Python Enhancement Proposals

  • Python »
  • PEP Index »

PEP 572 – Assignment Expressions

The importance of real code, exceptional cases, scope of the target, relative precedence of :=, change to evaluation order, differences between assignment expressions and assignment statements, specification changes during implementation, _pydecimal.py, datetime.py, sysconfig.py, simplifying list comprehensions, capturing condition values, changing the scope rules for comprehensions, alternative spellings, special-casing conditional statements, special-casing comprehensions, lowering operator precedence, allowing commas to the right, always requiring parentheses, why not just turn existing assignment into an expression, with assignment expressions, why bother with assignment statements, why not use a sublocal scope and prevent namespace pollution, style guide recommendations, acknowledgements, a numeric example, appendix b: rough code translations for comprehensions, appendix c: no changes to scope semantics.

This is a proposal for creating a way to assign to variables within an expression using the notation NAME := expr .

As part of this change, there is also an update to dictionary comprehension evaluation order to ensure key expressions are executed before value expressions (allowing the key to be bound to a name and then re-used as part of calculating the corresponding value).

During discussion of this PEP, the operator became informally known as “the walrus operator”. The construct’s formal name is “Assignment Expressions” (as per the PEP title), but they may also be referred to as “Named Expressions” (e.g. the CPython reference implementation uses that name internally).

Naming the result of an expression is an important part of programming, allowing a descriptive name to be used in place of a longer expression, and permitting reuse. Currently, this feature is available only in statement form, making it unavailable in list comprehensions and other expression contexts.

Additionally, naming sub-parts of a large expression can assist an interactive debugger, providing useful display hooks and partial results. Without a way to capture sub-expressions inline, this would require refactoring of the original code; with assignment expressions, this merely requires the insertion of a few name := markers. Removing the need to refactor reduces the likelihood that the code be inadvertently changed as part of debugging (a common cause of Heisenbugs), and is easier to dictate to another programmer.

During the development of this PEP many people (supporters and critics both) have had a tendency to focus on toy examples on the one hand, and on overly complex examples on the other.

The danger of toy examples is twofold: they are often too abstract to make anyone go “ooh, that’s compelling”, and they are easily refuted with “I would never write it that way anyway”.

The danger of overly complex examples is that they provide a convenient strawman for critics of the proposal to shoot down (“that’s obfuscated”).

Yet there is some use for both extremely simple and extremely complex examples: they are helpful to clarify the intended semantics. Therefore, there will be some of each below.

However, in order to be compelling , examples should be rooted in real code, i.e. code that was written without any thought of this PEP, as part of a useful application, however large or small. Tim Peters has been extremely helpful by going over his own personal code repository and picking examples of code he had written that (in his view) would have been clearer if rewritten with (sparing) use of assignment expressions. His conclusion: the current proposal would have allowed a modest but clear improvement in quite a few bits of code.

Another use of real code is to observe indirectly how much value programmers place on compactness. Guido van Rossum searched through a Dropbox code base and discovered some evidence that programmers value writing fewer lines over shorter lines.

Case in point: Guido found several examples where a programmer repeated a subexpression, slowing down the program, in order to save one line of code, e.g. instead of writing:

they would write:

Another example illustrates that programmers sometimes do more work to save an extra level of indentation:

This code tries to match pattern2 even if pattern1 has a match (in which case the match on pattern2 is never used). The more efficient rewrite would have been:

Syntax and semantics

In most contexts where arbitrary Python expressions can be used, a named expression can appear. This is of the form NAME := expr where expr is any valid Python expression other than an unparenthesized tuple, and NAME is an identifier.

The value of such a named expression is the same as the incorporated expression, with the additional side-effect that the target is assigned that value:

There are a few places where assignment expressions are not allowed, in order to avoid ambiguities or user confusion:

This rule is included to simplify the choice for the user between an assignment statement and an assignment expression – there is no syntactic position where both are valid.

Again, this rule is included to avoid two visually similar ways of saying the same thing.

This rule is included to disallow excessively confusing code, and because parsing keyword arguments is complex enough already.

This rule is included to discourage side effects in a position whose exact semantics are already confusing to many users (cf. the common style recommendation against mutable default values), and also to echo the similar prohibition in calls (the previous bullet).

The reasoning here is similar to the two previous cases; this ungrouped assortment of symbols and operators composed of : and = is hard to read correctly.

This allows lambda to always bind less tightly than := ; having a name binding at the top level inside a lambda function is unlikely to be of value, as there is no way to make use of it. In cases where the name will be used more than once, the expression is likely to need parenthesizing anyway, so this prohibition will rarely affect code.

This shows that what looks like an assignment operator in an f-string is not always an assignment operator. The f-string parser uses : to indicate formatting options. To preserve backwards compatibility, assignment operator usage inside of f-strings must be parenthesized. As noted above, this usage of the assignment operator is not recommended.

An assignment expression does not introduce a new scope. In most cases the scope in which the target will be bound is self-explanatory: it is the current scope. If this scope contains a nonlocal or global declaration for the target, the assignment expression honors that. A lambda (being an explicit, if anonymous, function definition) counts as a scope for this purpose.

There is one special case: an assignment expression occurring in a list, set or dict comprehension or in a generator expression (below collectively referred to as “comprehensions”) binds the target in the containing scope, honoring a nonlocal or global declaration for the target in that scope, if one exists. For the purpose of this rule the containing scope of a nested comprehension is the scope that contains the outermost comprehension. A lambda counts as a containing scope.

The motivation for this special case is twofold. First, it allows us to conveniently capture a “witness” for an any() expression, or a counterexample for all() , for example:

Second, it allows a compact way of updating mutable state from a comprehension, for example:

However, an assignment expression target name cannot be the same as a for -target name appearing in any comprehension containing the assignment expression. The latter names are local to the comprehension in which they appear, so it would be contradictory for a contained use of the same name to refer to the scope containing the outermost comprehension instead.

For example, [i := i+1 for i in range(5)] is invalid: the for i part establishes that i is local to the comprehension, but the i := part insists that i is not local to the comprehension. The same reason makes these examples invalid too:

While it’s technically possible to assign consistent semantics to these cases, it’s difficult to determine whether those semantics actually make sense in the absence of real use cases. Accordingly, the reference implementation [1] will ensure that such cases raise SyntaxError , rather than executing with implementation defined behaviour.

This restriction applies even if the assignment expression is never executed:

For the comprehension body (the part before the first “for” keyword) and the filter expression (the part after “if” and before any nested “for”), this restriction applies solely to target names that are also used as iteration variables in the comprehension. Lambda expressions appearing in these positions introduce a new explicit function scope, and hence may use assignment expressions with no additional restrictions.

Due to design constraints in the reference implementation (the symbol table analyser cannot easily detect when names are re-used between the leftmost comprehension iterable expression and the rest of the comprehension), named expressions are disallowed entirely as part of comprehension iterable expressions (the part after each “in”, and before any subsequent “if” or “for” keyword):

A further exception applies when an assignment expression occurs in a comprehension whose containing scope is a class scope. If the rules above were to result in the target being assigned in that class’s scope, the assignment expression is expressly invalid. This case also raises SyntaxError :

(The reason for the latter exception is the implicit function scope created for comprehensions – there is currently no runtime mechanism for a function to refer to a variable in the containing class scope, and we do not want to add such a mechanism. If this issue ever gets resolved this special case may be removed from the specification of assignment expressions. Note that the problem already exists for using a variable defined in the class scope from a comprehension.)

See Appendix B for some examples of how the rules for targets in comprehensions translate to equivalent code.

The := operator groups more tightly than a comma in all syntactic positions where it is legal, but less tightly than all other operators, including or , and , not , and conditional expressions ( A if C else B ). As follows from section “Exceptional cases” above, it is never allowed at the same level as = . In case a different grouping is desired, parentheses should be used.

The := operator may be used directly in a positional function call argument; however it is invalid directly in a keyword argument.

Some examples to clarify what’s technically valid or invalid:

Most of the “valid” examples above are not recommended, since human readers of Python source code who are quickly glancing at some code may miss the distinction. But simple cases are not objectionable:

This PEP recommends always putting spaces around := , similar to PEP 8 ’s recommendation for = when used for assignment, whereas the latter disallows spaces around = used for keyword arguments.)

In order to have precisely defined semantics, the proposal requires evaluation order to be well-defined. This is technically not a new requirement, as function calls may already have side effects. Python already has a rule that subexpressions are generally evaluated from left to right. However, assignment expressions make these side effects more visible, and we propose a single change to the current evaluation order:

  • In a dict comprehension {X: Y for ...} , Y is currently evaluated before X . We propose to change this so that X is evaluated before Y . (In a dict display like {X: Y} this is already the case, and also in dict((X, Y) for ...) which should clearly be equivalent to the dict comprehension.)

Most importantly, since := is an expression, it can be used in contexts where statements are illegal, including lambda functions and comprehensions.

Conversely, assignment expressions don’t support the advanced features found in assignment statements:

  • Multiple targets are not directly supported: x = y = z = 0 # Equivalent: (z := (y := (x := 0)))
  • Single assignment targets other than a single NAME are not supported: # No equivalent a [ i ] = x self . rest = []
  • Priority around commas is different: x = 1 , 2 # Sets x to (1, 2) ( x := 1 , 2 ) # Sets x to 1
  • Iterable packing and unpacking (both regular or extended forms) are not supported: # Equivalent needs extra parentheses loc = x , y # Use (loc := (x, y)) info = name , phone , * rest # Use (info := (name, phone, *rest)) # No equivalent px , py , pz = position name , phone , email , * other_info = contact
  • Inline type annotations are not supported: # Closest equivalent is "p: Optional[int]" as a separate declaration p : Optional [ int ] = None
  • Augmented assignment is not supported: total += tax # Equivalent: (total := total + tax)

The following changes have been made based on implementation experience and additional review after the PEP was first accepted and before Python 3.8 was released:

  • for consistency with other similar exceptions, and to avoid locking in an exception name that is not necessarily going to improve clarity for end users, the originally proposed TargetScopeError subclass of SyntaxError was dropped in favour of just raising SyntaxError directly. [3]
  • due to a limitation in CPython’s symbol table analysis process, the reference implementation raises SyntaxError for all uses of named expressions inside comprehension iterable expressions, rather than only raising them when the named expression target conflicts with one of the iteration variables in the comprehension. This could be revisited given sufficiently compelling examples, but the extra complexity needed to implement the more selective restriction doesn’t seem worthwhile for purely hypothetical use cases.

Examples from the Python standard library

env_base is only used on these lines, putting its assignment on the if moves it as the “header” of the block.

  • Current: env_base = os . environ . get ( "PYTHONUSERBASE" , None ) if env_base : return env_base
  • Improved: if env_base := os . environ . get ( "PYTHONUSERBASE" , None ): return env_base

Avoid nested if and remove one indentation level.

  • Current: if self . _is_special : ans = self . _check_nans ( context = context ) if ans : return ans
  • Improved: if self . _is_special and ( ans := self . _check_nans ( context = context )): return ans

Code looks more regular and avoid multiple nested if. (See Appendix A for the origin of this example.)

  • Current: reductor = dispatch_table . get ( cls ) if reductor : rv = reductor ( x ) else : reductor = getattr ( x , "__reduce_ex__" , None ) if reductor : rv = reductor ( 4 ) else : reductor = getattr ( x , "__reduce__" , None ) if reductor : rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )
  • Improved: if reductor := dispatch_table . get ( cls ): rv = reductor ( x ) elif reductor := getattr ( x , "__reduce_ex__" , None ): rv = reductor ( 4 ) elif reductor := getattr ( x , "__reduce__" , None ): rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )

tz is only used for s += tz , moving its assignment inside the if helps to show its scope.

  • Current: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) tz = self . _tzstr () if tz : s += tz return s
  • Improved: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) if tz := self . _tzstr (): s += tz return s

Calling fp.readline() in the while condition and calling .match() on the if lines make the code more compact without making it harder to understand.

  • Current: while True : line = fp . readline () if not line : break m = define_rx . match ( line ) if m : n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v else : m = undef_rx . match ( line ) if m : vars [ m . group ( 1 )] = 0
  • Improved: while line := fp . readline (): if m := define_rx . match ( line ): n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v elif m := undef_rx . match ( line ): vars [ m . group ( 1 )] = 0

A list comprehension can map and filter efficiently by capturing the condition:

Similarly, a subexpression can be reused within the main expression, by giving it a name on first use:

Note that in both cases the variable y is bound in the containing scope (i.e. at the same level as results or stuff ).

Assignment expressions can be used to good effect in the header of an if or while statement:

Particularly with the while loop, this can remove the need to have an infinite loop, an assignment, and a condition. It also creates a smooth parallel between a loop which simply uses a function call as its condition, and one which uses that as its condition but also uses the actual value.

An example from the low-level UNIX world:

Rejected alternative proposals

Proposals broadly similar to this one have come up frequently on python-ideas. Below are a number of alternative syntaxes, some of them specific to comprehensions, which have been rejected in favour of the one given above.

A previous version of this PEP proposed subtle changes to the scope rules for comprehensions, to make them more usable in class scope and to unify the scope of the “outermost iterable” and the rest of the comprehension. However, this part of the proposal would have caused backwards incompatibilities, and has been withdrawn so the PEP can focus on assignment expressions.

Broadly the same semantics as the current proposal, but spelled differently.

Since EXPR as NAME already has meaning in import , except and with statements (with different semantics), this would create unnecessary confusion or require special-casing (e.g. to forbid assignment within the headers of these statements).

(Note that with EXPR as VAR does not simply assign the value of EXPR to VAR – it calls EXPR.__enter__() and assigns the result of that to VAR .)

Additional reasons to prefer := over this spelling include:

  • In if f(x) as y the assignment target doesn’t jump out at you – it just reads like if f x blah blah and it is too similar visually to if f(x) and y .
  • import foo as bar
  • except Exc as var
  • with ctxmgr() as var

To the contrary, the assignment expression does not belong to the if or while that starts the line, and we intentionally allow assignment expressions in other contexts as well.

  • NAME = EXPR
  • if NAME := EXPR

reinforces the visual recognition of assignment expressions.

This syntax is inspired by languages such as R and Haskell, and some programmable calculators. (Note that a left-facing arrow y <- f(x) is not possible in Python, as it would be interpreted as less-than and unary minus.) This syntax has a slight advantage over ‘as’ in that it does not conflict with with , except and import , but otherwise is equivalent. But it is entirely unrelated to Python’s other use of -> (function return type annotations), and compared to := (which dates back to Algol-58) it has a much weaker tradition.

This has the advantage that leaked usage can be readily detected, removing some forms of syntactic ambiguity. However, this would be the only place in Python where a variable’s scope is encoded into its name, making refactoring harder.

Execution order is inverted (the indented body is performed first, followed by the “header”). This requires a new keyword, unless an existing keyword is repurposed (most likely with: ). See PEP 3150 for prior discussion on this subject (with the proposed keyword being given: ).

This syntax has fewer conflicts than as does (conflicting only with the raise Exc from Exc notation), but is otherwise comparable to it. Instead of paralleling with expr as target: (which can be useful but can also be confusing), this has no parallels, but is evocative.

One of the most popular use-cases is if and while statements. Instead of a more general solution, this proposal enhances the syntax of these two statements to add a means of capturing the compared value:

This works beautifully if and ONLY if the desired condition is based on the truthiness of the captured value. It is thus effective for specific use-cases (regex matches, socket reads that return '' when done), and completely useless in more complicated cases (e.g. where the condition is f(x) < 0 and you want to capture the value of f(x) ). It also has no benefit to list comprehensions.

Advantages: No syntactic ambiguities. Disadvantages: Answers only a fraction of possible use-cases, even in if / while statements.

Another common use-case is comprehensions (list/set/dict, and genexps). As above, proposals have been made for comprehension-specific solutions.

This brings the subexpression to a location in between the ‘for’ loop and the expression. It introduces an additional language keyword, which creates conflicts. Of the three, where reads the most cleanly, but also has the greatest potential for conflict (e.g. SQLAlchemy and numpy have where methods, as does tkinter.dnd.Icon in the standard library).

As above, but reusing the with keyword. Doesn’t read too badly, and needs no additional language keyword. Is restricted to comprehensions, though, and cannot as easily be transformed into “longhand” for-loop syntax. Has the C problem that an equals sign in an expression can now create a name binding, rather than performing a comparison. Would raise the question of why “with NAME = EXPR:” cannot be used as a statement on its own.

As per option 2, but using as rather than an equals sign. Aligns syntactically with other uses of as for name binding, but a simple transformation to for-loop longhand would create drastically different semantics; the meaning of with inside a comprehension would be completely different from the meaning as a stand-alone statement, while retaining identical syntax.

Regardless of the spelling chosen, this introduces a stark difference between comprehensions and the equivalent unrolled long-hand form of the loop. It is no longer possible to unwrap the loop into statement form without reworking any name bindings. The only keyword that can be repurposed to this task is with , thus giving it sneakily different semantics in a comprehension than in a statement; alternatively, a new keyword is needed, with all the costs therein.

There are two logical precedences for the := operator. Either it should bind as loosely as possible, as does statement-assignment; or it should bind more tightly than comparison operators. Placing its precedence between the comparison and arithmetic operators (to be precise: just lower than bitwise OR) allows most uses inside while and if conditions to be spelled without parentheses, as it is most likely that you wish to capture the value of something, then perform a comparison on it:

Once find() returns -1, the loop terminates. If := binds as loosely as = does, this would capture the result of the comparison (generally either True or False ), which is less useful.

While this behaviour would be convenient in many situations, it is also harder to explain than “the := operator behaves just like the assignment statement”, and as such, the precedence for := has been made as close as possible to that of = (with the exception that it binds tighter than comma).

Some critics have claimed that the assignment expressions should allow unparenthesized tuples on the right, so that these two would be equivalent:

(With the current version of the proposal, the latter would be equivalent to ((point := x), y) .)

However, adopting this stance would logically lead to the conclusion that when used in a function call, assignment expressions also bind less tight than comma, so we’d have the following confusing equivalence:

The less confusing option is to make := bind more tightly than comma.

It’s been proposed to just always require parentheses around an assignment expression. This would resolve many ambiguities, and indeed parentheses will frequently be needed to extract the desired subexpression. But in the following cases the extra parentheses feel redundant:

Frequently Raised Objections

C and its derivatives define the = operator as an expression, rather than a statement as is Python’s way. This allows assignments in more contexts, including contexts where comparisons are more common. The syntactic similarity between if (x == y) and if (x = y) belies their drastically different semantics. Thus this proposal uses := to clarify the distinction.

The two forms have different flexibilities. The := operator can be used inside a larger expression; the = statement can be augmented to += and its friends, can be chained, and can assign to attributes and subscripts.

Previous revisions of this proposal involved sublocal scope (restricted to a single statement), preventing name leakage and namespace pollution. While a definite advantage in a number of situations, this increases complexity in many others, and the costs are not justified by the benefits. In the interests of language simplicity, the name bindings created here are exactly equivalent to any other name bindings, including that usage at class or module scope will create externally-visible names. This is no different from for loops or other constructs, and can be solved the same way: del the name once it is no longer needed, or prefix it with an underscore.

(The author wishes to thank Guido van Rossum and Christoph Groth for their suggestions to move the proposal in this direction. [2] )

As expression assignments can sometimes be used equivalently to statement assignments, the question of which should be preferred will arise. For the benefit of style guides such as PEP 8 , two recommendations are suggested.

  • If either assignment statements or assignment expressions can be used, prefer statements; they are a clear declaration of intent.
  • If using assignment expressions would lead to ambiguity about execution order, restructure it to use statements instead.

The authors wish to thank Alyssa Coghlan and Steven D’Aprano for their considerable contributions to this proposal, and members of the core-mentorship mailing list for assistance with implementation.

Appendix A: Tim Peters’s findings

Here’s a brief essay Tim Peters wrote on the topic.

I dislike “busy” lines of code, and also dislike putting conceptually unrelated logic on a single line. So, for example, instead of:

instead. So I suspected I’d find few places I’d want to use assignment expressions. I didn’t even consider them for lines already stretching halfway across the screen. In other cases, “unrelated” ruled:

is a vast improvement over the briefer:

The original two statements are doing entirely different conceptual things, and slamming them together is conceptually insane.

In other cases, combining related logic made it harder to understand, such as rewriting:

as the briefer:

The while test there is too subtle, crucially relying on strict left-to-right evaluation in a non-short-circuiting or method-chaining context. My brain isn’t wired that way.

But cases like that were rare. Name binding is very frequent, and “sparse is better than dense” does not mean “almost empty is better than sparse”. For example, I have many functions that return None or 0 to communicate “I have nothing useful to return in this case, but since that’s expected often I’m not going to annoy you with an exception”. This is essentially the same as regular expression search functions returning None when there is no match. So there was lots of code of the form:

I find that clearer, and certainly a bit less typing and pattern-matching reading, as:

It’s also nice to trade away a small amount of horizontal whitespace to get another _line_ of surrounding code on screen. I didn’t give much weight to this at first, but it was so very frequent it added up, and I soon enough became annoyed that I couldn’t actually run the briefer code. That surprised me!

There are other cases where assignment expressions really shine. Rather than pick another from my code, Kirill Balunov gave a lovely example from the standard library’s copy() function in copy.py :

The ever-increasing indentation is semantically misleading: the logic is conceptually flat, “the first test that succeeds wins”:

Using easy assignment expressions allows the visual structure of the code to emphasize the conceptual flatness of the logic; ever-increasing indentation obscured it.

A smaller example from my code delighted me, both allowing to put inherently related logic in a single line, and allowing to remove an annoying “artificial” indentation level:

That if is about as long as I want my lines to get, but remains easy to follow.

So, in all, in most lines binding a name, I wouldn’t use assignment expressions, but because that construct is so very frequent, that leaves many places I would. In most of the latter, I found a small win that adds up due to how often it occurs, and in the rest I found a moderate to major win. I’d certainly use it more often than ternary if , but significantly less often than augmented assignment.

I have another example that quite impressed me at the time.

Where all variables are positive integers, and a is at least as large as the n’th root of x, this algorithm returns the floor of the n’th root of x (and roughly doubling the number of accurate bits per iteration):

It’s not obvious why that works, but is no more obvious in the “loop and a half” form. It’s hard to prove correctness without building on the right insight (the “arithmetic mean - geometric mean inequality”), and knowing some non-trivial things about how nested floor functions behave. That is, the challenges are in the math, not really in the coding.

If you do know all that, then the assignment-expression form is easily read as “while the current guess is too large, get a smaller guess”, where the “too large?” test and the new guess share an expensive sub-expression.

To my eyes, the original form is harder to understand:

This appendix attempts to clarify (though not specify) the rules when a target occurs in a comprehension or in a generator expression. For a number of illustrative examples we show the original code, containing a comprehension, and the translation, where the comprehension has been replaced by an equivalent generator function plus some scaffolding.

Since [x for ...] is equivalent to list(x for ...) these examples all use list comprehensions without loss of generality. And since these examples are meant to clarify edge cases of the rules, they aren’t trying to look like real code.

Note: comprehensions are already implemented via synthesizing nested generator functions like those in this appendix. The new part is adding appropriate declarations to establish the intended scope of assignment expression targets (the same scope they resolve to as if the assignment were performed in the block containing the outermost comprehension). For type inference purposes, these illustrative expansions do not imply that assignment expression targets are always Optional (but they do indicate the target binding scope).

Let’s start with a reminder of what code is generated for a generator expression without assignment expression.

  • Original code (EXPR usually references VAR): def f (): a = [ EXPR for VAR in ITERABLE ]
  • Translation (let’s not worry about name conflicts): def f (): def genexpr ( iterator ): for VAR in iterator : yield EXPR a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a simple assignment expression.

  • Original code: def f (): a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): if False : TARGET = None # Dead code to ensure TARGET is a local variable def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a global TARGET declaration in f() .

  • Original code: def f (): global TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): global TARGET def genexpr ( iterator ): global TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Or instead let’s add a nonlocal TARGET declaration in f() .

  • Original code: def g (): TARGET = ... def f (): nonlocal TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def g (): TARGET = ... def f (): nonlocal TARGET def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Finally, let’s nest two comprehensions.

  • Original code: def f (): a = [[ TARGET := i for i in range ( 3 )] for j in range ( 2 )] # I.e., a = [[0, 1, 2], [0, 1, 2]] print ( TARGET ) # prints 2
  • Translation: def f (): if False : TARGET = None def outer_genexpr ( outer_iterator ): nonlocal TARGET def inner_generator ( inner_iterator ): nonlocal TARGET for i in inner_iterator : TARGET = i yield i for j in outer_iterator : yield list ( inner_generator ( range ( 3 ))) a = list ( outer_genexpr ( range ( 2 ))) print ( TARGET )

Because it has been a point of confusion, note that nothing about Python’s scoping semantics is changed. Function-local scopes continue to be resolved at compile time, and to have indefinite temporal extent at run time (“full closures”). Example:

This document has been placed in the public domain.

Source: https://github.com/python/peps/blob/main/peps/pep-0572.rst

Last modified: 2023-10-11 12:05:51 GMT

  • Python Basics
  • Interview Questions
  • Python Quiz
  • Popular Packages
  • Python Projects
  • Practice Python
  • AI With Python
  • Learn Python3
  • Python Automation
  • Python Web Dev
  • DSA with Python
  • Python OOPs
  • Dictionaries
  • Python Operators
  • Precedence and Associativity of Operators in Python
  • Python Arithmetic Operators
  • Difference between / vs. // operator in Python
  • Python - Star or Asterisk operator ( * )
  • What does the Double Star operator mean in Python?
  • Division Operators in Python
  • Modulo operator (%) in Python
  • Python Logical Operators
  • Python OR Operator
  • Difference between 'and' and '&' in Python
  • not Operator in Python | Boolean Logic
  • Ternary Operator in Python
  • Python Bitwise Operators

Python Assignment Operators

Assignment operators in python.

  • Walrus Operator in Python 3.8
  • Increment += and Decrement -= Assignment Operators in Python
  • Merging and Updating Dictionary Operators in Python 3.9
  • New '=' Operator in Python3.8 f-string

Python Relational Operators

  • Comparison Operators in Python
  • Python NOT EQUAL operator
  • Difference between == and is operator in Python
  • Chaining comparison operators in Python
  • Python Membership and Identity Operators
  • Difference between != and is not operator in Python

The Python Operators are used to perform operations on values and variables. These are the special symbols that carry out arithmetic, logical, and bitwise computations. The value the operator operates on is known as the Operand. Here, we will cover Different Assignment operators in Python .

Here are the Assignment Operators in Python with examples.

Assignment Operator

Assignment Operators are used to assign values to variables. This operator is used to assign the value of the right side of the expression to the left side operand.

Addition Assignment Operator

The Addition Assignment Operator is used to add the right-hand side operand with the left-hand side operand and then assigning the result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the addition assignment operator which will first perform the addition operation and then assign the result to the variable on the left-hand side.

S ubtraction Assignment Operator

The Subtraction Assignment Operator is used to subtract the right-hand side operand from the left-hand side operand and then assigning the result to the left-hand side operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the subtraction assignment operator which will first perform the subtraction operation and then assign the result to the variable on the left-hand side.

M ultiplication Assignment Operator

The Multiplication Assignment Operator is used to multiply the right-hand side operand with the left-hand side operand and then assigning the result to the left-hand side operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the multiplication assignment operator which will first perform the multiplication operation and then assign the result to the variable on the left-hand side.

D ivision Assignment Operator

The Division Assignment Operator is used to divide the left-hand side operand with the right-hand side operand and then assigning the result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the division assignment operator which will first perform the division operation and then assign the result to the variable on the left-hand side.

M odulus Assignment Operator

The Modulus Assignment Operator is used to take the modulus, that is, it first divides the operands and then takes the remainder and assigns it to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the modulus assignment operator which will first perform the modulus operation and then assign the result to the variable on the left-hand side.

F loor Division Assignment Operator

The Floor Division Assignment Operator is used to divide the left operand with the right operand and then assigs the result(floor value) to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the floor division assignment operator which will first perform the floor division operation and then assign the result to the variable on the left-hand side.

Exponentiation Assignment Operator

The Exponentiation Assignment Operator is used to calculate the exponent(raise power) value using operands and then assigning the result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the exponentiation assignment operator which will first perform exponent operation and then assign the result to the variable on the left-hand side.

Bitwise AND Assignment Operator

The Bitwise AND Assignment Operator is used to perform Bitwise AND operation on both operands and then assigning the result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the bitwise AND assignment operator which will first perform Bitwise AND operation and then assign the result to the variable on the left-hand side.

Bitwise OR Assignment Operator

The Bitwise OR Assignment Operator is used to perform Bitwise OR operation on the operands and then assigning result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the bitwise OR assignment operator which will first perform bitwise OR operation and then assign the result to the variable on the left-hand side.

Bitwise XOR Assignment Operator 

The Bitwise XOR Assignment Operator is used to perform Bitwise XOR operation on the operands and then assigning result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the bitwise XOR assignment operator which will first perform bitwise XOR operation and then assign the result to the variable on the left-hand side.

Bitwise Right Shift Assignment Operator

The Bitwise Right Shift Assignment Operator is used to perform Bitwise Right Shift Operation on the operands and then assign result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the bitwise right shift assignment operator which will first perform bitwise right shift operation and then assign the result to the variable on the left-hand side.

Bitwise Left Shift Assignment Operator

The Bitwise Left Shift Assignment Operator is used to perform Bitwise Left Shift Opertator on the operands and then assign result to the left operand.

Example: In this code we have two variables ‘a’ and ‘b’ and assigned them with some integer value. Then we have used the bitwise left shift assignment operator which will first perform bitwise left shift operation and then assign the result to the variable on the left-hand side.

Walrus Operator

The Walrus Operator in Python is a new assignment operator which is introduced in Python version 3.8 and higher. This operator is used to assign a value to a variable within an expression.

Example: In this code, we have a Python list of integers. We have used Python Walrus assignment operator within the Python while loop . The operator will solve the expression on the right-hand side and assign the value to the left-hand side operand ‘x’ and then execute the remaining code.

Please Login to comment...

Similar reads.

author

  • Python-Operators

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

5. Assignment Expressions

By Bernd Klein . Last modified: 30 Nov 2023.

On this page ➤

Introduction

walrus

This section in our Python tutorial explores the "assignment expression operator" affectionately known to many as "the walrus operator. So, you can call it either the "walrus operator" or the "assignment expression operator," and people in the Python programming community will generally understand what you mean. Despite being introduced in Python version 3.8, we can still view it as a relatively recent addition to the language. The assignment expressions have been discussed in PEP 572 and this is what was written about the naming:

The purpose of this feature is not a new way to assign objects to variables, but it gives programmers a convenient way to assign variables in the middle of expressions.

You might still be curious about the origin of the term "walrus operator." It's affectionately named this way because, with a touch of imagination, the operator's characters resemble the eyes and tusks of a walrus.

We will introduce the assignment expression by comparing it first with a simple assignment statement. A simple assignment statement can also be replaced by an assignment expression, even though it looks clumsy and is definitely not the intended use case of it:

First you may wonder about the brackets, when you look at the assignment expression. It is not meant as a replacement for the simple "assignment statement". Its primary role is to be utilized within expressions

The following code shows a proper usecase:

Though you may argue that the following code might be even clearer:

Here's another Python code example that demonstrates a similar scenario. First with the walrus operator:

Now without the walrus operator:

Live Python training

instructor-led training course

Enjoying this page? We offer live Python training courses covering the content of this site.

See: Live Python courses overview

Beneficial applications

Now, let's explore some examples where the usage of the assignment expression is really beneficial compared to code not using it.

You can observe that if we choose to avoid using the assignment expression in the list comprehension, we would need to call the function twice. So using the assgment expression makes the code in this context more efficient.

Use Case: Regular Expressions

There is also a great advantage when we use regular expressions. Like in our previous examples we present again two similiar code snippets, the first one without and the second one with the walrus operator:

Now, the code using assignment expressions:

Assignment Expression in File Reading

Fixed-width files.

Files in which each line has the same length are often referred to as "fixed-width" or "fixed-length" files. In these files, each line (or record) is structured so that it contains a predefined number of characters, and the fields within the lines have fixed positions. The files can be read by using the read -method and the walrus operator:

Now the same in traditional coding style:

The benefits for the most recent code snippet are

  • It uses a more traditional coding style, which may be more familiar to some developers.
  • It assigns and uses the data variable explicitly, making the code easier to understand for those not familiar with assignment expressions.

However, a significant drawback of this approach is that it requires the explicit assignment and reassignment of the data variable, which can be seen as less concise and somewhat less elegant.

Using readline

Most people use a for loop to iterator over a text file line by line. With the walrus operator, we can also elegantly go through a text using the method readline :

Code snippet using readline but not the assignment expression:

Now with the walrus operator:

Another Use Case

In the chapter on while loops of our Python Tutorial, we had a little number guessing game:

As you can see, we had to initialize guess to zero to be able to enter the loop. We can do the initialization directly in the loop condition with an assignment expression and simplify the whole code by this:

Critiques of the Walrus Operator in Python

the Python walrus

We said in the beginning of this page that some Python programmers longed for this construct for quite a while. One reason why it was not introduced earlier was the fact that it can also be used to write code which is less readable. In fact, the application of the walrus operator contradicts several principles highlighted in the Zen of Python. To grasp these contraventions, let's delve into the ensuing scenarios.

The Zen of Python says "Explicit is better than implicit". The walrus operator violates this requirement of the Zen of Python. This means that explicit operations are always better than implicit operations. The walrus operator assigns a value to a variable and implicitly returns the value as well. Therefore, it does not align with the concept of "Explicit is better than implicit."

The following code snippet is shows an extreme example which is not recommended to use:

What are your thoughts on the following piece of code using the Python assignment operator inside of a print function call?

These Python code snipets certainly violate two other demands of the Zen of Python:

  • Beautiful is Better Than Ugly
  • Complex is Better Than Complicated

The principle "There should be one and preferably only one obvious way to do it" from the Zen of Python emphasizes the importance of having a clear and singular approach. When we have the option to separate assignment and return operations into distinct statements, opting for the less readable and more complex walrus operator contradicts this principle.

Upcoming online Courses

On this page

Mouse Vs Python

Python 101 – Assignment Expressions

Assignment expressions were added to Python in version 3.8 . The general idea is that an assignment expression allows you to assign to variables within an expression.

The syntax for doing this is:

This operator has been called the “walrus operator”, although their real name is “assignment expression”. Interestingly, the CPython internals also refer to them as “named expressions”.

You can read all about assignment expressions in PEP 572 . Let’s find out how to use assignment expressions!

Using Assignment Expressions

Assignment expressions are still relatively rare. However, you need to know about assignment expressions because you will probably come across them from time to time. PEP 572 has some good examples of assignment expressions.

In these 3 examples, you are creating a variable in the expression statement itself. The first example creates the variable match by assigning it the result of the regex pattern search. The second example assigns the variable value to the result of calling a function in the while loop’s expression. Finally, you assign the result of calling f(x) to the variable y inside of a list comprehension.

It would probably help to see the difference between code that doesn’t use an assignment expression and one that does. Here’s an example of reading a file in chunks:

This code will open up a file of indeterminate size and process it 1024 bytes at a time. You will find this useful when working with very large files as it prevents you from loading the entire file into memory. If you do, you can run out of memory and cause your application or even the computer to crash.

You can shorten this code up a bit by using an assignment expression:

Here you assign the result of the read() to data within the while loop’s expression. This allows you to then use that variable inside of the while loop’s code block. It also checks that some data was returned so you don’t have to have the if not data: break stanza.

Another good example that is mentioned in PEP 572 is taken from Python’s own site.py . Here’s how the code was originally:

And this is how it could be simplified by using an assignment expression:

You move the assignment into the conditional statement’s expression, which shortens the code up nicely.

Now let’s discover some of the situations where assignment expressions can’t be used.

What You Cannot Do With Assignment Expressions

There are several cases where assignment expressions cannot be used.

One of the most interesting features of assignment expressions is that they can be used in contexts that an assignment statement cannot, such as in a lambda or the previously mentioned comprehension. However, they do NOT support some things that assignment statements can do. For example, you cannot do multiple target assignment:

Another prohibited use case is using an assignment expression at the top level of an expression statement. Here is an example from PEP 572:

There is a detailed list of other cases where assignment expressions are prohibited or discouraged in the PEP. You should check that document out if you plan to use assignment expressions often.

Wrapping Up

Assignment expressions are an elegant way to clean up certain parts of your code. The feature’s syntax is kind of similar to type hinting a variable. Once you have the hang of one, the other should become easier to do as well.

In this article, you saw some real-world examples of using the “walrus operator”. You also learned when assignment expressions shouldn’t be used. This syntax is only available in Python 3.8 or newer, so if you happen to be forced to use an older version of Python, this feature won’t be of much use to you.

Related Reading

This article is based on a chapter from Python 101, 2nd Edition , which you can purchase on Leanpub or Amazon .

If you’d like to learn more Python, then check out these tutorials:

Python 101 – How to Work with Images

Python 101 – Documenting Your Code

Python 101: An Intro to Working with JSON

Python 101 – Creating Multiple Processes

Python Tutorial

File handling, python modules, python numpy, python pandas, python matplotlib, python scipy, machine learning, python mysql, python mongodb, python reference, module reference, python how to, python examples, python assignment operators.

Assignment operators are used to assign values to variables:

Related Pages

Get Certified

COLOR PICKER

colorpicker

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail: [email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail: [email protected]

Top Tutorials

Top references, top examples, get certified.

Python walrus operator (Python 3.8 assignment expression)

Python walrus operator (Python 3.8 assignment expression)

The “Python walrus operator”, officially known as the assignment expression operator, was introduced in Python 3.8. It’s symbolized by a colon followed by an equal sign := .

The Python community refers to it as the “walrus operator” due to its resemblance to a pair of eyes and tusks, like that of a walrus.

  • 1 The Need for the Walrus Operator
  • 2 Syntax of the Walrus Operator
  • 3 Using in If Statements and While Loops
  • 4 Using in List Comprehensions
  • 5 Walrus Operator with Data Structures
  • 6 When to Use and When Not
  • 7 Compatibility and Version Support
  • 8 Tips for Transitioning from Traditional Python Syntax

The Need for the Walrus Operator

Before the introduction of the walrus operator, Python developers had to assign values to variables in one line and use them in comparisons in the next.

This often resulted in multiple lines of code for simple operations.

In this code snippet, we had to write two lines to assign the value and then use it for comparison.

The walrus operator allows developers to assign and use variables within the same expression.

Syntax of the Walrus Operator

The syntax of the walrus operator is relatively straightforward. It involves a variable, a walrus operator := , and an expression.

Remember to enclose the assignment expression in parentheses.

In this case, the walrus operator assigns the value 10 to value and also returns the value 10 . However, remember that you can’t use this operator in a stand-alone statement, unlike the standard assignment operator = .

Using in If Statements and While Loops

The walrus operator can be used in if statements and while loops to make the code more concise. Here’s how to use the walrus operator in if statements.

In this example, the walrus operator is used to assign the length of input_value to value and compare it with 4 in the same line.

As the length of the string “Hello” is 5 , which is greater than 4 , the message is printed.

You can also use the walrus operator in while loops to make the code more concise:

In this example, the walrus operator is used to assign the value of input("Enter a non-empty string: ") to value and compare it to an empty string "" .

The loop continues to execute as long as the user enters an empty string.

As soon as a non-empty string is entered, it breaks out of the loop and prints the non-empty string.

Using in List Comprehensions

The walrus operator is handy when working with list comprehensions in Python. This allows for more complex calculations within list comprehensions without calling a function multiple times.

In this example, the walrus operator assigns the value of random.randint(1, 20) to number and checks if it’s even. If it is, it adds the number to the list. This results in a list of random even numbers.

Walrus Operator with Data Structures

The walrus operator can be effectively used with Python’s data structures like lists, sets, and dictionaries, as well as in comprehensions for these data structures.

In this example, the walrus operator is used to assign the maximum and minimum values of the numbers list to the variables num_max and num_min within the dictionary comprehension.

When to Use and When Not

While the walrus operator offers many advantages, it should be used judiciously. It’s best suited to situations where using it can make the code more concise without sacrificing readability.

For example, it’s beneficial when a variable needs to be assigned and used in the same line, such as within conditions or list comprehensions. On the other hand, it may not be suitable for complex expressions, as it can make the code difficult to read and understand.

Similarly, in situations where a stand-alone assignment is needed, the traditional assignment operator = should be used instead of the walrus operator.

Compatibility and Version Support

The walrus operator is a new operator introduced in Python 3.8. As such, it is not available in Python versions prior to 3.8.

For new projects or projects that are guaranteed to run on Python 3.8 or later, feel free to use the walrus operator whenever it improves your code’s clarity and conciseness.

If you’re working on a project that needs to support older Python versions, you should avoid using the walrus operator or rewrite your code in the new syntax.

Tips for Transitioning from Traditional Python Syntax

Transitioning to use the walrus operator from traditional Python syntax can be straightforward with the following tips:

  • Start using the walrus operator in simple use cases like if conditions or while loops.
  • Gradually move to more advanced uses like list comprehensions and function calls.
  • Always consider the readability of your code. If the use of the walrus operator makes your code hard to read, it might be better to stick with traditional syntax.

Resource : https://docs.python.org/3/whatsnew/3.8.html

  • Share on Facebook
  • Tweet on Twitter

Mokhtar Ebrahim

Mokhtar is the founder of LikeGeeks.com. He is a seasoned technologist and accomplished author, with expertise in Linux system administration and Python development. Since 2010, Mokhtar has built an impressive career, transitioning from system administration to Python development in 2015. His work spans large corporations to freelance clients around the globe. Alongside his technical work, Mokhtar has authored some insightful books in his field. Known for his innovative solutions, meticulous attention to detail, and high-quality work, Mokhtar continually seeks new challenges within the dynamic field of technology.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Python »
  • 3.12.3 Documentation »
  • The Python Language Reference »
  • 8. Compound statements
  • Theme Auto Light Dark |

8. Compound statements ¶

Compound statements contain (groups of) other statements; they affect or control the execution of those other statements in some way. In general, compound statements span multiple lines, although in simple incarnations a whole compound statement may be contained in one line.

The if , while and for statements implement traditional control flow constructs. try specifies exception handlers and/or cleanup code for a group of statements, while the with statement allows the execution of initialization and finalization code around a block of code. Function and class definitions are also syntactically compound statements.

A compound statement consists of one or more ‘clauses.’ A clause consists of a header and a ‘suite.’ The clause headers of a particular compound statement are all at the same indentation level. Each clause header begins with a uniquely identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can be one or more semicolon-separated simple statements on the same line as the header, following the header’s colon, or it can be one or more indented statements on subsequent lines. Only the latter form of a suite can contain nested compound statements; the following is illegal, mostly because it wouldn’t be clear to which if clause a following else clause would belong:

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all or none of the print() calls are executed:

Summarizing:

Note that statements always end in a NEWLINE possibly followed by a DEDENT . Also note that optional continuation clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the ‘dangling else ’ problem is solved in Python by requiring nested if statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

8.1. The if statement ¶

The if statement is used for conditional execution:

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see section Boolean operations for the definition of true and false); then that suite is executed (and no other part of the if statement is executed or evaluated). If all expressions are false, the suite of the else clause, if present, is executed.

8.2. The while statement ¶

The while statement is used for repeated execution as long as an expression is true:

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be the first time it is tested) the suite of the else clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A continue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

8.3. The for statement ¶

The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable object:

The starred_list expression is evaluated once; it should yield an iterable object. An iterator is created for that iterable. The first item provided by the iterator is then assigned to the target list using the standard rules for assignments (see Assignment statements ), and the suite is executed. This repeats for each item provided by the iterator. When the iterator is exhausted, the suite in the else clause, if present, is executed, and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A continue statement executed in the first suite skips the rest of the suite and continues with the next item, or with the else clause if there is no next item.

The for-loop makes assignments to the variables in the target list. This overwrites all previous assignments to those variables including those made in the suite of the for-loop:

Names in the target list are not deleted when the loop is finished, but if the sequence is empty, they will not have been assigned to at all by the loop. Hint: the built-in type range() represents immutable arithmetic sequences of integers. For instance, iterating range(3) successively yields 0, 1, and then 2.

Changed in version 3.11: Starred elements are now allowed in the expression list.

8.4. The try statement ¶

The try statement specifies exception handlers and/or cleanup code for a group of statements:

Additional information on exceptions can be found in section Exceptions , and information on using the raise statement to generate exceptions may be found in section The raise statement .

8.4.1. except clause ¶

The except clause(s) specify one or more exception handlers. When no exception occurs in the try clause, no exception handler is executed. When an exception occurs in the try suite, a search for an exception handler is started. This search inspects the except clauses in turn until one is found that matches the exception. An expression-less except clause, if present, must be last; it matches any exception. For an except clause with an expression, that expression is evaluated, and the clause matches the exception if the resulting object is “compatible” with the exception. An object is compatible with an exception if the object is the class or a non-virtual base class of the exception object, or a tuple containing an item that is the class or a non-virtual base class of the exception object.

If no except clause matches the exception, the search for an exception handler continues in the surrounding code and on the invocation stack. [ 1 ]

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a handler is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is treated as if the entire try statement raised the exception).

When a matching except clause is found, the exception is assigned to the target specified after the as keyword in that except clause, if present, and the except clause’s suite is executed. All except clauses must have an executable block. When the end of this block is reached, execution continues normally after the entire try statement. (This means that if two nested handlers exist for the same exception, and the exception occurs in the try clause of the inner handler, the outer handler will not handle the exception.)

When an exception has been assigned using as target , it is cleared at the end of the except clause. This is as if

was translated to

This means the exception must be assigned to a different name to be able to refer to it after the except clause. Exceptions are cleared because with the traceback attached to them, they form a reference cycle with the stack frame, keeping all locals in that frame alive until the next garbage collection occurs.

Before an except clause’s suite is executed, the exception is stored in the sys module, where it can be accessed from within the body of the except clause by calling sys.exception() . When leaving an exception handler, the exception stored in the sys module is reset to its previous value:

8.4.2. except* clause ¶

The except* clause(s) are used for handling ExceptionGroup s. The exception type for matching is interpreted as in the case of except , but in the case of exception groups we can have partial matches when the type matches some of the exceptions in the group. This means that multiple except* clauses can execute, each handling part of the exception group. Each clause executes at most once and handles an exception group of all matching exceptions. Each exception in the group is handled by at most one except* clause, the first that matches it.

Any remaining exceptions that were not handled by any except* clause are re-raised at the end, along with all exceptions that were raised from within the except* clauses. If this list contains more than one exception to reraise, they are combined into an exception group.

If the raised exception is not an exception group and its type matches one of the except* clauses, it is caught and wrapped by an exception group with an empty message string.

An except* clause must have a matching type, and this type cannot be a subclass of BaseExceptionGroup . It is not possible to mix except and except* in the same try . break , continue and return cannot appear in an except* clause.

8.4.3. else clause ¶

The optional else clause is executed if the control flow leaves the try suite, no exception was raised, and no return , continue , or break statement was executed. Exceptions in the else clause are not handled by the preceding except clauses.

8.4.4. finally clause ¶

If finally is present, it specifies a ‘cleanup’ handler. The try clause is executed, including any except and else clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved. The finally clause is executed. If there is a saved exception it is re-raised at the end of the finally clause. If the finally clause raises another exception, the saved exception is set as the context of the new exception. If the finally clause executes a return , break or continue statement, the saved exception is discarded:

The exception information is not available to the program during execution of the finally clause.

When a return , break or continue statement is executed in the try suite of a try … finally statement, the finally clause is also executed ‘on the way out.’

The return value of a function is determined by the last return statement executed. Since the finally clause always executes, a return statement executed in the finally clause will always be the last one executed:

Changed in version 3.8: Prior to Python 3.8, a continue statement was illegal in the finally clause due to a problem with the implementation.

8.5. The with statement ¶

The with statement is used to wrap the execution of a block with methods defined by a context manager (see section With Statement Context Managers ). This allows common try … except … finally usage patterns to be encapsulated for convenient reuse.

The execution of the with statement with one “item” proceeds as follows:

The context expression (the expression given in the with_item ) is evaluated to obtain a context manager.

The context manager’s __enter__() is loaded for later use.

The context manager’s __exit__() is loaded for later use.

The context manager’s __enter__() method is invoked.

If a target was included in the with statement, the return value from __enter__() is assigned to it.

The with statement guarantees that if the __enter__() method returns without an error, then __exit__() will always be called. Thus, if an error occurs during the assignment to the target list, it will be treated the same as an error occurring within the suite would be. See step 7 below.

The suite is executed.

The context manager’s __exit__() method is invoked. If an exception caused the suite to be exited, its type, value, and traceback are passed as arguments to __exit__() . Otherwise, three None arguments are supplied.

If the suite was exited due to an exception, and the return value from the __exit__() method was false, the exception is reraised. If the return value was true, the exception is suppressed, and execution continues with the statement following the with statement.

If the suite was exited for any reason other than an exception, the return value from __exit__() is ignored, and execution proceeds at the normal location for the kind of exit that was taken.

The following code:

is semantically equivalent to:

With more than one item, the context managers are processed as if multiple with statements were nested:

You can also write multi-item context managers in multiple lines if the items are surrounded by parentheses. For example:

Changed in version 3.1: Support for multiple context expressions.

Changed in version 3.10: Support for using grouping parentheses to break the statement in multiple lines.

The specification, background, and examples for the Python with statement.

8.6. The match statement ¶

Added in version 3.10.

The match statement is used for pattern matching. Syntax:

This section uses single quotes to denote soft keywords .

Pattern matching takes a pattern as input (following case ) and a subject value (following match ). The pattern (which may contain subpatterns) is matched against the subject value. The outcomes are:

A match success or failure (also termed a pattern success or failure).

Possible binding of matched values to a name. The prerequisites for this are further discussed below.

The match and case keywords are soft keywords .

PEP 634 – Structural Pattern Matching: Specification

PEP 636 – Structural Pattern Matching: Tutorial

8.6.1. Overview ¶

Here’s an overview of the logical flow of a match statement:

The subject expression subject_expr is evaluated and a resulting subject value obtained. If the subject expression contains a comma, a tuple is constructed using the standard rules .

Each pattern in a case_block is attempted to match with the subject value. The specific rules for success or failure are described below. The match attempt can also bind some or all of the standalone names within the pattern. The precise pattern binding rules vary per pattern type and are specified below. Name bindings made during a successful pattern match outlive the executed block and can be used after the match statement .

During failed pattern matches, some subpatterns may succeed. Do not rely on bindings being made for a failed match. Conversely, do not rely on variables remaining unchanged after a failed match. The exact behavior is dependent on implementation and may vary. This is an intentional decision made to allow different implementations to add optimizations.

If the pattern succeeds, the corresponding guard (if present) is evaluated. In this case all name bindings are guaranteed to have happened.

If the guard evaluates as true or is missing, the block inside case_block is executed.

Otherwise, the next case_block is attempted as described above.

If there are no further case blocks, the match statement is completed.

Users should generally never rely on a pattern being evaluated. Depending on implementation, the interpreter may cache values or use other optimizations which skip repeated evaluations.

A sample match statement:

In this case, if flag is a guard. Read more about that in the next section.

8.6.2. Guards ¶

A guard (which is part of the case ) must succeed for code inside the case block to execute. It takes the form: if followed by an expression.

The logical flow of a case block with a guard follows:

Check that the pattern in the case block succeeded. If the pattern failed, the guard is not evaluated and the next case block is checked.

If the pattern succeeded, evaluate the guard .

If the guard condition evaluates as true, the case block is selected.

If the guard condition evaluates as false, the case block is not selected.

If the guard raises an exception during evaluation, the exception bubbles up.

Guards are allowed to have side effects as they are expressions. Guard evaluation must proceed from the first to the last case block, one at a time, skipping case blocks whose pattern(s) don’t all succeed. (I.e., guard evaluation must happen in order.) Guard evaluation must stop once a case block is selected.

8.6.3. Irrefutable Case Blocks ¶

An irrefutable case block is a match-all case block. A match statement may have at most one irrefutable case block, and it must be last.

A case block is considered irrefutable if it has no guard and its pattern is irrefutable. A pattern is considered irrefutable if we can prove from its syntax alone that it will always succeed. Only the following patterns are irrefutable:

AS Patterns whose left-hand side is irrefutable

OR Patterns containing at least one irrefutable pattern

Capture Patterns

Wildcard Patterns

parenthesized irrefutable patterns

8.6.4. Patterns ¶

This section uses grammar notations beyond standard EBNF:

the notation SEP.RULE+ is shorthand for RULE (SEP RULE)*

the notation !RULE is shorthand for a negative lookahead assertion

The top-level syntax for patterns is:

The descriptions below will include a description “in simple terms” of what a pattern does for illustration purposes (credits to Raymond Hettinger for a document that inspired most of the descriptions). Note that these descriptions are purely for illustration purposes and may not reflect the underlying implementation. Furthermore, they do not cover all valid forms.

8.6.4.1. OR Patterns ¶

An OR pattern is two or more patterns separated by vertical bars | . Syntax:

Only the final subpattern may be irrefutable , and each subpattern must bind the same set of names to avoid ambiguity.

An OR pattern matches each of its subpatterns in turn to the subject value, until one succeeds. The OR pattern is then considered successful. Otherwise, if none of the subpatterns succeed, the OR pattern fails.

In simple terms, P1 | P2 | ... will try to match P1 , if it fails it will try to match P2 , succeeding immediately if any succeeds, failing otherwise.

8.6.4.2. AS Patterns ¶

An AS pattern matches an OR pattern on the left of the as keyword against a subject. Syntax:

If the OR pattern fails, the AS pattern fails. Otherwise, the AS pattern binds the subject to the name on the right of the as keyword and succeeds. capture_pattern cannot be a _ .

In simple terms P as NAME will match with P , and on success it will set NAME = <subject> .

8.6.4.3. Literal Patterns ¶

A literal pattern corresponds to most literals in Python. Syntax:

The rule strings and the token NUMBER are defined in the standard Python grammar . Triple-quoted strings are supported. Raw strings and byte strings are supported. f-strings are not supported.

The forms signed_number '+' NUMBER and signed_number '-' NUMBER are for expressing complex numbers ; they require a real number on the left and an imaginary number on the right. E.g. 3 + 4j .

In simple terms, LITERAL will succeed only if <subject> == LITERAL . For the singletons None , True and False , the is operator is used.

8.6.4.4. Capture Patterns ¶

A capture pattern binds the subject value to a name. Syntax:

A single underscore _ is not a capture pattern (this is what !'_' expresses). It is instead treated as a wildcard_pattern .

In a given pattern, a given name can only be bound once. E.g. case x, x: ... is invalid while case [x] | x: ... is allowed.

Capture patterns always succeed. The binding follows scoping rules established by the assignment expression operator in PEP 572 ; the name becomes a local variable in the closest containing function scope unless there’s an applicable global or nonlocal statement.

In simple terms NAME will always succeed and it will set NAME = <subject> .

8.6.4.5. Wildcard Patterns ¶

A wildcard pattern always succeeds (matches anything) and binds no name. Syntax:

_ is a soft keyword within any pattern, but only within patterns. It is an identifier, as usual, even within match subject expressions, guard s, and case blocks.

In simple terms, _ will always succeed.

8.6.4.6. Value Patterns ¶

A value pattern represents a named value in Python. Syntax:

The dotted name in the pattern is looked up using standard Python name resolution rules . The pattern succeeds if the value found compares equal to the subject value (using the == equality operator).

In simple terms NAME1.NAME2 will succeed only if <subject> == NAME1.NAME2

If the same value occurs multiple times in the same match statement, the interpreter may cache the first value found and reuse it rather than repeat the same lookup. This cache is strictly tied to a given execution of a given match statement.

8.6.4.7. Group Patterns ¶

A group pattern allows users to add parentheses around patterns to emphasize the intended grouping. Otherwise, it has no additional syntax. Syntax:

In simple terms (P) has the same effect as P .

8.6.4.8. Sequence Patterns ¶

A sequence pattern contains several subpatterns to be matched against sequence elements. The syntax is similar to the unpacking of a list or tuple.

There is no difference if parentheses or square brackets are used for sequence patterns (i.e. (...) vs [...] ).

A single pattern enclosed in parentheses without a trailing comma (e.g. (3 | 4) ) is a group pattern . While a single pattern enclosed in square brackets (e.g. [3 | 4] ) is still a sequence pattern.

At most one star subpattern may be in a sequence pattern. The star subpattern may occur in any position. If no star subpattern is present, the sequence pattern is a fixed-length sequence pattern; otherwise it is a variable-length sequence pattern.

The following is the logical flow for matching a sequence pattern against a subject value:

If the subject value is not a sequence [ 2 ] , the sequence pattern fails.

If the subject value is an instance of str , bytes or bytearray the sequence pattern fails.

The subsequent steps depend on whether the sequence pattern is fixed or variable-length.

If the sequence pattern is fixed-length:

If the length of the subject sequence is not equal to the number of subpatterns, the sequence pattern fails

Subpatterns in the sequence pattern are matched to their corresponding items in the subject sequence from left to right. Matching stops as soon as a subpattern fails. If all subpatterns succeed in matching their corresponding item, the sequence pattern succeeds.

Otherwise, if the sequence pattern is variable-length:

If the length of the subject sequence is less than the number of non-star subpatterns, the sequence pattern fails.

The leading non-star subpatterns are matched to their corresponding items as for fixed-length sequences.

If the previous step succeeds, the star subpattern matches a list formed of the remaining subject items, excluding the remaining items corresponding to non-star subpatterns following the star subpattern.

Remaining non-star subpatterns are matched to their corresponding subject items, as for a fixed-length sequence.

The length of the subject sequence is obtained via len() (i.e. via the __len__() protocol). This length may be cached by the interpreter in a similar manner as value patterns .

In simple terms [P1, P2, P3, … , P<N>] matches only if all the following happens:

check <subject> is a sequence

len(subject) == <N>

P1 matches <subject>[0] (note that this match can also bind names)

P2 matches <subject>[1] (note that this match can also bind names)

… and so on for the corresponding pattern/element.

8.6.4.9. Mapping Patterns ¶

A mapping pattern contains one or more key-value patterns. The syntax is similar to the construction of a dictionary. Syntax:

At most one double star pattern may be in a mapping pattern. The double star pattern must be the last subpattern in the mapping pattern.

Duplicate keys in mapping patterns are disallowed. Duplicate literal keys will raise a SyntaxError . Two keys that otherwise have the same value will raise a ValueError at runtime.

The following is the logical flow for matching a mapping pattern against a subject value:

If the subject value is not a mapping [ 3 ] ,the mapping pattern fails.

If every key given in the mapping pattern is present in the subject mapping, and the pattern for each key matches the corresponding item of the subject mapping, the mapping pattern succeeds.

If duplicate keys are detected in the mapping pattern, the pattern is considered invalid. A SyntaxError is raised for duplicate literal values; or a ValueError for named keys of the same value.

Key-value pairs are matched using the two-argument form of the mapping subject’s get() method. Matched key-value pairs must already be present in the mapping, and not created on-the-fly via __missing__() or __getitem__() .

In simple terms {KEY1: P1, KEY2: P2, ... } matches only if all the following happens:

check <subject> is a mapping

KEY1 in <subject>

P1 matches <subject>[KEY1]

… and so on for the corresponding KEY/pattern pair.

8.6.4.10. Class Patterns ¶

A class pattern represents a class and its positional and keyword arguments (if any). Syntax:

The same keyword should not be repeated in class patterns.

The following is the logical flow for matching a class pattern against a subject value:

If name_or_attr is not an instance of the builtin type , raise TypeError .

If the subject value is not an instance of name_or_attr (tested via isinstance() ), the class pattern fails.

If no pattern arguments are present, the pattern succeeds. Otherwise, the subsequent steps depend on whether keyword or positional argument patterns are present.

For a number of built-in types (specified below), a single positional subpattern is accepted which will match the entire subject; for these types keyword patterns also work as for other types.

If only keyword patterns are present, they are processed as follows, one by one:

I. The keyword is looked up as an attribute on the subject.

If this raises an exception other than AttributeError , the exception bubbles up. If this raises AttributeError , the class pattern has failed. Else, the subpattern associated with the keyword pattern is matched against the subject’s attribute value. If this fails, the class pattern fails; if this succeeds, the match proceeds to the next keyword.

II. If all keyword patterns succeed, the class pattern succeeds.

If any positional patterns are present, they are converted to keyword patterns using the __match_args__ attribute on the class name_or_attr before matching:

I. The equivalent of getattr(cls, "__match_args__", ()) is called.

If this raises an exception, the exception bubbles up. If the returned value is not a tuple, the conversion fails and TypeError is raised. If there are more positional patterns than len(cls.__match_args__) , TypeError is raised. Otherwise, positional pattern i is converted to a keyword pattern using __match_args__[i] as the keyword. __match_args__[i] must be a string; if not TypeError is raised. If there are duplicate keywords, TypeError is raised. See also Customizing positional arguments in class pattern matching

the match proceeds as if there were only keyword patterns.

For the following built-in types the handling of positional subpatterns is different:

These classes accept a single positional argument, and the pattern there is matched against the whole object rather than an attribute. For example int(0|1) matches the value 0 , but not the value 0.0 .

In simple terms CLS(P1, attr=P2) matches only if the following happens:

isinstance(<subject>, CLS)

convert P1 to a keyword pattern using CLS.__match_args__

For each keyword argument attr=P2 :

hasattr(<subject>, "attr")

P2 matches <subject>.attr

… and so on for the corresponding keyword argument/pattern pair.

8.7. Function definitions ¶

A function definition defines a user-defined function object (see section The standard type hierarchy ):

A function definition is an executable statement. Its execution binds the function name in the current local namespace to a function object (a wrapper around the executable code for the function). This function object contains a reference to the current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function body; this gets executed only when the function is called. [ 4 ]

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated when the function is defined, in the scope that contains the function definition. The result must be a callable, which is invoked with the function object as the only argument. The returned value is bound to the function name instead of the function object. Multiple decorators are applied in nested fashion. For example, the following code

is roughly equivalent to

except that the original function is not temporarily bound to the name func .

Changed in version 3.9: Functions may be decorated with any valid assignment_expression . Previously, the grammar was much more restrictive; see PEP 614 for details.

A list of type parameters may be given in square brackets between the function’s name and the opening parenthesis for its parameter list. This indicates to static type checkers that the function is generic. At runtime, the type parameters can be retrieved from the function’s __type_params__ attribute. See Generic functions for more.

Changed in version 3.12: Type parameter lists are new in Python 3.12.

When one or more parameters have the form parameter = expression , the function is said to have “default parameter values.” For a parameter with a default value, the corresponding argument may be omitted from a call, in which case the parameter’s default value is substituted. If a parameter has a default value, all following parameters up until the “ * ” must also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated from left to right when the function definition is executed. This means that the expression is evaluated once, when the function is defined, and that the same “pre-computed” value is used for each call. This is especially important to understand when a default parameter value is a mutable object, such as a list or a dictionary: if the function modifies the object (e.g. by appending an item to a list), the default parameter value is in effect modified. This is generally not what was intended. A way around this is to use None as the default, and explicitly test for it in the body of the function, e.g.:

Function call semantics are described in more detail in section Calls . A function call always assigns values to all parameters mentioned in the parameter list, either from positional arguments, from keyword arguments, or from default values. If the form “ *identifier ” is present, it is initialized to a tuple receiving any excess positional parameters, defaulting to the empty tuple. If the form “ **identifier ” is present, it is initialized to a new ordered mapping receiving any excess keyword arguments, defaulting to a new empty mapping of the same type. Parameters after “ * ” or “ *identifier ” are keyword-only parameters and may only be passed by keyword arguments. Parameters before “ / ” are positional-only parameters and may only be passed by positional arguments.

Changed in version 3.8: The / function parameter syntax may be used to indicate positional-only parameters. See PEP 570 for details.

Parameters may have an annotation of the form “ : expression ” following the parameter name. Any parameter may have an annotation, even those of the form *identifier or **identifier . Functions may have “return” annotation of the form “ -> expression ” after the parameter list. These annotations can be any valid Python expression. The presence of annotations does not change the semantics of a function. The annotation values are available as values of a dictionary keyed by the parameters’ names in the __annotations__ attribute of the function object. If the annotations import from __future__ is used, annotations are preserved as strings at runtime which enables postponed evaluation. Otherwise, they are evaluated when the function definition is executed. In this case annotations may be evaluated in a different order than they appear in the source code.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions. This uses lambda expressions, described in section Lambdas . Note that the lambda expression is merely a shorthand for a simplified function definition; a function defined in a “ def ” statement can be passed around or assigned to another name just like a function defined by a lambda expression. The “ def ” form is actually more powerful since it allows the execution of multiple statements and annotations.

Programmer’s note: Functions are first-class objects. A “ def ” statement executed inside a function definition defines a local function that can be returned or passed around. Free variables used in the nested function can access the local variables of the function containing the def. See section Naming and binding for details.

The original specification for function annotations.

Definition of a standard meaning for annotations: type hints.

Ability to type hint variable declarations, including class variables and instance variables.

Support for forward references within annotations by preserving annotations in a string form at runtime instead of eager evaluation.

Function and method decorators were introduced. Class decorators were introduced in PEP 3129 .

8.8. Class definitions ¶

A class definition defines a class object (see section The standard type hierarchy ):

A class definition is an executable statement. The inheritance list usually gives a list of base classes (see Metaclasses for more advanced uses), so each item in the list should evaluate to a class object which allows subclassing. Classes without an inheritance list inherit, by default, from the base class object ; hence,

is equivalent to

The class’s suite is then executed in a new execution frame (see Naming and binding ), using a newly created local namespace and the original global namespace. (Usually, the suite contains mostly function definitions.) When the class’s suite finishes execution, its execution frame is discarded but its local namespace is saved. [ 5 ] A class object is then created using the inheritance list for the base classes and the saved local namespace for the attribute dictionary. The class name is bound to this class object in the original local namespace.

The order in which attributes are defined in the class body is preserved in the new class’s __dict__ . Note that this is reliable only right after the class is created and only for classes that were defined using the definition syntax.

Class creation can be customized heavily using metaclasses .

Classes can also be decorated: just like when decorating functions,

The evaluation rules for the decorator expressions are the same as for function decorators. The result is then bound to the class name.

Changed in version 3.9: Classes may be decorated with any valid assignment_expression . Previously, the grammar was much more restrictive; see PEP 614 for details.

A list of type parameters may be given in square brackets immediately after the class’s name. This indicates to static type checkers that the class is generic. At runtime, the type parameters can be retrieved from the class’s __type_params__ attribute. See Generic classes for more.

Programmer’s note: Variables defined in the class definition are class attributes; they are shared by instances. Instance attributes can be set in a method with self.name = value . Both class and instance attributes are accessible through the notation “ self.name ”, and an instance attribute hides a class attribute with the same name when accessed in this way. Class attributes can be used as defaults for instance attributes, but using mutable values there can lead to unexpected results. Descriptors can be used to create instance variables with different implementation details.

The proposal that changed the declaration of metaclasses to the current syntax, and the semantics for how classes with metaclasses are constructed.

The proposal that added class decorators. Function and method decorators were introduced in PEP 318 .

8.9. Coroutines ¶

Added in version 3.5.

8.9.1. Coroutine function definition ¶

Execution of Python coroutines can be suspended and resumed at many points (see coroutine ). await expressions, async for and async with can only be used in the body of a coroutine function.

Functions defined with async def syntax are always coroutine functions, even if they do not contain await or async keywords.

It is a SyntaxError to use a yield from expression inside the body of a coroutine function.

An example of a coroutine function:

Changed in version 3.7: await and async are now keywords; previously they were only treated as such inside the body of a coroutine function.

8.9.2. The async for statement ¶

An asynchronous iterable provides an __aiter__ method that directly returns an asynchronous iterator , which can call asynchronous code in its __anext__ method.

The async for statement allows convenient iteration over asynchronous iterables.

Is semantically equivalent to:

See also __aiter__() and __anext__() for details.

It is a SyntaxError to use an async for statement outside the body of a coroutine function.

8.9.3. The async with statement ¶

An asynchronous context manager is a context manager that is able to suspend execution in its enter and exit methods.

See also __aenter__() and __aexit__() for details.

It is a SyntaxError to use an async with statement outside the body of a coroutine function.

The proposal that made coroutines a proper standalone concept in Python, and added supporting syntax.

8.10. Type parameter lists ¶

Added in version 3.12.

Functions (including coroutines ), classes and type aliases may contain a type parameter list:

Semantically, this indicates that the function, class, or type alias is generic over a type variable. This information is primarily used by static type checkers, and at runtime, generic objects behave much like their non-generic counterparts.

Type parameters are declared in square brackets ( [] ) immediately after the name of the function, class, or type alias. The type parameters are accessible within the scope of the generic object, but not elsewhere. Thus, after a declaration def func[T](): pass , the name T is not available in the module scope. Below, the semantics of generic objects are described with more precision. The scope of type parameters is modeled with a special function (technically, an annotation scope ) that wraps the creation of the generic object.

Generic functions, classes, and type aliases have a __type_params__ attribute listing their type parameters.

Type parameters come in three kinds:

typing.TypeVar , introduced by a plain name (e.g., T ). Semantically, this represents a single type to a type checker.

typing.TypeVarTuple , introduced by a name prefixed with a single asterisk (e.g., *Ts ). Semantically, this stands for a tuple of any number of types.

typing.ParamSpec , introduced by a name prefixed with two asterisks (e.g., **P ). Semantically, this stands for the parameters of a callable.

typing.TypeVar declarations can define bounds and constraints with a colon ( : ) followed by an expression. A single expression after the colon indicates a bound (e.g. T: int ). Semantically, this means that the typing.TypeVar can only represent types that are a subtype of this bound. A parenthesized tuple of expressions after the colon indicates a set of constraints (e.g. T: (str, bytes) ). Each member of the tuple should be a type (again, this is not enforced at runtime). Constrained type variables can only take on one of the types in the list of constraints.

For typing.TypeVar s declared using the type parameter list syntax, the bound and constraints are not evaluated when the generic object is created, but only when the value is explicitly accessed through the attributes __bound__ and __constraints__ . To accomplish this, the bounds or constraints are evaluated in a separate annotation scope .

typing.TypeVarTuple s and typing.ParamSpec s cannot have bounds or constraints.

The following example indicates the full set of allowed type parameter declarations:

8.10.1. Generic functions ¶

Generic functions are declared as follows:

This syntax is equivalent to:

Here annotation-def indicates an annotation scope , which is not actually bound to any name at runtime. (One other liberty is taken in the translation: the syntax does not go through attribute access on the typing module, but creates an instance of typing.TypeVar directly.)

The annotations of generic functions are evaluated within the annotation scope used for declaring the type parameters, but the function’s defaults and decorators are not.

The following example illustrates the scoping rules for these cases, as well as for additional flavors of type parameters:

Except for the lazy evaluation of the TypeVar bound, this is equivalent to:

The capitalized names like DEFAULT_OF_arg are not actually bound at runtime.

8.10.2. Generic classes ¶

Generic classes are declared as follows:

Here again annotation-def (not a real keyword) indicates an annotation scope , and the name TYPE_PARAMS_OF_Bag is not actually bound at runtime.

Generic classes implicitly inherit from typing.Generic . The base classes and keyword arguments of generic classes are evaluated within the type scope for the type parameters, and decorators are evaluated outside that scope. This is illustrated by this example:

This is equivalent to:

8.10.3. Generic type aliases ¶

The type statement can also be used to create a generic type alias:

Except for the lazy evaluation of the value, this is equivalent to:

Here, annotation-def (not a real keyword) indicates an annotation scope . The capitalized names like TYPE_PARAMS_OF_ListOrSet are not actually bound at runtime.

Table of Contents

  • 8.1. The if statement
  • 8.2. The while statement
  • 8.3. The for statement
  • 8.4.1. except clause
  • 8.4.2. except* clause
  • 8.4.3. else clause
  • 8.4.4. finally clause
  • 8.5. The with statement
  • 8.6.1. Overview
  • 8.6.2. Guards
  • 8.6.3. Irrefutable Case Blocks
  • 8.6.4.1. OR Patterns
  • 8.6.4.2. AS Patterns
  • 8.6.4.3. Literal Patterns
  • 8.6.4.4. Capture Patterns
  • 8.6.4.5. Wildcard Patterns
  • 8.6.4.6. Value Patterns
  • 8.6.4.7. Group Patterns
  • 8.6.4.8. Sequence Patterns
  • 8.6.4.9. Mapping Patterns
  • 8.6.4.10. Class Patterns
  • 8.7. Function definitions
  • 8.8. Class definitions
  • 8.9.1. Coroutine function definition
  • 8.9.2. The async for statement
  • 8.9.3. The async with statement
  • 8.10.1. Generic functions
  • 8.10.2. Generic classes
  • 8.10.3. Generic type aliases

Previous topic

7. Simple statements

9. Top-level components

  • Report a Bug
  • Show Source

IMAGES

  1. Python Assignment Expression? The 13 Top Answers

    python assignment in expression

  2. Operators in python.

    python assignment in expression

  3. Python Assign Expression To A Variable Andit Stack

    python assignment in expression

  4. Python 3.8 ออกแล้ว รองรับการใช้ Assignment Expression ได้ และเพิ่มความสามารถใหม่ๆ อีกมากมาย

    python assignment in expression

  5. Solved (a) Give an example for each of the following Python

    python assignment in expression

  6. alt: this is an expression: 2 * 3 + 1

    python assignment in expression

VIDEO

  1. L-5.4 Assignment Operators

  2. # python assignment operators # python #hindi #datascience

  3. File handling in python, Regular expression in pyython,how to import append functions

  4. Python statement and expression #python #coding #programming #reels

  5. python expressions and statements |comments in python| escaping characters| python course|#part 2.1

  6. conditions in python || python course for beginners

COMMENTS

  1. PEP 572

    An assignment expression does not introduce a new scope. In most cases the scope in which the target will be bound is self-explanatory: it is the current scope. If this scope contains a nonlocal or global declaration for the target, the assignment expression honors that. A lambda (being an explicit, if anonymous, function definition) counts as ...

  2. python

    Since Python 3.8, code can use the so-called "walrus" operator (:=), documented in PEP 572, for assignment expressions.This seems like a really substantial new feature, since it allows this form of assignment within comprehensions and lambdas.. What exactly are the syntax, semantics, and grammar specifications of assignment expressions?

  3. Assignment Expressions: The Walrus Operator

    In this lesson, you'll learn about the biggest change in Python 3.8: the introduction of assignment expressions.Assignment expression are written with a new notation (:=).This operator is often called the walrus operator as it resembles the eyes and tusks of a walrus on its side.. Assignment expressions allow you to assign and return a value in the same expression.

  4. The Walrus Operator: Python 3.8 Assignment Expressions

    Each new version of Python adds new features to the language. For Python 3.8, the biggest change is the addition of assignment expressions.Specifically, the := operator gives you a new syntax for assigning variables in the middle of expressions. This operator is colloquially known as the walrus operator.. This tutorial is an in-depth introduction to the walrus operator.

  5. Python's Assignment Operator: Write Robust Assignments

    Here, variable represents a generic Python variable, while expression represents any Python object that you can provide as a concrete value—also known as a literal—or an expression that evaluates to a value. To execute an assignment statement like the above, Python runs the following steps: Evaluate the right-hand expression to produce a concrete value or object.

  6. How To Use Assignment Expressions in Python

    Python 3.8, released in October 2019, adds assignment expressions to Python via the := syntax. The assignment expression syntax is also sometimes called "the walrus operator" because := vaguely resembles a walrus with tusks. Assignment expressions allow variable assignments to occur inside of larger expressions.

  7. Assignment Operators in Python

    The Walrus Operator in Python is a new assignment operator which is introduced in Python version 3.8 and higher. This operator is used to assign a value to a variable within an expression. Syntax: a := expression. Example: In this code, we have a Python list of integers. We have used Python Walrus assignment operator within the Python while loop.

  8. Python Assignment Expressions and Using the Walrus Operator (Overview)

    Each new version of Python adds new features to the language. For Python 3.8, the biggest change is the addition of assignment expressions.Specifically, the := operator gives you a new syntax for assigning variables in the middle of expressions. This operator is colloquially known as the walrus operator.. This course is an in-depth introduction to the walrus operator.

  9. 5. Assignment Expressions

    5. First you may wonder about the brackets, when you look at the assignment expression. It is not meant as a replacement for the simple "assignment statement". Its primary role is to be utilized within expressions. The following code shows a proper usecase: x = 4.56 z = (square := x**2) - (6.6 / square) print(z) OUTPUT:

  10. Python 101

    Assignment expressions were added to Python in version 3.8. The general idea is that an assignment expression allows you to assign to variables within an expression. The syntax for doing this is: NAME := expr. This operator has been called the "walrus operator", although their real name is "assignment expression".

  11. Operators and Expressions in Python

    The walrus operator is also a binary operator. Its left-hand operand must be a variable name, and its right-hand operand can be any Python expression. The operator will evaluate the expression, assign its value to the target variable, and return the value. The general syntax of an assignment expression is as follows:

  12. Python Assignment Operators

    Python Assignment Operators. Assignment operators are used to assign values to variables: Operator. Example. Same As. Try it. =. x = 5. x = 5.

  13. Python walrus operator (Python 3.8 assignment expression)

    The "Python walrus operator", officially known as the assignment expression operator, was introduced in Python 3.8. It's symbolized by a colon followed by an equal sign :=. The Python community refers to it as the "walrus operator" due to its resemblance to a pair of eyes and tusks, like that of a walrus. Table of Contents hide.

  14. Augmented Assignment Expression in Python

    #A is an expression, because it evaluates to a value — an integer. By contrast, #B is a statement — an assignment statement, to be specific. More generally speaking, expressions are code that evaluates to a value or an object in Python (values are all objects in Python). For instance, when you call a function (e.g., abs(-5)), it's an ...

  15. 8. Compound statements

    The binding follows scoping rules established by the assignment expression operator in PEP 572; the name becomes a local variable in the closest containing function scope unless there's an applicable global or nonlocal statement. ... These annotations can be any valid Python expression. The presence of annotations does not change the ...

  16. python

    If one line code is definitely going to happen for you, Python 3.8 introduces assignment expressions affectionately known as "the walrus operator". someBoolValue and (num := 20) The 20 will be assigned to num if the first boolean expression is True .

  17. Assignment Expression Syntax

    Assignment Expression Syntax. For more information on concepts covered in this lesson, you can check out: Walrus operator syntax. One of the main reasons assignments were not expressions in Python from the beginning is the visual likeness of the assignment operator (=) and the equality comparison operator (==). This could potentially lead to bugs.

  18. Assignment Expressions

    Assignment Expressions. For more information on concepts covered in this lesson, you can check out: Here's a feature introduced in version 3.8 of Python, which can simplify the function we're currently working on. It's called an assignment expression, and it allows you to save the return value of a function to a variable while at the same ...