Issue Cover

  • Previous Article
  • Next Article

Promises and Pitfalls of Technology

Politics and privacy, private-sector influence and big tech, state competition and conflict, author biography, how is technology changing the world, and how should the world change technology.

[email protected]

  • Split-Screen
  • Article contents
  • Figures & tables
  • Supplementary Data
  • Peer Review
  • Open the PDF for in another window
  • Guest Access
  • Get Permissions
  • Cite Icon Cite
  • Search Site

Josephine Wolff; How Is Technology Changing the World, and How Should the World Change Technology?. Global Perspectives 1 February 2021; 2 (1): 27353. doi: https://doi.org/10.1525/gp.2021.27353

Download citation file:

  • Ris (Zotero)
  • Reference Manager

Technologies are becoming increasingly complicated and increasingly interconnected. Cars, airplanes, medical devices, financial transactions, and electricity systems all rely on more computer software than they ever have before, making them seem both harder to understand and, in some cases, harder to control. Government and corporate surveillance of individuals and information processing relies largely on digital technologies and artificial intelligence, and therefore involves less human-to-human contact than ever before and more opportunities for biases to be embedded and codified in our technological systems in ways we may not even be able to identify or recognize. Bioengineering advances are opening up new terrain for challenging philosophical, political, and economic questions regarding human-natural relations. Additionally, the management of these large and small devices and systems is increasingly done through the cloud, so that control over them is both very remote and removed from direct human or social control. The study of how to make technologies like artificial intelligence or the Internet of Things “explainable” has become its own area of research because it is so difficult to understand how they work or what is at fault when something goes wrong (Gunning and Aha 2019) .

This growing complexity makes it more difficult than ever—and more imperative than ever—for scholars to probe how technological advancements are altering life around the world in both positive and negative ways and what social, political, and legal tools are needed to help shape the development and design of technology in beneficial directions. This can seem like an impossible task in light of the rapid pace of technological change and the sense that its continued advancement is inevitable, but many countries around the world are only just beginning to take significant steps toward regulating computer technologies and are still in the process of radically rethinking the rules governing global data flows and exchange of technology across borders.

These are exciting times not just for technological development but also for technology policy—our technologies may be more advanced and complicated than ever but so, too, are our understandings of how they can best be leveraged, protected, and even constrained. The structures of technological systems as determined largely by government and institutional policies and those structures have tremendous implications for social organization and agency, ranging from open source, open systems that are highly distributed and decentralized, to those that are tightly controlled and closed, structured according to stricter and more hierarchical models. And just as our understanding of the governance of technology is developing in new and interesting ways, so, too, is our understanding of the social, cultural, environmental, and political dimensions of emerging technologies. We are realizing both the challenges and the importance of mapping out the full range of ways that technology is changing our society, what we want those changes to look like, and what tools we have to try to influence and guide those shifts.

Technology can be a source of tremendous optimism. It can help overcome some of the greatest challenges our society faces, including climate change, famine, and disease. For those who believe in the power of innovation and the promise of creative destruction to advance economic development and lead to better quality of life, technology is a vital economic driver (Schumpeter 1942) . But it can also be a tool of tremendous fear and oppression, embedding biases in automated decision-making processes and information-processing algorithms, exacerbating economic and social inequalities within and between countries to a staggering degree, or creating new weapons and avenues for attack unlike any we have had to face in the past. Scholars have even contended that the emergence of the term technology in the nineteenth and twentieth centuries marked a shift from viewing individual pieces of machinery as a means to achieving political and social progress to the more dangerous, or hazardous, view that larger-scale, more complex technological systems were a semiautonomous form of progress in and of themselves (Marx 2010) . More recently, technologists have sharply criticized what they view as a wave of new Luddites, people intent on slowing the development of technology and turning back the clock on innovation as a means of mitigating the societal impacts of technological change (Marlowe 1970) .

At the heart of fights over new technologies and their resulting global changes are often two conflicting visions of technology: a fundamentally optimistic one that believes humans use it as a tool to achieve greater goals, and a fundamentally pessimistic one that holds that technological systems have reached a point beyond our control. Technology philosophers have argued that neither of these views is wholly accurate and that a purely optimistic or pessimistic view of technology is insufficient to capture the nuances and complexity of our relationship to technology (Oberdiek and Tiles 1995) . Understanding technology and how we can make better decisions about designing, deploying, and refining it requires capturing that nuance and complexity through in-depth analysis of the impacts of different technological advancements and the ways they have played out in all their complicated and controversial messiness across the world.

These impacts are often unpredictable as technologies are adopted in new contexts and come to be used in ways that sometimes diverge significantly from the use cases envisioned by their designers. The internet, designed to help transmit information between computer networks, became a crucial vehicle for commerce, introducing unexpected avenues for crime and financial fraud. Social media platforms like Facebook and Twitter, designed to connect friends and families through sharing photographs and life updates, became focal points of election controversies and political influence. Cryptocurrencies, originally intended as a means of decentralized digital cash, have become a significant environmental hazard as more and more computing resources are devoted to mining these forms of virtual money. One of the crucial challenges in this area is therefore recognizing, documenting, and even anticipating some of these unexpected consequences and providing mechanisms to technologists for how to think through the impacts of their work, as well as possible other paths to different outcomes (Verbeek 2006) . And just as technological innovations can cause unexpected harm, they can also bring about extraordinary benefits—new vaccines and medicines to address global pandemics and save thousands of lives, new sources of energy that can drastically reduce emissions and help combat climate change, new modes of education that can reach people who would otherwise have no access to schooling. Regulating technology therefore requires a careful balance of mitigating risks without overly restricting potentially beneficial innovations.

Nations around the world have taken very different approaches to governing emerging technologies and have adopted a range of different technologies themselves in pursuit of more modern governance structures and processes (Braman 2009) . In Europe, the precautionary principle has guided much more anticipatory regulation aimed at addressing the risks presented by technologies even before they are fully realized. For instance, the European Union’s General Data Protection Regulation focuses on the responsibilities of data controllers and processors to provide individuals with access to their data and information about how that data is being used not just as a means of addressing existing security and privacy threats, such as data breaches, but also to protect against future developments and uses of that data for artificial intelligence and automated decision-making purposes. In Germany, Technische Überwachungsvereine, or TÜVs, perform regular tests and inspections of technological systems to assess and minimize risks over time, as the tech landscape evolves. In the United States, by contrast, there is much greater reliance on litigation and liability regimes to address safety and security failings after-the-fact. These different approaches reflect not just the different legal and regulatory mechanisms and philosophies of different nations but also the different ways those nations prioritize rapid development of the technology industry versus safety, security, and individual control. Typically, governance innovations move much more slowly than technological innovations, and regulations can lag years, or even decades, behind the technologies they aim to govern.

In addition to this varied set of national regulatory approaches, a variety of international and nongovernmental organizations also contribute to the process of developing standards, rules, and norms for new technologies, including the International Organization for Standardization­ and the International Telecommunication Union. These multilateral and NGO actors play an especially important role in trying to define appropriate boundaries for the use of new technologies by governments as instruments of control for the state.

At the same time that policymakers are under scrutiny both for their decisions about how to regulate technology as well as their decisions about how and when to adopt technologies like facial recognition themselves, technology firms and designers have also come under increasing criticism. Growing recognition that the design of technologies can have far-reaching social and political implications means that there is more pressure on technologists to take into consideration the consequences of their decisions early on in the design process (Vincenti 1993; Winner 1980) . The question of how technologists should incorporate these social dimensions into their design and development processes is an old one, and debate on these issues dates back to the 1970s, but it remains an urgent and often overlooked part of the puzzle because so many of the supposedly systematic mechanisms for assessing the impacts of new technologies in both the private and public sectors are primarily bureaucratic, symbolic processes rather than carrying any real weight or influence.

Technologists are often ill-equipped or unwilling to respond to the sorts of social problems that their creations have—often unwittingly—exacerbated, and instead point to governments and lawmakers to address those problems (Zuckerberg 2019) . But governments often have few incentives to engage in this area. This is because setting clear standards and rules for an ever-evolving technological landscape can be extremely challenging, because enforcement of those rules can be a significant undertaking requiring considerable expertise, and because the tech sector is a major source of jobs and revenue for many countries that may fear losing those benefits if they constrain companies too much. This indicates not just a need for clearer incentives and better policies for both private- and public-sector entities but also a need for new mechanisms whereby the technology development and design process can be influenced and assessed by people with a wider range of experiences and expertise. If we want technologies to be designed with an eye to their impacts, who is responsible for predicting, measuring, and mitigating those impacts throughout the design process? Involving policymakers in that process in a more meaningful way will also require training them to have the analytic and technical capacity to more fully engage with technologists and understand more fully the implications of their decisions.

At the same time that tech companies seem unwilling or unable to rein in their creations, many also fear they wield too much power, in some cases all but replacing governments and international organizations in their ability to make decisions that affect millions of people worldwide and control access to information, platforms, and audiences (Kilovaty 2020) . Regulators around the world have begun considering whether some of these companies have become so powerful that they violate the tenets of antitrust laws, but it can be difficult for governments to identify exactly what those violations are, especially in the context of an industry where the largest players often provide their customers with free services. And the platforms and services developed by tech companies are often wielded most powerfully and dangerously not directly by their private-sector creators and operators but instead by states themselves for widespread misinformation campaigns that serve political purposes (Nye 2018) .

Since the largest private entities in the tech sector operate in many countries, they are often better poised to implement global changes to the technological ecosystem than individual states or regulatory bodies, creating new challenges to existing governance structures and hierarchies. Just as it can be challenging to provide oversight for government use of technologies, so, too, oversight of the biggest tech companies, which have more resources, reach, and power than many nations, can prove to be a daunting task. The rise of network forms of organization and the growing gig economy have added to these challenges, making it even harder for regulators to fully address the breadth of these companies’ operations (Powell 1990) . The private-public partnerships that have emerged around energy, transportation, medical, and cyber technologies further complicate this picture, blurring the line between the public and private sectors and raising critical questions about the role of each in providing critical infrastructure, health care, and security. How can and should private tech companies operating in these different sectors be governed, and what types of influence do they exert over regulators? How feasible are different policy proposals aimed at technological innovation, and what potential unintended consequences might they have?

Conflict between countries has also spilled over significantly into the private sector in recent years, most notably in the case of tensions between the United States and China over which technologies developed in each country will be permitted by the other and which will be purchased by other customers, outside those two countries. Countries competing to develop the best technology is not a new phenomenon, but the current conflicts have major international ramifications and will influence the infrastructure that is installed and used around the world for years to come. Untangling the different factors that feed into these tussles as well as whom they benefit and whom they leave at a disadvantage is crucial for understanding how governments can most effectively foster technological innovation and invention domestically as well as the global consequences of those efforts. As much of the world is forced to choose between buying technology from the United States or from China, how should we understand the long-term impacts of those choices and the options available to people in countries without robust domestic tech industries? Does the global spread of technologies help fuel further innovation in countries with smaller tech markets, or does it reinforce the dominance of the states that are already most prominent in this sector? How can research universities maintain global collaborations and research communities in light of these national competitions, and what role does government research and development spending play in fostering innovation within its own borders and worldwide? How should intellectual property protections evolve to meet the demands of the technology industry, and how can those protections be enforced globally?

These conflicts between countries sometimes appear to challenge the feasibility of truly global technologies and networks that operate across all countries through standardized protocols and design features. Organizations like the International Organization for Standardization, the World Intellectual Property Organization, the United Nations Industrial Development Organization, and many others have tried to harmonize these policies and protocols across different countries for years, but have met with limited success when it comes to resolving the issues of greatest tension and disagreement among nations. For technology to operate in a global environment, there is a need for a much greater degree of coordination among countries and the development of common standards and norms, but governments continue to struggle to agree not just on those norms themselves but even the appropriate venue and processes for developing them. Without greater global cooperation, is it possible to maintain a global network like the internet or to promote the spread of new technologies around the world to address challenges of sustainability? What might help incentivize that cooperation moving forward, and what could new structures and process for governance of global technologies look like? Why has the tech industry’s self-regulation culture persisted? Do the same traditional drivers for public policy, such as politics of harmonization and path dependency in policy-making, still sufficiently explain policy outcomes in this space? As new technologies and their applications spread across the globe in uneven ways, how and when do they create forces of change from unexpected places?

These are some of the questions that we hope to address in the Technology and Global Change section through articles that tackle new dimensions of the global landscape of designing, developing, deploying, and assessing new technologies to address major challenges the world faces. Understanding these processes requires synthesizing knowledge from a range of different fields, including sociology, political science, economics, and history, as well as technical fields such as engineering, climate science, and computer science. A crucial part of understanding how technology has created global change and, in turn, how global changes have influenced the development of new technologies is understanding the technologies themselves in all their richness and complexity—how they work, the limits of what they can do, what they were designed to do, how they are actually used. Just as technologies themselves are becoming more complicated, so are their embeddings and relationships to the larger social, political, and legal contexts in which they exist. Scholars across all disciplines are encouraged to join us in untangling those complexities.

Josephine Wolff is an associate professor of cybersecurity policy at the Fletcher School of Law and Diplomacy at Tufts University. Her book You’ll See This Message When It Is Too Late: The Legal and Economic Aftermath of Cybersecurity Breaches was published by MIT Press in 2018.

Recipient(s) will receive an email with a link to 'How Is Technology Changing the World, and How Should the World Change Technology?' and will not need an account to access the content.

Subject: How Is Technology Changing the World, and How Should the World Change Technology?

(Optional message may have a maximum of 1000 characters.)

Citing articles via

Email alerts, affiliations.

  • Special Collections
  • Review Symposia
  • Info for Authors
  • Info for Librarians
  • Editorial Team
  • Emerging Scholars Forum
  • Open Access
  • Online ISSN 2575-7350
  • Copyright © 2024 The Regents of the University of California. All Rights Reserved.

Stay Informed

Disciplines.

  • Ancient World
  • Anthropology
  • Communication
  • Criminology & Criminal Justice
  • Film & Media Studies
  • Food & Wine
  • Browse All Disciplines
  • Browse All Courses
  • Book Authors
  • Booksellers
  • Instructions
  • Journal Authors
  • Journal Editors
  • Media & Journalists
  • Planned Giving

About UC Press

  • Press Releases
  • Seasonal Catalog
  • Acquisitions Editors
  • Customer Service
  • Exam/Desk Requests
  • Media Inquiries
  • Print-Disability
  • Rights & Permissions
  • UC Press Foundation
  • © Copyright 2024 by the Regents of the University of California. All rights reserved. Privacy policy    Accessibility

This Feature Is Available To Subscribers Only

Sign In or Create an Account

Feb 13, 2023

200-500 Word Example Essays about Technology

Got an essay assignment about technology check out these examples to inspire you.

Technology is a rapidly evolving field that has completely changed the way we live, work, and interact with one another. Technology has profoundly impacted our daily lives, from how we communicate with friends and family to how we access information and complete tasks. As a result, it's no surprise that technology is a popular topic for students writing essays.

But writing a technology essay can be challenging, especially for those needing more time or help with writer's block. This is where Jenni.ai comes in. Jenni.ai is an innovative AI tool explicitly designed for students who need help writing essays. With Jenni.ai, students can quickly and easily generate essays on various topics, including technology.

This blog post aims to provide readers with various example essays on technology, all generated by Jenni.ai. These essays will be a valuable resource for students looking for inspiration or guidance as they work on their essays. By reading through these example essays, students can better understand how technology can be approached and discussed in an essay.

Moreover, by signing up for a free trial with Jenni.ai, students can take advantage of this innovative tool and receive even more support as they work on their essays. Jenni.ai is designed to help students write essays faster and more efficiently, so they can focus on what truly matters – learning and growing as a student. Whether you're a student who is struggling with writer's block or simply looking for a convenient way to generate essays on a wide range of topics, Jenni.ai is the perfect solution.

The Impact of Technology on Society and Culture

Introduction:.

Technology has become an integral part of our daily lives and has dramatically impacted how we interact, communicate, and carry out various activities. Technological advancements have brought positive and negative changes to society and culture. In this article, we will explore the impact of technology on society and culture and how it has influenced different aspects of our lives.

Positive impact on communication:

Technology has dramatically improved communication and made it easier for people to connect from anywhere in the world. Social media platforms, instant messaging, and video conferencing have brought people closer, bridging geographical distances and cultural differences. This has made it easier for people to share information, exchange ideas, and collaborate on projects.

Positive impact on education:

Students and instructors now have access to a multitude of knowledge and resources because of the effect of technology on education . Students may now study at their speed and from any location thanks to online learning platforms, educational applications, and digital textbooks.

Negative impact on critical thinking and creativity:

Technological advancements have resulted in a reduction in critical thinking and creativity. With so much information at our fingertips, individuals have become more passive in their learning, relying on the internet for solutions rather than logic and inventiveness. As a result, independent thinking and problem-solving abilities have declined.

Positive impact on entertainment:

Technology has transformed how we access and consume entertainment. People may now access a wide range of entertainment alternatives from the comfort of their own homes thanks to streaming services, gaming platforms, and online content makers. The entertainment business has entered a new age of creativity and invention as a result of this.

Negative impact on attention span:

However, the continual bombardment of information and technological stimulation has also reduced attention span and the capacity to focus. People are easily distracted and need help focusing on a single activity for a long time. This has hampered productivity and the ability to accomplish duties.

The Ethics of Artificial Intelligence And Machine Learning

The development of artificial intelligence (AI) and machine learning (ML) technologies has been one of the most significant technological developments of the past several decades. These cutting-edge technologies have the potential to alter several sectors of society, including commerce, industry, healthcare, and entertainment. 

As with any new and quickly advancing technology, AI and ML ethics must be carefully studied. The usage of these technologies presents significant concerns around privacy, accountability, and command. As the use of AI and ML grows more ubiquitous, we must assess their possible influence on society and investigate the ethical issues that must be taken into account as these technologies continue to develop.

What are Artificial Intelligence and Machine Learning?

Artificial Intelligence is the simulation of human intelligence in machines designed to think and act like humans. Machine learning is a subfield of AI that enables computers to learn from data and improve their performance over time without being explicitly programmed.

The impact of AI and ML on Society

The use of AI and ML in various industries, such as healthcare, finance, and retail, has brought many benefits. For example, AI-powered medical diagnosis systems can identify diseases faster and more accurately than human doctors. However, there are also concerns about job displacement and the potential for AI to perpetuate societal biases.

The Ethical Considerations of AI and ML

A. Bias in AI algorithms

One of the critical ethical concerns about AI and ML is the potential for algorithms to perpetuate existing biases. This can occur if the data used to train these algorithms reflects the preferences of the people who created it. As a result, AI systems can perpetuate these biases and discriminate against certain groups of people.

B. Responsibility for AI-generated decisions

Another ethical concern is the responsibility for decisions made by AI systems. For example, who is responsible for the damage if a self-driving car causes an accident? The manufacturer of the vehicle, the software developer, or the AI algorithm itself?

C. The potential for misuse of AI and ML

AI and ML can also be used for malicious purposes, such as cyberattacks and misinformation. The need for more regulation and oversight in developing and using these technologies makes it difficult to prevent misuse.

The developments in AI and ML have given numerous benefits to humanity, but they also present significant ethical concerns that must be addressed. We must assess the repercussions of new technologies on society, implement methods to limit the associated dangers, and guarantee that they are utilized for the greater good. As AI and ML continue to play an ever-increasing role in our daily lives, we must engage in an open and frank discussion regarding their ethics.

The Future of Work And Automation

Rapid technological breakthroughs in recent years have brought about considerable changes in our way of life and work. Concerns regarding the influence of artificial intelligence and machine learning on the future of work and employment have increased alongside the development of these technologies. This article will examine the possible advantages and disadvantages of automation and its influence on the labor market, employees, and the economy.

The Advantages of Automation

Automation in the workplace offers various benefits, including higher efficiency and production, fewer mistakes, and enhanced precision. Automated processes may accomplish repetitive jobs quickly and precisely, allowing employees to concentrate on more complex and creative activities. Additionally, automation may save organizations money since it removes the need to pay for labor and minimizes the danger of workplace accidents.

The Potential Disadvantages of Automation

However, automation has significant disadvantages, including job loss and income stagnation. As robots and computers replace human labor in particular industries, there is a danger that many workers may lose their jobs, resulting in higher unemployment and more significant economic disparity. Moreover, if automation is not adequately regulated and managed, it might lead to stagnant wages and a deterioration in employees' standard of life.

The Future of Work and Automation

Despite these difficulties, automation will likely influence how labor is done. As a result, firms, employees, and governments must take early measures to solve possible issues and reap the rewards of automation. This might entail funding worker retraining programs, enhancing education and skill development, and implementing regulations that support equality and justice at work.

IV. The Need for Ethical Considerations

We must consider the ethical ramifications of automation and its effects on society as technology develops. The impact on employees and their rights, possible hazards to privacy and security, and the duty of corporations and governments to ensure that automation is utilized responsibly and ethically are all factors to be taken into account.

Conclusion:

To summarise, the future of employment and automation will most certainly be defined by a complex interaction of technological advances, economic trends, and cultural ideals. All stakeholders must work together to handle the problems and possibilities presented by automation and ensure that technology is employed to benefit society as a whole.

The Role of Technology in Education

Introduction.

Nearly every part of our lives has been transformed by technology, and education is no different. Today's students have greater access to knowledge, opportunities, and resources than ever before, and technology is becoming a more significant part of their educational experience. Technology is transforming how we think about education and creating new opportunities for learners of all ages, from online courses and virtual classrooms to instructional applications and augmented reality.

Technology's Benefits for Education

The capacity to tailor learning is one of technology's most significant benefits in education. Students may customize their education to meet their unique needs and interests since they can access online information and tools. 

For instance, people can enroll in online classes on topics they are interested in, get tailored feedback on their work, and engage in virtual discussions with peers and subject matter experts worldwide. As a result, pupils are better able to acquire and develop the abilities and information necessary for success.

Challenges and Concerns

Despite the numerous advantages of technology in education, there are also obstacles and considerations to consider. One issue is the growing reliance on technology and the possibility that pupils would become overly dependent on it. This might result in a lack of critical thinking and problem-solving abilities, as students may become passive learners who only follow instructions and rely on technology to complete their assignments.

Another obstacle is the digital divide between those who have access to technology and those who do not. This division can exacerbate the achievement gap between pupils and produce uneven educational and professional growth chances. To reduce these consequences, all students must have access to the technology and resources necessary for success.

In conclusion, technology is rapidly becoming an integral part of the classroom experience and has the potential to alter the way we learn radically. 

Technology can help students flourish and realize their full potential by giving them access to individualized instruction, tools, and opportunities. While the benefits of technology in the classroom are undeniable, it's crucial to be mindful of the risks and take precautions to guarantee that all kids have access to the tools they need to thrive.

The Influence of Technology On Personal Relationships And Communication 

Technological advancements have profoundly altered how individuals connect and exchange information. It has changed the world in many ways in only a few decades. Because of the rise of the internet and various social media sites, maintaining relationships with people from all walks of life is now simpler than ever. 

However, concerns about how these developments may affect interpersonal connections and dialogue are inevitable in an era of rapid technological growth. In this piece, we'll discuss how the prevalence of digital media has altered our interpersonal connections and the language we use to express ourselves.

Direct Effect on Direct Interaction:

The disruption of face-to-face communication is a particularly stark example of how technology has impacted human connections. The quality of interpersonal connections has suffered due to people's growing preference for digital over human communication. Technology has been demonstrated to reduce the usage of nonverbal signs such as facial expressions, tone of voice, and other indicators of emotional investment in the connection.

Positive Impact on Long-Distance Relationships:

Yet there are positives to be found as well. Long-distance relationships have also benefited from technological advancements. The development of technologies such as video conferencing, instant messaging, and social media has made it possible for individuals to keep in touch with distant loved ones. It has become simpler for individuals to stay in touch and feel connected despite geographical distance.

The Effects of Social Media on Personal Connections:

The widespread use of social media has had far-reaching consequences, especially on the quality of interpersonal interactions. Social media has positive and harmful effects on relationships since it allows people to keep in touch and share life's milestones.

Unfortunately, social media has made it all too easy to compare oneself to others, which may lead to emotions of jealousy and a general decline in confidence. Furthermore, social media might cause people to have inflated expectations of themselves and their relationships.

A Personal Perspective on the Intersection of Technology and Romance

Technological advancements have also altered physical touch and closeness. Virtual reality and other technologies have allowed people to feel physical contact and familiarity in a digital setting. This might be a promising breakthrough, but it has some potential downsides. 

Experts are concerned that people's growing dependence on technology for intimacy may lead to less time spent communicating face-to-face and less emphasis on physical contact, both of which are important for maintaining good relationships.

In conclusion, technological advancements have significantly affected the quality of interpersonal connections and the exchange of information. Even though technology has made it simpler to maintain personal relationships, it has chilled interpersonal interactions between people. 

Keeping tabs on how technology is changing our lives and making adjustments as necessary is essential as we move forward. Boundaries and prioritizing in-person conversation and physical touch in close relationships may help reduce the harm it causes.

The Security and Privacy Implications of Increased Technology Use and Data Collection

The fast development of technology over the past few decades has made its way into every aspect of our life. Technology has improved many facets of our life, from communication to commerce. However, significant privacy and security problems have emerged due to the broad adoption of technology. In this essay, we'll look at how the widespread use of technological solutions and the subsequent explosion in collected data affects our right to privacy and security.

Data Mining and Privacy Concerns

Risk of Cyber Attacks and Data Loss

The Widespread Use of Encryption and Other Safety Mechanisms

The Privacy and Security of the Future in a Globalized Information Age

Obtaining and Using Individual Information

The acquisition and use of private information is a significant cause for privacy alarm in the digital age. Data about their customers' online habits, interests, and personal information is a valuable commodity for many internet firms. Besides tailored advertising, this information may be used for other, less desirable things like identity theft or cyber assaults.

Moreover, many individuals need to be made aware of what data is being gathered from them or how it is being utilized because of the lack of transparency around gathering personal information. Privacy and data security have become increasingly contentious as a result.

Data breaches and other forms of cyber-attack pose a severe risk.

The risk of cyber assaults and data breaches is another big issue of worry. More people are using more devices, which means more opportunities for cybercriminals to steal private information like credit card numbers and other identifying data. This may cause monetary damages and harm one's reputation or identity.

Many high-profile data breaches have occurred in recent years, exposing the personal information of millions of individuals and raising serious concerns about the safety of this information. Companies and governments have responded to this problem by adopting new security methods like encryption and multi-factor authentication.

Many businesses now use encryption and other security measures to protect themselves from cybercriminals and data thieves. Encryption keeps sensitive information hidden by encoding it so that only those possessing the corresponding key can decipher it. This prevents private information like bank account numbers or social security numbers from falling into the wrong hands.

Firewalls, virus scanners, and two-factor authentication are all additional security precautions that may be used with encryption. While these safeguards do much to stave against cyber assaults, they are not entirely impregnable, and data breaches are still possible.

The Future of Privacy and Security in a Technologically Advanced World

There's little doubt that concerns about privacy and security will persist even as technology improves. There must be strict safeguards to secure people's private information as more and more of it is transferred and kept digitally. To achieve this goal, it may be necessary to implement novel technologies and heightened levels of protection and to revise the rules and regulations regulating the collection and storage of private information.

Individuals and businesses are understandably concerned about the security and privacy consequences of widespread technological use and data collecting. There are numerous obstacles to overcome in a society where technology plays an increasingly important role, from acquiring and using personal data to the risk of cyber-attacks and data breaches. Companies and governments must keep spending money on security measures and working to educate people about the significance of privacy and security if personal data is to remain safe.

In conclusion, technology has profoundly impacted virtually every aspect of our lives, including society and culture, ethics, work, education, personal relationships, and security and privacy. The rise of artificial intelligence and machine learning has presented new ethical considerations, while automation is transforming the future of work. 

In education, technology has revolutionized the way we learn and access information. At the same time, our dependence on technology has brought new challenges in terms of personal relationships, communication, security, and privacy.

Jenni.ai is an AI tool that can help students write essays easily and quickly. Whether you're looking, for example, for essays on any of these topics or are seeking assistance in writing your essay, Jenni.ai offers a convenient solution. Sign up for a free trial today and experience the benefits of AI-powered writing assistance for yourself.

Try Jenni for free today

Create your first piece of content with Jenni today and never look back

the power of technology essay

The accelerating power of technology

  • Data, AI, & Machine Learning
  • Managing Technology
  • Social Responsibility
  • Workplace, Teams, & Culture
  • AI & Machine Learning
  • Diversity & Inclusion
  • Big ideas Research Projects
  • Artificial Intelligence and Business Strategy
  • Responsible AI
  • Future of the Workforce
  • Future of Leadership
  • All Research Projects
  • AI in Action
  • Most Popular
  • The Truth Behind the Nursing Crisis
  • Work/23: The Big Shift
  • Coaching for the Future-Forward Leader
  • Measuring Culture

Spring 2024 Issue

The spring 2024 issue’s special report looks at how to take advantage of market opportunities in the digital space, and provides advice on building culture and friendships at work; maximizing the benefits of LLMs, corporate venture capital initiatives, and innovation contests; and scaling automation and digital health platform.

  • Past Issues
  • Upcoming Events
  • Video Archive
  • Me, Myself, and AI
  • Three Big Points

MIT Sloan Management Review Logo

Why the Power of Technology Rarely Goes to the People

A new book reviewing 1,000 years of technological progress reveals how it benefits entrenched interests.

  • Technology Implementation
  • Technology Innovation Strategy

the power of technology essay

Taylor Callery/theispot.com

In a new book, economists Daron Acemoglu and Simon Johnson provide a sweeping historical overview of just how unevenly the spoils and costs of technological change have been distributed. Power and Progress: Our 1,000-Year Struggle Over Technology and Prosperity reminds us that technology is not itself a force but rather a tool that is developed to support the agendas of the people and institutions who hold power in society. Claiming a fair share of technology’s benefits for the rest of society — that is, for most of humanity — requires that that power be challenged. Acemoglu and Johnson chatted with features editor Kaushik Viswanath about what lessons the past holds for how we should develop and implement technology today and in the future. This conversation has been edited for length and clarity.

Get Updates on Leading With AI and Data

Get monthly insights on how artificial intelligence impacts your organization and what it means for your company and customers.

Please enter a valid email address

Thank you for signing up

Privacy Policy

Kaushik Viswanath: What’s the central argument you’re making in Power and Progress , and what motivated you to write it?

Daron Acemoglu: This is a critical time to be thinking about the future of technology. A lot of decisions of great import are being hampered by the fact that there is “techno-optimism” in academia, the tech world, and the policy world. Techno-optimism is the notion that impressive technological change will automatically lead to better outcomes for society, especially for workers via the labor market, even if there are some transition costs.

Our understanding of the relevant economic theory and history has led us to believe this isn’t right. Throughout history, deliberate decisions have had a bearing on who gained and lost from a particular technology, whether it brought anything approaching shared prosperity, or even whether it helped or destroyed democracy. So our purpose in writing Power and Progress was to dispel the notion that in the history of technology, everything has always worked out OK. There are similar choices and struggles over technology today as we’ve had in the past.

Throughout history, deliberate decisions have had a bearing on who gained and lost from a particular technology.

One of the key concepts you discuss is the productivity bandwagon. What is this, and how does it create winners and losers whenever we have technological change?

Simon Johnson: The productivity bandwagon is the notion that when technology improves, you get higher wages, more opportunity, and better health, and everybody gains from it eventually. Our key problem with that notion is the “eventually.�

About the Authors

Daron Acemoglu is an economist and an MIT Institute Professor, the university’s highest faculty honor. Simon Johnson is the Kurtz Professor of Entrepreneurship at MIT and a former chief economist to the International Monetary Fund. They are the authors of Power and Progress: Our 1,000-Year Struggle Over Technology and Prosperity (PublicAffairs, 2023). Kaushik Viswanath is features editor at MIT Sloan Management Review .

More Like This

Add a comment cancel reply.

You must sign in to post a comment. First time here? Sign up for a free account : Comment on articles and get access to many more articles.

Impact of Technology on Society Essay (Critical Writing)

Technology advances date back to the Stone Age. Through the centuries, technology has evolved in this era of civilization and modernization. This has had advantages as it has led to today’s civilization and development. The technology considered useful but has its own setbacks. Neil Postman is a technology critic.

Technology has many evident benefits and society has unquestioningly embraced it. Postman’s intellectual target which is to illustrate how technopoly redefines culture is illustrated in his book, “Technopoly: The surrender of Culture to Technology” Therefore, this essay presents a critical analysis on the impact of technology on society through Postman’s eye.

Postman argues that uncontrolled advances in technology destroy important sources of humanity. He states that this could lead to losing morality and changes in our ideologies. Technology takes superiority over humanity because of its efficiency. The rise of control systems that manage information such as statistics are based on the fallacy that information can be scientifically measured and stored. Technology cannot be blamed because humans are the ones to be blamed in case of a mishap due to technology. This puts pressure on humanity and gives superiority to technology (Postman, 1993). Postman feels that this puts humanity in a subordinate position to technology.

He addresses the issue of information invasion in his book. Traditionally, information was limited and therefore it was easy to manage it. Information was critically classified such that what was delivered was standard for the age and academic level of a person learning. This way, tradition ensured productive development in children.

On the other hand, technopoly gives children information without limitation. Subsequently, this indiscrimination corrupts and overloads young minds. For example, children have access to information that should be rated on the internet (Postman, 1993). Technopoly has given a solution to this issue by installing software that is able to deny access to specified sites. It is therefore now upon the parents to rate what they think is fit for their children.

Postman argues that technology gives and takes away. He states that the benefits and deficits of technology are not distributed equally. He further states that the hazards that accompany technology overshadow its advantages (Postman, 1993). This is a true observation, as it is clear that every aspect of change has its advantages and disadvantages. For example, with regard to computers, he argues that they have given some members of the community benefits and have resulted in deficits for other members.

He observes that computer put more focus on the technicalities but they have little to offer. Concerning television, he says those who have achieved high paying careers consider it a blessing. According to him, the television also ends schoolteacher’s career (Postman, 1993). Rather than work against the education system, computers are actually promoting academic. A wider range of individuals can now access quality education through online services. Educative programs on televisions also help students better understand their academics (Szoka, 2010).

He argues that some societies are tool-using, some are technocracies and others technopolies. This is a relevant taxonomy as presented in society. He gives strong definitions for what he means by these classes too. In traditional culture, the invention of tools was purposely done to give solutions to specific problems in the community.

The tools invented promoted the dignity and integrity of the specific communities. They were important aspects of the cultural processes as humans were defining their way of living. In contrast, tools work against culture in the technocracy world. Here, the tools govern humanity rather than humanity governing tools (Feist, 2010). This is a threat that Postman feels should be addressed.

Technopoly leads to the disappearance of thought -worlds by making it invisible and irrelevant. It changes the meaning of terms and standards of culture to suit its standards. This keeps away technology from its basis to serve humanity. It takes a higher position such that humans are subject to it. It is supposed to be the means through which humanity gets to the end it has defined in its culture. In contrast, technology has had an upper hand in restructuring culture and therefore humanity becomes a means to realize ends set by technology (Postman, 1993). The omnipotence assumed by technology blurs humanity’s major interests. Technology takes the lead and shapes human lives as humans blindly follow. He thus defines it as totalitarian technocracy (Ibid).

His arguments in his book, particularly in chapter two are true. Their disadvantages depend on one’s standpoint. A society that has the tool-using culture only is primitive and less developed while the society with the technopoly culture it is civilized and developed. Given time, the tool-using one will advance to the technopoly one naturally.

Change is a constant aspect of life and embracing it is a necessity. It is also true that technopoly has made life so much easier and comfortable than it was initially. It has shifted the focus from manual labor to technical labor. This has seen many people ending up jobless. It has also provided easy means of acquiring the technical skills required to fit into technology. Thus, striking a balance between these cultures is all it takes and this can be done at the individual level. Granted, striking a balance is not as easy as there is a lot of pressure from technology (Postman, 1993).

To support this, he further argues that in societies that are technocracies, technology and tradition co-exist in an uneasy tension. This is because the two oppose each other with the technological one being the stronger. The traditional one is still there though and cannot be ignored. Therefore, practices from both cultures are practiced but these may be in conflict with each other. This is the case in most aspects but some traditional cultures may not be in conflict with technology (Postman, 2010).

For example, technological ways of farming are in constant conflict with the traditional ways of farming. Farmers who use traditional farming methods suffer losses because of the availability of advanced farming methods. Therefore, to be safe farmers have to embrace the traditional methods at the expense of the traditional ones.

Technology has led to the disintegration of cultural beliefs paving the way to a new way of life. It makes society find fulfillment and authority in the implementation of technology (Ibid).

Technopoly is viewed as the means by which dilemmas may be solved. Those who believe in technopoly believe that information gives freedom, creativity, and peace of mind. Postman believes that information does the opposite (Postman, 1993).

This is a true observation. On the other hand, technology embraces social sites that help people break communication barriers. This allows people to communicate across continents, defying race, ethnicity and language differences. This is a means of getting exposed to other cultures and raising a culturally diversified generation. Information obtained online also enlightens on the different cultures helping people appreciate each other (Szoka, 2010).

He further says that information needs to be controlled. When there is too much information to sustain any theory, information becomes essentially meaningless. Technopoly increases the availability of information. Too much information is hard to be controlled due to the load put on the control measures. This call for more control machines but need more information as they are more technical.

The overflow of information stresses brains receiving them and threatens psychological peace and social purpose. The information glut leads to the breakdown of a coherent cultural narrative, he argues, for without a meaningful context, information is not only useless but also potentially dangerous. He cites the old saying that, to a man with a hammer, everything looks like a nail, and therefore, “to a man with a computer, everything looks like data” (Postman, 1993).

The importance given to information and technology’s control over information is the major reason why technopoly has thrived over traditional culture. Technology has weaved a distinct web for passing information. This is in the form of social media like phones, telegrams, and internet and satellite communication. This means that information has become a vital part of humanity.

Technopoly gives technology the power to control the dispersion of information and hence it is able to redefine culture. This has led to confusion of terms like knowledge and information, or reason and familiarity (Postman, 1993). The availability of information may be overwhelming, but it has led to the expansion of people’s way of thinking hence curbing ignorance. Thus, Postman is not justified in crucifying technology on this score.

Another major setback of technology is its effect on the education system. He also addresses the redefinition of information and knowledge. His arguments are well thought and they have strong support. It calls upon the reader to reflect and think critically. This is a habit he believes technology has made irrelevant. He thus calls upon the reader to reconsider the old ways and think of ways technology has helped make the world better.

He agrees with the many benefits of technology and helps expose its loopholes too (Feist, 2010). The education system has actually not suffered as the techno pessimists may want us to believe. Rather it has undergone a major redefinition to give opportunities to both young and old. Quality education is now readily available, thanks to technology (Szoka, 2010).

The defense given by techno-optimists lies in decentralizing, globalizing, harmonizing and empowering. Technopoly encourages the participation of both the experts and the non-experts for example in writing. It encourages diversity of thought and expression as information can be shared globally. It also allows self-actualization and empowerment by providing information.

Through the Internet, masses are able to be educated therefore increasing literacy. Information abundance creates new opportunities for learning. It offers real choices and genuine voices. Connection through social sites helps diversify culture due to globalization. It also promotes international integrity as peace initiatives can be run faster through technology. Granted, technology offers efficiency and quality and that within a short time (Szoka, 2010).

Postman is, therefore, a strong author who handles his writing expertly and conveys his arguments in a way that is understandable to the reader. The simple traditional methods offer peace and tranquility of mind. They offer freedom and strong morals and they were efficient enough. Modernization brings with it slavery of mind and loses morals. On the other hand, development owes its origin to technology. The simple cultural methods are the ones that have advanced this far. Technology advances cannot be regulated as they arise out of necessity. The benefits of technology far outdo its deficits, though, and as Szoka (2010) says, change is inevitable.

Feist, R. Beauvais, C. & Shukla, R. (2010). Technology and the Changing Face of Humanity. Ottawa: University of Ottawa Press.

Postman, N. (1993). Technopoly: The Surrender of Culture to Technology. New York: Vintage Books Publishers.

Szoka, B. Marcus, A. (2010). The Next Digital Decade. New York: TechFreedom Publishers.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2020, May 7). Impact of Technology on Society. https://ivypanda.com/essays/impact-of-technology-on-society/

"Impact of Technology on Society." IvyPanda , 7 May 2020, ivypanda.com/essays/impact-of-technology-on-society/.

IvyPanda . (2020) 'Impact of Technology on Society'. 7 May.

IvyPanda . 2020. "Impact of Technology on Society." May 7, 2020. https://ivypanda.com/essays/impact-of-technology-on-society/.

1. IvyPanda . "Impact of Technology on Society." May 7, 2020. https://ivypanda.com/essays/impact-of-technology-on-society/.

Bibliography

IvyPanda . "Impact of Technology on Society." May 7, 2020. https://ivypanda.com/essays/impact-of-technology-on-society/.

  • The Analysis of Postman’s Technopoly: Where the Real Danger Lurks
  • Postman's Concept of Technology
  • Technological Development of Civilizations
  • "Virtual Students, Digital Classroom" by Neil Postman
  • Postman’s Park in London
  • "Future Shlock" by Neil Postman
  • The Summary of Two Chapters From Amusing Ourselves to Death by Neil Postman
  • Comparison: "Amusing Ourselves to Death" by N.Postman and "The Panopticon Writings" by J.Bentham
  • Globalization in Bentham’s Panopticon and Postman’s "Amusing Ourselves to Death"
  • The Future of Society in "Brave New World" by Huxley and "Amusing Ourselves to Death" by Postman
  • Parent Interview and Infant Observation
  • Immigrants in Los Angeles
  • Early Intervention Strategies
  • "A New View of Society" by Robert Owen
  • Arguments for Animal Rights

Programs submenu

Regions submenu, topics submenu, the role of fast payment systems in addressing financial inclusion, modernizing army software acquisition: panel discussion with dasa(sar) margaret boatner and peo iew&s bg ed barker, book event: the mountains are high, energy security and geopolitics conference.

  • Abshire-Inamori Leadership Academy
  • Aerospace Security Project
  • Africa Program
  • Americas Program
  • Arleigh A. Burke Chair in Strategy
  • Asia Maritime Transparency Initiative
  • Asia Program
  • Australia Chair
  • Brzezinski Chair in Global Security and Geostrategy
  • Brzezinski Institute on Geostrategy
  • Chair in U.S.-India Policy Studies
  • China Power Project
  • Chinese Business and Economics
  • Defending Democratic Institutions
  • Defense-Industrial Initiatives Group
  • Defense 360
  • Defense Budget Analysis
  • Diversity and Leadership in International Affairs Project
  • Economics Program
  • Emeritus Chair in Strategy
  • Energy Security and Climate Change Program
  • Europe, Russia, and Eurasia Program
  • Freeman Chair in China Studies
  • Futures Lab
  • Geoeconomic Council of Advisers
  • Global Food and Water Security Program
  • Global Health Policy Center
  • Hess Center for New Frontiers
  • Human Rights Initiative
  • Humanitarian Agenda
  • Intelligence, National Security, and Technology Program
  • International Security Program
  • Japan Chair
  • Kissinger Chair
  • Korea Chair
  • Langone Chair in American Leadership
  • Middle East Program
  • Missile Defense Project
  • Project on Critical Minerals Security
  • Project on Fragility and Mobility
  • Project on Nuclear Issues
  • Project on Prosperity and Development
  • Project on Trade and Technology
  • Renewing American Innovation Project
  • Scholl Chair in International Business
  • Smart Women, Smart Power
  • Southeast Asia Program
  • Stephenson Ocean Security Project
  • Strategic Technologies Program
  • Transnational Threats Project
  • Wadhwani Center for AI and Advanced Technologies
  • All Regions
  • Australia, New Zealand & Pacific
  • Middle East
  • Russia and Eurasia
  • American Innovation
  • Civic Education
  • Climate Change
  • Cybersecurity
  • Defense Budget and Acquisition
  • Defense and Security
  • Energy and Sustainability
  • Food Security
  • Gender and International Security
  • Geopolitics
  • Global Health
  • Human Rights
  • Humanitarian Assistance
  • Intelligence
  • International Development
  • Maritime Issues and Oceans
  • Missile Defense
  • Nuclear Issues
  • Transnational Threats
  • Water Security

Technology and Power

Photo: iLab/CSIS

Photo: iLab/CSIS

Commentary by James Andrew Lewis

Published March 30, 2022

This commentary is part of Technology and Power, a series from the CSIS Strategic Technologies Program on the development and governance of key technologies and how they can be used to gain national advantage.

Power is the ability of individuals or groups to shape events. Technology is the practical application of scientific knowledge and the invention and use of devices to improve human performance. New technologies change economies, markets, and cultures by creating new opportunities. While some have a growing fear of technological change, technology remains the best source of continued economic growth and military strength.

This means the creation and use of technology has become a policy issue like never before. This includes security issues like supply chain security or cybersecurity, military uses for new technologies, tech governance (including rules for competitiveness and responsible use), and investments in research, workforce, and building the digital infrastructure.

Technology creates new sources of wealth and power. This began with the industrial revolution, when early industrial and agricultural devices changed how societies created wealth. Agriculture had been the source of wealth creation for millennia: those who controlled the land were the most powerful. Technology changed this: two centuries ago, land was replaced by factories and industrial production as the source of power and wealth. Now factories are being replaced by digital and networks technologies that provide services, the creation of intellectual property, and intangible goods. While the scope of technology’s application has increased exponentially, this is another phase of an upheaval that began at the end of seventeenth century and took off in the twentieth.

The policy issues created by technology are difficult but not unmanageable. They are difficult because they do not always map to the rules and concepts developed for the industrial age.

Recognizing this helps frame policymaking on several fronts: how to accelerate innovation, entrepreneurship, and expanded opportunities for wealth creation; how to build the digital infrastructure needed for growth; how to deal with the social and political consequences of technology’s disruptive effects; and how to use technology to improve national security. These issues mean that countries are really in two technology “races,” not only over how to create it but over how to govern it to produce the most benefit.

The pace of innovation means that to stand still is to decline. The ability of nations to create and use new technologies will determine national strength. This makes innovation and entrepreneurship policy issues. Innovation is the process of turning knowledge (often from research) into new products and services. Entrepreneurs—the individuals willing to take the risk of investing in new goods and services—are the crucial link between research and innovation. Some call this a “national innovation base.” The innovation base in advanced countries has many participants, including researchers, entrepreneurs, investors, and large companies.

As societies acquire new technologies, the result is to change the balance of power among nations. Technology has become a focal point in the geopolitical arena, particularly in the contest between China and the democracies. This is not a replay of the Cold War—China’s economy is too deeply intertwined with other nations and its market too large to be ignored. The Cold War involved a small number of advanced economies. Research, manufacturing, and finance were concentrated in these few countries. There was a clear bifurcation and little contact among the blocs. On one side, almost all were democracies, and many were NATO members or allies. This Western concentration was diluted in recent decades as wealth and manufacturing have become distributed, albeit unevenly, not only in China but now also in countries in the Middle East, Asia, and Latin America.

The end of the Cold War allowed a global market to emerge under a rules-based international order. This order created incentives to improve transport and telecommunications by shrinking the political risk of international finance and trade. A rules-based international order lowered costs for trade and created incentives for firms to take advantage of globally distributed resources for production and serve globally distributed markets. The lowering of transaction and transportation costs fueled the growth of international trade and investment, creating the much-discussed wave of “globalization” that began in the 1990s.

But the rules-based international order, its institutions, and the democratic values behind it are being challenged as they have not been challenged for decades. Russia and China believe now is the time to push hard against a weakened and befuddled West and the international order that the United States created with its allies in 1945. Technological leadership is a central part of this competition. One part of the technology contest is persuading the “new entrants” in the developing world that the existing order serves their interests better than the authoritarian alternative, and economic performance is important for making the case.

The terms of competition are economic and technological more than military. The United States is not in an arms race but in a contest over the rules for commerce and finance and for the creation and use of technology. Success will be the result of the ability to innovate and create new technologies, as well as the ability to effectively govern innovation in ways that not only manage risk but also create opportunity. Innovation is easily stifled. Perhaps that is why the ability to innovate is still relatively concentrated in perhaps a dozen countries that create the majority of new inventions—the result of culture, investment, and attitudes toward risk that make societies enhance or limit their ability to innovate. This picture is changing as the number of countries with innovative strength expands, but for now, the leading actors in this contest are China, Japan, the European Union, Canada, and the United States.

Having a large or powerful military does not guarantee success in this new contest, nor is military spending the fountain of innovation that it was in the last century. Technology and innovation are the products of private efforts, not governmental ones (although having the right framework of policy, regulation, and law shapes competition and provides advantage among nations and blocs). This gives private actors a degree of direct influence and power not seen since the late Middle Ages (think of the Medici or Fugger families) before the rise of the nation-state and its powerful institutions. This means that those countries that are most effective in aligning government and private actors will have an advantage (and this does not discount China and its skill in using political power to align private actors to national goals).

This series of short essays will examine key technology issues relating to governance, growth, and national power. It will look at cutting-edge technologies, how they are created, how they might be governed, and how they can be used to gain national advantage. The first will look at semiconductors, the “foundational” technology for the new digital economy, followed by discussions of digital currency, the metaverse, quantum computing, digital identity, 6G telecom, the political effect of networks, and other relevant topics. These will reshape the global order. This series will be an initial look at the foundations of technological strength in the future.

James Andrew Lewis is senior vice president and director of the Strategic Technologies Program at the Center for Strategic and International Studies (CSIS) in Washington, D.C.

Commentary is produced by the Center for Strategic and International Studies (CSIS), a private, tax-exempt institution focusing on international public policy issues. Its research is nonpartisan and nonproprietary. CSIS does not take specific policy positions. Accordingly, all views, positions, and conclusions expressed in this publication should be understood to be solely those of the author(s).

James Andrew Lewis

James Andrew Lewis

Programs & projects.

  • Emerging Technologies
  • Innovation and Digital Transformation
  • Digital Governance

The Information Umbrella

Musings on applied information management.

the power of technology essay

The Power of Technology

I have written in the past about business and technology and particularly about the benefits and drawbacks of our current digital world. Our adoption of technology is accelerating and while it can make life more convenient, experts are concerned that it is leaving us virtually connected but personally isolated. In this blog I would like to highlight the power of technology to connect those that would otherwise be isolated.  

Reaching Out

I have worked in the technology industry since the very early days of personal computers and have experienced generations of conferencing options.  In the beginning there was voice-only conferencing via telephone; then came video broadcasts over large networks or satellite connections, but only to those sitting in large conference rooms. With the advent of personal computers and a build out of networks, videoconferencing came into the home with applications such as Skype, Facebook, Facetime, and Google Hangouts. This is a wonderful development that allows people to connect with each other, even over the miles. My 83-year-old parents are able to Skype with me even though we live 700 miles apart. This gives them a chance to reach out beyond their home for conversation and gives me a chance to reconnect and ensure their well-being.

Technology can be used to ensure that you keep track of items such as keys or cell phones or something more important such as little ones or forgetful elders. There are always privacy issues when it comes to tracking people—notably children.  However, in many situations those issues are overridden by security concerns. For example, if I am backpacking alone in the wilderness, I can carry a tracking device that reports my location and is visible to my family and friends. This same technology also allows loved ones to track elderly parents. For example, a small GPS tracker from Trackimo can display the whereabouts of those suffering from dementia and can alert caregivers and family members if they get lost. Technology can protect those that are vulnerable.

Collaborating

Technology can connect us with others for the purposes of collaboration. If I wanted to work with someone or a group of people on a book, an academic paper, or an art project, there are several collaboration technologies that let us create something new and meaningful. These include document and project collaboration tools such as Huddle and the Google suite of tools like docs and sheets. There are also tools such as Redpen and Mural for collaborating on visual projects. These tools foster idea sharing from large screens or mobile platforms. No longer are we limited to pursuing the creative process alone but can now easily reach out and work with others to create something meaningful.

Traveling Locally

Technology has and will continue to improve our abilities to travel, especially locally. Metro and bus stops now often display arrival times for the next train or bus.  Additional mobile apps do the same across multiple travel systems. Lyft and Uber are examples of ride services for those that don’t have a car or cannot (or choose not to) drive. Putting a twist on the traditional taxi-cab model, these companies use GPS and mobile apps to engage potential customers and employ drivers that use their own personal cars. This increases the accuracy of the pick-up and drop-off processes and helps bring down the price of the ride by lowering overhead costs. With the introduction of autonomous vehicles, it will be possible to arrange the same rides minus an actual driver. These are a few ways that technology is expanding the possibility and affordability of local travel.

Technology can be empowering and transforming, but it can also be isolating. I believe that the difference lies in how we choose to use it. We can use technology to improve our lives and bring us together or allow it to leave us frustrated. The result is up to us. Technology has created great tools that can help us connect with others at a distance, but it is also valuable to connect with others across a dinner table, on a bus, or in a checkout line. In our modern world we can comfortably do both. Let me know your thoughts.

This is my 237 th and final blog post. I appreciate all who have taken the time to read and ponder my thoughts. I have learned a lot from researching technology and business trends. This process has led me to create and present two academic papers on the ethical responsibilities of creating emerging technologies. I am confident that the future is bright as we work together on creative solutions to improve our lives. Thank you.

About Kelly Brown

Kelly Brown is an IT professional and assistant professor of practice for the  UO Applied Information Management Master’s Degree Program . He writes about IT and business topics that keep him up at night.

Print Friendly, PDF & Email

25 thoughts on “ The Power of Technology ”

' src=

Yes its absolutely true that the technology has very good power. Technology has made our life easier and interesting. With the help of the technology only, we are living good life. The information shared in the above shared article is really very good and very true, really technology has very good power. One of the best example of the technologies is mobile, computers, etc. They have very good demand among the users and the demand is continuously increasing at very good rate.

' src=

The power of technology is increasing day by day and its uses. Our life has been changed through the way technology has changed.

' src=

Technology is very powerful and it has changed the whole world and we can make use of it for our benefit. One of the good technologies is a router through which you can connect internet to several computers.

' src=

Technology is very powerful. The information shared in the above-shared article is really very good and very true, really technology has very good power. One of the best examples of the technologies is mobile, computers, etc. They have very good demand among the users and the demand is continuously increasing at the very good rate. One of the good technologies is a router through which you can connect internet to several computers.i’ll wait for your next article.

' src=

I really like your post because it will be useful for readers so thanks for writing a such useful information.

' src=

It is actually a great and helpful piece of information. I am satisfied that you simply shared this helpful information with us. Please stay us informed like this. Thanks for sharing.

' src=

In my opinion technology is making the great impact on people’s life that is quite good. The example of tech impact is use of google for various topic not only for education level.

' src=

This is a great article about the power of technology. Short and to-the-point and helpful. And if you talk about technology, the first thing that comes to mind is Google. With its vast array of applications and products that are beneficial to everyone in some way.

' src=

In today’s era we are surrounded by technology at a huge extent. We cannot imagine our life without technology.It has made our life easier in every field.

' src=

Most of us have had first-hand experience with the power of technology to dramatically expand our productivity and personal fulfillment. Compare the instantaneous power of email to say, handwriting a letter and sending it overseas by boat. Cell phones now carry millions of voices where once native peoples communicated over distance with drums.

' src=

Technology has helped in the growth and development of the mankind as a whole. Right from the morning alarm to the space rocket. technology has moved to the other level. it has contributed a lot to the mankind and also improved the lifestyle.

' src=

Technology is growing so fast. In education, transport, health etc sectors technology is growing so fast. Communication technique is also improved a lot.

' src=

amazing information you have shared thanks for sharing.

' src=

Technology is being constantly improving and it has too many useful sides. Umbrella is one of them. Thanks for this information. I appreciate your work. Keep it up.

' src=

Thanks for sharing this information with us. Keep up the good work.

' src=

Technology is at its peak now. Can you predict whats gonna be next innovations

' src=

I love your articles. Very useful information with practical ways. Thanks for your article.

' src=

Excellent Blog, there is good and great information about technology, this is very useful article for everyone.

' src=

Technology is really improving everyday but we have to devote our time to further improve it. One of the ways to do it is through the media which is what you are doing now.

' src=

Get the latest technology and gadgets news including detailed review and product information on https://everydayscience.blog/category/technology/ from all over the world.

' src=

Well said about the power of technology nowadays. Technologies can be used to help learners express themselves in writing. Learners can express themselves using a variety of tools based on technology. Thanks for the informative article.

' src=

Thanks for sharing the article

' src=

I love your articles. Very useful information and you do an in-depth review. It helps me in my research

' src=

great article <3

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

How artificial intelligence is transforming the world

Subscribe to techstream, darrell m. west and darrell m. west senior fellow - center for technology innovation , douglas dillon chair in governmental studies john r. allen john r. allen.

April 24, 2018

Artificial intelligence (AI) is a wide-ranging tool that enables people to rethink how we integrate information, analyze data, and use the resulting insights to improve decision making—and already it is transforming every walk of life. In this report, Darrell West and John Allen discuss AI’s application across a variety of sectors, address issues in its development, and offer recommendations for getting the most out of AI while still protecting important human values.

Table of Contents I. Qualities of artificial intelligence II. Applications in diverse sectors III. Policy, regulatory, and ethical issues IV. Recommendations V. Conclusion

  • 49 min read

Most people are not very familiar with the concept of artificial intelligence (AI). As an illustration, when 1,500 senior business leaders in the United States in 2017 were asked about AI, only 17 percent said they were familiar with it. 1 A number of them were not sure what it was or how it would affect their particular companies. They understood there was considerable potential for altering business processes, but were not clear how AI could be deployed within their own organizations.

Despite its widespread lack of familiarity, AI is a technology that is transforming every walk of life. It is a wide-ranging tool that enables people to rethink how we integrate information, analyze data, and use the resulting insights to improve decisionmaking. Our hope through this comprehensive overview is to explain AI to an audience of policymakers, opinion leaders, and interested observers, and demonstrate how AI already is altering the world and raising important questions for society, the economy, and governance.

In this paper, we discuss novel applications in finance, national security, health care, criminal justice, transportation, and smart cities, and address issues such as data access problems, algorithmic bias, AI ethics and transparency, and legal liability for AI decisions. We contrast the regulatory approaches of the U.S. and European Union, and close by making a number of recommendations for getting the most out of AI while still protecting important human values. 2

In order to maximize AI benefits, we recommend nine steps for going forward:

  • Encourage greater data access for researchers without compromising users’ personal privacy,
  • invest more government funding in unclassified AI research,
  • promote new models of digital education and AI workforce development so employees have the skills needed in the 21 st -century economy,
  • create a federal AI advisory committee to make policy recommendations,
  • engage with state and local officials so they enact effective policies,
  • regulate broad AI principles rather than specific algorithms,
  • take bias complaints seriously so AI does not replicate historic injustice, unfairness, or discrimination in data or algorithms,
  • maintain mechanisms for human oversight and control, and
  • penalize malicious AI behavior and promote cybersecurity.

Qualities of artificial intelligence

Although there is no uniformly agreed upon definition, AI generally is thought to refer to “machines that respond to stimulation consistent with traditional responses from humans, given the human capacity for contemplation, judgment and intention.” 3  According to researchers Shubhendu and Vijay, these software systems “make decisions which normally require [a] human level of expertise” and help people anticipate problems or deal with issues as they come up. 4 As such, they operate in an intentional, intelligent, and adaptive manner.

Intentionality

Artificial intelligence algorithms are designed to make decisions, often using real-time data. They are unlike passive machines that are capable only of mechanical or predetermined responses. Using sensors, digital data, or remote inputs, they combine information from a variety of different sources, analyze the material instantly, and act on the insights derived from those data. With massive improvements in storage systems, processing speeds, and analytic techniques, they are capable of tremendous sophistication in analysis and decisionmaking.

Artificial intelligence is already altering the world and raising important questions for society, the economy, and governance.

Intelligence

AI generally is undertaken in conjunction with machine learning and data analytics. 5 Machine learning takes data and looks for underlying trends. If it spots something that is relevant for a practical problem, software designers can take that knowledge and use it to analyze specific issues. All that is required are data that are sufficiently robust that algorithms can discern useful patterns. Data can come in the form of digital information, satellite imagery, visual information, text, or unstructured data.

Adaptability

AI systems have the ability to learn and adapt as they make decisions. In the transportation area, for example, semi-autonomous vehicles have tools that let drivers and vehicles know about upcoming congestion, potholes, highway construction, or other possible traffic impediments. Vehicles can take advantage of the experience of other vehicles on the road, without human involvement, and the entire corpus of their achieved “experience” is immediately and fully transferable to other similarly configured vehicles. Their advanced algorithms, sensors, and cameras incorporate experience in current operations, and use dashboards and visual displays to present information in real time so human drivers are able to make sense of ongoing traffic and vehicular conditions. And in the case of fully autonomous vehicles, advanced systems can completely control the car or truck, and make all the navigational decisions.

Related Content

Jack Karsten, Darrell M. West

October 26, 2015

Makada Henry-Nickie

November 16, 2017

Sunil Johal, Daniel Araya

February 28, 2017

Applications in diverse sectors

AI is not a futuristic vision, but rather something that is here today and being integrated with and deployed into a variety of sectors. This includes fields such as finance, national security, health care, criminal justice, transportation, and smart cities. There are numerous examples where AI already is making an impact on the world and augmenting human capabilities in significant ways. 6

One of the reasons for the growing role of AI is the tremendous opportunities for economic development that it presents. A project undertaken by PriceWaterhouseCoopers estimated that “artificial intelligence technologies could increase global GDP by $15.7 trillion, a full 14%, by 2030.” 7 That includes advances of $7 trillion in China, $3.7 trillion in North America, $1.8 trillion in Northern Europe, $1.2 trillion for Africa and Oceania, $0.9 trillion in the rest of Asia outside of China, $0.7 trillion in Southern Europe, and $0.5 trillion in Latin America. China is making rapid strides because it has set a national goal of investing $150 billion in AI and becoming the global leader in this area by 2030.

Meanwhile, a McKinsey Global Institute study of China found that “AI-led automation can give the Chinese economy a productivity injection that would add 0.8 to 1.4 percentage points to GDP growth annually, depending on the speed of adoption.” 8 Although its authors found that China currently lags the United States and the United Kingdom in AI deployment, the sheer size of its AI market gives that country tremendous opportunities for pilot testing and future development.

Investments in financial AI in the United States tripled between 2013 and 2014 to a total of $12.2 billion. 9 According to observers in that sector, “Decisions about loans are now being made by software that can take into account a variety of finely parsed data about a borrower, rather than just a credit score and a background check.” 10 In addition, there are so-called robo-advisers that “create personalized investment portfolios, obviating the need for stockbrokers and financial advisers.” 11 These advances are designed to take the emotion out of investing and undertake decisions based on analytical considerations, and make these choices in a matter of minutes.

A prominent example of this is taking place in stock exchanges, where high-frequency trading by machines has replaced much of human decisionmaking. People submit buy and sell orders, and computers match them in the blink of an eye without human intervention. Machines can spot trading inefficiencies or market differentials on a very small scale and execute trades that make money according to investor instructions. 12 Powered in some places by advanced computing, these tools have much greater capacities for storing information because of their emphasis not on a zero or a one, but on “quantum bits” that can store multiple values in each location. 13 That dramatically increases storage capacity and decreases processing times.

Fraud detection represents another way AI is helpful in financial systems. It sometimes is difficult to discern fraudulent activities in large organizations, but AI can identify abnormalities, outliers, or deviant cases requiring additional investigation. That helps managers find problems early in the cycle, before they reach dangerous levels. 14

National security

AI plays a substantial role in national defense. Through its Project Maven, the American military is deploying AI “to sift through the massive troves of data and video captured by surveillance and then alert human analysts of patterns or when there is abnormal or suspicious activity.” 15 According to Deputy Secretary of Defense Patrick Shanahan, the goal of emerging technologies in this area is “to meet our warfighters’ needs and to increase [the] speed and agility [of] technology development and procurement.” 16

Artificial intelligence will accelerate the traditional process of warfare so rapidly that a new term has been coined: hyperwar.

The big data analytics associated with AI will profoundly affect intelligence analysis, as massive amounts of data are sifted in near real time—if not eventually in real time—thereby providing commanders and their staffs a level of intelligence analysis and productivity heretofore unseen. Command and control will similarly be affected as human commanders delegate certain routine, and in special circumstances, key decisions to AI platforms, reducing dramatically the time associated with the decision and subsequent action. In the end, warfare is a time competitive process, where the side able to decide the fastest and move most quickly to execution will generally prevail. Indeed, artificially intelligent intelligence systems, tied to AI-assisted command and control systems, can move decision support and decisionmaking to a speed vastly superior to the speeds of the traditional means of waging war. So fast will be this process, especially if coupled to automatic decisions to launch artificially intelligent autonomous weapons systems capable of lethal outcomes, that a new term has been coined specifically to embrace the speed at which war will be waged: hyperwar.

While the ethical and legal debate is raging over whether America will ever wage war with artificially intelligent autonomous lethal systems, the Chinese and Russians are not nearly so mired in this debate, and we should anticipate our need to defend against these systems operating at hyperwar speeds. The challenge in the West of where to position “humans in the loop” in a hyperwar scenario will ultimately dictate the West’s capacity to be competitive in this new form of conflict. 17

Just as AI will profoundly affect the speed of warfare, the proliferation of zero day or zero second cyber threats as well as polymorphic malware will challenge even the most sophisticated signature-based cyber protection. This forces significant improvement to existing cyber defenses. Increasingly, vulnerable systems are migrating, and will need to shift to a layered approach to cybersecurity with cloud-based, cognitive AI platforms. This approach moves the community toward a “thinking” defensive capability that can defend networks through constant training on known threats. This capability includes DNA-level analysis of heretofore unknown code, with the possibility of recognizing and stopping inbound malicious code by recognizing a string component of the file. This is how certain key U.S.-based systems stopped the debilitating “WannaCry” and “Petya” viruses.

Preparing for hyperwar and defending critical cyber networks must become a high priority because China, Russia, North Korea, and other countries are putting substantial resources into AI. In 2017, China’s State Council issued a plan for the country to “build a domestic industry worth almost $150 billion” by 2030. 18 As an example of the possibilities, the Chinese search firm Baidu has pioneered a facial recognition application that finds missing people. In addition, cities such as Shenzhen are providing up to $1 million to support AI labs. That country hopes AI will provide security, combat terrorism, and improve speech recognition programs. 19 The dual-use nature of many AI algorithms will mean AI research focused on one sector of society can be rapidly modified for use in the security sector as well. 20

Health care

AI tools are helping designers improve computational sophistication in health care. For example, Merantix is a German company that applies deep learning to medical issues. It has an application in medical imaging that “detects lymph nodes in the human body in Computer Tomography (CT) images.” 21 According to its developers, the key is labeling the nodes and identifying small lesions or growths that could be problematic. Humans can do this, but radiologists charge $100 per hour and may be able to carefully read only four images an hour. If there were 10,000 images, the cost of this process would be $250,000, which is prohibitively expensive if done by humans.

What deep learning can do in this situation is train computers on data sets to learn what a normal-looking versus an irregular-appearing lymph node is. After doing that through imaging exercises and honing the accuracy of the labeling, radiological imaging specialists can apply this knowledge to actual patients and determine the extent to which someone is at risk of cancerous lymph nodes. Since only a few are likely to test positive, it is a matter of identifying the unhealthy versus healthy node.

AI has been applied to congestive heart failure as well, an illness that afflicts 10 percent of senior citizens and costs $35 billion each year in the United States. AI tools are helpful because they “predict in advance potential challenges ahead and allocate resources to patient education, sensing, and proactive interventions that keep patients out of the hospital.” 22

Criminal justice

AI is being deployed in the criminal justice area. The city of Chicago has developed an AI-driven “Strategic Subject List” that analyzes people who have been arrested for their risk of becoming future perpetrators. It ranks 400,000 people on a scale of 0 to 500, using items such as age, criminal activity, victimization, drug arrest records, and gang affiliation. In looking at the data, analysts found that youth is a strong predictor of violence, being a shooting victim is associated with becoming a future perpetrator, gang affiliation has little predictive value, and drug arrests are not significantly associated with future criminal activity. 23

Judicial experts claim AI programs reduce human bias in law enforcement and leads to a fairer sentencing system. R Street Institute Associate Caleb Watney writes:

Empirically grounded questions of predictive risk analysis play to the strengths of machine learning, automated reasoning and other forms of AI. One machine-learning policy simulation concluded that such programs could be used to cut crime up to 24.8 percent with no change in jailing rates, or reduce jail populations by up to 42 percent with no increase in crime rates. 24

However, critics worry that AI algorithms represent “a secret system to punish citizens for crimes they haven’t yet committed. The risk scores have been used numerous times to guide large-scale roundups.” 25 The fear is that such tools target people of color unfairly and have not helped Chicago reduce the murder wave that has plagued it in recent years.

Despite these concerns, other countries are moving ahead with rapid deployment in this area. In China, for example, companies already have “considerable resources and access to voices, faces and other biometric data in vast quantities, which would help them develop their technologies.” 26 New technologies make it possible to match images and voices with other types of information, and to use AI on these combined data sets to improve law enforcement and national security. Through its “Sharp Eyes” program, Chinese law enforcement is matching video images, social media activity, online purchases, travel records, and personal identity into a “police cloud.” This integrated database enables authorities to keep track of criminals, potential law-breakers, and terrorists. 27 Put differently, China has become the world’s leading AI-powered surveillance state.

Transportation

Transportation represents an area where AI and machine learning are producing major innovations. Research by Cameron Kerry and Jack Karsten of the Brookings Institution has found that over $80 billion was invested in autonomous vehicle technology between August 2014 and June 2017. Those investments include applications both for autonomous driving and the core technologies vital to that sector. 28

Autonomous vehicles—cars, trucks, buses, and drone delivery systems—use advanced technological capabilities. Those features include automated vehicle guidance and braking, lane-changing systems, the use of cameras and sensors for collision avoidance, the use of AI to analyze information in real time, and the use of high-performance computing and deep learning systems to adapt to new circumstances through detailed maps. 29

Light detection and ranging systems (LIDARs) and AI are key to navigation and collision avoidance. LIDAR systems combine light and radar instruments. They are mounted on the top of vehicles that use imaging in a 360-degree environment from a radar and light beams to measure the speed and distance of surrounding objects. Along with sensors placed on the front, sides, and back of the vehicle, these instruments provide information that keeps fast-moving cars and trucks in their own lane, helps them avoid other vehicles, applies brakes and steering when needed, and does so instantly so as to avoid accidents.

Advanced software enables cars to learn from the experiences of other vehicles on the road and adjust their guidance systems as weather, driving, or road conditions change. This means that software is the key—not the physical car or truck itself.

Since these cameras and sensors compile a huge amount of information and need to process it instantly to avoid the car in the next lane, autonomous vehicles require high-performance computing, advanced algorithms, and deep learning systems to adapt to new scenarios. This means that software is the key, not the physical car or truck itself. 30 Advanced software enables cars to learn from the experiences of other vehicles on the road and adjust their guidance systems as weather, driving, or road conditions change. 31

Ride-sharing companies are very interested in autonomous vehicles. They see advantages in terms of customer service and labor productivity. All of the major ride-sharing companies are exploring driverless cars. The surge of car-sharing and taxi services—such as Uber and Lyft in the United States, Daimler’s Mytaxi and Hailo service in Great Britain, and Didi Chuxing in China—demonstrate the opportunities of this transportation option. Uber recently signed an agreement to purchase 24,000 autonomous cars from Volvo for its ride-sharing service. 32

However, the ride-sharing firm suffered a setback in March 2018 when one of its autonomous vehicles in Arizona hit and killed a pedestrian. Uber and several auto manufacturers immediately suspended testing and launched investigations into what went wrong and how the fatality could have occurred. 33 Both industry and consumers want reassurance that the technology is safe and able to deliver on its stated promises. Unless there are persuasive answers, this accident could slow AI advancements in the transportation sector.

Smart cities

Metropolitan governments are using AI to improve urban service delivery. For example, according to Kevin Desouza, Rashmi Krishnamurthy, and Gregory Dawson:

The Cincinnati Fire Department is using data analytics to optimize medical emergency responses. The new analytics system recommends to the dispatcher an appropriate response to a medical emergency call—whether a patient can be treated on-site or needs to be taken to the hospital—by taking into account several factors, such as the type of call, location, weather, and similar calls. 34

Since it fields 80,000 requests each year, Cincinnati officials are deploying this technology to prioritize responses and determine the best ways to handle emergencies. They see AI as a way to deal with large volumes of data and figure out efficient ways of responding to public requests. Rather than address service issues in an ad hoc manner, authorities are trying to be proactive in how they provide urban services.

Cincinnati is not alone. A number of metropolitan areas are adopting smart city applications that use AI to improve service delivery, environmental planning, resource management, energy utilization, and crime prevention, among other things. For its smart cities index, the magazine Fast Company ranked American locales and found Seattle, Boston, San Francisco, Washington, D.C., and New York City as the top adopters. Seattle, for example, has embraced sustainability and is using AI to manage energy usage and resource management. Boston has launched a “City Hall To Go” that makes sure underserved communities receive needed public services. It also has deployed “cameras and inductive loops to manage traffic and acoustic sensors to identify gun shots.” San Francisco has certified 203 buildings as meeting LEED sustainability standards. 35

Through these and other means, metropolitan areas are leading the country in the deployment of AI solutions. Indeed, according to a National League of Cities report, 66 percent of American cities are investing in smart city technology. Among the top applications noted in the report are “smart meters for utilities, intelligent traffic signals, e-governance applications, Wi-Fi kiosks, and radio frequency identification sensors in pavement.” 36

Policy, regulatory, and ethical issues

These examples from a variety of sectors demonstrate how AI is transforming many walks of human existence. The increasing penetration of AI and autonomous devices into many aspects of life is altering basic operations and decisionmaking within organizations, and improving efficiency and response times.

At the same time, though, these developments raise important policy, regulatory, and ethical issues. For example, how should we promote data access? How do we guard against biased or unfair data used in algorithms? What types of ethical principles are introduced through software programming, and how transparent should designers be about their choices? What about questions of legal liability in cases where algorithms cause harm? 37

The increasing penetration of AI into many aspects of life is altering decisionmaking within organizations and improving efficiency. At the same time, though, these developments raise important policy, regulatory, and ethical issues.

Data access problems

The key to getting the most out of AI is having a “data-friendly ecosystem with unified standards and cross-platform sharing.” AI depends on data that can be analyzed in real time and brought to bear on concrete problems. Having data that are “accessible for exploration” in the research community is a prerequisite for successful AI development. 38

According to a McKinsey Global Institute study, nations that promote open data sources and data sharing are the ones most likely to see AI advances. In this regard, the United States has a substantial advantage over China. Global ratings on data openness show that U.S. ranks eighth overall in the world, compared to 93 for China. 39

But right now, the United States does not have a coherent national data strategy. There are few protocols for promoting research access or platforms that make it possible to gain new insights from proprietary data. It is not always clear who owns data or how much belongs in the public sphere. These uncertainties limit the innovation economy and act as a drag on academic research. In the following section, we outline ways to improve data access for researchers.

Biases in data and algorithms

In some instances, certain AI systems are thought to have enabled discriminatory or biased practices. 40 For example, Airbnb has been accused of having homeowners on its platform who discriminate against racial minorities. A research project undertaken by the Harvard Business School found that “Airbnb users with distinctly African American names were roughly 16 percent less likely to be accepted as guests than those with distinctly white names.” 41

Racial issues also come up with facial recognition software. Most such systems operate by comparing a person’s face to a range of faces in a large database. As pointed out by Joy Buolamwini of the Algorithmic Justice League, “If your facial recognition data contains mostly Caucasian faces, that’s what your program will learn to recognize.” 42 Unless the databases have access to diverse data, these programs perform poorly when attempting to recognize African-American or Asian-American features.

Many historical data sets reflect traditional values, which may or may not represent the preferences wanted in a current system. As Buolamwini notes, such an approach risks repeating inequities of the past:

The rise of automation and the increased reliance on algorithms for high-stakes decisions such as whether someone get insurance or not, your likelihood to default on a loan or somebody’s risk of recidivism means this is something that needs to be addressed. Even admissions decisions are increasingly automated—what school our children go to and what opportunities they have. We don’t have to bring the structural inequalities of the past into the future we create. 43

AI ethics and transparency

Algorithms embed ethical considerations and value choices into program decisions. As such, these systems raise questions concerning the criteria used in automated decisionmaking. Some people want to have a better understanding of how algorithms function and what choices are being made. 44

In the United States, many urban schools use algorithms for enrollment decisions based on a variety of considerations, such as parent preferences, neighborhood qualities, income level, and demographic background. According to Brookings researcher Jon Valant, the New Orleans–based Bricolage Academy “gives priority to economically disadvantaged applicants for up to 33 percent of available seats. In practice, though, most cities have opted for categories that prioritize siblings of current students, children of school employees, and families that live in school’s broad geographic area.” 45 Enrollment choices can be expected to be very different when considerations of this sort come into play.

Depending on how AI systems are set up, they can facilitate the redlining of mortgage applications, help people discriminate against individuals they don’t like, or help screen or build rosters of individuals based on unfair criteria. The types of considerations that go into programming decisions matter a lot in terms of how the systems operate and how they affect customers. 46

For these reasons, the EU is implementing the General Data Protection Regulation (GDPR) in May 2018. The rules specify that people have “the right to opt out of personally tailored ads” and “can contest ‘legal or similarly significant’ decisions made by algorithms and appeal for human intervention” in the form of an explanation of how the algorithm generated a particular outcome. Each guideline is designed to ensure the protection of personal data and provide individuals with information on how the “black box” operates. 47

Legal liability

There are questions concerning the legal liability of AI systems. If there are harms or infractions (or fatalities in the case of driverless cars), the operators of the algorithm likely will fall under product liability rules. A body of case law has shown that the situation’s facts and circumstances determine liability and influence the kind of penalties that are imposed. Those can range from civil fines to imprisonment for major harms. 48 The Uber-related fatality in Arizona will be an important test case for legal liability. The state actively recruited Uber to test its autonomous vehicles and gave the company considerable latitude in terms of road testing. It remains to be seen if there will be lawsuits in this case and who is sued: the human backup driver, the state of Arizona, the Phoenix suburb where the accident took place, Uber, software developers, or the auto manufacturer. Given the multiple people and organizations involved in the road testing, there are many legal questions to be resolved.

In non-transportation areas, digital platforms often have limited liability for what happens on their sites. For example, in the case of Airbnb, the firm “requires that people agree to waive their right to sue, or to join in any class-action lawsuit or class-action arbitration, to use the service.” By demanding that its users sacrifice basic rights, the company limits consumer protections and therefore curtails the ability of people to fight discrimination arising from unfair algorithms. 49 But whether the principle of neutral networks holds up in many sectors is yet to be determined on a widespread basis.

Recommendations

In order to balance innovation with basic human values, we propose a number of recommendations for moving forward with AI. This includes improving data access, increasing government investment in AI, promoting AI workforce development, creating a federal advisory committee, engaging with state and local officials to ensure they enact effective policies, regulating broad objectives as opposed to specific algorithms, taking bias seriously as an AI issue, maintaining mechanisms for human control and oversight, and penalizing malicious behavior and promoting cybersecurity.

Improving data access

The United States should develop a data strategy that promotes innovation and consumer protection. Right now, there are no uniform standards in terms of data access, data sharing, or data protection. Almost all the data are proprietary in nature and not shared very broadly with the research community, and this limits innovation and system design. AI requires data to test and improve its learning capacity. 50 Without structured and unstructured data sets, it will be nearly impossible to gain the full benefits of artificial intelligence.

In general, the research community needs better access to government and business data, although with appropriate safeguards to make sure researchers do not misuse data in the way Cambridge Analytica did with Facebook information. There is a variety of ways researchers could gain data access. One is through voluntary agreements with companies holding proprietary data. Facebook, for example, recently announced a partnership with Stanford economist Raj Chetty to use its social media data to explore inequality. 51 As part of the arrangement, researchers were required to undergo background checks and could only access data from secured sites in order to protect user privacy and security.

In the U.S., there are no uniform standards in terms of data access, data sharing, or data protection. Almost all the data are proprietary in nature and not shared very broadly with the research community, and this limits innovation and system design.

Google long has made available search results in aggregated form for researchers and the general public. Through its “Trends” site, scholars can analyze topics such as interest in Trump, views about democracy, and perspectives on the overall economy. 52 That helps people track movements in public interest and identify topics that galvanize the general public.

Twitter makes much of its tweets available to researchers through application programming interfaces, commonly referred to as APIs. These tools help people outside the company build application software and make use of data from its social media platform. They can study patterns of social media communications and see how people are commenting on or reacting to current events.

In some sectors where there is a discernible public benefit, governments can facilitate collaboration by building infrastructure that shares data. For example, the National Cancer Institute has pioneered a data-sharing protocol where certified researchers can query health data it has using de-identified information drawn from clinical data, claims information, and drug therapies. That enables researchers to evaluate efficacy and effectiveness, and make recommendations regarding the best medical approaches, without compromising the privacy of individual patients.

There could be public-private data partnerships that combine government and business data sets to improve system performance. For example, cities could integrate information from ride-sharing services with its own material on social service locations, bus lines, mass transit, and highway congestion to improve transportation. That would help metropolitan areas deal with traffic tie-ups and assist in highway and mass transit planning.

Some combination of these approaches would improve data access for researchers, the government, and the business community, without impinging on personal privacy. As noted by Ian Buck, the vice president of NVIDIA, “Data is the fuel that drives the AI engine. The federal government has access to vast sources of information. Opening access to that data will help us get insights that will transform the U.S. economy.” 53 Through its Data.gov portal, the federal government already has put over 230,000 data sets into the public domain, and this has propelled innovation and aided improvements in AI and data analytic technologies. 54 The private sector also needs to facilitate research data access so that society can achieve the full benefits of artificial intelligence.

Increase government investment in AI

According to Greg Brockman, the co-founder of OpenAI, the U.S. federal government invests only $1.1 billion in non-classified AI technology. 55 That is far lower than the amount being spent by China or other leading nations in this area of research. That shortfall is noteworthy because the economic payoffs of AI are substantial. In order to boost economic development and social innovation, federal officials need to increase investment in artificial intelligence and data analytics. Higher investment is likely to pay for itself many times over in economic and social benefits. 56

Promote digital education and workforce development

As AI applications accelerate across many sectors, it is vital that we reimagine our educational institutions for a world where AI will be ubiquitous and students need a different kind of training than they currently receive. Right now, many students do not receive instruction in the kinds of skills that will be needed in an AI-dominated landscape. For example, there currently are shortages of data scientists, computer scientists, engineers, coders, and platform developers. These are skills that are in short supply; unless our educational system generates more people with these capabilities, it will limit AI development.

For these reasons, both state and federal governments have been investing in AI human capital. For example, in 2017, the National Science Foundation funded over 6,500 graduate students in computer-related fields and has launched several new initiatives designed to encourage data and computer science at all levels from pre-K to higher and continuing education. 57 The goal is to build a larger pipeline of AI and data analytic personnel so that the United States can reap the full advantages of the knowledge revolution.

But there also needs to be substantial changes in the process of learning itself. It is not just technical skills that are needed in an AI world but skills of critical reasoning, collaboration, design, visual display of information, and independent thinking, among others. AI will reconfigure how society and the economy operate, and there needs to be “big picture” thinking on what this will mean for ethics, governance, and societal impact. People will need the ability to think broadly about many questions and integrate knowledge from a number of different areas.

One example of new ways to prepare students for a digital future is IBM’s Teacher Advisor program, utilizing Watson’s free online tools to help teachers bring the latest knowledge into the classroom. They enable instructors to develop new lesson plans in STEM and non-STEM fields, find relevant instructional videos, and help students get the most out of the classroom. 58 As such, they are precursors of new educational environments that need to be created.

Create a federal AI advisory committee

Federal officials need to think about how they deal with artificial intelligence. As noted previously, there are many issues ranging from the need for improved data access to addressing issues of bias and discrimination. It is vital that these and other concerns be considered so we gain the full benefits of this emerging technology.

In order to move forward in this area, several members of Congress have introduced the “Future of Artificial Intelligence Act,” a bill designed to establish broad policy and legal principles for AI. It proposes the secretary of commerce create a federal advisory committee on the development and implementation of artificial intelligence. The legislation provides a mechanism for the federal government to get advice on ways to promote a “climate of investment and innovation to ensure the global competitiveness of the United States,” “optimize the development of artificial intelligence to address the potential growth, restructuring, or other changes in the United States workforce,” “support the unbiased development and application of artificial intelligence,” and “protect the privacy rights of individuals.” 59

Among the specific questions the committee is asked to address include the following: competitiveness, workforce impact, education, ethics training, data sharing, international cooperation, accountability, machine learning bias, rural impact, government efficiency, investment climate, job impact, bias, and consumer impact. The committee is directed to submit a report to Congress and the administration 540 days after enactment regarding any legislative or administrative action needed on AI.

This legislation is a step in the right direction, although the field is moving so rapidly that we would recommend shortening the reporting timeline from 540 days to 180 days. Waiting nearly two years for a committee report will certainly result in missed opportunities and a lack of action on important issues. Given rapid advances in the field, having a much quicker turnaround time on the committee analysis would be quite beneficial.

Engage with state and local officials

States and localities also are taking action on AI. For example, the New York City Council unanimously passed a bill that directed the mayor to form a taskforce that would “monitor the fairness and validity of algorithms used by municipal agencies.” 60 The city employs algorithms to “determine if a lower bail will be assigned to an indigent defendant, where firehouses are established, student placement for public schools, assessing teacher performance, identifying Medicaid fraud and determine where crime will happen next.” 61

According to the legislation’s developers, city officials want to know how these algorithms work and make sure there is sufficient AI transparency and accountability. In addition, there is concern regarding the fairness and biases of AI algorithms, so the taskforce has been directed to analyze these issues and make recommendations regarding future usage. It is scheduled to report back to the mayor on a range of AI policy, legal, and regulatory issues by late 2019.

Some observers already are worrying that the taskforce won’t go far enough in holding algorithms accountable. For example, Julia Powles of Cornell Tech and New York University argues that the bill originally required companies to make the AI source code available to the public for inspection, and that there be simulations of its decisionmaking using actual data. After criticism of those provisions, however, former Councilman James Vacca dropped the requirements in favor of a task force studying these issues. He and other city officials were concerned that publication of proprietary information on algorithms would slow innovation and make it difficult to find AI vendors who would work with the city. 62 It remains to be seen how this local task force will balance issues of innovation, privacy, and transparency.

Regulate broad objectives more than specific algorithms

The European Union has taken a restrictive stance on these issues of data collection and analysis. 63 It has rules limiting the ability of companies from collecting data on road conditions and mapping street views. Because many of these countries worry that people’s personal information in unencrypted Wi-Fi networks are swept up in overall data collection, the EU has fined technology firms, demanded copies of data, and placed limits on the material collected. 64 This has made it more difficult for technology companies operating there to develop the high-definition maps required for autonomous vehicles.

The GDPR being implemented in Europe place severe restrictions on the use of artificial intelligence and machine learning. According to published guidelines, “Regulations prohibit any automated decision that ‘significantly affects’ EU citizens. This includes techniques that evaluates a person’s ‘performance at work, economic situation, health, personal preferences, interests, reliability, behavior, location, or movements.’” 65 In addition, these new rules give citizens the right to review how digital services made specific algorithmic choices affecting people.

By taking a restrictive stance on issues of data collection and analysis, the European Union is putting its manufacturers and software designers at a significant disadvantage to the rest of the world.

If interpreted stringently, these rules will make it difficult for European software designers (and American designers who work with European counterparts) to incorporate artificial intelligence and high-definition mapping in autonomous vehicles. Central to navigation in these cars and trucks is tracking location and movements. Without high-definition maps containing geo-coded data and the deep learning that makes use of this information, fully autonomous driving will stagnate in Europe. Through this and other data protection actions, the European Union is putting its manufacturers and software designers at a significant disadvantage to the rest of the world.

It makes more sense to think about the broad objectives desired in AI and enact policies that advance them, as opposed to governments trying to crack open the “black boxes” and see exactly how specific algorithms operate. Regulating individual algorithms will limit innovation and make it difficult for companies to make use of artificial intelligence.

Take biases seriously

Bias and discrimination are serious issues for AI. There already have been a number of cases of unfair treatment linked to historic data, and steps need to be undertaken to make sure that does not become prevalent in artificial intelligence. Existing statutes governing discrimination in the physical economy need to be extended to digital platforms. That will help protect consumers and build confidence in these systems as a whole.

For these advances to be widely adopted, more transparency is needed in how AI systems operate. Andrew Burt of Immuta argues, “The key problem confronting predictive analytics is really transparency. We’re in a world where data science operations are taking on increasingly important tasks, and the only thing holding them back is going to be how well the data scientists who train the models can explain what it is their models are doing.” 66

Maintaining mechanisms for human oversight and control

Some individuals have argued that there needs to be avenues for humans to exercise oversight and control of AI systems. For example, Allen Institute for Artificial Intelligence CEO Oren Etzioni argues there should be rules for regulating these systems. First, he says, AI must be governed by all the laws that already have been developed for human behavior, including regulations concerning “cyberbullying, stock manipulation or terrorist threats,” as well as “entrap[ping] people into committing crimes.” Second, he believes that these systems should disclose they are automated systems and not human beings. Third, he states, “An A.I. system cannot retain or disclose confidential information without explicit approval from the source of that information.” 67 His rationale is that these tools store so much data that people have to be cognizant of the privacy risks posed by AI.

In the same vein, the IEEE Global Initiative has ethical guidelines for AI and autonomous systems. Its experts suggest that these models be programmed with consideration for widely accepted human norms and rules for behavior. AI algorithms need to take into effect the importance of these norms, how norm conflict can be resolved, and ways these systems can be transparent about norm resolution. Software designs should be programmed for “nondeception” and “honesty,” according to ethics experts. When failures occur, there must be mitigation mechanisms to deal with the consequences. In particular, AI must be sensitive to problems such as bias, discrimination, and fairness. 68

A group of machine learning experts claim it is possible to automate ethical decisionmaking. Using the trolley problem as a moral dilemma, they ask the following question: If an autonomous car goes out of control, should it be programmed to kill its own passengers or the pedestrians who are crossing the street? They devised a “voting-based system” that asked 1.3 million people to assess alternative scenarios, summarized the overall choices, and applied the overall perspective of these individuals to a range of vehicular possibilities. That allowed them to automate ethical decisionmaking in AI algorithms, taking public preferences into account. 69 This procedure, of course, does not reduce the tragedy involved in any kind of fatality, such as seen in the Uber case, but it provides a mechanism to help AI developers incorporate ethical considerations in their planning.

Penalize malicious behavior and promote cybersecurity

As with any emerging technology, it is important to discourage malicious treatment designed to trick software or use it for undesirable ends. 70 This is especially important given the dual-use aspects of AI, where the same tool can be used for beneficial or malicious purposes. The malevolent use of AI exposes individuals and organizations to unnecessary risks and undermines the virtues of the emerging technology. This includes behaviors such as hacking, manipulating algorithms, compromising privacy and confidentiality, or stealing identities. Efforts to hijack AI in order to solicit confidential information should be seriously penalized as a way to deter such actions. 71

In a rapidly changing world with many entities having advanced computing capabilities, there needs to be serious attention devoted to cybersecurity. Countries have to be careful to safeguard their own systems and keep other nations from damaging their security. 72 According to the U.S. Department of Homeland Security, a major American bank receives around 11 million calls a week at its service center. In order to protect its telephony from denial of service attacks, it uses a “machine learning-based policy engine [that] blocks more than 120,000 calls per month based on voice firewall policies including harassing callers, robocalls and potential fraudulent calls.” 73 This represents a way in which machine learning can help defend technology systems from malevolent attacks.

To summarize, the world is on the cusp of revolutionizing many sectors through artificial intelligence and data analytics. There already are significant deployments in finance, national security, health care, criminal justice, transportation, and smart cities that have altered decisionmaking, business models, risk mitigation, and system performance. These developments are generating substantial economic and social benefits.

The world is on the cusp of revolutionizing many sectors through artificial intelligence, but the way AI systems are developed need to be better understood due to the major implications these technologies will have for society as a whole.

Yet the manner in which AI systems unfold has major implications for society as a whole. It matters how policy issues are addressed, ethical conflicts are reconciled, legal realities are resolved, and how much transparency is required in AI and data analytic solutions. 74 Human choices about software development affect the way in which decisions are made and the manner in which they are integrated into organizational routines. Exactly how these processes are executed need to be better understood because they will have substantial impact on the general public soon, and for the foreseeable future. AI may well be a revolution in human affairs, and become the single most influential human innovation in history.

Note: We appreciate the research assistance of Grace Gilberg, Jack Karsten, Hillary Schaub, and Kristjan Tomasson on this project.

The Brookings Institution is a nonprofit organization devoted to independent research and policy solutions. Its mission is to conduct high-quality, independent research and, based on that research, to provide innovative, practical recommendations for policymakers and the public. The conclusions and recommendations of any Brookings publication are solely those of its author(s), and do not reflect the views of the Institution, its management, or its other scholars.

Support for this publication was generously provided by Amazon. Brookings recognizes that the value it provides is in its absolute commitment to quality, independence, and impact. Activities supported by its donors reflect this commitment. 

John R. Allen is a member of the Board of Advisors of Amida Technology and on the Board of Directors of Spark Cognition. Both companies work in fields discussed in this piece.

  • Thomas Davenport, Jeff Loucks, and David Schatsky, “Bullish on the Business Value of Cognitive” (Deloitte, 2017), p. 3 (www2.deloitte.com/us/en/pages/deloitte-analytics/articles/cognitive-technology-adoption-survey.html).
  • Luke Dormehl, Thinking Machines: The Quest for Artificial Intelligence—and Where It’s Taking Us Next (New York: Penguin–TarcherPerigee, 2017).
  • Shubhendu and Vijay, “Applicability of Artificial Intelligence in Different Fields of Life.”
  • Andrew McAfee and Erik Brynjolfsson, Machine Platform Crowd: Harnessing Our Digital Future (New York: Norton, 2017).
  • Portions of this paper draw on Darrell M. West, The Future of Work: Robots, AI, and Automation , Brookings Institution Press, 2018.
  • PriceWaterhouseCoopers, “Sizing the Prize: What’s the Real Value of AI for Your Business and How Can You Capitalise?” 2017.
  • Dominic Barton, Jonathan Woetzel, Jeongmin Seong, and Qinzheng Tian, “Artificial Intelligence: Implications for China” (New York: McKinsey Global Institute, April 2017), p. 1.
  • Nathaniel Popper, “Stocks and Bots,” New York Times Magazine , February 28, 2016.
  • Michael Lewis, Flash Boys: A Wall Street Revolt (New York: Norton, 2015).
  • Cade Metz, “In Quantum Computing Race, Yale Professors Battle Tech Giants,” New York Times , November 14, 2017, p. B3.
  • Executive Office of the President, “Artificial Intelligence, Automation, and the Economy,” December 2016, pp. 27-28.
  • Christian Davenport, “Future Wars May Depend as Much on Algorithms as on Ammunition, Report Says,” Washington Post , December 3, 2017.
  • John R. Allen and Amir Husain, “On Hyperwar,” Naval Institute Proceedings , July 17, 2017, pp. 30-36.
  • Paul Mozur, “China Sets Goal to Lead in Artificial Intelligence,” New York Times , July 21, 2017, p. B1.
  • Paul Mozur and John Markoff, “Is China Outsmarting American Artificial Intelligence?” New York Times , May 28, 2017.
  • Economist , “America v China: The Battle for Digital Supremacy,” March 15, 2018.
  • Rasmus Rothe, “Applying Deep Learning to Real-World Problems,” Medium , May 23, 2017.
  • Eric Horvitz, “Reflections on the Status and Future of Artificial Intelligence,” Testimony before the U.S. Senate Subcommittee on Space, Science, and Competitiveness, November 30, 2016, p. 5.
  • Jeff Asher and Rob Arthur, “Inside the Algorithm That Tries to Predict Gun Violence in Chicago,” New York Times Upshot , June 13, 2017.
  • Caleb Watney, “It’s Time for our Justice System to Embrace Artificial Intelligence,” TechTank (blog), Brookings Institution, July 20, 2017.
  • Asher and Arthur, “Inside the Algorithm That Tries to Predict Gun Violence in Chicago.”
  • Paul Mozur and Keith Bradsher, “China’s A.I. Advances Help Its Tech Industry, and State Security,” New York Times , December 3, 2017.
  • Simon Denyer, “China’s Watchful Eye,” Washington Post , January 7, 2018.
  • Cameron Kerry and Jack Karsten, “Gauging Investment in Self-Driving Cars,” Brookings Institution, October 16, 2017.
  • Portions of this section are drawn from Darrell M. West, “Driverless Cars in China, Europe, Japan, Korea, and the United States,” Brookings Institution, September 2016.
  • Yuming Ge, Xiaoman Liu, Libo Tang, and Darrell M. West, “Smart Transportation in China and the United States,” Center for Technology Innovation, Brookings Institution, December 2017.
  • Peter Holley, “Uber Signs Deal to Buy 24,000 Autonomous Vehicles from Volvo,” Washington Post , November 20, 2017.
  • Daisuke Wakabayashi, “Self-Driving Uber Car Kills Pedestrian in Arizona, Where Robots Roam,” New York Times , March 19, 2018.
  • Kevin Desouza, Rashmi Krishnamurthy, and Gregory Dawson, “Learning from Public Sector Experimentation with Artificial Intelligence,” TechTank (blog), Brookings Institution, June 23, 2017.
  • Boyd Cohen, “The 10 Smartest Cities in North America,” Fast Company , November 14, 2013.
  • Teena Maddox, “66% of US Cities Are Investing in Smart City Technology,” TechRepublic , November 6, 2017.
  • Osonde Osoba and William Welser IV, “The Risks of Artificial Intelligence to Security and the Future of Work” (Santa Monica, Calif.: RAND Corp., December 2017) (www.rand.org/pubs/perspectives/PE237.html).
  • Ibid., p. 7.
  • Dominic Barton, Jonathan Woetzel, Jeongmin Seong, and Qinzheng Tian, “Artificial Intelligence: Implications for China” (New York: McKinsey Global Institute, April 2017), p. 7.
  • Executive Office of the President, “Preparing for the Future of Artificial Intelligence,” October 2016, pp. 30-31.
  • Elaine Glusac, “As Airbnb Grows, So Do Claims of Discrimination,” New York Times , June 21, 2016.
  • “Joy Buolamwini,” Bloomberg Businessweek , July 3, 2017, p. 80.
  • Mark Purdy and Paul Daugherty, “Why Artificial Intelligence is the Future of Growth,” Accenture, 2016.
  • Jon Valant, “Integrating Charter Schools and Choice-Based Education Systems,” Brown Center Chalkboard blog, Brookings Institution, June 23, 2017.
  • Tucker, “‘A White Mask Worked Better.’”
  • Cliff Kuang, “Can A.I. Be Taught to Explain Itself?” New York Times Magazine , November 21, 2017.
  • Yale Law School Information Society Project, “Governing Machine Learning,” September 2017.
  • Katie Benner, “Airbnb Vows to Fight Racism, But Its Users Can’t Sue to Prompt Fairness,” New York Times , June 19, 2016.
  • Executive Office of the President, “Artificial Intelligence, Automation, and the Economy” and “Preparing for the Future of Artificial Intelligence.”
  • Nancy Scolar, “Facebook’s Next Project: American Inequality,” Politico , February 19, 2018.
  • Darrell M. West, “What Internet Search Data Reveals about Donald Trump’s First Year in Office,” Brookings Institution policy report, January 17, 2018.
  • Ian Buck, “Testimony before the House Committee on Oversight and Government Reform Subcommittee on Information Technology,” February 14, 2018.
  • Keith Nakasone, “Testimony before the House Committee on Oversight and Government Reform Subcommittee on Information Technology,” March 7, 2018.
  • Greg Brockman, “The Dawn of Artificial Intelligence,” Testimony before U.S. Senate Subcommittee on Space, Science, and Competitiveness, November 30, 2016.
  • Amir Khosrowshahi, “Testimony before the House Committee on Oversight and Government Reform Subcommittee on Information Technology,” February 14, 2018.
  • James Kurose, “Testimony before the House Committee on Oversight and Government Reform Subcommittee on Information Technology,” March 7, 2018.
  • Stephen Noonoo, “Teachers Can Now Use IBM’s Watson to Search for Free Lesson Plans,” EdSurge , September 13, 2017.
  • Congress.gov, “H.R. 4625 FUTURE of Artificial Intelligence Act of 2017,” December 12, 2017.
  • Elizabeth Zima, “Could New York City’s AI Transparency Bill Be a Model for the Country?” Government Technology , January 4, 2018.
  • Julia Powles, “New York City’s Bold, Flawed Attempt to Make Algorithms Accountable,” New Yorker , December 20, 2017.
  • Sheera Frenkel, “Tech Giants Brace for Europe’s New Data Privacy Rules,” New York Times , January 28, 2018.
  • Claire Miller and Kevin O’Brien, “Germany’s Complicated Relationship with Google Street View,” New York Times , April 23, 2013.
  • Cade Metz, “Artificial Intelligence is Setting Up the Internet for a Huge Clash with Europe,” Wired , July 11, 2016.
  • Eric Siegel, “Predictive Analytics Interview Series: Andrew Burt,” Predictive Analytics Times , June 14, 2017.
  • Oren Etzioni, “How to Regulate Artificial Intelligence,” New York Times , September 1, 2017.
  • “Ethical Considerations in Artificial Intelligence and Autonomous Systems,” unpublished paper. IEEE Global Initiative, 2018.
  • Ritesh Noothigattu, Snehalkumar Gaikwad, Edmond Awad, Sohan Dsouza, Iyad Rahwan, Pradeep Ravikumar, and Ariel Procaccia, “A Voting-Based System for Ethical Decision Making,” Computers and Society , September 20, 2017 (www.media.mit.edu/publications/a-voting-based-system-for-ethical-decision-making/).
  • Miles Brundage, et al., “The Malicious Use of Artificial Intelligence,” University of Oxford unpublished paper, February 2018.
  • John Markoff, “As Artificial Intelligence Evolves, So Does Its Criminal Potential,” New York Times, October 24, 2016, p. B3.
  • Economist , “The Challenger: Technopolitics,” March 17, 2018.
  • Douglas Maughan, “Testimony before the House Committee on Oversight and Government Reform Subcommittee on Information Technology,” March 7, 2018.
  • Levi Tillemann and Colin McCormick, “Roadmapping a U.S.-German Agenda for Artificial Intelligence Policy,” New American Foundation, March 2017.

Artificial Intelligence

Governance Studies

Center for Technology Innovation

Artificial Intelligence and Emerging Technology Initiative

Jeremy Baum, John Villasenor

April 17, 2024

Molly Kinder

April 12, 2024

Tom Wheeler

April 9, 2024

Essay on Technology – A Boon or Bane for Students

500+ words essay on technology for students.

In this essay on technology, we are going to discuss what technology is, what are its uses, and also what technology can do? First of all, technology refers to the use of technical and scientific knowledge to create, monitor, and design machinery. Also, technology helps in making other goods that aid mankind.

Essay on Technology – A Boon or Bane?

Experts are debating on this topic for years. Also, the technology covered a long way to make human life easier but the negative aspect of it can’t be ignored. Over the years technological advancement has caused a severe rise in pollution . Also, pollution has become a major cause of many health issues. Besides, it has cut off people from society rather than connecting them. Above all, it has taken away many jobs from the workers class.

Essay on technology

Familiarity between Technology and Science

As they are completely different fields but they are interdependent on each other. Also, it is due to science contribution we can create new innovation and build new technological tools. Apart from that, the research conducted in laboratories contributes a lot to the development of technologies. On the other hand, technology extends the agenda of science.

Vital Part of our Life

Regularly evolving technology has become an important part of our lives. Also, newer technologies are taking the market by storm and the people are getting used to them in no time. Above all, technological advancement has led to the growth and development of nations.

Negative Aspect of Technology

Although technology is a good thing, everything has two sides. Technology also has two sides one is good and the other is bad. Here are some negative aspects of technology that we are going to discuss.

Get the huge list of more than 500 Essay Topics and Ideas

With new technology the industrialization increases which give birth to many pollutions like air, water, soil, and noise. Also, they cause many health-related issues in animals, birds, and human beings.

Exhaustion of Natural Resources

New technology requires new resources for which the balance is disturbed. Eventually, this will lead to over-exploitation of natural resources which ultimately disturbs the balance of nature.

Unemployment

A single machine can replace many workers. Also, machines can do work at a constant pace for several hours or days without stopping. Due to this, many workers lost their job which ultimately increases unemployment .

Types of Technology

Generally, we judge technology on the same scale but in reality, technology is divided into various types. This includes information technology, industrial technology , architectural technology, creative technology and many more. Let’s discuss these technologies in brief.

Industrial Technology

This technology organizes engineering and manufacturing technology for the manufacturing of machines. Also, this makes the production process easier and convenient.

Creative Technology

This process includes art, advertising, and product design which are made with the help of software. Also, it comprises of 3D printers , virtual reality, computer graphics, and other wearable technologies.

Information Technology

This technology involves the use of telecommunication and computer to send, receive and store information. Internet is the best example of Information technology.

the power of technology essay

FAQs on Essay on Technology

Q.1 What is Information technology?

A –  It is a form of technology that uses telecommunication and computer systems for study. Also, they send, retrieve, and store data.

Q.2 Is technology harmful to humans?

 A – No, technology is not harmful to human beings until it is used properly. But, misuses of technology can be harmful and deadly.

Download Toppr – Best Learning App for Class 5 to 12

Toppr provides free study materials, last 10 years of question papers, 1000+ hours of video lectures, live 24/7 doubts solving, and much more for FREE! Download Toppr app for Android and iOS or signup for free.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

Talk to our experts

1800-120-456-456

  • Technology Essay

ffImage

Essay on Technology

The word "technology" and its uses have immensely changed since the 20th century, and with time, it has continued to evolve ever since. We are living in a world driven by technology. The advancement of technology has played an important role in the development of human civilization, along with cultural changes. Technology provides innovative ways of doing work through various smart and innovative means. 

Electronic appliances, gadgets, faster modes of communication, and transport have added to the comfort factor in our lives. It has helped in improving the productivity of individuals and different business enterprises. Technology has brought a revolution in many operational fields. It has undoubtedly made a very important contribution to the progress that mankind has made over the years.

The Advancement of Technology:

Technology has reduced the effort and time and increased the efficiency of the production requirements in every field. It has made our lives easy, comfortable, healthy, and enjoyable. It has brought a revolution in transport and communication. The advancement of technology, along with science, has helped us to become self-reliant in all spheres of life. With the innovation of a particular technology, it becomes part of society and integral to human lives after a point in time.

Technology is Our Part of Life:

Technology has changed our day-to-day lives. Technology has brought the world closer and better connected. Those days have passed when only the rich could afford such luxuries. Because of the rise of globalisation and liberalisation, all luxuries are now within the reach of the average person. Today, an average middle-class family can afford a mobile phone, a television, a washing machine, a refrigerator, a computer, the Internet, etc. At the touch of a switch, a man can witness any event that is happening in far-off places.  

Benefits of Technology in All Fields: 

We cannot escape technology; it has improved the quality of life and brought about revolutions in various fields of modern-day society, be it communication, transportation, education, healthcare, and many more. Let us learn about it.

Technology in Communication:

With the advent of technology in communication, which includes telephones, fax machines, cellular phones, the Internet, multimedia, and email, communication has become much faster and easier. It has transformed and influenced relationships in many ways. We no longer need to rely on sending physical letters and waiting for several days for a response. Technology has made communication so simple that you can connect with anyone from anywhere by calling them via mobile phone or messaging them using different messaging apps that are easy to download.

Innovation in communication technology has had an immense influence on social life. Human socialising has become easier by using social networking sites, dating, and even matrimonial services available on mobile applications and websites.

Today, the Internet is used for shopping, paying utility bills, credit card bills, admission fees, e-commerce, and online banking. In the world of marketing, many companies are marketing and selling their products and creating brands over the internet. 

In the field of travel, cities, towns, states, and countries are using the web to post detailed tourist and event information. Travellers across the globe can easily find information on tourism, sightseeing, places to stay, weather, maps, timings for events, transportation schedules, and buy tickets to various tourist spots and destinations.

Technology in the Office or Workplace:

Technology has increased efficiency and flexibility in the workspace. Technology has made it easy to work remotely, which has increased the productivity of the employees. External and internal communication has become faster through emails and apps. Automation has saved time, and there is also a reduction in redundancy in tasks. Robots are now being used to manufacture products that consistently deliver the same product without defect until the robot itself fails. Artificial Intelligence and Machine Learning technology are innovations that are being deployed across industries to reap benefits.

Technology has wiped out the manual way of storing files. Now files are stored in the cloud, which can be accessed at any time and from anywhere. With technology, companies can make quick decisions, act faster towards solutions, and remain adaptable. Technology has optimised the usage of resources and connected businesses worldwide. For example, if the customer is based in America, he can have the services delivered from India. They can communicate with each other in an instant. Every company uses business technology like virtual meeting tools, corporate social networks, tablets, and smart customer relationship management applications that accelerate the fast movement of data and information.

Technology in Education:

Technology is making the education industry improve over time. With technology, students and parents have a variety of learning tools at their fingertips. Teachers can coordinate with classrooms across the world and share their ideas and resources online. Students can get immediate access to an abundance of good information on the Internet. Teachers and students can access plenty of resources available on the web and utilise them for their project work, research, etc. Online learning has changed our perception of education. 

The COVID-19 pandemic brought a paradigm shift using technology where school-going kids continued their studies from home and schools facilitated imparting education by their teachers online from home. Students have learned and used 21st-century skills and tools, like virtual classrooms, AR (Augmented Reality), robots, etc. All these have increased communication and collaboration significantly. 

Technology in Banking:

Technology and banking are now inseparable. Technology has boosted digital transformation in how the banking industry works and has vastly improved banking services for their customers across the globe.

Technology has made banking operations very sophisticated and has reduced errors to almost nil, which were somewhat prevalent with manual human activities. Banks are adopting Artificial Intelligence (AI) to increase their efficiency and profits. With the emergence of Internet banking, self-service tools have replaced the traditional methods of banking. 

You can now access your money, handle transactions like paying bills, money transfers, and online purchases from merchants, and monitor your bank statements anytime and from anywhere in the world. Technology has made banking more secure and safe. You do not need to carry cash in your pocket or wallet; the payments can be made digitally using e-wallets. Mobile banking, banking apps, and cybersecurity are changing the face of the banking industry.

Manufacturing and Production Industry Automation:

At present, manufacturing industries are using all the latest technologies, ranging from big data analytics to artificial intelligence. Big data, ARVR (Augmented Reality and Virtual Reality), and IoT (Internet of Things) are the biggest manufacturing industry players. Automation has increased the level of productivity in various fields. It has reduced labour costs, increased efficiency, and reduced the cost of production.

For example, 3D printing is used to design and develop prototypes in the automobile industry. Repetitive work is being done easily with the help of robots without any waste of time. This has also reduced the cost of the products. 

Technology in the Healthcare Industry:

Technological advancements in the healthcare industry have not only improved our personal quality of life and longevity; they have also improved the lives of many medical professionals and students who are training to become medical experts. It has allowed much faster access to the medical records of each patient. 

The Internet has drastically transformed patients' and doctors’ relationships. Everyone can stay up to date on the latest medical discoveries, share treatment information, and offer one another support when dealing with medical issues. Modern technology has allowed us to contact doctors from the comfort of our homes. There are many sites and apps through which we can contact doctors and get medical help. 

Breakthrough innovations in surgery, artificial organs, brain implants, and networked sensors are examples of transformative developments in the healthcare industry. Hospitals use different tools and applications to perform their administrative tasks, using digital marketing to promote their services.

Technology in Agriculture:

Today, farmers work very differently than they would have decades ago. Data analytics and robotics have built a productive food system. Digital innovations are being used for plant breeding and harvesting equipment. Software and mobile devices are helping farmers harvest better. With various data and information available to farmers, they can make better-informed decisions, for example, tracking the amount of carbon stored in soil and helping with climate change.

Disadvantages of Technology:

People have become dependent on various gadgets and machines, resulting in a lack of physical activity and tempting people to lead an increasingly sedentary lifestyle. Even though technology has increased the productivity of individuals, organisations, and the nation, it has not increased the efficiency of machines. Machines cannot plan and think beyond the instructions that are fed into their system. Technology alone is not enough for progress and prosperity. Management is required, and management is a human act. Technology is largely dependent on human intervention. 

Computers and smartphones have led to an increase in social isolation. Young children are spending more time surfing the internet, playing games, and ignoring their real lives. Usage of technology is also resulting in job losses and distracting students from learning. Technology has been a reason for the production of weapons of destruction.

Dependency on technology is also increasing privacy concerns and cyber crimes, giving way to hackers.

arrow-right

FAQs on Technology Essay

1. What is technology?

Technology refers to innovative ways of doing work through various smart means. The advancement of technology has played an important role in the development of human civilization. It has helped in improving the productivity of individuals and businesses.

2. How has technology changed the face of banking?

Technology has made banking operations very sophisticated. With the emergence of Internet banking, self-service tools have replaced the traditional methods of banking. You can now access your money, handle transactions, and monitor your bank statements anytime and from anywhere in the world. Technology has made banking more secure and safe.

3. How has technology brought a revolution in the medical field?

Patients and doctors keep each other up to date on the most recent medical discoveries, share treatment information, and offer each other support when dealing with medical issues. It has allowed much faster access to the medical records of each patient. Modern technology has allowed us to contact doctors from the comfort of our homes. There are many websites and mobile apps through which we can contact doctors and get medical help.

4. Are we dependent on technology?

Yes, today, we are becoming increasingly dependent on technology. Computers, smartphones, and modern technology have helped humanity achieve success and progress. However, in hindsight, people need to continuously build a healthy lifestyle, sorting out personal problems that arise due to technological advancements in different aspects of human life.

  • Essay On Technology

Essay on Technology

500+ words essay on technology.

The word technology comes from the two Greek words, ‘techne’ and ‘logos’. Techne means art, skills, or craft, and Logos means a word, saying, or expression that expresses inward thought. Thus, technology means the skill to convey an idea to reach a goal. But nowadays, the term technology mainly signifies the knowledge of tools, machines, techniques, crafts, systems, and organisation methods to solve a problem. Today, technological advancement has provided the human race with the ability to control and adapt to their natural environment. In this Essay on Technology, students will know the importance of technology, its advantages and disadvantages and the future of technology.

How Has Technology Changed Our Lives?

Various innovations and development took place in the field of technology which has made a significant impact on our lives in different ways. With the invention of technology, we become more powerful. We have the ability to transform the environment, extend our lifetime, create big and interconnected societies and even explore various new things about the universe. Today, we use technology from morning to evening, from the simplest nail cutter to television and personal laptop. Technology has touched all aspects of our lives, whether it is mobile phones, kettles, kitchen microwaves, electric cookers, television, water heaters, remote control, fridge, and other larger communication systems such as internet facilities, railways, air routes, and so on. Thus, technology plays an extremely crucial role in the lives of human beings.

Advantages of Technology

The advancement in technology has made our lives easier, more comfortable and enjoyable. It has reduced the effort and time required to complete a task, thus enhancing the quality and efficiency of work. Technology has become a part of our life and benefited us in many ways. Today, we can communicate with people living in any city or country. Communication has become much faster and easier as we are just a click away from people. In education, technology has played a vital role, especially during the COVID-19 breakdown period. It has brought virtual and online classes for students and teachers across the globe to share knowledge, ideas and resources online. Moreover, technology has made it easier for students to understand complex concepts with the help of virtualisation, graphics, 3D animation and diagrams.

Technology is considered to be the driving force behind improvements in the medical and healthcare field. Modern machines have helped doctors to perform operations successfully. Due to technology, the lifespan of the common person has increased. There are many more sectors, such as banking, automation, automobile, and various industries, where technology is making significant changes and helping us.

Disadvantages of Technology

Although we have so many advantages of technology, there are also disadvantages. Robots and machines have taken over the job of many people. Instead of bringing people together, technology has made them socially isolated. People now spend most of their time on smartphones or computers rather than interacting with other people. Technology in education has reduced the intellectual and analytical ability of students. It is like spoon-feeding to students as they don’t have the reasoning and aptitude skills to think differently. Technology has raised the issue of internet privacy. So, one has to be very careful while using banking passwords to make online transactions.

Future of Technology

The future of technology seems to be exciting but also scary. Futuristic predictions in technology can dish out some exciting or scary visions for the future of machines and science. Technology will either enhance or replace the products and activities that are near and dear to us. The answer to our technological dilemma about what will be the upcoming technological innovation in the future is not surprising. In the past, technology was mainly focused on retaining more information and efficient processing, but in the future, it will be based on industrial robots, artificial intelligence, machine learning, etc.

Technology alone cannot help in building a better world. The collateral collaboration of machines and human effort is required for the progress and prosperity of the nation. We need to develop a more robust management system for the efficient functioning of technology.

Practise CBSE Essays on more topics to improve the writing section. Students can get the latest updates on CBSE/ICSE/State Board/Competitive Exams at BYJU’S website. They can also download the BYJU’S App for interactive study videos.

Frequently Asked Questions on Technology Essay

What is the simple definition of technology.

The real-time application of science and knowledge is how technology can be defined in simple terms.

Which country is ranked first in technological advancement?

Finland ranks top in technological advancement ahead of the USA according to the UNDP.

Why is the development of technology important?

Technology has now become an important part of our lives and thus technical and technological advancements are essential to take us forward in all aspects.

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

the power of technology essay

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

Counselling

Home | Science | Technology | Advantages of Technology

The Power of Technology

  • Updated July 25, 2023
  • Pages 2 (387 words)
  • Personality
  • Character Traits
  • Advantages of Technology
  • Any subject
  • Within the deadline
  • Without paying in advance

Every people in this world has its own ability to reach every goals they want to achieve. It is just like in the technology which means it can also attain itself until eternity. Because in this world we cannot be so sure in anything but in technology we assured that we all can avail what we want to have. Its a unique kind of feeling to have technology in our life.

While I was watching this video, I was happy but a little bit worried at same time. First I was happy because this video shows a lot of things like how to do a film which can give ideas to me as a student,and it also reveals collaboration of different people from other parts of the country which means you can also have a friend even you are just inventing new things. I am also worried because I learn that in technology we are not really safe specially when we are using internet by the way of technology. Because there are some people that uses technology to deciet their fellow and overpower others. It was very easy for them to do that because of the convergence that is happening right now. The technology today is very reachable because they already invented an easy apps that could help people in their everyday life. And also they made it facile for the people like in israel to use technology because they made from hardware to software,from software to internet,from internet to apps which is very helpful for mankind in this world.

So in the end the video show us that even we are just a consumer, we can also invent what we want because we also have our brain like them. We can give an ideas and knowledge to other ordinary people like us. Even what kind of person we are we can create a powerful machine that could give a lot of help and at the same time profit for all the people in this world. Just like what albert einstein say “that it is appallangly obvious that our technology has exceeded our humanity” which we should embrace and become more wise on how we should use it.

  • Technology Review
  • Digital Trends
  • Ars Technica
  • Mashable Tech

Cite this paper

The Power of Technology. (2020, Nov 12). Retrieved from https://samploon.com/the-power-of-technology/

place order image

  • Select a writer from a large pool of experts
  • Share your assignment's requirements
  • Get a 100% unique and top-quality paper

authors avatars

Check related topics

the power of technology essay

Hi! Peter is on the line!

Don't settle for a cookie-cutter essay. Receive a tailored piece that meets your specific needs and requirements.

We've detected unusual activity from your computer network

To continue, please click the box below to let us know you're not a robot.

Why did this happen?

Please make sure your browser supports JavaScript and cookies and that you are not blocking them from loading. For more information you can review our Terms of Service and Cookie Policy .

For inquiries related to this message please contact our support team and provide the reference ID below.

IMAGES

  1. Technology Cannot Replace Manpower Essay

    the power of technology essay

  2. प्रौद्योगिकी पर निबंध

    the power of technology essay

  3. Definition Of Technology By Scholars

    the power of technology essay

  4. Technology Cannot Replace Man Power Essay

    the power of technology essay

  5. Technology Essay Introduction Free Essay Example

    the power of technology essay

  6. Admission Essay: Nuclear technology essay

    the power of technology essay

VIDEO

  1. 10 lines essay on Technology in English

  2. An Essay on Science and Technology in Today's Life/Gifts of Science/An Essay on Technology

  3. The Power of Technology for a New Generation

  4. Write an essay on science and technology in english

  5. Is technology making life better or worse?

  6. Essay on Technology in English || Write short essay on Technology in English

COMMENTS

  1. How Is Technology Changing the World, and How Should the World Change

    For those who believe in the power of innovation and the promise of creative destruction to advance economic development and lead to better quality of life, technology is a vital economic driver (Schumpeter 1942). But it can also be a tool of tremendous fear and oppression, embedding biases in automated decision-making processes and information ...

  2. 200-500 Word Example Essays about Technology

    Direct Effect on Direct Interaction: The disruption of face-to-face communication is a particularly stark example of how technology has impacted human connections. The quality of interpersonal connections has suffered due to people's growing preference for digital over human communication.

  3. How Does Technology Affect Our Daily Lives? Essay

    Technology affects our daily lives in various ways, from how we communicate, work, learn, entertain, and even think. In this essay, you will find out how technology has changed our society, both positively and negatively, and what challenges we face in the digital era. Read on to discover the impact of technology on our daily lives and how we can cope with it.

  4. Ray Kurzweil: The accelerating power of technology

    science. technology. invention. business. biotech. robots. future. Inventor, entrepreneur and visionary Ray Kurzweil explains in abundant, grounded detail why, by the 2020s, we will have reverse-engineered the human brain and nanobots will be operating your consciousness.

  5. The power of technology: A Fact or Fiction for Majority?

    Abstract. This Fall Issue will discuss about the power of technology and Internet. Innovation is taking place everywhere through new and emerging technologies changing the way we think, live ...

  6. Why the Power of Technology Rarely Goes to the People

    Power and Progress: Our 1,000-Year Struggle Over Technology and Prosperity reminds us that technology is not itself a force but rather a tool that is developed to support the agendas of the people and institutions who hold power in society. Claiming a fair share of technology's benefits for the rest of society — that is, for most of ...

  7. Impact of Technology on Society Essay (Critical Writing)

    Technology has weaved a distinct web for passing information. This is in the form of social media like phones, telegrams, and internet and satellite communication. This means that information has become a vital part of humanity. Technopoly gives technology the power to control the dispersion of information and hence it is able to redefine culture.

  8. 1984 and the Power of Technology

    One could begin a critical examination of the perspective on. technology developed in 1984 by countering some of Orwell's. specific claims. For instance, the psychology of the present super power leaders shows that nuclear weaponry per se does not provide the feeling of security which Orwell envisioned.

  9. [PDF] The power of technology: review essay

    The power of technology: review essay. January 1988; Latin American research review 24(1):209-21; Project: Science, Technology, Innovation and society; Authors: ... The Power of Technology.

  10. Why we have co-evolved with technology

    Technology may have evolved with us, but it's not alive. Yet many of the latest technologies, especially artificial intelligences, can appear to act like they have a mind, tricking us into ...

  11. We all have the power to shape the future of technology, say Stanford

    Technology is such a ubiquitous part of modern life that it can often feel like a force of nature, a powerful tidal wave that users and consumers can ride but have little power to guide its direction.

  12. The Power Of Technology

    The Power Of Technology. Decent Essays. 1481 Words. 6 Pages. Open Document. Technology has become detrimental to society, and the development of our future generations. Anyone who uses technology in their daily lives should care about how influential technology has developed overtime. Currently, technology has become more advanced, and ...

  13. Technology and Power

    Power is the ability of individuals or groups to shape events. Technology is the practical application of scientific knowledge and the invention and use of devices to improve human performance. New technologies change economies, markets, and cultures by creating new opportunities. While some have a growing fear of technological change ...

  14. Persuasive Speech About Technology: How It Is Shaping Our Future

    Before proceeding with your speech, it is crucial to thoroughly research and understand the importance of technology in today's society. Gather relevant data, statistics, and examples that clearly demonstrate how technology has shaped our lives in various aspects, such as communication, education, and the environment. 2.

  15. Technology Essay

    By engaging with technology essays, readers gain a deeper appreciation for the transformative power of technology and the ethical responsibility we bear in its development and implementation. In this rapidly advancing technological age, technology essays play a crucial role in fostering understanding, stimulating discussion, and encouraging ...

  16. The Power of Technology

    Kelly Brown, an IT professional and professor, reflects on the benefits and drawbacks of technology in his final blog post. He explores how technology can connect, protect, collaborate, and travel, and how we can choose to use it wisely.

  17. How artificial intelligence is transforming the world

    April 24, 2018. Artificial intelligence (AI) is a wide-ranging tool that enables people to rethink how we integrate information, analyze data, and use the resulting insights to improve decision ...

  18. Importance of Technology Essay

    Importance of Technology Essay: Technology has changed the life of human beings from ancient times to the modern era. The development in the world can be related to the changes in technology directly. ... Culture: Technology has the power to influence the culture of a place, although it is not easy.

  19. Essay on Technology

    FAQs on Essay on Technology. Q.1 What is Information technology? A - It is a form of technology that uses telecommunication and computer systems for study. Also, they send, retrieve, and store data. Q.2 Is technology harmful to humans? A - No, technology is not harmful to human beings until it is used properly.

  20. Technology Essay for Students in English

    Essay on Technology. The word "technology" and its uses have immensely changed since the 20th century, and with time, it has continued to evolve ever since. We are living in a world driven by technology. The advancement of technology has played an important role in the development of human civilization, along with cultural changes.

  21. Argumentative Essay: The Power Of Technology

    Argumentative Essay: The Power Of Technology. At some point in all our lives, we have pondered the possibility that technology is bound to take over and be the death of us. While there are a couple of special snowflakes who pride themselves of not having anything to do with technology, the rest of us are consumed by it.

  22. Essay on Technology For Students In English

    The word technology comes from the two Greek words, 'techne' and 'logos'. Techne means art, skills, or craft, and Logos means a word, saying, or expression that expresses inward thought. Thus, technology means the skill to convey an idea to reach a goal. But nowadays, the term technology mainly signifies the knowledge of tools, machines ...

  23. Persuasive Essay On The Power Of Technology

    Persuasive Essay On The Power Of Technology. Herein contains personal thoughts of learning technologies as used for academic purposes and broad-spectrum primary, secondary and tertiary education. The terms education and technology are currently, the penultimate buzzwords. If one was to reach for a new source or social media outlet one could ...

  24. ≫ The Power of Technology Free Essay Sample on Samploon.com

    The Power of Technology Every people in this world has its own ability to reach every goals they want to achieve. It is just like in the technology which means it can also attain ... Information Technology essays 62 papers. Engineering essays 33 papers. Sociology essays 3356 papers. Responsibility essays 34 papers. Ethnography essays 13 papers.

  25. Israel vs. Iran: What an All-Out War Could Look Like

    Iran's massive missile and drone attack on Israel, which began in the late hours of April 13, pushed the conflict between the two countries into a potentially explosive new phase. For decades ...