trends within the data, providing a firmer ground for conclusions and recommendations.

Enhance your qualitative research with thesis statistics help. Outline your project needs on our Get a Free Quote page to explore how our expertise can elevate your thesis.

7. Key Thesis Sections Concerning Statistics: Methodology, Methods, Results

The methodology , methods, and results sections of a thesis are crucial for showcasing the statistical underpinnings of the research. The methodology outlines the overarching approach, detailing how the research was conducted and why certain statistical methods were chosen. This section sets the stage, explaining the framework within which the data was analyzed and interpreted. It’s here that the researcher justifies their methodological choices, highlighting the rigor and reliability of their approach.

thesis on statistical analysis

Following the methodology, the methods section dives deeper into the specifics of data collection and analysis. It describes the statistical tests used, the rationale behind their selection, and how they were applied to the research data. This section is key for demonstrating the technical competence of the researcher and the validity of the research design. Finally, the results section presents the findings in a clear, logical manner, supported by statistical evidence. This triad of sections forms the backbone of the thesis, underpinning the research with solid statistical foundations.

Subject Areas 

SPSSanalysis.com offers expert  statistical support  across a wide range of subject areas for your dissertation, including but not limited to:

  • Psychology :  We assist with statistical analysis for studies in behaviours, cognition, and emotion, among other topics.
  • Medical Research :  Our services cover clinical trials, epidemiology, and other health-related research.
  • Nursing :  We provide a wide range of  PhD-level statistical consultation  and data analysis services for DNP students.
  • Education:  We support research in teaching methods, learning outcomes, and educational policy analysis.
  • Sociology :  Our team helps with analyses of social behaviour, community studies, and demographic research.
  • Business and Marketing:  We provide statistical insights for market research, consumer behaviour, and business strategy studies.
  • Economics:  Our expertise extends to economic models, financial analysis, and policy impact assessments.
  • Sports : Statistical support for research on athletic performance, sports psychology, and physical education.
  • Nutrition : Analysis for dietary studies, nutritional epidemiology, and health outcome research related to nutrition

This list represents the core areas where we offer specialized statistical support, ensuring that your dissertation benefits from precise and insightful analysis tailored to your specific field of study.

8. Conducting Statistical Analysis for Your Thesis

Conducting statistical analysis for your thesis requires a careful blend of technical skill and critical thinking. It begins with a thorough understanding of your research questions and a strategic approach to data collection. This foundation ensures that the data you gather is both relevant and robust, suitable for the statistical tests you plan to apply. The next step involves selecting the appropriate statistical methods, a decision that hinges on the nature of your data and the objectives of your research. This process is critical for generating valid, reliable results that can support your thesis claims.

Dive deeper into your data with our statistical analysis services. Describe your thesis project on our Get a Free Quote page for insights that can redefine your research.

9. Support for Interpreting Thesis Results

Interpreting the results of your thesis requires a keen understanding of both your research context and the statistical methods employed. It’s a critical phase where data speaks to your hypotheses, guiding the conclusions you draw. Expert support in this stage can illuminate the nuances of your findings, helping you to articulate the implications of your research with clarity and precision. This support is particularly crucial for complex analyses, where the interpretation of results can determine the impact of your research.

thesis on statistical analysis

At SPSSanalysis.com , our statisticians are not just experts in numbers; they are skilled in translating statistical outcomes into meaningful insights. This support extends beyond mere interpretation, offering guidance on how to present your findings in a way that is accessible to your audience. Whether it’s discussing the significance of your results in the broader context of your field or identifying areas for future research, expert interpretation can elevate the quality of your thesis, making your contributions stand out.

10. Assistance with Writing the Methodology Section

Writing the methodology section of your thesis is about more than just listing the steps you took in your research; it’s about justifying your choices and demonstrating the rigor of your approach. This section is foundational, setting the stage for the credibility of your entire thesis. Expert assistance in crafting this section can ensure that your methodology is clearly articulated, from the selection of your sample to the choice of statistical tests. This clarity is essential for readers and reviewers, who must understand and trust your research process.

Strengthen your methodology section with our expert advice. Fill in your project details on our Get a Free Quote page for statistical support that ensures your research stands out.

11. Statistical Analyses Employed in Theses

The range of statistical analyses employed in theses is vast and varied, tailored to suit the specific demands of each research question. From basic descriptive statistics that summarize data to complex inferential tests that explore relationships and causality, the choice of analysis is critical. This decision should be informed by the research design, the nature of the data, and the hypotheses under investigation. Each statistical method offers unique insights, and selecting the most appropriate one is key to unlocking the full potential of your data.

Understanding the various statistical analyses available and their applications is essential for any researcher. Whether it’s a simple t-test to compare two groups or a multivariate regression analysis to explore multiple predictors of an outcome , the right statistical tools can illuminate the path to significant, meaningful findings. Familiarity with these methods not only enhances the robustness of your thesis but also equips you with the skills to contribute valuable knowledge to your field.

Whether it’s regression analysis or ANOVA, get the statistical guidance your thesis deserves by visiting our Get a Free Quote page and sharing your analytical requirements.

Statistical Tests for Dissertation Statistics

Choosing the right statistical tests is pivotal for analyzing dissertation data effectively. The main tests include:

  • Descriptive Statistics : This involves summarizing and organizing data to understand its central tendencies and variability.
  • Comparative Statistics : Utilizes tests such as T-tests,  ANOVA  (Analysis of Variance), and Mann-Whitney tests to evaluate differences between groups.
  • Inferential Statistics : Employs statistical methods to infer properties about a population based on a sample.
  • Correlation Analysis : Measures the degree and direction of association between two variables. For example  Pearson Correlation ,  Spearman’s Rho rank order ,  Kendall’s Tau ,  Partial Correlation ,  and  Canonical Correlation .
  • Regression Analysis :  This analysis is key for predicting outcomes and understanding the strength and character of the relationship between variables. For Example  Simple Linear Regression ,  Binary Logistic Regression , and Hierarchical Regression . Probit Regression
  • Univariate Analysis : Focuses on analyzing a single variable to describe its characteristics and distribution. This includes measures of central tendency, dispersion, and skewness, providing insights into the pattern of data for that variable.
  • Multivariate Analysis : Involves examining multiple variables simultaneously to understand relationships and influences among them.

12. Selecting the Appropriate Statistical Test for Your Thesis

Selecting the appropriate statistical test is a pivotal step in the research process, one that requires careful consideration of your data and research questions. This choice is guided by several factors, including the type of data you have collected, the distribution of that data, and the specific hypotheses you aim to test. The correct test will provide the most accurate and relevant insights, helping you to draw meaningful conclusions from your research.

Make informed decisions on statistical tests by consulting our experts. Submit your project details on our Get a Free Quote page for a strategy that strengthens your thesis.

13. The Importance of Seeking Help with Thesis Statistics

Engaging with Thesis Statistics Help is not merely a convenience; it’s a strategic decision that can significantly elevate the quality of your thesis. Statistical analysis, with its inherent complexity, can be a formidable challenge for many students. Expert guidance can simplify these complexities, providing clarity and confidence in your statistical choices. This support is invaluable for ensuring your research methodologies are sound and your interpretations of data are accurate, lending credibility and authority to your findings.

thesis on statistical analysis

Moreover, seeking help with thesis statistics can save invaluable time and resources, allowing you to focus more on the substantive aspects of your research. Expert statisticians bring a level of proficiency and insight that can transform your data analysis from a daunting task into a clear, manageable process. This collaboration not only enriches your research experience but also enhances the overall integrity and impact of your thesis. By investing in professional statistical support, you’re ensuring your thesis stands as a testament to high-quality, rigorous research.

14. The Cost of Hiring a Statistician for Your Dissertation

The cost of hiring a statistician for your thesis starts from £250, however, Investing in a statistician for your dissertation represents a significant step towards ensuring the quality and integrity of your research. The cost of such services can vary, reflecting the complexity of the statistical analysis required and the level of expertise of the statistician. At SPSSanalysis.com , we understand the financial constraints faced by students and researchers, which is why we strive to offer competitive rates without compromising on the quality of our services. Our pricing structure is transparent and tailored to meet the needs of a diverse client base, ensuring you receive value for your investment.

thesis on statistical analysis

Understanding the cost and value of expert statistical analysis is just a step away. Share your thesis statneeds on our Get a Free Quote page, and we’ll outline how our services can fit your budget.

15. What Statistical Software is Used in Theses?

Statistical software plays a pivotal role in theses, offering the tools needed to conduct sophisticated analyses with efficiency and accuracy. The choice of software often depends on the specific needs of the research, including the complexity of the data and the preferred statistical methods. Commonly used software includes:

  • SPSS: Renowned for its user-friendly interface, SPSS is widely used across social sciences for a variety of statistical tests.
  • R: A powerful and flexible open-source software, R is favored for its extensive range of packages and capabilities, suitable for advanced statistical modeling.
  • STATA: Popular in economics and health sciences, STATA offers robust data management and statistical analysis features.
  • JASP: An open-source alternative known for its ease of use, JASP is gaining popularity for standard statistical tests and Bayesian analyses.

thesis on statistical analysis

Selecting the right software is a crucial decision that can influence the efficiency and effectiveness of your statistical analysis. Each program has its strengths, and the best choice for your thesis will depend on your specific research needs and familiarity with the software. Engaging with statistical experts can provide valuable insights into the most appropriate software for your project, ensuring your analysis is conducted with the utmost precision.

16. SPSS Data Analysis Help for Academic Research

Our  SPSS data analysis help  extends across various fields, assisting students to excel in their respective domains:

  • Medical : Applying statistical analysis to medical research for groundbreaking findings.
  • Nursing :  Enhancing nursing studies with accurate data interpretation.
  • Healthcare :  Supporting healthcare research with comprehensive statistical insights.
  • Education :  Analyzing educational data to improve teaching and learning outcomes.
  • Sociology :  Examining social phenomena through detailed statistical analysis.
  • Psychology :  Interpreting psychological data to understand human behavior better.
  • Marketing :  Interpreting marketing data to understand human behavior better.

Our services are designed to meet the unique needs of each field, providing tailored support that enhances your research. With our expert guidance, you can harness the power of SPSS to uncover insights that make a difference.  Get a FREE Quote Now!

Stay connected with SPSSanalysis.com on  LinkedIn for the latest updates and insights!

Looking for a Statistician to Do Your Data Analysis?

COMMENTS

  1. The Beginner's Guide to Statistical Analysis

    Table of contents. Step 1: Write your hypotheses and plan your research design. Step 2: Collect data from a sample. Step 3: Summarize your data with descriptive statistics. Step 4: Test hypotheses or make estimates with inferential statistics.

  2. Introduction to Research Statistical Analysis: An Overview of the

    Introduction. Statistical analysis is necessary for any research project seeking to make quantitative conclusions. The following is a primer for research-based statistical analysis. It is intended to be a high-level overview of appropriate statistical testing, while not diving too deep into any specific methodology.

  3. PDF Guideline to Writing a Master's Thesis in Statistics

    A master's thesis is an independent scientific work and is meant to prepare students for future professional or academic work. Largely, the thesis is expected to be similar to papers published in statistical journals. It is not set in stone exactly how the thesis should be organized. The following outline should however be followed. Title Page

  4. (PDF) Chapter 3 Research Design and Methodology

    Chapter 3. Research Design and Methodology. Chapter 3 consists of three parts: (1) Purpose of the. study and research design, (2) Methods, and (3) Statistical. Data analysis procedure. Part one ...

  5. Mathematics and Statistics Theses and Dissertations

    Statistical Learning of Biomedical Non-Stationary Signals and Quality of Life Modeling, Mahdi Goudarzi. PDF. Probabilistic and Statistical Prediction Models for Alzheimer's Disease and Statistical Analysis of Global Warming, Maryam Ibrahim Habadi. PDF. Essays on Time Series and Machine Learning Techniques for Risk Management, Michael ...

  6. Dissertation Results/Findings Chapter (Quantitative)

    The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you've found in terms of the quantitative data you've collected. It presents the data using a clear text narrative, supported by tables, graphs and charts.

  7. How to Write a Results Section

    The results chapter of a thesis or dissertation presents your research results concisely and objectively. In quantitative research, for each question or hypothesis, state: The type of analysis used; Relevant results in the form of descriptive and inferential statistics; Whether or not the alternative hypothesis was supported

  8. (PDF) An Overview of Statistical Data Analysis

    1 Introduction. Statistics is a set of methods used to analyze data. The statistic is present in all areas of science involving the. collection, handling and sorting of data, given the insight of ...

  9. Statistical Methods in Theses: Guidelines and Explanations

    Guidelines and Explanations. In light of the changes in psychology, faculty members who teach statistics/methods have reviewed the literature and generated this guide for graduate students. The guide is intended to enhance the quality of student theses by facilitating their engagement in open and transparent research practices and by helping ...

  10. Master's Thesis

    Master's Thesis. As an integral component of the Master of Science in Statistical Science program, you can submit and defend a Master's Thesis. Your Master's Committee administers this oral examination. If you choose to defend a thesis, it is advisable to commence your research early, ideally during your second semester or the summer following ...

  11. What do senior theses in Statistics look like?

    Typically, senior theses are expected to have one of the following three flavors: 1. Novel statistical theory or methodology, supported by extensive mathematical and/or simulation results, along with a clear account of how the research extends or relates to previous related work. 2. An analysis of a complex data set that advances understanding ...

  12. (Pdf) Statistical Analysis With Spss for Research

    STATISTICAL ANALYSIS WITH SPSS FOR RESEARCH. January 2017. Edition: First Edition. Publisher: ECRTD Publication. Editor: European Center for Research Training and Development. ISBN: Hardcover 978 ...

  13. PhD Theses

    PhD Theses. 2023. Title. Author. Supervisor. Statistical Methods for the Analysis and Prediction of Hierarchical Time Series Data with Applications to Demography. Daphne Liu. Adrian E Raftery. Exponential Family Models for Rich Preference Ranking Data.

  14. PDF Statistical Analysis and Modeling Health Data: A Longitudinal Study

    Tharu, Bhikhari Prasad, "Statistical Analysis and Modeling Health Data: A Longitudinal Study" (2016). Graduate Theses and Dissertations. htp://scholarcommons.usf.edu/etd/6413. This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons.

  15. Thesis Life: 7 ways to tackle statistics in your thesis

    Since it is an immitigable part of your thesis, you can neither run from statistics nor cry for help. The penultimate part of this process involves analysis of results which is very crucial for coherence of your thesis assignment.This analysis usually involve use of statistical tools to help draw inferences. Most students who don't pursue ...

  16. PDF Study Design and Statistical Analysis

    Study Design and Statistical Analysis A Practical Guide for Clinicians This book takes the reader through the entire research process: choosing a question, designing a study, collecting the data, using univariate, bivariate and multivariable analysis, and publishing the results. It does so by using plain language rather than complex

  17. Browsing FAS Theses and Dissertations by FAS Department "Statistics"

    Advances in Statistical Network Modeling and Nonlinear Time Series Modeling . Han, Qiuyi (2018-05-11) The thesis is composed of two independent topics: statistical network modeling and nonlinear time series modeling. With the increasing demand of network data analysis, we present two statistical network models and inferences, ...

  18. PDF STATISTICAL METHODS FOR META-ANALYSIS

    The second part of this thesis introduces novel ideas in multivariate meta-analysis. In medical sciences, a disease condition is typically associated with multiple risk and protective factors.

  19. Basic statistical tools in research and data analysis

    Abstract. Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise ...

  20. Choosing the Right Statistical Test

    Categorical variables represent groupings of things (e.g. the different tree species in a forest). Types of categorical variables include: Ordinal: represent data with an order (e.g. rankings). Nominal: represent group names (e.g. brands or species names). Binary: represent data with a yes/no or 1/0 outcome (e.g. win or lose).

  21. Dissertation Statistics and Thesis Statistics

    The statistical analysis for your thesis or dissertation should be appropriate for what you are researching and should fit with your needs and capabilities. I know, that's not saying much, but it's important that you're comfortable with the statistical analysis you will be conducting. An experienced dissertation consultant will help you ...

  22. The Beginner's Guide to Statistical Analysis

    Table of contents. Step 1: Write your hypotheses and plan your research design. Step 2: Collect data from a sample. Step 3: Summarise your data with descriptive statistics. Step 4: Test hypotheses or make estimates with inferential statistics.

  23. Dissertation Statistical Analysis Samples and Examples

    Statistical analysis is a critical aspect of a dissertation and makes up the fourth chapter of a thesis, i.e., results and findings. Statistical analysis is the collection and interpretation of data to reveal trends and patterns or test a hypothesis. SPSS, STATA, reviews, R, Nvivo, SAS, and others are some of the most commonly used statistical ...

  24. Measurement and analysis of change in research scholars' knowledge and

    Knowledge of statistics is highly important for research scholars, as they are expected to submit a thesis based on original research as part of a PhD program. As statistics play a major role in the analysis and interpretation of scientific data, intensive training at the beginning of a PhD programme is essential. PhD coursework is mandatory in universities and higher education institutes in ...

  25. Statistical Analysis for Thesis

    Statistical data analysis help for thesis is a comprehensive service tailored to meet the specific needs of your academic research, ensuring that you receive expert support in the following key areas: Methodology Writing: We develop a detailed plan for your research approach, outlining the statistical methods to be used in your study. This ...