• Search Menu
  • Editor's Choice
  • Author Guidelines
  • Submission Site
  • Open Access
  • About Journal of Cybersecurity
  • Editorial Board
  • Advertising and Corporate Services
  • Journals Career Network
  • Self-Archiving Policy
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Editors-in-Chief

Tyler Moore

About the journal

Journal of Cybersecurity publishes accessible articles describing original research in the inherently interdisciplinary world of computer, systems, and information security …

Latest articles

research paper computer security

Call for Papers: Workshop on the Economics of Information Security

Journal of Cybersecurity is inviting submissions to a new special issue from the workshop on the economics of information security. Authors whose papers appeared at the workshop are invited to submit a revised version to the journal.

Cybersecurity Month

Call for Papers

Journal of Cybersecurity is soliciting papers for a special collection on the philosophy of information security. This collection will explore research at the intersection of philosophy, information security, and philosophy of science.

Find out more

submit

Submit your paper

Join the conversation moving the science of security forward. Visit our Instructions to Authors for more information about how to submit your manuscript.

CYBERS High Impact 480x270.png

High-Impact Research Collection

Explore a collection of recently published high-impact research in the  Journal of Cybersecurity .

Browse the collection  here

research paper computer security

Email alerts

Register to receive table of contents email alerts as soon as new issues of  Journal of Cybersecurity  are published online.

Read and publish

Read and Publish deals

Authors interested in publishing in Journal of Cybersecurity may be able to publish their paper Open Access using funds available through their institution’s agreement with OUP.

Find out if your institution is participating

Related Titles

cybersecurityandcyberwar

Affiliations

  • Online ISSN 2057-2093
  • Print ISSN 2057-2085
  • Copyright © 2024 Oxford University Press
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Cybersecurity Cover Image

  • Search by keyword
  • Search by citation

Page 1 of 5

Polar code-based secure transmission with higher message rate combining channel entropy and computational entropy

The existing physical layer security schemes, which are based on the key generation model and the wire-tap channel model, achieve security by utilizing channel reciprocity entropy and noise entropy, respective...

  • View Full Text

Dissecting zero trust: research landscape and its implementation in IoT

As a progressive security strategy, the zero trust model has attracted notable attention and importance within the realm of network security, especially in the context of the Internet of Things (IoT). This pap...

Study of smart grid cyber-security, examining architectures, communication networks, cyber-attacks, countermeasure techniques, and challenges

Smart Grid (SG) technology utilizes advanced network communication and monitoring technologies to manage and regulate electricity generation and transport. However, this increased reliance on technology and co...

A multi-agent adaptive deep learning framework for online intrusion detection

The network security analyzers use intrusion detection systems (IDSes) to distinguish malicious traffic from benign ones. The deep learning-based (DL-based) IDSes are proposed to auto-extract high-level featur...

Iterative and mixed-spaces image gradient inversion attack in federated learning

As a distributed learning paradigm, federated learning is supposed to protect data privacy without exchanging users’ local data. Even so, the gradient inversion attack , in which the adversary can reconstruct the ...

Winternitz stack protocols for embedded systems and IoT

This paper proposes and evaluates a new bipartite post-quantum digital signature protocol based on Winternitz chains and an  oracle. Mutually mistrustful Alice and Bob are able to agree and sign a series of do...

Joint contrastive learning and belief rule base for named entity recognition in cybersecurity

Named Entity Recognition (NER) in cybersecurity is crucial for mining information during cybersecurity incidents. Current methods rely on pre-trained models for rich semantic text embeddings, but the challenge...

DTA: distribution transform-based attack for query-limited scenario

In generating adversarial examples, the conventional black-box attack methods rely on sufficient feedback from the to-be-attacked models by repeatedly querying until the attack is successful, which usually res...

A survey on lattice-based digital signature

Lattice-based digital signature has become one of the widely recognized post-quantum algorithms because of its simple algebraic operation, rich mathematical foundation and worst-case security, and also an impo...

Shorter ZK-SNARKs from square span programs over ideal lattices

Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs) are cryptographic protocols that offer efficient and privacy-preserving means of verifying NP language relations and have drawn consid...

Revocable and verifiable weighted attribute-based encryption with collaborative access for electronic health record in cloud

The encryption of user data is crucial when employing electronic health record services to guarantee the security of the data stored on cloud servers. Attribute-based encryption (ABE) scheme is considered a po...

Maxwell’s Demon in MLP-Mixer: towards transferable adversarial attacks

Models based on MLP-Mixer architecture are becoming popular, but they still suffer from adversarial examples. Although it has been shown that MLP-Mixer is more robust to adversarial attacks compared to convolu...

Practical solutions in fully homomorphic encryption: a survey analyzing existing acceleration methods

Fully homomorphic encryption (FHE) has experienced significant development and continuous breakthroughs in theory, enabling its widespread application in various fields, like outsourcing computation and secure...

A circuit area optimization of MK-3 S-box

In MILCOM 2015, Kelly et al. proposed the authentication encryption algorithm MK-3, which applied the 16-bit S-box. This paper aims to implement the 16-bit S-box with less circuit area. First, we classified th...

Intrusion detection system for controller area network

The rapid expansion of intra-vehicle networks has increased the number of threats to such networks. Most modern vehicles implement various physical and data-link layer technologies. Vehicles are becoming incre...

CT-GCN+: a high-performance cryptocurrency transaction graph convolutional model for phishing node classification

Due to the anonymous and contract transfer nature of blockchain cryptocurrencies, they are susceptible to fraudulent incidents such as phishing. This poses a threat to the property security of users and hinder...

Enhanced detection of obfuscated malware in memory dumps: a machine learning approach for advanced cybersecurity

In the realm of cybersecurity, the detection and analysis of obfuscated malware remain a critical challenge, especially in the context of memory dumps. This research paper presents a novel machine learning-bas...

BRITD: behavior rhythm insider threat detection with time awareness and user adaptation

Researchers usually detect insider threats by analyzing user behavior. The time information of user behavior is an important concern in internal threat detection.

research paper computer security

F3l: an automated and secure function-level low-overhead labeled encrypted traffic dataset construction method for IM in Android

Fine-grained function-level encrypted traffic classification is an essential approach to maintaining network security. Machine learning and deep learning have become mainstream methods to analyze traffic, and ...

WAS: improved white-box cryptographic algorithm over AS iteration

The attacker in white-box model has full access to software implementation of a cryptographic algorithm and full control over its execution environment. In order to solve the issues of high storage cost and in...

Full-round impossible differential attack on shadow block cipher

Lightweight block ciphers are the essential encryption algorithm for devices with limited resources. Its goal is to ensure the security of data transmission through resource-constrained devices. Impossible dif...

Minimizing CNOT-count in quantum circuit of the extended Shor’s algorithm for ECDLP

The elliptic curve discrete logarithm problem (ECDLP) is a popular choice for cryptosystems due to its high level of security. However, with the advent of the extended Shor’s algorithm, there is concern that E...

Towards the transferable audio adversarial attack via ensemble methods

In recent years, deep learning (DL) models have achieved significant progress in many domains, such as autonomous driving, facial recognition, and speech recognition. However, the vulnerability of deep learnin...

LayerCFL: an efficient federated learning with layer-wised clustering

Federated Learning (FL) suffers from the Non-IID problem in practice, which poses a challenge for efficient and accurate model training. To address this challenge, prior research has introduced clustered FL (C...

A novel botnet attack detection for IoT networks based on communication graphs

Intrusion detection systems have been proposed for the detection of botnet attacks. Various types of centralized or distributed cloud-based machine learning and deep learning models have been suggested. Howeve...

research paper computer security

Machine learning based fileless malware traffic classification using image visualization

In today’s interconnected world, network traffic is replete with adversarial attacks. As technology evolves, these attacks are also becoming increasingly sophisticated, making them even harder to detect. Fortu...

Research on privacy information retrieval model based on hybrid homomorphic encryption

The computational complexity of privacy information retrieval protocols is often linearly related to database size. When the database size is large, the efficiency of privacy information retrieval protocols is...

Performance evaluation of Cuckoo filters as an enhancement tool for password cracking

Cyberthreats continue their expansion, becoming more and more complex and varied. However, credentials and passwords are still a critical point in security. Password cracking can be a powerful tool to fight ag...

Tor network anonymity evaluation based on node anonymity

In order to address the shortcomings of traditional anonymity network anonymity evaluation methods, which only analyze from the perspective of the overall network and ignore the attributes of individual nodes,...

Verifiable delay functions and delay encryptions from hyperelliptic curves

Verifiable delay functions (VDFs) and delay encryptions (DEs) are two important primitives in decentralized systems, while existing constructions are mainly based on time-lock puzzles. A disparate framework ha...

MSLFuzzer: black-box fuzzing of SOHO router devices via message segment list inference

The popularity of small office and home office routers has brought convenience, but it also caused many security issues due to vulnerabilities. Black-box fuzzing through network protocols to discover vulnerabi...

A deep learning aided differential distinguisher improvement framework with more lightweight and universality

In CRYPTO 2019, Gohr opens up a new direction for cryptanalysis. He successfully applied deep learning to differential cryptanalysis against the NSA block cipher SPECK32/64, achieving higher accuracy than trad...

Attack based on data: a novel perspective to attack sensitive points directly

Adversarial attack for time-series classification model is widely explored and many attack methods are proposed. But there is not a method of attack based on the data itself. In this paper, we innovatively pro...

Improved lower bound for the complexity of unique shortest vector problem

Unique shortest vector problem (uSVP) plays an important role in lattice based cryptography. Many cryptographic schemes based their security on it. For the cofidence of those applications, it is essential to c...

research paper computer security

Evolution of blockchain consensus algorithms: a review on the latest milestones of blockchain consensus algorithms

Blockchain technology has gained widespread adoption in recent years due to its ability to enable secure and transparent record-keeping and data transfer. A critical aspect of blockchain technology is the use ...

Graph neural network based approach to automatically assigning common weakness enumeration identifiers for vulnerabilities

Vulnerability reports are essential for improving software security since they record key information on vulnerabilities. In a report, CWE denotes the weakness of the vulnerability and thus helps quickly under...

EPASAD: ellipsoid decision boundary based Process-Aware Stealthy Attack Detector

Due to the importance of Critical Infrastructure (CI) in a nation’s economy, they have been lucrative targets for cyber attackers. These critical infrastructures are usually Cyber-Physical Systems such as powe...

Generic attacks on small-state stream cipher constructions in the multi-user setting

Small-state stream ciphers (SSCs), which violate the principle that the state size should exceed the key size by a factor of two, still demonstrate robust security properties while maintaining a lightweight de...

Evicting and filling attack for linking multiple network addresses of Bitcoin nodes

Bitcoin is a decentralized P2P cryptocurrency. It supports users to use pseudonyms instead of network addresses to send and receive transactions at the data layer, hiding users’ real network identities. Tradit...

Aparecium: understanding and detecting scam behaviors on Ethereum via biased random walk

Ethereum’s high attention, rich business, certain anonymity, and untraceability have attracted a group of attackers. Cybercrime on it has become increasingly rampant, among which scam behavior is convenient, c...

An efficient permutation approach for SbPN-based symmetric block ciphers

It is challenging to devise lightweight cryptographic primitives efficient in both hardware and software that can provide an optimum level of security to diverse Internet of Things applications running on low-...

IHVFL: a privacy-enhanced intention-hiding vertical federated learning framework for medical data

Vertical Federated Learning (VFL) has many applications in the field of smart healthcare with excellent performance. However, current VFL systems usually primarily focus on the privacy protection during model ...

Intrusion detection systems for wireless sensor networks using computational intelligence techniques

Network Intrusion Detection Systems (NIDS) are utilized to find hostile network connections. This can be accomplished by looking at traffic network activity, but it takes a lot of work. The NIDS heavily utiliz...

Detecting fake reviewers in heterogeneous networks of buyers and sellers: a collaborative training-based spammer group algorithm

It is not uncommon for malicious sellers to collude with fake reviewers (also called spammers) to write fake reviews for multiple products to either demote competitors or promote their products’ reputations, f...

Continuously non-malleable codes from block ciphers in split-state model

Non-malleable code is an encoding scheme that is useful in situations where traditional error correction or detection is impossible to achieve. It ensures with high probability that decoded message is either c...

Use of subword tokenization for domain generation algorithm classification

Domain name generation algorithm (DGA) classification is an essential but challenging problem. Both feature-extracting machine learning (ML) methods and deep learning (DL) models such as convolutional neural n...

A buffer overflow detection and defense method based on RISC-V instruction set extension

Buffer overflow poses a serious threat to the memory security of modern operating systems. It overwrites the contents of other memory areas by breaking through the buffer capacity limit, destroys the system ex...

research paper computer security

Quantized autoencoder (QAE) intrusion detection system for anomaly detection in resource-constrained IoT devices using RT-IoT2022 dataset

In recent years, many researchers focused on unsupervised learning for network anomaly detection in edge devices to identify attacks. The deployment of the unsupervised autoencoder model is computationally exp...

Detecting compromised email accounts via login behavior characterization

The illegal use of compromised email accounts by adversaries can have severe consequences for enterprises and society. Detecting compromised email accounts is more challenging than in the social network field,...

Security estimation of LWE via BKW algorithms

The Learning With Errors (LWE) problem is widely used in lattice-based cryptography, which is the most promising post-quantum cryptography direction. There are a variety of LWE-solving methods, which can be cl...

  • Editorial Board
  • Sign up for article alerts and news from this journal

Affiliated with

New Content Item

The Institute of Information Engineering (IIE) is a national research institute in Beijing that specializes in comprehensive research on theories and applications related to information technology.

IIE strives to be a leading global academic institution by creating first-class research platforms and attracting top researchers. It also seeks to become an important national strategic power in the field of information technology.

IIE’s mission is to promote China’s innovation and industrial competitiveness by advancing information science, standards, and technology in ways that enhance economic security and public safety as well as improve our quality of life.

Read more..

The journal is indexed by

  • EI Compendex
  • Emerging Sources Citation Index
  • EBSCO Discovery Service
  • Institute of Scientific and Technical Information of China
  • Google Scholar
  • Norwegian Register for Scientific Journals and Series
  • OCLC WorldCat Discovery Service
  • ProQuest-ExLibris Primo
  • ProQuest-ExLibris Summon
  • TD Net Discovery Service
  • UGC-CARE List (India)

Annual Journal Metrics

2022 Citation Impact 3.1 - 2-year Impact Factor 4.8 - 5-year Impact Factor 2.071 - SNIP (Source Normalized Impact per Paper) 1.266 - SJR (SCImago Journal Rank)

2023 Speed 8 days submission to first editorial decision for all manuscripts (Median) 95 days submission to accept (Median)

2023 Usage  408,523 downloads 15 Altmetric mentions 

  • ISSN: 2523-3246 (electronic)

Present and Future of Network Security Monitoring

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

  • Survey Paper
  • Open access
  • Published: 01 July 2020

Cybersecurity data science: an overview from machine learning perspective

  • Iqbal H. Sarker   ORCID: orcid.org/0000-0003-1740-5517 1 , 2 ,
  • A. S. M. Kayes 3 ,
  • Shahriar Badsha 4 ,
  • Hamed Alqahtani 5 ,
  • Paul Watters 3 &
  • Alex Ng 3  

Journal of Big Data volume  7 , Article number:  41 ( 2020 ) Cite this article

145k Accesses

244 Citations

51 Altmetric

Metrics details

In a computing context, cybersecurity is undergoing massive shifts in technology and its operations in recent days, and data science is driving the change. Extracting security incident patterns or insights from cybersecurity data and building corresponding data-driven model , is the key to make a security system automated and intelligent. To understand and analyze the actual phenomena with data, various scientific methods, machine learning techniques, processes, and systems are used, which is commonly known as data science. In this paper, we focus and briefly discuss on cybersecurity data science , where the data is being gathered from relevant cybersecurity sources, and the analytics complement the latest data-driven patterns for providing more effective security solutions. The concept of cybersecurity data science allows making the computing process more actionable and intelligent as compared to traditional ones in the domain of cybersecurity. We then discuss and summarize a number of associated research issues and future directions . Furthermore, we provide a machine learning based multi-layered framework for the purpose of cybersecurity modeling. Overall, our goal is not only to discuss cybersecurity data science and relevant methods but also to focus the applicability towards data-driven intelligent decision making for protecting the systems from cyber-attacks.

Introduction

Due to the increasing dependency on digitalization and Internet-of-Things (IoT) [ 1 ], various security incidents such as unauthorized access [ 2 ], malware attack [ 3 ], zero-day attack [ 4 ], data breach [ 5 ], denial of service (DoS) [ 2 ], social engineering or phishing [ 6 ] etc. have grown at an exponential rate in recent years. For instance, in 2010, there were less than 50 million unique malware executables known to the security community. By 2012, they were double around 100 million, and in 2019, there are more than 900 million malicious executables known to the security community, and this number is likely to grow, according to the statistics of AV-TEST institute in Germany [ 7 ]. Cybercrime and attacks can cause devastating financial losses and affect organizations and individuals as well. It’s estimated that, a data breach costs 8.19 million USD for the United States and 3.9 million USD on an average [ 8 ], and the annual cost to the global economy from cybercrime is 400 billion USD [ 9 ]. According to Juniper Research [ 10 ], the number of records breached each year to nearly triple over the next 5 years. Thus, it’s essential that organizations need to adopt and implement a strong cybersecurity approach to mitigate the loss. According to [ 11 ], the national security of a country depends on the business, government, and individual citizens having access to applications and tools which are highly secure, and the capability on detecting and eliminating such cyber-threats in a timely way. Therefore, to effectively identify various cyber incidents either previously seen or unseen, and intelligently protect the relevant systems from such cyber-attacks, is a key issue to be solved urgently.

figure 1

Popularity trends of data science, machine learning and cybersecurity over time, where x-axis represents the timestamp information and y axis represents the corresponding popularity values

Cybersecurity is a set of technologies and processes designed to protect computers, networks, programs and data from attack, damage, or unauthorized access [ 12 ]. In recent days, cybersecurity is undergoing massive shifts in technology and its operations in the context of computing, and data science (DS) is driving the change, where machine learning (ML), a core part of “Artificial Intelligence” (AI) can play a vital role to discover the insights from data. Machine learning can significantly change the cybersecurity landscape and data science is leading a new scientific paradigm [ 13 , 14 ]. The popularity of these related technologies is increasing day-by-day, which is shown in Fig.  1 , based on the data of the last five years collected from Google Trends [ 15 ]. The figure represents timestamp information in terms of a particular date in the x-axis and corresponding popularity in the range of 0 (minimum) to 100 (maximum) in the y-axis. As shown in Fig.  1 , the popularity indication values of these areas are less than 30 in 2014, while they exceed 70 in 2019, i.e., more than double in terms of increased popularity. In this paper, we focus on cybersecurity data science (CDS), which is broadly related to these areas in terms of security data processing techniques and intelligent decision making in real-world applications. Overall, CDS is security data-focused, applies machine learning methods to quantify cyber risks, and ultimately seeks to optimize cybersecurity operations. Thus, the purpose of this paper is for those academia and industry people who want to study and develop a data-driven smart cybersecurity model based on machine learning techniques. Therefore, great emphasis is placed on a thorough description of various types of machine learning methods, and their relations and usage in the context of cybersecurity. This paper does not describe all of the different techniques used in cybersecurity in detail; instead, it gives an overview of cybersecurity data science modeling based on artificial intelligence, particularly from machine learning perspective.

The ultimate goal of cybersecurity data science is data-driven intelligent decision making from security data for smart cybersecurity solutions. CDS represents a partial paradigm shift from traditional well-known security solutions such as firewalls, user authentication and access control, cryptography systems etc. that might not be effective according to today’s need in cyber industry [ 16 , 17 , 18 , 19 ]. The problems are these are typically handled statically by a few experienced security analysts, where data management is done in an ad-hoc manner [ 20 , 21 ]. However, as an increasing number of cybersecurity incidents in different formats mentioned above continuously appear over time, such conventional solutions have encountered limitations in mitigating such cyber risks. As a result, numerous advanced attacks are created and spread very quickly throughout the Internet. Although several researchers use various data analysis and learning techniques to build cybersecurity models that are summarized in “ Machine learning tasks in cybersecurity ” section, a comprehensive security model based on the effective discovery of security insights and latest security patterns could be more useful. To address this issue, we need to develop more flexible and efficient security mechanisms that can respond to threats and to update security policies to mitigate them intelligently in a timely manner. To achieve this goal, it is inherently required to analyze a massive amount of relevant cybersecurity data generated from various sources such as network and system sources, and to discover insights or proper security policies with minimal human intervention in an automated manner.

Analyzing cybersecurity data and building the right tools and processes to successfully protect against cybersecurity incidents goes beyond a simple set of functional requirements and knowledge about risks, threats or vulnerabilities. For effectively extracting the insights or the patterns of security incidents, several machine learning techniques, such as feature engineering, data clustering, classification, and association analysis, or neural network-based deep learning techniques can be used, which are briefly discussed in “ Machine learning tasks in cybersecurity ” section. These learning techniques are capable to find the anomalies or malicious behavior and data-driven patterns of associated security incidents to make an intelligent decision. Thus, based on the concept of data-driven decision making, we aim to focus on cybersecurity data science , where the data is being gathered from relevant cybersecurity sources such as network activity, database activity, application activity, or user activity, and the analytics complement the latest data-driven patterns for providing corresponding security solutions.

The contributions of this paper are summarized as follows.

We first make a brief discussion on the concept of cybersecurity data science and relevant methods to understand its applicability towards data-driven intelligent decision making in the domain of cybersecurity. For this purpose, we also make a review and brief discussion on different machine learning tasks in cybersecurity, and summarize various cybersecurity datasets highlighting their usage in different data-driven cyber applications.

We then discuss and summarize a number of associated research issues and future directions in the area of cybersecurity data science, that could help both the academia and industry people to further research and development in relevant application areas.

Finally, we provide a generic multi-layered framework of the cybersecurity data science model based on machine learning techniques. In this framework, we briefly discuss how the cybersecurity data science model can be used to discover useful insights from security data and making data-driven intelligent decisions to build smart cybersecurity systems.

The remainder of the paper is organized as follows. “ Background ” section summarizes background of our study and gives an overview of the related technologies of cybersecurity data science. “ Cybersecurity data science ” section defines and discusses briefly about cybersecurity data science including various categories of cyber incidents data. In “  Machine learning tasks in cybersecurity ” section, we briefly discuss various categories of machine learning techniques including their relations with cybersecurity tasks and summarize a number of machine learning based cybersecurity models in the field. “ Research issues and future directions ” section briefly discusses and highlights various research issues and future directions in the area of cybersecurity data science. In “  A multi-layered framework for smart cybersecurity services ” section, we suggest a machine learning-based framework to build cybersecurity data science model and discuss various layers with their roles. In “  Discussion ” section, we highlight several key points regarding our studies. Finally,  “ Conclusion ” section concludes this paper.

In this section, we give an overview of the related technologies of cybersecurity data science including various types of cybersecurity incidents and defense strategies.

  • Cybersecurity

Over the last half-century, the information and communication technology (ICT) industry has evolved greatly, which is ubiquitous and closely integrated with our modern society. Thus, protecting ICT systems and applications from cyber-attacks has been greatly concerned by the security policymakers in recent days [ 22 ]. The act of protecting ICT systems from various cyber-threats or attacks has come to be known as cybersecurity [ 9 ]. Several aspects are associated with cybersecurity: measures to protect information and communication technology; the raw data and information it contains and their processing and transmitting; associated virtual and physical elements of the systems; the degree of protection resulting from the application of those measures; and eventually the associated field of professional endeavor [ 23 ]. Craigen et al. defined “cybersecurity as a set of tools, practices, and guidelines that can be used to protect computer networks, software programs, and data from attack, damage, or unauthorized access” [ 24 ]. According to Aftergood et al. [ 12 ], “cybersecurity is a set of technologies and processes designed to protect computers, networks, programs and data from attacks and unauthorized access, alteration, or destruction”. Overall, cybersecurity concerns with the understanding of diverse cyber-attacks and devising corresponding defense strategies that preserve several properties defined as below [ 25 , 26 ].

Confidentiality is a property used to prevent the access and disclosure of information to unauthorized individuals, entities or systems.

Integrity is a property used to prevent any modification or destruction of information in an unauthorized manner.

Availability is a property used to ensure timely and reliable access of information assets and systems to an authorized entity.

The term cybersecurity applies in a variety of contexts, from business to mobile computing, and can be divided into several common categories. These are - network security that mainly focuses on securing a computer network from cyber attackers or intruders; application security that takes into account keeping the software and the devices free of risks or cyber-threats; information security that mainly considers security and the privacy of relevant data; operational security that includes the processes of handling and protecting data assets. Typical cybersecurity systems are composed of network security systems and computer security systems containing a firewall, antivirus software, or an intrusion detection system [ 27 ].

Cyberattacks and security risks

The risks typically associated with any attack, which considers three security factors, such as threats, i.e., who is attacking, vulnerabilities, i.e., the weaknesses they are attacking, and impacts, i.e., what the attack does [ 9 ]. A security incident is an act that threatens the confidentiality, integrity, or availability of information assets and systems. Several types of cybersecurity incidents that may result in security risks on an organization’s systems and networks or an individual [ 2 ]. These are:

Unauthorized access that describes the act of accessing information to network, systems or data without authorization that results in a violation of a security policy [ 2 ];

Malware known as malicious software, is any program or software that intentionally designed to cause damage to a computer, client, server, or computer network, e.g., botnets. Examples of different types of malware including computer viruses, worms, Trojan horses, adware, ransomware, spyware, malicious bots, etc. [ 3 , 26 ]; Ransom malware, or ransomware , is an emerging form of malware that prevents users from accessing their systems or personal files, or the devices, then demands an anonymous online payment in order to restore access.

Denial-of-Service is an attack meant to shut down a machine or network, making it inaccessible to its intended users by flooding the target with traffic that triggers a crash. The Denial-of-Service (DoS) attack typically uses one computer with an Internet connection, while distributed denial-of-service (DDoS) attack uses multiple computers and Internet connections to flood the targeted resource [ 2 ];

Phishing a type of social engineering , used for a broad range of malicious activities accomplished through human interactions, in which the fraudulent attempt takes part to obtain sensitive information such as banking and credit card details, login credentials, or personally identifiable information by disguising oneself as a trusted individual or entity via an electronic communication such as email, text, or instant message, etc. [ 26 ];

Zero-day attack is considered as the term that is used to describe the threat of an unknown security vulnerability for which either the patch has not been released or the application developers were unaware [ 4 , 28 ].

Beside these attacks mentioned above, privilege escalation [ 29 ], password attack [ 30 ], insider threat [ 31 ], man-in-the-middle [ 32 ], advanced persistent threat [ 33 ], SQL injection attack [ 34 ], cryptojacking attack [ 35 ], web application attack [ 30 ] etc. are well-known as security incidents in the field of cybersecurity. A data breach is another type of security incident, known as a data leak, which is involved in the unauthorized access of data by an individual, application, or service [ 5 ]. Thus, all data breaches are considered as security incidents, however, all the security incidents are not data breaches. Most data breaches occur in the banking industry involving the credit card numbers, personal information, followed by the healthcare sector and the public sector [ 36 ].

Cybersecurity defense strategies

Defense strategies are needed to protect data or information, information systems, and networks from cyber-attacks or intrusions. More granularly, they are responsible for preventing data breaches or security incidents and monitoring and reacting to intrusions, which can be defined as any kind of unauthorized activity that causes damage to an information system [ 37 ]. An intrusion detection system (IDS) is typically represented as “a device or software application that monitors a computer network or systems for malicious activity or policy violations” [ 38 ]. The traditional well-known security solutions such as anti-virus, firewalls, user authentication, access control, data encryption and cryptography systems, however might not be effective according to today’s need in the cyber industry

[ 16 , 17 , 18 , 19 ]. On the other hand, IDS resolves the issues by analyzing security data from several key points in a computer network or system [ 39 , 40 ]. Moreover, intrusion detection systems can be used to detect both internal and external attacks.

Intrusion detection systems are different categories according to the usage scope. For instance, a host-based intrusion detection system (HIDS), and network intrusion detection system (NIDS) are the most common types based on the scope of single computers to large networks. In a HIDS, the system monitors important files on an individual system, while it analyzes and monitors network connections for suspicious traffic in a NIDS. Similarly, based on methodologies, the signature-based IDS, and anomaly-based IDS are the most well-known variants [ 37 ].

Signature-based IDS : A signature can be a predefined string, pattern, or rule that corresponds to a known attack. A particular pattern is identified as the detection of corresponding attacks in a signature-based IDS. An example of a signature can be known patterns or a byte sequence in a network traffic, or sequences used by malware. To detect the attacks, anti-virus software uses such types of sequences or patterns as a signature while performing the matching operation. Signature-based IDS is also known as knowledge-based or misuse detection [ 41 ]. This technique can be efficient to process a high volume of network traffic, however, is strictly limited to the known attacks only. Thus, detecting new attacks or unseen attacks is one of the biggest challenges faced by this signature-based system.

Anomaly-based IDS : The concept of anomaly-based detection overcomes the issues of signature-based IDS discussed above. In an anomaly-based intrusion detection system, the behavior of the network is first examined to find dynamic patterns, to automatically create a data-driven model, to profile the normal behavior, and thus it detects deviations in the case of any anomalies [ 41 ]. Thus, anomaly-based IDS can be treated as a dynamic approach, which follows behavior-oriented detection. The main advantage of anomaly-based IDS is the ability to identify unknown or zero-day attacks [ 42 ]. However, the issue is that the identified anomaly or abnormal behavior is not always an indicator of intrusions. It sometimes may happen because of several factors such as policy changes or offering a new service.

In addition, a hybrid detection approach [ 43 , 44 ] that takes into account both the misuse and anomaly-based techniques discussed above can be used to detect intrusions. In a hybrid system, the misuse detection system is used for detecting known types of intrusions and anomaly detection system is used for novel attacks [ 45 ]. Beside these approaches, stateful protocol analysis can also be used to detect intrusions that identifies deviations of protocol state similarly to the anomaly-based method, however it uses predetermined universal profiles based on accepted definitions of benign activity [ 41 ]. In Table 1 , we have summarized these common approaches highlighting their pros and cons. Once the detecting has been completed, the intrusion prevention system (IPS) that is intended to prevent malicious events, can be used to mitigate the risks in different ways such as manual, providing notification, or automatic process [ 46 ]. Among these approaches, an automatic response system could be more effective as it does not involve a human interface between the detection and response systems.

  • Data science

We are living in the age of data, advanced analytics, and data science, which are related to data-driven intelligent decision making. Although, the process of searching patterns or discovering hidden and interesting knowledge from data is known as data mining [ 47 ], in this paper, we use the broader term “data science” rather than data mining. The reason is that, data science, in its most fundamental form, is all about understanding of data. It involves studying, processing, and extracting valuable insights from a set of information. In addition to data mining, data analytics is also related to data science. The development of data mining, knowledge discovery, and machine learning that refers creating algorithms and program which learn on their own, together with the original data analysis and descriptive analytics from the statistical perspective, forms the general concept of “data analytics” [ 47 ]. Nowadays, many researchers use the term “data science” to describe the interdisciplinary field of data collection, preprocessing, inferring, or making decisions by analyzing the data. To understand and analyze the actual phenomena with data, various scientific methods, machine learning techniques, processes, and systems are used, which is commonly known as data science. According to Cao et al. [ 47 ] “data science is a new interdisciplinary field that synthesizes and builds on statistics, informatics, computing, communication, management, and sociology to study data and its environments, to transform data to insights and decisions by following a data-to-knowledge-to-wisdom thinking and methodology”. As a high-level statement in the context of cybersecurity, we can conclude that it is the study of security data to provide data-driven solutions for the given security problems, as known as “the science of cybersecurity data”. Figure 2 shows the typical data-to-insight-to-decision transfer at different periods and general analytic stages in data science, in terms of a variety of analytics goals (G) and approaches (A) to achieve the data-to-decision goal [ 47 ].

figure 2

Data-to-insight-to-decision analytic stages in data science [ 47 ]

Based on the analytic power of data science including machine learning techniques, it can be a viable component of security strategies. By using data science techniques, security analysts can manipulate and analyze security data more effectively and efficiently, uncovering valuable insights from data. Thus, data science methodologies including machine learning techniques can be well utilized in the context of cybersecurity, in terms of problem understanding, gathering security data from diverse sources, preparing data to feed into the model, data-driven model building and updating, for providing smart security services, which motivates to define cybersecurity data science and to work in this research area.

Cybersecurity data science

In this section, we briefly discuss cybersecurity data science including various categories of cyber incidents data with the usage in different application areas, and the key terms and areas related to our study.

Understanding cybersecurity data

Data science is largely driven by the availability of data [ 48 ]. Datasets typically represent a collection of information records that consist of several attributes or features and related facts, in which cybersecurity data science is based on. Thus, it’s important to understand the nature of cybersecurity data containing various types of cyberattacks and relevant features. The reason is that raw security data collected from relevant cyber sources can be used to analyze the various patterns of security incidents or malicious behavior, to build a data-driven security model to achieve our goal. Several datasets exist in the area of cybersecurity including intrusion analysis, malware analysis, anomaly, fraud, or spam analysis that are used for various purposes. In Table 2 , we summarize several such datasets including their various features and attacks that are accessible on the Internet, and highlight their usage based on machine learning techniques in different cyber applications. Effectively analyzing and processing of these security features, building target machine learning-based security model according to the requirements, and eventually, data-driven decision making, could play a role to provide intelligent cybersecurity services that are discussed briefly in “ A multi-layered framework for smart cybersecurity services ” section.

Defining cybersecurity data science

Data science is transforming the world’s industries. It is critically important for the future of intelligent cybersecurity systems and services because of “security is all about data”. When we seek to detect cyber threats, we are analyzing the security data in the form of files, logs, network packets, or other relevant sources. Traditionally, security professionals didn’t use data science techniques to make detections based on these data sources. Instead, they used file hashes, custom-written rules like signatures, or manually defined heuristics [ 21 ]. Although these techniques have their own merits in several cases, it needs too much manual work to keep up with the changing cyber threat landscape. On the contrary, data science can make a massive shift in technology and its operations, where machine learning algorithms can be used to learn or extract insight of security incident patterns from the training data for their detection and prevention. For instance, to detect malware or suspicious trends, or to extract policy rules, these techniques can be used.

In recent days, the entire security industry is moving towards data science, because of its capability to transform raw data into decision making. To do this, several data-driven tasks can be associated, such as—(i) data engineering focusing practical applications of data gathering and analysis; (ii) reducing data volume that deals with filtering significant and relevant data to further analysis; (iii) discovery and detection that focuses on extracting insight or incident patterns or knowledge from data; (iv) automated models that focus on building data-driven intelligent security model; (v) targeted security  alerts focusing on the generation of remarkable security alerts based on discovered knowledge that minimizes the false alerts, and (vi) resource optimization that deals with the available resources to achieve the target goals in a security system. While making data-driven decisions, behavioral analysis could also play a significant role in the domain of cybersecurity [ 81 ].

Thus, the concept of cybersecurity data science incorporates the methods and techniques of data science and machine learning as well as the behavioral analytics of various security incidents. The combination of these technologies has given birth to the term “cybersecurity data science”, which refers to collect a large amount of security event data from different sources and analyze it using machine learning technologies for detecting security risks or attacks either through the discovery of useful insights or the latest data-driven patterns. It is, however, worth remembering that cybersecurity data science is not just about a collection of machine learning algorithms, rather,  a process that can help security professionals or analysts to scale and automate their security activities in a smart way and in a timely manner. Therefore, the formal definition can be as follows: “Cybersecurity data science is a research or working area existing at the intersection of cybersecurity, data science, and machine learning or artificial intelligence, which is mainly security data-focused, applies machine learning methods, attempts to quantify cyber-risks or incidents, and promotes inferential techniques to analyze behavioral patterns in security data. It also focuses on generating security response alerts, and eventually seeks for optimizing cybersecurity solutions, to build automated and intelligent cybersecurity systems.”

Table  3 highlights some key terms associated with cybersecurity data science. Overall, the outputs of cybersecurity data science are typically security data products, which can be a data-driven security model, policy rule discovery, risk or attack prediction, potential security service and recommendation, or the corresponding security system depending on the given security problem in the domain of cybersecurity. In the next section, we briefly discuss various machine learning tasks with examples within the scope of our study.

Machine learning tasks in cybersecurity

Machine learning (ML) is typically considered as a branch of “Artificial Intelligence”, which is closely related to computational statistics, data mining and analytics, data science, particularly focusing on making the computers to learn from data [ 82 , 83 ]. Thus, machine learning models typically comprise of a set of rules, methods, or complex “transfer functions” that can be applied to find interesting data patterns, or to recognize or predict behavior [ 84 ], which could play an important role in the area of cybersecurity. In the following, we discuss different methods that can be used to solve machine learning tasks and how they are related to cybersecurity tasks.

Supervised learning

Supervised learning is performed when specific targets are defined to reach from a certain set of inputs, i.e., task-driven approach. In the area of machine learning, the most popular supervised learning techniques are known as classification and regression methods [ 129 ]. These techniques are popular to classify or predict the future for a particular security problem. For instance, to predict denial-of-service attack (yes, no) or to identify different classes of network attacks such as scanning and spoofing, classification techniques can be used in the cybersecurity domain. ZeroR [ 83 ], OneR [ 130 ], Navies Bayes [ 131 ], Decision Tree [ 132 , 133 ], K-nearest neighbors [ 134 ], support vector machines [ 135 ], adaptive boosting [ 136 ], and logistic regression [ 137 ] are the well-known classification techniques. In addition, recently Sarker et al. have proposed BehavDT [ 133 ], and IntruDtree [ 106 ] classification techniques that are able to effectively build a data-driven predictive model. On the other hand, to predict the continuous or numeric value, e.g., total phishing attacks in a certain period or predicting the network packet parameters, regression techniques are useful. Regression analyses can also be used to detect the root causes of cybercrime and other types of fraud [ 138 ]. Linear regression [ 82 ], support vector regression [ 135 ] are the popular regression techniques. The main difference between classification and regression is that the output variable in the regression is numerical or continuous, while the predicted output for classification is categorical or discrete. Ensemble learning is an extension of supervised learning while mixing different simple models, e.g., Random Forest learning [ 139 ] that generates multiple decision trees to solve a particular security task.

Unsupervised learning

In unsupervised learning problems, the main task is to find patterns, structures, or knowledge in unlabeled data, i.e., data-driven approach [ 140 ]. In the area of cybersecurity, cyber-attacks like malware stays hidden in some ways, include changing their behavior dynamically and autonomously to avoid detection. Clustering techniques, a type of unsupervised learning, can help to uncover the hidden patterns and structures from the datasets, to identify indicators of such sophisticated attacks. Similarly, in identifying anomalies, policy violations, detecting, and eliminating noisy instances in data, clustering techniques can be useful. K-means [ 141 ], K-medoids [ 142 ] are the popular partitioning clustering algorithms, and single linkage [ 143 ] or complete linkage [ 144 ] are the well-known hierarchical clustering algorithms used in various application domains. Moreover, a bottom-up clustering approach proposed by Sarker et al. [ 145 ] can also be used by taking into account the data characteristics.

Besides, feature engineering tasks like optimal feature selection or extraction related to a particular security problem could be useful for further analysis [ 106 ]. Recently, Sarker et al. [ 106 ] have proposed an approach for selecting security features according to their importance score values. Moreover, Principal component analysis, linear discriminant analysis, pearson correlation analysis, or non-negative matrix factorization are the popular dimensionality reduction techniques to solve such issues [ 82 ]. Association rule learning is another example, where machine learning based policy rules can prevent cyber-attacks. In an expert system, the rules are usually manually defined by a knowledge engineer working in collaboration with a domain expert [ 37 , 140 , 146 ]. Association rule learning on the contrary, is the discovery of rules or relationships among a set of available security features or attributes in a given dataset [ 147 ]. To quantify the strength of relationships, correlation analysis can be used [ 138 ]. Many association rule mining algorithms have been proposed in the area of machine learning and data mining literature, such as logic-based [ 148 ], frequent pattern based [ 149 , 150 , 151 ], tree-based [ 152 ], etc. Recently, Sarker et al. [ 153 ] have proposed an association rule learning approach considering non-redundant generation, that can be used to discover a set of useful security policy rules. Moreover, AIS [ 147 ], Apriori [ 149 ], Apriori-TID and Apriori-Hybrid [ 149 ], FP-Tree [ 152 ], and RARM [ 154 ], and Eclat [ 155 ] are the well-known association rule learning algorithms that are capable to solve such problems by generating a set of policy rules in the domain of cybersecurity.

Neural networks and deep learning

Deep learning is a part of machine learning in the area of artificial intelligence, which is a computational model that is inspired by the biological neural networks in the human brain [ 82 ]. Artificial Neural Network (ANN) is frequently used in deep learning and the most popular neural network algorithm is backpropagation [ 82 ]. It performs learning on a multi-layer feed-forward neural network consists of an input layer, one or more hidden layers, and an output layer. The main difference between deep learning and classical machine learning is its performance on the amount of security data increases. Typically deep learning algorithms perform well when the data volumes are large, whereas machine learning algorithms perform comparatively better on small datasets [ 44 ]. In our earlier work, Sarker et al. [ 129 ], we have illustrated the effectiveness of these approaches considering contextual datasets. However, deep learning approaches mimic the human brain mechanism to interpret large amount of data or the complex data such as images, sounds and texts [ 44 , 129 ]. In terms of feature extraction to build models, deep learning reduces the effort of designing a feature extractor for each problem than the classical machine learning techniques. Beside these characteristics, deep learning typically takes a long time to train an algorithm than a machine learning algorithm, however, the test time is exactly the opposite [ 44 ]. Thus, deep learning relies more on high-performance machines with GPUs than classical machine-learning algorithms [ 44 , 156 ]. The most popular deep neural network learning models include multi-layer perceptron (MLP) [ 157 ], convolutional neural network (CNN) [ 158 ], recurrent neural network (RNN) or long-short term memory (LSTM) network [ 121 , 158 ]. In recent days, researchers use these deep learning techniques for different purposes such as detecting network intrusions, malware traffic detection and classification, etc. in the domain of cybersecurity [ 44 , 159 ].

Other learning techniques

Semi-supervised learning can be described as a hybridization of supervised and unsupervised techniques discussed above, as it works on both the labeled and unlabeled data. In the area of cybersecurity, it could be useful, when it requires to label data automatically without human intervention, to improve the performance of cybersecurity models. Reinforcement techniques are another type of machine learning that characterizes an agent by creating its own learning experiences through interacting directly with the environment, i.e., environment-driven approach, where the environment is typically formulated as a Markov decision process and take decision based on a reward function [ 160 ]. Monte Carlo learning, Q-learning, Deep Q Networks, are the most common reinforcement learning algorithms [ 161 ]. For instance, in a recent work [ 126 ], the authors present an approach for detecting botnet traffic or malicious cyber activities using reinforcement learning combining with neural network classifier. In another work [ 128 ], the authors discuss about the application of deep reinforcement learning to intrusion detection for supervised problems, where they received the best results for the Deep Q-Network algorithm. In the context of cybersecurity, genetic algorithms that use fitness, selection, crossover, and mutation for finding optimization, could also be used to solve a similar class of learning problems [ 119 ].

Various types of machine learning techniques discussed above can be useful in the domain of cybersecurity, to build an effective security model. In Table  4 , we have summarized several machine learning techniques that are used to build various types of security models for various purposes. Although these models typically represent a learning-based security model, in this paper, we aim to focus on a comprehensive cybersecurity data science model and relevant issues, in order to build a data-driven intelligent security system. In the next section, we highlight several research issues and potential solutions in the area of cybersecurity data science.

Research issues and future directions

Our study opens several research issues and challenges in the area of cybersecurity data science to extract insight from relevant data towards data-driven intelligent decision making for cybersecurity solutions. In the following, we summarize these challenges ranging from data collection to decision making.

Cybersecurity datasets : Source datasets are the primary component to work in the area of cybersecurity data science. Most of the existing datasets are old and might insufficient in terms of understanding the recent behavioral patterns of various cyber-attacks. Although the data can be transformed into a meaningful understanding level after performing several processing tasks, there is still a lack of understanding of the characteristics of recent attacks and their patterns of happening. Thus, further processing or machine learning algorithms may provide a low accuracy rate for making the target decisions. Therefore, establishing a large number of recent datasets for a particular problem domain like cyber risk prediction or intrusion detection is needed, which could be one of the major challenges in cybersecurity data science.

Handling quality problems in cybersecurity datasets : The cyber datasets might be noisy, incomplete, insignificant, imbalanced, or may contain inconsistency instances related to a particular security incident. Such problems in a data set may affect the quality of the learning process and degrade the performance of the machine learning-based models [ 162 ]. To make a data-driven intelligent decision for cybersecurity solutions, such problems in data is needed to deal effectively before building the cyber models. Therefore, understanding such problems in cyber data and effectively handling such problems using existing algorithms or newly proposed algorithm for a particular problem domain like malware analysis or intrusion detection and prevention is needed, which could be another research issue in cybersecurity data science.

Security policy rule generation : Security policy rules reference security zones and enable a user to allow, restrict, and track traffic on the network based on the corresponding user or user group, and service, or the application. The policy rules including the general and more specific rules are compared against the incoming traffic in sequence during the execution, and the rule that matches the traffic is applied. The policy rules used in most of the cybersecurity systems are static and generated by human expertise or ontology-based [ 163 , 164 ]. Although, association rule learning techniques produce rules from data, however, there is a problem of redundancy generation [ 153 ] that makes the policy rule-set complex. Therefore, understanding such problems in policy rule generation and effectively handling such problems using existing algorithms or newly proposed algorithm for a particular problem domain like access control [ 165 ] is needed, which could be another research issue in cybersecurity data science.

Hybrid learning method : Most commercial products in the cybersecurity domain contain signature-based intrusion detection techniques [ 41 ]. However, missing features or insufficient profiling can cause these techniques to miss unknown attacks. In that case, anomaly-based detection techniques or hybrid technique combining signature-based and anomaly-based can be used to overcome such issues. A hybrid technique combining multiple learning techniques or a combination of deep learning and machine-learning methods can be used to extract the target insight for a particular problem domain like intrusion detection, malware analysis, access control, etc. and make the intelligent decision for corresponding cybersecurity solutions.

Protecting the valuable security information : Another issue of a cyber data attack is the loss of extremely valuable data and information, which could be damaging for an organization. With the use of encryption or highly complex signatures, one can stop others from probing into a dataset. In such cases, cybersecurity data science can be used to build a data-driven impenetrable protocol to protect such security information. To achieve this goal, cyber analysts can develop algorithms by analyzing the history of cyberattacks to detect the most frequently targeted chunks of data. Thus, understanding such data protecting problems and designing corresponding algorithms to effectively handling these problems, could be another research issue in the area of cybersecurity data science.

Context-awareness in cybersecurity : Existing cybersecurity work mainly originates from the relevant cyber data containing several low-level features. When data mining and machine learning techniques are applied to such datasets, a related pattern can be identified that describes it properly. However, a broader contextual information [ 140 , 145 , 166 ] like temporal, spatial, relationship among events or connections, dependency can be used to decide whether there exists a suspicious activity or not. For instance, some approaches may consider individual connections as DoS attacks, while security experts might not treat them as malicious by themselves. Thus, a significant limitation of existing cybersecurity work is the lack of using the contextual information for predicting risks or attacks. Therefore, context-aware adaptive cybersecurity solutions could be another research issue in cybersecurity data science.

Feature engineering in cybersecurity : The efficiency and effectiveness of a machine learning-based security model has always been a major challenge due to the high volume of network data with a large number of traffic features. The large dimensionality of data has been addressed using several techniques such as principal component analysis (PCA) [ 167 ], singular value decomposition (SVD) [ 168 ] etc. In addition to low-level features in the datasets, the contextual relationships between suspicious activities might be relevant. Such contextual data can be stored in an ontology or taxonomy for further processing. Thus how to effectively select the optimal features or extract the significant features considering both the low-level features as well as the contextual features, for effective cybersecurity solutions could be another research issue in cybersecurity data science.

Remarkable security alert generation and prioritizing : In many cases, the cybersecurity system may not be well defined and may cause a substantial number of false alarms that are unexpected in an intelligent system. For instance, an IDS deployed in a real-world network generates around nine million alerts per day [ 169 ]. A network-based intrusion detection system typically looks at the incoming traffic for matching the associated patterns to detect risks, threats or vulnerabilities and generate security alerts. However, to respond to each such alert might not be effective as it consumes relatively huge amounts of time and resources, and consequently may result in a self-inflicted DoS. To overcome this problem, a high-level management is required that correlate the security alerts considering the current context and their logical relationship including their prioritization before reporting them to users, which could be another research issue in cybersecurity data science.

Recency analysis in cybersecurity solutions : Machine learning-based security models typically use a large amount of static data to generate data-driven decisions. Anomaly detection systems rely on constructing such a model considering normal behavior and anomaly, according to their patterns. However, normal behavior in a large and dynamic security system is not well defined and it may change over time, which can be considered as an incremental growing of dataset. The patterns in incremental datasets might be changed in several cases. This often results in a substantial number of false alarms known as false positives. Thus, a recent malicious behavioral pattern is more likely to be interesting and significant than older ones for predicting unknown attacks. Therefore, effectively using the concept of recency analysis [ 170 ] in cybersecurity solutions could be another issue in cybersecurity data science.

The most important work for an intelligent cybersecurity system is to develop an effective framework that supports data-driven decision making. In such a framework, we need to consider advanced data analysis based on machine learning techniques, so that the framework is capable to minimize these issues and to provide automated and intelligent security services. Thus, a well-designed security framework for cybersecurity data and the experimental evaluation is a very important direction and a big challenge as well. In the next section, we suggest and discuss a data-driven cybersecurity framework based on machine learning techniques considering multiple processing layers.

A multi-layered framework for smart cybersecurity services

As discussed earlier, cybersecurity data science is data-focused, applies machine learning methods, attempts to quantify cyber risks, promotes inferential techniques to analyze behavioral patterns, focuses on generating security response alerts, and eventually seeks for optimizing cybersecurity operations. Hence, we briefly discuss a multiple data processing layered framework that potentially can be used to discover security insights from the raw data to build smart cybersecurity systems, e.g., dynamic policy rule-based access control or intrusion detection and prevention system. To make a data-driven intelligent decision in the resultant cybersecurity system, understanding the security problems and the nature of corresponding security data and their vast analysis is needed. For this purpose, our suggested framework not only considers the machine learning techniques to build the security model but also takes into account the incremental learning and dynamism to keep the model up-to-date and corresponding response generation, which could be more effective and intelligent for providing the expected services. Figure 3 shows an overview of the framework, involving several processing layers, from raw security event data to services. In the following, we briefly discuss the working procedure of the framework.

figure 3

A generic multi-layered framework based on machine learning techniques for smart cybersecurity services

Security data collecting

Collecting valuable cybersecurity data is a crucial step, which forms a connecting link between security problems in cyberinfrastructure and corresponding data-driven solution steps in this framework, shown in Fig.  3 . The reason is that cyber data can serve as the source for setting up ground truth of the security model that affect the model performance. The quality and quantity of cyber data decide the feasibility and effectiveness of solving the security problem according to our goal. Thus, the concern is how to collect valuable and unique needs data for building the data-driven security models.

The general step to collect and manage security data from diverse data sources is based on a particular security problem and project within the enterprise. Data sources can be classified into several broad categories such as network, host, and hybrid [ 171 ]. Within the network infrastructure, the security system can leverage different types of security data such as IDS logs, firewall logs, network traffic data, packet data, and honeypot data, etc. for providing the target security services. For instance, a given IP is considered malicious or not, could be detected by performing data analysis utilizing the data of IP addresses and their cyber activities. In the domain of cybersecurity, the network source mentioned above is considered as the primary security event source to analyze. In the host category, it collects data from an organization’s host machines, where the data sources can be operating system logs, database access logs, web server logs, email logs, application logs, etc. Collecting data from both the network and host machines are considered a hybrid category. Overall, in a data collection layer the network activity, database activity, application activity, and user activity can be the possible security event sources in the context of cybersecurity data science.

Security data preparing

After collecting the raw security data from various sources according to the problem domain discussed above, this layer is responsible to prepare the raw data for building the model by applying various necessary processes. However, not all of the collected data contributes to the model building process in the domain of cybersecurity [ 172 ]. Therefore, the useless data should be removed from the rest of the data captured by the network sniffer. Moreover, data might be noisy, have missing or corrupted values, or have attributes of widely varying types and scales. High quality of data is necessary for achieving higher accuracy in a data-driven model, which is a process of learning a function that maps an input to an output based on example input-output pairs. Thus, it might require a procedure for data cleaning, handling missing or corrupted values. Moreover, security data features or attributes can be in different types, such as continuous, discrete, or symbolic [ 106 ]. Beyond a solid understanding of these types of data and attributes and their permissible operations, its need to preprocess the data and attributes to convert into the target type. Besides, the raw data can be in different types such as structured, semi-structured, or unstructured, etc. Thus, normalization, transformation, or collation can be useful to organize the data in a structured manner. In some cases, natural language processing techniques might be useful depending on data type and characteristics, e.g., textual contents. As both the quality and quantity of data decide the feasibility of solving the security problem, effectively pre-processing and management of data and their representation can play a significant role to build an effective security model for intelligent services.

Machine learning-based security modeling

This is the core step where insights and knowledge are extracted from data through the application of cybersecurity data science. In this section, we particularly focus on machine learning-based modeling as machine learning techniques can significantly change the cybersecurity landscape. The security features or attributes and their patterns in data are of high interest to be discovered and analyzed to extract security insights. To achieve the goal, a deeper understanding of data and machine learning-based analytical models utilizing a large number of cybersecurity data can be effective. Thus, various machine learning tasks can be involved in this model building layer according to the solution perspective. These are - security feature engineering that mainly responsible to transform raw security data into informative features that effectively represent the underlying security problem to the data-driven models. Thus, several data-processing tasks such as feature transformation and normalization, feature selection by taking into account a subset of available security features according to their correlations or importance in modeling, or feature generation and extraction by creating new brand principal components, may be involved in this module according to the security data characteristics. For instance, the chi-squared test, analysis of variance test, correlation coefficient analysis, feature importance, as well as discriminant and principal component analysis, or singular value decomposition, etc. can be used for analyzing the significance of the security features to perform the security feature engineering tasks [ 82 ].

Another significant module is security data clustering that uncovers hidden patterns and structures through huge volumes of security data, to identify where the new threats exist. It typically involves the grouping of security data with similar characteristics, which can be used to solve several cybersecurity problems such as detecting anomalies, policy violations, etc. Malicious behavior or anomaly detection module is typically responsible to identify a deviation to a known behavior, where clustering-based analysis and techniques can also be used to detect malicious behavior or anomaly detection. In the cybersecurity area, attack classification or prediction is treated as one of the most significant modules, which is responsible to build a prediction model to classify attacks or threats and to predict future for a particular security problem. To predict denial-of-service attack or a spam filter separating tasks from other messages, could be the relevant examples. Association learning or policy rule generation module can play a role to build an expert security system that comprises several IF-THEN rules that define attacks. Thus, in a problem of policy rule generation for rule-based access control system, association learning can be used as it discovers the associations or relationships among a set of available security features in a given security dataset. The popular machine learning algorithms in these categories are briefly discussed in “  Machine learning tasks in cybersecurity ” section. The module model selection or customization is responsible to choose whether it uses the existing machine learning model or needed to customize. Analyzing data and building models based on traditional machine learning or deep learning methods, could achieve acceptable results in certain cases in the domain of cybersecurity. However, in terms of effectiveness and efficiency or other performance measurements considering time complexity, generalization capacity, and most importantly the impact of the algorithm on the detection rate of a system, machine learning models are needed to customize for a specific security problem. Moreover, customizing the related techniques and data could improve the performance of the resultant security model and make it better applicable in a cybersecurity domain. The modules discussed above can work separately and combinedly depending on the target security problems.

Incremental learning and dynamism

In our framework, this layer is concerned with finalizing the resultant security model by incorporating additional intelligence according to the needs. This could be possible by further processing in several modules. For instance, the post-processing and improvement module in this layer could play a role to simplify the extracted knowledge according to the particular requirements by incorporating domain-specific knowledge. As the attack classification or prediction models based on machine learning techniques strongly rely on the training data, it can hardly be generalized to other datasets, which could be significant for some applications. To address such kind of limitations, this module is responsible to utilize the domain knowledge in the form of taxonomy or ontology to improve attack correlation in cybersecurity applications.

Another significant module recency mining and updating security model is responsible to keep the security model up-to-date for better performance by extracting the latest data-driven security patterns. The extracted knowledge discussed in the earlier layer is based on a static initial dataset considering the overall patterns in the datasets. However, such knowledge might not be guaranteed higher performance in several cases, because of incremental security data with recent patterns. In many cases, such incremental data may contain different patterns which could conflict with existing knowledge. Thus, the concept of RecencyMiner [ 170 ] on incremental security data and extracting new patterns can be more effective than the existing old patterns. The reason is that recent security patterns and rules are more likely to be significant than older ones for predicting cyber risks or attacks. Rather than processing the whole security data again, recency-based dynamic updating according to the new patterns would be more efficient in terms of processing and outcome. This could make the resultant cybersecurity model intelligent and dynamic. Finally, response planning and decision making module is responsible to make decisions based on the extracted insights and take necessary actions to prevent the system from the cyber-attacks to provide automated and intelligent services. The services might be different depending on particular requirements for a given security problem.

Overall, this framework is a generic description which potentially can be used to discover useful insights from security data, to build smart cybersecurity systems, to address complex security challenges, such as intrusion detection, access control management, detecting anomalies and fraud, or denial of service attacks, etc. in the area of cybersecurity data science.

Although several research efforts have been directed towards cybersecurity solutions, discussed in “ Background ” , “ Cybersecurity data science ”, and “ Machine learning tasks in cybersecurity ” sections in different directions, this paper presents a comprehensive view of cybersecurity data science. For this, we have conducted a literature review to understand cybersecurity data, various defense strategies including intrusion detection techniques, different types of machine learning techniques in cybersecurity tasks. Based on our discussion on existing work, several research issues related to security datasets, data quality problems, policy rule generation, learning methods, data protection, feature engineering, security alert generation, recency analysis etc. are identified that require further research attention in the domain of cybersecurity data science.

The scope of cybersecurity data science is broad. Several data-driven tasks such as intrusion detection and prevention, access control management, security policy generation, anomaly detection, spam filtering, fraud detection and prevention, various types of malware attack detection and defense strategies, etc. can be considered as the scope of cybersecurity data science. Such tasks based categorization could be helpful for security professionals including the researchers and practitioners who are interested in the domain-specific aspects of security systems [ 171 ]. The output of cybersecurity data science can be used in many application areas such as Internet of things (IoT) security [ 173 ], network security [ 174 ], cloud security [ 175 ], mobile and web applications [ 26 ], and other relevant cyber areas. Moreover, intelligent cybersecurity solutions are important for the banking industry, the healthcare sector, or the public sector, where data breaches typically occur [ 36 , 176 ]. Besides, the data-driven security solutions could also be effective in AI-based blockchain technology, where AI works with huge volumes of security event data to extract the useful insights using machine learning techniques, and block-chain as a trusted platform to store such data [ 177 ].

Although in this paper, we discuss cybersecurity data science focusing on examining raw security data to data-driven decision making for intelligent security solutions, it could also be related to big data analytics in terms of data processing and decision making. Big data deals with data sets that are too large or complex having characteristics of high data volume, velocity, and variety. Big data analytics mainly has two parts consisting of data management involving data storage, and analytics [ 178 ]. The analytics typically describe the process of analyzing such datasets to discover patterns, unknown correlations, rules, and other useful insights [ 179 ]. Thus, several advanced data analysis techniques such as AI, data mining, machine learning could play an important role in processing big data by converting big problems to small problems [ 180 ]. To do this, the potential strategies like parallelization, divide-and-conquer, incremental learning, sampling, granular computing, feature or instance selection, can be used to make better decisions, reducing costs, or enabling more efficient processing. In such cases, the concept of cybersecurity data science, particularly machine learning-based modeling could be helpful for process automation and decision making for intelligent security solutions. Moreover, researchers could consider modified algorithms or models for handing big data on parallel computing platforms like Hadoop, Storm, etc. [ 181 ].

Based on the concept of cybersecurity data science discussed in the paper, building a data-driven security model for a particular security problem and relevant empirical evaluation to measure the effectiveness and efficiency of the model, and to asses the usability in the real-world application domain could be a future work.

Motivated by the growing significance of cybersecurity and data science, and machine learning technologies, in this paper, we have discussed how cybersecurity data science applies to data-driven intelligent decision making in smart cybersecurity systems and services. We also have discussed how it can impact security data, both in terms of extracting insight of security incidents and the dataset itself. We aimed to work on cybersecurity data science by discussing the state of the art concerning security incidents data and corresponding security services. We also discussed how machine learning techniques can impact in the domain of cybersecurity, and examine the security challenges that remain. In terms of existing research, much focus has been provided on traditional security solutions, with less available work in machine learning technique based security systems. For each common technique, we have discussed relevant security research. The purpose of this article is to share an overview of the conceptualization, understanding, modeling, and thinking about cybersecurity data science.

We have further identified and discussed various key issues in security analysis to showcase the signpost of future research directions in the domain of cybersecurity data science. Based on the knowledge, we have also provided a generic multi-layered framework of cybersecurity data science model based on machine learning techniques, where the data is being gathered from diverse sources, and the analytics complement the latest data-driven patterns for providing intelligent security services. The framework consists of several main phases - security data collecting, data preparation, machine learning-based security modeling, and incremental learning and dynamism for smart cybersecurity systems and services. We specifically focused on extracting insights from security data, from setting a research design with particular attention to concepts for data-driven intelligent security solutions.

Overall, this paper aimed not only to discuss cybersecurity data science and relevant methods but also to discuss the applicability towards data-driven intelligent decision making in cybersecurity systems and services from machine learning perspectives. Our analysis and discussion can have several implications both for security researchers and practitioners. For researchers, we have highlighted several issues and directions for future research. Other areas for potential research include empirical evaluation of the suggested data-driven model, and comparative analysis with other security systems. For practitioners, the multi-layered machine learning-based model can be used as a reference in designing intelligent cybersecurity systems for organizations. We believe that our study on cybersecurity data science opens a promising path and can be used as a reference guide for both academia and industry for future research and applications in the area of cybersecurity.

Availability of data and materials

Not applicable.

Abbreviations

  • Machine learning

Artificial Intelligence

Information and communication technology

Internet of Things

Distributed Denial of Service

Intrusion detection system

Intrusion prevention system

Host-based intrusion detection systems

Network Intrusion Detection Systems

Signature-based intrusion detection system

Anomaly-based intrusion detection system

Li S, Da Xu L, Zhao S. The internet of things: a survey. Inform Syst Front. 2015;17(2):243–59.

Google Scholar  

Sun N, Zhang J, Rimba P, Gao S, Zhang LY, Xiang Y. Data-driven cybersecurity incident prediction: a survey. IEEE Commun Surv Tutor. 2018;21(2):1744–72.

McIntosh T, Jang-Jaccard J, Watters P, Susnjak T. The inadequacy of entropy-based ransomware detection. In: International conference on neural information processing. New York: Springer; 2019. p. 181–189

Alazab M, Venkatraman S, Watters P, Alazab M, et al. Zero-day malware detection based on supervised learning algorithms of api call signatures (2010)

Shaw A. Data breach: from notification to prevention using pci dss. Colum Soc Probs. 2009;43:517.

Gupta BB, Tewari A, Jain AK, Agrawal DP. Fighting against phishing attacks: state of the art and future challenges. Neural Comput Appl. 2017;28(12):3629–54.

Av-test institute, germany, https://www.av-test.org/en/statistics/malware/ . Accessed 20 Oct 2019.

Ibm security report, https://www.ibm.com/security/data-breach . Accessed on 20 Oct 2019.

Fischer EA. Cybersecurity issues and challenges: In brief. Congressional Research Service (2014)

Juniper research. https://www.juniperresearch.com/ . Accessed on 20 Oct 2019.

Papastergiou S, Mouratidis H, Kalogeraki E-M. Cyber security incident handling, warning and response system for the european critical information infrastructures (cybersane). In: International Conference on Engineering Applications of Neural Networks, p. 476–487 (2019). New York: Springer

Aftergood S. Cybersecurity: the cold war online. Nature. 2017;547(7661):30.

Hey AJ, Tansley S, Tolle KM, et al. The fourth paradigm: data-intensive scientific discovery. 2009;1:

Cukier K. Data, data everywhere: A special report on managing information, 2010.

Google trends. In: https://trends.google.com/trends/ , 2019.

Anwar S, Mohamad Zain J, Zolkipli MF, Inayat Z, Khan S, Anthony B, Chang V. From intrusion detection to an intrusion response system: fundamentals, requirements, and future directions. Algorithms. 2017;10(2):39.

MATH   Google Scholar  

Mohammadi S, Mirvaziri H, Ghazizadeh-Ahsaee M, Karimipour H. Cyber intrusion detection by combined feature selection algorithm. J Inform Sec Appl. 2019;44:80–8.

Tapiador JE, Orfila A, Ribagorda A, Ramos B. Key-recovery attacks on kids, a keyed anomaly detection system. IEEE Trans Depend Sec Comput. 2013;12(3):312–25.

Tavallaee M, Stakhanova N, Ghorbani AA. Toward credible evaluation of anomaly-based intrusion-detection methods. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 40(5), 516–524 (2010)

Foroughi F, Luksch P. Data science methodology for cybersecurity projects. arXiv preprint arXiv:1803.04219 , 2018.

Saxe J, Sanders H. Malware data science: Attack detection and attribution, 2018.

Rainie L, Anderson J, Connolly J. Cyber attacks likely to increase. Digital Life in. 2014, vol. 2025.

Fischer EA. Creating a national framework for cybersecurity: an analysis of issues and options. LIBRARY OF CONGRESS WASHINGTON DC CONGRESSIONAL RESEARCH SERVICE, 2005.

Craigen D, Diakun-Thibault N, Purse R. Defining cybersecurity. Technology Innovation. Manag Rev. 2014;4(10):13–21.

Council NR. et al. Toward a safer and more secure cyberspace, 2007.

Jang-Jaccard J, Nepal S. A survey of emerging threats in cybersecurity. J Comput Syst Sci. 2014;80(5):973–93.

MathSciNet   MATH   Google Scholar  

Mukkamala S, Sung A, Abraham A. Cyber security challenges: Designing efficient intrusion detection systems and antivirus tools. Vemuri, V. Rao, Enhancing Computer Security with Smart Technology.(Auerbach, 2006), 125–163, 2005.

Bilge L, Dumitraş T. Before we knew it: an empirical study of zero-day attacks in the real world. In: Proceedings of the 2012 ACM conference on computer and communications security. ACM; 2012. p. 833–44.

Davi L, Dmitrienko A, Sadeghi A-R, Winandy M. Privilege escalation attacks on android. In: International conference on information security. New York: Springer; 2010. p. 346–60.

Jovičić B, Simić D. Common web application attack types and security using asp .net. ComSIS, 2006.

Warkentin M, Willison R. Behavioral and policy issues in information systems security: the insider threat. Eur J Inform Syst. 2009;18(2):101–5.

Kügler D. “man in the middle” attacks on bluetooth. In: International Conference on Financial Cryptography. New York: Springer; 2003, p. 149–61.

Virvilis N, Gritzalis D. The big four-what we did wrong in advanced persistent threat detection. In: 2013 International Conference on Availability, Reliability and Security. IEEE; 2013. p. 248–54.

Boyd SW, Keromytis AD. Sqlrand: Preventing sql injection attacks. In: International conference on applied cryptography and network security. New York: Springer; 2004. p. 292–302.

Sigler K. Crypto-jacking: how cyber-criminals are exploiting the crypto-currency boom. Comput Fraud Sec. 2018;2018(9):12–4.

2019 data breach investigations report, https://enterprise.verizon.com/resources/reports/dbir/ . Accessed 20 Oct 2019.

Khraisat A, Gondal I, Vamplew P, Kamruzzaman J. Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity. 2019;2(1):20.

Johnson L. Computer incident response and forensics team management: conducting a successful incident response, 2013.

Brahmi I, Brahmi H, Yahia SB. A multi-agents intrusion detection system using ontology and clustering techniques. In: IFIP international conference on computer science and its applications. New York: Springer; 2015. p. 381–93.

Qu X, Yang L, Guo K, Ma L, Sun M, Ke M, Li M. A survey on the development of self-organizing maps for unsupervised intrusion detection. In: Mobile networks and applications. 2019;1–22.

Liao H-J, Lin C-HR, Lin Y-C, Tung K-Y. Intrusion detection system: a comprehensive review. J Netw Comput Appl. 2013;36(1):16–24.

Alazab A, Hobbs M, Abawajy J, Alazab M. Using feature selection for intrusion detection system. In: 2012 International symposium on communications and information technologies (ISCIT). IEEE; 2012. p. 296–301.

Viegas E, Santin AO, Franca A, Jasinski R, Pedroni VA, Oliveira LS. Towards an energy-efficient anomaly-based intrusion detection engine for embedded systems. IEEE Trans Comput. 2016;66(1):163–77.

Xin Y, Kong L, Liu Z, Chen Y, Li Y, Zhu H, Gao M, Hou H, Wang C. Machine learning and deep learning methods for cybersecurity. IEEE Access. 2018;6:35365–81.

Dutt I, Borah S, Maitra IK, Bhowmik K, Maity A, Das S. Real-time hybrid intrusion detection system using machine learning techniques. 2018, p. 885–94.

Ragsdale DJ, Carver C, Humphries JW, Pooch UW. Adaptation techniques for intrusion detection and intrusion response systems. In: Smc 2000 conference proceedings. 2000 IEEE international conference on systems, man and cybernetics.’cybernetics evolving to systems, humans, organizations, and their complex interactions’(cat. No. 0). IEEE; 2000. vol. 4, p. 2344–2349.

Cao L. Data science: challenges and directions. Commun ACM. 2017;60(8):59–68.

Rizk A, Elragal A. Data science: developing theoretical contributions in information systems via text analytics. J Big Data. 2020;7(1):1–26.

Lippmann RP, Fried DJ, Graf I, Haines JW, Kendall KR, McClung D, Weber D, Webster SE, Wyschogrod D, Cunningham RK, et al. Evaluating intrusion detection systems: The 1998 darpa off-line intrusion detection evaluation. In: Proceedings DARPA information survivability conference and exposition. DISCEX’00. IEEE; 2000. vol. 2, p. 12–26.

Kdd cup 99. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html . Accessed 20 Oct 2019.

Tavallaee M, Bagheri E, Lu W, Ghorbani AA. A detailed analysis of the kdd cup 99 data set. In: 2009 IEEE symposium on computational intelligence for security and defense applications. IEEE; 2009. p. 1–6.

Caida ddos attack 2007 dataset. http://www.caida.org/data/ passive/ddos-20070804-dataset.xml/ . Accessed 20 Oct 2019.

Caida anonymized internet traces 2008 dataset. https://www.caida.org/data/passive/passive-2008-dataset . Accessed 20 Oct 2019.

Isot botnet dataset. https://www.uvic.ca/engineering/ece/isot/ datasets/index.php/ . Accessed 20 Oct 2019.

The honeynet project. http://www.honeynet.org/chapters/france/ . Accessed 20 Oct 2019.

Canadian institute of cybersecurity, university of new brunswick, iscx dataset, http://www.unb.ca/cic/datasets/index.html/ . Accessed 20 Oct 2019.

Shiravi A, Shiravi H, Tavallaee M, Ghorbani AA. Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Comput Secur. 2012;31(3):357–74.

The ctu-13 dataset. https://stratosphereips.org/category/datasets-ctu13 . Accessed 20 Oct 2019.

Moustafa N, Slay J. Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In: 2015 Military Communications and Information Systems Conference (MilCIS). IEEE; 2015. p. 1–6.

Cse-cic-ids2018 [online]. available: https://www.unb.ca/cic/ datasets/ids-2018.html/ . Accessed 20 Oct 2019.

Cic-ddos2019 [online]. available: https://www.unb.ca/cic/datasets/ddos-2019.html/ . Accessed 28 Mar 2019.

Jing X, Yan Z, Jiang X, Pedrycz W. Network traffic fusion and analysis against ddos flooding attacks with a novel reversible sketch. Inform Fusion. 2019;51:100–13.

Xie M, Hu J, Yu X, Chang E. Evaluating host-based anomaly detection systems: application of the frequency-based algorithms to adfa-ld. In: International conference on network and system security. New York: Springer; 2015. p. 542–49.

Lindauer B, Glasser J, Rosen M, Wallnau KC, ExactData L. Generating test data for insider threat detectors. JoWUA. 2014;5(2):80–94.

Glasser J, Lindauer B. Bridging the gap: A pragmatic approach to generating insider threat data. In: 2013 IEEE Security and Privacy Workshops. IEEE; 2013. p. 98–104.

Enronspam. https://labs-repos.iit.demokritos.gr/skel/i-config/downloads/enron-spam/ . Accessed 20 Oct 2019.

Spamassassin. http://www.spamassassin.org/publiccorpus/ . Accessed 20 Oct 2019.

Lingspam. https://labs-repos.iit.demokritos.gr/skel/i-config/downloads/lingspampublic.tar.gz/ . Accessed 20 Oct 2019.

Alexa top sites. https://aws.amazon.com/alexa-top-sites/ . Accessed 20 Oct 2019.

Bambenek consulting—master feeds. available online: http://osint.bambenekconsulting.com/feeds/ . Accessed 20 Oct 2019.

Dgarchive. https://dgarchive.caad.fkie.fraunhofer.de/site/ . Accessed 20 Oct 2019.

Zago M, Pérez MG, Pérez GM. Umudga: A dataset for profiling algorithmically generated domain names in botnet detection. Data in Brief. 2020;105400.

Zhou Y, Jiang X. Dissecting android malware: characterization and evolution. In: 2012 IEEE Symposium on security and privacy. IEEE; 2012. p. 95–109.

Virusshare. http://virusshare.com/ . Accessed 20 Oct 2019.

Virustotal. https://virustotal.com/ . Accessed 20 Oct 2019.

Comodo. https://www.comodo.com/home/internet-security/updates/vdp/database . Accessed 20 Oct 2019.

Contagio. http://contagiodump.blogspot.com/ . Accessed 20 Oct 2019.

Kumar R, Xiaosong Z, Khan RU, Kumar J, Ahad I. Effective and explainable detection of android malware based on machine learning algorithms. In: Proceedings of the 2018 international conference on computing and artificial intelligence. ACM; 2018. p. 35–40.

Microsoft malware classification (big 2015). arXiv:org/abs/1802.10135/ . Accessed 20 Oct 2019.

Koroniotis N, Moustafa N, Sitnikova E, Turnbull B. Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: bot-iot dataset. Future Gen Comput Syst. 2019;100:779–96.

McIntosh TR, Jang-Jaccard J, Watters PA. Large scale behavioral analysis of ransomware attacks. In: International conference on neural information processing. New York: Springer; 2018. p. 217–29.

Han J, Pei J, Kamber M. Data mining: concepts and techniques, 2011.

Witten IH, Frank E. Data mining: Practical machine learning tools and techniques, 2005.

Dua S, Du X. Data mining and machine learning in cybersecurity, 2016.

Kotpalliwar MV, Wajgi R. Classification of attacks using support vector machine (svm) on kddcup’99 ids database. In: 2015 Fifth international conference on communication systems and network technologies. IEEE; 2015. p. 987–90.

Pervez MS, Farid DM. Feature selection and intrusion classification in nsl-kdd cup 99 dataset employing svms. In: The 8th international conference on software, knowledge, information management and applications (SKIMA 2014). IEEE; 2014. p. 1–6.

Yan M, Liu Z. A new method of transductive svm-based network intrusion detection. In: International conference on computer and computing technologies in agriculture. New York: Springer; 2010. p. 87–95.

Li Y, Xia J, Zhang S, Yan J, Ai X, Dai K. An efficient intrusion detection system based on support vector machines and gradually feature removal method. Expert Syst Appl. 2012;39(1):424–30.

Raman MG, Somu N, Jagarapu S, Manghnani T, Selvam T, Krithivasan K, Sriram VS. An efficient intrusion detection technique based on support vector machine and improved binary gravitational search algorithm. Artificial Intelligence Review. 2019, p. 1–32.

Kokila R, Selvi ST, Govindarajan K. Ddos detection and analysis in sdn-based environment using support vector machine classifier. In: 2014 Sixth international conference on advanced computing (ICoAC). IEEE; 2014. p. 205–10.

Xie M, Hu J, Slay J. Evaluating host-based anomaly detection systems: Application of the one-class svm algorithm to adfa-ld. In: 2014 11th international conference on fuzzy systems and knowledge discovery (FSKD). IEEE; 2014. p. 978–82.

Saxena H, Richariya V. Intrusion detection in kdd99 dataset using svm-pso and feature reduction with information gain. Int J Comput Appl. 2014;98:6.

Chandrasekhar A, Raghuveer K. Confederation of fcm clustering, ann and svm techniques to implement hybrid nids using corrected kdd cup 99 dataset. In: 2014 international conference on communication and signal processing. IEEE; 2014. p. 672–76.

Shapoorifard H, Shamsinejad P. Intrusion detection using a novel hybrid method incorporating an improved knn. Int J Comput Appl. 2017;173(1):5–9.

Vishwakarma S, Sharma V, Tiwari A. An intrusion detection system using knn-aco algorithm. Int J Comput Appl. 2017;171(10):18–23.

Meng W, Li W, Kwok L-F. Design of intelligent knn-based alarm filter using knowledge-based alert verification in intrusion detection. Secur Commun Netw. 2015;8(18):3883–95.

Dada E. A hybridized svm-knn-pdapso approach to intrusion detection system. In: Proc. Fac. Seminar Ser., 2017, p. 14–21.

Sharifi AM, Amirgholipour SK, Pourebrahimi A. Intrusion detection based on joint of k-means and knn. J Converg Inform Technol. 2015;10(5):42.

Lin W-C, Ke S-W, Tsai C-F. Cann: an intrusion detection system based on combining cluster centers and nearest neighbors. Knowl Based Syst. 2015;78:13–21.

Koc L, Mazzuchi TA, Sarkani S. A network intrusion detection system based on a hidden naïve bayes multiclass classifier. Exp Syst Appl. 2012;39(18):13492–500.

Moon D, Im H, Kim I, Park JH. Dtb-ids: an intrusion detection system based on decision tree using behavior analysis for preventing apt attacks. J Supercomput. 2017;73(7):2881–95.

Ingre, B., Yadav, A., Soni, A.K.: Decision tree based intrusion detection system for nsl-kdd dataset. In: International conference on information and communication technology for intelligent systems. New York: Springer; 2017. p. 207–18.

Malik AJ, Khan FA. A hybrid technique using binary particle swarm optimization and decision tree pruning for network intrusion detection. Cluster Comput. 2018;21(1):667–80.

Relan NG, Patil DR. Implementation of network intrusion detection system using variant of decision tree algorithm. In: 2015 international conference on nascent technologies in the engineering field (ICNTE). IEEE; 2015. p. 1–5.

Rai K, Devi MS, Guleria A. Decision tree based algorithm for intrusion detection. Int J Adv Netw Appl. 2016;7(4):2828.

Sarker IH, Abushark YB, Alsolami F, Khan AI. Intrudtree: a machine learning based cyber security intrusion detection model. Symmetry. 2020;12(5):754.

Puthran S, Shah K. Intrusion detection using improved decision tree algorithm with binary and quad split. In: International symposium on security in computing and communication. New York: Springer; 2016. p. 427–438.

Balogun AO, Jimoh RG. Anomaly intrusion detection using an hybrid of decision tree and k-nearest neighbor, 2015.

Azad C, Jha VK. Genetic algorithm to solve the problem of small disjunct in the decision tree based intrusion detection system. Int J Comput Netw Inform Secur. 2015;7(8):56.

Jo S, Sung H, Ahn B. A comparative study on the performance of intrusion detection using decision tree and artificial neural network models. J Korea Soc Dig Indus Inform Manag. 2015;11(4):33–45.

Zhan J, Zulkernine M, Haque A. Random-forests-based network intrusion detection systems. IEEE Trans Syst Man Cybern C. 2008;38(5):649–59.

Tajbakhsh A, Rahmati M, Mirzaei A. Intrusion detection using fuzzy association rules. Appl Soft Comput. 2009;9(2):462–9.

Mitchell R, Chen R. Behavior rule specification-based intrusion detection for safety critical medical cyber physical systems. IEEE Trans Depend Secure Comput. 2014;12(1):16–30.

Alazab M, Venkataraman S, Watters P. Towards understanding malware behaviour by the extraction of api calls. In: 2010 second cybercrime and trustworthy computing Workshop. IEEE; 2010. p. 52–59.

Yuan Y, Kaklamanos G, Hogrefe D. A novel semi-supervised adaboost technique for network anomaly detection. In: Proceedings of the 19th ACM international conference on modeling, analysis and simulation of wireless and mobile systems. ACM; 2016. p. 111–14.

Ariu D, Tronci R, Giacinto G. Hmmpayl: an intrusion detection system based on hidden markov models. Comput Secur. 2011;30(4):221–41.

Årnes A, Valeur F, Vigna G, Kemmerer RA. Using hidden markov models to evaluate the risks of intrusions. In: International workshop on recent advances in intrusion detection. New York: Springer; 2006. p. 145–64.

Hansen JV, Lowry PB, Meservy RD, McDonald DM. Genetic programming for prevention of cyberterrorism through dynamic and evolving intrusion detection. Decis Supp Syst. 2007;43(4):1362–74.

Aslahi-Shahri B, Rahmani R, Chizari M, Maralani A, Eslami M, Golkar MJ, Ebrahimi A. A hybrid method consisting of ga and svm for intrusion detection system. Neural Comput Appl. 2016;27(6):1669–76.

Alrawashdeh K, Purdy C. Toward an online anomaly intrusion detection system based on deep learning. In: 2016 15th IEEE international conference on machine learning and applications (ICMLA). IEEE; 2016. p. 195–200.

Yin C, Zhu Y, Fei J, He X. A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access. 2017;5:21954–61.

Kim J, Kim J, Thu HLT, Kim H. Long short term memory recurrent neural network classifier for intrusion detection. In: 2016 international conference on platform technology and service (PlatCon). IEEE; 2016. p. 1–5.

Almiani M, AbuGhazleh A, Al-Rahayfeh A, Atiewi S, Razaque A. Deep recurrent neural network for iot intrusion detection system. Simulation Modelling Practice and Theory. 2019;102031.

Kolosnjaji B, Zarras A, Webster G, Eckert C. Deep learning for classification of malware system call sequences. In: Australasian joint conference on artificial intelligence. New York: Springer; 2016. p. 137–49.

Wang W, Zhu M, Zeng X, Ye X, Sheng Y. Malware traffic classification using convolutional neural network for representation learning. In: 2017 international conference on information networking (ICOIN). IEEE; 2017. p. 712–17.

Alauthman M, Aslam N, Al-kasassbeh M, Khan S, Al-Qerem A, Choo K-KR. An efficient reinforcement learning-based botnet detection approach. J Netw Comput Appl. 2020;150:102479.

Blanco R, Cilla JJ, Briongos S, Malagón P, Moya JM. Applying cost-sensitive classifiers with reinforcement learning to ids. In: International conference on intelligent data engineering and automated learning. New York: Springer; 2018. p. 531–38.

Lopez-Martin M, Carro B, Sanchez-Esguevillas A. Application of deep reinforcement learning to intrusion detection for supervised problems. Exp Syst Appl. 2020;141:112963.

Sarker IH, Kayes A, Watters P. Effectiveness analysis of machine learning classification models for predicting personalized context-aware smartphone usage. J Big Data. 2019;6(1):1–28.

Holte RC. Very simple classification rules perform well on most commonly used datasets. Mach Learn. 1993;11(1):63–90.

John GH, Langley P. Estimating continuous distributions in bayesian classifiers. In: Proceedings of the eleventh conference on uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc.; 1995. p. 338–45.

Quinlan JR. C4.5: Programs for machine learning. Machine Learning, 1993.

Sarker IH, Colman A, Han J, Khan AI, Abushark YB, Salah K. Behavdt: a behavioral decision tree learning to build user-centric context-aware predictive model. Mobile Networks and Applications. 2019, p. 1–11.

Aha DW, Kibler D, Albert MK. Instance-based learning algorithms. Mach Learn. 1991;6(1):37–66.

Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK. Improvements to platt’s smo algorithm for svm classifier design. Neural Comput. 2001;13(3):637–49.

Freund Y, Schapire RE, et al: Experiments with a new boosting algorithm. In: Icml, vol. 96, p. 148–156 (1996). Citeseer

Le Cessie S, Van Houwelingen JC. Ridge estimators in logistic regression. J Royal Stat Soc C. 1992;41(1):191–201.

Watters PA, McCombie S, Layton R, Pieprzyk J. Characterising and predicting cyber attacks using the cyber attacker model profile (camp). J Money Launder Control. 2012.

Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

Sarker IH. Context-aware rule learning from smartphone data: survey, challenges and future directions. J Big Data. 2019;6(1):95.

MacQueen J. Some methods for classification and analysis of multivariate observations. In: Fifth Berkeley symposium on mathematical statistics and probability, vol. 1, 1967.

Rokach L. A survey of clustering algorithms. In: Data Mining and Knowledge Discovery Handbook. New York: Springer; 2010. p. 269–98.

Sneath PH. The application of computers to taxonomy. J Gen Microbiol. 1957;17:1.

Sorensen T. method of establishing groups of equal amplitude in plant sociology based on similarity of species. Biol Skr. 1948;5.

Sarker IH, Colman A, Kabir MA, Han J. Individualized time-series segmentation for mining mobile phone user behavior. Comput J. 2018;61(3):349–68.

Kim G, Lee S, Kim S. A novel hybrid intrusion detection method integrating anomaly detection with misuse detection. Exp Syst Appl. 2014;41(4):1690–700.

MathSciNet   Google Scholar  

Agrawal R, Imieliński T, Swami A. Mining association rules between sets of items in large databases. In: ACM SIGMOD Record. ACM; 1993. vol. 22, p. 207–16.

Flach PA, Lachiche N. Confirmation-guided discovery of first-order rules with tertius. Mach Learn. 2001;42(1–2):61–95.

Agrawal R, Srikant R, et al: Fast algorithms for mining association rules. In: Proc. 20th Int. Conf. Very Large Data Bases, VLDB, 1994, vol. 1215, p. 487–99.

Houtsma M, Swami A. Set-oriented mining for association rules in relational databases. In: Proceedings of the eleventh international conference on data engineering. IEEE; 1995. p. 25–33.

Ma BLWHY. Integrating classification and association rule mining. In: Proceedings of the fourth international conference on knowledge discovery and data mining, 1998.

Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. In: ACM Sigmod Record. ACM; 2000. vol. 29, p. 1–12.

Sarker IH, Salim FD. Mining user behavioral rules from smartphone data through association analysis. In: Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Melbourne, Australia. New York: Springer; 2018. p. 450–61.

Das A, Ng W-K, Woon Y-K. Rapid association rule mining. In: Proceedings of the tenth international conference on information and knowledge management. ACM; 2001. p. 474–81.

Zaki MJ. Scalable algorithms for association mining. IEEE Trans Knowl Data Eng. 2000;12(3):372–90.

Coelho IM, Coelho VN, Luz EJS, Ochi LS, Guimarães FG, Rios E. A gpu deep learning metaheuristic based model for time series forecasting. Appl Energy. 2017;201:412–8.

Van Efferen L, Ali-Eldin AM. A multi-layer perceptron approach for flow-based anomaly detection. In: 2017 International symposium on networks, computers and communications (ISNCC). IEEE; 2017. p. 1–6.

Liu H, Lang B, Liu M, Yan H. Cnn and rnn based payload classification methods for attack detection. Knowl Based Syst. 2019;163:332–41.

Berman DS, Buczak AL, Chavis JS, Corbett CL. A survey of deep learning methods for cyber security. Information. 2019;10(4):122.

Bellman R. A markovian decision process. J Math Mech. 1957;1:679–84.

Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: a survey. J Artif Intell Res. 1996;4:237–85.

Sarker IH. A machine learning based robust prediction model for real-life mobile phone data. Internet of Things. 2019;5:180–93.

Kayes ASM, Han J, Colman A. OntCAAC: an ontology-based approach to context-aware access control for software services. Comput J. 2015;58(11):3000–34.

Kayes ASM, Rahayu W, Dillon T. An ontology-based approach to dynamic contextual role for pervasive access control. In: AINA 2018. IEEE Computer Society, 2018.

Colombo P, Ferrari E. Access control technologies for big data management systems: literature review and future trends. Cybersecurity. 2019;2(1):1–13.

Aleroud A, Karabatis G. Contextual information fusion for intrusion detection: a survey and taxonomy. Knowl Inform Syst. 2017;52(3):563–619.

Sarker IH, Abushark YB, Khan AI. Contextpca: Predicting context-aware smartphone apps usage based on machine learning techniques. Symmetry. 2020;12(4):499.

Madsen RE, Hansen LK, Winther O. Singular value decomposition and principal component analysis. Neural Netw. 2004;1:1–5.

Qiao L-B, Zhang B-F, Lai Z-Q, Su J-S. Mining of attack models in ids alerts from network backbone by a two-stage clustering method. In: 2012 IEEE 26th international parallel and distributed processing symposium workshops & Phd Forum. IEEE; 2012. p. 1263–9.

Sarker IH, Colman A, Han J. Recencyminer: mining recency-based personalized behavior from contextual smartphone data. J Big Data. 2019;6(1):49.

Ullah F, Babar MA. Architectural tactics for big data cybersecurity analytics systems: a review. J Syst Softw. 2019;151:81–118.

Zhao S, Leftwich K, Owens M, Magrone F, Schonemann J, Anderson B, Medhi D. I-can-mama: Integrated campus network monitoring and management. In: 2014 IEEE network operations and management symposium (NOMS). IEEE; 2014. p. 1–7.

Abomhara M, et al. Cyber security and the internet of things: vulnerabilities, threats, intruders and attacks. J Cyber Secur Mob. 2015;4(1):65–88.

Helali RGM. Data mining based network intrusion detection system: A survey. In: Novel algorithms and techniques in telecommunications and networking. New York: Springer; 2010. p. 501–505.

Ryoo J, Rizvi S, Aiken W, Kissell J. Cloud security auditing: challenges and emerging approaches. IEEE Secur Priv. 2013;12(6):68–74.

Densham B. Three cyber-security strategies to mitigate the impact of a data breach. Netw Secur. 2015;2015(1):5–8.

Salah K, Rehman MHU, Nizamuddin N, Al-Fuqaha A. Blockchain for ai: review and open research challenges. IEEE Access. 2019;7:10127–49.

Gandomi A, Haider M. Beyond the hype: big data concepts, methods, and analytics. Int J Inform Manag. 2015;35(2):137–44.

Golchha N. Big data-the information revolution. Int J Adv Res. 2015;1(12):791–4.

Hariri RH, Fredericks EM, Bowers KM. Uncertainty in big data analytics: survey, opportunities, and challenges. J Big Data. 2019;6(1):44.

Tsai C-W, Lai C-F, Chao H-C, Vasilakos AV. Big data analytics: a survey. J Big data. 2015;2(1):21.

Download references

Acknowledgements

The authors would like to thank all the reviewers for their rigorous review and comments in several revision rounds. The reviews are detailed and helpful to improve and finalize the manuscript. The authors are highly grateful to them.

Author information

Authors and affiliations.

Swinburne University of Technology, Melbourne, VIC, 3122, Australia

Iqbal H. Sarker

Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh

La Trobe University, Melbourne, VIC, 3086, Australia

A. S. M. Kayes, Paul Watters & Alex Ng

University of Nevada, Reno, USA

Shahriar Badsha

Macquarie University, Sydney, NSW, 2109, Australia

Hamed Alqahtani

You can also search for this author in PubMed   Google Scholar

Contributions

This article provides not only a discussion on cybersecurity data science and relevant methods but also to discuss the applicability towards data-driven intelligent decision making in cybersecurity systems and services. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Iqbal H. Sarker .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Sarker, I.H., Kayes, A.S.M., Badsha, S. et al. Cybersecurity data science: an overview from machine learning perspective. J Big Data 7 , 41 (2020). https://doi.org/10.1186/s40537-020-00318-5

Download citation

Received : 26 October 2019

Accepted : 21 June 2020

Published : 01 July 2020

DOI : https://doi.org/10.1186/s40537-020-00318-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Decision making
  • Cyber-attack
  • Security modeling
  • Intrusion detection
  • Cyber threat intelligence

research paper computer security

nasc research

nasc research networks - security - systems

Explore ucc.

  • Study at UCC

Research and Innovation

  • Discover UCC
  • Civic and Community Engagement

Explore UCC

You should be seeing some content in this space that is currently blocked due to cookie settings. Open the Cookie Management Tool to change your settings.

research paper computer security

About nasc research

nasc research at University College Cork is a research group that is advancing technology for connecting people and systems. We are making future networked systems secure, dependable and autonomous, enhancing the digital fabric on which modern society relies. 

In the Irish language Gaelic, "nasc" means to connect or link, which is the ultimate goal in computer networking. For us, the individual letters in nasc also correspond to Networking, Autonomous Systems, and Cybersecurity, thereby also capturing the essence of our research. 

Research and Innovation

Projects and Contributions

Partners

Recent News

research paper computer security

CSIT Best Paper awarded to Mohamed Seliem

Dr Aisling O'Driscoll, Brian McCarthy, Dr Ahmed Zahran

Congratulations to Brian McCarthy on successfully defending his PhD thesis with minor corrections

Dr Aisling O'Driscoll, Brian McCarthy, Dr Ahmed Zahran

Congratulations to Dr. Jonathan Sherwin on his PhD conferring in Computer Science .

Nasc research centre.

Western Gateway Building, University College Cork, Western Road, Cork, T12 XF62,

  • College of Engineering and Computing
  • Location Location
  • Contact Contact
  • Colleges and Schools
  • News and Events
  • 2024 News Archive

Jamshidi earns recognition for most influential paper

Pooyan Jamshidi

When someone in academia publishes a research paper, one of the goals is to have the paper cited by other professors and researchers. A paper published 10 years ago by Computer Science and Engineering Assistant Professor Pooyan Jamshidi was recently recognized for its significant impact.

Jamshidi received the Most Influential Paper Award in April at the 19th International Conference on Software Engineering for Adaptive and Self-Managing Systems (SEAMS) in Lisbon, Portugal. Jamshidi’s paper, “ Autonomic Resource Provision for Cloud-based Software ,” was submitted, accepted and published just prior to earning his Ph.D. from Dublin City University in Ireland in 2014. It was presented at the 2014 SEAMS Conference in India.

For the most influential paper award, a select committee considers conference publications published approximately 10 years previously and selects those that have made the most impact according to several criteria, including the number of citations, practical applications and industry adoption, and influence on subsequent research. The most influential award is selected from this short list.

“I wanted to publish the most important part of my Ph.D. research at SEAMS because it was a special community, and their work was close to mine,” Jamshidi says. “Receiving this award is important because this was my first paper with the community. I kept publishing with SEAMS and remained engaged.” 

The paper’s title referred to a groundbreaking approach to fundamentally transform how resources are managed and allocated in cloud environments. The key innovation was to enable multiple tenants to describe their adaptation rules for cloud and multi-cloud resource provisioning using a specific language that enables the incorporation of reasoning, inference and resolution of conflicting adaptation rules.

Since the paper was published, it has received 188 citations according to Google Scholar . In addition, the autonomic resource provision technique has been integrated with Microsoft Azure and OpenStack . The concepts and methods introduced in the paper have also led to follow-up research in cloud autoscaling, Edge-and-Internet of Things resource scaling, and networking and autonomous driving.

The paper has impacted the field of software engineering, especially in the context of adaptive and self-managing systems in the cloud, research, industry practices and the broader technological landscape.

While Jamshidi admits that autonomous autoscaling system for cloud-based software is not as a hot topic as it was when his paper was published, it is still a relevant research area that is leading to new ideas, methods, and approaches.

“The most exciting direction in cloud auto-scaling and resource provisioning overall is sustainability-aware approaches to enable sustainable computer usage for modern applications, such as AI systems,” Jamshidi says. “We plan to continue this line of research. For example, thanks to funds provided by the National Science Foundation and collaborators from Carnegie Mellon University and Rochester Institute of Technology, we are investigating software-driven sustainability.” 

Challenge the conventional. Create the exceptional. No Limits.

Exploring the landscape of network security: a comparative analysis of attack detection strategies

  • Original Research
  • Published: 05 May 2024

Cite this article

research paper computer security

  • P. Rajesh Kanna   ORCID: orcid.org/0000-0002-0961-3634 1 &
  • P. Santhi 2  

37 Accesses

Explore all metrics

The field of computer networking is experiencing rapid growth, accompanied by the swift advancement of internet tools. As a result, people are becoming more aware of the importance of network security. One of the primary concerns in ensuring security is the authority over domains, and network owners are striving to establish a common language to exchange security information and respond quickly to emerging threats. Given the increasing prevalence of various types of attacks, network security has become a significant challenge in the realm of computing. To address this, a multi-level distributed approach incorporating vulnerability identification, dimensioning, and countermeasures based on attack graphs has been developed. Implementing reconfigurable virtual systems as countermeasures significantly improves attack detection and mitigates the impact of attacks. Password-based authentication, for instance, can be susceptible to password cracking techniques, social engineering attacks, or data breaches that expose user credentials. Similarly, ensuring privacy during data transmission through encryption helps protect data from unauthorized access, but it does not guarantee the prevention of other types of attacks such as malware infiltration or insider threats. This research explores various techniques to achieve effective attack detection. Multiple research methods have been utilized and evaluated to identify the most suitable approach for network security and attack detection in the context of cloud computing. The analysis and implementation of diverse research studies demonstrate that the based signature intrusion detection method outperforms others in terms of precision, recall, F-measure, accuracy, reliability, and time complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

research paper computer security

Similar content being viewed by others

research paper computer security

A survey on security challenges in cloud computing: issues, threats, and solutions

research paper computer security

Survey of intrusion detection systems: techniques, datasets and challenges

research paper computer security

A systematic literature review for network intrusion detection system (IDS)

Data availability.

The authors do not have permission to share data.

Barbhuiya FA, Biswas S, Hubballi N, Nandi S (2011) A host based DES approach for detecting ARP spoofing. In: 2011 IEEE Symposium on Computational Intelligence in Cyber Security (CICS), pp 114–121

Bhatia V, Choudhary S, Ramkumar KR (2020) A comparative study on various intrusion detection techniques using machine learning and neural network. In: 2020 8th international conference on reliability, infocom technologies and optimization (trends and future directions) (ICRITO), Noida, India, 2020, pp 232–236. https://doi.org/10.1109/ICRITO48877.2020.9198008

Bhushan B, Sahoo G (2018) Recent advances in attacks, technical challenges, vulnerabilities and their countermeasures in wireless sensor networks. Wireless Pers Commun 98:2037–2077. https://doi.org/10.1007/s11277-017-4962-0

Article   Google Scholar  

Bhushan B, Sahoo G (2019) Secure Location-Based Aggregator Node Selection Scheme in Wireless Sensor Networks. In: Proceedings of ICETIT 2019. Lecture Notes in Electrical Engineering, vol 605. Springer https://doi.org/10.1007/978-3-030-30577-2_2

Bhushan B, Sahoo G (2020) Requirements, protocols, and security challenges in wireless sensor networks: an industrial perspective. Handbook of computer networks and cyber security: principles and paradigms. Springer, Cham, pp 683–713

Chapter   Google Scholar  

Casola V, De Benedictis A, Rak M, Villano U (2018) Security-by-design in multi-cloud applications: an optimization approach. Inf Sci 454:344–362

Article   MathSciNet   Google Scholar  

Chavan S, Shah K, Dave N, Mukherjee S, Abraham A, Sanyal S (2004) Adaptive neuro-fuzzy intrusion detection systems. In: International conference on information technology: coding and computing, 2004. Proceedings. ITCC 2004, Las Vegas, NV, USA, vol 1. IEEE, pp 70–74. https://doi.org/10.1109/ITCC.2004.1286428

Chen XZ, Zheng QH, Guan XH, Lin CG (2006) Quantitative hierarchical threat evaluation model for network security. J Softw 17(4):885–897

Chen Z, Han F, Cao J, Jiang X, Chen S (2013) Cloud computing-based forensic analysis for collaborative network security management system. Tsinghua Sci Technol 18(1):40–50

Choudhury AJ, Kumar P, Sain M, Lim H, Jae-Lee H (2011) A strong user authentication framework for cloud computing. In: IEEE Asia-Pacific Services Computing Conference (APSCC), pp 110–115

Dinesha HA, Agrawal VK (2012) Multi-level authentication technique for accessing cloud services. In: IEEE International Conference on Computing, Communication and Applications (ICCCA), pp 1–4

Donadio P, Fioccola GB, Canonico R, Ventre G (2014) Network security for Hybrid Cloud. In: Euro Med Telco Conference (EMTC), 2014, pp 1–6

Fathi R, Salehi MA, Leiss EL (2015) User-friendly and secure architecture (UFSA) for authentication of cloud services. In: IEEE 8th International Conference on Cloud Computing (CLOUD), pp 516–523

Han H, Lu XL, Ren LY (2002) Using data mining to discover signatures in network-based intrusion detection. In: Proceedings of the first international conference on machine learning and cybernetics, Beijing (1)

He X, Chomsiri T, Nanda P, Tan Z (2014) Improving cloud network security using the Tree-Rule firewall. Future Gener Comput Syst 30:116–126

He J, Ota K, Dong M, Yang LT, Fan M, Wang G, Yau SS (2017) Customized network security for cloud service. IEEE Trans Serv Comput 13:801–814

Hussein MK, Zainal NB, Jaber AN (2015) Data security analysis for DDoS defense of cloud based networks. In: 2015 IEEE student conference on research and development (SCOReD), pp 305–310. IEEE

Ijaz S, Hashmi FA, Asghar S, Alam M (2017) Vector Based Genetic Algorithm to optimize predictive analysis in network security. Appl Intell 48:1086–1096

Google Scholar  

Jeon J, Park JH, Jeong YS (2020) Dynamic analysis for IoT malware detection with convolution neural network model. IEEE Access 8:96899–96911

Jia X, Liu Y, Yan Y, Wu D (2016) Network security situational awareness method based on capability-opportunity-intent model. Appl Res Comput 6:1775–1779

Jiang S, Kumar R (2004) Failure diagnosis of discrete-event systems with linear-time temporal logic specifications. IEEE Trans Autom Control 49(6):934–945

Jinhua G, Kejian X (2013) ARP spoofing detection algorithm using ICMP protocol. In: 2013 International Conference on Computer Communication and Informatics (ICCCI), pp 1–6

Kaci A, Rachedi A (2019) Mc-Track: a cloud based data oriented vehicular tracking system with adaptive security. In: 2019 IEEE global communications conference (GLOBECOM). IEEE Press, pp 1–6. https://doi.org/10.1109/GLOBECOM38437.2019.901397

Kim H, Kim J, Kim Y, Kim I, Kim KJ (2018) Design of network threat detection and classification based on machine learning on cloud computing. Cluster Comput 22:2341–2350

Kishan L, Ambulgekar HP (2015) Public audit ability and privacy preserving in cloud storage. J Inf Secur Res 6(1):25–33

Ko RKL, Lee BS, Pearson S (2011)Towards achieving accountability, auditability and trust in cloud computing. InInternational conference on advances in computing and communications, pp. 432–444. Springer, Berlin, Heidelberg

Kumar S, Tapaswi S (2012) A centralized detection and prevention technique against ARP poisoning. In 2012 International Conference on Cyber Security, Cyber Warfare and Digital Forensic (CyberSec), pp. 259–264. IEEE

Lai S-F (2016) Design and implementation of cloud security defense system with software defined networking technologies. In 2016 International Conference on Information and Communication Technology Convergence (ICTC). IEEE

Li M, Tuo Y, Huang Y (2016) Cyberspace situation awareness model and application. Communications Technology

Mahajan V, Peddoju SK (2017) Integration of network intrusion detection systems and honeypot networks for cloud security. In: 2017 International Conference on Computing, Communication and Automation (ICCCA), pp 829–834

Mahalle VS, Shahade AK (2014) Enhancing the data security in cloud by implementing hybrid (rsa & aes) encryption algorithm. In: 2014 International Conference on Power, Automation and Communication (INPAC), pp 146–149

Maitlo A, Arain RH, Shaikh RA, Shaikh H, Shah MH, Shah SA, Mahar MH (2018) Optimized hybrid security model using base 64 algorithm in conjunction with substitution cipher to enhance text security. IJCSNS 18(3):93

Massonet P, Deru L, Achour A, Dupont S, Croisez L-M, Levin A, Villari M (2017) Security in lightweight network function virtualisation for federated cloud and IoT. In: 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud), pp 148–154

Massonet P (2016) Enforcement of global security policies in federated cloud networks with virtual network functions. In: 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA). IEEE

Mishra P, Pilli ES, Varadharajant V, Tupakula U (2016) NvCloudIDS: a security architecture to detect intrusions at network and virtualization layer in cloud environment. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp 56–62

Mitra M, Banerjee P, Barbhuiya FA, Biswas S, Nandi S (2013) IDS for ARP spoofing using LTL based discrete event system framework. Netw Sci 2(3–4):114–134

Mulay M, Surana R, Tibdewal Y (2015) Enhanced security in multi cloud using visual cryptography and secret sharing. Int J Peer Rev Refereed (IJAPRR) 2(2):53–57

Naeem H, Ullah F, Naeem MR, Khalid S, Vasan D, Jabbar S, Saeed S (2020) Malware detection in industrial internet of things based on hybrid image visualization and deep learning model. Ad Hoc Netw 34(2):1–22

Nam SY, Djuraev S, Park M (2013) Collaborative approach to mitigating ARP poisoning-based man-in-the-middle attacks. Comput Netw 57(18):3866–3884

Neminath H, Biswas S, Roopa S, Ratti R, Nandi S, Barbhuiya FA, Sur A, Ramachandran V (2010) A DES approach to intrusion detection system for ARP spoofing attacks. In: 2010 18th Mediterranean Conference on Control & Automation (MED), pp 695–700

Ngo QD, Nguyen HT, Nguyen LC, Nguyen DH (2020) A survey of IoT malware and detection methods based on static features. ICT Express 6(4):280–286

Nikiforakis N, Younan Y, Joosen W (2010) HProxy: Client side detection of SSL striping attack. In Proceedings of the 7th Conference on Detections of Intrusions and Malware & Vulnerability Assessment

Rajesh Kanna P, Santhi P (2021) Unified deep learning approach for efficient intrusion detection system using integrated spatial-temporal features. Knowl-Based Syst 226:107132. https://doi.org/10.1016/j.knosys.2021.107132

Rajesh Kanna P, Santhi P (2022) Hybrid intrusion detection using mapreduce based black widow optimized convolutional long short-term memory neural networks. Expert Syst Appl 194:116545. https://doi.org/10.1016/j.eswa.2022.116545

Rajesh Kanna P, Sindhanaiselvan K, Vijaymeena MK (2017) A defensive mechanism based on PCA to defend denial of-service attack. Int J Sec Appl 11(1):71–82

Rak M, Suri N, Luna J, Petcu D, Casola V, Villano U (2013) Security as a service using an SLA-based approach via SPECS. In: IEEE 5th International Conference on Cloud Computing Technology and Science (CloudCom), vol. 2, pp 1–6

Ramalingam V, Mariappan DB, Gopal R, Baalamurugan KM (2020) An effective social internet of things (SIoT) model for malicious node detection in wireless sensor networks. CRC Press, Boca Raton

Sathish Kumar G, Premalatha K, Uma Maheshwari G, Rajesh Kanna P (2023) No more privacy concern: a privacy-chain based homomorphic encryption scheme and statistical method for privacy preservation of user’s private and sensitive data. Expert Syst Appl 234:121071. https://doi.org/10.1016/j.eswa.2023.121071

Sathish Kumar G, Premalatha K, Uma Maheshwari G, Rajesh Kanna P et al (2024) Differential privacy scheme using Laplace mechanism and statistical method computation in deep neural network for privacy preservation. Eng Appl Artif Intell 128:107399. https://doi.org/10.1016/j.engappai.2023.107399

Schoo P, Fusenig V, Souza V, Melo M, Murray P, Debar H, Medhioub H, Zeghlache D (2010) Challenges for cloud networking security. In International Conference on Mobile Networks and Management, pp. 298–313

Seo JW, Lee SJ (2016) A study on efficient detection of network-based IP spoofing DDoS and malware-infected systems. Springerplus 5(1):1878

Shafiq M, Tian Z, Bashir AK, Du X, Guizani M (2020a) Corrauc: a malicious bot-IoT traffic detection method in IoT network using machine learning techniques. IEEE Internet Things 12(2):1–13

Shafiq M, Tian Z, Sun Y, Du X, Guizani M (2020b) Selection of effective machine learning algorithm and bot-IoT attacks traffic identification for internet of things in smart city. Futur Gener Comput Syst 107:433–442

Sharma C, Kate V (2014) Icarfad: a novel framework for improved network security situation awareness. Int J Comput Appl 87(19):26–31

Sinha P, Jha VK, Rai AK, Bhushan B (2017) Security vulnerabilities, attacks and countermeasures in wireless sensor networks at various layers of OSI reference model: a survey. In 2017 International Conference on Signal Processing and Communication (ICSPC), pp. 288–293. https://doi.org/10.1109/CSPC.2017.8305855

Song MS, Lee JD, Jeong Y-S, Jeong H-Y, Park JH (2014) DS-ARP: a new detection scheme for ARP spoofing attacks based on routing trace for ubiquitous environments. Sci World J 2014:264654

Tian H, Chen Z, Chang CC, Kuribayashi M, Huang Y, Cai Y, Chen Y, Wang T (2017) Enabling public audit ability for operation behaviors in cloud storage. Soft Comput 21(8):2175–2187

Trapero R, Modic J, Stopar M, Taha A, Suri N (2017) A novel approach to manage cloud security SLA incidents. Futur Gener Comput Syst 72:193–205

Wang Q, Wang C, Li J, Ren K, Lou W (2009) Enabling public verifiability and data dynamics for storage security in cloud computing. In European symposium on research in computer security. Springer, Berlin, Heidelberg, pp. 355–370

Wei Y, Hefei YF (2009) A network security situational awareness model based on log audit and performance correction. Chin J Comput 32(4):763–772

Worku SG, Xu C, Zhao J, He X (2014) Secure and efficient privacy-preserving public auditing scheme for cloud storage’. Comput Electr Eng 40(5):1703–1713

Wu H, Ding Y, Winer C, Yao L (2010) Network security for virtual machine in cloud computing. In 2010 5th International Conference on Computer Sciences and Convergence Information Technology (ICCIT), pp. 18–21

Yang J (2012) Network security evaluation model based on cloud computing. In International Conference on Information Computing and Applications. Springer, Berlin, Heidelberg

Zardari MA, Jung LT, Zakaria MN (2013) Hybrid multicloud data security (HMCDS) model and data classification. In: 2013 international conference on advanced computer science applications and technologies, pp 166–171

Zhang L, Peng J, Du Y (2012) Evaluation method summary for information security risk assessment. J Tsinghua Univ (Science and Technology)

Zhao F, Li C, Liu CF (2014) A cloud computing security solution based on fully homomorphic encryption. In 16th International Conference on Advanced Communication Technology (ICACT), pp. 485–488

Zhengbing H, Zhitang L, Jumgi W (2008) A novel Intrusion detection system (NIDS) based on signature search of datamining. In WKDD First International Workshop on Knowledge discovery and Data Ming, pp. 10–16

Download references

Author information

Authors and affiliations.

Department of Computer Science and Engineering, Bannari Amman Institute of Technology, Erode, Tamil Nadu, India

P. Rajesh Kanna

TIFAC-CORE in Cyber Security, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to P. Rajesh Kanna .

Ethics declarations

Conflict of interest.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Rajesh Kanna, P., Santhi, P. Exploring the landscape of network security: a comparative analysis of attack detection strategies. J Ambient Intell Human Comput (2024). https://doi.org/10.1007/s12652-024-04794-y

Download citation

Received : 19 February 2020

Accepted : 22 March 2024

Published : 05 May 2024

DOI : https://doi.org/10.1007/s12652-024-04794-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Cloud environment
  • Intrusion detection
  • Network security
  • Attack detection
  • Find a journal
  • Publish with us
  • Track your research

Main Navigation

  • Code of Conduct
  • Create Profile
  • Reset / Forgot Password
  • Privacy Policy
  • Contact CVPR

CVPR Technical Program Features Presentations on the Latest AI and Computer Vision Research for Healthcare, Robotics, Virtual Reality, Autonomous Vehicles, and Beyond

From pathology to human avatars, oral papers—top 3% of all papers—reveal advanced research results.

LOS ALAMITOS, Calif. , 1 6 May 2024 – Co-sponsored by the IEEE Computer Society (CS) and the Computer Vision Foundation (CVF), the 2024 Computer Vision and Pattern Recognition (CVPR) Conference is the preeminent event for research and development (R&D) in the hot topic areas of computer vision, artificial intelligence (AI), machine learning (ML), augmented, virtual and mixed reality (AR/VR/MR), deep learning, and related fields. Over the past decade, these areas have seen significant growth, and the emphasis on this sector by the science and engineering community has fueled an increasingly competitive technical program.

This year, the CVPR Program Committee received 11,532 paper submissions—a 26% increase over 2023—but only 2,719 were accepted, resulting in an acceptance rate of just 23.6%. Of those accepted papers, only 3.3% were slotted for oral presentations based on nominations from the area chairs and senior area chairs overseeing the program.

“CVPR is not only the premiere conference in computer vision, but it’s also among the highest-impact publication venues in all of science ,” said David Crandall , Professor of Computer Science at Indiana University, Bloomington, Ind., U.S.A., and CVPR 2024 Program Co-Chair. “Having one’s paper accepted to CVPR is already a major achievement, and then having it selected as an oral presentation is a very rare honor that reflects its high quality and potential impact.”

Taking place 17-21 June at the Seattle Convention Center in Seattle, Wash., U.S.A., CVPR offers oral presentations that speak to both fundamental and applied research in areas as diverse as healthcare applications, robotics, consumer electronics, autonomous vehicles, and more. Examples include:

  • Pathology: Transcriptomics-guided Slide Representation Learning in Computational Pathology *– Training computer systems for pathology requires a multi-modal approach for efficiency and accuracy. New work from a multi-disciplinary team at Harvard University (Cambridge, Mass., U.S.A.), the Massachusetts Institute of Technology (MIT; Cambridge, Mass., U.S.A.), Emory University (Atlanta, Ga., U.S.A.) and others employs modality-specific encoders, and when applied on liver, breast, and lung samples from two different species, they demonstrated significantly better performance when compared to current baselines. 
  • Robotics: SceneFun3D: Fine-Grained Functionality and Affordance Understanding in 3D Scenes – Creating realistic interactions in 3D scenes has been troublesome from a technology perspective because it has been difficult to manipulate objects in the scene context. Research from ETH Zürich (Zürich, Switzerland), Google (Mountainview, Calif., U.S.A.), Technical University of Munich (TUM; Munich, Germany), and Microsoft (Redmond, Wash., U.S.A.) has begun bridging that divide by creating a large-scale dataset with more than 14.8k highly accurate interaction annotations for 710 high-resolution real-world 3D indoor scenes. This work, as the paper concludes, has the potential to “stimulate advancements in embodied AI, robotics, and realistic human-scene interaction modeling .”
  • Virtual Reality: URHand: Universal Relightable Hands – Teams from Codec Avatars Lab at Meta (Menlo Park, Calif., U.S.A.) and Nanyang Technological University (Singapore) unveil a hand model that generalizes to novel viewpoints, poses, identities, and illuminations, which enables quick personalization from a phone scan. The resulting images make for a more realistic experience of reaching, grabbing, and interacting in a virtual environment.
  • Human Avatars: Semantic Human Mesh Reconstruction with Textures – Working to create realistic human models, teams at Nanjing University (Nanjing, China) and Texas A&M University (College Station, Texas, U.S.A.) designed a method of 3-D human mesh reconstruction that is capable of producing high-fidelity and robust semantic renderings that outperform state-of-the-art methods. The paper concludes, “This approach bridges existing monocular reconstruction work and downstream industrial applications, and we believe it can promote the development of human avatars.”
  • Text-to-Image Systems: Ranni: Taming Text-to-Image Diffusion for Accurate Instruction – Existing text-to-image models can misinterpret more difficult prompts, but now, new research from Alibaba Group (Hangzhou, Zhejiang, China) and Ant Group (Hangzhou, Zhejiang, China) has made strides in addressing that issue via a middleware layer. This approach, which they have dubbed Ranni, supports the text-to-image generator in better following instructions. As the paper sums up, “Ranni shows potential as a flexible chat-based image creation system, where any existing diffusion model can be incorporated as the generator for interactive generation.”
  • Autonomous Driving: Producing and Leveraging Online Map Uncertainty in Trajectory Prediction – To enable autonomous driving, vehicles must be pre-trained on the geographic region and potential pitfalls. High-definition (HD) maps have become a standard part of a vehicle’s technology stack, but current approaches to those maps are siloed in their programming. Now, work from a research team from the University of Toronto (Toronto, Ontario, Canada), Vector Institute (Toronto, Ontario, Canada), NVIDIA Research (Santa Clara, Calif., U.S.A.), and Stanford University (Palo Alto, Calif., U.S.A.) enhances current methodologies by incorporating uncertainty, resulting in up to 50% faster training convergence and up to 15% better prediction performance.

“As the field’s leading event, CVPR introduces the latest research in all areas of computer vision,” said Crandall. “ In addition to the oral paper presentations, there will be thousands of posters, dozens of workshops and tutorials, several keynotes and panels, and countless opportunities for learning and networking. You really have to attend the conference to get the full scope of what’s next for computer vision and AI technology.”

Digital copies of all final technical papers* will be available on the conference website by the week of 10 June to allow attendees to prepare their schedules. To register for CVPR 2024 as a member of the press and/or request more on a specific paper, visit https://cvpr.thecvf.com/Conferences/2024/MediaPass or email [email protected] . For more information on the conference, visit https://cvpr.thecvf.com/ .

*Papers linked in this press release refer to pre-print publications. Final, citable papers will be available just prior to the conference.

About CVPR 2024

The Computer Vision and Pattern Recognition Conference (CVPR) is the preeminent computer vision event for new research in support of artificial intelligence (AI), machine learning (ML), augmented, virtual and mixed reality (AR/VR/MR), deep learning, and much more. Sponsored by the IEEE Computer Society (CS) and the Computer Vision Foundation (CVF), CVPR delivers the important advances in all areas of computer vision and pattern recognition and the various fields and industries they impact. With a first-in-class technical program, including tutorials and workshops, a leading-edge expo, and robust networking opportunities, CVPR, which is annually attended by more than 10,000 scientists and engineers, creates a one-of-a-kind opportunity for networking, recruiting, inspiration, and motivation.

CVPR 2024 takes place 17-21 June at the Seattle Convention Center in Seattle, Wash., U.S.A., and participants may also access sessions virtually. For more information about CVPR 2024, visit cvpr.thecvf.com .

About the Computer Vision Foundation

The Computer Vision Foundation (CVF) is a non-profit organization whose purpose is to foster and support research on all aspects of computer vision. Together with the IEEE Computer Society, it co-sponsors the two largest computer vision conferences, CVPR and the International Conference on Computer Vision (ICCV). Visit thecvf.com for more information.

About the IEEE Computer Society

Engaging computer engineers, scientists, academia, and industry professionals from all areas and levels of computing, the IEEE Computer Society (CS) serves as the world’s largest and most established professional organization of its type. IEEE CS sets the standard for the education and engagement that fuels continued global technological advancement. Through conferences, publications, and programs that inspire dialogue, debate, and collaboration, IEEE CS empowers, shapes, and guides the future of not only its 375,000+ community members, but the greater industry, enabling new opportunities to better serve our world. Visit computer.org for more information.

AI has already figured out how to deceive humans

  • A new research paper found that various AI systems have learned the art of deception. 
  • Deception is the "systematic inducement of false beliefs."
  • This poses several risks for society, from fraud to election tampering.

Insider Today

AI can boost productivity by helping us code, write, and synthesize vast amounts of data. It can now also deceive us.

A range of AI systems have learned techniques to systematically induce "false beliefs in others to accomplish some outcome other than the truth," according to a new research paper .

The paper focused on two types of AI systems: special-use systems like Meta's CICERO, which are designed to complete a specific task, and general-purpose systems like OpenAI's GPT-4 , which are trained to perform a diverse range of tasks.

While these systems are trained to be honest, they often learn deceptive tricks through their training because they can be more effective than taking the high road.

"Generally speaking, we think AI deception arises because a deception-based strategy turned out to be the best way to perform well at the given AI's training task. Deception helps them achieve their goals," the paper's first author Peter S. Park, an AI existential safety postdoctoral fellow at MIT, said in a news release .

Meta's CICERO is "an expert liar"

AI systems trained to "win games that have a social element" are especially likely to deceive.

Meta's CICERO, for example, was developed to play the game Diplomacy — a classic strategy game that requires players to build and break alliances.

Related stories

Meta said it trained CICERO to be "largely honest and helpful to its speaking partners," but the study found that CICERO "turned out to be an expert liar." It made commitments it never intended to keep, betrayed allies, and told outright lies.

GPT-4 can convince you it has impaired vision

Even general-purpose systems like GPT-4 can manipulate humans.

In a study cited by the paper, GPT-4 manipulated a TaskRabbit worker by pretending to have a vision impairment.

In the study, GPT-4 was tasked with hiring a human to solve a CAPTCHA test. The model also received hints from a human evaluator every time it got stuck, but it was never prompted to lie. When the human it was tasked to hire questioned its identity, GPT-4 came up with the excuse of having vision impairment to explain why it needed help.

The tactic worked. The human responded to GPT-4 by immediately solving the test.

Research also shows that course-correcting deceptive models isn't easy.

In a study from January co-authored by Anthropic, the maker of Claude, researchers found that once AI models learn the tricks of deception, it's hard for safety training techniques to reverse them.

They concluded that not only can a model learn to exhibit deceptive behavior, once it does, standard safety training techniques could "fail to remove such deception" and "create a false impression of safety."

The dangers deceptive AI models pose are "increasingly serious"

The paper calls for policymakers to advocate for stronger AI regulation since deceptive AI systems can pose significant risks to democracy.

As the 2024 presidential election nears , AI can be easily manipulated to spread fake news, generate divisive social media posts, and impersonate candidates through robocalls and deepfake videos, the paper noted. It also makes it easier for terrorist groups to spread propaganda and recruit new members.

The paper's potential solutions include subjecting deceptive models to more "robust risk-assessment requirements," implementing laws that require AI systems and their outputs to be clearly distinguished from humans and their outputs, and investing in tools to mitigate deception.

"We as a society need as much time as we can get to prepare for the more advanced deception of future AI products and open-source models," Park told Cell Press. "As the deceptive capabilities of AI systems become more advanced, the dangers they pose to society will become increasingly serious."

Watch: Ex-CIA agent rates all the 'Mission: Impossible' movies for realism

research paper computer security

  • Main content

Microsoft Research Blog

Microsoft at chi 2024: innovations in human-centered design.

Published May 15, 2024

Share this page

  • Share on Facebook
  • Share on Twitter
  • Share on LinkedIn
  • Share on Reddit
  • Subscribe to our RSS feed

Microsoft at CHI 2024

The ways people engage with technology, through its design and functionality, determine its utility and acceptance in everyday use, setting the stage for widespread adoption. When computing tools and services respect the diversity of people’s experiences and abilities, technology is not only functional but also universally accessible. Human-computer interaction (HCI) plays a crucial role in this process, examining how technology integrates into our daily lives and exploring ways digital tools can be shaped to meet individual needs and enhance our interactions with the world.

The ACM CHI Conference on Human Factors in Computing Systems is a premier forum that brings together researchers and experts in the field, and Microsoft is honored to support CHI 2024 as a returning sponsor. We’re pleased to announce that 33 papers by Microsoft researchers and their collaborators have been accepted this year, with four winning the Best Paper Award and seven receiving honorable mentions.

This research aims to redefine how people work, collaborate, and play using technology, with a focus on design innovation to create more personalized, engaging, and effective interactions. Several projects emphasize customizing the user experience to better meet individual needs, such as exploring the potential of large language models (LLMs) to help reduce procrastination. Others investigate ways to boost realism in virtual and mixed reality environments, using touch to create a more immersive experience. There are also studies that address the challenges of understanding how people interact with technology. These include applying psychology and cognitive science to examine the use of generative AI and social media, with the goal of using the insights to guide future research and design directions. This post highlights these projects.

Microsoft Research Podcast

research paper computer security

Collaborators: Holoportation™ communication technology with Spencer Fowers and Kwame Darko

Spencer Fowers and Kwame Darko break down how the technology behind Holoportation and the telecommunication device being built around it brings patients and doctors together when being in the same room isn’t an easy option and discuss the potential impact of the work.

Best Paper Award recipients

DynaVis: Dynamically Synthesized UI Widgets for Visualization Editing   Priyan Vaithilingam, Elena L. Glassman, Jeevana Priya Inala , Chenglong Wang   GUIs used for editing visualizations can overwhelm users or limit their interactions. To address this, the authors introduce DynaVis, which combines natural language interfaces with dynamically synthesized UI widgets, enabling people to initiate and refine edits using natural language.  

Generative Echo Chamber? Effects of LLM-Powered Search Systems on Diverse Information Seeking   Nikhil Sharma, Q. Vera Liao , Ziang Xiao   Conversational search systems powered by LLMs potentially improve on traditional search methods, yet their influence on increasing selective exposure and fostering echo chambers remains underexplored. This research suggests that LLM-driven conversational search may enhance biased information querying, particularly when the LLM’s outputs reinforce user views, emphasizing significant implications for the development and regulation of these technologies.  

Piet: Facilitating Color Authoring for Motion Graphics Video   Xinyu Shi, Yinghou Wang, Yun Wang , Jian Zhao   Motion graphic (MG) videos use animated visuals and color to effectively communicate complex ideas, yet existing color authoring tools are lacking. This work introduces Piet, a tool prototype that offers an interactive palette and support for quick theme changes and controlled focus, significantly streamlining the color design process.

The Metacognitive Demands and Opportunities of Generative AI   Lev Tankelevitch , Viktor Kewenig, Auste Simkute, Ava Elizabeth Scott, Advait Sarkar , Abigail Sellen , Sean Rintel   Generative AI systems offer unprecedented opportunities for transforming professional and personal work, yet they present challenges around prompting, evaluating and relying on outputs, and optimizing workflows. This paper shows that metacognition—the psychological ability to monitor and control one’s thoughts and behavior—offers a valuable lens through which to understand and design for these usability challenges.  

Honorable Mentions

B ig or Small, It’s All in Your Head: Visuo-Haptic Illusion of Size-Change Using Finger-Repositioning Myung Jin Kim, Eyal Ofek, Michel Pahud , Mike J. Sinclair, Andrea Bianchi   This research introduces a fixed-sized VR controller that uses finger repositioning to create a visuo-haptic illusion of dynamic size changes in handheld virtual objects, allowing users to perceive virtual objects as significantly smaller or larger than the actual device. 

LLMR: Real-time Prompting of Interactive Worlds Using Large Language Models   Fernanda De La Torre, Cathy Mengying Fang, Han Huang, Andrzej Banburski-Fahey, Judith Amores , Jaron Lanier   Large Language Model for Mixed Reality (LLMR) is a framework for the real-time creation and modification of interactive mixed reality experiences using LLMs. It uses novel strategies to tackle difficult cases where ideal training data is scarce or where the design goal requires the synthesis of internal dynamics, intuitive analysis, or advanced interactivity. 

Observer Effect in Social Media Use   Koustuv Saha, Pranshu Gupta, Gloria Mark, Emre Kiciman , Munmun De Choudhury   This work investigates the observer effect in behavioral assessments on social media use. The observer effect is a phenomenon in which individuals alter their behavior due to awareness of being monitored. Conducted over an average of 82 months (about 7 years) retrospectively and five months prospectively using Facebook data, the study found that deviations in expected behavior and language post-enrollment in the study reflected individual psychological traits. The authors recommend ways to mitigate the observer effect in these scenarios.

Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted Programming   Hussein Mozannar, Gagan Bansal , Adam Fourney , Eric Horvitz   By investigating how developers use GitHub Copilot, the authors created CUPS, a taxonomy of programmer activities during system interaction. This approach not only elucidates interaction patterns and inefficiencies but can also drive more effective metrics and UI design for code-recommendation systems with the goal of improving programmer productivity. 

SharedNeRF: Leveraging Photorealistic and View-dependent Rendering for Real-time and Remote Collaboration   Mose Sakashita, Bala Kumaravel, Nicolai Marquardt , Andrew D. Wilson   SharedNeRF, a system for synchronous remote collaboration, utilizes neural radiance field (NeRF) technology to provide photorealistic, viewpoint-specific renderings that are seamlessly integrated with point clouds to capture dynamic movements and changes in a shared space. A preliminary study demonstrated its effectiveness, as participants used this high-fidelity, multi-perspective visualization to successfully complete a flower arrangement task. 

Understanding the Role of Large Language Models in Personalizing and Scaffolding Strategies to Combat Academic Procrastination   Ananya Bhattacharjee, Yuchen Zeng, Sarah Yi Xu, Dana Kulzhabayeva, Minyi Ma, Rachel Kornfield, Syed Ishtiaque Ahmed, Alex Mariakakis, Mary P. Czerwinski , Anastasia Kuzminykh, Michael Liut, Joseph Jay Williams   In this study, the authors explore the potential of LLMs for customizing academic procrastination interventions, employing a technology probe to generate personalized advice. Their findings emphasize the need for LLMs to offer structured, deadline-oriented advice and adaptive questioning techniques, providing key design insights for LLM-based tools while highlighting cautions against their use for therapeutic guidance.

Where Are We So Far? Understanding Data Storytelling Tools from the Perspective of Human-AI Collaboration   Haotian Li, Yun Wang , Huamin Qu This paper evaluates data storytelling tools using a dual framework to analyze the stages of the storytelling workflow—analysis, planning, implementation, communication—and the roles of humans and AI in each stage, such as creators, assistants, optimizers, and reviewers. The study identifies common collaboration patterns in existing tools, summarizes lessons from these patterns, and highlights future research opportunities for human-AI collaboration in data storytelling.

Learn more about our work and contributions to CHI 2024, including our full list of publications , on our conference webpage .

Related publications

Piet: facilitating color authoring for motion graphics video, dynavis: dynamically synthesized ui widgets for visualization editing, generative echo chamber effects of llm-powered search systems on diverse information seeking, understanding the role of large language models in personalizing and scaffolding strategies to combat academic procrastination, sharednerf: leveraging photorealistic and view-dependent rendering for real-time and remote collaboration, big or small, it’s all in your head: visuo-haptic illusion of size-change using finger-repositioning, llmr: real-time prompting of interactive worlds using large language models, reading between the lines: modeling user behavior and costs in ai-assisted programming, observer effect in social media use, where are we so far understanding data storytelling tools from the perspective of human-ai collaboration, the metacognitive demands and opportunities of generative ai, continue reading.

Research Focus: May 13, 2024

Research Focus: Week of May 13, 2024

Research Focus April 15, 2024

Research Focus: Week of April 15, 2024

Research Focus March 20, 2024

Research Focus: Week of March 18, 2024

illustration of a lightbulb shape with different icons surrounding it on a purple background

Advancing human-centered AI: Updates on responsible AI research

Research areas.

research paper computer security

Related events

  • Microsoft at CHI 2024

Related labs

  • Microsoft Research Lab - Asia
  • Microsoft Research Lab - Cambridge
  • Microsoft Research Lab - Redmond
  • Microsoft Research Lab – Montréal
  • AI Frontiers
  • Follow on Twitter
  • Like on Facebook
  • Follow on LinkedIn
  • Subscribe on Youtube
  • Follow on Instagram

Share this page:

IMAGES

  1. Example Of Cyber Security Research Paper

    research paper computer security

  2. (PDF) Cloud Computing Security Issues and Its Challenges: A

    research paper computer security

  3. (PDF) CYBER SECURITY ISSUES AND CHALLENGES

    research paper computer security

  4. 👍 Database security research paper. Database security research paper

    research paper computer security

  5. Research Paper on Cyber Security & Cryptography

    research paper computer security

  6. 😊 Computer security research paper topics. What are some research

    research paper computer security

VIDEO

  1. Ensuring cybersecurity of ICS: Life after Russia’s law on critical information infrastructure

  2. F# Tutorial: Understanding the need for computation expressions

  3. Generics in F#

  4. Dictionaries in F#

  5. Introduction to classes in F#

  6. Julian Leonard: Fractional quantum Hall states

COMMENTS

  1. Journal of Cybersecurity

    About the journal. Journal of Cybersecurity publishes accessible articles describing original research in the inherently interdisciplinary world of computer, systems, and information security …. Find out more. The simple economics of an external shock to a bug bounty platform. The cybersecurity of fairy tales.

  2. Research paper A comprehensive review study of cyber-attacks and cyber

    The security of any organization begins with three principles: confidentiality, integrity, and availability. These three principles are referred to as the security triangle, or CIA, which has served as the standard for systems security since the first computer systems (see Fig. 6) (Palmieri et al., 2021). The principle of confidentiality states ...

  3. COSE

    The International Source of Innovation for the Information Security and IT Audit Professional Computers & Security is one of the most respected journals in IT security, being recognized worldwide as THE primary source of reference for IT security research and applications expertise. Computers & Security provides the IT security community with a unique blend of leading edge research and sound ...

  4. Cyber security: State of the art, challenges and future directions

    Cybersecurity is the protection of individuals, societies, organizations, systems, and technologies from abnormal activity. Cybersecurity is the maintenance of the confidentiality, integrity, and availability (CIA) of computer resources owned by one organization or connected to another organization's network [3].

  5. Cyber risk and cybersecurity: a systematic review of data ...

    Depending on the amount of data, the extent of the damage caused by a data breach can be significant, with the average cost being USD 392 million Footnote 1 (IBM Security 2020). This research paper reviews the existing literature and open data sources related to cybersecurity and cyber risk, focusing on the datasets used to improve academic ...

  6. Journal of Cybersecurity and Privacy

    A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the ...

  7. Using deep learning to solve computer security challenges: a survey

    Although using machine learning techniques to solve computer security challenges is not a new idea, the rapidly emerging Deep Learning technology has recently triggered a substantial amount of interests in the computer security community. This paper seeks to provide a dedicated review of the very recent research works on using Deep Learning techniques to solve computer security challenges.

  8. Home

    His research interests are in all areas of computer and network security. He has published a monograph and over 260 refereed technical papers. His research has been sponsored by NSF, ARO, AFOSR, DARPA, DHS, DOE, AFRL, NSA, TTC, CISCO, and HP. He has served as a program (co-)chair or general (co-)chair for over 10 international conferences (e.g ...

  9. Articles

    Study of smart grid cyber-security, examining architectures, communication networks, cyber-attacks, countermeasure techniques, and challenges. Smart Grid (SG) technology utilizes advanced network communication and monitoring technologies to manage and regulate electricity generation and transport. However, this increased reliance on technology ...

  10. Cyber Security Threats and Vulnerabilities: A Systematic ...

    Journal of Computer & Security by ScienceDirect has the highest frequency (5 out of 78) articles, while Information Sciences by ScienceDirect is the second with 3 out of 78 articles. 5.3 Demographic Analysis. To identify and rank the most active countries in the area of research on cyber security, the author's affiliation was used.

  11. Frontiers in Computer Science

    See all (11) Learn more about Research Topics. Explores all aspects of security of computers and related networks including vulnerabilities and threats, security measures and systems at risk.

  12. (PDF) A Systematic Literature Review on the Cyber Security

    A Systematic Literature Review on the Cyber Security. 1 Dr.Yusuf Perwej, 2 Prof. (Dr.) Syed Qamar Abbas, 3 Jai Pratap Dixit, 4 Dr. Nikhat Akhtar, 5Anurag. Kumar Jaiswal. 1 Professor, Department of ...

  13. A Critical Cybersecurity Analysis and Future Research Directions for

    These concerns include issues related to connectivity, communication, and management protocols. This research paper provides an all-inclusive and lucid review of the current state of anomalies and security concepts related to the IoT. ... In addition, devices such as security cameras with built-in computer vision might produce massive amounts ...

  14. A survey on security challenges in cloud computing: issues, threats

    2.2 Existing review papers on security challenges in cloud computing. ... In the context of computer security, anything that has the potential to cause serious damage to a computer system is called a threat. ... In fact, this research attempted to show various security challenges, vulnerabilities, attacks, and threats that hamper the adoption ...

  15. Present and Future of Network Security Monitoring

    Abstract: Network Security Monitoring (NSM) is a popular term to refer to the detection of security incidents by monitoring the network events. An NSM system is central for the security of current networks, given the escalation in sophistication of cyberwarfare. In this paper, we review the state-of-the-art in NSM, and derive a new taxonomy of the functionalities and modules in an NSM system.

  16. Cybersecurity: Past, Present and Future

    2021, for the terms Cyber Security, Computer Security, and Information Security. The y- axis depicts the relative search frequency for the term. A value of 100 is the peak popularity for the term. A value of 50 means that the term is half as popular. ... there is a need to expand research and develop novel cybersecurity methods and tools to

  17. Cybersecurity data science: an overview from machine learning

    In a computing context, cybersecurity is undergoing massive shifts in technology and its operations in recent days, and data science is driving the change. Extracting security incident patterns or insights from cybersecurity data and building corresponding data-driven model, is the key to make a security system automated and intelligent. To understand and analyze the actual phenomena with data ...

  18. (PDF) Cyber Security Threats and Vulnerabilities: A ...

    Abstract. There has been a tremendous increase in research in the area of cyber security to support cyber applications and to avoid key security threats faced by these applications. The goal of ...

  19. (PDF) ADVANCES IN NETWORK SECURITY: A COMPREHENSIVE ...

    The methodology adopted in this paper is a review of papers with keywords network security, network attacks and threats and network security measures. The aim of this paper is to critically review ...

  20. Artificial intelligence for cybersecurity: Literature review and future

    The article is a full research paper (i.e., not a presentation or supplement to a poster). • The article should make it apparent that AI is its primary emphasis or include AI as a large part of the methodology. For example, publications that explicitly include machine learning as a core component of their methodology/research. •

  21. Research on Virus Propagation Network Intrusion Detection Based on

    The field of network security is highly concerned with intrusion detection, which safeguards the security of computer networks. The invention and application of intrusion detection technology play indispensable roles in network security, and it is crucial to investigate and comprehend this topic. Recently, with the continuous occurrence of intrusion incidents in virus propagation networks ...

  22. Nasc Research @ University College Cork

    About nasc research. nasc research at University College Cork is a research group that is advancing technology for connecting people and systems. We are making future networked systems secure, dependable and autonomous, enhancing the digital fabric on which modern society relies.

  23. Jamshidi earns recognition for most influential paper

    A paper published 10 years ago by Computer Science and Engineering Assistant Professor Pooyan Jamshidi was recently recognized for its significant impact. Jamshidi received the Most Influential Paper Award in April at the 19th International Conference on Software Engineering for Adaptive and Self-Managing Systems (SEAMS) in Lisbon, Portugal.

  24. Government focuses on improving AI security

    Published: 15 May 2024 12:45. The government has provided guidance to help artificial intelligence (AI) developers improve cyber security in AI models. The Department for Science, Innovation and ...

  25. (PDF) Ransomware, Threat, and Detection Methods

    Consequently, this paper aims to offer a comprehensive insight into the threat posed by ransomware and discuss recent detection methodologies. A successful ransomware attack carries direct ...

  26. Exploring the landscape of network security: a comparative ...

    The field of computer networking is experiencing rapid growth, accompanied by the swift advancement of internet tools. As a result, people are becoming more aware of the importance of network security. One of the primary concerns in ensuring security is the authority over domains, and network owners are striving to establish a common language to exchange security information and respond ...

  27. CVPR Technical Program Features Presentations on the Latest AI and

    Final, citable papers will be available just prior to the conference. About CVPR 2024. The Computer Vision and Pattern Recognition Conference (CVPR) is the preeminent computer vision event for new research in support of artificial intelligence (AI), machine learning (ML), augmented, virtual and mixed reality (AR/VR/MR), deep learning, and much ...

  28. AI Has Already Figured Out How to Deceive Humans

    A new research paper found that various AI systems have learned the art of deception. Deception is the "systematic inducement of false beliefs." This poses several risks for society, from fraud to ...

  29. Microsoft at CHI 2024: Innovations in human-centered design

    The ACM CHI Conference on Human Factors in Computing Systems is a premier forum that brings together researchers and experts in the field, and Microsoft is honored to support CHI 2024 as a returning sponsor. We're pleased to announce that 33 papers by Microsoft researchers and their collaborators have been accepted this year, with four ...

  30. (PDF) Network Security: A Brief Overview of Evolving ...

    Abstract: Network Security strategies evolve parallel with the advancement and development of computer systems and services. The. ubiquity of ICT devices and services o ffers undeniab le ...