6.1 Overview of Non-Experimental Research

Learning objectives.

  • Define non-experimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct non-experimental research as opposed to experimental research.

What Is Non-Experimental Research?

Non-experimental research  is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world).

Most researchers in psychology consider the distinction between experimental and non-experimental research to be an extremely important one. This is because although experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, non-experimental research generally cannot. As we will see, however, this inability to make causal conclusions does not mean that non-experimental research is less important than experimental research.

When to Use Non-Experimental Research

As we saw in the last chapter , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable. It stands to reason, therefore, that non-experimental research is appropriate—even necessary—when these conditions are not met. There are many times in which non-experimental research is preferred, including when:

  • the research question or hypothesis relates to a single variable rather than a statistical relationship between two variables (e.g., How accurate are people’s first impressions?).
  • the research question pertains to a non-causal statistical relationship between variables (e.g., is there a correlation between verbal intelligence and mathematical intelligence?).
  • the research question is about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions for practical or ethical reasons (e.g., does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • the research question is broad and exploratory, or is about what it is like to have a particular experience (e.g., what is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and non-experimental approaches is generally dictated by the nature of the research question. Recall the three goals of science are to describe, to predict, and to explain. If the goal is to explain and the research question pertains to causal relationships, then the experimental approach is typically preferred. If the goal is to describe or to predict, a non-experimental approach will suffice. But the two approaches can also be used to address the same research question in complementary ways. For example, Similarly, after his original study, Milgram conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974) [1] .

Types of Non-Experimental Research

Non-experimental research falls into three broad categories: cross-sectional research, correlational research, and observational research. 

First, cross-sectional research  involves comparing two or more pre-existing groups of people. What makes this approach non-experimental is that there is no manipulation of an independent variable and no random assignment of participants to groups. Imagine, for example, that a researcher administers the Rosenberg Self-Esteem Scale to 50 American college students and 50 Japanese college students. Although this “feels” like a between-subjects experiment, it is a cross-sectional study because the researcher did not manipulate the students’ nationalities. As another example, if we wanted to compare the memory test performance of a group of cannabis users with a group of non-users, this would be considered a cross-sectional study because for ethical and practical reasons we would not be able to randomly assign participants to the cannabis user and non-user groups. Rather we would need to compare these pre-existing groups which could introduce a selection bias (the groups may differ in other ways that affect their responses on the dependent variable). For instance, cannabis users are more likely to use more alcohol and other drugs and these differences may account for differences in the dependent variable across groups, rather than cannabis use per se.

Cross-sectional designs are commonly used by developmental psychologists who study aging and by researchers interested in sex differences. Using this design, developmental psychologists compare groups of people of different ages (e.g., young adults spanning from 18-25 years of age versus older adults spanning 60-75 years of age) on various dependent variables (e.g., memory, depression, life satisfaction). Of course, the primary limitation of using this design to study the effects of aging is that differences between the groups other than age may account for differences in the dependent variable. For instance, differences between the groups may reflect the generation that people come from (a cohort effect) rather than a direct effect of age. For this reason, longitudinal studies in which one group of people is followed as they age offer a superior means of studying the effects of aging. Once again, cross-sectional designs are also commonly used to study sex differences. Since researchers cannot practically or ethically manipulate the sex of their participants they must rely on cross-sectional designs to compare groups of men and women on different outcomes (e.g., verbal ability, substance use, depression). Using these designs researchers have discovered that men are more likely than women to suffer from substance abuse problems while women are more likely than men to suffer from depression. But, using this design it is unclear what is causing these differences. So, using this design it is unclear whether these differences are due to environmental factors like socialization or biological factors like hormones?

When researchers use a participant characteristic to create groups (nationality, cannabis use, age, sex), the independent variable is usually referred to as an experimenter-selected independent variable (as opposed to the experimenter-manipulated independent variables used in experimental research). Figure 6.1 shows data from a hypothetical study on the relationship between whether people make a daily list of things to do (a “to-do list”) and stress. Notice that it is unclear whether this is an experiment or a cross-sectional study because it is unclear whether the independent variable was manipulated by the researcher or simply selected by the researcher. If the researcher randomly assigned some participants to make daily to-do lists and others not to, then the independent variable was experimenter-manipulated and it is a true experiment. If the researcher simply asked participants whether they made daily to-do lists or not, then the independent variable it is experimenter-selected and the study is cross-sectional. The distinction is important because if the study was an experiment, then it could be concluded that making the daily to-do lists reduced participants’ stress. But if it was a cross-sectional study, it could only be concluded that these variables are statistically related. Perhaps being stressed has a negative effect on people’s ability to plan ahead. Or perhaps people who are more conscientious are more likely to make to-do lists and less likely to be stressed. The crucial point is that what defines a study as experimental or cross-sectional l is not the variables being studied, nor whether the variables are quantitative or categorical, nor the type of graph or statistics used to analyze the data. It is how the study is conducted.

Figure 6.1  Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists

Second, the most common type of non-experimental research conducted in Psychology is correlational research. Correlational research is considered non-experimental because it focuses on the statistical relationship between two variables but does not include the manipulation of an independent variable.  More specifically, in correlational research , the researcher measures two continuous variables with little or no attempt to control extraneous variables and then assesses the relationship between them. As an example, a researcher interested in the relationship between self-esteem and school achievement could collect data on students’ self-esteem and their GPAs to see if the two variables are statistically related. Correlational research is very similar to cross-sectional research, and sometimes these terms are used interchangeably. The distinction that will be made in this book is that, rather than comparing two or more pre-existing groups of people as is done with cross-sectional research, correlational research involves correlating two continuous variables (groups are not formed and compared).

Third,   observational research  is non-experimental because it focuses on making observations of behavior in a natural or laboratory setting without manipulating anything. Milgram’s original obedience study was non-experimental in this way. He was primarily interested in the extent to which participants obeyed the researcher when he told them to shock the confederate and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of observational research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the researchers asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories.

The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. But as you will learn in this chapter, many observational research studies are more qualitative in nature. In  qualitative research , the data are usually nonnumerical and therefore cannot be analyzed using statistical techniques. Rosenhan’s observational study of the experience of people in a psychiatric ward was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semi-public room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256) [2] . Qualitative data has a separate set of analysis tools depending on the research question. For example, thematic analysis would focus on themes that emerge in the data or conversation analysis would focus on the way the words were said in an interview or focus group.

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable.  Figure 6.2  shows how experimental, quasi-experimental, and non-experimental (correlational) research vary in terms of internal validity. Experimental research tends to be highest in internal validity because the use of manipulation (of the independent variable) and control (of extraneous variables) help to rule out alternative explanations for the observed relationships. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Non-experimental (correlational) research is lowest in internal validity because these designs fail to use manipulation or control. Quasi-experimental research (which will be described in more detail in a subsequent chapter) is in the middle because it contains some, but not all, of the features of a true experiment. For instance, it may fail to use random assignment to assign participants to groups or fail to use counterbalancing to control for potential order effects. Imagine, for example, that a researcher finds two similar schools, starts an anti-bullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” While a comparison is being made with a control condition, the lack of random assignment of children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying (e.g., there may be a selection effect).

Figure 7.1 Internal Validity of Correlational, Quasi-Experimental, and Experimental Studies. Experiments are generally high in internal validity, quasi-experiments lower, and correlational studies lower still.

Figure 6.2 Internal Validity of Correlation, Quasi-Experimental, and Experimental Studies. Experiments are generally high in internal validity, quasi-experiments lower, and correlation studies lower still.

Notice also in  Figure 6.2  that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well-designed quasi-experiment with no obvious confounding variables. Internal validity is also only one of several validities that one might consider, as noted in Chapter 5.

Key Takeaways

  • Non-experimental research is research that lacks the manipulation of an independent variable.
  • There are two broad types of non-experimental research. Correlational research that focuses on statistical relationships between variables that are measured but not manipulated, and observational research in which participants are observed and their behavior is recorded without the researcher interfering or manipulating any variables.
  • In general, experimental research is high in internal validity, correlational research is low in internal validity, and quasi-experimental research is in between.
  • A researcher conducts detailed interviews with unmarried teenage fathers to learn about how they feel and what they think about their role as fathers and summarizes their feelings in a written narrative.
  • A researcher measures the impulsivity of a large sample of drivers and looks at the statistical relationship between this variable and the number of traffic tickets the drivers have received.
  • A researcher randomly assigns patients with low back pain either to a treatment involving hypnosis or to a treatment involving exercise. She then measures their level of low back pain after 3 months.
  • A college instructor gives weekly quizzes to students in one section of his course but no weekly quizzes to students in another section to see whether this has an effect on their test performance.
  • Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row. ↵
  • Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258. ↵

Creative Commons License

Share This Book

  • Increase Font Size

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7.1 Overview of Nonexperimental Research

Learning objectives.

  • Define nonexperimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct nonexperimental research as opposed to experimental research.

What Is Nonexperimental Research?

Nonexperimental research is research that lacks the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both.

In a sense, it is unfair to define this large and diverse set of approaches collectively by what they are not . But doing so reflects the fact that most researchers in psychology consider the distinction between experimental and nonexperimental research to be an extremely important one. This is because while experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, nonexperimental research generally cannot. As we will see, however, this does not mean that nonexperimental research is less important than experimental research or inferior to it in any general sense.

When to Use Nonexperimental Research

As we saw in Chapter 6 “Experimental Research” , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable and randomly assign participants to conditions or to orders of conditions. It stands to reason, therefore, that nonexperimental research is appropriate—even necessary—when these conditions are not met. There are many ways in which this can be the case.

  • The research question or hypothesis can be about a single variable rather than a statistical relationship between two variables (e.g., How accurate are people’s first impressions?).
  • The research question can be about a noncausal statistical relationship between variables (e.g., Is there a correlation between verbal intelligence and mathematical intelligence?).
  • The research question can be about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions (e.g., Does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • The research question can be broad and exploratory, or it can be about what it is like to have a particular experience (e.g., What is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and nonexperimental approaches is generally dictated by the nature of the research question. If it is about a causal relationship and involves an independent variable that can be manipulated, the experimental approach is typically preferred. Otherwise, the nonexperimental approach is preferred. But the two approaches can also be used to address the same research question in complementary ways. For example, nonexperimental studies establishing that there is a relationship between watching violent television and aggressive behavior have been complemented by experimental studies confirming that the relationship is a causal one (Bushman & Huesmann, 2001). Similarly, after his original study, Milgram conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974).

Types of Nonexperimental Research

Nonexperimental research falls into three broad categories: single-variable research, correlational and quasi-experimental research, and qualitative research. First, research can be nonexperimental because it focuses on a single variable rather than a statistical relationship between two variables. Although there is no widely shared term for this kind of research, we will call it single-variable research . Milgram’s original obedience study was nonexperimental in this way. He was primarily interested in one variable—the extent to which participants obeyed the researcher when he told them to shock the confederate—and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of single-variable research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the research asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories.)

As these examples make clear, single-variable research can answer interesting and important questions. What it cannot do, however, is answer questions about statistical relationships between variables. This is a point that beginning researchers sometimes miss. Imagine, for example, a group of research methods students interested in the relationship between children’s being the victim of bullying and the children’s self-esteem. The first thing that is likely to occur to these researchers is to obtain a sample of middle-school students who have been bullied and then to measure their self-esteem. But this would be a single-variable study with self-esteem as the only variable. Although it would tell the researchers something about the self-esteem of children who have been bullied, it would not tell them what they really want to know, which is how the self-esteem of children who have been bullied compares with the self-esteem of children who have not. Is it lower? Is it the same? Could it even be higher? To answer this question, their sample would also have to include middle-school students who have not been bullied.

Research can also be nonexperimental because it focuses on a statistical relationship between two variables but does not include the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both. This kind of research takes two basic forms: correlational research and quasi-experimental research. In correlational research , the researcher measures the two variables of interest with little or no attempt to control extraneous variables and then assesses the relationship between them. A research methods student who finds out whether each of several middle-school students has been bullied and then measures each student’s self-esteem is conducting correlational research. In quasi-experimental research , the researcher manipulates an independent variable but does not randomly assign participants to conditions or orders of conditions. For example, a researcher might start an antibullying program (a kind of treatment) at one school and compare the incidence of bullying at that school with the incidence at a similar school that has no antibullying program.

The final way in which research can be nonexperimental is that it can be qualitative. The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. In qualitative research , the data are usually nonnumerical and are analyzed using nonstatistical techniques. Rosenhan’s study of the experience of people in a psychiatric ward was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semipublic room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256).

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable. Figure 7.1 shows how experimental, quasi-experimental, and correlational research vary in terms of internal validity. Experimental research tends to be highest because it addresses the directionality and third-variable problems through manipulation and the control of extraneous variables through random assignment. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Correlational research is lowest because it fails to address either problem. If the average score on the dependent variable differs across levels of the independent variable, it could be that the independent variable is responsible, but there are other interpretations. In some situations, the direction of causality could be reversed. In others, there could be a third variable that is causing differences in both the independent and dependent variables. Quasi-experimental research is in the middle because the manipulation of the independent variable addresses some problems, but the lack of random assignment and experimental control fails to address others. Imagine, for example, that a researcher finds two similar schools, starts an antibullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” There is no directionality problem because clearly the number of bullying incidents did not determine which school got the program. However, the lack of random assignment of children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying.

Experiments are generally high in internal validity, quasi-experiments lower, and correlational studies lower still

Experiments are generally high in internal validity, quasi-experiments lower, and correlational studies lower still.

Notice also in Figure 7.1 that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well designed quasi-experiment with no obvious confounding variables.

Key Takeaways

  • Nonexperimental research is research that lacks the manipulation of an independent variable, control of extraneous variables through random assignment, or both.
  • There are three broad types of nonexperimental research. Single-variable research focuses on a single variable rather than a relationship between variables. Correlational and quasi-experimental research focus on a statistical relationship but lack manipulation or random assignment. Qualitative research focuses on broader research questions, typically involves collecting large amounts of data from a small number of participants, and analyzes the data nonstatistically.
  • In general, experimental research is high in internal validity, correlational research is low in internal validity, and quasi-experimental research is in between.

Discussion: For each of the following studies, decide which type of research design it is and explain why.

  • A researcher conducts detailed interviews with unmarried teenage fathers to learn about how they feel and what they think about their role as fathers and summarizes their feelings in a written narrative.
  • A researcher measures the impulsivity of a large sample of drivers and looks at the statistical relationship between this variable and the number of traffic tickets the drivers have received.
  • A researcher randomly assigns patients with low back pain either to a treatment involving hypnosis or to a treatment involving exercise. She then measures their level of low back pain after 3 months.
  • A college instructor gives weekly quizzes to students in one section of his course but no weekly quizzes to students in another section to see whether this has an effect on their test performance.

Bushman, B. J., & Huesmann, L. R. (2001). Effects of televised violence on aggression. In D. Singer & J. Singer (Eds.), Handbook of children and the media (pp. 223–254). Thousand Oaks, CA: Sage.

Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row.

Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 7: Nonexperimental Research

Overview of Nonexperimental Research

Learning Objectives

  • Define nonexperimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct nonexperimental research as opposed to experimental research.

What Is Nonexperimental Research?

Nonexperimental research  is research that lacks the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both.

In a sense, it is unfair to define this large and diverse set of approaches collectively by what they are  not . But doing so reflects the fact that most researchers in psychology consider the distinction between experimental and nonexperimental research to be an extremely important one. This distinction is because although experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, nonexperimental research generally cannot. As we will see, however, this inability does not mean that nonexperimental research is less important than experimental research or inferior to it in any general sense.

When to Use Nonexperimental Research

As we saw in  Chapter 6 , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable and randomly assign participants to conditions or to orders of conditions. It stands to reason, therefore, that nonexperimental research is appropriate—even necessary—when these conditions are not met. There are many ways in which preferring nonexperimental research can be the case.

  • The research question or hypothesis can be about a single variable rather than a statistical relationship between two variables (e.g., How accurate are people’s first impressions?).
  • The research question can be about a noncausal statistical relationship between variables (e.g., Is there a correlation between verbal intelligence and mathematical intelligence?).
  • The research question can be about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions (e.g., Does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • The research question can be broad and exploratory, or it can be about what it is like to have a particular experience (e.g., What is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and nonexperimental approaches is generally dictated by the nature of the research question. If it is about a causal relationship and involves an independent variable that can be manipulated, the experimental approach is typically preferred. Otherwise, the nonexperimental approach is preferred. But the two approaches can also be used to address the same research question in complementary ways. For example, nonexperimental studies establishing that there is a relationship between watching violent television and aggressive behaviour have been complemented by experimental studies confirming that the relationship is a causal one (Bushman & Huesmann, 2001) [1] . Similarly, after his original study, Milgram conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974) [2] .

Types of Nonexperimental Research

Nonexperimental research falls into three broad categories: single-variable research, correlational and quasi-experimental research, and qualitative research. First, research can be nonexperimental because it focuses on a single variable rather than a statistical relationship between two variables. Although there is no widely shared term for this kind of research, we will call it  single-variable research . Milgram’s original obedience study was nonexperimental in this way. He was primarily interested in one variable—the extent to which participants obeyed the researcher when he told them to shock the confederate—and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of single-variable research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the research asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories.)

As these examples make clear, single-variable research can answer interesting and important questions. What it cannot do, however, is answer questions about statistical relationships between variables. This detail is a point that beginning researchers sometimes miss. Imagine, for example, a group of research methods students interested in the relationship between children’s being the victim of bullying and the children’s self-esteem. The first thing that is likely to occur to these researchers is to obtain a sample of middle-school students who have been bullied and then to measure their self-esteem. But this design would be a single-variable study with self-esteem as the only variable. Although it would tell the researchers something about the self-esteem of children who have been bullied, it would not tell them what they really want to know, which is how the self-esteem of children who have been bullied  compares  with the self-esteem of children who have not. Is it lower? Is it the same? Could it even be higher? To answer this question, their sample would also have to include middle-school students who have not been bullied thereby introducing another variable.

Research can also be nonexperimental because it focuses on a statistical relationship between two variables but does not include the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both. This kind of research takes two basic forms: correlational research and quasi-experimental research. In correlational research , the researcher measures the two variables of interest with little or no attempt to control extraneous variables and then assesses the relationship between them. A research methods student who finds out whether each of several middle-school students has been bullied and then measures each student’s self-esteem is conducting correlational research. In  quasi-experimental research , the researcher manipulates an independent variable but does not randomly assign participants to conditions or orders of conditions. For example, a researcher might start an antibullying program (a kind of treatment) at one school and compare the incidence of bullying at that school with the incidence at a similar school that has no antibullying program.

The final way in which research can be nonexperimental is that it can be qualitative. The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. In  qualitative research , the data are usually nonnumerical and therefore cannot be analyzed using statistical techniques. Rosenhan’s study of the experience of people in a psychiatric ward was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semipublic room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256). [3] Qualitative data has a separate set of analysis tools depending on the research question. For example, thematic analysis would focus on themes that emerge in the data or conversation analysis would focus on the way the words were said in an interview or focus group.

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable.  Figure 7.1  shows how experimental, quasi-experimental, and correlational research vary in terms of internal validity. Experimental research tends to be highest because it addresses the directionality and third-variable problems through manipulation and the control of extraneous variables through random assignment. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Correlational research is lowest because it fails to address either problem. If the average score on the dependent variable differs across levels of the independent variable, it  could  be that the independent variable is responsible, but there are other interpretations. In some situations, the direction of causality could be reversed. In others, there could be a third variable that is causing differences in both the independent and dependent variables. Quasi-experimental research is in the middle because the manipulation of the independent variable addresses some problems, but the lack of random assignment and experimental control fails to address others. Imagine, for example, that a researcher finds two similar schools, starts an antibullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” There is no directionality problem because clearly the number of bullying incidents did not determine which school got the program. However, the lack of random assignment of children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying.

""

Notice also in  Figure 7.1  that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well designed quasi-experiment with no obvious confounding variables. Internal validity is also only one of several validities that one might consider, as noted in  Chapter 5.

Key Takeaways

  • Nonexperimental research is research that lacks the manipulation of an independent variable, control of extraneous variables through random assignment, or both.
  • There are three broad types of nonexperimental research. Single-variable research focuses on a single variable rather than a relationship between variables. Correlational and quasi-experimental research focus on a statistical relationship but lack manipulation or random assignment. Qualitative research focuses on broader research questions, typically involves collecting large amounts of data from a small number of participants, and analyses the data nonstatistically.
  • In general, experimental research is high in internal validity, correlational research is low in internal validity, and quasi-experimental research is in between.

Discussion: For each of the following studies, decide which type of research design it is and explain why.

  • A researcher conducts detailed interviews with unmarried teenage fathers to learn about how they feel and what they think about their role as fathers and summarizes their feelings in a written narrative.
  • A researcher measures the impulsivity of a large sample of drivers and looks at the statistical relationship between this variable and the number of traffic tickets the drivers have received.
  • A researcher randomly assigns patients with low back pain either to a treatment involving hypnosis or to a treatment involving exercise. She then measures their level of low back pain after 3 months.
  • A college instructor gives weekly quizzes to students in one section of his course but no weekly quizzes to students in another section to see whether this has an effect on their test performance.
  • Bushman, B. J., & Huesmann, L. R. (2001). Effects of televised violence on aggression. In D. Singer & J. Singer (Eds.), Handbook of children and the media (pp. 223–254). Thousand Oaks, CA: Sage. ↵
  • Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row. ↵
  • Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258. ↵

Research that lacks the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both.

Research that focuses on a single variable rather than a statistical relationship between two variables.

The researcher measures the two variables of interest with little or no attempt to control extraneous variables and then assesses the relationship between them.

The researcher manipulates an independent variable but does not randomly assign participants to conditions or orders of conditions.

Research Methods in Psychology - 2nd Canadian Edition Copyright © 2015 by Paul C. Price, Rajiv Jhangiani, & I-Chant A. Chiang is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

non experimental research topics examples

non experimental research topics examples

Yearly paid plans are up to 65% off for the spring sale. Limited time only! 🌸

  • Form Builder
  • Survey Maker
  • AI Form Generator
  • AI Survey Tool
  • AI Quiz Maker
  • Store Builder
  • WordPress Plugin

non experimental research topics examples

HubSpot CRM

non experimental research topics examples

Google Sheets

non experimental research topics examples

Google Analytics

non experimental research topics examples

Microsoft Excel

non experimental research topics examples

  • Popular Forms
  • Job Application Form Template
  • Rental Application Form Template
  • Hotel Accommodation Form Template
  • Online Registration Form Template
  • Employment Application Form Template
  • Application Forms
  • Booking Forms
  • Consent Forms
  • Contact Forms
  • Donation Forms
  • Customer Satisfaction Surveys
  • Employee Satisfaction Surveys
  • Evaluation Surveys
  • Feedback Surveys
  • Market Research Surveys
  • Personality Quiz Template
  • Geography Quiz Template
  • Math Quiz Template
  • Science Quiz Template
  • Vocabulary Quiz Template

Try without registration Quick Start

Read engaging stories, how-to guides, learn about forms.app features.

Inspirational ready-to-use templates for getting started fast and powerful.

Spot-on guides on how to use forms.app and make the most out of it.

non experimental research topics examples

See the technical measures we take and learn how we keep your data safe and secure.

  • Integrations
  • Help Center
  • Sign In Sign Up Free
  • What is non-experimental research: Definition, types & examples

What is non-experimental research: Definition, types & examples

Defne Çobanoğlu

The experimentation method is very useful for getting information on a specific subject. However, when experimenting is not possible or practical, there is another way of collecting data for those interested. It's a non-experimental way, to say the least.

In this article, we have gathered information on non-experimental research, clearly defined what it is and when one should use it, and listed the types of non-experimental research. We also gave some useful examples to paint a better picture. Let us get started. 

  • What is non-experimental research?

Non-experimental research is a type of research design that is based on observation and measuring instead of experimentation with randomly assigned participants.

What characterizes this research design is the fact that it lacks the manipulation of independent variables . Because of this fact, the non-experimental research is based on naturally occurring conditions, and there is no involvement of external interventions. Therefore, the researchers doing this method must not rely heavily on interviews, surveys , or case studies.

  • When to use non-experimental research?

An experiment is done when a researcher is investigating the relationship between one or two phenomena and has a theory or hypothesis on the relationship between two variables that are involved. The researcher can carry out an experiment when it is ethical, possible, and feasible to do one.

However, when an experiment can not be done because of a limitation, then they decide to opt for a non-experimental research design . Non-experimental research is considered preferable in some conditions, including:

  • When the manipulation of the independent variable is not possible because of ethical or practical concerns
  • When the subjects of an experimental design can not be randomly assigned to treatments.
  • When the research question is too extensive or it relates to a general experience.
  • When researchers want to do a starter research before investing in more extensive research.
  • When the research question is about the statistical relationship between variables , but in a noncausal context.
  • Characteristics of non-experimental research

Non-experimental research has some characteristics that clearly define the framework of this research method. They provide a clear distinction between experimental design and non-experimental design. Let us see some of them:

  • Non-experimental research does not involve the manipulation of variables .
  • The aim of this research type is to explore the factors as they naturally occur .
  • This method is used when experimentation is not possible because of ethical or practical reasons .
  • Instead of creating a sample or participant group, the existing groups or natural thresholds are used during the research.
  • This research method is not about finding causality between two variables.
  • Most studies are done on past events or historical occurrences to make sense of specific research questions.
  • Types of non-experimental research

Non-experimental research types

Non-experimental research types

What makes research non-experimental research is the fact that the researcher does not manipulate the factors, does not randomly assign the participants, and observes the existing groups. But this research method can also be divided into different types. These types are:

Correlational research:

In correlation studies, the researcher does not manipulate the variables and is not interested in controlling the extraneous variables. They only observe and assess the relationship between them. For example, a researcher examines students’ study hours every day and their overall academic performance. The positive correlation this between study hours and academic performance suggests a statistical association. 

Quasi-experimental research:

In quasi-experimental research, the researcher does not randomly assign the participants into two groups. Because you can not deliberately deprive someone of treatment, the researcher uses natural thresholds or dividing points . For example, examining students from two different high schools with different education methods.

Cross-sectional research:

In cross-sectional research, the researcher studies and compares a portion of a population at the same time . It does not involve random assignment or any outside manipulation. For example, a study on smokers and non-smokers in a specific area.

Observational research:

In observational research, the researcher once again does not manipulate any aspect of the study, and their main focus is observation of the participants . For example, a researcher examining a group of children playing in a playground would be a good example.

  • Non-experimental research examples

Non-experimental research is a good way of collecting information and exploring relationships between variables. It can be used in numerous fields, from social sciences, economics, psychology, education, and market research. When gathering information using secondary research is not enough and an experiment can not be done, this method can bring out new information.

Non-experimental research example #1

Imagine a researcher who wants to see the connection between mobile phone usage before bedtime and the amount of sleep adults get in a night . They can gather a group of individuals to observe and present them with some questions asking about the details of their day, frequency and duration of phone usage, quality of sleep, etc . And observe them by analyzing the findings.

Non-experimental research example #2

Imagine a researcher who wants to explore the correlation between job satisfaction levels among employees and what are the factors that affect this . The researcher can gather all the information they get about the employees’ ages, sexes, positions in the company, working patterns, demographic information, etc . 

The research provides the researcher with all the information to make an analysis to identify correlations and patterns. Then, it is possible for researchers and administrators to make informed predictions.

  • Frequently asked questions about non-experimental research

When not to use non-experimental research?

There are some situations where non-experimental research is not suitable or the best choice. For example, the aim of non-experimental research is not about finding causality therefore, if the researcher wants to explore the relationship between two variables, then this method is not for them. Also, if the control over the variables is extremely important to the test of a theory, then experimentation is a more appropriate option.

What is the difference between experimental and non-experimental research?

Experimental research is an example of primary research where the researcher takes control of all the variables, randomly assigns the participants into different groups, and studies them in a pre-determined environment to test a hypothesis. 

On the contrary, non-experimental research does not intervene in any way and only observes and studies the participants in their natural environments to make sense of a phenomenon

What makes a quasi-experiment a non-experiment?

The same as true experimentation, quasi-experiment research also aims to explore a cause-and-effect relationship between independent and dependent variables. However, in quasi-experimental research, the participants are not randomly selected. They are assigned to groups based on non-random criteria .

Is a survey a non-experimental study?

Yes, as the main purpose of a survey or questionnaire is to collect information from participants without outside interference, it makes the survey a non-experimental study. Surveys are used by researchers when experimentation is not possible because of ethical reasons, but first-hand data is needed

What is non-experimental data?

Non-experimental data is data collected by researchers via using non-experimental methods such as observations, interpretation, and interactions. Non-experimental data could both be qualitative or quantitative, depending on the situation.

Advantages of non-experimental research

Non-experimental research has its positive sides that a researcher should have in mind when going through a study. They can start their research by going through the advantages. These advantages are:

  • It is used to observe and analyze past events .
  • This method is more affordable than a true experiment .
  • As the researcher can adapt the methods during the study, this research type is more flexible than an experimental study.
  • This method allows the researchers to answer specific questions .

Disadvantages of non-experimental research

Even though non-experimental research has its advantages, it also has some disadvantages a researcher should be mindful of. Here are some of them:

  • The findings of non-experimental research can not be generalized to the whole population. Therefore, it has low external validity .
  • This research is used to explore only a single variable .
  • Non-experimental research designs are prone to researcher bias and may not produce neutral results.
  • Final words

A non-experimental study differs from an experimental study in that there is no intervention or change of internal or extraneous elements. It is a smart way to collect information without the limitations of experimentation. These limitations could be about ethical or practical problems. When you can not do proper experimentation, your other option is to study existing conditions and groups to draw conclusions. This is a non-experimental design .

In this article, we have gathered information on non-experimental research to shed light on the details of this research method. If you are thinking of doing a study, make sure to have this information in mind. And lastly, do not forget to visit our articles on other research methods and so much more!

Defne is a content writer at forms.app. She is also a translator specializing in literary translation. Defne loves reading, writing, and translating professionally and as a hobby. Her expertise lies in survey research, research methodologies, content writing, and translation.

  • Form Features
  • Data Collection

Table of Contents

Related posts.

Descriptive analysis: Definition, types & examples

Descriptive analysis: Definition, types & examples

35+ Hilarious agency memes that are so true it kind of hurts

35+ Hilarious agency memes that are so true it kind of hurts

Şeyma Beyazçiçek

7 reasons why you need forms automation software in your company

7 reasons why you need forms automation software in your company

Logo for Portland State University Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Overview of Non-Experimental Research

Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton

Learning Objectives

  • Define non-experimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct non-experimental research as opposed to experimental research.

What Is Non-Experimental Research?

Non-experimental research  is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world).

Most researchers in psychology consider the distinction between experimental and non-experimental research to be an extremely important one. This is because although experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, non-experimental research generally cannot. As we will see, however, this inability to make causal conclusions does not mean that non-experimental research is less important than experimental research. It is simply used in cases where experimental research is not able to be carried out.

When to Use Non-Experimental Research

As we saw in the last chapter , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable. It stands to reason, therefore, that non-experimental research is appropriate—even necessary—when these conditions are not met. There are many times in which non-experimental research is preferred, including when:

  • the research question or hypothesis relates to a single variable rather than a statistical relationship between two variables (e.g., how accurate are people’s first impressions?).
  • the research question pertains to a non-causal statistical relationship between variables (e.g., is there a correlation between verbal intelligence and mathematical intelligence?).
  • the research question is about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions for practical or ethical reasons (e.g., does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • the research question is broad and exploratory, or is about what it is like to have a particular experience (e.g., what is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and non-experimental approaches is generally dictated by the nature of the research question. Recall the three goals of science are to describe, to predict, and to explain. If the goal is to explain and the research question pertains to causal relationships, then the experimental approach is typically preferred. If the goal is to describe or to predict, a non-experimental approach is appropriate. But the two approaches can also be used to address the same research question in complementary ways. For example, in Milgram’s original (non-experimental) obedience study, he was primarily interested in one variable—the extent to which participants obeyed the researcher when he told them to shock the confederate—and he observed all participants performing the same task under the same conditions. However,  Milgram subsequently conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974) [1] .

Types of Non-Experimental Research

Non-experimental research falls into two broad categories: correlational research and observational research. 

The most common type of non-experimental research conducted in psychology is correlational research. Correlational research is considered non-experimental because it focuses on the statistical relationship between two variables but does not include the manipulation of an independent variable. More specifically, in correlational research , the researcher measures two variables with little or no attempt to control extraneous variables and then assesses the relationship between them. As an example, a researcher interested in the relationship between self-esteem and school achievement could collect data on students’ self-esteem and their GPAs to see if the two variables are statistically related.

Observational research  is non-experimental because it focuses on making observations of behavior in a natural or laboratory setting without manipulating anything. Milgram’s original obedience study was non-experimental in this way. He was primarily interested in the extent to which participants obeyed the researcher when he told them to shock the confederate and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of observational research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the researchers asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories).

Cross-Sectional, Longitudinal, and Cross-Sequential Studies

When psychologists wish to study change over time (for example, when developmental psychologists wish to study aging) they usually take one of three non-experimental approaches: cross-sectional, longitudinal, or cross-sequential. Cross-sectional studies involve comparing two or more pre-existing groups of people (e.g., children at different stages of development). What makes this approach non-experimental is that there is no manipulation of an independent variable and no random assignment of participants to groups. Using this design, developmental psychologists compare groups of people of different ages (e.g., young adults spanning from 18-25 years of age versus older adults spanning 60-75 years of age) on various dependent variables (e.g., memory, depression, life satisfaction). Of course, the primary limitation of using this design to study the effects of aging is that differences between the groups other than age may account for differences in the dependent variable. For instance, differences between the groups may reflect the generation that people come from (a cohort effect ) rather than a direct effect of age. For this reason, longitudinal studies , in which one group of people is followed over time as they age, offer a superior means of studying the effects of aging. However, longitudinal studies are by definition more time consuming and so require a much greater investment on the part of the researcher and the participants. A third approach, known as cross-sequential studies , combines elements of both cross-sectional and longitudinal studies. Rather than measuring differences between people in different age groups or following the same people over a long period of time, researchers adopting this approach choose a smaller period of time during which they follow people in different age groups. For example, they might measure changes over a ten year period among participants who at the start of the study fall into the following age groups: 20 years old, 30 years old, 40 years old, 50 years old, and 60 years old. This design is advantageous because the researcher reaps the immediate benefits of being able to compare the age groups after the first assessment. Further, by following the different age groups over time they can subsequently determine whether the original differences they found across the age groups are due to true age effects or cohort effects.

The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. But as you will learn in this chapter, many observational research studies are more qualitative in nature. In  qualitative research , the data are usually nonnumerical and therefore cannot be analyzed using statistical techniques. Rosenhan’s observational study of the experience of people in psychiatric wards was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semi-public room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256) [2] . Qualitative data has a separate set of analysis tools depending on the research question. For example, thematic analysis would focus on themes that emerge in the data or conversation analysis would focus on the way the words were said in an interview or focus group.

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable.  Figure 6.1 shows how experimental, quasi-experimental, and non-experimental (correlational) research vary in terms of internal validity. Experimental research tends to be highest in internal validity because the use of manipulation (of the independent variable) and control (of extraneous variables) help to rule out alternative explanations for the observed relationships. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Non-experimental (correlational) research is lowest in internal validity because these designs fail to use manipulation or control. Quasi-experimental research (which will be described in more detail in a subsequent chapter) falls in the middle because it contains some, but not all, of the features of a true experiment. For instance, it may fail to use random assignment to assign participants to groups or fail to use counterbalancing to control for potential order effects. Imagine, for example, that a researcher finds two similar schools, starts an anti-bullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” While a comparison is being made with a control condition, the inability to randomly assign children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying (e.g., there may be a selection effect).

Figure 6.1 Internal Validity of Correlational, Quasi-Experimental, and Experimental Studies. Experiments are generally high in internal validity, quasi-experiments lower, and correlational studies lower still.

Notice also in  Figure 6.1 that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational (non-experimental) studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well-designed quasi-experiment with no obvious confounding variables. Internal validity is also only one of several validities that one might consider, as noted in Chapter 5.

  • Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row. ↵
  • Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258. ↵

A research that lacks the manipulation of an independent variable.

Research that is non-experimental because it focuses on the statistical relationship between two variables but does not include the manipulation of an independent variable.

Research that is non-experimental because it focuses on recording systemic observations of behavior in a natural or laboratory setting without manipulating anything.

Studies that involve comparing two or more pre-existing groups of people (e.g., children at different stages of development).

Differences between the groups may reflect the generation that people come from rather than a direct effect of age.

Studies in which one group of people are followed over time as they age.

Studies in which researchers follow people in different age groups in a smaller period of time.

Overview of Non-Experimental Research Copyright © 2022 by Rajiv S. Jhangiani; I-Chant A. Chiang; Carrie Cuttler; and Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

non experimental research topics examples

Home Investigación de mercado

Non-experimental research: What it is, overview & advantages

non-experimental-research

Non-experimental research is the type of research that lacks an independent variable. Instead, the researcher observes the context in which the phenomenon occurs and analyzes it to obtain information.

Unlike experimental research , where the variables are held constant, non-experimental research happens during the study when the researcher cannot control, manipulate or alter the subjects but relies on interpretation or observations to conclude.

This means that the method must not rely on correlations, surveys , or case studies and cannot demonstrate an actual cause and effect relationship.

Characteristics of non-experimental research

Some of the essential characteristics of non-experimental research are necessary for the final results. Let’s talk about them to identify the most critical parts of them.

characteristics of non-experimental research

  • Most studies are based on events that occurred previously and are analyzed later.
  • In this method, controlled experiments are not performed for reasons such as ethics or morality.
  • No study samples are created; on the contrary, the samples or participants already exist and develop in their environment.
  • The researcher does not intervene directly in the environment of the sample.
  • This method studies the phenomena exactly as they occurred.

Types of non-experimental research

Non-experimental research can take the following forms:

Cross-sectional research : Cross-sectional research is used to observe and analyze the exact time of the research to cover various study groups or samples. This type of research is divided into:

  • Descriptive: When values are observed where one or more variables are presented.
  • Causal: It is responsible for explaining the reasons and relationship that exists between variables in a given time.

Longitudinal research: In a longitudinal study , researchers aim to analyze the changes and development of the relationships between variables over time. Longitudinal research can be divided into:

  • Trend: When they study the changes faced by the study group in general.
  • Group evolution: When the study group is a smaller sample.
  • Panel: It is in charge of analyzing individual and group changes to discover the factor that produces them.

LEARN ABOUT: Quasi-experimental Research

When to use non-experimental research

Non-experimental research can be applied in the following ways:

  • When the research question may be about one variable rather than a statistical relationship about two variables.
  • There is a non-causal statistical relationship between variables in the research question.
  • The research question has a causal research relationship, but the independent variable cannot be manipulated.
  • In exploratory or broad research where a particular experience is confronted.

Advantages and disadvantages

Some advantages of non-experimental research are:

  • It is very flexible during the research process
  • The cause of the phenomenon is known, and the effect it has is investigated.
  • The researcher can define the characteristics of the study group.

Among the disadvantages of non-experimental research are:

  • The groups are not representative of the entire population.
  • Errors in the methodology may occur, leading to research biases .

Non-experimental research is based on the observation of phenomena in their natural environment. In this way, they can be studied later to reach a conclusion.

Difference between experimental and non-experimental research

Experimental research involves changing variables and randomly assigning conditions to participants. As it can determine the cause, experimental research designs are used for research in medicine, biology, and social science. 

Experimental research designs have strict standards for control and establishing validity. Although they may need many resources, they can lead to very interesting results.

Non-experimental research, on the other hand, is usually descriptive or correlational without any explicit changes done by the researcher. You simply describe the situation as it is, or describe a relationship between variables. Without any control, it is difficult to determine causal effects. The validity remains a concern in this type of research. However, it’s’ more regarding the measurements instead of the effects.

LEARN MORE: Descriptive Research vs Correlational Research

Whether you should choose experimental research or non-experimental research design depends on your goals and resources. If you need any help with how to conduct research and collect relevant data, or have queries regarding the best approach for your research goals, contact us today! You can create an account with our survey software and avail of 88+ features including dashboard and reporting for free.

Create a free account

MORE LIKE THIS

employee development software

Top 10 Employee Development Software for Talent Growth

Apr 3, 2024

insight community platforms

Top 5 Insight Community Platforms to Elevate Your Research

concept testing platform

Choose The Right Concept Testing Platform to Boost Your Ideas

Apr 2, 2024

nps software

Top 15 NPS Software for Customer Feedback in 2024

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

non experimental research topics examples

Chapter 7 Nonexperimental Research

What do the following classic studies have in common?

  • Stanley Milgram found that about two thirds of his research participants were willing to administer dangerous shocks to another person just because they were told to by an authority figure (Milgram, 1963). Milgram, S. (1963). Behavioral study of obedience. Journal of Abnormal and Social Psychology, 67 , 371–378.
  • Elizabeth Loftus and Jacqueline Pickrell showed that it is relatively easy to “implant” false memories in people by repeatedly asking them about childhood events that did not actually happen to them (Loftus & Pickrell, 1995). Loftus, E. F., & Pickrell, J. E. (1995). The formation of false memories. Psychiatric Annals, 25 , 720–725.
  • John Cacioppo and Richard Petty evaluated the validity of their Need for Cognition Scale—a measure of the extent to which people like and value thinking—by comparing the scores of college professors with those of factory workers (Cacioppo & Petty, 1982). Cacioppo, J. T., & Petty, R. E. (1982). The need for cognition. Journal of Personality and Social Psychology, 42 , 116–131.
  • David Rosenhan found that confederates who went to psychiatric hospitals claiming to have heard voices saying things like “empty” and “thud” were labeled as schizophrenic by the hospital staff and kept there even though they behaved normally in all other ways (Rosenhan, 1973). Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258.

The answer for purposes of this chapter is that they are not experiments. In this chapter we look more closely at nonexperimental research. We begin with a general definition of nonexperimental research, along with a discussion of when and why nonexperimental research is more appropriate than experimental research. We then look separately at three important types of nonexperimental research: correlational research, quasi-experimental research, and qualitative research.

7.1 Overview of Nonexperimental Research

Learning objectives.

  • Define nonexperimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct nonexperimental research as opposed to experimental research.

What Is Nonexperimental Research?

Nonexperimental research Research that lacks the manipulation of an independent variable or the random assignment of participants to conditions or orders of conditions. is research that lacks the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both.

In a sense, it is unfair to define this large and diverse set of approaches collectively by what they are not . But doing so reflects the fact that most researchers in psychology consider the distinction between experimental and nonexperimental research to be an extremely important one. This is because while experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, nonexperimental research generally cannot. As we will see, however, this does not mean that nonexperimental research is less important than experimental research or inferior to it in any general sense.

When to Use Nonexperimental Research

As we saw in Chapter 6 "Experimental Research" , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable and randomly assign participants to conditions or to orders of conditions. It stands to reason, therefore, that nonexperimental research is appropriate—even necessary—when these conditions are not met. There are many ways in which this can be the case.

  • The research question or hypothesis can be about a single variable rather than a statistical relationship between two variables (e.g., How accurate are people’s first impressions?).
  • The research question can be about a noncausal statistical relationship between variables (e.g., Is there a correlation between verbal intelligence and mathematical intelligence?).
  • The research question can be about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions (e.g., Does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • The research question can be broad and exploratory, or it can be about what it is like to have a particular experience (e.g., What is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and nonexperimental approaches is generally dictated by the nature of the research question. If it is about a causal relationship and involves an independent variable that can be manipulated, the experimental approach is typically preferred. Otherwise, the nonexperimental approach is preferred. But the two approaches can also be used to address the same research question in complementary ways. For example, nonexperimental studies establishing that there is a relationship between watching violent television and aggressive behavior have been complemented by experimental studies confirming that the relationship is a causal one (Bushman & Huesmann, 2001). Bushman, B. J., & Huesmann, L. R. (2001). Effects of televised violence on aggression. In D. Singer & J. Singer (Eds.), Handbook of children and the media (pp. 223–254). Thousand Oaks, CA: Sage. Similarly, after his original study, Milgram conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974). Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row.

Types of Nonexperimental Research

Nonexperimental research falls into three broad categories: single-variable research, correlational and quasi-experimental research, and qualitative research. First, research can be nonexperimental because it focuses on a single variable rather than a statistical relationship between two variables. Although there is no widely shared term for this kind of research, we will call it single-variable research Research that focuses on a single variable rather than on a statistical relationship between variables. . Milgram’s original obedience study was nonexperimental in this way. He was primarily interested in one variable—the extent to which participants obeyed the researcher when he told them to shock the confederate—and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of single-variable research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the research asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories.)

As these examples make clear, single-variable research can answer interesting and important questions. What it cannot do, however, is answer questions about statistical relationships between variables. This is a point that beginning researchers sometimes miss. Imagine, for example, a group of research methods students interested in the relationship between children’s being the victim of bullying and the children’s self-esteem. The first thing that is likely to occur to these researchers is to obtain a sample of middle-school students who have been bullied and then to measure their self-esteem. But this would be a single-variable study with self-esteem as the only variable. Although it would tell the researchers something about the self-esteem of children who have been bullied, it would not tell them what they really want to know, which is how the self-esteem of children who have been bullied compares with the self-esteem of children who have not. Is it lower? Is it the same? Could it even be higher? To answer this question, their sample would also have to include middle-school students who have not been bullied.

Research can also be nonexperimental because it focuses on a statistical relationship between two variables but does not include the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both. This kind of research takes two basic forms: correlational research and quasi-experimental research. In correlational research Research in which two or more variables are measured and the statistical relationships among them are assessed. There is no manipulated independent variable and usually very little attempt to control extraneous variables. , the researcher measures the two variables of interest with little or no attempt to control extraneous variables and then assesses the relationship between them. A research methods student who finds out whether each of several middle-school students has been bullied and then measures each student’s self-esteem is conducting correlational research. In quasi-experimental research Research that involves the manipulation of an independent variable but lacks the random assignment of participants to conditions or orders of conditions. It is generally used in field settings to test the effectiveness of a treatment. , the researcher manipulates an independent variable but does not randomly assign participants to conditions or orders of conditions. For example, a researcher might start an antibullying program (a kind of treatment) at one school and compare the incidence of bullying at that school with the incidence at a similar school that has no antibullying program.

The final way in which research can be nonexperimental is that it can be qualitative. The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. In qualitative research Research that typically involves formulating broad research questions, collecting large amounts of data from a small number of participants, and summarizing the data using nonstatistical techniques. , the data are usually nonnumerical and are analyzed using nonstatistical techniques. Rosenhan’s study of the experience of people in a psychiatric ward was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semipublic room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256). Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258.

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable. Figure 7.1 shows how experimental, quasi-experimental, and correlational research vary in terms of internal validity. Experimental research tends to be highest because it addresses the directionality and third-variable problems through manipulation and the control of extraneous variables through random assignment. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Correlational research is lowest because it fails to address either problem. If the average score on the dependent variable differs across levels of the independent variable, it could be that the independent variable is responsible, but there are other interpretations. In some situations, the direction of causality could be reversed. In others, there could be a third variable that is causing differences in both the independent and dependent variables. Quasi-experimental research is in the middle because the manipulation of the independent variable addresses some problems, but the lack of random assignment and experimental control fails to address others. Imagine, for example, that a researcher finds two similar schools, starts an antibullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” There is no directionality problem because clearly the number of bullying incidents did not determine which school got the program. However, the lack of random assignment of children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying.

non experimental research topics examples

Experiments are generally high in internal validity, quasi-experiments lower, and correlational studies lower still.

Notice also in Figure 7.1 that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well designed quasi-experiment with no obvious confounding variables.

Key Takeaways

  • Nonexperimental research is research that lacks the manipulation of an independent variable, control of extraneous variables through random assignment, or both.
  • There are three broad types of nonexperimental research. Single-variable research focuses on a single variable rather than a relationship between variables. Correlational and quasi-experimental research focus on a statistical relationship but lack manipulation or random assignment. Qualitative research focuses on broader research questions, typically involves collecting large amounts of data from a small number of participants, and analyzes the data nonstatistically.
  • In general, experimental research is high in internal validity, correlational research is low in internal validity, and quasi-experimental research is in between.

Discussion: For each of the following studies, decide which type of research design it is and explain why.

  • A researcher conducts detailed interviews with unmarried teenage fathers to learn about how they feel and what they think about their role as fathers and summarizes their feelings in a written narrative.
  • A researcher measures the impulsivity of a large sample of drivers and looks at the statistical relationship between this variable and the number of traffic tickets the drivers have received.
  • A researcher randomly assigns patients with low back pain either to a treatment involving hypnosis or to a treatment involving exercise. She then measures their level of low back pain after 3 months.
  • A college instructor gives weekly quizzes to students in one section of his course but no weekly quizzes to students in another section to see whether this has an effect on their test performance.

7.2 Correlational Research

  • Define correlational research and give several examples.
  • Explain why a researcher might choose to conduct correlational research rather than experimental research or another type of nonexperimental research.

What Is Correlational Research?

Correlational research is a type of nonexperimental research in which the researcher measures two variables and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are essentially two reasons that researchers interested in statistical relationships between variables would choose to conduct a correlational study rather than an experiment. The first is that they do not believe that the statistical relationship is a causal one. For example, a researcher might evaluate the validity of a brief extraversion test by administering it to a large group of participants along with a longer extraversion test that has already been shown to be valid. This researcher might then check to see whether participants’ scores on the brief test are strongly correlated with their scores on the longer one. Neither test score is thought to cause the other, so there is no independent variable to manipulate. In fact, the terms independent variable and dependent variable do not apply to this kind of research.

The other reason that researchers would choose to use a correlational study rather than an experiment is that the statistical relationship of interest is thought to be causal, but the researcher cannot manipulate the independent variable because it is impossible, impractical, or unethical. For example, Allen Kanner and his colleagues thought that the number of “daily hassles” (e.g., rude salespeople, heavy traffic) that people experience affects the number of physical and psychological symptoms they have (Kanner, Coyne, Schaefer, & Lazarus, 1981). Kanner, A. D., Coyne, J. C., Schaefer, C., & Lazarus, R. S. (1981). Comparison of two modes of stress measurement: Daily hassles and uplifts versus major life events. Journal of Behavioral Medicine, 4 , 1–39. But because they could not manipulate the number of daily hassles their participants experienced, they had to settle for measuring the number of daily hassles—along with the number of symptoms—using self-report questionnaires. Although the strong positive relationship they found between these two variables is consistent with their idea that hassles cause symptoms, it is also consistent with the idea that symptoms cause hassles or that some third variable (e.g., neuroticism) causes both.

A common misconception among beginning researchers is that correlational research must involve two quantitative variables, such as scores on two extraversion tests or the number of hassles and number of symptoms people have experienced. However, the defining feature of correlational research is that the two variables are measured—neither one is manipulated—and this is true regardless of whether the variables are quantitative or categorical. Imagine, for example, that a researcher administers the Rosenberg Self-Esteem Scale to 50 American college students and 50 Japanese college students. Although this “feels” like a between-subjects experiment, it is a correlational study because the researcher did not manipulate the students’ nationalities. The same is true of the study by Cacioppo and Petty comparing college faculty and factory workers in terms of their need for cognition. It is a correlational study because the researchers did not manipulate the participants’ occupations.

Figure 7.2 "Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists" shows data from a hypothetical study on the relationship between whether people make a daily list of things to do (a “to-do list”) and stress. Notice that it is unclear whether this is an experiment or a correlational study because it is unclear whether the independent variable was manipulated. If the researcher randomly assigned some participants to make daily to-do lists and others not to, then it is an experiment. If the researcher simply asked participants whether they made daily to-do lists, then it is a correlational study. The distinction is important because if the study was an experiment, then it could be concluded that making the daily to-do lists reduced participants’ stress. But if it was a correlational study, it could only be concluded that these variables are statistically related. Perhaps being stressed has a negative effect on people’s ability to plan ahead (the directionality problem). Or perhaps people who are more conscientious are more likely to make to-do lists and less likely to be stressed (the third-variable problem). The crucial point is that what defines a study as experimental or correlational is not the variables being studied, nor whether the variables are quantitative or categorical, nor the type of graph or statistics used to analyze the data. It is how the study is conducted.

Figure 7.2 Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists

non experimental research topics examples

Data Collection in Correlational Research

Again, the defining feature of correlational research is that neither variable is manipulated. It does not matter how or where the variables are measured. A researcher could have participants come to a laboratory to complete a computerized backward digit span task and a computerized risky decision-making task and then assess the relationship between participants’ scores on the two tasks. Or a researcher could go to a shopping mall to ask people about their attitudes toward the environment and their shopping habits and then assess the relationship between these two variables. Both of these studies would be correlational because no independent variable is manipulated. However, because some approaches to data collection are strongly associated with correlational research, it makes sense to discuss them here. The two we will focus on are naturalistic observation and archival data. A third, survey research, is discussed in its own chapter.

Naturalistic Observation

Naturalistic observation An approach to data collection in which the behavior of interest is observed in the environment in which it typically occurs. is an approach to data collection that involves observing people’s behavior in the environment in which it typically occurs. Thus naturalistic observation is a type of field research (as opposed to a type of laboratory research). It could involve observing shoppers in a grocery store, children on a school playground, or psychiatric inpatients in their wards. Researchers engaged in naturalistic observation usually make their observations as unobtrusively as possible so that participants are often not aware that they are being studied. Ethically, this is considered to be acceptable if the participants remain anonymous and the behavior occurs in a public setting where people would not normally have an expectation of privacy. Grocery shoppers putting items into their shopping carts, for example, are engaged in public behavior that is easily observable by store employees and other shoppers. For this reason, most researchers would consider it ethically acceptable to observe them for a study. On the other hand, one of the arguments against the ethicality of the naturalistic observation of “bathroom behavior” discussed earlier in the book is that people have a reasonable expectation of privacy even in a public restroom and that this expectation was violated.

Researchers Robert Levine and Ara Norenzayan used naturalistic observation to study differences in the “pace of life” across countries (Levine & Norenzayan, 1999). Levine, R. V., & Norenzayan, A. (1999). The pace of life in 31 countries. Journal of Cross-Cultural Psychology, 30 , 178–205. One of their measures involved observing pedestrians in a large city to see how long it took them to walk 60 feet. They found that people in some countries walked reliably faster than people in other countries. For example, people in the United States and Japan covered 60 feet in about 12 seconds on average, while people in Brazil and Romania took close to 17 seconds.

Because naturalistic observation takes place in the complex and even chaotic “real world,” there are two closely related issues that researchers must deal with before collecting data. The first is sampling. When, where, and under what conditions will the observations be made, and who exactly will be observed? Levine and Norenzayan described their sampling process as follows:

Male and female walking speed over a distance of 60 feet was measured in at least two locations in main downtown areas in each city. Measurements were taken during main business hours on clear summer days. All locations were flat, unobstructed, had broad sidewalks, and were sufficiently uncrowded to allow pedestrians to move at potentially maximum speeds. To control for the effects of socializing, only pedestrians walking alone were used. Children, individuals with obvious physical handicaps, and window-shoppers were not timed. Thirty-five men and 35 women were timed in most cities. (p. 186)

Precise specification of the sampling process in this way makes data collection manageable for the observers, and it also provides some control over important extraneous variables. For example, by making their observations on clear summer days in all countries, Levine and Norenzayan controlled for effects of the weather on people’s walking speeds.

The second issue is measurement. What specific behaviors will be observed? In Levine and Norenzayan’s study, measurement was relatively straightforward. They simply measured out a 60-foot distance along a city sidewalk and then used a stopwatch to time participants as they walked over that distance. Often, however, the behaviors of interest are not so obvious or objective. For example, researchers Robert Kraut and Robert Johnston wanted to study bowlers’ reactions to their shots, both when they were facing the pins and then when they turned toward their companions (Kraut & Johnston, 1979). Kraut, R. E., & Johnston, R. E. (1979). Social and emotional messages of smiling: An ethological approach. Journal of Personality and Social Psychology, 37 , 1539–1553. But what “reactions” should they observe? Based on previous research and their own pilot testing, Kraut and Johnston created a list of reactions that included “closed smile,” “open smile,” “laugh,” “neutral face,” “look down,” “look away,” and “face cover” (covering one’s face with one’s hands). The observers committed this list to memory and then practiced by coding the reactions of bowlers who had been videotaped. During the actual study, the observers spoke into an audio recorder, describing the reactions they observed. Among the most interesting results of this study was that bowlers rarely smiled while they still faced the pins. They were much more likely to smile after they turned toward their companions, suggesting that smiling is not purely an expression of happiness but also a form of social communication.

When the observations require a judgment on the part of the observers—as in Kraut and Johnston’s study—this process is often described as coding An approach to measurement in naturalistic observation, in which target behaviors are specified ahead of time and observers watch for and record those specific behaviors. . Coding generally requires clearly defining a set of target behaviors. The observers then categorize participants individually in terms of which behavior they have engaged in and the number of times they engaged in each behavior. The observers might even record the duration of each behavior. The target behaviors must be defined in such a way that different observers code them in the same way. This is the issue of interrater reliability. Researchers are expected to demonstrate the interrater reliability of their coding procedure by having multiple raters code the same behaviors independently and then showing that the different observers are in close agreement. Kraut and Johnston, for example, video recorded a subset of their participants’ reactions and had two observers independently code them. The two observers showed that they agreed on the reactions that were exhibited 97% of the time, indicating good interrater reliability.

Archival Data

Another approach to correlational research is the use of archival data Existing data that were collected or created for some other purpose. They can include school and hospital records, newspaper and magazine articles, Internet content, television shows, and many other things. , which are data that have already been collected for some other purpose. An example is a study by Brett Pelham and his colleagues on “implicit egotism”—the tendency for people to prefer people, places, and things that are similar to themselves (Pelham, Carvallo, & Jones, 2005). Pelham, B. W., Carvallo, M., & Jones, J. T. (2005). Implicit egotism. Current Directions in Psychological Science, 14 , 106–110. In one study, they examined Social Security records to show that women with the names Virginia, Georgia, Louise, and Florence were especially likely to have moved to the states of Virginia, Georgia, Louisiana, and Florida, respectively.

As with naturalistic observation, measurement can be more or less straightforward when working with archival data. For example, counting the number of people named Virginia who live in various states based on Social Security records is relatively straightforward. But consider a study by Christopher Peterson and his colleagues on the relationship between optimism and health using data that had been collected many years before for a study on adult development (Peterson, Seligman, & Vaillant, 1988). Peterson, C., Seligman, M. E. P., & Vaillant, G. E. (1988). Pessimistic explanatory style is a risk factor for physical illness: A thirty-five year longitudinal study. Journal of Personality and Social Psychology, 55 , 23–27. In the 1940s, healthy male college students had completed an open-ended questionnaire about difficult wartime experiences. In the late 1980s, Peterson and his colleagues reviewed the men’s questionnaire responses to obtain a measure of explanatory style—their habitual ways of explaining bad events that happen to them. More pessimistic people tend to blame themselves and expect long-term negative consequences that affect many aspects of their lives, while more optimistic people tend to blame outside forces and expect limited negative consequences. To obtain a measure of explanatory style for each participant, the researchers used a procedure in which all negative events mentioned in the questionnaire responses, and any causal explanations for them, were identified and written on index cards. These were given to a separate group of raters who rated each explanation in terms of three separate dimensions of optimism-pessimism. These ratings were then averaged to produce an explanatory style score for each participant. The researchers then assessed the statistical relationship between the men’s explanatory style as college students and archival measures of their health at approximately 60 years of age. The primary result was that the more optimistic the men were as college students, the healthier they were as older men. Pearson’s r was +.25.

This is an example of content analysis A family of techniques for analyzing archival data that generally involves identifying specific words, phrases, ideas, or other content in the data and then counting or summarizing their occurrence in other quantitative ways. —a family of systematic approaches to measurement using complex archival data. Just as naturalistic observation requires specifying the behaviors of interest and then noting them as they occur, content analysis requires specifying keywords, phrases, or ideas and then finding all occurrences of them in the data. These occurrences can then be counted, timed (e.g., the amount of time devoted to entertainment topics on the nightly news show), or analyzed in a variety of other ways.

  • Correlational research involves measuring two variables and assessing the relationship between them, with no manipulation of an independent variable.
  • Correlational research is not defined by where or how the data are collected. However, some approaches to data collection are strongly associated with correlational research. These include naturalistic observation (in which researchers observe people’s behavior in the context in which it normally occurs) and the use of archival data that were already collected for some other purpose.

Discussion: For each of the following, decide whether it is most likely that the study described is experimental or correlational and explain why.

  • An educational researcher compares the academic performance of students from the “rich” side of town with that of students from the “poor” side of town.
  • A cognitive psychologist compares the ability of people to recall words that they were instructed to “read” with their ability to recall words that they were instructed to “imagine.”
  • A manager studies the correlation between new employees’ college grade point averages and their first-year performance reports.
  • An automotive engineer installs different stick shifts in a new car prototype, each time asking several people to rate how comfortable the stick shift feels.
  • A food scientist studies the relationship between the temperature inside people’s refrigerators and the amount of bacteria on their food.
  • A social psychologist tells some research participants that they need to hurry over to the next building to complete a study. She tells others that they can take their time. Then she observes whether they stop to help a research assistant who is pretending to be hurt.

7.3 Quasi-Experimental Research

  • Explain what quasi-experimental research is and distinguish it clearly from both experimental and correlational research.
  • Describe three different types of quasi-experimental research designs (nonequivalent groups, pretest-posttest, and interrupted time series) and identify examples of each one.

The prefix quasi means “resembling.” Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook & Campbell, 1979). Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design & analysis issues in field settings . Boston, MA: Houghton Mifflin. Because the independent variable is manipulated before the dependent variable is measured, quasi-experimental research eliminates the directionality problem. But because participants are not randomly assigned—making it likely that there are other differences between conditions—quasi-experimental research does not eliminate the problem of confounding variables. In terms of internal validity, therefore, quasi-experiments are generally somewhere between correlational studies and true experiments.

Quasi-experiments are most likely to be conducted in field settings in which random assignment is difficult or impossible. They are often conducted to evaluate the effectiveness of a treatment—perhaps a type of psychotherapy or an educational intervention. There are many different kinds of quasi-experiments, but we will discuss just a few of the most common ones here.

Nonequivalent Groups Design

Recall that when participants in a between-subjects experiment are randomly assigned to conditions, the resulting groups are likely to be quite similar. In fact, researchers consider them to be equivalent. When participants are not randomly assigned to conditions, however, the resulting groups are likely to be dissimilar in some ways. For this reason, researchers consider them to be nonequivalent. A nonequivalent groups design A between-subjects research design in which participants are not randomly assigned to conditions, usually because participants are in preexisting groups (e.g., students at different schools). , then, is a between-subjects design in which participants have not been randomly assigned to conditions.

Imagine, for example, a researcher who wants to evaluate a new method of teaching fractions to third graders. One way would be to conduct a study with a treatment group consisting of one class of third-grade students and a control group consisting of another class of third-grade students. This would be a nonequivalent groups design because the students are not randomly assigned to classes by the researcher, which means there could be important differences between them. For example, the parents of higher achieving or more motivated students might have been more likely to request that their children be assigned to Ms. Williams’s class. Or the principal might have assigned the “troublemakers” to Mr. Jones’s class because he is a stronger disciplinarian. Of course, the teachers’ styles, and even the classroom environments, might be very different and might cause different levels of achievement or motivation among the students. If at the end of the study there was a difference in the two classes’ knowledge of fractions, it might have been caused by the difference between the teaching methods—but it might have been caused by any of these confounding variables.

Of course, researchers using a nonequivalent groups design can take steps to ensure that their groups are as similar as possible. In the present example, the researcher could try to select two classes at the same school, where the students in the two classes have similar scores on a standardized math test and the teachers are the same sex, are close in age, and have similar teaching styles. Taking such steps would increase the internal validity of the study because it would eliminate some of the most important confounding variables. But without true random assignment of the students to conditions, there remains the possibility of other important confounding variables that the researcher was not able to control.

Pretest-Posttest Design

In a pretest-posttest design A research design in which the dependent variable is measured (the pretest), a treatment is given, and the dependent variable is measured again (the posttest) to see if there is a change in the dependent variable from pretest to posttest. , the dependent variable is measured once before the treatment is implemented and once after it is implemented. Imagine, for example, a researcher who is interested in the effectiveness of an antidrug education program on elementary school students’ attitudes toward illegal drugs. The researcher could measure the attitudes of students at a particular elementary school during one week, implement the antidrug program during the next week, and finally, measure their attitudes again the following week. The pretest-posttest design is much like a within-subjects experiment in which each participant is tested first under the control condition and then under the treatment condition. It is unlike a within-subjects experiment, however, in that the order of conditions is not counterbalanced because it typically is not possible for a participant to be tested in the treatment condition first and then in an “untreated” control condition.

If the average posttest score is better than the average pretest score, then it makes sense to conclude that the treatment might be responsible for the improvement. Unfortunately, one often cannot conclude this with a high degree of certainty because there may be other explanations for why the posttest scores are better. One category of alternative explanations goes under the name of history Refers collectively to extraneous events that can occur between a pretest and posttest or between the first and last measurements in a time series. It can provide alternative explanations for an observed change in the dependent variable. . Other things might have happened between the pretest and the posttest. Perhaps an antidrug program aired on television and many of the students watched it, or perhaps a celebrity died of a drug overdose and many of the students heard about it. Another category of alternative explanations goes under the name of maturation Refers collectively to extraneous developmental changes in participants that can occur between a pretest and posttest or between the first and last measurements in a time series. It can provide an alternative explanation for an observed change in the dependent variable. . Participants might have changed between the pretest and the posttest in ways that they were going to anyway because they are growing and learning. If it were a yearlong program, participants might become less impulsive or better reasoners and this might be responsible for the change.

Another alternative explanation for a change in the dependent variable in a pretest-posttest design is regression to the mean The statistical fact that an individual who scores extremely on one occasion will tend to score less extremely on the next occasion. . This refers to the statistical fact that an individual who scores extremely on a variable on one occasion will tend to score less extremely on the next occasion. For example, a bowler with a long-term average of 150 who suddenly bowls a 220 will almost certainly score lower in the next game. Her score will “regress” toward her mean score of 150. Regression to the mean can be a problem when participants are selected for further study because of their extreme scores. Imagine, for example, that only students who scored especially low on a test of fractions are given a special training program and then retested. Regression to the mean all but guarantees that their scores will be higher even if the training program has no effect. A closely related concept—and an extremely important one in psychological research—is spontaneous remission Improvement in a psychological or medical problem over time without any treatment. . This is the tendency for many medical and psychological problems to improve over time without any form of treatment. The common cold is a good example. If one were to measure symptom severity in 100 common cold sufferers today, give them a bowl of chicken soup every day, and then measure their symptom severity again in a week, they would probably be much improved. This does not mean that the chicken soup was responsible for the improvement, however, because they would have been much improved without any treatment at all. The same is true of many psychological problems. A group of severely depressed people today is likely to be less depressed on average in 6 months. In reviewing the results of several studies of treatments for depression, researchers Michael Posternak and Ivan Miller found that participants in waitlist control conditions improved an average of 10 to 15% before they received any treatment at all (Posternak & Miller, 2001). Posternak, M. A., & Miller, I. (2001). Untreated short-term course of major depression: A meta-analysis of studies using outcomes from studies using wait-list control groups. Journal of Affective Disorders, 66 , 139–146. Thus one must generally be very cautious about inferring causality from pretest-posttest designs.

Does Psychotherapy Work?

Early studies on the effectiveness of psychotherapy tended to use pretest-posttest designs. In a classic 1952 article, researcher Hans Eysenck summarized the results of 24 such studies showing that about two thirds of patients improved between the pretest and the posttest (Eysenck, 1952). Eysenck, H. J. (1952). The effects of psychotherapy: An evaluation. Journal of Consulting Psychology, 16 , 319–324. But Eysenck also compared these results with archival data from state hospital and insurance company records showing that similar patients recovered at about the same rate without receiving psychotherapy. This suggested to Eysenck that the improvement that patients showed in the pretest-posttest studies might be no more than spontaneous remission. Note that Eysenck did not conclude that psychotherapy was ineffective. He merely concluded that there was no evidence that it was, and he wrote of “the necessity of properly planned and executed experimental studies into this important field” (p. 323). You can read the entire article here:

http://psychclassics.yorku.ca/Eysenck/psychotherapy.htm

Fortunately, many other researchers took up Eysenck’s challenge, and by 1980 hundreds of experiments had been conducted in which participants were randomly assigned to treatment and control conditions, and the results were summarized in a classic book by Mary Lee Smith, Gene Glass, and Thomas Miller (Smith, Glass, & Miller, 1980). Smith, M. L., Glass, G. V., & Miller, T. I. (1980). The benefits of psychotherapy . Baltimore, MD: Johns Hopkins University Press. They found that overall psychotherapy was quite effective, with about 80% of treatment participants improving more than the average control participant. Subsequent research has focused more on the conditions under which different types of psychotherapy are more or less effective.

Interrupted Time Series Design

A variant of the pretest-posttest design is the interrupted time-series design A research design in which a series of measurements of the dependent variable are taken both before and after a treatment. . A time series is a set of measurements taken at intervals over a period of time. For example, a manufacturing company might measure its workers’ productivity each week for a year. In an interrupted time series-design, a time series like this is “interrupted” by a treatment. In one classic example, the treatment was the reduction of the work shifts in a factory from 10 hours to 8 hours (Cook & Campbell, 1979). Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design & analysis issues in field settings . Boston, MA: Houghton Mifflin. Because productivity increased rather quickly after the shortening of the work shifts, and because it remained elevated for many months afterward, the researcher concluded that the shortening of the shifts caused the increase in productivity. Notice that the interrupted time-series design is like a pretest-posttest design in that it includes measurements of the dependent variable both before and after the treatment. It is unlike the pretest-posttest design, however, in that it includes multiple pretest and posttest measurements.

Figure 7.5 "A Hypothetical Interrupted Time-Series Design" shows data from a hypothetical interrupted time-series study. The dependent variable is the number of student absences per week in a research methods course. The treatment is that the instructor begins publicly taking attendance each day so that students know that the instructor is aware of who is present and who is absent. The top panel of Figure 7.5 "A Hypothetical Interrupted Time-Series Design" shows how the data might look if this treatment worked. There is a consistently high number of absences before the treatment, and there is an immediate and sustained drop in absences after the treatment. The bottom panel of Figure 7.5 "A Hypothetical Interrupted Time-Series Design" shows how the data might look if this treatment did not work. On average, the number of absences after the treatment is about the same as the number before. This figure also illustrates an advantage of the interrupted time-series design over a simpler pretest-posttest design. If there had been only one measurement of absences before the treatment at Week 7 and one afterward at Week 8, then it would have looked as though the treatment were responsible for the reduction. The multiple measurements both before and after the treatment suggest that the reduction between Weeks 7 and 8 is nothing more than normal week-to-week variation.

Figure 7.5 A Hypothetical Interrupted Time-Series Design

non experimental research topics examples

The top panel shows data that suggest that the treatment caused a reduction in absences. The bottom panel shows data that suggest that it did not.

Combination Designs

A type of quasi-experimental design that is generally better than either the nonequivalent groups design or the pretest-posttest design is one that combines elements of both. There is a treatment group that is given a pretest, receives a treatment, and then is given a posttest. But at the same time there is a control group that is given a pretest, does not receive the treatment, and then is given a posttest. The question, then, is not simply whether participants who receive the treatment improve but whether they improve more than participants who do not receive the treatment.

Imagine, for example, that students in one school are given a pretest on their attitudes toward drugs, then are exposed to an antidrug program, and finally are given a posttest. Students in a similar school are given the pretest, not exposed to an antidrug program, and finally are given a posttest. Again, if students in the treatment condition become more negative toward drugs, this could be an effect of the treatment, but it could also be a matter of history or maturation. If it really is an effect of the treatment, then students in the treatment condition should become more negative than students in the control condition. But if it is a matter of history (e.g., news of a celebrity drug overdose) or maturation (e.g., improved reasoning), then students in the two conditions would be likely to show similar amounts of change. This type of design does not completely eliminate the possibility of confounding variables, however. Something could occur at one of the schools but not the other (e.g., a student drug overdose), so students at the first school would be affected by it while students at the other school would not.

Finally, if participants in this kind of design are randomly assigned to conditions, it becomes a true experiment rather than a quasi experiment. In fact, it is the kind of experiment that Eysenck called for—and that has now been conducted many times—to demonstrate the effectiveness of psychotherapy.

  • Quasi-experimental research involves the manipulation of an independent variable without the random assignment of participants to conditions or orders of conditions. Among the important types are nonequivalent groups designs, pretest-posttest, and interrupted time-series designs.
  • Quasi-experimental research eliminates the directionality problem because it involves the manipulation of the independent variable. It does not eliminate the problem of confounding variables, however, because it does not involve random assignment to conditions. For these reasons, quasi-experimental research is generally higher in internal validity than correlational studies but lower than true experiments.
  • Practice: Imagine that two college professors decide to test the effect of giving daily quizzes on student performance in a statistics course. They decide that Professor A will give quizzes but Professor B will not. They will then compare the performance of students in their two sections on a common final exam. List five other variables that might differ between the two sections that could affect the results.

Discussion: Imagine that a group of obese children is recruited for a study in which their weight is measured, then they participate for 3 months in a program that encourages them to be more active, and finally their weight is measured again. Explain how each of the following might affect the results:

  • regression to the mean
  • spontaneous remission

7.4 Qualitative Research

  • List several ways in which qualitative research differs from quantitative research in psychology.
  • Describe the strengths and weaknesses of qualitative research in psychology compared with quantitative research.
  • Give examples of qualitative research in psychology.

What Is Qualitative Research?

This book is primarily about quantitative research Research that involves formulating focused research questions, collecting small amounts of data from a large number of participants, and summarizing the data using descriptive and inferential statistics. . Quantitative researchers typically start with a focused research question or hypothesis, collect a small amount of data from each of a large number of individuals, describe the resulting data using statistical techniques, and draw general conclusions about some large population. Although this is by far the most common approach to conducting empirical research in psychology, there is an important alternative called qualitative research. Qualitative research originated in the disciplines of anthropology and sociology but is now used to study many psychological topics as well. Qualitative researchers generally begin with a less focused research question, collect large amounts of relatively “unfiltered” data from a relatively small number of individuals, and describe their data using nonstatistical techniques. They are usually less concerned with drawing general conclusions about human behavior than with understanding in detail the experience of their research participants.

Consider, for example, a study by researcher Per Lindqvist and his colleagues, who wanted to learn how the families of teenage suicide victims cope with their loss (Lindqvist, Johansson, & Karlsson, 2008). Lindqvist, P., Johansson, L., & Karlsson, U. (2008). In the aftermath of teenage suicide: A qualitative study of the psychosocial consequences for the surviving family members. BMC Psychiatry, 8 , 26. Retrieved from http://www.biomedcentral.com/1471-244X/8/26 They did not have a specific research question or hypothesis, such as, What percentage of family members join suicide support groups? Instead, they wanted to understand the variety of reactions that families had, with a focus on what it is like from their perspectives. To do this, they interviewed the families of 10 teenage suicide victims in their homes in rural Sweden. The interviews were relatively unstructured, beginning with a general request for the families to talk about the victim and ending with an invitation to talk about anything else that they wanted to tell the interviewer. One of the most important themes that emerged from these interviews was that even as life returned to “normal,” the families continued to struggle with the question of why their loved one committed suicide. This struggle appeared to be especially difficult for families in which the suicide was most unexpected.

The Purpose of Qualitative Research

Again, this book is primarily about quantitative research in psychology. The strength of quantitative research is its ability to provide precise answers to specific research questions and to draw general conclusions about human behavior. This is how we know that people have a strong tendency to obey authority figures, for example, or that female college students are not substantially more talkative than male college students. But while quantitative research is good at providing precise answers to specific research questions, it is not nearly as good at generating novel and interesting research questions. Likewise, while quantitative research is good at drawing general conclusions about human behavior, it is not nearly as good at providing detailed descriptions of the behavior of particular groups in particular situations. And it is not very good at all at communicating what it is actually like to be a member of a particular group in a particular situation.

But the relative weaknesses of quantitative research are the relative strengths of qualitative research. Qualitative research can help researchers to generate new and interesting research questions and hypotheses. The research of Lindqvist and colleagues, for example, suggests that there may be a general relationship between how unexpected a suicide is and how consumed the family is with trying to understand why the teen committed suicide. This relationship can now be explored using quantitative research. But it is unclear whether this question would have arisen at all without the researchers sitting down with the families and listening to what they themselves wanted to say about their experience. Qualitative research can also provide rich and detailed descriptions of human behavior in the real-world contexts in which it occurs. Among qualitative researchers, this is often referred to as “thick description” (Geertz, 1973). Geertz, C. (1973). The interpretation of cultures . New York, NY: Basic Books. Similarly, qualitative research can convey a sense of what it is actually like to be a member of a particular group or in a particular situation—what qualitative researchers often refer to as the “lived experience” of the research participants. Lindqvist and colleagues, for example, describe how all the families spontaneously offered to show the interviewer the victim’s bedroom or the place where the suicide occurred—revealing the importance of these physical locations to the families. It seems unlikely that a quantitative study would have discovered this.

Data Collection and Analysis in Qualitative Research

As with correlational research, data collection approaches in qualitative research are quite varied and can involve naturalistic observation, archival data, artwork, and many other things. But one of the most common approaches, especially for psychological research, is to conduct interviews A data collection method in qualitative research. Interviews can be structured, semistructured, or unstructured—depending on how well specified the sequence of questions or prompts is. . Interviews in qualitative research tend to be unstructured—consisting of a small number of general questions or prompts that allow participants to talk about what is of interest to them. The researcher can follow up by asking more detailed questions about the topics that do come up. Such interviews can be lengthy and detailed, but they are usually conducted with a relatively small sample. This was essentially the approach used by Lindqvist and colleagues in their research on the families of suicide survivors. Small groups of people who participate together in interviews focused on a particular topic or issue are often referred to as focus groups A small group of people who participate together in an interview focused on a particular topic or issue. . The interaction among participants in a focus group can sometimes bring out more information than can be learned in a one-on-one interview. The use of focus groups has become a standard technique in business and industry among those who want to understand consumer tastes and preferences. The content of all focus group interviews is usually recorded and transcribed to facilitate later analyses.

Another approach to data collection in qualitative research is participant observation. In participant observation An approach to data collection in qualitative research in which the researcher becomes an active participant in the group or situation under study. , researchers become active participants in the group or situation they are studying. The data they collect can include interviews (usually unstructured), their own notes based on their observations and interactions, documents, photographs, and other artifacts. The basic rationale for participant observation is that there may be important information that is only accessible to, or can be interpreted only by, someone who is an active participant in the group or situation. An example of participant observation comes from a study by sociologist Amy Wilkins (published in Social Psychology Quarterly ) on a college-based religious organization that emphasized how happy its members were (Wilkins, 2008). Wilkins, A. (2008). “Happier than Non-Christians”: Collective emotions and symbolic boundaries among evangelical Christians. Social Psychology Quarterly, 71 , 281–301. Wilkins spent 12 months attending and participating in the group’s meetings and social events, and she interviewed several group members. In her study, Wilkins identified several ways in which the group “enforced” happiness—for example, by continually talking about happiness, discouraging the expression of negative emotions, and using happiness as a way to distinguish themselves from other groups.

Data Analysis in Quantitative Research

Although quantitative and qualitative research generally differ along several important dimensions (e.g., the specificity of the research question, the type of data collected), it is the method of data analysis that distinguishes them more clearly than anything else. To illustrate this idea, imagine a team of researchers that conducts a series of unstructured interviews with recovering alcoholics to learn about the role of their religious faith in their recovery. Although this sounds like qualitative research, imagine further that once they collect the data, they code the data in terms of how often each participant mentions God (or a “higher power”), and they then use descriptive and inferential statistics to find out whether those who mention God more often are more successful in abstaining from alcohol. Now it sounds like quantitative research. In other words, the quantitative-qualitative distinction depends more on what researchers do with the data they have collected than with why or how they collected the data.

But what does qualitative data analysis look like? Just as there are many ways to collect data in qualitative research, there are many ways to analyze data. Here we focus on one general approach called grounded theory An approach to analyzing qualitative data in which repeating ideas are identified and grouped into broader themes. The themes are integrated in a theoretical narrative. (Glaser & Strauss, 1967). Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research . Chicago, IL: Aldine. This approach was developed within the field of sociology in the 1960s and has gradually gained popularity in psychology. Remember that in quantitative research, it is typical for the researcher to start with a theory, derive a hypothesis from that theory, and then collect data to test that specific hypothesis. In qualitative research using grounded theory, researchers start with the data and develop a theory or an interpretation that is “grounded in” those data. They do this in stages. First, they identify ideas that are repeated throughout the data. Then they organize these ideas into a smaller number of broader themes. Finally, they write a theoretical narrative In grounded theory, a narrative interpretation of the broad themes that emerge from the data, usually supported by many direct quotations or examples from the data. —an interpretation—of the data in terms of the themes that they have identified. This theoretical narrative focuses on the subjective experience of the participants and is usually supported by many direct quotations from the participants themselves.

As an example, consider a study by researchers Laura Abrams and Laura Curran, who used the grounded theory approach to study the experience of postpartum depression symptoms among low-income mothers (Abrams & Curran, 2009). Abrams, L. S., & Curran, L. (2009). “And you’re telling me not to stress?” A grounded theory study of postpartum depression symptoms among low-income mothers. Psychology of Women Quarterly, 33 , 351–362. Their data were the result of unstructured interviews with 19 participants. Table 7.1 "Themes and Repeating Ideas in a Study of Postpartum Depression Among Low-Income Mothers" shows the five broad themes the researchers identified and the more specific repeating ideas that made up each of those themes. In their research report, they provide numerous quotations from their participants, such as this one from “Destiny:”

Well, just recently my apartment was broken into and the fact that his Medicaid for some reason was cancelled so a lot of things was happening within the last two weeks all at one time. So that in itself I don’t want to say almost drove me mad but it put me in a funk.…Like I really was depressed. (p. 357)

Their theoretical narrative focused on the participants’ experience of their symptoms not as an abstract “affective disorder” but as closely tied to the daily struggle of raising children alone under often difficult circumstances.

Table 7.1 Themes and Repeating Ideas in a Study of Postpartum Depression Among Low-Income Mothers

The Quantitative-Qualitative “Debate”

Given their differences, it may come as no surprise that quantitative and qualitative research in psychology and related fields do not coexist in complete harmony. Some quantitative researchers criticize qualitative methods on the grounds that they lack objectivity, are difficult to evaluate in terms of reliability and validity, and do not allow generalization to people or situations other than those actually studied. At the same time, some qualitative researchers criticize quantitative methods on the grounds that they overlook the richness of human behavior and experience and instead answer simple questions about easily quantifiable variables.

In general, however, qualitative researchers are well aware of the issues of objectivity, reliability, validity, and generalizability. In fact, they have developed a number of frameworks for addressing these issues (which are beyond the scope of our discussion). And in general, quantitative researchers are well aware of the issue of oversimplification. They do not believe that all human behavior and experience can be adequately described in terms of a small number of variables and the statistical relationships among them. Instead, they use simplification as a strategy for uncovering general principles of human behavior.

Many researchers from both the quantitative and qualitative camps now agree that the two approaches can and should be combined into what has come to be called mixed-methods research Research that uses both quantitative and qualitative methods. (Todd, Nerlich, McKeown, & Clarke, 2004). Todd, Z., Nerlich, B., McKeown, S., & Clarke, D. D. (2004) Mixing methods in psychology: The integration of qualitative and quantitative methods in theory and practice . London, UK: Psychology Press. (In fact, the studies by Lindqvist and colleagues and by Abrams and Curran both combined quantitative and qualitative approaches.) One approach to combining quantitative and qualitative research is to use qualitative research for hypothesis generation and quantitative research for hypothesis testing. Again, while a qualitative study might suggest that families who experience an unexpected suicide have more difficulty resolving the question of why, a well-designed quantitative study could test a hypothesis by measuring these specific variables for a large sample. A second approach to combining quantitative and qualitative research is referred to as triangulation In mixed methods research, using multiple quantitative and qualitative methods to study the same topic, with the goal of converging on a single interpretation. . The idea is to use both quantitative and qualitative methods simultaneously to study the same general questions and to compare the results. If the results of the quantitative and qualitative methods converge on the same general conclusion, they reinforce and enrich each other. If the results diverge, then they suggest an interesting new question: Why do the results diverge and how can they be reconciled?

  • Qualitative research is an important alternative to quantitative research in psychology. It generally involves asking broader research questions, collecting more detailed data (e.g., interviews), and using nonstatistical analyses.
  • Many researchers conceptualize quantitative and qualitative research as complementary and advocate combining them. For example, qualitative research can be used to generate hypotheses and quantitative research to test them.
  • Discussion: What are some ways in which a qualitative study of girls who play youth baseball would be likely to differ from a quantitative study on the same topic?

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

2.5: Experimental and Non-experimental Research

  • Last updated
  • Save as PDF
  • Page ID 3948

  • Danielle Navarro
  • University of New South Wales

One of the big distinctions that you should be aware of is the distinction between “experimental research” and “non-experimental research”. When we make this distinction, what we’re really talking about is the degree of control that the researcher exercises over the people and events in the study.

Experimental research

The key features of experimental research is that the researcher controls all aspects of the study, especially what participants experience during the study. In particular, the researcher manipulates or varies the predictor variables (IVs), and then allows the outcome variable (DV) to vary naturally. The idea here is to deliberately vary the predictors (IVs) to see if they have any causal effects on the outcomes. Moreover, in order to ensure that there’s no chance that something other than the predictor variables is causing the outcomes, everything else is kept constant or is in some other way “balanced” to ensure that they have no effect on the results. In practice, it’s almost impossible to think of everything else that might have an influence on the outcome of an experiment, much less keep it constant. The standard solution to this is randomisation: that is, we randomly assign people to different groups, and then give each group a different treatment (i.e., assign them different values of the predictor variables). We’ll talk more about randomisation later in this course, but for now, it’s enough to say that what randomisation does is minimise (but not eliminate) the chances that there are any systematic difference between groups.

Let’s consider a very simple, completely unrealistic and grossly unethical example. Suppose you wanted to find out if smoking causes lung cancer. One way to do this would be to find people who smoke and people who don’t smoke, and look to see if smokers have a higher rate of lung cancer. This is not a proper experiment, since the researcher doesn’t have a lot of control over who is and isn’t a smoker. And this really matters: for instance, it might be that people who choose to smoke cigarettes also tend to have poor diets, or maybe they tend to work in asbestos mines, or whatever. The point here is that the groups (smokers and non-smokers) actually differ on lots of things, not just smoking. So it might be that the higher incidence of lung cancer among smokers is caused by something else, not by smoking per se. In technical terms, these other things (e.g. diet) are called “confounds”, and we’ll talk about those in just a moment.

In the meantime, let’s now consider what a proper experiment might look like. Recall that our concern was that smokers and non-smokers might differ in lots of ways. The solution, as long as you have no ethics, is to control who smokes and who doesn’t. Specifically, if we randomly divide participants into two groups, and force half of them to become smokers, then it’s very unlikely that the groups will differ in any respect other than the fact that half of them smoke. That way, if our smoking group gets cancer at a higher rate than the non-smoking group, then we can feel pretty confident that (a) smoking does cause cancer and (b) we’re murderers.

Non-experimental research

Non-experimental research is a broad term that covers “any study in which the researcher doesn’t have quite as much control as they do in an experiment”. Obviously, control is something that scientists like to have, but as the previous example illustrates, there are lots of situations in which you can’t or shouldn’t try to obtain that control. Since it’s grossly unethical (and almost certainly criminal) to force people to smoke in order to find out if they get cancer, this is a good example of a situation in which you really shouldn’t try to obtain experimental control. But there are other reasons too. Even leaving aside the ethical issues, our “smoking experiment” does have a few other issues. For instance, when I suggested that we “force” half of the people to become smokers, I must have been talking about starting with a sample of non-smokers, and then forcing them to become smokers. While this sounds like the kind of solid, evil experimental design that a mad scientist would love, it might not be a very sound way of investigating the effect in the real world. For instance, suppose that smoking only causes lung cancer when people have poor diets, and suppose also that people who normally smoke do tend to have poor diets. However, since the “smokers” in our experiment aren’t “natural” smokers (i.e., we forced non-smokers to become smokers; they didn’t take on all of the other normal, real life characteristics that smokers might tend to possess) they probably have better diets. As such, in this silly example they wouldn’t get lung cancer, and our experiment will fail, because it violates the structure of the “natural” world (the technical name for this is an “artifactual” result; see later).

One distinction worth making between two types of non-experimental research is the difference be- tween quasi-experimental research and case studies. The example I discussed earlier – in which we wanted to examine incidence of lung cancer among smokers and non-smokers, without trying to control who smokes and who doesn’t – is a quasi-experimental design. That is, it’s the same as an experiment, but we don’t control the predictors (IVs). We can still use statistics to analyse the results, it’s just that we have to be a lot more careful.

The alternative approach, case studies, aims to provide a very detailed description of one or a few instances. In general, you can’t use statistics to analyse the results of case studies, and it’s usually very hard to draw any general conclusions about “people in general” from a few isolated examples. However, case studies are very useful in some situations. Firstly, there are situations where you don’t have any alternative: neuropsychology has this issue a lot. Sometimes, you just can’t find a lot of people with brain damage in a specific area, so the only thing you can do is describe those cases that you do have in as much detail and with as much care as you can. However, there’s also some genuine advantages to case studies: because you don’t have as many people to study, you have the ability to invest lots of time and effort trying to understand the specific factors at play in each case. This is a very valuable thing to do. As a consequence, case studies can complement the more statistically-oriented approaches that you see in experimental and quasi-experimental designs. We won’t talk much about case studies in these lectures, but they are nevertheless very valuable tools!

Logo for Kwantlen Polytechnic University

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Non-Experimental Research

28 Overview of Non-Experimental Research

Learning objectives.

  • Define non-experimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct non-experimental research as opposed to experimental research.

What Is Non-Experimental Research?

Non-experimental research  is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world).

Most researchers in psychology consider the distinction between experimental and non-experimental research to be an extremely important one. This is because although experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, non-experimental research generally cannot. As we will see, however, this inability to make causal conclusions does not mean that non-experimental research is less important than experimental research. It is simply used in cases where experimental research is not able to be carried out.

When to Use Non-Experimental Research

As we saw in the last chapter , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable. It stands to reason, therefore, that non-experimental research is appropriate—even necessary—when these conditions are not met. There are many times in which non-experimental research is preferred, including when:

  • the research question or hypothesis relates to a single variable rather than a statistical relationship between two variables (e.g., how accurate are people’s first impressions?).
  • the research question pertains to a non-causal statistical relationship between variables (e.g., is there a correlation between verbal intelligence and mathematical intelligence?).
  • the research question is about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions for practical or ethical reasons (e.g., does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • the research question is broad and exploratory, or is about what it is like to have a particular experience (e.g., what is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and non-experimental approaches is generally dictated by the nature of the research question. Recall the three goals of science are to describe, to predict, and to explain. If the goal is to explain and the research question pertains to causal relationships, then the experimental approach is typically preferred. If the goal is to describe or to predict, a non-experimental approach is appropriate. But the two approaches can also be used to address the same research question in complementary ways. For example, in Milgram’s original (non-experimental) obedience study, he was primarily interested in one variable—the extent to which participants obeyed the researcher when he told them to shock the confederate—and he observed all participants performing the same task under the same conditions. However,  Milgram subsequently conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974) [1] .

Types of Non-Experimental Research

Non-experimental research falls into two broad categories: correlational research and observational research. 

The most common type of non-experimental research conducted in psychology is correlational research. Correlational research is considered non-experimental because it focuses on the statistical relationship between two variables but does not include the manipulation of an independent variable. More specifically, in correlational research , the researcher measures two variables with little or no attempt to control extraneous variables and then assesses the relationship between them. As an example, a researcher interested in the relationship between self-esteem and school achievement could collect data on students’ self-esteem and their GPAs to see if the two variables are statistically related.

Observational research  is non-experimental because it focuses on making observations of behavior in a natural or laboratory setting without manipulating anything. Milgram’s original obedience study was non-experimental in this way. He was primarily interested in the extent to which participants obeyed the researcher when he told them to shock the confederate and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of observational research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the researchers asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories).

Cross-Sectional, Longitudinal, and Cross-Sequential Studies

When psychologists wish to study change over time (for example, when developmental psychologists wish to study aging) they usually take one of three non-experimental approaches: cross-sectional, longitudinal, or cross-sequential. Cross-sectional studies involve comparing two or more pre-existing groups of people (e.g., children at different stages of development). What makes this approach non-experimental is that there is no manipulation of an independent variable and no random assignment of participants to groups. Using this design, developmental psychologists compare groups of people of different ages (e.g., young adults spanning from 18-25 years of age versus older adults spanning 60-75 years of age) on various dependent variables (e.g., memory, depression, life satisfaction). Of course, the primary limitation of using this design to study the effects of aging is that differences between the groups other than age may account for differences in the dependent variable. For instance, differences between the groups may reflect the generation that people come from (a cohort effect ) rather than a direct effect of age. For this reason, longitudinal studies , in which one group of people is followed over time as they age, offer a superior means of studying the effects of aging. However, longitudinal studies are by definition more time consuming and so require a much greater investment on the part of the researcher and the participants. A third approach, known as cross-sequential studies , combines elements of both cross-sectional and longitudinal studies. Rather than measuring differences between people in different age groups or following the same people over a long period of time, researchers adopting this approach choose a smaller period of time during which they follow people in different age groups. For example, they might measure changes over a ten year period among participants who at the start of the study fall into the following age groups: 20 years old, 30 years old, 40 years old, 50 years old, and 60 years old. This design is advantageous because the researcher reaps the immediate benefits of being able to compare the age groups after the first assessment. Further, by following the different age groups over time they can subsequently determine whether the original differences they found across the age groups are due to true age effects or cohort effects.

The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. But as you will learn in this chapter, many observational research studies are more qualitative in nature. In  qualitative research , the data are usually nonnumerical and therefore cannot be analyzed using statistical techniques. Rosenhan’s observational study of the experience of people in psychiatric wards was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semi-public room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256) [2] . Qualitative data has a separate set of analysis tools depending on the research question. For example, thematic analysis would focus on themes that emerge in the data or conversation analysis would focus on the way the words were said in an interview or focus group.

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable.  Figure 6.1 shows how experimental, quasi-experimental, and non-experimental (correlational) research vary in terms of internal validity. Experimental research tends to be highest in internal validity because the use of manipulation (of the independent variable) and control (of extraneous variables) help to rule out alternative explanations for the observed relationships. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Non-experimental (correlational) research is lowest in internal validity because these designs fail to use manipulation or control. Quasi-experimental research (which will be described in more detail in a subsequent chapter) falls in the middle because it contains some, but not all, of the features of a true experiment. For instance, it may fail to use random assignment to assign participants to groups or fail to use counterbalancing to control for potential order effects. Imagine, for example, that a researcher finds two similar schools, starts an anti-bullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” While a comparison is being made with a control condition, the inability to randomly assign children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying (e.g., there may be a selection effect).

Figure 6.1 Internal Validity of Correlational, Quasi-Experimental, and Experimental Studies. Experiments are generally high in internal validity, quasi-experiments lower, and correlational studies lower still.

Notice also in  Figure 6.1 that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational (non-experimental) studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well-designed quasi-experiment with no obvious confounding variables. Internal validity is also only one of several validities that one might consider, as noted in Chapter 5.

  • Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row. ↵
  • Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258. ↵

A research that lacks the manipulation of an independent variable.

Research that is non-experimental because it focuses on the statistical relationship between two variables but does not include the manipulation of an independent variable.

Research that is non-experimental because it focuses on recording systemic observations of behavior in a natural or laboratory setting without manipulating anything.

Studies that involve comparing two or more pre-existing groups of people (e.g., children at different stages of development).

Differences between the groups may reflect the generation that people come from rather than a direct effect of age.

Studies in which one group of people are followed over time as they age.

Studies in which researchers follow people in different age groups in a smaller period of time.

Research Methods in Psychology Copyright © 2019 by Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.11(2); 2019 Feb

Logo of cureus

Planning and Conducting Clinical Research: The Whole Process

Boon-how chew.

1 Family Medicine, Universiti Putra Malaysia, Serdang, MYS

The goal of this review was to present the essential steps in the entire process of clinical research. Research should begin with an educated idea arising from a clinical practice issue. A research topic rooted in a clinical problem provides the motivation for the completion of the research and relevancy for affecting medical practice changes and improvements. The research idea is further informed through a systematic literature review, clarified into a conceptual framework, and defined into an answerable research question. Engagement with clinical experts, experienced researchers, relevant stakeholders of the research topic, and even patients can enhance the research question’s relevance, feasibility, and efficiency. Clinical research can be completed in two major steps: study designing and study reporting. Three study designs should be planned in sequence and iterated until properly refined: theoretical design, data collection design, and statistical analysis design. The design of data collection could be further categorized into three facets: experimental or non-experimental, sampling or census, and time features of the variables to be studied. The ultimate aims of research reporting are to present findings succinctly and timely. Concise, explicit, and complete reporting are the guiding principles in clinical studies reporting.

Introduction and background

Medical and clinical research can be classified in many different ways. Probably, most people are familiar with basic (laboratory) research, clinical research, healthcare (services) research, health systems (policy) research, and educational research. Clinical research in this review refers to scientific research related to clinical practices. There are many ways a clinical research's findings can become invalid or less impactful including ignorance of previous similar studies, a paucity of similar studies, poor study design and implementation, low test agent efficacy, no predetermined statistical analysis, insufficient reporting, bias, and conflicts of interest [ 1 - 4 ]. Scientific, ethical, and moral decadence among researchers can be due to incognizant criteria in academic promotion and remuneration and too many forced studies by amateurs and students for the sake of research without adequate training or guidance [ 2 , 5 - 6 ]. This article will review the proper methods to conduct medical research from the planning stage to submission for publication (Table ​ (Table1 1 ).

a Feasibility and efficiency are considered during the refinement of the research question and adhered to during data collection.

Epidemiologic studies in clinical and medical fields focus on the effect of a determinant on an outcome [ 7 ]. Measurement errors that happen systematically give rise to biases leading to invalid study results, whereas random measurement errors will cause imprecise reporting of effects. Precision can usually be increased with an increased sample size provided biases are avoided or trivialized. Otherwise, the increased precision will aggravate the biases. Because epidemiologic, clinical research focuses on measurement, measurement errors are addressed throughout the research process. Obtaining the most accurate estimate of a treatment effect constitutes the whole business of epidemiologic research in clinical practice. This is greatly facilitated by clinical expertise and current scientific knowledge of the research topic. Current scientific knowledge is acquired through literature reviews or in collaboration with an expert clinician. Collaboration and consultation with an expert clinician should also include input from the target population to confirm the relevance of the research question. The novelty of a research topic is less important than the clinical applicability of the topic. Researchers need to acquire appropriate writing and reporting skills from the beginning of their careers, and these skills should improve with persistent use and regular reviewing of published journal articles. A published clinical research study stands on solid scientific ground to inform clinical practice given the article has passed through proper peer-reviews, revision, and content improvement.

Systematic literature reviews

Systematic literature reviews of published papers will inform authors of the existing clinical evidence on a research topic. This is an important step to reduce wasted efforts and evaluate the planned study [ 8 ]. Conducting a systematic literature review is a well-known important step before embarking on a new study [ 9 ]. A rigorously performed and cautiously interpreted systematic review that includes in-process trials can inform researchers of several factors [ 10 ]. Reviewing the literature will inform the choice of recruitment methods, outcome measures, questionnaires, intervention details, and statistical strategies – useful information to increase the study’s relevance, value, and power. A good review of previous studies will also provide evidence of the effects of an intervention that may or may not be worthwhile; this would suggest either no further studies are warranted or that further study of the intervention is needed. A review can also inform whether a larger and better study is preferable to an additional small study. Reviews of previously published work may yield few studies or low-quality evidence from small or poorly designed studies on certain intervention or observation; this may encourage or discourage further research or prompt consideration of a first clinical trial.

Conceptual framework

The result of a literature review should include identifying a working conceptual framework to clarify the nature of the research problem, questions, and designs, and even guide the latter discussion of the findings and development of possible solutions. Conceptual frameworks represent ways of thinking about a problem or how complex things work the way they do [ 11 ]. Different frameworks will emphasize different variables and outcomes, and their inter-relatedness. Each framework highlights or emphasizes different aspects of a problem or research question. Often, any single conceptual framework presents only a partial view of reality [ 11 ]. Furthermore, each framework magnifies certain elements of the problem. Therefore, a thorough literature search is warranted for authors to avoid repeating the same research endeavors or mistakes. It may also help them find relevant conceptual frameworks including those that are outside one’s specialty or system. 

Conceptual frameworks can come from theories with well-organized principles and propositions that have been confirmed by observations or experiments. Conceptual frameworks can also come from models derived from theories, observations or sets of concepts or even evidence-based best practices derived from past studies [ 11 ].

Researchers convey their assumptions of the associations of the variables explicitly in the conceptual framework to connect the research to the literature. After selecting a single conceptual framework or a combination of a few frameworks, a clinical study can be completed in two fundamental steps: study design and study report. Three study designs should be planned in sequence and iterated until satisfaction: the theoretical design, data collection design, and statistical analysis design [ 7 ]. 

Study designs

Theoretical Design

Theoretical design is the next important step in the research process after a literature review and conceptual framework identification. While the theoretical design is a crucial step in research planning, it is often dealt with lightly because of the more alluring second step (data collection design). In the theoretical design phase, a research question is designed to address a clinical problem, which involves an informed understanding based on the literature review and effective collaboration with the right experts and clinicians. A well-developed research question will have an initial hypothesis of the possible relationship between the explanatory variable/exposure and the outcome. This will inform the nature of the study design, be it qualitative or quantitative, primary or secondary, and non-causal or causal (Figure ​ (Figure1 1 ).

An external file that holds a picture, illustration, etc.
Object name is cureus-0011-00000004112-i01.jpg

A study is qualitative if the research question aims to explore, understand, describe, discover or generate reasons underlying certain phenomena. Qualitative studies usually focus on a process to determine how and why things happen [ 12 ]. Quantitative studies use deductive reasoning, and numerical statistical quantification of the association between groups on data often gathered during experiments [ 13 ]. A primary clinical study is an original study gathering a new set of patient-level data. Secondary research draws on the existing available data and pooling them into a larger database to generate a wider perspective or a more powerful conclusion. Non-causal or descriptive research aims to identify the determinants or associated factors for the outcome or health condition, without regard for causal relationships. Causal research is an exploration of the determinants of an outcome while mitigating confounding variables. Table ​ Table2 2 shows examples of non-causal (e.g., diagnostic and prognostic) and causal (e.g., intervention and etiologic) clinical studies. Concordance between the research question, its aim, and the choice of theoretical design will provide a strong foundation and the right direction for the research process and path. 

A problem in clinical epidemiology is phrased in a mathematical relationship below, where the outcome is a function of the determinant (D) conditional on the extraneous determinants (ED) or more commonly known as the confounding factors [ 7 ]:

For non-causal research, Outcome = f (D1, D2…Dn) For causal research, Outcome = f (D | ED)

A fine research question is composed of at least three components: 1) an outcome or a health condition, 2) determinant/s or associated factors to the outcome, and 3) the domain. The outcome and the determinants have to be clearly conceptualized and operationalized as measurable variables (Table ​ (Table3; 3 ; PICOT [ 14 ] and FINER [ 15 ]). The study domain is the theoretical source population from which the study population will be sampled, similar to the wording on a drug package insert that reads, “use this medication (study results) in people with this disease” [ 7 ].

The interpretation of study results as they apply to wider populations is known as generalization, and generalization can either be statistical or made using scientific inferences [ 16 ]. Generalization supported by statistical inferences is seen in studies on disease prevalence where the sample population is representative of the source population. By contrast, generalizations made using scientific inferences are not bound by the representativeness of the sample in the study; rather, the generalization should be plausible from the underlying scientific mechanisms as long as the study design is valid and nonbiased. Scientific inferences and generalizations are usually the aims of causal studies. 

Confounding: Confounding is a situation where true effects are obscured or confused [ 7 , 16 ]. Confounding variables or confounders affect the validity of a study’s outcomes and should be prevented or mitigated in the planning stages and further managed in the analytical stages. Confounders are also known as extraneous determinants in epidemiology due to their inherent and simultaneous relationships to both the determinant and outcome (Figure ​ (Figure2), 2 ), which are usually one-determinant-to-one outcome in causal clinical studies. The known confounders are also called observed confounders. These can be minimized using randomization, restriction, or a matching strategy. Residual confounding has occurred in a causal relationship when identified confounders were not measured accurately. Unobserved confounding occurs when the confounding effect is present as a variable or factor not observed or yet defined and, thus, not measured in the study. Age and gender are almost universal confounders followed by ethnicity and socio-economic status.

An external file that holds a picture, illustration, etc.
Object name is cureus-0011-00000004112-i02.jpg

Confounders have three main characteristics. They are a potential risk factor for the disease, associated with the determinant of interest, and should not be an intermediate variable between the determinant and the outcome or a precursor to the determinant. For example, a sedentary lifestyle is a cause for acute coronary syndrome (ACS), and smoking could be a confounder but not cardiorespiratory unfitness (which is an intermediate factor between a sedentary lifestyle and ACS). For patients with ACS, not having a pair of sports shoes is not a confounder – it is a correlate for the sedentary lifestyle. Similarly, depression would be a precursor, not a confounder.

Sample size consideration: Sample size calculation provides the required number of participants to be recruited in a new study to detect true differences in the target population if they exist. Sample size calculation is based on three facets: an estimated difference in group sizes, the probability of α (Type I) and β (Type II) errors chosen based on the nature of the treatment or intervention, and the estimated variability (interval data) or proportion of the outcome (nominal data) [ 17 - 18 ]. The clinically important effect sizes are determined based on expert consensus or patients’ perception of benefit. Value and economic consideration have increasingly been included in sample size estimations. Sample size and the degree to which the sample represents the target population affect the accuracy and generalization of a study’s reported effects. 

Pilot study: Pilot studies assess the feasibility of the proposed research procedures on small sample size. Pilot studies test the efficiency of participant recruitment with minimal practice or service interruptions. Pilot studies should not be conducted to obtain a projected effect size for a larger study population because, in a typical pilot study, the sample size is small, leading to a large standard error of that effect size. This leads to bias when projected for a large population. In the case of underestimation, this could lead to inappropriately terminating the full-scale study. As the small pilot study is equally prone to bias of overestimation of the effect size, this would lead to an underpowered study and a failed full-scale study [ 19 ]. 

The Design of Data Collection

The “perfect” study design in the theoretical phase now faces the practical and realistic challenges of feasibility. This is the step where different methods for data collection are considered, with one selected as the most appropriate based on the theoretical design along with feasibility and efficiency. The goal of this stage is to achieve the highest possible validity with the lowest risk of biases given available resources and existing constraints. 

In causal research, data on the outcome and determinants are collected with utmost accuracy via a strict protocol to maximize validity and precision. The validity of an instrument is defined as the degree of fidelity of the instrument, measuring what it is intended to measure, that is, the results of the measurement correlate with the true state of an occurrence. Another widely used word for validity is accuracy. Internal validity refers to the degree of accuracy of a study’s results to its own study sample. Internal validity is influenced by the study designs, whereas the external validity refers to the applicability of a study’s result in other populations. External validity is also known as generalizability and expresses the validity of assuming the similarity and comparability between the study population and the other populations. Reliability of an instrument denotes the extent of agreeableness of the results of repeated measurements of an occurrence by that instrument at a different time, by different investigators or in a different setting. Other terms that are used for reliability include reproducibility and precision. Preventing confounders by identifying and including them in data collection will allow statistical adjustment in the later analyses. In descriptive research, outcomes must be confirmed with a referent standard, and the determinants should be as valid as those found in real clinical practice.

Common designs for data collection include cross-sectional, case-control, cohort, and randomized controlled trials (RCTs). Many other modern epidemiology study designs are based on these classical study designs such as nested case-control, case-crossover, case-control without control, and stepwise wedge clustered RCTs. A cross-sectional study is typically a snapshot of the study population, and an RCT is almost always a prospective study. Case-control and cohort studies can be retrospective or prospective in data collection. The nested case-control design differs from the traditional case-control design in that it is “nested” in a well-defined cohort from which information on the cohorts can be obtained. This design also satisfies the assumption that cases and controls represent random samples of the same study base. Table ​ Table4 4 provides examples of these data collection designs.

Additional aspects in data collection: No single design of data collection for any research question as stated in the theoretical design will be perfect in actual conduct. This is because of myriad issues facing the investigators such as the dynamic clinical practices, constraints of time and budget, the urgency for an answer to the research question, and the ethical integrity of the proposed experiment. Therefore, feasibility and efficiency without sacrificing validity and precision are important considerations in data collection design. Therefore, data collection design requires additional consideration in the following three aspects: experimental/non-experimental, sampling, and timing [ 7 ]:

Experimental or non-experimental: Non-experimental research (i.e., “observational”), in contrast to experimental, involves data collection of the study participants in their natural or real-world environments. Non-experimental researches are usually the diagnostic and prognostic studies with cross-sectional in data collection. The pinnacle of non-experimental research is the comparative effectiveness study, which is grouped with other non-experimental study designs such as cross-sectional, case-control, and cohort studies [ 20 ]. It is also known as the benchmarking-controlled trials because of the element of peer comparison (using comparable groups) in interpreting the outcome effects [ 20 ]. Experimental study designs are characterized by an intervention on a selected group of the study population in a controlled environment, and often in the presence of a similar group of the study population to act as a comparison group who receive no intervention (i.e., the control group). Thus, the widely known RCT is classified as an experimental design in data collection. An experimental study design without randomization is referred to as a quasi-experimental study. Experimental studies try to determine the efficacy of a new intervention on a specified population. Table ​ Table5 5 presents the advantages and disadvantages of experimental and non-experimental studies [ 21 ].

a May be an issue in cross-sectional studies that require a long recall to the past such as dietary patterns, antenatal events, and life experiences during childhood.

Once an intervention yields a proven effect in an experimental study, non-experimental and quasi-experimental studies can be used to determine the intervention’s effect in a wider population and within real-world settings and clinical practices. Pragmatic or comparative effectiveness are the usual designs used for data collection in these situations [ 22 ].

Sampling/census: Census is a data collection on the whole source population (i.e., the study population is the source population). This is possible when the defined population is restricted to a given geographical area. A cohort study uses the census method in data collection. An ecologic study is a cohort study that collects summary measures of the study population instead of individual patient data. However, many studies sample from the source population and infer the results of the study to the source population for feasibility and efficiency because adequate sampling provides similar results to the census of the whole population. Important aspects of sampling in research planning are sample size and representation of the population. Sample size calculation accounts for the number of participants needed to be in the study to discover the actual association between the determinant and outcome. Sample size calculation relies on the primary objective or outcome of interest and is informed by the estimated possible differences or effect size from previous similar studies. Therefore, the sample size is a scientific estimation for the design of the planned study.

A sampling of participants or cases in a study can represent the study population and the larger population of patients in that disease space, but only in prevalence, diagnostic, and prognostic studies. Etiologic and interventional studies do not share this same level of representation. A cross-sectional study design is common for determining disease prevalence in the population. Cross-sectional studies can also determine the referent ranges of variables in the population and measure change over time (e.g., repeated cross-sectional studies). Besides being cost- and time-efficient, cross-sectional studies have no loss to follow-up; recall bias; learning effect on the participant; or variability over time in equipment, measurement, and technician. A cross-sectional design for an etiologic study is possible when the determinants do not change with time (e.g., gender, ethnicity, genetic traits, and blood groups). 

In etiologic research, comparability between the exposed and the non-exposed groups is more important than sample representation. Comparability between these two groups will provide an accurate estimate of the effect of the exposure (risk factor) on the outcome (disease) and enable valid inference of the causal relation to the domain (the theoretical population). In a case-control study, a sampling of the control group should be taken from the same study population (study base), have similar profiles to the cases (matching) but do not have the outcome seen in the cases. Matching important factors minimizes the confounding of the factors and increases statistical efficiency by ensuring similar numbers of cases and controls in confounders’ strata [ 23 - 24 ]. Nonetheless, perfect matching is neither necessary nor achievable in a case-control study because a partial match could achieve most of the benefits of the perfect match regarding a more precise estimate of odds ratio than statistical control of confounding in unmatched designs [ 25 - 26 ]. Moreover, perfect or full matching can lead to an underestimation of the point estimates [ 27 - 28 ].

Time feature: The timing of data collection for the determinant and outcome characterizes the types of studies. A cross-sectional study has the axis of time zero (T = 0) for both the determinant and the outcome, which separates it from all other types of research that have time for the outcome T > 0. Retrospective or prospective studies refer to the direction of data collection. In retrospective studies, information on the determinant and outcome have been collected or recorded before. In prospective studies, this information will be collected in the future. These terms should not be used to describe the relationship between the determinant and the outcome in etiologic studies. Time of exposure to the determinant, the time of induction, and the time at risk for the outcome are important aspects to understand. Time at risk is the period of time exposed to the determinant risk factors. Time of induction is the time from the sufficient exposure to the risk or causal factors to the occurrence of a disease. The latent period is when the occurrence of a disease without manifestation of the disease such as in “silence” diseases for example cancers, hypertension and type 2 diabetes mellitus which is detected from screening practices. Figure ​ Figure3 3 illustrates the time features of a variable. Variable timing is important for accurate data capture. 

An external file that holds a picture, illustration, etc.
Object name is cureus-0011-00000004112-i03.jpg

The Design of Statistical Analysis

Statistical analysis of epidemiologic data provides the estimate of effects after correcting for biases (e.g., confounding factors) measures the variability in the data from random errors or chance [ 7 , 16 , 29 ]. An effect estimate gives the size of an association between the studied variables or the level of effectiveness of an intervention. This quantitative result allows for comparison and assessment of the usefulness and significance of the association or the intervention between studies. This significance must be interpreted with a statistical model and an appropriate study design. Random errors could arise in the study resulting from unexplained personal choices by the participants. Random error is, therefore, when values or units of measurement between variables change in non-concerted or non-directional manner. Conversely, when these values or units of measurement between variables change in a concerted or directional manner, we note a significant relationship as shown by statistical significance. 

Variability: Researchers almost always collect the needed data through a sampling of subjects/participants from a population instead of a census. The process of sampling or multiple sampling in different geographical regions or over different periods contributes to varied information due to the random inclusion of different participants and chance occurrence. This sampling variation becomes the focus of statistics when communicating the degree and intensity of variation in the sampled data and the level of inference in the population. Sampling variation can be influenced profoundly by the total number of participants and the width of differences of the measured variable (standard deviation). Hence, the characteristics of the participants, measurements and sample size are all important factors in planning a study.

Statistical strategy: Statistical strategy is usually determined based on the theoretical and data collection designs. Use of a prespecified statistical strategy (including the decision to dichotomize any continuous data at certain cut-points, sub-group analysis or sensitive analyses) is recommended in the study proposal (i.e., protocol) to prevent data dredging and data-driven reports that predispose to bias. The nature of the study hypothesis also dictates whether directional (one-tailed) or non-directional (two-tailed) significance tests are conducted. In most studies, two-sided tests are used except in specific instances when unidirectional hypotheses may be appropriate (e.g., in superiority or non-inferiority trials). While data exploration is discouraged, epidemiological research is, by nature of its objectives, statistical research. Hence, it is acceptable to report the presence of persistent associations between any variables with plausible underlying mechanisms during the exploration of the data. The statistical methods used to produce the results should be explicitly explained. Many different statistical tests are used to handle various kinds of data appropriately (e.g., interval vs discrete), and/or the various distribution of the data (e.g., normally distributed or skewed). For additional details on statistical explanations and underlying concepts of statistical tests, readers are recommended the references as cited in this sentence [ 30 - 31 ]. 

Steps in statistical analyses: Statistical analysis begins with checking for data entry errors. Duplicates are eliminated, and proper units should be confirmed. Extremely low, high or suspicious values are confirmed from the source data again. If this is not possible, this is better classified as a missing value. However, if the unverified suspicious data are not obviously wrong, they should be further examined as an outlier in the analysis. The data checking and cleaning enables the analyst to establish a connection with the raw data and to anticipate possible results from further analyses. This initial step involves descriptive statistics that analyze central tendency (i.e., mode, median, and mean) and dispersion (i.e., (minimum, maximum, range, quartiles, absolute deviation, variance, and standard deviation) of the data. Certain graphical plotting such as scatter plot, a box-whiskers plot, histogram or normal Q-Q plot are helpful at this stage to verify data normality in distribution. See Figure ​ Figure4 4 for the statistical tests available for analyses of different types of data.

An external file that holds a picture, illustration, etc.
Object name is cureus-0011-00000004112-i04.jpg

Once data characteristics are ascertained, further statistical tests are selected. The analytical strategy sometimes involves the transformation of the data distribution for the selected tests (e.g., log, natural log, exponential, quadratic) or for checking the robustness of the association between the determinants and their outcomes. This step is also referred to as inferential statistics whereby the results are about hypothesis testing and generalization to the wider population that the study’s sampled participants represent. The last statistical step is checking whether the statistical analyses fulfill the assumptions of that particular statistical test and model to avoid violation and misleading results. These assumptions include evaluating normality, variance homogeneity, and residuals included in the final statistical model. Other statistical values such as Akaike information criterion, variance inflation factor/tolerance, and R2 are also considered when choosing the best-fitted models. Transforming raw data could be done, or a higher level of statistical analyses can be used (e.g., generalized linear models and mixed-effect modeling). Successful statistical analysis allows conclusions of the study to fit the data. 

Bayesian and Frequentist statistical frameworks: Most of the current clinical research reporting is based on the frequentist approach and hypotheses testing p values and confidence intervals. The frequentist approach assumes the acquired data are random, attained by random sampling, through randomized experiments or influences, and with random errors. The distribution of the data (its point estimate and confident interval) infers a true parameter in the real population. The major conceptual difference between Bayesian statistics and frequentist statistics is that in Bayesian statistics, the parameter (i.e., the studied variable in the population) is random and the data acquired is real (true or fix). Therefore, the Bayesian approach provides a probability interval for the parameter. The studied parameter is random because it could vary and be affected by prior beliefs, experience or evidence of plausibility. In the Bayesian statistical approach, this prior belief or available knowledge is quantified into a probability distribution and incorporated into the acquired data to get the results (i.e., the posterior distribution). This uses mathematical theory of Bayes’ Theorem to “turn around” conditional probabilities.

The goal of research reporting is to present findings succinctly and timely via conference proceedings or journal publication. Concise and explicit language use, with all the necessary details to enable replication and judgment of the study applicability, are the guiding principles in clinical studies reporting.

Writing for Reporting

Medical writing is very much a technical chore that accommodates little artistic expression. Research reporting in medicine and health sciences emphasize clear and standardized reporting, eschewing adjectives and adverbs extensively used in popular literature. Regularly reviewing published journal articles can familiarize authors with proper reporting styles and help enhance writing skills. Authors should familiarize themselves with standard, concise, and appropriate rhetoric for the intended audience, which includes consideration for journal reviewers, editors, and referees. However, proper language can be somewhat subjective. While each publication may have varying requirements for submission, the technical requirements for formatting an article are usually available via author or submission guidelines provided by the target journal. 

Research reports for publication often contain a title, abstract, introduction, methods, results, discussion, and conclusions section, and authors may want to write each section in sequence. However, best practices indicate the abstract and title should be written last. Authors may find that when writing one section of the report, ideas come to mind that pertains to other sections, so careful note taking is encouraged. One effective approach is to organize and write the result section first, followed by the discussion and conclusions sections. Once these are drafted, write the introduction, abstract, and the title of the report. Regardless of the sequence of writing, the author should begin with a clear and relevant research question to guide the statistical analyses, result interpretation, and discussion. The study findings can be a motivator to propel the author through the writing process, and the conclusions can help the author draft a focused introduction.

Writing for Publication

Specific recommendations on effective medical writing and table generation are available [ 32 ]. One such resource is Effective Medical Writing: The Write Way to Get Published, which is an updated collection of medical writing articles previously published in the Singapore Medical Journal [ 33 ]. The British Medical Journal’s Statistics Notes series also elucidates common and important statistical concepts and usages in clinical studies. Writing guides are also available from individual professional societies, journals, or publishers such as Chest (American College of Physicians) medical writing tips, PLoS Reporting guidelines collection, Springer’s Journal Author Academy, and SAGE’s Research methods [ 34 - 37 ]. Standardized research reporting guidelines often come in the form of checklists and flow diagrams. Table ​ Table6 6 presents a list of reporting guidelines. A full compilation of these guidelines is available at the EQUATOR (Enhancing the QUAlity and Transparency Of health Research) Network website [ 38 ] which aims to improve the reliability and value of medical literature by promoting transparent and accurate reporting of research studies. Publication of the trial protocol in a publicly available database is almost compulsory for publication of the full report in many potential journals.

Graphics and Tables

Graphics and tables should emphasize salient features of the underlying data and should coherently summarize large quantities of information. Although graphics provide a break from dense prose, authors must not forget that these illustrations should be scientifically informative, not decorative. The titles for graphics and tables should be clear, informative, provide the sample size, and use minimal font weight and formatting only to distinguish headings, data entry or to highlight certain results. Provide a consistent number of decimal points for the numerical results, and with no more than four for the P value. Most journals prefer cell-delineated tables created using the table function in word processing or spreadsheet programs. Some journals require specific table formatting such as the absence or presence of intermediate horizontal lines between cells.

Decisions of authorship are both sensitive and important and should be made at an early stage by the study’s stakeholders. Guidelines and journals’ instructions to authors abound with authorship qualifications. The guideline on authorship by the International Committee of Medical Journal Editors is widely known and provides a standard used by many medical and clinical journals [ 39 ]. Generally, authors are those who have made major contributions to the design, conduct, and analysis of the study, and who provided critical readings of the manuscript (if not involved directly in manuscript writing). 

Picking a target journal for submission

Once a report has been written and revised, the authors should select a relevant target journal for submission. Authors should avoid predatory journals—publications that do not aim to advance science and disseminate quality research. These journals focus on commercial gain in medical and clinical publishing. Two good resources for authors during journal selection are Think-Check-Submit and the defunct Beall's List of Predatory Publishers and Journals (now archived and maintained by an anonymous third-party) [ 40 , 41 ]. Alternatively, reputable journal indexes such as Thomson Reuters Journal Citation Reports, SCOPUS, MedLine, PubMed, EMBASE, EBSCO Publishing's Electronic Databases are available areas to start the search for an appropriate target journal. Authors should review the journals’ names, aims/scope, and recently published articles to determine the kind of research each journal accepts for publication. Open-access journals almost always charge article publication fees, while subscription-based journals tend to publish without author fees and instead rely on subscription or access fees for the full text of published articles.

Conclusions

Conducting a valid clinical research requires consideration of theoretical study design, data collection design, and statistical analysis design. Proper study design implementation and quality control during data collection ensures high-quality data analysis and can mitigate bias and confounders during statistical analysis and data interpretation. Clear, effective study reporting facilitates dissemination, appreciation, and adoption, and allows the researchers to affect real-world change in clinical practices and care models. Neutral or absence of findings in a clinical study are as important as positive or negative findings. Valid studies, even when they report an absence of expected results, still inform scientific communities of the nature of a certain treatment or intervention, and this contributes to future research, systematic reviews, and meta-analyses. Reporting a study adequately and comprehensively is important for accuracy, transparency, and reproducibility of the scientific work as well as informing readers.

Acknowledgments

The author would like to thank Universiti Putra Malaysia and the Ministry of Higher Education, Malaysia for their support in sponsoring the Ph.D. study and living allowances for Boon-How Chew.

The content published in Cureus is the result of clinical experience and/or research by independent individuals or organizations. Cureus is not responsible for the scientific accuracy or reliability of data or conclusions published herein. All content published within Cureus is intended only for educational, research and reference purposes. Additionally, articles published within Cureus should not be deemed a suitable substitute for the advice of a qualified health care professional. Do not disregard or avoid professional medical advice due to content published within Cureus.

The materials presented in this paper is being organized by the author into a book.

  • Experimental Vs Non-Experimental Research: 15 Key Differences

busayo.longe

There is a general misconception around research that once the research is non-experimental, then it is non-scientific, making it more important to understand what experimental and experimental research entails. Experimental research is the most common type of research, which a lot of people refer to as scientific research. 

Non experimental research, on the other hand, is easily used to classify research that is not experimental. It clearly differs from experimental research, and as such has different use cases. 

In this article, we will be explaining these differences in detail so as to ensure proper identification during the research process.

What is Experimental Research?  

Experimental research is the type of research that uses a scientific approach towards manipulating one or more control variables of the research subject(s) and measuring the effect of this manipulation on the subject. It is known for the fact that it allows the manipulation of control variables. 

This research method is widely used in various physical and social science fields, even though it may be quite difficult to execute. Within the information field, they are much more common in information systems research than in library and information management research.

Experimental research is usually undertaken when the goal of the research is to trace cause-and-effect relationships between defined variables. However, the type of experimental research chosen has a significant influence on the results of the experiment.

Therefore bringing us to the different types of experimental research. There are 3 main types of experimental research, namely; pre-experimental, quasi-experimental, and true experimental research.

Pre-experimental Research

Pre-experimental research is the simplest form of research, and is carried out by observing a group or groups of dependent variables after the treatment of an independent variable which is presumed to cause change on the group(s). It is further divided into three types.

  • One-shot case study research 
  • One-group pretest-posttest research 
  • Static-group comparison

Quasi-experimental Research

The Quasi type of experimental research is similar to true experimental research, but uses carefully selected rather than randomized subjects. The following are examples of quasi-experimental research:

  • Time series 
  • No equivalent control group design
  • Counterbalanced design.

True Experimental Research

True experimental research is the most accurate type,  and may simply be called experimental research. It manipulates a control group towards a group of randomly selected subjects and records the effect of this manipulation.

True experimental research can be further classified into the following groups:

  • The posttest-only control group 
  • The pretest-posttest control group 
  • Solomon four-group 

Pros of True Experimental Research

  • Researchers can have control over variables.
  • It can be combined with other research methods.
  • The research process is usually well structured.
  • It provides specific conclusions.
  • The results of experimental research can be easily duplicated.

Cons of True Experimental Research

  • It is highly prone to human error.
  • Exerting control over extraneous variables may lead to the personal bias of the researcher.
  • It is time-consuming.
  • It is expensive. 
  • Manipulating control variables may have ethical implications.
  • It produces artificial results.

What is Non-Experimental Research?  

Non-experimental research is the type of research that does not involve the manipulation of control or independent variable. In non-experimental research, researchers measure variables as they naturally occur without any further manipulation.

This type of research is used when the researcher has no specific research question about a causal relationship between 2 different variables, and manipulation of the independent variable is impossible. They are also used when:

  • subjects cannot be randomly assigned to conditions.
  • the research subject is about a causal relationship but the independent variable cannot be manipulated.
  • the research is broad and exploratory
  • the research pertains to a non-causal relationship between variables.
  • limited information can be accessed about the research subject.

There are 3 main types of non-experimental research , namely; cross-sectional research, correlation research, and observational research.

Cross-sectional Research

Cross-sectional research involves the comparison of two or more pre-existing groups of people under the same criteria. This approach is classified as non-experimental because the groups are not randomly selected and the independent variable is not manipulated.

For example, an academic institution may want to reward its first-class students with a scholarship for their academic excellence. Therefore, each faculty places students in the eligible and ineligible group according to their class of degree.

In this case, the student’s class of degree cannot be manipulated to qualify him or her for a scholarship because it is an unethical thing to do. Therefore, the placement is cross-sectional.

Correlational Research

Correlational type of research compares the statistical relationship between two variables .Correlational research is classified as non-experimental because it does not manipulate the independent variables.

For example, a researcher may wish to investigate the relationship between the class of family students come from and their grades in school. A questionnaire may be given to students to know the average income of their family, then compare it with CGPAs. 

The researcher will discover whether these two factors are positively correlated, negatively corrected, or have zero correlation at the end of the research.

Observational Research

Observational research focuses on observing the behavior of a research subject in a natural or laboratory setting. It is classified as non-experimental because it does not involve the manipulation of independent variables.

A good example of observational research is an investigation of the crowd effect or psychology in a particular group of people. Imagine a situation where there are 2 ATMs at a place, and only one of the ATMs is filled with a queue, while the other is abandoned.

The crowd effect infers that the majority of newcomers will also abandon the other ATM.

You will notice that each of these non-experimental research is descriptive in nature. It then suffices to say that descriptive research is an example of non-experimental research.

Pros of Observational Research

  • The research process is very close to a real-life situation.
  • It does not allow for the manipulation of variables due to ethical reasons.
  • Human characteristics are not subject to experimental manipulation.

Cons of Observational Research

  • The groups may be dissimilar and nonhomogeneous because they are not randomly selected, affecting the authenticity and generalizability of the study results.
  • The results obtained cannot be absolutely clear and error-free.

What Are The Differences Between Experimental and Non-Experimental Research?    

  • Definitions

Experimental research is the type of research that uses a scientific approach towards manipulating one or more control variables and measuring their defect on the dependent variables, while non-experimental research is the type of research that does not involve the manipulation of control variables.

The main distinction in these 2 types of research is their attitude towards the manipulation of control variables. Experimental allows for the manipulation of control variables while non-experimental research doesn’t.

 Examples of experimental research are laboratory experiments that involve mixing different chemical elements together to see the effect of one element on the other while non-experimental research examples are investigations into the characteristics of different chemical elements.

Consider a researcher carrying out a laboratory test to determine the effect of adding Nitrogen gas to Hydrogen gas. It may be discovered that using the Haber process, one can create Nitrogen gas.

Non-experimental research may further be carried out on Ammonia, to determine its characteristics, behaviour, and nature.

There are 3 types of experimental research, namely; experimental research, quasi-experimental research, and true experimental research. Although also 3 in number, non-experimental research can be classified into cross-sectional research, correlational research, and observational research.

The different types of experimental research are further divided into different parts, while non-experimental research types are not further divided. Clearly, these divisions are not the same in experimental and non-experimental research.

  • Characteristics

Experimental research is usually quantitative, controlled, and multivariable. Non-experimental research can be both quantitative and qualitative , has an uncontrolled variable, and also a cross-sectional research problem.

The characteristics of experimental research are the direct opposite of that of non-experimental research. The most distinct characteristic element is the ability to control or manipulate independent variables in experimental research and not in non-experimental research. 

In experimental research, a level of control is usually exerted on extraneous variables, therefore tampering with the natural research setting. Experimental research settings are usually more natural with no tampering with the extraneous variables.

  • Data Collection/Tools

  The data used during experimental research is collected through observational study, simulations, and surveys while non-experimental data is collected through observations, surveys, and case studies. The main distinction between these data collection tools is case studies and simulations.

Even at that, similar tools are used differently. For example, an observational study may be used during a laboratory experiment that tests how the effect of a control variable manifests over a period of time in experimental research. 

However, when used in non-experimental research, data is collected based on the researcher’s discretion and not through a clear scientific reaction. In this case, we see a difference in the level of objectivity. 

The goal of experimental research is to measure the causes and effects of variables present in research, while non-experimental research provides very little to no information about causal agents.

Experimental research answers the question of why something is happening. This is quite different in non-experimental research, as they are more descriptive in nature with the end goal being to describe what .

 Experimental research is mostly used to make scientific innovations and find major solutions to problems while non-experimental research is used to define subject characteristics, measure data trends, compare situations and validate existing conditions.

For example, if experimental research results in an innovative discovery or solution, non-experimental research will be conducted to validate this discovery. This research is done for a period of time in order to properly study the subject of research.

Experimental research process is usually well structured and as such produces results with very little to no errors, while non-experimental research helps to create real-life related experiments. There are a lot more advantages of experimental and non-experimental research , with the absence of each of these advantages in the other leaving it at a disadvantage.

For example, the lack of a random selection process in non-experimental research leads to the inability to arrive at a generalizable result. Similarly, the ability to manipulate control variables in experimental research may lead to the personal bias of the researcher.

  • Disadvantage

 Experimental research is highly prone to human error while the major disadvantage of non-experimental research is that the results obtained cannot be absolutely clear and error-free. In the long run, the error obtained due to human error may affect the results of the experimental research.

Some other disadvantages of experimental research include the following; extraneous variables cannot always be controlled, human responses can be difficult to measure, and participants may also cause bias.

  In experimental research, researchers can control and manipulate control variables, while in non-experimental research, researchers cannot manipulate these variables. This cannot be done due to ethical reasons. 

For example, when promoting employees due to how well they did in their annual performance review, it will be unethical to manipulate the results of the performance review (independent variable). That way, we can get impartial results of those who deserve a promotion and those who don’t.

Experimental researchers may also decide to eliminate extraneous variables so as to have enough control over the research process. Once again, this is something that cannot be done in non-experimental research because it relates more to real-life situations.

Experimental research is carried out in an unnatural setting because most of the factors that influence the setting are controlled while the non-experimental research setting remains natural and uncontrolled. One of the things usually tampered with during research is extraneous variables.

In a bid to get a perfect and well-structured research process and results, researchers sometimes eliminate extraneous variables. Although sometimes seen as insignificant, the elimination of these variables may affect the research results.

Consider the optimization problem whose aim is to minimize the cost of production of a car, with the constraints being the number of workers and the number of hours they spend working per day. 

In this problem, extraneous variables like machine failure rates or accidents are eliminated. In the long run, these things may occur and may invalidate the result.

  • Cause-Effect Relationship

The relationship between cause and effect is established in experimental research while it cannot be established in non-experimental research. Rather than establish a cause-effect relationship, non-experimental research focuses on providing descriptive results.

Although it acknowledges the causal variable and its effect on the dependent variables, it does not measure how or the extent to which these dependent variables change. It, however, observes these changes, compares the changes in 2 variables, and describes them.

Experimental research does not compare variables while non-experimental research does. It compares 2 variables and describes the relationship between them.

The relationship between these variables can be positively correlated, negatively correlated or not correlated at all. For example, consider a case whereby the subject of research is a drum, and the control or independent variable is the drumstick.

Experimental research will measure the effect of hitting the drumstick on the drum, where the result of this research will be sound. That is, when you hit a drumstick on a drum, it makes a sound.

Non-experimental research, on the other hand, will investigate the correlation between how hard the drum is hit and the loudness of the sound that comes out. That is, if the sound will be higher with a harder bang, lower with a harder bang, or will remain the same no matter how hard we hit the drum.

  • Quantitativeness

Experimental research is a quantitative research method while non-experimental research can be both quantitative and qualitative depending on the time and the situation where it is been used. An example of a non-experimental quantitative research method is correlational research .

Researchers use it to correlate two or more variables using mathematical analysis methods. The original patterns, relationships, and trends between variables are observed, then the impact of one of these variables on the other is recorded along with how it changes the relationship between the two variables.

Observational research is an example of non-experimental research, which is classified as a qualitative research method.

  • Cross-section

Experimental research is usually single-sectional while non-experimental research is cross-sectional. That is, when evaluating the research subjects in experimental research, each group is evaluated as an entity.

For example, let us consider a medical research process investigating the prevalence of breast cancer in a certain community. In this community, we will find people of different ages, ethnicities, and social backgrounds. 

If a significant amount of women from a particular age are found to be more prone to have the disease, the researcher can conduct further studies to understand the reason behind it. A further study into this will be experimental and the subject won’t be a cross-sectional group. 

A lot of researchers consider the distinction between experimental and non-experimental research to be an extremely important one. This is partly due to the fact that experimental research can accommodate the manipulation of independent variables, which is something non-experimental research can not.

Therefore, as a researcher who is interested in using any one of experimental and non-experimental research, it is important to understand the distinction between these two. This helps in deciding which method is better for carrying out particular research. 

Logo

Connect to Formplus, Get Started Now - It's Free!

  • examples of experimental research
  • non experimental research
  • busayo.longe

Formplus

You may also like:

Simpson’s Paradox & How to Avoid it in Experimental Research

In this article, we are going to look at Simpson’s Paradox from its historical point and later, we’ll consider its effect in...

non experimental research topics examples

What is Experimenter Bias? Definition, Types & Mitigation

In this article, we will look into the concept of experimental bias and how it can be identified in your research

Experimental Research Designs: Types, Examples & Methods

Ultimate guide to experimental research. It’s definition, types, characteristics, uses, examples and methodolgy

Response vs Explanatory Variables: Definition & Examples

In this article, we’ll be comparing the two types of variables, what they both mean and see some of their real-life applications in research

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

55 Brilliant Research Topics For STEM Students

Research Topics For STEM Students

Primarily, STEM is an acronym for Science, Technology, Engineering, and Mathematics. It’s a study program that weaves all four disciplines for cross-disciplinary knowledge to solve scientific problems. STEM touches across a broad array of subjects as STEM students are required to gain mastery of four disciplines.

As a project-based discipline, STEM has different stages of learning. The program operates like other disciplines, and as such, STEM students embrace knowledge depending on their level. Since it’s a discipline centered around innovation, students undertake projects regularly. As a STEM student, your project could either be to build or write on a subject. Your first plan of action is choosing a topic if it’s written. After selecting a topic, you’ll need to determine how long a thesis statement should be .

Given that topic is essential to writing any project, this article focuses on research topics for STEM students. So, if you’re writing a STEM research paper or write my research paper , below are some of the best research topics for STEM students.

List of Research Topics For STEM Students

Quantitative research topics for stem students, qualitative research topics for stem students, what are the best experimental research topics for stem students, non-experimental research topics for stem students, capstone research topics for stem students, correlational research topics for stem students, scientific research topics for stem students, simple research topics for stem students, top 10 research topics for stem students, experimental research topics for stem students about plants, research topics for grade 11 stem students, research topics for grade 12 stem students, quantitative research topics for stem high school students, survey research topics for stem students, interesting and informative research topics for senior high school stem students.

Several research topics can be formulated in this field. They cut across STEM science, engineering, technology, and math. Here is a list of good research topics for STEM students.

  • The effectiveness of online learning over physical learning
  • The rise of metabolic diseases and their relationship to increased consumption
  • How immunotherapy can improve prognosis in Covid-19 progression

For your quantitative research in STEM, you’ll need to learn how to cite a thesis MLA for the topic you’re choosing. Below are some of the best quantitative research topics for STEM students.

  • A study of the effect of digital technology on millennials
  • A futuristic study of a world ruled by robotics
  • A critical evaluation of the future demand in artificial intelligence

There are several practical research topics for STEM students. However, if you’re looking for qualitative research topics for STEM students, here are topics to explore.

  • An exploration into how microbial factories result in the cause shortage in raw metals
  • An experimental study on the possibility of older-aged men passing genetic abnormalities to children
  • A critical evaluation of how genetics could be used to help humans live healthier and longer.
Experimental research in STEM is a scientific research methodology that uses two sets of variables. They are dependent and independent variables that are studied under experimental research. Experimental research topics in STEM look into areas of science that use data to derive results.

Below are easy experimental research topics for STEM students.

  • A study of nuclear fusion and fission
  • An evaluation of the major drawbacks of Biotechnology in the pharmaceutical industry
  • A study of single-cell organisms and how they’re capable of becoming an intermediary host for diseases causing bacteria

Unlike experimental research, non-experimental research lacks the interference of an independent variable. Non-experimental research instead measures variables as they naturally occur. Below are some non-experimental quantitative research topics for STEM students.

  • Impacts of alcohol addiction on the psychological life of humans
  • The popularity of depression and schizophrenia amongst the pediatric population
  • The impact of breastfeeding on the child’s health and development

STEM learning and knowledge grow in stages. The older students get, the more stringent requirements are for their STEM research topic. There are several capstone topics for research for STEM students .

Below are some simple quantitative research topics for stem students.

  • How population impacts energy-saving strategies
  • The application of an Excel table processor capabilities for cost calculation
  •  A study of the essence of science as a sphere of human activity

Correlations research is research where the researcher measures two continuous variables. This is done with little or no attempt to control extraneous variables but to assess the relationship. Here are some sample research topics for STEM students to look into bearing in mind how to cite a thesis APA style for your project.

  • Can pancreatic gland transplantation cure diabetes?
  • A study of improved living conditions and obesity
  • An evaluation of the digital currency as a valid form of payment and its impact on banking and economy

There are several science research topics for STEM students. Below are some possible quantitative research topics for STEM students.

  • A study of protease inhibitor and how it operates
  • A study of how men’s exercise impacts DNA traits passed to children
  • A study of the future of commercial space flight

If you’re looking for a simple research topic, below are easy research topics for STEM students.

  • How can the problem of Space junk be solved?
  • Can meteorites change our view of the universe?
  • Can private space flight companies change the future of space exploration?

For your top 10 research topics for STEM students, here are interesting topics for STEM students to consider.

  • A comparative study of social media addiction and adverse depression
  • The human effect of the illegal use of formalin in milk and food preservation
  • An evaluation of the human impact on the biosphere and its results
  • A study of how fungus affects plant growth
  • A comparative study of antiviral drugs and vaccine
  • A study of the ways technology has improved medicine and life science
  • The effectiveness of Vitamin D among older adults for disease prevention
  • What is the possibility of life on other planets?
  • Effects of Hubble Space Telescope on the universe
  • A study of important trends in medicinal chemistry research

Below are possible research topics for STEM students about plants:

  • How do magnetic fields impact plant growth?
  • Do the different colors of light impact the rate of photosynthesis?
  • How can fertilizer extend plant life during a drought?

Below are some examples of quantitative research topics for STEM students in grade 11.

  • A study of how plants conduct electricity
  • How does water salinity affect plant growth?
  • A study of soil pH levels on plants

Here are some of the best qualitative research topics for STEM students in grade 12.

  • An evaluation of artificial gravity and how it impacts seed germination
  • An exploration of the steps taken to develop the Covid-19 vaccine
  • Personalized medicine and the wave of the future

Here are topics to consider for your STEM-related research topics for high school students.

  • A study of stem cell treatment
  • How can molecular biological research of rare genetic disorders help understand cancer?
  • How Covid-19 affects people with digestive problems

Below are some survey topics for qualitative research for stem students.

  • How does Covid-19 impact immune-compromised people?
  • Soil temperature and how it affects root growth
  • Burned soil and how it affects seed germination

Here are some descriptive research topics for STEM students in senior high.

  • The scientific information concept and its role in conducting scientific research
  • The role of mathematical statistics in scientific research
  • A study of the natural resources contained in oceans

Final Words About Research Topics For STEM Students

STEM topics cover areas in various scientific fields, mathematics, engineering, and technology. While it can be tasking, reducing the task starts with choosing a favorable topic. If you require external assistance in writing your STEM research, you can seek professional help from our experts.

Leave a Reply Cancel reply

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

6.7: Non-Experimental Research (Summary)

  • Last updated
  • Save as PDF
  • Page ID 19656

  • Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton
  • Kwantlen Polytechnic U., Washington State U., & Texas A&M U.—Texarkana

Key Takeaways

  • Non-experimental research is research that lacks the manipulation of an independent variable.
  • There are two broad types of non-experimental research. Correlational research that focuses on statistical relationships between variables that are measured but not manipulated; and observational research in which participants are observed and their behavior is recorded without the researcher interfering or manipulating any variables.
  • In general, experimental research is high in internal validity, correlational research is low in internal validity, and quasi-experimental research is in between.
  • Correlational research involves measuring two variables and assessing the relationship between them, with no manipulation of an independent variable.
  • Correlation does not imply causation. A statistical relationship between two variables, X and Y , does not necessarily mean that X causes Y . It is also possible that Y causes X , or that a third variable, Z , causes both X and Y .
  • While correlational research cannot be used to establish causal relationships between variables, correlational research does allow researchers to achieve many other important objectives (establishing reliability and validity, providing converging evidence, describing relationships, and making predictions)
  • Correlation coefficients can range from -1 to +1. The sign indicates the direction of the relationship between the variables and the numerical value indicates the strength of the relationship.
  • Researchers often use complex correlational research to explore relationships among several variables in the same study.
  • Complex correlational research can be used to explore possible causal relationships among variables using techniques such as partial correlation and multiple regression. Such designs can show patterns of relationships that are consistent with some causal interpretations and inconsistent with others, but they cannot unambiguously establish that one variable causes another.
  • Qualitative research is an important alternative to quantitative research in psychology. It generally involves asking broader research questions, collecting more detailed data (e.g., interviews), and using non-statistical analyses.
  • Many researchers conceptualize quantitative and qualitative research as complementary and advocate combining them. For example, qualitative research can be used to generate hypotheses and quantitative research to test them.
  • There are several different approaches to observational research including naturalistic observation, participant observation, structured observation, case studies, and archival research.
  • Naturalistic observation is used to observe people in their natural setting; participant observation involves becoming an active member of the group being observed; structured observation involves coding a small number of behaviors in a quantitative manner; case studies are typically used to collect in-depth information on a single individual; and archival research involves analyzing existing data.

Abrams, L. S., & Curran, L. (2009). “And you’re telling me not to stress?” A grounded theory study of postpartum depression symptoms among low-income mothers. Psychology of Women Quarterly, 33 , 351–362.

Bryman, A. (2012). Social Research Methods (4th ed.). Oxford: Oxford University Press.

Bushman, B. J., & Huesmann, L. R. (2001). Effects of televised violence on aggression. In D. Singer & J. Singer (Eds.), Handbook of children and the media (pp. 223–254). Thousand Oaks, CA: Sage.

Cacioppo, J. T., & Petty, R. E. (1982). The need for cognition. Journal of Personality and Social Psychology, 42 , 116–131.

Cohen, D., Nisbett, R. E., Bowdle, B. F., & Schwarz, N. (1996). Insult, aggression, and the southern culture of honor: An “experimental ethnography.” Journal of Personality and Social Psychology, 70 (5), 945-960.

Diener, E. (2000). Subjective well-being: The science of happiness, and a proposal for a national index. American Psychologist, 55 , 34–43.

Festinger, L., Riecken, H., & Schachter, S. (1956). When prophecy fails: A social and psychological study of a modern group that predicted the destruction of the world . University of Minnesota Press.

Freud, S. (1961). Five lectures on psycho-analysis . New York, NY: Norton.

Geertz, C. (1973). The interpretation of cultures . New York, NY: Basic Books.

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research . Chicago, IL: Aldine.

Jouriles, E. N., Garrido, E., Rosenfield, D., & McDonald, R. (2009). Experiences of psychological and physical aggression in adolescent romantic relationships: Links to psychological distress. Child Abuse & Neglect, 33 (7), 451–460.

Kraut, R. E., & Johnston, R. E. (1979). Social and emotional messages of smiling: An ethological approach. Journal of Personality and Social Psychology, 37 , 1539–1553.

Levine, R. V., & Norenzayan, A. (1999). The pace of life in 31 countries. Journal of Cross-Cultural Psychology, 30 , 178–205.

Lindqvist, P., Johansson, L., & Karlsson, U. (2008). In the aftermath of teenage suicide: A qualitative study of the psychosocial consequences for the surviving family members. BMC Psychiatry, 8 :26. Retrieved from http://www.biomedcentral.com/1471-244X/8/26

Loftus, E. F., & Pickrell, J. E. (1995). The formation of false memories. Psychiatric Annals, 25 , 720–725.

Messerli, F. H. (2012). Chocolate consumption, cognitive function, and Nobel laureates. New England Journal of Medicine, 367 , 1562-1564.

Milgram, S. (1963). Behavioral study of obedience. Journal of Abnormal and Social Psychology, 67 , 371–378.

Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row.

Pelham, B. W., Carvallo, M., & Jones, J. T. (2005). Implicit egotism. Current Directions in Psychological Science, 14 , 106–110.

Peterson, C., Seligman, M. E. P., & Vaillant, G. E. (1988). Pessimistic explanatory style is a risk factor for physical illness: A thirty-five year longitudinal study. Journal of Personality and Social Psychology, 55 , 23–27.

Plomin, R., DeFries, J. C., McClearn, G. E., & McGuffin, P. (2008). Behavioral genetics (5th ed.). New York, NY: Worth.

Radcliffe, N. M., & Klein, W. M. P. (2002). Dispositional, unrealistic, and comparative optimism: Differential relations with knowledge and processing of risk information and beliefs about personal risk. Personality and Social Psychology Bulletin, 28 , 836–846.

Rentfrow, P. J., & Gosling, S. D. (2008). The do re mi’s of everyday life: The structure and personality correlates of music preferences. Journal of Personality and Social Psychology, 84 , 1236–1256.

Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258.

Todd, Z., Nerlich, B., McKeown, S., & Clarke, D. D. (2004) Mixing methods in psychology: The integration of qualitative and quantitative methods in theory and practice . London, UK: Psychology Press.

Trenor, J.M., Yu, S.L., Waight, C.L., Zerda. K.S & Sha T.-L. (2008). The relations of ethnicity to female engineering students’ educational experiences and college and career plans in an ethnically diverse learning environment. Journal of Engineering Education, 97 (4), 449-465.

Watson, J. B., & Rayner, R. (1920). Conditioned emotional reactions. Journal of Experimental Psychology, 3 , 1–14.

Wilkins, A. (2008). “Happier than Non-Christians”: Collective emotions and symbolic boundaries among evangelical Christians. Social Psychology Quarterly, 71 , 281–301.

  • A researcher conducts detailed interviews with unmarried teenage fathers to learn about how they feel and what they think about their role as fathers and summarizes their feelings in a written narrative.
  • A researcher measures the impulsivity of a large sample of drivers and looks at the statistical relationship between this variable and the number of traffic tickets the drivers have received.
  • A researcher randomly assigns patients with low back pain either to a treatment involving hypnosis or to a treatment involving exercise. She then measures their level of low back pain after 3 months.
  • A cognitive psychologist compares the ability of people to recall words that they were instructed to “read” with their ability to recall words that they were instructed to “imagine.”
  • A manager studies the correlation between new employees’ college grade point averages and their first-year performance reports.
  • An automotive engineer installs different stick shifts in a new car prototype, each time asking several people to rate how comfortable the stick shift feels.
  • A food scientist studies the relationship between the temperature inside people’s refrigerators and the amount of bacteria on their food.
  • A social psychologist tells some research participants that they need to hurry over to the next building to complete a study. She tells others that they can take their time. Then she observes whether they stop to help a research assistant who is pretending to be hurt.
  • People who eat more lobster tend to live longer.
  • People who exercise more tend to weigh less.
  • College students who drink more alcohol tend to have poorer grades.
  • Practice: Construct a correlation matrix for a hypothetical study including the variables of depression, anxiety, self-esteem, and happiness. Include the Pearson’s r values that you would expect.
  • Discussion: Imagine a correlational study that looks at intelligence, the need for cognition, and high school students’ performance in a critical thinking course. A multiple regression analysis shows that intelligence is not related to performance in the class but that the need for cognition is. Explain what this study has shown in terms of what is related to good performance in the critical thinking course.
  • Discussion: What are some ways in which a qualitative study of girls who play youth baseball would likely differ from a quantitative study on the same topic? How would the data differ by interviewing girls one-on-one rather than conducting focus groups or surveys?
  • Describe one problem related to internal validity.
  • Describe one problem related to external validity.
  • Generate one hypothesis suggested by the case study that might be interesting to test in a subsequent study.

IB Writing Service Logo

  • IB Biology IA Topics That Don’t Require Experiment

Welcome to this guide on IB Biology IA topics that don’t require experiments! If you’re an IB Biology student, you probably know that the Internal Assessment is a significant part of your final grade. It provides a chance for you to demonstrate your understanding of biological concepts and apply them to real-world situations.

The purpose of this blog post is to provide you with an overview of non-experimental IA topics that can be explored within different areas of biology. These topics don’t require conducting actual experiments, making them accessible to students who may not have the necessary resources or opportunities.

Now, you might wonder what exactly an IA is and how it differs from an extended essay. An IA is an investigative project unique to the IB Biology course, where you design and carry out your own research. In contrast, an extended essay focuses on analyzing existing research and providing a thorough written analysis. Both assessments are important in their own right, but for the purpose of this guide, we are focusing specifically on non-experimental IAs.

When selecting a non-experimental IA topic, certain criteria should be kept in mind. Firstly, the topic should be relevant to the IB Biology syllabus, ensuring that you address key concepts and learning objectives. Secondly, consider the availability of resources such as scientific articles, publications, and data analysis tools, as they will be essential in guiding your investigation. Finally, think about the feasibility of the topic in terms of materials, equipment, and time constraints.

Throughout the remainder of this guide, we will explore various non-experimental IA topic ideas covering different areas of biology. We will delve into Cell Biology, Molecular Biology, Ecology, Genetics, Evolution and Biodiversity, and human physiology, offering you a range of options to choose from based on your interests and strengths.

By the end of this guide, you will have a solid grasp of the potential non-experimental IA topics available to you. Remember, while experiments are not necessary for these investigations, approaches such as literature reviews, data analysis, computer simulations, and mathematical modeling can be highly effective in addressing your research question.

So without further ado, let’s dive into the world of IB Biology IA topics that don’t require experiments!

IB Biology IA Topics That Don’t Require Experiment

🎓✍️ Acing Your Internal Assessment Has Never Been Easier! ✍️🎓

Are you struggling with your Internal Assessment? Let our experts take care of it! We’ve successfully completed hundreds of IA projects across different IB courses, and we know the IB criterium inside out.

🌟 Our writers are all human and do not use CHAT-GPT, ensuring a unique and personalized touch to your project. Plus, our service is 100% confidential and risk-free, so you can trust us with your academic success.

Don’t miss out on this opportunity to secure the grade you deserve! Get started with our IB IA Writing Service​ today! 💡📚🔝

  • Comparative Analysis of Genetic Mutations in Different Cancers: Utilizing available databases on genetic mutations to determine commonalities and differences.
  • Effect of Climate Change on Migratory Patterns of Birds: Analysis based on existing datasets from birdwatching databases.
  • Correlation between Human Development Index (HDI) and Prevalence of Infectious Diseases: An investigation using World Health Organization (WHO) and United Nations databases.
  • Bioinformatics Analysis of Protein Sequences: Analyzing sequences to predict protein structures and their potential functions.
  • Evolutionary Relationships among Cetaceans: Using genetic databases to understand the relationships and evolutionary paths.
  • Review of the Impacts of Microplastics on Marine Life: A literature-based study of published research on the ingestion and impact of microplastics.
  • Role of Gut Microbiota in Human Health: Using secondary data to explore how variations in gut bacteria might relate to diseases like obesity, diabetes, or even mental health conditions.
  • Analyzing Trends in Antibiotic Resistance Globally: Utilizing global datasets to identify alarming trends and potential future challenges.
  • Molecular Mechanisms behind Alzheimer’s Disease: A review-based study focused on recent scientific literature.
  • Comparing Carbon Sequestration Rates among Different Forest Types: Using existing datasets to analyze which forests might be most effective in combating climate change.
  • Review of Current Strategies in Organ Transplant Rejection Prevention: Looking at recent medical literature to assess the latest advancements and their effectiveness.
  • Role of Epigenetics in Human Development and Disease: An exploration based on existing literature and datasets.
  • Impact of Endocrine Disruptors on Aquatic Species: Using data from ecological studies to examine how these chemicals affect the physiology and reproductive capacities of aquatic life.
  • Trends in Bee Population Decline and Its Implications on Global Food Chains: Using available datasets to analyze potential future impacts.
  • The Relationship between Genetic Markers and Predisposition to Mental Health Disorders: An analysis based on available genetic and epidemiological data.
  • Review of the Biotechnological Applications of CRISPR-Cas9 in Agriculture: Understanding the benefits and potential risks.
  • Analysis of Disease Outbreaks and Their Relationship to Climate Anomalies: Using WHO data and global climate data to draw potential correlations.
  • The Biochemical Mechanisms of Different Diets on Human Health: A review of ketogenic, vegan, Mediterranean, and other diets.
  • Correlation between Pollution Levels and Asthma Prevalence in Urban Centers: Utilizing health and environmental data to draw connections.
  • Evolution of Resistance Mechanisms in Bacteria against Common Antibiotics: A review of literature to track the evolutionary changes in bacterial genomes in response to antibiotic pressure.

Importance of IA

The Internal Assessment plays a crucial role in the IB Biology curriculum and has a significant impact on the final grade. Understanding the importance of IA can help students approach their assessments with the right mindset and maximize their chances of success.

Firstly, the IA allows students to apply the knowledge and skills they have acquired throughout the course in a practical and meaningful way. It is an opportunity for students to showcase their understanding of key biological concepts and demonstrate their ability to conduct scientific investigations.

Secondly, the IA is designed to promote critical thinking and develop essential scientific skills, such as experimental design, data analysis, and evaluation. By engaging in the IA process, students learn how to plan experiments, collect and analyze data using appropriate techniques, and draw valid conclusions based on their findings.

Additionally, the IA enables students to demonstrate their ability to work independently and manage their time effectively. It requires careful planning, organization, and adherence to deadlines, which are crucial skills for success in higher education and beyond.

Making the most of the IA also holds immense value when it comes to the final grade. Typically, the IA contributes to a percentage of the overall mark in IB Biology. A well-executed IA can significantly boost a student’s grade, while a poorly thought-out or incomplete IA may impact their final result. Therefore, investing time and effort into the IA is vital to achieving academic success in IB Biology.

It is worth noting that the IA allows students to explore topics of personal interest within the broader scope of the subject. This flexibility provides students with the opportunity to further motivate themselves and make connections between the study of biology and real-world situations or local contexts.

  • In conclusion, the IA in IB Biology holds immense importance as it enables students to apply their knowledge, develop scientific skills, and manage their time effectively. It factors into the final grade and offers students the chance to immerse themselves in topics they are passionate about. Therefore, students should embrace the IA as a valuable opportunity to showcase their understanding and shine in their biology studies.

Definition of IB Biology IA

Welcome to the section where we shed light on what exactly an IA is in IB Biology, its purpose, and how it differs from an extended essay. If you’re new to the world of IB Biology Internal Assessments (IAs), don’t worry – we’ve got you covered!

An IA, short for Internal Assessment, is a crucial component of your IB Biology course. It is an opportunity for you to showcase your scientific skills, knowledge, and understanding by conducting independent research on a chosen topic. Unlike exams, IAs offer you the chance to explore a specific area of biology that truly fascinates you.

The purpose of an IA is to encourage you to think critically, apply key biological concepts, and engage in the investigative process like a professional biologist would. Through your IA, you’ll learn valuable experimental techniques, enhance your data analysis skills, and develop your ability to communicate scientific ideas effectively – all of which are vital for your future academic and scientific pursuits.

Now, you might be wondering how an IA differs from an extended essay. Well, the main distinction lies in their focus and scope. While an IA allows you to explore a more narrow and specific research question within a particular area of biology, an extended essay offers a broader exploration of a biology-related topic. The IA emphasizes experimentation, data collection, and analysis, whereas the extended essay prioritizes in-depth literature research and an extensive review of existing knowledge and theories.

To put it simply, an IA is an opportunity for you to flex your scientific muscles by conducting original research within a focused framework, while an extended essay is a chance for a more extensive exploration of an academic subject.

So now that we’ve clarified what an IA is and how it differentiates from an extended essay, you can approach your IA with a clearer understanding of its purpose and expectations. Get ready to dive into the world of IB Biology IA topics that don’t require experiments!

(Note: This section provides a simple yet informative introduction to the concept of an IA in IB Biology, catering to a reading grade eight level. The actual blog post will expand on this explanation and provide further details.)

Criteria for selecting non-experimental IA topics

When choosing a non-experimental Internal Assessment (IA) topic for IB Biology, there are several criteria to keep in mind. These criteria include relevance to the syllabus, availability of resources, and feasibility.

  • Relevance to the syllabus: It’s important to select a topic that aligns with the concepts and content covered in the IB Biology syllabus. Choose a topic that allows you to explore and analyze biological principles in depth, ensuring it is directly related to the subject matter.
  • Availability of resources: Consider the availability and accessibility of relevant resources when selecting your IA topic. This includes scientific research articles, textbooks, online databases, and other sources of information and data. Ensure that you have access to a range of supportive resources that will allow you to gather accurate information and support your analysis.
  • Feasibility: Your IA topic should be feasible within the given time frame and available resources. Consider the practical aspects, such as the equipment, materials, and techniques required for an experiment-free investigation. By choosing a topic that is realistic and manageable, you can avoid unnecessary challenges and setbacks.

By considering these criteria, you can select a non-experimental IA topic that is relevant, well-supported, and achievable. It’s important to carefully evaluate potential topics against these criteria to ensure a successful IA project.

One example of a non-experimental IA topic that meets these criteria is the investigation of DNA sequencing techniques. While not an experimental procedure itself, analyzing and comparing existing DNA sequencing methods can provide valuable insights into their advantages, disadvantages, and applications in genetic research. This topic is highly relevant to the syllabus, readily supported by resources such as scientific journals, and feasible to conduct within the given constraints.

Remember, your IA topic should offer opportunities for deep analysis, critical thinking, and a demonstration of your understanding of biology concepts. By selecting a non-experimental IA topic that meets these criteria, you can confidently embark on your IA journey and produce a high-quality investigation.

Non-Experimental IA Topic Ideas Related to Cell Biology

If you are taking IB Biology and looking for IA topics that don’t require experiments, the field of Cell Biology can offer some intriguing options. Here are a few ideas to get you started:

  • Cellular aging: Investigate the impact of factors like oxidative stress or telomere length on cellular aging. Explore the relevance of these findings in understanding the aging process in organisms.
  • Drug targeting: Examine different drug delivery approaches for targeting specific cell types using nanotechnology, focusing on their effectiveness and potential applications in medicine.
  • Cell communication: Explore the role of signaling molecules, such as hormones or neurotransmitters, in intercellular communication. Investigate the importance of cell signaling pathways in physiological processes.
  • Cancer cell behavior: Analyze different cellular behaviors associated with cancer, such as uncontrolled proliferation or resistance to apoptosis. Investigate potential molecular mechanisms behind these behaviors and their implications for cancer treatment.
  • Plant cell specialization: Study the differentiation of plant cells into various specialized types, such as parenchyma, collenchyma, or sclerenchyma cells. Investigate the functional implications of these specialized cells in plant development and physiology.

Each of these topics offers a unique perspective on cell biology and provides an opportunity for you to delve deeper into understanding fundamental cellular processes. By exploring these areas, you’ll gain valuable insights into the complexities of cell structure and function.

Remember, when choosing a non-experimental IA topic in cell biology, consider the relevance to the syllabus and your own interests. Additionally, ensure that resources, such as scientific journals, books, or online databases, are readily available for conducting research.

In order to investigate these non-experimental IA topics, you can rely on existing literature, data analysis, computer simulations, or even mathematical modeling. Analyzing and synthesizing information from reliable sources will allow you to generate valuable insights without performing actual experiments.

Don’t be afraid to be creative! Take advantage of the vast body of knowledge in cell biology and explore areas that pique your curiosity. By selecting a non-experimental IA topic in cell biology, you can make meaningful contributions to the field while showcasing your investigative and analytical skills.

Continue reading to discover more non-experimental IA topic ideas in other areas of biology!

Non-experimental IA topic ideas related to Molecular Biology

In IB Biology, there are numerous fascinating non-experimental IA topics that you can explore within the field of Molecular Biology. These topics allow you to delve into the intricate world of molecules and their interactions, without needing to conduct experiments.

  • Gene expression regulation: Investigate the mechanisms by which genes are switched on or off in different organisms. Explore the importance of transcription factors, histone modification, and DNA methylation in gene expression. You could analyze existing research studies or use databases to collect data and draw conclusions about gene expression patterns.
  • Protein folding and misfolding: Examine the folding process of proteins, exploring factors such as pH, temperature, and presence of chaperones that affect proper folding. Research the consequences of protein misfolding, such as neurodegenerative diseases, and propose strategies to prevent or treat these conditions by targeting protein misfolding pathways.
  • Genetic engineering of crops: Investigate how genetic engineering techniques, such as using CRISPR-Cas9, can be used to modify plant genomes. Focus on specific genes involved in crop improvement, such as disease resistance or increased nutritional content, and discuss the potential benefits and ethical considerations of genetically modified crops.
  • Molecular basis of cancer: Explore the molecular mechanisms underlying cancer development and progression. Analyze the role of oncogenes, tumor suppressor genes, and epigenetic modifications in the initiation and growth of tumors. Discuss targeted therapies that exploit these molecular targets for the treatment of cancer.
  • Antibiotic resistance: Investigate the molecular mechanisms behind antibiotic resistance in bacteria. Evaluate the role of horizontal gene transfer, genetic mutations, and the misuse of antibiotics in promoting resistance. Propose effective strategies to combat antibiotic resistance and prevent the emergence of multidrug-resistant bacterial strains.

These non-experimental IA topics within Molecular Biology provide opportunities for in-depth research and analysis, without the need for practical experiments. You can delve into biological databases, scholarly articles, and real-world applications to enrich your exploration of these exciting topics.

When conducting your IA research, don’t forget to maintain academic integrity by citing your sources properly and critically analyzing the information you gather. Additionally, consult your teacher for guidance on resources and experimental procedures that can complement your non-experimental IA journey. Remember, exploring molecular biology through a non-experimental lens can be just as rewarding and insightful as conducting hands-on experiments.

Non-experimental IA Topic Ideas Related to Ecology:

If you’re interested in studying the interactions between organisms and their environments, ecology offers a wide range of non-experimental IA topic ideas. These topics allow you to explore ecological concepts and understand the intricate webs of life without conducting actual experiments. Here are a few ideas to spark your creativity:

  • Investigating the impact of invasive species: Analyze the ecological consequences of invasive species in a particular ecosystem. Collect and analyze existing data on the abundance and distribution of native and invasive species, and examine how the invasion affects biodiversity and native community dynamics.
  • Examining the effects of climate change on species distribution: Use existing data or maps to study how climate change alters the ranges of different species. Analyze trends and patterns in species distribution over time to determine how climate change influences the ecological makeup of an area.
  • Assessing the effectiveness of wildlife conservation strategies: Choose a specific conservation strategy, such as protected areas or habitat restoration programs, and evaluate its success in preserving biodiversity. Explore scientific literature and reports to gather data and assess the importance of these strategies in maintaining ecosystems.
  • Analyzing the impact of pollution on aquatic ecosystems: Investigate the effects of various pollutants, such as industrial chemicals or agricultural runoff, on the health of aquatic ecosystems. Collect and analyze water quality data, assess the ecological consequences of pollution, and propose mitigation measures.

When analyzing these non-experimental IA topics in ecology, it’s important to incorporate appropriate data analysis or modeling approaches:

  • Data analysis: Utilize statistical methods such as regression analysis, t-tests, or chi-square tests to evaluate patterns or associations in ecological data sets.
  • Computer simulations: Develop and run computer simulations to explore how changes in ecological variables affect ecosystem dynamics, species interactions, or population growth.
  • Mathematical modeling: Use mathematical models, such as population growth models or food web dynamics models, to examine theoretical scenarios or predict ecological trends.

Remember, your IA topic should adhere to IB Biology guidelines and align with your interests and available resources. By delving into ecological non-experimental IA topics, you can deepen your understanding of the complex relationships between organisms and their environments.

Non-experimental IA topic ideas related to Genetics

When it comes to genetics, there are numerous non-experimental IA topics that you can explore. These topics allow you to delve into specific genetic processes, inheritance patterns, or genetic disorders without conducting actual experiments. Let’s explore some fascinating ideas below:

  • The role of genetic mutations in the development of cancer: Investigate the different types of genetic mutations found in cancer cells and how they contribute to the initiation and progression of tumors.
  • The impact of genetic testing on predicting and preventing inheritable diseases: Examine the use of genetic testing in identifying individuals at risk for inheritable diseases and discuss the ethical concerns surrounding this practice.
  • Analyze the inheritance patterns of genetically inherited disorders: Explore how various genetic disorders are inherited, such as cystic fibrosis or Huntington’s disease, by studying family pedigrees and genetic profiles.
  • The influence of genetic factors on behavior: Investigate the role of genetics in shaping behavioral traits, such as intelligence, aggression, or addictive tendencies, by analyzing studies involving twins or adoption.
  • Genetic engineering and its ethical implications: Examine the ethical considerations surrounding the use of genetic engineering techniques, such as CRISPR, to modify the genomes of organisms, including humans.
  • The genetics of taste perception: Explore the genetic basis for differences in taste perception among individuals, examining specific genes involved in taste receptors and discussing their impact on food preferences.
  • Genetic variations in drug response: Investigate how genetic variations influence an individual’s response to specific drugs, focusing on identifying genetic markers associated with drug efficacy or adverse reactions.

Each of these non-experimental IA topics provides an opportunity to gain a deeper understanding of genetics and its applications. By exploring the particular genetic processes, inheritance patterns, or genetic disorders associated with these topics, you can showcase your knowledge and research skills without the need for experimental work.

Remember, when selecting a topic, consider its relevance to the IB Biology syllabus, the availability of resources, and the feasibility of conducting research in a non-experimental manner. Genetics offers a multitude of fascinating study opportunities that will allow you to explore the intricacies of inheritance, gene expression, and genetic disorders.

Non-experimental IA topic ideas related to Evolution and Biodiversity

When it comes to studying evolution and biodiversity, conducting experiments can be challenging. However, that doesn’t mean you can’t explore fascinating topics in this field for your IB Biology IA. Here are some non-experimental IA topic ideas that delve into the key evolutionary concepts and patterns:

  • Comparative analysis of homologous structures: Investigate different organisms and examine how their similar anatomical features suggest a common ancestor. Explore the concept of divergent evolution and predict similarities in anatomical structures in organisms with shared ancestry.
  • Investigating adaptive radiation: Analyze a group of organisms that have evolved from a common ancestor but now occupy diverse habitats or exhibit various adaptations. Explore the ecological factors driving this radiation and discuss the underlying mechanisms of speciation.
  • Studying convergent evolution: Select different organisms from diverse taxonomic groups and explore similar traits, such as wings in bats and birds, despite not having a recent common ancestor. Investigate the environmental pressures leading to the development of analogous structures.
  • Examining biogeography and evolutionary history: Focus on a specific region and investigate the distribution of related species across different habitats. Analyze the impact of historical events and environmental changes on the evolution and distribution of these organisms.
  • Investigating coevolutionary relationships: Choose two or more interacting species and explore how their evolutionary histories have influenced and shaped each other. Discuss examples of mutualistic relationships, predator-prey coevolution, or host-parasite interactions.

These non-experimental IA topics related to evolution and biodiversity provide you with ample opportunities to research and analyze the incredible diversity of life on Earth. Remember, even though you won’t be conducting hands-on experiments, it’s essential to gather information from reliable sources and critically evaluate the existing knowledge and theories in the field.

A well-structured IA focusing on key concepts and patterns of evolution will demonstrate your understanding of the subject matter and critical thinking skills. Make sure to document your research process, including proper citations and references to ensure academic integrity.

By tackling these non-experimental IA topics linked to evolution and biodiversity, you can gain a deeper appreciation for the complex processes that have shaped the natural world. These projects allow you to delve into the fascinating principles of evolution and explore the incredible diversity of life around us without the need for experimental components.

Non-experimental IA topic ideas related to human physiology

When it comes to exploring human physiology for your IB Biology IA, you don’t always have to conduct experiments. There are plenty of non-experimental IA topic ideas that can shed light on various aspects of the human body. These topics focus on different body systems and specific physiological processes that play a crucial role in maintaining our health and well-being.

1. Body temperature regulation: Investigate how the human body regulates its temperature under different environmental conditions, such as extreme cold or heat. Explore the physiological mechanisms involved and discuss their importance in maintaining homeostasis.

2. Respiratory system efficiency: Analyze the factors affecting lung capacity and how they can contribute to variations in respiratory efficiency among individuals. Explore the relationship between lung capacity and physical fitness levels.

3. Cardiac output and exercise: Examine the changes in cardiac output during exercise and investigate the influence of factors such as heart rate, stroke volume, and blood pressure on overall cardiovascular health.

4. Effects of stress on the immune system: Explore how chronic stress can undermine the effectiveness of the immune system and increase susceptibility to infections and diseases. Discuss the physiological mechanisms involved and potential coping strategies.

5. Role of hormones in puberty: Investigate the role of hormones in the onset of puberty, focusing on the interactions between the hypothalamus, pituitary gland, and reproductive organs. Discuss the physiological changes that occur during this developmental stage.

6. Impact of sleep deprivation on cognitive function: Explore the effects of sleep deprivation on cognitive processes such as memory, attention, and decision-making. Discuss the underlying physiological mechanisms and potential strategies to improve sleep quality.

  • 7. Impact of nutrition on metabolism: Analyze the effects of different dietary components, such as carbohydrates, fats, and proteins, on metabolism and energy production in the human body. Contrast the benefits and drawbacks of various nutritional approaches.

These non-experimental IA topics provide ample opportunities to delve into the fascinating world of human physiology. They allow you to explore the intricacies of our body systems and understand how physiological processes contribute to our overall health. While conducting experiments is undoubtedly valuable, investigating these non-experimental topics will also equip you with critical research and analysis skills essential for success in IB Biology.

(Note: Remember to adjust and expand the content based on your personal preferences and available resources.)

Study Design and Methodologies

When designing and structuring a non-experimental Internal Assessment (IA) for IB Biology, there are several methodologies you can consider. While traditional experiments involve conducting hands-on research, non-experimental IAs focus on analyzing existing data, literature review, computer simulations, or mathematical modeling to answer your research question. Here are some options to explore:

  • Literature Review: Conduct a comprehensive review of scientific articles, books, or published research papers. Summarize and synthesize the findings from these sources to address your research question.
  • Data Analysis: If relevant data sets are available, analyze and interpret the data to draw conclusions. You can use statistical tests, graphs, or charts to present your findings effectively.
  • Computer Simulations: Utilize computer software or online simulations to model biological processes or phenomena. These simulations rely on mathematical algorithms, allowing you to test various scenarios and observe outcomes without conducting physical experiments.
  • Mathematical Modeling: Develop mathematical equations or models to represent biological systems or interactions. By inputting different variables into these models, you can simulate the behavior or predict the outcomes of specific biological phenomena.

Regardless of the methodology chosen, it is important to demonstrate critical thinking skills, data interpretation abilities, and a sound understanding of the topic. Organize your IA in a clear and logical manner, using appropriate headings and subheadings to aid readability. Make sure to include the following sections:

  • Introduction: Clearly state your research question or problem you aim to address. Provide an overview of the biological concepts and background information necessary to understand your IA.
  • Methodology: Describe the chosen methodology in detail. Explain why it is suitable for your research question and indicate any limitations or potential biases that may affect the validity of your findings.
  • Data Analysis: Present and analyze the data, simulations, or mathematical models you have utilized. Use appropriate statistical tools, graphs, and visuals to enhance the understanding of your findings.
  • Discussion: Interpret your results in relation to your research question. Address any inconsistencies or limitations in your study and propose areas for further exploration or improvement.
  • Conclusion: Summarize the key findings and their significance. Reflect on the strengths and weaknesses of your IA, suggesting potential implications and future directions for research in the field.

Remember, non-experimental IAs encourage critical thinking, analysis, and creativity while acknowledging the limitations and constraints of not conducting primary research. Through careful method selection and thoughtfully crafted investigations, you can still provide valuable insights and contribute to the field of IB Biology.

In this guide, we have explored the world of IB Biology IA topics that don’t require experiments. We began by understanding the significance of the Internal Assessment (IA) in IB Biology and its impact on the final grade. The IA provides students the opportunity to showcase their understanding of key biological concepts and skills.

An IA differs from an extended essay in that it is more focused and practical. It requires students to apply their knowledge and skills to analyze data, evaluate scientific information, and make informed conclusions.

When selecting non-experimental IA topics, several criteria should be kept in mind. The topic should align with the syllabus and cover relevant concepts. Additionally, the availability of resources and feasibility are vital factors to consider.

We have provided lists of non-experimental IA topics across various fields of biology. In the realm of Cell Biology, topics such as membrane transport and cell signaling offer intriguing research avenues. Molecular Biology opens possibilities in gene expression, DNA replication, and protein synthesis. Ecology allows for investigations into population dynamics and ecological modeling. For those interested in Genetics, topics like genetic inheritance and the study of genetic disorders present interesting avenues for exploration. The realm of Evolution and Biodiversity delves into fascinating themes of speciation and adaptation. Lastly, in human physiology, topics focused on body systems like respiration and cardiovascular function can be explored without direct experimentation.

When designing a non-experimental IA, there are various methodologies available, such as literature review, data analysis, computer simulations, or mathematical modeling. Choosing an appropriate methodology depends on the topic and research question at hand.

To conclude, non-experimental IA topics provide an excellent opportunity for students to delve into the depths of biology theory, critical thinking, and analysis. By selecting a topic that aligns with their interests and available resources, students can deepen their understanding and appreciation of the biological world. We encourage you to explore these ideas further, as there are endless possibilities awaiting you in the fascinating realm of biology.

4. Criteria for selecting non-experimental IA topics

When choosing a non-experimental IA topic for IB Biology, it is important to consider several criteria to ensure its suitability. By keeping these factors in mind, you can select a topic that aligns with the syllabus and is feasible to carry out.

Relevance to the syllabus: First and foremost, choose a topic that is directly related to the concepts covered in the IB Biology syllabus. This will ensure that your IA is grounded in the core content of the course and demonstrates your understanding of key biological principles.

Availability of resources: Consider the availability of resources required for conducting experiments. Non-experimental topics rely on existing data, published studies, or theoretical analysis. Make sure that sufficient and reliable resources are accessible to support your research and analysis.

Feasibility: It is important to choose a research question that is achievable within the scope of an IA. Given the time constraints and limitations of the IA format, select a topic that can be explored comprehensively without the need for experimental data collection or extensive laboratory work.

Ethical considerations: Evaluate if your chosen topic adheres to ethical standards. Non-experimental IAs should not involve any harm or experimentation on animals or humans. The focus should be on analyzing existing data or carrying out theoretical investigations.

Potential for personal engagement: Select a topic that genuinely interests you and allows for personal engagement. Being genuinely interested in your research question will make the process more enjoyable and lead to a more compelling IA.

By considering these criteria, you can select a non-experimental IA topic that not only meets the requirements of the assessment but also allows for meaningful exploration and demonstration of your knowledge and understanding of IB Biology concepts.

You Might Be Interested

  • Psychology Internal Assessment Topics
  • Business IA topics. Guide with examples
  • How to Choose Math IA Topic
  • Biology IA topics
  • A Guide to Choosing and Creating Compelling Math IA SL Topics
  • How to write physics IA. Comprehensive Guide
  • How to write Biology Internal Assessment. Comprehensive Guide
  • Economics IA topic ideas
  • Math SL Internal Assessment Ideas
  • Geography IA ideas
  • IB Internal Assessment Rubric: Grading Criteria and How to Excel
  • How to write an IB Internal Assessment

Looking for more help with your Internal Assessment? Check out our IB IA Writing Service or buy Internal Assessment .

Nick Radlinsky

Nick Radlinsky

Nick Radlinsky is a devoted educator, marketing specialist, and management expert with more than 15 years of experience in the education sector. After obtaining his business degree in 2016, Nick embarked on a quest to achieve his PhD, driven by his commitment to enhancing education for students worldwide. His vast experience, starting in 2008, has established him as a reputable authority in the field.

Nick's article, featured in Routledge's " Entrepreneurship in Central and Eastern Europe: Development through Internationalization ," highlights his sharp insights and unwavering dedication to advancing the educational landscape. Inspired by his personal motto, "Make education better," Nick's mission is to streamline students' lives and foster efficient learning. His inventive ideas and leadership have contributed to the transformation of numerous educational experiences, distinguishing him as a true innovator in his field.

ib ia rubric

IB Internal Assessment Rubric and Grading Criteria

The IB IA rubric is carefully structured to assess students’ understanding, skills and application of subject matter in a nuanced and comprehensive manner. Each subject rubric, whether for sciences such as Biology and Chemistry, humanities such as History and Psychology, or Mathematics, emphasizes a unique set of criteria tailored to assess specific competencies and skills.

ib dp visual arts

Visual Arts IA Topics: The Best Topic Ideas

In the vast world of art, the possibilities for your IA topic are nearly limitless. Yet, this abundance of choice can sometimes feel overwhelming. Whether you’re drawn to traditional painting techniques, the avant-garde movements of the 20th century, or the intersection of digital media and art, your chosen topic should ignite a spark of curiosity and passion within you.

non experimental research topics examples

Theatre IA Topics: SL and HL Topic Ideas

Choosing the right topic for IA in the IB Theatre course is a crucial step that significantly influences your research process and overall learning experience. Whether in the Standard Level or Higher Level track, selecting your topic requires careful thought and consideration, aiming to balance personal interest with academic rigor. This guide offers a rich array of topic ideas and research questions to spark your creativity and intellectual curiosity in the vast world of theatre.

Music IA topics

Music IA Topics for SL and HL Students

When selecting a topic for your IB Music Internal Assessment, both SL and HL students face a unique set of challenges and opportunities. As a seasoned IB educator with years of experience guiding students through this process, I’ve come to recognize the importance of choosing a topic that aligns with the IB criteria and resonates with your musical interests and strengths.

Film IA Topics

Film IA Topics: SL and HL Topic Ideas

Choosing a topic for your IB Film Internal Assessment (IA) can be exciting and daunting. Whether you’re enrolled in the Standard Level (SL) or Higher Level (HL), the key is to select an option that not only intrigues you but also meets the criteria of the IB Film course. In this article, we dig into a variety of creative and thought-provoking ideas for both SL and HL Film IA topics.

IB Dance IA

IB Dance IA Topics: SL and HL Ideas

When it comes to the IB Dance Internal Assessment (IA), students face the exciting challenge of exploring a topic that resonates with their interests and meets the academic rigor of the IB curriculum. I’ve seen how choosing the right topic can set the stage for an enriching learning experience. In this article, I’m thrilled to share some engaging topic ideas for both SL and HL students aimed at sparking creativity and intellectual curiosity.

non experimental research topics examples

© 2023  I Bstudenthelp.com. This website is owned and operated by Udeepi OU Harju maakond, Tallinn, Lasnamäe linnaosa, Sepapaja tn 6, 15551. Disclaimer : Services we provide are only to assist the buyer like a guideline to complete any kind of writing assignment. Privacy Policy Terms and Conditions Cookie Policy Revision Policy Refund Policy

404 Not found

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Creating a Corporate Social Responsibility Program with Real Impact

  • Emilio Marti,
  • David Risi,
  • Eva Schlindwein,
  • Andromachi Athanasopoulou

non experimental research topics examples

Lessons from multinational companies that adapted their CSR practices based on local feedback and knowledge.

Exploring the critical role of experimentation in Corporate Social Responsibility (CSR), research on four multinational companies reveals a stark difference in CSR effectiveness. Successful companies integrate an experimental approach, constantly adapting their CSR practices based on local feedback and knowledge. This strategy fosters genuine community engagement and responsive initiatives, as seen in a mining company’s impactful HIV/AIDS program. Conversely, companies that rely on standardized, inflexible CSR methods often fail to achieve their goals, demonstrated by a failed partnership due to local corruption in another mining company. The study recommends encouraging broad employee participation in CSR and fostering a culture that values CSR’s long-term business benefits. It also suggests that sustainable investors and ESG rating agencies should focus on assessing companies’ experimental approaches to CSR, going beyond current practices to examine the involvement of diverse employees in both developing and adapting CSR initiatives. Overall, embracing a dynamic, data-driven approach to CSR is essential for meaningful social and environmental impact.

By now, almost all large companies are engaged in corporate social responsibility (CSR): they have CSR policies, employ CSR staff, engage in activities that aim to have a positive impact on the environment and society, and write CSR reports. However, the evolution of CSR has brought forth new challenges. A stark contrast to two decades ago, when the primary concern was the sheer neglect of CSR, the current issue lies in the ineffective execution of these practices. Why do some companies implement CSR in ways that create a positive impact on the environment and society, while others fail to do so? Our research reveals that experimentation is critical for impactful CSR, which has implications for both companies that implement CSR and companies that externally monitor these CSR activities, such as sustainable investors and ESG rating agencies.

  • EM Emilio Marti is an associate professor at the Rotterdam School of Management, Erasmus University. His research focuses on corporate sustainability with a specific focus on sustainable investing.
  • DR David Risi is a professor at the Bern University of Applied Sciences and a habilitated lecturer at the University of St. Gallen. His research focuses on how companies organize CSR and sustainability.
  • ES Eva Schlindwein is a professor at the Bern University of Applied Sciences and a postdoctoral fellow at the University of Oxford. Her research focuses on how organizations navigate tensions between business and society.
  • AA Andromachi Athanasopoulou is an associate professor at Queen Mary University of London and an associate fellow at the University of Oxford. Her research focuses on how individuals manage their leadership careers and make ethically charged decisions.

Partner Center

IMAGES

  1. Explain Different Types of Non Experimental Research Design

    non experimental research topics examples

  2. 7.1 Overview of Non-Experimental Research

    non experimental research topics examples

  3. PPT

    non experimental research topics examples

  4. 55 Brilliant Research Topics For STEM Students

    non experimental research topics examples

  5. PPT

    non experimental research topics examples

  6. PPT

    non experimental research topics examples

VIDEO

  1. Quantitative Research || Experimental Research || Non Experimental Research

  2. 25 TOP Experiments From Go Experimental

  3. TYPES OF EXPERIMENTAL RESEARCH DESIGN

  4. Choosing the Best Research Topic

  5. Common problems in experiments

  6. أفضل شرح لدرس ال Experimental and non-experimental research design لمادة البحث العلمي

COMMENTS

  1. 6.1 Overview of Non-Experimental Research

    Non-experimental research is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world). Most researchers in psychology consider the distinction between experimental ...

  2. 7.1 Overview of Nonexperimental Research

    Key Takeaways. Nonexperimental research is research that lacks the manipulation of an independent variable, control of extraneous variables through random assignment, or both. There are three broad types of nonexperimental research. Single-variable research focuses on a single variable rather than a relationship between variables.

  3. Overview of Nonexperimental Research

    Key Takeaways. Nonexperimental research is research that lacks the manipulation of an independent variable, control of extraneous variables through random assignment, or both. There are three broad types of nonexperimental research. Single-variable research focuses on a single variable rather than a relationship between variables.

  4. 6.1: Overview of Non-Experimental Research

    Non-experimental research is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world). Most researchers in psychology consider the distinction between experimental ...

  5. What is non-experimental research: Definition, types & examples

    Non-experimental research is a type of research design that is based on observation and measuring instead of experimentation with randomly assigned participants. What characterizes this research design is the fact that it lacks the manipulation of independent variables. Because of this fact, the non-experimental research is based on naturally ...

  6. Overview of Non-Experimental Research

    Non-experimental research is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world). Most researchers in psychology consider the distinction between experimental ...

  7. 6.2: Overview of Non-Experimental Research

    Non-experimental research is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world). Most researchers in psychology consider the distinction between experimental ...

  8. Quantitative Research with Nonexperimental Designs

    There are two main types of nonexperimental research designs: comparative design and correlational design. In comparative research, the researcher examines the differences between two or more groups on the phenomenon that is being studied. For example, studying gender difference in learning mathematics is a comparative research.

  9. Non-experimental research: What it is, Types & Tips

    Non-experimental research is the type of research that lacks an independent variable. Instead, the researcher observes the context in which the phenomenon occurs and analyzes it to obtain information. Unlike experimental research, where the variables are held constant, non-experimental research happens during the study when the researcher ...

  10. Nonexperimental Research

    When to Use Nonexperimental Research. As we saw in Chapter 6 "Experimental Research", experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable and randomly assign participants to conditions or to orders of conditions.

  11. 1.6: Non-Experimental Research

    When to Use Non-Experimental Research. As we saw earlier, experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable.It stands to reason, therefore, that non-experimental research is appropriate—even necessary—when ...

  12. PDF CHAPTER 4 Nonexperimental Research Methods

    Archival and survey research are just two examples of nonexperimental research which seeks to examine relation-ships among variables. We will talk in more detail about these methods and others throughout the chapter. Before we begin, you might want to know that research has been conducted on this topic and a relationship does exist

  13. 2.5: Experimental and Non-experimental Research

    Non-experimental research. Non-experimental research is a broad term that covers "any study in which the researcher doesn't have quite as much control as they do in an experiment". Obviously, control is something that scientists like to have, but as the previous example illustrates, there are lots of situations in which you can't or ...

  14. Overview of Non-Experimental Research

    Non-experimental research is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world). Most researchers in psychology consider the distinction between experimental ...

  15. 6: Nonexperimental Research

    Observational research is used to refer to several different types of non-experimental studies in which behavior is systematically observed and recorded. The goal of observational research is to describe a variable or set of variables. The goal is to obtain a snapshot of specific characteristics of an individual, group, or setting.

  16. Research Study Designs: Non-experimental

    Examples of the most common non-experimental designs are listed in Table 1. Although, in general, this category has the lowest level of scientific rigor, each design within this category varies as to its ... Research Study Designs: Non-experimental Basics of Research Part 4 Cheryl Bagley Thompson, RN, PhD, and Edward A. Panacek, MD, MPH Table 1 ...

  17. Planning and Conducting Clinical Research: The Whole Process

    A research topic rooted in a clinical problem provides the motivation for the completion of the research and relevancy for affecting medical practice changes and improvements. ... Experimental or non-experimental: Non-experimental research (i.e., "observational"), in contrast to experimental, involves data collection of the study ...

  18. Experimental Vs Non-Experimental Research: 15 Key Differences

    Observational research is an example of non-experimental research, which is classified as a qualitative research method. Cross-section; Experimental research is usually single-sectional while non-experimental research is cross-sectional. That is, when evaluating the research subjects in experimental research, each group is evaluated as an entity.

  19. 5.2: Overview of Non-Experimental Research

    Figure 5.2.1 5.2. 1 shows how experimental, quasi-experimental, and non-experimental (correlational) research vary in terms of internal validity. Experimental research tends to be highest in internal validity because the use of manipulation (of the independent variable) and control (of extraneous variables) help to rule out alternative ...

  20. 55 Brilliant Research Topics For STEM Students

    Non-Experimental Research Topics For STEM Students. Unlike experimental research, non-experimental research lacks the interference of an independent variable. ... Here are some sample research topics for STEM students to look into bearing in mind how to cite a thesis APA style for your project. Can pancreatic gland transplantation cure diabetes?

  21. 6.7: Non-Experimental Research (Summary)

    This page titled 6.7: Non-Experimental Research (Summary) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available ...

  22. IB Biology IA Topics That Don't Require Experiment

    One example of a non-experimental IA topic that meets these criteria is the investigation of DNA sequencing techniques. While not an experimental procedure itself, analyzing and comparing existing DNA sequencing methods can provide valuable insights into their advantages, disadvantages, and applications in genetic research.

  23. Non-Experimental Studies in Research

    Non-experimental studies represent a vital and often overlooked part of research. In this article, we'll explain the defined, types and characteristics of ... An examples for dates being processor may be an unique identifier stored in a cookie. Some of our partners may process your data as a part of their legitimer businesses interest free ...

  24. Creating a Corporate Social Responsibility Program with Real Impact

    Summary. Exploring the critical role of experimentation in Corporate Social Responsibility (CSR), research on four multinational companies reveals a stark difference in CSR effectiveness ...