Classroom Q&A

With larry ferlazzo.

In this EdWeek blog, an experiment in knowledge-gathering, Ferlazzo will address readers’ questions on classroom management, ELL instruction, lesson planning, and other issues facing teachers. Send your questions to [email protected]. Read more from this blog.

Eight Instructional Strategies for Promoting Critical Thinking

critical thinking teaching method

  • Share article

(This is the first post in a three-part series.)

The new question-of-the-week is:

What is critical thinking and how can we integrate it into the classroom?

This three-part series will explore what critical thinking is, if it can be specifically taught and, if so, how can teachers do so in their classrooms.

Today’s guests are Dara Laws Savage, Patrick Brown, Meg Riordan, Ph.D., and Dr. PJ Caposey. Dara, Patrick, and Meg were also guests on my 10-minute BAM! Radio Show . You can also find a list of, and links to, previous shows here.

You might also be interested in The Best Resources On Teaching & Learning Critical Thinking In The Classroom .

Current Events

Dara Laws Savage is an English teacher at the Early College High School at Delaware State University, where she serves as a teacher and instructional coach and lead mentor. Dara has been teaching for 25 years (career preparation, English, photography, yearbook, newspaper, and graphic design) and has presented nationally on project-based learning and technology integration:

There is so much going on right now and there is an overload of information for us to process. Did you ever stop to think how our students are processing current events? They see news feeds, hear news reports, and scan photos and posts, but are they truly thinking about what they are hearing and seeing?

I tell my students that my job is not to give them answers but to teach them how to think about what they read and hear. So what is critical thinking and how can we integrate it into the classroom? There are just as many definitions of critical thinking as there are people trying to define it. However, the Critical Think Consortium focuses on the tools to create a thinking-based classroom rather than a definition: “Shape the climate to support thinking, create opportunities for thinking, build capacity to think, provide guidance to inform thinking.” Using these four criteria and pairing them with current events, teachers easily create learning spaces that thrive on thinking and keep students engaged.

One successful technique I use is the FIRE Write. Students are given a quote, a paragraph, an excerpt, or a photo from the headlines. Students are asked to F ocus and respond to the selection for three minutes. Next, students are asked to I dentify a phrase or section of the photo and write for two minutes. Third, students are asked to R eframe their response around a specific word, phrase, or section within their previous selection. Finally, students E xchange their thoughts with a classmate. Within the exchange, students also talk about how the selection connects to what we are covering in class.

There was a controversial Pepsi ad in 2017 involving Kylie Jenner and a protest with a police presence. The imagery in the photo was strikingly similar to a photo that went viral with a young lady standing opposite a police line. Using that image from a current event engaged my students and gave them the opportunity to critically think about events of the time.

Here are the two photos and a student response:

F - Focus on both photos and respond for three minutes

In the first picture, you see a strong and courageous black female, bravely standing in front of two officers in protest. She is risking her life to do so. Iesha Evans is simply proving to the world she does NOT mean less because she is black … and yet officers are there to stop her. She did not step down. In the picture below, you see Kendall Jenner handing a police officer a Pepsi. Maybe this wouldn’t be a big deal, except this was Pepsi’s weak, pathetic, and outrageous excuse of a commercial that belittles the whole movement of people fighting for their lives.

I - Identify a word or phrase, underline it, then write about it for two minutes

A white, privileged female in place of a fighting black woman was asking for trouble. A struggle we are continuously fighting every day, and they make a mockery of it. “I know what will work! Here Mr. Police Officer! Drink some Pepsi!” As if. Pepsi made a fool of themselves, and now their already dwindling fan base continues to ever shrink smaller.

R - Reframe your thoughts by choosing a different word, then write about that for one minute

You don’t know privilege until it’s gone. You don’t know privilege while it’s there—but you can and will be made accountable and aware. Don’t use it for evil. You are not stupid. Use it to do something. Kendall could’ve NOT done the commercial. Kendall could’ve released another commercial standing behind a black woman. Anything!

Exchange - Remember to discuss how this connects to our school song project and our previous discussions?

This connects two ways - 1) We want to convey a strong message. Be powerful. Show who we are. And Pepsi definitely tried. … Which leads to the second connection. 2) Not mess up and offend anyone, as had the one alma mater had been linked to black minstrels. We want to be amazing, but we have to be smart and careful and make sure we include everyone who goes to our school and everyone who may go to our school.

As a final step, students read and annotate the full article and compare it to their initial response.

Using current events and critical-thinking strategies like FIRE writing helps create a learning space where thinking is the goal rather than a score on a multiple-choice assessment. Critical-thinking skills can cross over to any of students’ other courses and into life outside the classroom. After all, we as teachers want to help the whole student be successful, and critical thinking is an important part of navigating life after they leave our classrooms.

usingdaratwo

‘Before-Explore-Explain’

Patrick Brown is the executive director of STEM and CTE for the Fort Zumwalt school district in Missouri and an experienced educator and author :

Planning for critical thinking focuses on teaching the most crucial science concepts, practices, and logical-thinking skills as well as the best use of instructional time. One way to ensure that lessons maintain a focus on critical thinking is to focus on the instructional sequence used to teach.

Explore-before-explain teaching is all about promoting critical thinking for learners to better prepare students for the reality of their world. What having an explore-before-explain mindset means is that in our planning, we prioritize giving students firsthand experiences with data, allow students to construct evidence-based claims that focus on conceptual understanding, and challenge students to discuss and think about the why behind phenomena.

Just think of the critical thinking that has to occur for students to construct a scientific claim. 1) They need the opportunity to collect data, analyze it, and determine how to make sense of what the data may mean. 2) With data in hand, students can begin thinking about the validity and reliability of their experience and information collected. 3) They can consider what differences, if any, they might have if they completed the investigation again. 4) They can scrutinize outlying data points for they may be an artifact of a true difference that merits further exploration of a misstep in the procedure, measuring device, or measurement. All of these intellectual activities help them form more robust understanding and are evidence of their critical thinking.

In explore-before-explain teaching, all of these hard critical-thinking tasks come before teacher explanations of content. Whether we use discovery experiences, problem-based learning, and or inquiry-based activities, strategies that are geared toward helping students construct understanding promote critical thinking because students learn content by doing the practices valued in the field to generate knowledge.

explorebeforeexplain

An Issue of Equity

Meg Riordan, Ph.D., is the chief learning officer at The Possible Project, an out-of-school program that collaborates with youth to build entrepreneurial skills and mindsets and provides pathways to careers and long-term economic prosperity. She has been in the field of education for over 25 years as a middle and high school teacher, school coach, college professor, regional director of N.Y.C. Outward Bound Schools, and director of external research with EL Education:

Although critical thinking often defies straightforward definition, most in the education field agree it consists of several components: reasoning, problem-solving, and decisionmaking, plus analysis and evaluation of information, such that multiple sides of an issue can be explored. It also includes dispositions and “the willingness to apply critical-thinking principles, rather than fall back on existing unexamined beliefs, or simply believe what you’re told by authority figures.”

Despite variation in definitions, critical thinking is nonetheless promoted as an essential outcome of students’ learning—we want to see students and adults demonstrate it across all fields, professions, and in their personal lives. Yet there is simultaneously a rationing of opportunities in schools for students of color, students from under-resourced communities, and other historically marginalized groups to deeply learn and practice critical thinking.

For example, many of our most underserved students often spend class time filling out worksheets, promoting high compliance but low engagement, inquiry, critical thinking, or creation of new ideas. At a time in our world when college and careers are critical for participation in society and the global, knowledge-based economy, far too many students struggle within classrooms and schools that reinforce low-expectations and inequity.

If educators aim to prepare all students for an ever-evolving marketplace and develop skills that will be valued no matter what tomorrow’s jobs are, then we must move critical thinking to the forefront of classroom experiences. And educators must design learning to cultivate it.

So, what does that really look like?

Unpack and define critical thinking

To understand critical thinking, educators need to first unpack and define its components. What exactly are we looking for when we speak about reasoning or exploring multiple perspectives on an issue? How does problem-solving show up in English, math, science, art, or other disciplines—and how is it assessed? At Two Rivers, an EL Education school, the faculty identified five constructs of critical thinking, defined each, and created rubrics to generate a shared picture of quality for teachers and students. The rubrics were then adapted across grade levels to indicate students’ learning progressions.

At Avenues World School, critical thinking is one of the Avenues World Elements and is an enduring outcome embedded in students’ early experiences through 12th grade. For instance, a kindergarten student may be expected to “identify cause and effect in familiar contexts,” while an 8th grader should demonstrate the ability to “seek out sufficient evidence before accepting a claim as true,” “identify bias in claims and evidence,” and “reconsider strongly held points of view in light of new evidence.”

When faculty and students embrace a common vision of what critical thinking looks and sounds like and how it is assessed, educators can then explicitly design learning experiences that call for students to employ critical-thinking skills. This kind of work must occur across all schools and programs, especially those serving large numbers of students of color. As Linda Darling-Hammond asserts , “Schools that serve large numbers of students of color are least likely to offer the kind of curriculum needed to ... help students attain the [critical-thinking] skills needed in a knowledge work economy. ”

So, what can it look like to create those kinds of learning experiences?

Designing experiences for critical thinking

After defining a shared understanding of “what” critical thinking is and “how” it shows up across multiple disciplines and grade levels, it is essential to create learning experiences that impel students to cultivate, practice, and apply these skills. There are several levers that offer pathways for teachers to promote critical thinking in lessons:

1.Choose Compelling Topics: Keep it relevant

A key Common Core State Standard asks for students to “write arguments to support claims in an analysis of substantive topics or texts using valid reasoning and relevant and sufficient evidence.” That might not sound exciting or culturally relevant. But a learning experience designed for a 12th grade humanities class engaged learners in a compelling topic— policing in America —to analyze and evaluate multiple texts (including primary sources) and share the reasoning for their perspectives through discussion and writing. Students grappled with ideas and their beliefs and employed deep critical-thinking skills to develop arguments for their claims. Embedding critical-thinking skills in curriculum that students care about and connect with can ignite powerful learning experiences.

2. Make Local Connections: Keep it real

At The Possible Project , an out-of-school-time program designed to promote entrepreneurial skills and mindsets, students in a recent summer online program (modified from in-person due to COVID-19) explored the impact of COVID-19 on their communities and local BIPOC-owned businesses. They learned interviewing skills through a partnership with Everyday Boston , conducted virtual interviews with entrepreneurs, evaluated information from their interviews and local data, and examined their previously held beliefs. They created blog posts and videos to reflect on their learning and consider how their mindsets had changed as a result of the experience. In this way, we can design powerful community-based learning and invite students into productive struggle with multiple perspectives.

3. Create Authentic Projects: Keep it rigorous

At Big Picture Learning schools, students engage in internship-based learning experiences as a central part of their schooling. Their school-based adviser and internship-based mentor support them in developing real-world projects that promote deeper learning and critical-thinking skills. Such authentic experiences teach “young people to be thinkers, to be curious, to get from curiosity to creation … and it helps students design a learning experience that answers their questions, [providing an] opportunity to communicate it to a larger audience—a major indicator of postsecondary success.” Even in a remote environment, we can design projects that ask more of students than rote memorization and that spark critical thinking.

Our call to action is this: As educators, we need to make opportunities for critical thinking available not only to the affluent or those fortunate enough to be placed in advanced courses. The tools are available, let’s use them. Let’s interrogate our current curriculum and design learning experiences that engage all students in real, relevant, and rigorous experiences that require critical thinking and prepare them for promising postsecondary pathways.

letsinterrogate

Critical Thinking & Student Engagement

Dr. PJ Caposey is an award-winning educator, keynote speaker, consultant, and author of seven books who currently serves as the superintendent of schools for the award-winning Meridian CUSD 223 in northwest Illinois. You can find PJ on most social-media platforms as MCUSDSupe:

When I start my keynote on student engagement, I invite two people up on stage and give them each five paper balls to shoot at a garbage can also conveniently placed on stage. Contestant One shoots their shot, and the audience gives approval. Four out of 5 is a heckuva score. Then just before Contestant Two shoots, I blindfold them and start moving the garbage can back and forth. I usually try to ensure that they can at least make one of their shots. Nobody is successful in this unfair environment.

I thank them and send them back to their seats and then explain that this little activity was akin to student engagement. While we all know we want student engagement, we are shooting at different targets. More importantly, for teachers, it is near impossible for them to hit a target that is moving and that they cannot see.

Within the world of education and particularly as educational leaders, we have failed to simplify what student engagement looks like, and it is impossible to define or articulate what student engagement looks like if we cannot clearly articulate what critical thinking is and looks like in a classroom. Because, simply, without critical thought, there is no engagement.

The good news here is that critical thought has been defined and placed into taxonomies for decades already. This is not something new and not something that needs to be redefined. I am a Bloom’s person, but there is nothing wrong with DOK or some of the other taxonomies, either. To be precise, I am a huge fan of Daggett’s Rigor and Relevance Framework. I have used that as a core element of my practice for years, and it has shaped who I am as an instructional leader.

So, in order to explain critical thought, a teacher or a leader must familiarize themselves with these tried and true taxonomies. Easy, right? Yes, sort of. The issue is not understanding what critical thought is; it is the ability to integrate it into the classrooms. In order to do so, there are a four key steps every educator must take.

  • Integrating critical thought/rigor into a lesson does not happen by chance, it happens by design. Planning for critical thought and engagement is much different from planning for a traditional lesson. In order to plan for kids to think critically, you have to provide a base of knowledge and excellent prompts to allow them to explore their own thinking in order to analyze, evaluate, or synthesize information.
  • SIDE NOTE – Bloom’s verbs are a great way to start when writing objectives, but true planning will take you deeper than this.

QUESTIONING

  • If the questions and prompts given in a classroom have correct answers or if the teacher ends up answering their own questions, the lesson will lack critical thought and rigor.
  • Script five questions forcing higher-order thought prior to every lesson. Experienced teachers may not feel they need this, but it helps to create an effective habit.
  • If lessons are rigorous and assessments are not, students will do well on their assessments, and that may not be an accurate representation of the knowledge and skills they have mastered. If lessons are easy and assessments are rigorous, the exact opposite will happen. When deciding to increase critical thought, it must happen in all three phases of the game: planning, instruction, and assessment.

TALK TIME / CONTROL

  • To increase rigor, the teacher must DO LESS. This feels counterintuitive but is accurate. Rigorous lessons involving tons of critical thought must allow for students to work on their own, collaborate with peers, and connect their ideas. This cannot happen in a silent room except for the teacher talking. In order to increase rigor, decrease talk time and become comfortable with less control. Asking questions and giving prompts that lead to no true correct answer also means less control. This is a tough ask for some teachers. Explained differently, if you assign one assignment and get 30 very similar products, you have most likely assigned a low-rigor recipe. If you assign one assignment and get multiple varied products, then the students have had a chance to think deeply, and you have successfully integrated critical thought into your classroom.

integratingcaposey

Thanks to Dara, Patrick, Meg, and PJ for their contributions!

Please feel free to leave a comment with your reactions to the topic or directly to anything that has been said in this post.

Consider contributing a question to be answered in a future post. You can send one to me at [email protected] . When you send it in, let me know if I can use your real name if it’s selected or if you’d prefer remaining anonymous and have a pseudonym in mind.

You can also contact me on Twitter at @Larryferlazzo .

Education Week has published a collection of posts from this blog, along with new material, in an e-book form. It’s titled Classroom Management Q&As: Expert Strategies for Teaching .

Just a reminder; you can subscribe and receive updates from this blog via email (The RSS feed for this blog, and for all Ed Week articles, has been changed by the new redesign—new ones won’t be available until February). And if you missed any of the highlights from the first nine years of this blog, you can see a categorized list below.

  • This Year’s Most Popular Q&A Posts
  • Race & Racism in Schools
  • School Closures & the Coronavirus Crisis
  • Classroom-Management Advice
  • Best Ways to Begin the School Year
  • Best Ways to End the School Year
  • Student Motivation & Social-Emotional Learning
  • Implementing the Common Core
  • Facing Gender Challenges in Education
  • Teaching Social Studies
  • Cooperative & Collaborative Learning
  • Using Tech in the Classroom
  • Student Voices
  • Parent Engagement in Schools
  • Teaching English-Language Learners
  • Reading Instruction
  • Writing Instruction
  • Education Policy Issues
  • Differentiating Instruction
  • Math Instruction
  • Science Instruction
  • Advice for New Teachers
  • Author Interviews
  • Entering the Teaching Profession
  • The Inclusive Classroom
  • Learning & the Brain
  • Administrator Leadership
  • Teacher Leadership
  • Relationships in Schools
  • Professional Development
  • Instructional Strategies
  • Best of Classroom Q&A
  • Professional Collaboration
  • Classroom Organization
  • Mistakes in Education
  • Project-Based Learning

I am also creating a Twitter list including all contributors to this column .

The opinions expressed in Classroom Q&A With Larry Ferlazzo are strictly those of the author(s) and do not reflect the opinions or endorsement of Editorial Projects in Education, or any of its publications.

Sign Up for EdWeek Update

Edweek top school jobs.

Images shows a stylized artistic landscape with soothing colors.

Sign Up & Sign In

module image 9

  • Our Mission

Helping Students Hone Their Critical Thinking Skills

Used consistently, these strategies can help middle and high school teachers guide students to improve much-needed skills.

Middle school students involved in a classroom discussion

Critical thinking skills are important in every discipline, at and beyond school. From managing money to choosing which candidates to vote for in elections to making difficult career choices, students need to be prepared to take in, synthesize, and act on new information in a world that is constantly changing.

While critical thinking might seem like an abstract idea that is tough to directly instruct, there are many engaging ways to help students strengthen these skills through active learning.

Make Time for Metacognitive Reflection

Create space for students to both reflect on their ideas and discuss the power of doing so. Show students how they can push back on their own thinking to analyze and question their assumptions. Students might ask themselves, “Why is this the best answer? What information supports my answer? What might someone with a counterargument say?”

Through this reflection, students and teachers (who can model reflecting on their own thinking) gain deeper understandings of their ideas and do a better job articulating their beliefs. In a world that is go-go-go, it is important to help students understand that it is OK to take a breath and think about their ideas before putting them out into the world. And taking time for reflection helps us more thoughtfully consider others’ ideas, too.

Teach Reasoning Skills 

Reasoning skills are another key component of critical thinking, involving the abilities to think logically, evaluate evidence, identify assumptions, and analyze arguments. Students who learn how to use reasoning skills will be better equipped to make informed decisions, form and defend opinions, and solve problems. 

One way to teach reasoning is to use problem-solving activities that require students to apply their skills to practical contexts. For example, give students a real problem to solve, and ask them to use reasoning skills to develop a solution. They can then present their solution and defend their reasoning to the class and engage in discussion about whether and how their thinking changed when listening to peers’ perspectives. 

A great example I have seen involved students identifying an underutilized part of their school and creating a presentation about one way to redesign it. This project allowed students to feel a sense of connection to the problem and come up with creative solutions that could help others at school. For more examples, you might visit PBS’s Design Squad , a resource that brings to life real-world problem-solving.

Ask Open-Ended Questions 

Moving beyond the repetition of facts, critical thinking requires students to take positions and explain their beliefs through research, evidence, and explanations of credibility. 

When we pose open-ended questions, we create space for classroom discourse inclusive of diverse, perhaps opposing, ideas—grounds for rich exchanges that support deep thinking and analysis. 

For example, “How would you approach the problem?” and “Where might you look to find resources to address this issue?” are two open-ended questions that position students to think less about the “right” answer and more about the variety of solutions that might already exist. 

Journaling, whether digitally or physically in a notebook, is another great way to have students answer these open-ended prompts—giving them time to think and organize their thoughts before contributing to a conversation, which can ensure that more voices are heard. 

Once students process in their journal, small group or whole class conversations help bring their ideas to life. Discovering similarities between answers helps reveal to students that they are not alone, which can encourage future participation in constructive civil discourse.

Teach Information Literacy 

Education has moved far past the idea of “Be careful of what is on Wikipedia, because it might not be true.” With AI innovations making their way into classrooms, teachers know that informed readers must question everything. 

Understanding what is and is not a reliable source and knowing how to vet information are important skills for students to build and utilize when making informed decisions. You might start by introducing the idea of bias: Articles, ads, memes, videos, and every other form of media can push an agenda that students may not see on the surface. Discuss credibility, subjectivity, and objectivity, and look at examples and nonexamples of trusted information to prepare students to be well-informed members of a democracy.

One of my favorite lessons is about the Pacific Northwest tree octopus . This project asks students to explore what appears to be a very real website that provides information on this supposedly endangered animal. It is a wonderful, albeit over-the-top, example of how something might look official even when untrue, revealing that we need critical thinking to break down “facts” and determine the validity of the information we consume. 

A fun extension is to have students come up with their own website or newsletter about something going on in school that is untrue. Perhaps a change in dress code that requires everyone to wear their clothes inside out or a change to the lunch menu that will require students to eat brussels sprouts every day. 

Giving students the ability to create their own falsified information can help them better identify it in other contexts. Understanding that information can be “too good to be true” can help them identify future falsehoods. 

Provide Diverse Perspectives 

Consider how to keep the classroom from becoming an echo chamber. If students come from the same community, they may have similar perspectives. And those who have differing perspectives may not feel comfortable sharing them in the face of an opposing majority. 

To support varying viewpoints, bring diverse voices into the classroom as much as possible, especially when discussing current events. Use primary sources: videos from YouTube, essays and articles written by people who experienced current events firsthand, documentaries that dive deeply into topics that require some nuance, and any other resources that provide a varied look at topics. 

I like to use the Smithsonian “OurStory” page , which shares a wide variety of stories from people in the United States. The page on Japanese American internment camps is very powerful because of its first-person perspectives. 

Practice Makes Perfect 

To make the above strategies and thinking routines a consistent part of your classroom, spread them out—and build upon them—over the course of the school year. You might challenge students with information and/or examples that require them to use their critical thinking skills; work these skills explicitly into lessons, projects, rubrics, and self-assessments; or have students practice identifying misinformation or unsupported arguments.

Critical thinking is not learned in isolation. It needs to be explored in English language arts, social studies, science, physical education, math. Every discipline requires students to take a careful look at something and find the best solution. Often, these skills are taken for granted, viewed as a by-product of a good education, but true critical thinking doesn’t just happen. It requires consistency and commitment.

In a moment when information and misinformation abound, and students must parse reams of information, it is imperative that we support and model critical thinking in the classroom to support the development of well-informed citizens.

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

critical thinking teaching method

1. Teaching Critical Thinking: How to Inspire Better Reasoning

Teaching critical thinking, as most teachers know, is a challenge. Classroom time is always at a premium and teaching thinking and reasoning can fall by the wayside, especially when testing goals and state requirements take precedence. But for a growing number of educators, critical thinking has become a priority. 

This is because, for many reasons, young people simply need critical thinking instruction: 

  • They are faced with myriad crises — many real and some imagined or exaggerated by unreliable news sources and overstimulated social media users. 
  • They spend more and more of their time in internet-connected environments where advertisers and interest groups hold previously unimaginable powers of manipulation over them. 
  • Technology, politics, and society in general all seem to be changing faster than ever before, and the future seems more uncertain than ever.

These changes don’t only complicate the world itself; they affect our powers of understanding at the same time. There’s evidence suggesting social media use can damage attention spans , have an outsized impact on emotions and mental health, and even affect memory . Psychologically addictive reward systems are built into many of these platforms. 

critical thinking teaching method

Even generally reliable news sources, which increasingly orient themselves to their own fragmented segment of the journalism market, can overwhelm our powers of judgment with sensationalistic headlines, misleading framing, and the sheer volume of information at our fingertips.

The kind of thinking and attention required to engage with complicated issues becomes harder to foster and harder to maintain than it might be in a less saturated information ecosystem. Under these conditions, critical thinking, which has long been a buzzword in education, takes on a new and more urgent significance. New opportunities and methods for teaching critical thinking are needed.

Critical thinking, which has long been a buzzword in education, takes on a new and more urgent significance.

critical thinking teaching method

Being able to think critically — with rigor, depth, patience, emotional intelligence, and humility — can have wide-ranging impacts on every aspect of students’ lives: their contributions to civic life, their professional success, their ability to build and maintain healthy relationships, their mental health, and even their physical well-being. 

What are the key strategies for teaching critical thinking skills? In many ways, we are still at square one when it comes to teaching our students how to think critically. There are a number of obstacles here:

  • Teachers are not given the time, freedom, materials, or professional development tools to teach their students how to think critically.
  • Mainstream education priorities — too focused on test results and narrowly defined skills — don’t leave room for critical thinking.
  • The best education research, which strongly suggests that critical thinking instruction must be embedded in specific domain instruction, is not well-known or widely put into practice.
  • Traditional curricula have not evolved quickly enough to adapt to the new challenges students face in analyzing information and media. 

What Is Critical Thinking?

For all the talk about critical thinking, there remains a lot of confusion about what exactly it is. So what does critical thinking mean? This is key to teaching critical thinking, of course. 

The Reboot Foundation defines critical thinking quite simply as high-level skills in reasoning, coming to judgments, and making decisions. Even more simply: critical thinking is thinking well. 

To get a little more specific, critical thinkers are regularly reflective, objective, and analytical in their thinking:

  • They step back to reflect on their own thinking, taking time to plan, strategize, and reform their thinking when necessary. 
  • They do their best to overcome subjective biases. While they know that pure objectivity is an ideal we can never reach, they draw on the perspectives of others, especially those with opposing views, in order to expand their own horizons.
  • They use the analytical tools of logic and effective argumentation to evaluate evidence, make judgments, and discuss issues with others. 

For more about Reboot’s definition of critical thinking please see this post: “What Is Critical Thinking?”

How to Teach Critical Thinking

As part of the Reboot Foundation’s efforts to create this guide on how to teach critical thinking we consulted with a group of leading teachers from around the country, teaching in different types of schools, at different grade levels, and in different geographic areas.

When it came to teaching critical thinking skills the same kinds of obstacles cropped up over and over again such as a focus on testing and teacher accountability, which has put pressure on administrators and teachers to deliver testing results through more uniform and rigid curriculums. 

Given this and numerous other challenges, this guide provides teachers subject-oriented advice for integrating critical thinking into their curricula. Different teachers, of course, face very different challenges and circumstances to teaching critical thinking. For this reason, instead of setting out rigid lesson plans, we have offered short research synopses and ideas for critical thinking lessons and activities. We expect teachers will modify these to their needs, or that these will spark new ideas and experiments in their classrooms.

The Importance of Domain Knowledge in Teaching Critical Thinking

Despite a great deal of rhetoric about critical thinking, not enough time is actually spent teaching critical thinking. One major reason is a misconception about its nature. Critical thinking is not a single skill that can be taught, like playing the cello, or content that can be memorized, like the history of the French Revolution.  What critical thinking entails often depends on the content and discipline. 

What critical thinking entails often depends on the content and discipline.

Although there is overlap, good thinking habits and strategies in physics don’t look the same as those in literary interpretation. We must keep this in mind when we seek to teach thinking. As cognitive scientist Daniel Willingham  puts it , “Thought processes are intertwined with what is being thought about.”

What does that mean for teaching critical thinking? There is good and bad news. The bad news is that critical thinking, as a generic skill, is challenging to teach. Critical thinking skills learned in one area aren’t guaranteed to transfer to other areas.  The good news is that specific critical thinking instruction can, in many cases, be integrated into existing classroom practices. The key is to understand what constitutes deeper thinking in particular domains and implement classroom practices that leads students toward that kind of thinking. That’s what we’ve set out to do in this guide.

critical thinking teaching method

How to teach Critical Thinking Habits

That said, there are some habits and virtues that cut across domains when it comes to how to teach critical thinking. Teachers can make an impact by modeling these intellectual virtues, when possible, for their students.

How to Teach Critical Thinking: Sparking Curiosity. 

Young students are eager to know about the world and ask questions tirelessly. Why is the grass green? Why do zebras have stripes? Even adolescents are prone to constant questioning — though their questions sometimes have a more cynical slant. 

In the classroom, it’s not always possible to indulge every last question, and some of these questions can be disruptive. But it is still absolutely vital that educators make time to indulge and encourage the curiosity of students. Curiosity, if it’s developed and refined, is crucial to being an informed and engaged citizen of the world. 

Open-ended discussions are an excellent way to spark curiosity. We model this kind of discussion in our article on critical thinking and reading .  There you’ll find tips on how to prompt students to ask deeper moral and philosophical texts about literary texts. With practice in refining their curiosity, students will begin to develop what’s called “metacognition,” or thinking about thinking. This is a foundational part of critical thinking, in which students turn their curiosity on themselves, and begin to ask why they think and believe what they do. 

How to Teach Critical Thinking: Managing Emotions. 

Emotions may seem far afield from the ability to reason but critical thinking is emotionally difficult. Critical thinkers have to exhibit the humility to admit that they don’t know everything and they may be wrong. At the same time, they have to be confident enough to ask tough questions and challenge authority when appropriate. And, perhaps most crucially, they have to be able to consider and analyze arguments on their merits, instead of judging the person making them.

When emotions run high in the classroom, for example in a discussion of a controversial topic, it’s a great time for teachers to model these virtues. We offer tips on how to do so in our article on civics education . The goal is to give students civic competence and confidence, ultimately, contribute positively to their communities and society as a whole. 

How to Teach Critical Thinking: Checking for Bias. 

Emotional arguments can make it especially difficult to recognize and overcome biases. When we’re emotional, we usually fail to step back and look for misinterpretations, hasty conclusions, and assumptions we may have made about the people we’re arguing against.

Instruction in logic and philosophy can help students recognize biased thinking in themselves and, especially, in some of the weak reasoning they all inevitably come across online. Too often, especially in the United States, we’ve considered these topics too advanced for K-12 learners.

Check out our articles on media literacy and philosophy for more on how to help students navigate emotional appeals and understand biases, and for more tips on how to teach critical thinking. 

Download the Teachers’ Guide

(please click here)

Privacy Overview

The Institute for Learning and Teaching

College of business, teaching tips, the socratic method: fostering critical thinking.

"Do not take what I say as if I were merely playing, for you see the subject of our discussion—and on what subject should even a man of slight intelligence be more serious? —namely, what kind of life should one live . . ." Socrates

By Peter Conor

This teaching tip explores how the Socratic Method can be used to promote critical thinking in classroom discussions. It is based on the article, The Socratic Method: What it is and How to Use it in the Classroom, published in the newsletter, Speaking of Teaching, a publication of the Stanford Center for Teaching and Learning (CTL).

The article summarizes a talk given by Political Science professor Rob Reich, on May 22, 2003, as part of the center’s Award Winning Teachers on Teaching lecture series. Reich, the recipient of the 2001 Walter J. Gores Award for Teaching Excellence, describes four essential components of the Socratic method and urges his audience to “creatively reclaim [the method] as a relevant framework” to be used in the classroom.

What is the Socratic Method?

Developed by the Greek philosopher, Socrates, the Socratic Method is a dialogue between teacher and students, instigated by the continual probing questions of the teacher, in a concerted effort to explore the underlying beliefs that shape the students views and opinions. Though often misunderstood, most Western pedagogical tradition, from Plato on, is based on this dialectical method of questioning.

An extreme version of this technique is employed by the infamous professor, Dr. Kingsfield, portrayed by John Houseman in the 1973 movie, “The Paper Chase.” In order to get at the heart of ethical dilemmas and the principles of moral character, Dr. Kingsfield terrorizes and humiliates his law students by painfully grilling them on the details and implications of legal cases.

In his lecture, Reich describes a kinder, gentler Socratic Method, pointing out the following:

  • Socratic inquiry is not “teaching” per se. It does not include PowerPoint driven lectures, detailed lesson plans or rote memorization. The teacher is neither “the sage on the stage” nor “the guide on the side.” The students are not passive recipients of knowledge.
  • The Socratic Method involves a shared dialogue between teacher and students. The teacher leads by posing thought-provoking questions. Students actively engage by asking questions of their own. The discussion goes back and forth.
  • The Socratic Method says Reich, “is better used to demonstrate complexity, difficulty, and uncertainty than to elicit facts about the world.” The aim of the questioning is to probe the underlying beliefs upon which each participant’s statements, arguments and assumptions are built.
  • The classroom environment is characterized by “productive discomfort,” not intimidation. The Socratic professor does not have all the answers and is not merely “testing” the students. The questioning proceeds open-ended with no pre-determined goal.
  • The focus is not on the participants’ statements but on the value system that underpins their beliefs, actions, and decisions. For this reason, any successful challenge to this system comes with high stakes—one might have to examine and change one’s life, but, Socrates is famous for saying, “the unexamined life is not worth living.”
  • “The Socratic professor,” Reich states, “is not the opponent in an argument, nor someone who always plays devil’s advocate, saying essentially: ‘If you affirm it, I deny it. If you deny it, I affirm it.’ This happens sometimes, but not as a matter of pedagogical principle.”

Professor Reich also provides ten tips for fostering critical thinking in the classroom. While no longer available on Stanford’s website, the full article can be found on the web archive:  The Socratic Method: What it is and How to Use it in the classroom

  • More Teaching Tips
  • Tags: communication , critical thinking , learning
  • Categories: Instructional Strategies , Teaching Effectiveness , Teaching Tips

socrates statue

K-12 Resources By Teachers, For Teachers Provided by the K-12 Teachers Alliance

  • Teaching Strategies
  • Classroom Activities
  • Classroom Management
  • Technology in the Classroom
  • Professional Development
  • Lesson Plans
  • Writing Prompts
  • Graduate Programs

Teaching Strategies to Promote Critical Thinking

Janelle cox.

  • September 9, 2014

Young boy pointing to a light bulb drawn on a chalkboard

Critical thinking is an essential skill that all students will use in almost every aspect of their lives. From solving problems to making informed decisions, thinking critically is a valuable skill that will help students navigate the world’s complexities. In a post-COVID teaching environment , incorporating teaching strategies that help students think rationally and independently is an excellent way to strengthen students’ abilities and prepare them for any new challenges in the future.

There are several techniques to engage students and help strengthen these skills. Here are some teaching strategies that prove to be effective.

Encourage Students to Question Everything

We are now living in a world where AI ( artificial intelligence ) is slowly making its way into the classrooms. With these innovations, it’s imperative today, more than ever, for students to question everything and understand how to verify information when making an informed decision. AI has the potential to spread misinformation or be biased. Teach students to be careful of what is and is not a reliable source . Discuss credibility and bias and have students look for examples of both trusted content and misinformation. By using different forms of media for this exercise, students will need to use their critical thinking skills to determine the validity of the information.

Activate Student Curiosity

You can activate a student’s curiosity by using the inquiry-based learning model. This approach involves posing questions or problems for students to discover the answers on their own. In this method, students develop questions they want to know the answers to, and their teacher serves as their guide providing support as needed along the way. This approach nurtures curiosity and self-directed learning by encouraging students to think critically and independently. Recent  research  from 2019 supports the assertion that the use of this model significantly enhances students’ critical thinking abilities.

Incorporate Project-Based Learning

Immerse students in real-world problem scenarios by having them partake in project-based learning. Engaging in hands-on projects where students need to collaborate, communicate, analyze information, and find solutions to their challenges is a great way to develop their critical thinking skills. Throughout the project, students must engage in higher-order thinking while gathering their information and making decisions throughout various stages.

This approach pushes students to think critically while they connect to a real-world issue, and it helps them understand the relevance this issue has in their lives. Throughout the project, students will hone their critical thinking skills because PBL is a process that requires reflection and continuous improvement.

Offer Diverse Perspectives

Consider offering students a variety of viewpoints. Sometimes classrooms are filled with students who share similar perspectives on their beliefs and cultural norms. When this happens, it hinders learners from alternative viewpoints or experiences. Exposing students to diverse perspectives will help to broaden their horizons and challenge them to think beyond their perspectives. In addition, being exposed to different viewpoints encourages students to be more open-minded so they are more equipped to develop problem-solving strategies and analytical skills. It also helps them to cultivate empathy which is critical for critical thinking because it helps them appreciate others more and be concerned for them.

To support diverse viewpoints in the classroom, use various primary sources such as documentaries and articles from people who have experienced current events firsthand. Or invite in a few guest speakers who can offer varying perspectives on the same topic. Bring diverse perspectives into the classroom through guest speakers or by watching documentaries from varying experts.

Assign Tasks on Critical Writing

Assign writing tasks that encourage students to organize and articulate their thoughts and defend their position. By doing so, you are offering students the opportunity to demonstrate their critical thinking skills as well as effectively communicate their thoughts and ideas. Whether it’s through a research paper or an essay, students will need to support their claims and show evidence to prove their point of view. Critical writing also requires students to analyze information, scrutinize different perspectives, and question the reliability of sources, all of which contribute to the development of their critical thinking skills.

Promote Collaboration

Collaborative learning is a powerful tool that promotes critical thinking among students. Whether it’s through group discussions, classroom debates , or group projects, peer interaction will help students develop the ability to think critically. For example, a classroom debate will challenge students to articulate their thoughts, defend their viewpoints, and consider opposing viewpoints.

It will also challenge students to have a deep understanding of the subject matter as well as sharpen their communication skills. Any group setting where students can work together and be exposed to the thought processes of their classmates will help them understand that their way of thinking is not the only way. Through peer interaction, students will develop the ability to think critically.

Critical thinking requires consistency and commitment. This means that to make the above teaching strategies effective, they must be used consistently throughout the year. Encourage students to question everything and verify all information and resources. Activate student curiosity by using the inquiry-based learning model. Incorporate a real-world project that students can work on throughout the entire semester or school year. Assign critical writing tasks that require students to analyze information and prove their point of view. Finally, foster peer interaction where students work with their classmates to sharpen their communication skills and gain a deeper understanding of other perspectives.

The ultimate goal is for students to become independent thinkers who are capable of analyzing and solving their own problems. By modeling and developing student’s critical thinking skills in the classroom we are setting the stage for our student’s growth and success in the future.

  • #CriticalThinking , #TeachingStrategies

More in Teaching Strategies

A student works on her handwriting with her teacher.

Helping Students Improve Their Handwriting

Despite the widespread use of technology in the classroom, handwriting remains an essential…

An organized classroom has a colorful focus wall hung up on the wall.

Unleashing the Learning Potential of Classroom Focus Walls

Focus walls have emerged as an effective tool in today’s classrooms, and for…

An older student uses a microscope in science class.

Getting Older Students Excited About Science Class

As students move into middle and high school, it becomes increasingly challenging for…

critical thinking teaching method

AI-Powered Lesson Planning: Revolutionizing the Way Teachers Create Content

Traditional teaching methods are evolving since technology has been integrated into classrooms across…

Bookmark this page

  • Newton, Darwin, & Einstein
  • The Role of Socratic Questioning in Thinking, Teaching, & Learning
  • Complex Interdisciplinary Questions Exemplified: Ecological Sustainability
  • The Critical Mind is A Questioning Mind
  • Three Categories of Questions: Crucial Distinctions
  • A History of Freedom of Thought

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

The Role of Socratic Questioning in Thinking, Teaching, and Learning

For full copies of this and many other critical thinking articles, books, videos, and more, join us at the Center for Critical Thinking Community Online - the world's leading online community dedicated to critical thinking!   Also featuring interactive learning activities, study groups, and even a social media component, this learning platform will change your conception of intellectual development.

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Applying Critical Thinking
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Critical thinking refers to deliberately scrutinizing and evaluating theories, concepts, or ideas using reasoned reflection and analysis. The act of thinking critically implies moving beyond simply understanding information, but questioning its source, its production, and its presentation in order to expose potential bias or researcher subjectivity [i.e., being influenced by personal opinions and feelings rather than by external determinants ] . Applying critical thinking to investigating a research problem involves actively challenging assumptions and questioning the choices and potential motives underpinning how the author designed the study, conducted the research, and arrived at particular conclusions or recommended courses of action.

Mintz, Steven. "How the Word "Critical" Came to Signify the Leading Edge of Cultural Analysis." Higher Ed Gamma Blog , Inside Higher Ed, February 13, 2024; Van Merriënboer, Jeroen JG and Paul A. Kirschner. Ten Steps to Complex Learning: A Systematic Approach to Four-component Instructional Design . New York: Routledge, 2017.

Thinking Critically

Applying Critical Thinking to Research and Writing

Professors like to use the term critical thinking; in fact, the idea of being critical permeates much of higher education writ large. In the classroom, the idea of thinking critically is often mentioned by professors when students ask how they should approach a research and writing assignment [other approaches your professor might mention include interdisciplinarity, comparative, gendered, global, etc.]. However, critical thinking is more than just an approach to research and writing. It is an acquired skill used in becoming a complex learner capable of discerning important relationships among the elements of, as well as integrating multiple ways of understanding applied to, the research problem. Critical thinking is a lens through which you holistically interrogate a topic.

Given this, thinking critically encompasses a variety of inter-related connotations applied to college-level research and writing * :

  • Integrated and Multi-Dimensional . Critical thinking is not focused on any one element of research, but rather, is applied holistically throughout the process of identifying the research problem, reviewing of literature, applying methods of analysis, describing the results, discussing their implications, and, if appropriate, offering recommendations for further research. The act of thinking critically is also non-linear [i.e., applies to going back and changing prior thoughts when new evidence emerges]; it permeates the entire research endeavor from contemplating what to write to proofreading the final product.
  • Humanize Research . Thinking critically can help humanize the research problem by extending the scope of your analysis beyond the boundaries of traditional approaches to studying the topic. Traditional approaches can include, for example, sampling homogeneous populations, considering only certain factors related to investigating a phenomenon, or limiting the way you frame or represent the context of your study. Critical thinking can help reveal opportunities to incorporate the experiences of others into the research, creating a more representative examination of the research problem.
  • Normative . This refers to the idea that critical thinking can be used to challenge prior assumptions in ways that advocate for social justice, equity, and inclusion and which can lead to research having a more transformative and expansive impact. In this respect, critical thinking can be a method for breaking away from dominant culture norms so as to produce research outcomes that illuminate previously hidden aspects of exploitation and injustice.
  • Power Dynamics . Research in the social and behavioral sciences often includes examining aspects of power and influence that shape social relations, organizations, institutions, and the production and maintenance of knowledge. This approach encompasses studying how power operates, how it can be acquired, and how power and influence can be maintained. Critical thinking can reveal how societal structures perpetuate power and influence in ways that marginalizes and oppresses certain groups or communities within the contexts of history , politics, economics, culture, and other factors.
  • Reflection . A key aspect of critical thinking is practicing reflexivity; the act of turning ideas and concepts back onto yourself in order to reveal and clarify your own beliefs, assumptions, and perspectives. Being critically reflexive is important because it can reveal hidden biases you may have that could unintentionally influence how you interpret and validate information. The more reflexive you are, the better able and more comfortable you are about opening yourself up to new modes of understanding.
  • Rigorous Questioning . Thinking critically is guided by asking questions that lead to addressing complex concepts, principles, theories, or problems more effectively and to help distinguish what is known from from what is not known [or that may be hidden]. In this way, critical thinking involves deliberately framing inquiries not just as research questions, but as a way to focus on systematic, disciplined,  in-depth questioning concerning the research problem and your positionality as a researcher.
  • Social Change . An overarching goal of critical thinking applied to research and writing is to seek to identify and challenge sources of inequality, exploitation, oppression, and marinalization that contributes to maintaining the status quo within institutions of society. This can include entities, such as, schools, courts, businesses, government agencies, religious centers, that have been created and maintained through certain ways of thinking within the dominant culture.

In writing a research paper, the act of critical thinking applies most directly to the literature review and discussion sections of your paper . In reviewing the literature, it is important to reflect upon specific aspects of a study, such as, determining if the research design effectively establishes cause and effect relationships or provides insight into explaining why certain phenomena do or do not occur, assessing whether the method of gathering data or information supports the objectives of the study, and evaluating if the assumptions used t o arrive at a specific conclusion are evidence-based and relevant to addressing the research problem. An assessment of whether a source is helpful to investigating the research problem also involves critically analyzing how the research challenges conventional approaches to investigations that perpetuate inequalities or hides the voices of others.

Critical thinking also applies to the discussion section of your paper because this is where you interpret the findings of your study and explain its significance. This involves more than summarizing findings and describing outcomes. It includes reflecting on their importance and providing reasoned explanations why the research study is important in filling a gap in the literature or expanding knowledge and understanding about the topic in ways that inform practice. Critical reflection helps you think introspectively about your own beliefs concerning the significance of the findings but in ways that avoid biased judgment and decision making.

* Mintz, Steven. "How the Word "Critical" Came to Signify the Leading Edge of Cultural Analysis." Higher Ed Gamma Blog , Inside Higher Ed, February 13, 2024; Suter, W. Newton. Introduction to Educational Research: A Critical Thinking Approach. 2nd edition. Thousand Oaks, CA: SAGE Publications, 2012

Behar-Horenstein, Linda S., and Lian Niu. “Teaching Critical Thinking Skills in Higher Education: A Review of the Literature.” Journal of College Teaching and Learning 8 (February 2011): 25-41; Bayou, Yemeserach and Tamene Kitila. "Exploring Instructors’ Beliefs about and Practices in Promoting Students’ Critical Thinking Skills in Writing Classes." GIST–Education and Learning Research Journal 26 (2023): 123-154; Butcher, Charity. "Using In-class Writing to Promote Critical Thinking and Application of Course Concepts." Journal of Political Science Education 18 (2022): 3-21; Loseke, Donileen R. Methodological Thinking: Basic Principles of Social Research Design. Thousand Oaks, CA: Sage, 2012; Hart, Claire et al. “Exploring Higher Education Students’ Critical Thinking Skills through Content Analysis.” Thinking Skills and Creativity 41 (September 2021): 100877; Sabrina, R., Emilda Sulasmi, and Mandra Saragih. "Student Critical Thinking Skills and Student Writing Ability: The Role of Teachers' Intellectual Skills and Student Learning." Cypriot Journal of Educational Sciences 17 (2022): 2493-2510.Van Merriënboer, Jeroen JG and Paul A. Kirschner. Ten Steps to Complex Learning: A Systematic Approach to Four-component Instructional Design. New York: Routledge, 2017; Yeh, Hui-Chin, Shih-hsien Yang, Jo Shan Fu, and Yen-Chen Shih. "Developing College Students’ Critical Thinking through Reflective Writing." Higher Education Research & Development 42 (2023): 244-259.

  • << Previous: Academic Writing Style
  • Next: Choosing a Title >>
  • Last Updated: Apr 11, 2024 1:27 PM
  • URL: https://libguides.usc.edu/writingguide

The Socratic Method

“i cannot teach anybody anything. i can only make them think.” - attributed to socrates.

classic statue Socrates

The Socratic Method is often used to promote critical thinking. It focuses on providing more questions than answers to students and fosters inquiring into subjects. Ideally, the answers to questions are not a stopping point for thought but are instead a beginning to further analysis and research. Faculty should craft questions before class to present during their time with students. Faculty should require students to consider how they rationalize and respond about topics, thus teaching them to process information. Additionally, the Socratic Method should promote collaboration and open-mindedness, not debate.

Socratic3.png

Quick Tips for Using the Socratic Method:

1. Students need to come to class prepared to discuss. This means they will need to put effort into becoming familiar with the material enough to contribute. You may want to guide their preparation with a pre-class assignment.

2. As you craft questions for your class, remember to let the discussion lead the way through the material. Your questions are a guide, teaching points you'll want to hit during your class, but they are not set in stone. This will give you the flexibility to provide a student-centered learning environment.

3. Make sure your questions are open-ended enough to promote inquiry. Good questions guide students to explore different perspectives. This method should help students gain perspective and explore multiple perspectives and viewpoints from their classmates. Each question should lead to a discussion, rather than one answer. It may be necessary to have follow-up questions prepared, in case discussion needs to be prompted.

4. Rationalize! Work through ideas and different answers. The moments spent rationalizing incorrect theories often produce more learning than simply stating facts. You are guiding students thought process, teaching them to think about the material, not simply teaching them the material.

5. Take notes on the discussion to use for review or quizzes/exams. Discussion will make it easier for students to retrieve information later, because they will have memory cues from what was said. You can help them make these connections when you review with them from notes on what they discussed (or have students act as record keeper during the discussion, trading off each class).

6. A good sign that you are successfully implementing this method is when students are openly contributing to the discussion, freely asking questions or ideas without prompting, and especially if they admit errors in their understanding. These are signs that you have created a safe place for open expression.

Learn more:

The Socratic Seminar: https://youtu.be/RBjZ-4MK1WE How to Bring Socratic Seminar to the Classroom: https://www.teachingchannel.org/videos/bring-socratic-seminars-to-the-classroom For more tips visit: https://www.unl.edu/gradstudies/current/news/asking-good-questions-socratic-method-classroom Harrington, C. & Zakrajsek, T. (2017). Dynamic Lecturing: Research-based strategies to enhance lecture effectiveness. Sterling: VA: Stylus Publishing Company. Copeland, M. (2005). Socratic Circles: Fostering Critical and Creative Thinking. Portland, MN: Stenhouse Publishers, p. 7. Tredway, L. (1995). “Socratic Seminars: Engaging Students in Intellectual Discourse.” Educational Leadership. 53 (1).

Adapted from material submitted by:

Kimberly A. Whiter, M.S., MLS(ASCP) CM Director of Faculty Development and Interprofessional Education Assistant Professor, Jefferson College of Health Sciences Instructor, Virginia Tech Carilion School of Medicine

What is the Harkness Method? A Practical Guide for Modern-Day Classrooms

Febriana Ramadhanya

Febriana Ramadhanya

What is the Harkness Method? A Practical Guide for Modern-Day Classrooms

Traditional lecture-based learning has its limitations, often leaving students disengaged and struggling to retain information . But what if there was a method that could transform this dynamic, empowering students to take control of their learning journey?

Enter the Harkness Method, a student-centered approach that revolutionizes the classroom experience by fostering active learning and critical thinking . The Harkness Method flips the traditional teacher-centered script, placing students at the heart of the learning process. Let’s delve into this method, exploring its core principles, the benefits it offers, and how educators can implement it in their classrooms.

The Harkness Method Explained

Harkness table layout

At its core, the Harkness method facilitates meaningful discussions that empower students to explore complex topics and learn from one another. Developed by the Philips Exeter Academy in the 1930s, this approach emphasizes collaboration, inquiry, and deep analysis.

In a Harkness classroom, teachers serve as facilitators rather than lecturers, guiding discussions through open-ended questions that provoke critical thinking and intellectual curiosity. Students are tasked with driving the conversation forward, sharing their insights, posing questions, and respectfully challenging each other’s perspectives.

Unlike traditional lectures, this method utilizes a unique setup:

👉 The Harkness Table: The centerpiece of the Harkness Method is the physical arrangement of the classroom. Unlike rows of desks facing the teacher, students gather around a large, oval table. This circular table promotes eye contact, creating a sense of equality among participants and encouraging everyone to actively engage in the discussion. It removes the physical barrier between teacher and student, symbolizing the shift in power dynamics towards a more collaborative learning environment.

👉 The Harkness Question Method: The teacher plays a crucial role in setting the stage for a fruitful discussion. Instead of delivering lectures, they act as a facilitator, posing open-ended, thought-provoking questions that ignite critical thinking and analysis. These questions aren’t designed to have a single “correct” answer. Rather, they aim to spark curiosity, encourage diverse perspectives, and push students to delve deeper into the subject matter. 

Some examples of open-ended questions to ask with the Harkness teaching method:

  • “How did the historical context influence the author’s perspective in this text?”
  • “Can you identify strengths and weaknesses in the character’s decision-making process?”
  • “How can the concepts we learned be applied to solve a real-world problem?”

👉 The Role of the Student: In a Harkness classroom, students become active participants, taking ownership of their learning journey. This can involve several key responsibilities, including coming to class prepared by having read assigned materials or researched the topic at hand. They take turns leading discussions, posing their own questions, and presenting their interpretations of the material. They learn to challenge ideas respectfully and build upon the thoughts of others.

Benefits of the Harkness Teaching Method

Benefits of the Harkness Method

The Harkness Method isn’t just about a different classroom layout; it fosters a dynamic learning environment with a plethora of advantages for both students and educators.

For students , the Harkness teaching method encourages active participation and analysis that can lead to a more profound grasp of concepts compared to passive listening. Students hone their critical thinking, problem-solving, communication, and collaboration skills through discussions and debates while building confidence when expressing ideas and engaging in respectful conversation.

For educators , the Harkness Method fosters a dynamic and interactive learning environment, keeping students engaged and motivated. The discussions provide teachers with valuable insights into student understanding, allowing for personalized instruction. The method also promotes a culture of inquiry, where students are encouraged to become curious and independent learners, something that’s highly beneficial in their education journey.

Addressing Potential Challenges and Considerations

Harkness Method potential challenges

While the Harkness Method offers numerous benefits, it’s important to acknowledge and proactively address potential challenges to ensure its successful implementation:

Challenge #1: Classroom Management

The Challenge: Maintaining a focused and respectful environment during a Harkness discussion.

The Solution: Establish clear expectations and implement effective classroom management strategies .

Implementation Tips:

  • Set ground rules for respectful dialogue, active listening, and equitable participation.
  • Use techniques like a talking stick to designate speaking turns.
  • Implement a “wait time” policy to allow all students an opportunity to formulate their thoughts.

Challenge #2: Student Comfort Level

The Challenge: Encouraging participation from quieter students can be challenging.

The Solution: Implement differentiated approaches that cater to individual comfort levels and learning styles.

  • Provide opportunities for quieter students to contribute through written responses.
  • Organize small group discussions to encourage participation in a more intimate setting.
  • Utilize online platforms for asynchronous discussions, allowing all voices to be heard.

Challenge #3: Assessment

The Challenge: Assessing student participation and learning outcomes in Harkness discussions requires a nuanced approach.

The Solution: Utilize a variety of assessment tools and strategies aligned with learning objectives.

  • Use observation, peer evaluations, and reflective journals to evaluate student performance.
  • Incorporate formative assessment techniques like exit tickets and reflection prompts to gain insights into student understanding and engagement.
  • Provide constructive feedback to students to support their learning and development.

Pro Tips for Bringing the Harkness Method to the 21st Century Classroom

Bringing the Harkness Method to the 21st century classroom

The Harkness Method, with its emphasis on active learning and student discussion, can be a powerful tool for educators in the 21st-century classroom. However, adapting a method rooted in tradition to the realities of today’s classrooms requires thoughtful planning and execution. 

Here’s a breakdown of the key steps to consider and how you can seamlessly integrate the Harkness teaching method with ClassPoint , the go-to all-in-one PowerPoint add-in for teachers across the globe!

#1 Preparation is Key

  • Harness Interactive Tools: Utilize online resources and collaborative tools to enhance student preparation. Consider online discussions, shared documents, or flipped classroom approaches where students encounter core concepts beforehand and use class time for deeper analysis.
  • Curate Engaging Materials: Move beyond traditional textbooks and embrace a variety of multimedia resources like podcasts, documentaries, or online simulations to pique student interest and cater to diverse learning styles.
  • Craft Compelling Questions: Don’t settle for simple recall questions. Formulate open-ended, thought-provoking questions that encourage critical thinking, analysis, and the application of knowledge to real-world scenarios.

#2 Embrace the Power of Technology

  • Digital Harkness Tables: While the physical Harkness table method remains valuable, consider incorporating online discussion platforms or video conferencing tools to facilitate Harkness discussions in remote or hybrid learning environments.
  • Interactive Whiteboards & Collaborative Documents: Utilize technology to enhance presentations, share visual aids, and brainstorm ideas collectively during Harkness discussions.
  • Digital Assessment Tools: Explore online quizzes, polls, and collaborative mind maps to assess student understanding and participation within the Harkness discussion framework.

#3 Cultivating a Dynamic Discussion Environment:

ClassPoint Grouping

  • Establishing Ground Rules: Set clear expectations for respectful debate, active listening, and participation. Encourage students to build upon each other’s ideas and acknowledge diverse perspectives.
  • The Art of Facilitation: As the teacher, your role is to guide the discussion, not dominate it. Use follow-up questions to push students beyond surface-level understanding and ensure balanced participation.
  • Differentiation for Diverse Learners : Provide opportunities for quieter students to contribute through written prompts or breakout group discussions before rejoining the main conversation. Consider using technology like online polls to anonymously gather student input.

#4 Assessment and Feedback

ClassPoint Quick Poll

  • Moving Beyond Tests: While traditional assessments still have a place, the Harkness teaching method calls for a more holistic approach. Evaluate participation, critical thinking skills displayed during discussions, and the quality of student-led presentations.
  • Encourage Peer Assessments: Develop a rubric that outlines key criteria for successful participation in Harkness discussions. This could include aspects like the quality of questions asked, active listening, building upon others’ ideas, and demonstrating critical thinking. Students can use this rubric to assess their own participation and provide constructive feedback to their peers.
  • Self-Assessment and Reflection: Empowering students to self-assess their participation and learning can promote metacognition and ownership of their learning process. Encourage students to reflect on their contributions to Harkness discussions, their understanding of the topic, and areas for improvement. Self-assessment activities can take various forms, such as journal entries, reflective essays, or online reflection platforms.
  • Socratic Seminars: These structured discussions are centered around a particular text or topic, where students engage in dialogue to explore and deepen their understanding. In a Harkness classroom, Socratic seminars can serve as a powerful assessment tool. Teachers can assess students based on their contributions to the seminar, their ability to ask insightful questions, their use of evidence to support their arguments, and their engagement with peers’ ideas.

As you incorporate these strategies, be prepared to adapt and refine your approach based on your students’ needs and specific learning objectives. The key is to foster a classroom culture that values active participation, critical thinking, and the joy of collaborative learning through the Harkness Method.

Final Thoughts

The Harkness teaching method presents a compelling alternative to traditional lecture-based learning. It empowers students to take ownership of their learning journey through active participation, critical thinking, and collaboration. This approach equips them with the skills necessary to become lifelong learners who can thrive in this rapidly changing world.

While implementing the Harkness Method requires thoughtful planning and addressing potential challenges, the rewards are substantial. With clear expectations, effective classroom management strategies, and a commitment to fostering a supportive learning environment, educators can unlock the full potential of this method.

Embrace the opportunity to experiment, adapt, and refine your approach based on your students’ needs and your own teaching style. As you embark on this journey, you’ll be well on your way to educating a generation of critical thinkers, effective communicators, and collaborative problem-solvers – all essential skills for success in the 21st century.

About Febriana Ramadhanya

Try classpoint for free.

All-in-one teaching and student engagement in PowerPoint.

Supercharge your PowerPoint. Start today.

500,000+ people like you use ClassPoint to boost student engagement in PowerPoint presentations.

  • Faculty & Staff

Toward Higher Engagement and Critical Thinking Through Collaborative Reading

  • Brett Clay , he/him, Lecturer Part-Time, Business School , University of Washington, Bothell campus

Project Description

As higher education moves further away from information dissemination and memorization and further toward developing students’ learning and problem-solving capacities, instructors are challenged to find effective ways of fostering deeper engagement and thinking. In this study, I compared two approaches of learning through reading assignments. The first approach is asking students to write short essays about the textbook reading assignment and to discuss their essays in groups of four in Canvas discussion groups. The second approach is to use an online learning environment where students read the textbook online and have discussions directly in the textbook and other learning materials, including articles and videos.

I had been using the first approach, but found that reading and commenting on students’ essays and Canvas discussions did not scale to larger class sizes. Communicating and guiding students toward deeper critical thinking in their essays required constant, exhausting effort—even with class sizes under 40 students. I was challenged to find a more scalable approach that would still foster engagement and higher-order thinking.

Project Question

In what ways does a new online technology that enables students to share highlights and comments in learning materials, such as a textbook, impact students’ engagement with learning materials and foster deeper critical thinking and learning? Does it scale better to larger class sizes than short-essay discussion groups in Canvas?

I teach an elective MBA course in business negotiations. My course meets once per week for 3.5 hours. During the week, students read a custom textbook I created, along with various articles, videos, and an online simulation. In-person class time is dedicated to experiential learning through negotiation exercises and instructor-led discussion. My overall learning objective is to help students develop critical thinking and discover new ways of thinking and viewing others and themselves.

Three years ago, I taught two sections of the same class and I decided to try an online learning environment called Perusall, which is similar to Hypothes.is. So I created an A-B experiment in which I used my existing Canvas discussion group method for Section A and the Perusall method for Section B. To compare the learning outcomes of Canvas discussion groups to Perusall social reading, I obtained an IRB waiver to collect feedback surveys and to administer a knowledge test to both class sections at the beginning and end of the quarter. Students only experienced one approach or the other. Therefore, only I was in a position to make comparisons based on my subjective observations of the two sections, the survey results, and the test results.

Impact/Assessment

Students’ retention of course concepts as indicated by the end-of-quarter test were similar in both class sections. Students in the Canvas section seemed to feel that approach required less effort, as it imposed little structure and students could read as little or as much as they wanted. However, the burden of reading and grading the essays was exhausting for me. In contrast, the social reading approach imposed more structure, as I broke the weekly reading and discussion into one half due mid-week and the second half due on day 7. An important feature of the software is that it uses algorithms to grade each reading assignment. The automated grading is intended only to verify students made appropriate effort to engage in the reading and discussion. In the social reading software, students send me questions while reading, I sprinkle my own comments throughout the reading, and I add clarifications in student discussions. From my perspective, the software provided the right amount of structure and instructor engagement to maximize student learning. As a result, I subsequently fully adopted it as the learning management system for my course.

Application

The social reading method implemented in tools such as Perusall and Hypothes.is can be used in many disciplines. I learned of them from a Calculus instructor and later from a biologist who were both using it to move students beyond historical conceptions of teaching, e.g. rote learning. Social reading can be used to engage students at higher levels of Bloom’s Taxonomy, while still meeting students where they are in their learning. This approach employs Bandura’s social cognitive theory, which holds that students learn from each other. If a student is at the comprehension stage of Bloom’s taxonomy, they will still learn from the comments of students who are at later stages, such as analysis. It also enables instructors to employ various modalities to engage different learning preferences and accommodations. While videos, handouts, articles and other learning materials can be provided in Canvas, the software adds a layer of social psychology in which students engage the materials in a social forum, rather than in isolation. In addition, the online texts are searchable, the fonts can be increased, and the software can speak the text to the student. The added component that the software “knows” if a student has engaged the material, or not, also encourages engagement. In summary, these tools provide a learning space for students to collaboratively tackle difficult content, making it more accessible and interesting, and fostering attainment of later stages of Bloom’s taxonomy.

Additional Insights

Deeper learning is harder work than superficial tasks such as quizzes. Similar to how students reportedly complain a flipped classroom approach is more work and accountability than sitting passively in lectures, some students complained that the software doesn’t allow effort to slack off. I found experimenting with new teaching tools and techniques requires some amount of bravery and a willingness to weather inevitable criticisms. But the result was top 10 percentile on the class evaluations.

Back to the Showcase

Critical thinking definition

critical thinking teaching method

Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement.

Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process, which is why it's often used in education and academics.

Some even may view it as a backbone of modern thought.

However, it's a skill, and skills must be trained and encouraged to be used at its full potential.

People turn up to various approaches in improving their critical thinking, like:

  • Developing technical and problem-solving skills
  • Engaging in more active listening
  • Actively questioning their assumptions and beliefs
  • Seeking out more diversity of thought
  • Opening up their curiosity in an intellectual way etc.

Is critical thinking useful in writing?

Critical thinking can help in planning your paper and making it more concise, but it's not obvious at first. We carefully pinpointed some the questions you should ask yourself when boosting critical thinking in writing:

  • What information should be included?
  • Which information resources should the author look to?
  • What degree of technical knowledge should the report assume its audience has?
  • What is the most effective way to show information?
  • How should the report be organized?
  • How should it be designed?
  • What tone and level of language difficulty should the document have?

Usage of critical thinking comes down not only to the outline of your paper, it also begs the question: How can we use critical thinking solving problems in our writing's topic?

Let's say, you have a Powerpoint on how critical thinking can reduce poverty in the United States. You'll primarily have to define critical thinking for the viewers, as well as use a lot of critical thinking questions and synonyms to get them to be familiar with your methods and start the thinking process behind it.

Are there any services that can help me use more critical thinking?

We understand that it's difficult to learn how to use critical thinking more effectively in just one article, but our service is here to help.

We are a team specializing in writing essays and other assignments for college students and all other types of customers who need a helping hand in its making. We cover a great range of topics, offer perfect quality work, always deliver on time and aim to leave our customers completely satisfied with what they ordered.

The ordering process is fully online, and it goes as follows:

  • Select the topic and the deadline of your essay.
  • Provide us with any details, requirements, statements that should be emphasized or particular parts of the essay writing process you struggle with.
  • Leave the email address, where your completed order will be sent to.
  • Select your prefered payment type, sit back and relax!

With lots of experience on the market, professionally degreed essay writers , online 24/7 customer support and incredibly low prices, you won't find a service offering a better deal than ours.

The effect of a STEM integrated curriculum on design thinking dispositions in middle school students

  • Published: 13 April 2024

Cite this article

  • Dina Thomason   ORCID: orcid.org/0000-0002-4275-7912 1 &
  • Pei-Ling Hsu   ORCID: orcid.org/0000-0002-1870-5717 1  

STEM, the integration of science, technology, engineering, and mathematics subjects is a popular topic as schools grapple with how to best prepare students for an ever-evolving society. As societal and technological challenges emerge, design thinking has been lauded as a method to enable people to help tackle those challenges. The steps of the design thinking process, empathize, define, ideate, prototype and test align with engineering design and can be used as a problem-solving method in classrooms to help promote creativity, critical thinking, and collaboration. The purpose of this explanatory sequential mixed methods study was to better understand if a STEM integrated curriculum helps promote design thinking in middle schoolers. The study compared two middle school groups, one that uses an integrated STEM curriculum and one that does not. Quantitative data was collected using the design thinking disposition survey through pre and post testing. Qualitative data was collected through free response questions and student and teacher interviews. There was no difference found in the change of design thinking dispositions between students at the two schools, however both groups scored lowest on the design thinking disposition of prototype. Free response questions showed that students at the STEM integrated school perceived an increased ability to design solutions to problems. Student and teacher interviews highlighted benefits of using a STEM integrated curriculum including providing collaborative opportunities to solve hands-on, open-ended problems. How a STEM integrated curriculum can develop design thinking should continue to be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

critical thinking teaching method

Adams, E. L. (2021). The effect of a middle grades STEM initiative on students’ cognitive and noncognitive outcomes. Studies in Educational Evaluation , 68 . https://doi.org/10.1016/j.stueduc.2021.100983 .

Aldemir, J., & Kermani, H. (2017). Integrated STEM curriculum: Improving educational outcomes for Head Start children. Early Childhood Development and Care , 187 (11), 1694–1706. https://doi.org/10.1080.03004430.2016.1185102.

Article   Google Scholar  

Amir, N. (2020). Strengthening the science-D&T interaction through simple maker centered projects in a Singapore classroom. Physics Education , 55 (4). https://doi.org/10.1088/1361-6552/ab9212 .

Arık, M., & Topçu, M. S. (2022). Implementation of engineering design process in the K-12 science classrooms: Trends and issues. Research in Science Education , 52 , 21–43. https://doi.org/10.1007/s11165-019-09912-x .

Avcu, Y. E., & Er, K. O. (2020). Developing an instructional design for the field of ict and software for gifted and talented students. International Journal of Educational Methodology , 6 (1), 161–183. https://doi.org/10.12973/ijem.6.1.161 .

Awad, N. (2023). Exploring STEM integration: Assessing the effectiveness of an interdisciplinary informal program in fostering students’ performance and inspiration. Research in Science & Technological Education , 41 (2), 679–699. https://doi.org/10.1080/02635143.2021.1931832 .

Baran, E., Bilici, S. C., Mesutoglu, C., & Ocak, C. (2019). The impact of an out-of-school STEM education program on students’ attitudes toward STEM and STEM careers. School Science and Mathematics , 119 , 223–235. https://doi.org/10.1111.ssm.12330.

Bartholomew, S. R., & Strimel, G. J. (2018). Factors influencing student success on open-ended design problems. International Journal of Technology and Design Education , 28 , 753–770. https://doi.org/10.1007/s10798-017-9415-2 .

Bond, L. (2007). My child doesn’t test well. The Carnegie Foundation for the Advancement of Teaching. Retrieved from https://files.eric.ed.gov/fulltext/ED498967.pdf .

Boone, H. N., & Boone, D. A. (2012). Analyzing likert data. The Journal of Extension , 50 (2). https://doi.org/10.34068/joe.50.02.48 . Article 48.

Brown, T. J. (2008). June). Design thinking. Harvard Business Review , 86 , 84–92. Google Scholar | Medline | ISI.

Google Scholar  

Brown, T., & Katz, B. (2009). Change by design: How design thinking transforms organizations and inspires innovation . HarperCollins.

Chan, H., Choi, H., Hailu, M. F., Whitford, M., & Duplechain DeRouen, S. (2020). Participation in structured STEM-focused out‐of‐school time programs in secondary school: Linkage to postsecondary STEM aspiration and major. Journal of Research in Science Teaching , 57 (8), 1250–1280. https://doi.org/10.1002/tea.21629 .

Chin, C., & Chia, L. G. (2006). Problem-based learning: Using ill-structured problems in biology project work. Science Education , 90 (1), 44–67. https://doi.org/10.1002/sce.20097 .

Chiu, M. H., & Krajcik, J. (2020). Reflections on Integrated approaches to STEM Education: An International Perspective. In J. Anderson, & Y. Li (Eds.), Integrated approaches to STEM education. Advances in STEM education . Springer. https://doi-org.utep.idm https://doi.org/10.1007/978-3-030-52229-2_29 .

Christensen, K. S., Hjorth, M., Iversen, O. S., & Smith, R. C. (2019). Understanding design literacy in middle-school education: Assessing students’ stances towards inquiry. International Journal of Technology and Design Education , 29 , 633–654. https://doi.org/10.1007/s10798-018-9459-y .

Crawford, B. A., Krajcik, J. S., & Marx, R. W. (1999). Elements of a community of learners in a middle school science classroom. Science Education , 83 , 701–723. https://doi.org/10.1002/(SICI)1098-237X(199911)83:6<701::AID-SCE4>3.0.CO;2-2 .

Cresswell, J. W., & Guetterman, T. C. (2019). Educational research: Planning, conducting, and evaluating quantitative and qualitative research (6th ed.). Pearson.

Cresswell, J., & Plano Clark, V. (2018). Designing and conducting mixed methods research. 3rd Edition. SAGE.

Dare, E. A., Keratithamkul, K., Hiwatig, B. M., & Li, F. (2021). Beyond content: The role of STEM disciplines, real-world problems, 21st century skills, and STEM careers within science teachers’ conceptions of integrated STEM education. Education Sciences , 11 , 737. https://doi.org/10.3390/educsci11110737 .

Davey, J. W., Gugiu, P. C., & Coryn, C. L. S. (2010). Quantitative methods for estimating the reliability of qualitative data. Journal of MultiDisciplinary Evaluation , 6 (13), 140–162. https://doi.org/10.56645/jmde.v6i13.266 .

Dewey, J. (2007). Experience and education . Free.

Dosi, C., Rosati, F., & Vignoli, M. (2018). Measuring design thinking mindset. International Design Conference-2018 . https://doi.org/10.21278/idc.2018.0493 .

English, L. D., & King, D. T. (2015). STEM learning through engineering design: Fourth grade students’ investigations in aerospace. International Journal in STEM Education , 2 (14). https://doi.org/10.1186/240594-015-0027-7 .

Ericson, J. D. (2021). Mapping the relationship between critical thinking and design thinking. Journal of the Knowledge Economy . https://doi.org/10.1007/s13132-021-00733-w .

Falco, L. (2020). An intervention to support mathematics self-efficacy in middle school. In L. M. Harrison, E. Hurd, & K. Brinegar (Eds.), Integrative and interdisciplinary curriculum in the middle school: Integrated approaches in teacher preparation and practice (pp. 37–67). Routledge.

Fan, S-C., Yu, K-C., & Lou, S-J. (2018). Why do students present different design objectives in engineering design projects? International Journal of Technology and Design Education , 28 (4), 1039–1060. https://doi.org/10.1007/s10798-017-9420-5 .

Forbes, A., Falloon, G., Stevenson, M., Hatzigianni, M., & Bower, M. (2021). An analysis of the nature of young students’ STEM learning in 3D technology-enhanced makerspaces. Early Education and Development , 32 (1), 172–187.

Frykholm, J., & Glasson, G. (2010). Connecting science and mathematics instruction: Pedagogical context knowledge for teachers. School Science & Mathematics , 105 (3), 127–141. https://doi.org/10.1111/j.1949-8594.2005.tb18047.x .

Furner, J. M., & Kumar, D. D. (2007). The mathematics and science integration argument: A stand for teacher education. Eurasia Journal for Mathematics Science and Technology Education , 3 (3), 185–189. https://doi.org/10.12973/ejmste/75397 .

Fusch, P. I., & Ness, L. R. (2015). Are we there yet? Data saturation in qualitative research. Walden Faculty and Staff Publications 455. https://scholarworks.waldenu.edu/facpubs/455 .

Goldman, S., & Kabayadondo, Z. (Eds.). (2017). Taking design thinking to school . Routledge.

Goldman, S., Zielezinski, M. B., Vea, T., Bachas-Daunert, S., & Kabayadondo, Z. (2017). Capturing middle school students’ understandings of design thinking. In S. Goldman & Z. Kabayadondo (Eds.) Taking Design Thinking to School (pp. 94–111). Routledge. https://doi.org/10.4324/9781317327585-14 .

Goldstein, M. H. (2018). Characterizing trade-off decisions in student designers (Order No. 10840585). Available from ProQuest Dissertations & Theses Global. (2102578313). https://utep.idm.oclc.org/login?url=https://www.proquest.com/dissertations-theses/characterizing-trade-off-decisions-student/docview/2102578313/se-2 .

Guzey, S. S., & Li, W. (2023). Engagement and science achievement in the context of integrated STEM education: A longitudinal study. Journal of Science Education and Technology , 32 (2), 168–180. https://doi.org/10.1007/s10956-022-10023-y .

Gwangwava, N. (2021). Learning design thinking through a hands-on learning model. International Journal of Innovative Teaching and Learning in Higher Education (IJITLHE) , 2 (1), 1–19. https://doi.org/10.4018/IJITLHE.20210101.oa4 .

Haimovitz, K., & Dweck, C. S. (2017). The origins of children’s growth and fixed mindsets: New Research and a new proposal. Child Development , 88 (6), 1849–1859. https://doi.org/10.1111/cdev.12955 .

Hallström, J., & Ankiewicz, P. (2023). Design as the basis for integrated STEM education: A philosophical framework. Frontiers in Education (Lausanne) , 8 . https://doi.org/10.3389/feduc.2023.1078313 .

Hayes, J. C., & Kraemer, D. J. M. (2017). Grounded understanding of abstract concepts: The case of STEM learning. Cognitive Research: Principles and Implications , 2 , 7. https://doi.org/10.1186/s41235-016-0046-z .

He, X., Li, T., Turel, O., Kuang, Y., Zhao, H., & He, Q. (2021). The impact of STEM education on mathematical development in children aged 5–6 years. International Journal of Education Research , 109 . https://doi.org/10.1016/j.ijer.2021.101795 .

Hiğde, E., & Aktamış, H. (2022). The effects of STEM activities on students’ STEM career interests, motivation, science process skills, science achievement and views. Thinking Skills and Creativity , 43. https://doi.org/10.1016/j.tsc.2022.101000 .

Holthius, N., Deutscher, R., Schultz, S. E., & Jamshidi, A. (2018). The New NGSS classroom: A curriculum framework for project-based science learning. American Educator , 42 (2), 23–27. https://link.gale.com/apps/doc/A543900497/OVIC?u=txshracd2603 &sid=bookmark-OVIC&xid=215b1271.

Hou, H. I., & Lien, W. C. (2022). Students’ critical thinking skills in an interactive EMI learning context: Combining experiential learning and reflective practices. ICFAI Journal of English Studies , 17 (2), 60–72.

Hung, W., Jonassen, D. H., & Liu, R. (2007). Problem-based learning. In J. M. Spector, M. D. Merrill, van J. Merrienboer, & M. P. Driscoll (Eds.), Handbook of Research on Educational Communications and Technology 1 (pp. 485–506). Lawrence Erlbaum Associates.

IDEO (2023). Design thinking for educators. https://designthinking.ideo.com/resources/design-thinking-for-educators .

International Technology and Engineering Educators Association (2020). Standards for technological and engineering literacy: The role of technology and engineering in STEM education. https://www.iteea.org/STEL.aspx .

Isabell, T., & Mentzer, N. (2022). Three tools for teaching design in your classroom: Monday morning ready. The Technology Teacher , 82 (1), 18–21.

Kang, H., Calabrese Barton, A., Tan, E., Simpkins, S. D., Rhee, H., & Turner, C. (2019). How do middle school girls of color develop STEM identities? Middle school girls’ participation in science activities and identification with STEM careers. Science Education , 103 , 418–439. https://doi.org/10.1002/sce.21492 .

Kelley, T. R., & Sung, E. (2017). Sketching by design: Teaching sketching to young learners. International Journal of Technology and Design Education , 27 , 363–386. https://doi.org/10.1007/s10798-016-9354-3 .

Koh, J. H. L., Chai, C. S., Wong, B., & Hong, H. Y. (2015). Design thinking and education. Design thinking for education: Conceptions and application in teaching and learning . Springer.

Kolb, D. A. (1984). Experiential learning: Experience as the source of Learning and Development . Prentice Hall.

Kress, U., & Kimmerle, J. (2018). Collective knowledge construction. In International Handbook of the Learning Sciences (1st Ed., pp. 137–146). Routledge. https://doi.org/10.4324/9781315617572-14 .

Ladachart, L., Cholsin, J., Kwanpet, S., Teerapanpong, R., Dessi, A., Phuangsuwan, L., & Phothong, W. (2022). Ninth-grade students’ perceptions on the design-thinking mindset in the context of reverse engineering. International Journal of Technology and Design Education , 32 (5), 2445–2465. https://doi.org/10.1007/s10798-021-09701-6 .

Lee, H., & Blanchard, M. R. (2019). Why teach with PBL? Motivational factors underlying middle and high school teachers’ use of problem-based learning. Interdisciplinary Journal of Problem-Based Learning , 13 (1). https://doi.org/10.7771/1541-5015.1719 .

Leech, N. L., & Onwuegbuzie, A. J. (2007). An array of qualitative data analysis tools: A call for data analysis triangulation. School Psychology Quarterly , 22 (4), 557–584. https://doi.org/10.1037/1045-3830.22.4.557 .

Lester, J. N., Cho, Y., & Lochmiller, C. R. (2020). Learning to do qualitative data analysis: A starting point. Human Resource Development Review , 19 (1), 94–106. https://doi.org/10.1177/1534484320903890 .

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2019). Design and design thinking in STEM education. Journal for STEM Education Research , 2 (2), 93–104. https://doi.org/10.1007/s41979-019-00020-z .

Liedtka, J. (2014). Innovative ways companies are using design thinking. Strategy & Leadership , 42 (2), 40–45. https://doi.org/10.1108/SL-01-2014-0004 .

Lin, L., Shadiev, R., Hwang, W. Y., & Shen, S. (2020). From knowledge and skills to digital works: An application of design thinking in the information technology course. Thinking Skills and Creativity , 36 , 100646. https://doi.org/10.1016/j.tsc.2020.100646 .

Loes, C. N., & Pascarella, E. T. (2017). Collaborative learning and critical thinking: Testing the link. The Journal of Higher Education , 88 (5), 726–753. https://doi.org/10.1080/00221546.2017.1291257 .

Lofgran, B. B., Smith, L. K., & Whiting, E. F. (2015). Science self-efficacy and school transitions. School Science and Mathematics , 115 , 366–376. https://doi.org/10.1111/ssm.12139 .

Lord, K. C. (2019). Flexible learning: The design thinking process as a K-12 educational tool. Journal of Higher Education Thinking and Practice , 19 (7), 54–61. https://doi.org/10.33423/jhetp.v19i7.2531 .

Luchs, M. G. (2015). A brief introduction to design thinking. In Design Thinking (eds M.G. Luchs, K.S. Swan and A. Griffin). https://doi.org/10.1002/9781119154273.ch1 .

Maiorca, C., Roberts, T., Jackson, C., et al. (2021). Informal learning environments and impact on interest in STEM careers. International Journal of Science and Math Education , 19 , 45–64. https://doi.org/10.1007/s10763-019-10038-9 .

Marks, J. (2017). The impact of a brief design thinking intervention on students’ design knowledge, iterative dispositions, and attitudes towards failure . ProQuest Dissertations Publishing.

Marks, J., & Chase, C. C. (2019). Impact of a prototyping intervention on middle school students’ iterative practices and reactions to failure. Journal of Engineering , Education108 (4), 547–573. https://doi.org/10.1002/jee.20294 .

Marra, R., Jonassen, D. H., Palmer, B., & Luft, S. (2014). Why problem-based learning works: Theoretical foundations. Journal on Excellence in College Teaching , 25 (3&4), 221–238.

Marsden, E., & Torgerson, C. J. (2012). Single group, pre- and post-test research designs: Some methodological concerns. Oxford Review of Education , 38 (5), 583–616. https://doi.org/10.1080/03054985.2012.731208 .

McCurdy, R. P., Nickels, M., & Bush, S. B. (2020). Problem-based design thinking tasks: Engaging student empathy in STEM. Electronic Journal for Research in Science & Mathematics Education , 24 (2), 22–55.

McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica , 22 (3), 276–282.

Mehalik, M. M., Doppelt, Y., & Schuun, C. D. (2008). Middle-School science through design-based learning versus scripted inquiry: Better overall science concept learning and equity gap reduction. Journal of Engineering Education , 97 (1), 71–85. https://doi.org/10.1002/j.2168-9830.2008.tb00955.x .

Mohr-Schroeder, M. J., Jackson, C., Miller, M., Walcott, B., Little, D. L., Speler, L., Schooler, W., & Schroeder, D. C. (2014). Developing Middle School Students’ interests in STEM via Summer Learning experiences: See Blue STEM Camp. School Science and Mathematics , 114 (6), 291–301. https://doi.org/10.1111/ssm.12079 .

Morris, T. H. (2020). Experiential learning - a systematic review and revision of Kolb’s model. Interactive Learning Environments , 28 (8), 1064–1077. https://doi.org/10.1080/10494820.2019.1570279 .

Nadelson, L. S., & Seifert, A. L. (2017). Integrated STEM defined: Contexts, challenges, and the future. The Journal of Educational Research , 110 (3), 221–223. https://doi.org/10.1080/00220671.2017.1289775 .

National Research Council, et al (2014). STEM integration in K-12 Education: Status, prospects, and an agenda for research , edited by Heidi Schweingruber, et al., National Academies Press. ProQuest Ebook Central, https://ebookcentral.proquest.com/lib/utep/detail.action?docID=3379257 .

Ng, W., & Fergusson, J. (2020). Engaging high school girls in interdisciplinary STEAM. Science Education International , 31 (3), 283–294. https://doi.org/10.33828/sei.v31.i3.7 .

NGSS Lead States. (2013). Next generation science standards: For states, by states . The National Academies.

Nokes-Malach, T. J., Richey, J. E., & Gadgil, S. (2015). When is it better to learn together? Insights from research on collaborative learning. Educational Psychology Review (27) , 645–656. https://doi.org/10.1007/s10648-015-9312-8 .

Ortiz-Revilla, J., Adúriz-Bravo, A., & Greca, I. M. (2020). A framework for epistemological discussion on integrated STEM education. Science & Education , 29 , 857–880. https://doi.org/10.1007/s11191-020-00131-9 .

Pappas, I. O., Mora, S., Jaccheri, L., & Mikalef, P. (2018, April). Empowering social innovators through collaborative and experiential learning. In 2018 IEEE Global Engineering Education Conference (EDUCON) , pp. 1080–1088. IEEE, 2018.

Pattison, N. P. (2021). Powerful partnerships: An exploration of the benefits of school and industry partnerships for STEM education. Teachers and Curriculum , 21 (2), 17–23. https://doi.org/10.15663/tandc.v21i0.367 .

Razzouk, R. (2012). What is design thinking and why is it important? Review of Educational Research , 82 (3), 330–348. https://doi.org/10.3102/003454312457429 .

Rehmat, A. P., & Hartley, K. (2020). Building engineering awareness: Problem based learning approach for STEM integration. The Interdisciplinary Journal of Problem-Based Learning , 14 (1). https://doi.org/10.14434/ijpbl.v14i1.28636 .

Reynante, B. M., Selbach-Allen, M. E., & Pimentel, D. R. (2020). Exploring the promises and perils of integrated STEM through disciplinary practices and epistemologies. Science & Education , 29 , 785–803. https://doi.org/10.1007/s11191-020-00121-x .

Roehrig, G. H., Dare, E. A., Ring-Whalen, E., et al. (2021). Understanding coherence and integration in integrated STEM curriculum. International Journal for STEM Education , 8 (2). https://doi.org/10.1186/s40594-020-00259-8 .

Saldaňa, J. (2012). The coding manual for qualitative researchers (2nd ed.). Sage.

Salzman, H., Kuehn, D., & Lowell, L. (2013). Guestworkers in the high-skill U.S. labor market: An analysis of supply, employment and wage trends (pp. 1–35). Economic Policy Institute. Briefing Paper no359 https://doi.org/10.7282/T379469D .

Santos, L. F. (2017). The role of critical thinking in science education. Journal of Education and Practice , 8 (20), 160–173.

Shanks, M. (2012). An introduction to design thinking: process guide [PDF] Hasso Plattner Institute of Design at Stanford https://web.stanford.edu/~mshanks/MichaelShanks/files/509554.pdf .

Shernoff, D. J., Sinha, S., Bressler, D. M., & Ginsburg, L. (2017). Assessing teacher education and professional development needs for the implementation of integrated approaches to STEM education. International Journal of STEM Education , 4 (1), 13–13. https://doi.org/10.1186/s40594-017-0068-1 .

Sikka, A. (1991). The effect of creativity training methods on the creative thinking of fourth, fifth, and sixth-grade minority students (Order No. 9312052). Available from ProQuest Dissertations & Theses Global. (303924270). Retrieved from https://utep.idm.oclc.org/login?url=https://www.proquest.com/dissertations-theses/effect-creativity-training-methods-on-creative/docview/303924270/se-2 .

Siverling, E. A., Suazo-Flores, E., Mathis, C. A., & Moore, T. J. (2019). Students’ use of STEM content in design justifications during engineering design‐based STEM integration. School Science and Mathematics , 119 (8), 457–474. https://doi.org/10.1111/ssm.12373 .

Solodikhina, A., & Solodikhina, M. (2022). Developing an innovator’s thinking in engineering education. Education and Information Technologies , 27 , 2569–2584. https://doi.org/10.1007/s10639-021-10709-7 .

Stanford d.school (2023). Tools for taking action. https://dschool.stanford.edu/resources .

Stohlmann, M. (2022). Growth mindset in K-8 STEM education: A review of the literature since 2007. Journal of Pedagogical Research , 6 (2), 149–162. https://doi.org/10.33902/JPR.202213029 .

Stohlmann, M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research , 2 (1). https://doi.org/10.5703/1288284314653 . Article 4.

Struyf, A., De Loof, H., Boeve-de Pauw, J., & Van Petegem, P. (2019). Students’ engagement in different STEM learning environments: Integrated STEM education as promising practice? International Journal of Science Education , 41 (10), 1387–1407. https://doi.org/10.1080/09500693.2019.1607983 .

Tan, A-L., Ong, Y. S., Ng, Y. S., & Tan, J. H. J. (2023). STEM problem solving: Inquiry, concepts, and reasoning. Science & Education, 32 , 381–397. https://doi.org/10.1007/s11191-021-00310-2

Trochim, W. M., & Donnelly, J. P. (2001). Research methods knowledge base (Vol. 2). Macmillan Publishing Company, Atomic Dog Pub.

Tsai, M. J., & Wang, C. Y. (2021). Assessing young students’ design thinking disposition and its relationship with computer programming self-efficacy. Journal of Educational Computing Research , 59 (3), 410–428. https://doi.org/10.1177/0735633120967326 .

Vasquez, J., Sneider, C., & Comer, M. (2013). STEM lesson essentials, grades 3–8: Integrating science, technology, engineering, and mathematics . Heinemann.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes . Harvard University Press.

Wan, Z. H., Jiang, Y., & Zhan, Y. (2021). STEM education in early childhood: A review of empirical studies. Early Education and Development , 32 (7), 940–962. https://doi.org/10.1080/10409289.1814986 .

Wingard, A., Kijima, R., Yang-Yoshihara, M., & Sun, K. (2022). A design thinking approach to developing girls’ creative self-efficacy in STEM. Thinking Skills and Creativity , 46. https://doi.org/10.10169/j.tsc.2022.101140 .

Zhou, N., Pereira, N. L., George, T. T., Alperovich, J., Booth, J., Chandrasegaran, S., Tew, J. D., Kulkarni, D. M., & Ramani, K. (2017). The influence of toy design activities on middle school students’ understanding of the engineering design processes. Journal of Science Education and Technology , 26 (5), 481–493. https://doi.org/10.1007/s10956-017-9693-1 .

Download references

The authors did not receive funding from any organization for the submitted work.

Author information

Authors and affiliations.

Department of Teacher Education, College of Education, University of Texas at El Paso, Room 813, Education Building, 500 W. University Avenue El Paso, El Paso, TX, 79968, USA

Dina Thomason & Pei-Ling Hsu

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Dina Thomason .

Ethics declarations

Conflict of interest.

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Thomason, D., Hsu, PL. The effect of a STEM integrated curriculum on design thinking dispositions in middle school students. Int J Technol Des Educ (2024). https://doi.org/10.1007/s10798-024-09894-6

Download citation

Accepted : 03 April 2024

Published : 13 April 2024

DOI : https://doi.org/10.1007/s10798-024-09894-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Design thinking
  • STEM education
  • Middle school
  • Engineering design
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. Critical Thinking Skills Chart

    critical thinking teaching method

  2. 6 Main Types of Critical Thinking Skills (With Examples)

    critical thinking teaching method

  3. Critical Thinking Skills

    critical thinking teaching method

  4. What Education in Critical Thinking Implies Infographic

    critical thinking teaching method

  5. The 5 Most Useful Critical Thinking Flowcharts For Your Learners

    critical thinking teaching method

  6. Critical Thinking Definition, Skills, and Examples

    critical thinking teaching method

VIDEO

  1. Critical Thinking, part 2

  2. Creative and critical thinking ( teaching of English) B.Ed. 2nd year

  3. Critical thinking and deferring to experts

  4. Thinking Is Power: An Introduction

  5. LADDER APPROACH SEGMENT 3

  6. 5 Examples of Critical Thinking Skills (to Become a Pro Problem Solver)

COMMENTS

  1. Eight Instructional Strategies for Promoting Critical Thinking

    Students grappled with ideas and their beliefs and employed deep critical-thinking skills to develop arguments for their claims. Embedding critical-thinking skills in curriculum that students care ...

  2. PDF Using Critical Thinking Teaching Methods to Increase Student Success

    Nold Critical Thinking Teaching Methods 19 self-reported growth in critical thinking. Tsui found that detailed feedback from the instructor on written assignments, conducting of independent research, work on group projects, presentations in class, and essay exams are positively related to critical promoting critical ...

  3. 12 Solid Strategies for Teaching Critical Thinking Skills

    This teaches them to home in on a specific moment in time. Additionally, they learn to apply their knowledge and logic to explain themselves as clearly as possible. 8. Activate Problem-Solving. Assigning a specific problem is one of the best avenues for teaching critical thinking skills.

  4. Teaching Critical Thinking Skills in Middle and High School

    Teach Reasoning Skills. Reasoning skills are another key component of critical thinking, involving the abilities to think logically, evaluate evidence, identify assumptions, and analyze arguments. Students who learn how to use reasoning skills will be better equipped to make informed decisions, form and defend opinions, and solve problems.

  5. Critical Thinking in the Classroom: A Guide for Teachers

    Critical thinking is a key skill that goes far beyond the four walls of a classroom. It equips students to better understand and interact with the world around them. Here are some reasons why fostering critical thinking is important: Making Informed Decisions: Critical thinking enables students to evaluate the pros and cons of a situation ...

  6. Critical Thinking > Educational Methods (Stanford Encyclopedia of

    Educational Methods. Experiments have shown that educational interventions can improve critical thinking abilities and dispositions, as measured by standardized tests. Glaser (1941) developed teaching materials suitable for senior primary school, high school and college students. To test their effectiveness, he developed with his sponsor ...

  7. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  8. Teaching Critical Thinking

    Teaching critical thinking is more important than ever as students confront a complex and changing world, damaging misinformation, and endless distraction. ... New opportunities and methods for teaching critical thinking are needed. Critical thinking, which has long been a buzzword in education, takes on a new and more urgent significance. ...

  9. PDF Critical Thinking: Frameworks and Models for Teaching

    Critical thinking has become the focus of attention since 1960s notified and tracked by the educators' becoming thoughtful about students' incapability ofhigher order thinking or critical thinking. Followed that, there was a secondly rated concern, which was about a definite framework or a model to teach critical thinking that was well

  10. Methodologies for teaching-learning critical thinking in higher

    This research deepens into the teaching and learning of critical thinking in the field of higher education. Learning is determined by multiple factors, among others, the characteristics of each student, or what the teacher understands by critical thinking and how he or she applies this competency in the subjects taught.

  11. Methodologies for teaching-learning critical thinking in higher

    In order to analyze the data related to methodologies used by teachers for teaching critical thinking, the methodologies were classified by means of an inductive analysis, ... An evaluation of argument mapping as a method of enhancing critical thinking performance in e-learning environments (2012) Google Scholar. Dwyer et al., 2014.

  12. Teaching critical thinking

    Teaching critical thinking. The ability to make decisions based on data, with its inherent uncertainties and variability, is a complex and vital skill in the modern world. The need for such quantitative critical thinking occurs in many different contexts, and although it is an important goal of education, that goal is seldom being achieved. We ...

  13. PDF Teaching Critical Thinking Skills: Literature Review

    The results indicate a gap in teaching CT skills in terms of innovative methods and particularly in the use of new technologies. They also highlight the need for further research that investigates new approaches for teaching CT skills. KEYWORDS: Critical thinking skills, teaching critical thinking, assisting critical thinking, technology to

  14. Critical Thinking and Problem-Solving

    Case Study /Discussion Method: McDade (1995) describes this method as the teacher presenting a case (or story) to the class without a conclusion. ... D. A. (1995). A negotiation model for teaching critical thinking. Teaching of Psychology, 22(1), 22-24. Carlson, E. R. (1995). Evaluating the credibility of sources. A missing link in the teaching ...

  15. Full article: Critical thinking in teacher education: where do we stand

    Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations. American Philosophical Association. Google Scholar. Golding, C. (2011). Educating for critical thinking: Thought‐encouraging questions in a community of inquiry.

  16. The Socratic Method: Fostering Critical Thinking

    This teaching tip explores how the Socratic Method can be used to promote critical thinking in classroom discussions. It is based on the article, The Socratic Method: What it is and How to Use it in the Classroom, published in the newsletter, Speaking of Teaching, a publication of the Stanford Center for Teaching and Learning (CTL).

  17. Teaching Strategies to Promote Critical Thinking

    Critical thinking requires consistency and commitment. This means that to make the above teaching strategies effective, they must be used consistently throughout the year. Encourage students to question everything and verify all information and resources. Activate student curiosity by using the inquiry-based learning model.

  18. Socratic Teaching

    Socratic Teaching. The oldest, and still the most powerful, teaching tactic for fostering critical thinking is Socratic teaching. In Socratic teaching we focus on giving students questions, not answers. We model an inquiring, probing mind by continually probing into the subject with questions. Fortunately, the abilities we gain by focusing on ...

  19. The Role of Socratic Questioning in Thinking, Teac

    The goal of critical thinking is to establish a disciplined "executive" level of thinking to our thinking, a powerful inner voice of reason, to monitor, assess, and re-constitute — in a more rational direction — our thinking, feeling, and action. Socratic discussion cultivates that inner voice by providing a public model for it.

  20. Applying Critical Thinking

    In this respect, critical thinking can be a method for breaking away from dominant culture norms so as to produce research outcomes that illuminate previously hidden aspects of exploitation and injustice. ... Journal of College Teaching and Learning 8 (February 2011): 25-41; Bayou, Yemeserach and Tamene Kitila. "Exploring Instructors' Beliefs ...

  21. The Socratic Method

    The Socratic Method is often used to promote critical thinking. It focuses on providing more questions than answers to students and fosters inquiring into subjects. Ideally, the answers to questions are not a stopping point for thought but are instead a beginning to further analysis and research. Faculty should craft questions before class to ...

  22. (PDF) Improving Critical Thinking Skills in Teaching through Problem

    Critical thinking is an important skill for graduates in 21st century teaching and learning. One of the modern educational pedagogies which can be utilized by educators to inculcate students ...

  23. PDF Mathematical Teaching Strategies: Pathways to Critical Thinking and

    When teaching mathematics, critical thinking skills can be used, practiced and enhanced by effective cognitive methods. Critical thinking can enhance creative problem solving options by encouraging students to seek new strategies when solving mathematical problems. Mathematics teachers know the importance of mathematical

  24. What is the Harkness Method? A Practical Guide for Modern-Day

    The key is to foster a classroom culture that values active participation, critical thinking, and the joy of collaborative learning through the Harkness Method. Final Thoughts. The Harkness teaching method presents a compelling alternative to traditional lecture-based learning. It empowers students to take ownership of their learning journey ...

  25. Toward Higher Engagement and Critical Thinking Through Collaborative

    As higher education moves further away from information dissemination and memorization and further toward developing students' learning and problem-solving capacities, instructors are challenged to find effective ways of fostering deeper engagement and thinking. In this study, I compared two approaches of learning through reading assignments.

  26. Using Critical Thinking in Essays and other Assignments

    Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement. Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process ...

  27. The effect of a STEM integrated curriculum on design thinking

    The steps of the design thinking process, empathize, define, ideate, prototype and test align with engineering design and can be used as a problem-solving method in classrooms to help promote creativity, critical thinking, and collaboration. The purpose of this explanatory sequential mixed methods study was to better understand if a STEM ...