Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Case-Control Study? | Definition & Examples

What Is a Case-Control Study? | Definition & Examples

Published on February 4, 2023 by Tegan George . Revised on June 22, 2023.

A case-control study is an experimental design that compares a group of participants possessing a condition of interest to a very similar group lacking that condition. Here, the participants possessing the attribute of study, such as a disease, are called the “case,” and those without it are the “control.”

It’s important to remember that the case group is chosen because they already possess the attribute of interest. The point of the control group is to facilitate investigation, e.g., studying whether the case group systematically exhibits that attribute more than the control group does.

Table of contents

When to use a case-control study, examples of case-control studies, advantages and disadvantages of case-control studies, other interesting articles, frequently asked questions.

Case-control studies are a type of observational study often used in fields like medical research, environmental health, or epidemiology. While most observational studies are qualitative in nature, case-control studies can also be quantitative , and they often are in healthcare settings. Case-control studies can be used for both exploratory and explanatory research , and they are a good choice for studying research topics like disease exposure and health outcomes.

A case-control study may be a good fit for your research if it meets the following criteria.

  • Data on exposure (e.g., to a chemical or a pesticide) are difficult to obtain or expensive.
  • The disease associated with the exposure you’re studying has a long incubation period or is rare or under-studied (e.g., AIDS in the early 1980s).
  • The population you are studying is difficult to contact for follow-up questions (e.g., asylum seekers).

Retrospective cohort studies use existing secondary research data, such as medical records or databases, to identify a group of people with a common exposure or risk factor and to observe their outcomes over time. Case-control studies conduct primary research , comparing a group of participants possessing a condition of interest to a very similar group lacking that condition in real time.

Prevent plagiarism. Run a free check.

Case-control studies are common in fields like epidemiology, healthcare, and psychology.

You would then collect data on your participants’ exposure to contaminated drinking water, focusing on variables such as the source of said water and the duration of exposure, for both groups. You could then compare the two to determine if there is a relationship between drinking water contamination and the risk of developing a gastrointestinal illness. Example: Healthcare case-control study You are interested in the relationship between the dietary intake of a particular vitamin (e.g., vitamin D) and the risk of developing osteoporosis later in life. Here, the case group would be individuals who have been diagnosed with osteoporosis, while the control group would be individuals without osteoporosis.

You would then collect information on dietary intake of vitamin D for both the cases and controls and compare the two groups to determine if there is a relationship between vitamin D intake and the risk of developing osteoporosis. Example: Psychology case-control study You are studying the relationship between early-childhood stress and the likelihood of later developing post-traumatic stress disorder (PTSD). Here, the case group would be individuals who have been diagnosed with PTSD, while the control group would be individuals without PTSD.

Case-control studies are a solid research method choice, but they come with distinct advantages and disadvantages.

Advantages of case-control studies

  • Case-control studies are a great choice if you have any ethical considerations about your participants that could preclude you from using a traditional experimental design .
  • Case-control studies are time efficient and fairly inexpensive to conduct because they require fewer subjects than other research methods .
  • If there were multiple exposures leading to a single outcome, case-control studies can incorporate that. As such, they truly shine when used to study rare outcomes or outbreaks of a particular disease .

Disadvantages of case-control studies

  • Case-control studies, similarly to observational studies, run a high risk of research biases . They are particularly susceptible to observer bias , recall bias , and interviewer bias.
  • In the case of very rare exposures of the outcome studied, attempting to conduct a case-control study can be very time consuming and inefficient .
  • Case-control studies in general have low internal validity  and are not always credible.

Case-control studies by design focus on one singular outcome. This makes them very rigid and not generalizable , as no extrapolation can be made about other outcomes like risk recurrence or future exposure threat. This leads to less satisfying results than other methodological choices.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Prospective cohort study

Research bias

  • Implicit bias
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic
  • Social desirability bias

A case-control study differs from a cohort study because cohort studies are more longitudinal in nature and do not necessarily require a control group .

While one may be added if the investigator so chooses, members of the cohort are primarily selected because of a shared characteristic among them. In particular, retrospective cohort studies are designed to follow a group of people with a common exposure or risk factor over time and observe their outcomes.

Case-control studies, in contrast, require both a case group and a control group, as suggested by their name, and usually are used to identify risk factors for a disease by comparing cases and controls.

A case-control study differs from a cross-sectional study because case-control studies are naturally retrospective in nature, looking backward in time to identify exposures that may have occurred before the development of the disease.

On the other hand, cross-sectional studies collect data on a population at a single point in time. The goal here is to describe the characteristics of the population, such as their age, gender identity, or health status, and understand the distribution and relationships of these characteristics.

Cases and controls are selected for a case-control study based on their inherent characteristics. Participants already possessing the condition of interest form the “case,” while those without form the “control.”

Keep in mind that by definition the case group is chosen because they already possess the attribute of interest. The point of the control group is to facilitate investigation, e.g., studying whether the case group systematically exhibits that attribute more than the control group does.

The strength of the association between an exposure and a disease in a case-control study can be measured using a few different statistical measures , such as odds ratios (ORs) and relative risk (RR).

No, case-control studies cannot establish causality as a standalone measure.

As observational studies , they can suggest associations between an exposure and a disease, but they cannot prove without a doubt that the exposure causes the disease. In particular, issues arising from timing, research biases like recall bias , and the selection of variables lead to low internal validity and the inability to determine causality.

Sources in this article

We strongly encourage students to use sources in their work. You can cite our article (APA Style) or take a deep dive into the articles below.

George, T. (2023, June 22). What Is a Case-Control Study? | Definition & Examples. Scribbr. Retrieved March 25, 2024, from https://www.scribbr.com/methodology/case-control-study/
Schlesselman, J. J. (1982). Case-Control Studies: Design, Conduct, Analysis (Monographs in Epidemiology and Biostatistics, 2) (Illustrated). Oxford University Press.

Is this article helpful?

Tegan George

Tegan George

Other students also liked, what is an observational study | guide & examples, control groups and treatment groups | uses & examples, cross-sectional study | definition, uses & examples, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

  • En español – ExME
  • Em português – EME

Case-control and Cohort studies: A brief overview

Posted on 6th December 2017 by Saul Crandon

Man in suit with binoculars

Introduction

Case-control and cohort studies are observational studies that lie near the middle of the hierarchy of evidence . These types of studies, along with randomised controlled trials, constitute analytical studies, whereas case reports and case series define descriptive studies (1). Although these studies are not ranked as highly as randomised controlled trials, they can provide strong evidence if designed appropriately.

Case-control studies

Case-control studies are retrospective. They clearly define two groups at the start: one with the outcome/disease and one without the outcome/disease. They look back to assess whether there is a statistically significant difference in the rates of exposure to a defined risk factor between the groups. See Figure 1 for a pictorial representation of a case-control study design. This can suggest associations between the risk factor and development of the disease in question, although no definitive causality can be drawn. The main outcome measure in case-control studies is odds ratio (OR) .

what is a case control studies in research

Figure 1. Case-control study design.

Cases should be selected based on objective inclusion and exclusion criteria from a reliable source such as a disease registry. An inherent issue with selecting cases is that a certain proportion of those with the disease would not have a formal diagnosis, may not present for medical care, may be misdiagnosed or may have died before getting a diagnosis. Regardless of how the cases are selected, they should be representative of the broader disease population that you are investigating to ensure generalisability.

Case-control studies should include two groups that are identical EXCEPT for their outcome / disease status.

As such, controls should also be selected carefully. It is possible to match controls to the cases selected on the basis of various factors (e.g. age, sex) to ensure these do not confound the study results. It may even increase statistical power and study precision by choosing up to three or four controls per case (2).

Case-controls can provide fast results and they are cheaper to perform than most other studies. The fact that the analysis is retrospective, allows rare diseases or diseases with long latency periods to be investigated. Furthermore, you can assess multiple exposures to get a better understanding of possible risk factors for the defined outcome / disease.

Nevertheless, as case-controls are retrospective, they are more prone to bias. One of the main examples is recall bias. Often case-control studies require the participants to self-report their exposure to a certain factor. Recall bias is the systematic difference in how the two groups may recall past events e.g. in a study investigating stillbirth, a mother who experienced this may recall the possible contributing factors a lot more vividly than a mother who had a healthy birth.

A summary of the pros and cons of case-control studies are provided in Table 1.

what is a case control studies in research

Table 1. Advantages and disadvantages of case-control studies.

Cohort studies

Cohort studies can be retrospective or prospective. Retrospective cohort studies are NOT the same as case-control studies.

In retrospective cohort studies, the exposure and outcomes have already happened. They are usually conducted on data that already exists (from prospective studies) and the exposures are defined before looking at the existing outcome data to see whether exposure to a risk factor is associated with a statistically significant difference in the outcome development rate.

Prospective cohort studies are more common. People are recruited into cohort studies regardless of their exposure or outcome status. This is one of their important strengths. People are often recruited because of their geographical area or occupation, for example, and researchers can then measure and analyse a range of exposures and outcomes.

The study then follows these participants for a defined period to assess the proportion that develop the outcome/disease of interest. See Figure 2 for a pictorial representation of a cohort study design. Therefore, cohort studies are good for assessing prognosis, risk factors and harm. The outcome measure in cohort studies is usually a risk ratio / relative risk (RR).

what is a case control studies in research

Figure 2. Cohort study design.

Cohort studies should include two groups that are identical EXCEPT for their exposure status.

As a result, both exposed and unexposed groups should be recruited from the same source population. Another important consideration is attrition. If a significant number of participants are not followed up (lost, death, dropped out) then this may impact the validity of the study. Not only does it decrease the study’s power, but there may be attrition bias – a significant difference between the groups of those that did not complete the study.

Cohort studies can assess a range of outcomes allowing an exposure to be rigorously assessed for its impact in developing disease. Additionally, they are good for rare exposures, e.g. contact with a chemical radiation blast.

Whilst cohort studies are useful, they can be expensive and time-consuming, especially if a long follow-up period is chosen or the disease itself is rare or has a long latency.

A summary of the pros and cons of cohort studies are provided in Table 2.

what is a case control studies in research

The Strengthening of Reporting of Observational Studies in Epidemiology Statement (STROBE)

STROBE provides a checklist of important steps for conducting these types of studies, as well as acting as best-practice reporting guidelines (3). Both case-control and cohort studies are observational, with varying advantages and disadvantages. However, the most important factor to the quality of evidence these studies provide, is their methodological quality.

  • Song, J. and Chung, K. Observational Studies: Cohort and Case-Control Studies .  Plastic and Reconstructive Surgery.  2010 Dec;126(6):2234-2242.
  • Ury HK. Efficiency of case-control studies with multiple controls per case: Continuous or dichotomous data .  Biometrics . 1975 Sep;31(3):643–649.
  • von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative.  The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.   Lancet 2007 Oct;370(9596):1453-14577. PMID: 18064739.

' src=

Saul Crandon

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

No Comments on Case-control and Cohort studies: A brief overview

' src=

Very well presented, excellent clarifications. Has put me right back into class, literally!

' src=

Very clear and informative! Thank you.

' src=

very informative article.

' src=

Thank you for the easy to understand blog in cohort studies. I want to follow a group of people with and without a disease to see what health outcomes occurs to them in future such as hospitalisations, diagnoses, procedures etc, as I have many health outcomes to consider, my questions is how to make sure these outcomes has not occurred before the “exposure disease”. As, in cohort studies we are looking at incidence (new) cases, so if an outcome have occurred before the exposure, I can leave them out of the analysis. But because I am not looking at a single outcome which can be checked easily and if happened before exposure can be left out. I have EHR data, so all the exposure and outcome have occurred. my aim is to check the rates of different health outcomes between the exposed)dementia) and unexposed(non-dementia) individuals.

' src=

Very helpful information

' src=

Thanks for making this subject student friendly and easier to understand. A great help.

' src=

Thanks a lot. It really helped me to understand the topic. I am taking epidemiology class this winter, and your paper really saved me.

Happy new year.

' src=

Wow its amazing n simple way of briefing ,which i was enjoyed to learn this.its very easy n quick to pick ideas .. Thanks n stay connected

' src=

Saul you absolute melt! Really good work man

' src=

am a student of public health. This information is simple and well presented to the point. Thank you so much.

' src=

very helpful information provided here

' src=

really thanks for wonderful information because i doing my bachelor degree research by survival model

' src=

Quite informative thank you so much for the info please continue posting. An mph student with Africa university Zimbabwe.

' src=

Thank you this was so helpful amazing

' src=

Apreciated the information provided above.

' src=

So clear and perfect. The language is simple and superb.I am recommending this to all budding epidemiology students. Thanks a lot.

' src=

Great to hear, thank you AJ!

' src=

I have recently completed an investigational study where evidence of phlebitis was determined in a control cohort by data mining from electronic medical records. We then introduced an intervention in an attempt to reduce incidence of phlebitis in a second cohort. Again, results were determined by data mining. This was an expedited study, so there subjects were enrolled in a specific cohort based on date(s) of the drug infused. How do I define this study? Thanks so much.

' src=

thanks for the information and knowledge about observational studies. am a masters student in public health/epidemilogy of the faculty of medicines and pharmaceutical sciences , University of Dschang. this information is very explicit and straight to the point

' src=

Very much helpful

Subscribe to our newsletter

You will receive our monthly newsletter and free access to Trip Premium.

Related Articles

""

Cluster Randomized Trials: Concepts

This blog summarizes the concepts of cluster randomization, and the logistical and statistical considerations while designing a cluster randomized controlled trial.

""

Expertise-based Randomized Controlled Trials

This blog summarizes the concepts of Expertise-based randomized controlled trials with a focus on the advantages and challenges associated with this type of study.

""

An introduction to different types of study design

Conducting successful research requires choosing the appropriate study design. This article describes the most common types of designs conducted by researchers.

Quantitative study designs: Case Control

Quantitative study designs.

  • Introduction
  • Cohort Studies
  • Randomised Controlled Trial

Case Control

  • Cross-Sectional Studies
  • Study Designs Home

In a Case-Control study there are two groups of people: one has a health issue (Case group), and this group is “matched” to a Control group without the health issue based on characteristics like age, gender, occupation. In this study type, we can look back in the patient’s histories to look for exposure to risk factors that are common to the Case group, but not the Control group. It was a case-control study that demonstrated a link between carcinoma of the lung and smoking tobacco . These studies estimate the odds between the exposure and the health outcome, however they cannot prove causality. Case-Control studies might also be referred to as retrospective or case-referent studies. 

Stages of a Case-Control study

This diagram represents taking both the case (disease) and the control (no disease) groups and looking back at their histories to determine their exposure to possible contributing factors.  The researchers then determine the likelihood of those factors contributing to the disease.

what is a case control studies in research

(FOR ACCESSIBILITY: A case control study is likely to show that most, but not all exposed people end up with the health issue, and some unexposed people may also develop the health issue)

Which Clinical Questions does Case-Control best answer?

Case-Control studies are best used for Prognosis questions.

For example: Do anticholinergic drugs increase the risk of dementia in later life? (See BMJ Case-Control study Anticholinergic drugs and risk of dementia: case-control study )

What are the advantages and disadvantages to consider when using Case-Control?

* Confounding occurs when the elements of the study design invalidate the result. It is usually unintentional. It is important to avoid confounding, which can happen in a few ways within Case-Control studies. This explains why it is lower in the hierarchy of evidence, superior only to Case Studies.

What does a strong Case-Control study look like?

A strong study will have:

  • Well-matched controls, similar background without being so similar that they are likely to end up with the same health issue (this can be easier said than done since the risk factors are unknown). 
  • Detailed medical histories are available, reducing the emphasis on a patient’s unreliable recall of their potential exposures. 

What are the pitfalls to look for?

  • Poorly matched or over-matched controls.  Poorly matched means that not enough factors are similar between the Case and Control. E.g. age, gender, geography. Over-matched conversely means that so many things match (age, occupation, geography, health habits) that in all likelihood the Control group will also end up with the same health issue! Either of these situations could cause the study to become ineffective. 
  • Selection bias: Selection of Controls is biased. E.g. All Controls are in the hospital, so they’re likely already sick, they’re not a true sample of the wider population. 
  • Cases include persons showing early symptoms who never ended up having the illness. 

Critical appraisal tools 

To assist with critically appraising case control studies there are some tools / checklists you can use.

CASP - Case Control Checklist

JBI – Critical appraisal checklist for case control studies

CEBMA – Centre for Evidence Based Management  – Critical appraisal questions (focus on leadership and management)

STROBE - Observational Studies checklists includes Case control

SIGN - Case-Control Studies Checklist

NCCEH - Critical Appraisal of a Case Control Study for environmental health

Real World Examples

Smoking and carcinoma of the lung; preliminary report

  • Doll, R., & Hill, A. B. (1950). Smoking and carcinoma of the lung; preliminary report.  British Medical Journal ,  2 (4682), 739–748. Retrieved from  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2038856/
  • Key Case-Control study linking tobacco smoking with lung cancer
  • Notes a marked increase in incidence of Lung Cancer disproportionate to population growth.
  • 20 London Hospitals contributed current Cases of lung, stomach, colon and rectum cancer via admissions, house-physician and radiotherapy diagnosis, non-cancer Controls were selected at each hospital of the same-sex and within 5 year age group of each.
  • 1732 Cases and 743 Controls were interviewed for social class, gender, age, exposure to urban pollution, occupation and smoking habits.
  • It was found that continued smoking from a younger age and smoking a greater number of cigarettes correlated with incidence of lung cancer.

Anticholinergic drugs and risk of dementia: case-control study

  • Richardson, K., Fox, C., Maidment, I., Steel, N., Loke, Y. K., Arthur, A., . . . Savva, G. M. (2018). Anticholinergic drugs and risk of dementia: case-control study. BMJ , 361, k1315. Retrieved from  http://www.bmj.com/content/361/bmj.k1315.abstract .
  • A recent study linking the duration and level of exposure to Anticholinergic drugs and subsequent onset of dementia.
  • Anticholinergic Cognitive Burden (ACB) was estimated in various drugs, the higher the exposure (measured as the ACB score) the greater likeliness of onset of dementia later in life.
  • Antidepressant, urological, and antiparkinson drugs with an ACB score of 3 increased the risk of dementia. Gastrointestinal drugs with an ACB score of 3 were not strongly linked with onset of dementia.
  • Tricyclic antidepressants such as Amitriptyline have an ACB score of 3 and are an example of a common area of concern.

Omega-3 deficiency associated with perinatal depression: Case-Control study 

  • Rees, A.-M., Austin, M.-P., Owen, C., & Parker, G. (2009). Omega-3 deficiency associated with perinatal depression: Case control study. Psychiatry Research , 166(2), 254-259. Retrieved from  http://www.sciencedirect.com/science/article/pii/S0165178107004398 .
  • During pregnancy women lose Omega-3 polyunsaturated fatty acids to the developing foetus.
  • There is a known link between Omgea-3 depletion and depression
  • Sixteen depressed and 22 non-depressed women were recruited during their third trimester
  • High levels of Omega-3 were associated with significantly lower levels of depression.
  • Women with low levels of Omega-3 were six times more likely to be depressed during pregnancy.

References and Further Reading

Doll, R., & Hill, A. B. (1950). Smoking and carcinoma of the lung; preliminary report. British Medical Journal, 2(4682), 739–748. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2038856/

Greenhalgh, Trisha. How to Read a Paper: the Basics of Evidence-Based Medicine, John Wiley & Sons, Incorporated, 2014. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/deakin/detail.action?docID=1642418 .

Himmelfarb Health Sciences Library. (2019). Study Design 101: Case-Control Study. Retrieved from https://himmelfarb.gwu.edu/tutorials/studydesign101/casecontrols.cfm   

Hoffmann, T., Bennett, S., & Del Mar, C. (2017). Evidence-Based Practice Across the Health Professions (Third edition. ed.): Elsevier. 

Lewallen, S., & Courtright, P. (1998). Epidemiology in practice: case-control studies. Community Eye Health, 11(28), 57.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1706071/  

Pelham, B. W. a., & Blanton, H. (2013). Conducting research in psychology : measuring the weight of smoke /Brett W. Pelham, Hart Blanton (Fourth edition. ed.): Wadsworth Cengage Learning. 

Rees, A.-M., Austin, M.-P., Owen, C., & Parker, G. (2009). Omega-3 deficiency associated with perinatal depression: Case control study. Psychiatry Research, 166(2), 254-259. Retrieved from http://www.sciencedirect.com/science/article/pii/S0165178107004398

Richardson, K., Fox, C., Maidment, I., Steel, N., Loke, Y. K., Arthur, A., … Savva, G. M. (2018). Anticholinergic drugs and risk of dementia: case-control study. BMJ, 361, k1315. Retrieved from http://www.bmj.com/content/361/bmj.k1315.abstract

Statistics How To. (2019). Case-Control Study: Definition, Real Life Examples. Retrieved from https://www.statisticshowto.com/case-control-study/  

  • << Previous: Randomised Controlled Trial
  • Next: Cross-Sectional Studies >>
  • Last Updated: Feb 29, 2024 4:49 PM
  • URL: https://deakin.libguides.com/quantitative-study-designs

Banner

NURS 4610: Translating Evidence for Nursing Practice

  • Formulating a PICO(T) Question
  • Accessing and Navigating Databases
  • Keywords and Subject Headings
  • VIDEO TUTORIALS: Keyword Database Search Assignment
  • VIDEO TUTORIALS: Subject Heading Database Search Assignment
  • Search History Screen Capture
  • Accessing Full-Text Articles
  • Critical Appraisal Videos
  • Systematic Reviews
  • Randomized Controlled Trials
  • Quasi-Experimental Studies
  • Case-Control Studies

What is a Case-Control Study?

Pro tips: case-control study checklist, articles on case-control study design and methodology.

  • Cohort Studies
  • Analytical Cross-Sectional Studies
  • Qualitative Studies
  • Levels of Evidence
  • Competency 10 - Putting it All Together
  • APA 7th Edition Style

Case-control studies are a type of quantitative research "designed to sample a group of people with and a group of people without the disease or the outcome measure being studied" (Schmidt & Brown, 2019, p. 209).  The cases are individuals with the disease or outcome measure, and the controls are individuals without the disease or outcome measure.  The purpose of a case-control study is to test whether there is an association between an exposure and a disease, condition or outcome measure (Schmidt & Brown, 2019, p. 209). 

Each JBI Checklist provides tips and guidance on what to look for to answer each question.   These tips begin on page 4. 

Below are some additional  Frequently Asked Questions  about the  C ase-Control Studies Checklist  that have been asked by students in previous semesters. 

For more help:  Each JBI Checklist provides detailed guidance on what to look for to answer each question on the checklist.  These explanatory notes begin on page four of each Checklist. Please review these carefully as you conduct critical appraisal using JBI tools. 

Dey, T., Mukherjee, A., & Chakraborty, S. (2020). A practical overview of case-control studies in clinical practice .  Chest ,  158 (1S), S57–S64. https://doi.org/10.1016/j.chest.2020.03.009

Dupépé, E. B., Kicielinski, K. P., Gordon, A. S., & Walters, B. C. (2019). What is a case-control study?   Neurosurgery ,  84 (4), 819–826. https://doi.org/10.1093/neuros/nyy590

Herbert R. (2017). Case-control studies .  Journal of physiotherapy ,  63 (4), 264–266. https://doi.org/10.1016/j.jphys.2017.08.007

Schulz, K. F., & Grimes, D. A. (2002). Case-control studies: Research in reverse .  Lancet ,  359 (9304), 431–434. https://doi.org/10.1016/S0140-6736(02)07605-5

Song, J. W., & Chung, K. C. (2010). Observational studies: Cohort and case-control studies .  Plastic and reconstructive surgery ,  126 (6), 2234–2242. https://doi.org/10.1097/PRS.0b013e3181f44abc

  • << Previous: Quasi-Experimental Studies
  • Next: Cohort Studies >>
  • Last Updated: Mar 12, 2024 3:47 PM
  • URL: https://libguides.utoledo.edu/n4610

Retrospective Cohort Study: Definition & Examples

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A retrospective study, sometimes called a historical cohort study, is a type of longitudinal study in which researchers look back to a certain point to analyze a particular group of subjects who have already experienced an outcome of interest.

In a retrospective cohort study, the researcher identifies a group of individuals who have been exposed to a certain factor and a group who have not been exposed (the cohorts), and then looks back in time to see how the rate of a certain outcome (like the development of a disease) differs between the two groups.

For example, a researcher might identify a group of people who smoked and a group who never smoked, and then look back at medical records to see how the rate of lung cancer differs between the two groups.

This type of study is beneficial for medical researchers, specifically in epidemiology, as scientists can use existing data to understand potential risk factors or causes of disease.

Cohort study

Researchers in retrospective studies will identify a cohort of subjects before they have developed a disease and then use existing data, such as medical records, to discover any patterns and examine exposures to suspected risks.

In cohort studies , one group of participants must share a common exposure factor, and this group is compared to another group of participants who do not share the exposure to that factor.

For example, men over age 60 who exercise daily could be compared to men over age 60 who do not exercise daily (control) to study the prevalence of diabetes in men over 60.

Researchers collect data from existing records to study a relationship and determine the influence of a particular factor (i.e., daily exercise) on a particular outcome (i.e., diabetes) and to analyze the relative risk of the cohort compared to the control group.

Feasibility

Estimating the relative risk of a population tends to be easier with retrospective studies than prospective studies. Retrospective studies are conducted on a smaller scale than prospective studies.

Because researchers study groups of people before they develop an illness, they can discover potential cause-and-effect relationships between certain behaviors and the development of a disease.

Inexpensive and less time-consuming

Retrospective studies tend to be cheaper and quicker than prospective studies as the data already exists, and researchers do not need to recruit participants.

Beneficial for rare diseases

Researchers in retrospective studies can address rare diseases easier than in prospective studies because, in prospective studies, researchers would need to recruit extremely large cohorts.

Limitations

Bias and confounding variables.

Most sources of error in retrospective studies are due to confounding and bias. These errors are more common in retrospective studies than in prospective studies, so a retrospective study design should not be used when a prospective design is possible.

Recall bias

Participants might not be able to remember if they were exposed or when they were exposed, or they might omit other details that are important for the study.

Missing data

Because researchers are using already existing data, they rely on others for accurate recordkeeping, and important information may not have been collected in the first place.

  • Investigation of risk factors for breast cancer (Press & Pharoah, 2010).
  • Characteristics of trafficked adults and children with severe mental illness (Oram et al., 2015).
  • Activated injectable vitamin D and hemodialysis survival (Teng et al., 2005).
  • Reporting critical incidents in a tertiary hospital Munting et al., 2015).
  • Reporting critical incidents in a tertiary hospital (Munting et al., 2015).
  • Association between blood eosinophil count and risk of readmission for patients with asthma (Kerkhof et al., 2018).
  • Risk factors for mental disorders in women survivors of human trafficking (Abas et al., 2013).

Frequently Asked Questions

1. what is the difference between case-control and retrospective cohort studies.

Case-control studies are usually, but not exclusively, retrospective. Case-control studies are performed on individuals who already have a disease, and researchers compare them with other individuals who share similar characteristics but do not have the disease.

In a retrospective cohort study, on the other hand, researchers examine a group before any of the subjects have developed the disease. Then they examine any factors that differed between the individuals who developed the condition and those who did not.

More simply, the outcome is measured before the exposure in case-control studies, whereas the outcome is measured after exposure in cohort studies.

2. Is a retrospective study experimental?

No, retrospective cohort studies are observational. Researchers analyze a group of subjects without manipulating any variables or interfering with their environment.

Researchers use existing data to investigate the target population, so no experimentation is necessary. Retrospective cohort studies examine cause-and-effect relationships between a disease and an outcome. However, they do not explain why the factors that affect these relationships exist.

Experimental studies are required to determine why a certain factor is associated with a particular outcome.

Abas, M., Ostrovschi, N.V., Prince, M, et al. (2013). Risk factors for mental disorders in women survivors of human trafficking: a historical cohort study. BMC Psychiatry 13, 204. https://doi.org/10.1186/1471-244X-13-204.

Hess, D.R. (2004) Retrospective studies and chart reviews. Respir Care. 49(10):1171-4. PMID: 15447798.

Kerkhof, M., Tran, T.N., Van den Berge, M., Brusselle, G.G., Gopalan, G., Jones, R.C.M., et al. (2018). Association between blood eosinophil count and risk of readmission for patients with asthma: Historical cohort study. 13(7): e0201143.

Munting, K.E, et al. (2015). Reporting critical incidents in a tertiary hospital: a historical cohort study of 110,310 procedures. Can J Anesth/J Can Anesth 62, 1248–1258. https://doi.org/10.1007/s12630-015-0492-y

Oram, S., Khondoker, M.R., Abas, M.A., Broadbent, M.T., & Howard, L.M. (2015). Characteristics of trafficked adults and children with severe mental illness: a historical cohort study. The Lancet. Psychiatry, 2 12, 1084-91.

Press, D. J., & Pharoah, P. (2010). Risk factors for breast cancer: a reanalysis of two case-control studies from 1926 and 1931. Epidemiology (Cambridge, Mass.), 21(4), 566–572. https://doi.org/10.1097/EDE.0b013e3181e08eb3

Ranganathan, P., & Aggarwal, R. (2018). Study designs: Part 1 – An overview and classification. Perspectives in clinical research, 9(4), 184–186.

Song, J. W., & Chung, K. C. (2010). Observational studies: cohort and case-control studies. Plastic and reconstructive surgery, 126(6), 2234–2242. https://doi.org/10.1097/PRS.0b013e3181f44abc.

Teng, M., Wolf, M., Ofsthun, M. N., Lazarus, J. M., Hernán, M. A., Camargo, C. A., Jr, & Thadhani, R. (2005). Activated injectable vitamin D and hemodialysis survival: a historical cohort study. Journal of the American Society of Nephrology: JASN, 16(4), 1115–1125.

Further Information

  • Cohort Effect? Definition and Examples
  • Barrett, D., & Noble, H. (2019). What are cohort studies?. Evidence-based nursing, 22(4), 95-96.
  • Hess, D. R. (2004). Retrospective studies and chart reviews. Respiratory care, 49(10), 1171-1174.
  • Euser, A. M., Zoccali, C., Jager, K. J., & Dekker, F. W. (2009). Cohort studies: prospective versus retrospective. Nephron Clinical Practice, 113(3), c214-c217.

Print Friendly, PDF & Email

  • Download PDF
  • Share X Facebook Email LinkedIn
  • Permissions

Fatal Traffic Risks With a Total Solar Eclipse in the US

  • 1 Department of Medicine, University of Toronto, Toronto, Ontario, Canada
  • 2 Evaluative Clinical Science Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
  • 3 Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
  • 4 Division of General Internal Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
  • 5 Center for Leading Injury Prevention Practice Education & Research, Toronto, Ontario, Canada
  • 6 Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
  • 7 Centre for Clinical Epidemiology & Evaluation, University of British Columbia, Vancouver, British Columbia, Canada

A total solar eclipse occurs when the moon temporarily obscures the sun and casts a dark shadow across the earth. This astronomical spectacle has been described for more than 3 millennia and can be predicted with high precision. Eclipse-related solar retinopathy (vision loss from staring at the sun) is an established medical complication; however, other medical outcomes have received little attention. 1

Read More About

Redelmeier DA , Staples JA. Fatal Traffic Risks With a Total Solar Eclipse in the US. JAMA Intern Med. Published online March 25, 2024. doi:10.1001/jamainternmed.2023.5234

Manage citations:

© 2024

Artificial Intelligence Resource Center

Best of JAMA Network 2022

Browse and subscribe to JAMA Network podcasts!

Others Also Liked

Select your interests.

Customize your JAMA Network experience by selecting one or more topics from the list below.

  • Academic Medicine
  • Acid Base, Electrolytes, Fluids
  • Allergy and Clinical Immunology
  • American Indian or Alaska Natives
  • Anesthesiology
  • Anticoagulation
  • Art and Images in Psychiatry
  • Artificial Intelligence
  • Assisted Reproduction
  • Bleeding and Transfusion
  • Caring for the Critically Ill Patient
  • Challenges in Clinical Electrocardiography
  • Climate and Health
  • Climate Change
  • Clinical Challenge
  • Clinical Decision Support
  • Clinical Implications of Basic Neuroscience
  • Clinical Pharmacy and Pharmacology
  • Complementary and Alternative Medicine
  • Consensus Statements
  • Coronavirus (COVID-19)
  • Critical Care Medicine
  • Cultural Competency
  • Dental Medicine
  • Dermatology
  • Diabetes and Endocrinology
  • Diagnostic Test Interpretation
  • Drug Development
  • Electronic Health Records
  • Emergency Medicine
  • End of Life, Hospice, Palliative Care
  • Environmental Health
  • Equity, Diversity, and Inclusion
  • Facial Plastic Surgery
  • Gastroenterology and Hepatology
  • Genetics and Genomics
  • Genomics and Precision Health
  • Global Health
  • Guide to Statistics and Methods
  • Hair Disorders
  • Health Care Delivery Models
  • Health Care Economics, Insurance, Payment
  • Health Care Quality
  • Health Care Reform
  • Health Care Safety
  • Health Care Workforce
  • Health Disparities
  • Health Inequities
  • Health Policy
  • Health Systems Science
  • History of Medicine
  • Hypertension
  • Images in Neurology
  • Implementation Science
  • Infectious Diseases
  • Innovations in Health Care Delivery
  • JAMA Infographic
  • Law and Medicine
  • Leading Change
  • Less is More
  • LGBTQIA Medicine
  • Lifestyle Behaviors
  • Medical Coding
  • Medical Devices and Equipment
  • Medical Education
  • Medical Education and Training
  • Medical Journals and Publishing
  • Mobile Health and Telemedicine
  • Narrative Medicine
  • Neuroscience and Psychiatry
  • Notable Notes
  • Nutrition, Obesity, Exercise
  • Obstetrics and Gynecology
  • Occupational Health
  • Ophthalmology
  • Orthopedics
  • Otolaryngology
  • Pain Medicine
  • Palliative Care
  • Pathology and Laboratory Medicine
  • Patient Care
  • Patient Information
  • Performance Improvement
  • Performance Measures
  • Perioperative Care and Consultation
  • Pharmacoeconomics
  • Pharmacoepidemiology
  • Pharmacogenetics
  • Pharmacy and Clinical Pharmacology
  • Physical Medicine and Rehabilitation
  • Physical Therapy
  • Physician Leadership
  • Population Health
  • Primary Care
  • Professional Well-being
  • Professionalism
  • Psychiatry and Behavioral Health
  • Public Health
  • Pulmonary Medicine
  • Regulatory Agencies
  • Reproductive Health
  • Research, Methods, Statistics
  • Resuscitation
  • Rheumatology
  • Risk Management
  • Scientific Discovery and the Future of Medicine
  • Shared Decision Making and Communication
  • Sleep Medicine
  • Sports Medicine
  • Stem Cell Transplantation
  • Substance Use and Addiction Medicine
  • Surgical Innovation
  • Surgical Pearls
  • Teachable Moment
  • Technology and Finance
  • The Art of JAMA
  • The Arts and Medicine
  • The Rational Clinical Examination
  • Tobacco and e-Cigarettes
  • Translational Medicine
  • Trauma and Injury
  • Treatment Adherence
  • Ultrasonography
  • Users' Guide to the Medical Literature
  • Vaccination
  • Venous Thromboembolism
  • Veterans Health
  • Women's Health
  • Workflow and Process
  • Wound Care, Infection, Healing
  • Register for email alerts with links to free full-text articles
  • Access PDFs of free articles
  • Manage your interests
  • Save searches and receive search alerts
  • Research article
  • Open access
  • Published: 01 April 2024

Hyperuricemia as an independent risk factor for achilles tendon rupture in male: a case–control study

  • Dongliang Chen 1 ,
  • Jinwei Liu 1 ,
  • Zhaohui Zhu 1 ,
  • Zengfang Zhang 1 ,
  • Deheng Liu 1 &
  • Liangxiao Zheng 1  

Journal of Orthopaedic Surgery and Research volume  19 , Article number:  215 ( 2024 ) Cite this article

Metrics details

To study the correlation between achilles tendon rupture (ATR) and hyperuricemia, also verify the known risk factors for ATR.

A retrospective review of 488 subjects was performed (182 with Achilles tendon rupture, 306 controls with ankle sprains). Demographic variables and risk factors for rupture were tabulated and compared. The baseline data and related indicators were compared, and the risk factors of ATR were analyzed by constructing a binary logistic regression model.

Univariate logistic analysis showed that BMI, smoking, and hyperuricemia were risk factors for the development of ATR (OR = 1.65, 95%CI 1.13–2.42, P  = 0.01; OR = 1.47, 95%CI 1.00–2.24, P  < 0.05; OR = 2.85, 95%CI 1.84–4.42, P  < 0.01). Multifactorial analysis showed that BMI ≥ 25 kg/m 2 , smoking, and hyperuricemia were independent risk factors for the development of ATR (OR = 1.66, 95%CI 1.11–2.49, P  = 0.01; OR = 2.15, 95%CI 1.28–3.60, P  < 0.01; OR = 3.06, 95%CI 1.92–4.89, P  < 0.01). Among the blood biochemical indicators, total cholesterol (TC) and uric acid (UA) were independent risk factors for the occurrence of ATR (OR = 1.54, 95% CI 1.12–2.12, P  = 0.01; OR = 1.01, 95% CI 1.01–1.01, P  < 0.01).

Our study confirmed that, as in previous results, higher BMI, smoking, and total cholesterol are risk factors for ATR, Hyperuricemia may contribute to the development of ATR, and adjunctive tests for TC and UA in the blood biochemistry may be helpful in predicting the risk of ATR.

Introduction

Achilles tendon ruptures (ATR) are a common injury associated with exercise, with an incidence ranging from 5 to 50 cases per 100,000 person-years and appearing to be on the rise in recent decades [ 1 , 2 , 3 ]. Achilles tendon rupture can severely impair mobility and affect normal activity and movement [ 4 , 5 , 6 ]. In general, this damage is more common in male aged between 40 and 50 years old. In fact, the ratio of male injuries to female injuries ranged between 2:1 and 12:1 [ 5 ]. Preventing the occurrence of ATR becomes an important option to reduce the health risks in this population.

Several risk factors for ATR have been identified in previous studies, including age, sex, body mass index (BMI), race, smoking status, use of fluoroquinolones, topical and oral corticosteroids, previous achilles tendinopathy, blood type, and intensity of participation in competitive sports [ 7 , 8 , 9 , 10 , 11 , 12 , 13 ]. Hyperuricemia is defined as a serum uric acid level greater than 6.8 mg/dL (0.40 μmol/L), and less than 20% of patients with hyperuricemia are estimated to develop gout attacks [ 14 ]. Hyperuricemia can cause cellular and metabolic distress [ 15 ], leading to degeneration of the tendon extracellular matrix and subclinical inflammation. Interestingly, subclinical tendon inflammation and structural damage have been observed in patients with asymptomatic hyperuricemia [ 16 ], with previous literature reporting patellar tendon intimal lesions in 12% of hyperuricemia patients and achilles tendinopathy in 15% of hyperuricemic patients, compared to only 1.9% of normouricemic subjects. Based on the hypothesis that ATR is the result of acute trauma to a chronically degenerative tendon [ 17 ]. ATR is more prevalent in patients with hyperuricemia than people with normal uric acid, we thus hypothesize that there may be a potential correlation between ATR and hyperuricemia.

The objective of this study was to investigate the relationship between ATR and hyperuricemia in male and to explore the risk factors associated with the development of ATR, while verifying some previous risk factors. Provide valuable information for clinical study of ATR and its preventive measures.

Materials and methods

This retrospective cross-sectional cohort study included 182 male patients diagnosed with achilles tendon rupture (ATR) and a control group of 306 male patients with ankle fractures, who were seen at the Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, between January 2014 and July 2022. Inclusion criteria for the ATR group were: (1) 18 to 70-year-old male patients with ATR and complete clinical data, without other coexisting injuries. Exclusion criteria were: (1) insufficient data to calculate body mass index (BMI) or unclear epidemiological data; (2) open Achilles tendon rupture; (3) systemic or local use of steroids or quinolones. The control group selected patients with ankle injury admitted during the same period, we chosen ankle sprains as the control group because the physicians participating in this study easily identified such patients due to the close site of injury. Furthermore, ankle sprains occur in all ages and are therefore considered a reasonable representative of the general population. Exclusion criteria: There was no previous history of acute ATR, and the same exclusion criteria were used as in the ATR group.

Variables and data sources

Data for the study were collected using a questionnaire that included variables such as demographic data (age and gender), harmful habits (smoking and drinking), use of uricotelic drugs, past medical history, family medical history, medical conditions, and medication. Additionally, information on endocrine and cardiovascular diseases, as well as specific diseases such as diabetes mellitus, hypertension, and coronary heart disease, were recorded.

Detection methods

Blood specials were collected from patients after at least 10 h of rest and fasting in the morning. Measurements of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C), glucose (GLU) and lipoprotein levels were performed using a fully automated biochemical analyzer (Modular 7600, Hitachi, Tokyo, Japan). Furthermore, the levels of high-density lipoprotein (HDL-C), apolipoproteins A1 (APO-A1), apolipoprotein B (APO-B), and uric acid (UA) were also measured.

Statistical analysis

A descriptive analysis was conducted on all variables. IBM SPSS Statistics (version 26, R26.0.0.2, IBM, Chicago, USA) was utilized for statistical analysis. Continuous variables with normal distribution were represented as mean ± standard deviation and analyzed using t-tests or one-way ANOVA. Categorical variables were presented as frequencies [n (%)] and analyzed using the χ 2 test to determine differences between the two groups. Logistic regression was used to analyze risk factors for ATR, with adjustment made for other confounding factors. Sample size was calculated to determine the number of subjects required to demonstrate equivalence of mean UA in ATR and control cohorts using the two one-sided t-test (TOST) method for equivalence testing, with a = 0.05 and b = 0.20. With data obtained from 182 ATR patients, sample size analysis indicated that 306 controls would achieve 80% power. All assays were two-tailed, and statistical significance was indicated by P  < 0.05.

Clinical information

The clinical data of ATR patients and control subjects are shown in Table  1 . The results of the univariate analysis showed that among the included subjects, the proportions of BMI, smokers, and hyperuricemia patients in ATR patients were significantly higher than those in the control group, and the differences were statistically significant ( P  < 0.05). There was no significant difference in the proportion of patients with age, hypertension, coronary heart disease, drinking and hypertension between ATR group and the control group ( P  > 0.05).

Analysis of risk factors for the occurrence of ATR

Univariate logistic regression and multivariate logistic regression were used to analyze the risk factors for the occurrence of ATR, and the results were shown in Tables  2 and 3 . Univariate logistic analysis showed that BMI, smoking, and hyperuricemia were risk factors for the developmalet of ATR (OR = 1.65, 95%CI 1.13–2.42, P  = 0.01; OR = 1.47, 95%CI 1.00–2.24, P  < 0.05; OR = 2.85, 95%CI. 1.84–4.42, P  < 0.01). Multifactorial analysis showed that BMI ≥ 25 kg/m 2 , smoking and hyperuricemia were independent risk factors for the developmalet of ATR (OR = 1.66, 95%CI 1.11–2.49, P  = 0.01; OR = 2.15, 95%CI 1.28–3.60, P  < 0.01; OR = 3.06, 95%CI 1.92–4.89, P  < 0.01).

Correlation between blood biochemical levels and ATR

We analyzed the correlation between blood biochemical parameters and the occurrence of ATR. The result of univariate logistic regression analysis showed that TG, TC, LDL-C, UA, GLU, APO-A1, APO-B were risk factors for the occurrence of ATR ( P  < 0.05, Table  4 ). The result of multivariate logistic regression showed that TC and UA were independent risk factors for the occurrence of ATR (OR = 1.54, 95% CI 1.12–2.12, P  = 0.01; OR = 1.01, 95% CI 1.01–1.01, P  < 0.01) (Table  5 ).

The results of ROC analysis showed that the area under the curve (AUC) for both TC and UA diagnosis alone and in combination was > 0.6, with a higher sensitivity for UA diagnosis alone and a higher specificity for TC diagnosis in combination with UA (Fig.  1 , Table  6 ).

figure 1

The receiver operating characteristic (ROC) of TC, UA and the combination of the them for the diagnosis of ATR. TC, total cholesterol. UA, uric acid

This case control study has found that hyperuricemia is an autonomous risk factor for ATR in the male Chinese population. The analysis of blood biochemical test results showed a considerable difference in uric acid values between the two groups. To date, Studies on the association between hyperuricemia and ATR in male were scarce. Therefore, this research sets an important precedent and plays a crucial role in the prevention and treatment of ATR in exercise active male aged around 40 years old. In order for the conclusions of this study to be considered valid, it is important that the sample demonstrate similarities in risk factors for ATR as compared to previously published studies. This study sample accurately represents the general population of ATR in coastal China, with predominantly male individuals suffering primarily exercise-related injuries. Additionally, TC is a significant risk factor, and other known risk factors, such as smoking, tend to increase the risk of ATR.

Hyperuricemia, a disorder characterized by abnormal purine metabolism, has been found to have an impact on tendons, although its significance in this regard is often underestimated and not fully comprehended [ 15 , 18 ]. Although evidence linking hyperuricemia to tendinopathy is limited, it is more evident that crystal deposition in and around tendons during gout attacks can cause cell death. Dodds et al. [ 19 ] found that 30 patients with ATR had significantly higher uric acid levels when compared to healthy controls. Additionally, Beskin reported a 14% incidence of gout in 42 consecutive patients with ATR [ 20 ].The precise mechanism by which Achilles tendon injury occurs remains unclear, although restricted blood supply and degenerative changes are generally believed to be the primary causes [ 7 , 21 ]. In a retrospective study investigating the relationship between tendon pathologies and uric acid levels, Abate et al. [ 15 ] found that elevated serum uric acid levels disrupt proteoglycan metabolism, which is the underlying cause of tendon injury. Recent research evidence suggests that asymptomatic hyperuricemia may be a predisposition of ATR by impeding the normal functions of tendon stem/progenitor cells (TSPCs) [ 22 ]. There is also research evidence that MSU crystals directly interact with tenocytes to reduce cell viability and function [ 23 ]. Andia I et al. found that urate crystals caused pro-inflammatory response drives the progression of tendinopathy [ 24 ]. An MRI study of 45 cases of Achilles tendon rupture by Bäcker HC et al. [ 25 ] confirmed that was evidence of diffuse degeneration in each achilles tendon. Achilles tendon degeneration or tendinopathy can lead to the mechanical failure of the achilles tendon. Based on this analysis, it was hypothesized that an increase in uric acid levels caused secondary ATR due to Achilles tendinopathy. However, there is no direct evidence to confirm the causal relationship between the increase in uric acid levels, Achilles tendinopathy and ATR, and further studies are needed to provide more comprehensive data and pathological findings.

Several limitations are associated with this study. Firstly, the retrospective survey design used in this comparative study only provides a relevant basis and cannot confirm the causal relationship, which warrants confirmation through a prospective investigation study conducted on a large sample size of natural populations in the community. Secondly, the relatively small number of ATR cases prohibit subsequent subgroup analysis, particularly with regards to other factors contributing to ATR, such as congenital malformation factors like Haglund malformation that could be associated with ATR. Thirdly, due to the fluctuation of serum uric acid levels and sex differences, we only analyzed admitted fasting blood of male patients, and the lack of follow-up review results also limits the scope of the study. Fourth, the survey area is in the coastal region and may have a higher incidence of hyperuricemia, which is another limitation of this study. Fifth, since the duration of hyperuricemia cannot be determined at the time of diagnosis, there is a lack of data on the duration of hyperuricemia in patients with ATR in this study, and it remains unclear whether patients with longer hyperuricemia duration are more prone to tendon rupture. Sixth, there is an absence of histological data regarding tendon tissue, which will be the main focus of this aspect of the study in future clinical research.

Sheth U, Wasserstein D, Jenkinson R, Moineddin R, Kreder H, Jaglal SB. The epidemiology and trends in management of acute Achilles tendon ruptures in Ontario, Canada: a population-based study of 27 607 patients. Bone Jt J. 2017;99-B(1):78–86.

Article   CAS   Google Scholar  

Ganestam A, Kallemose T, Troelsen A, Barfod KW. Increasing incidence of acute achilles tendon rupture and a noticeable decline in surgical treatment from 1994 to 2013. A nationwide registry study of 33,160 patients. Knee Surg Sports Traumatol Arthrosc. 2016;24(12):3730–7.

Article   PubMed   Google Scholar  

Egger AC, Berkowitz MJ. Achilles tendon injuries. Curr Rev Musculoskelet Med. 2017;10(1):72–80.

Article   PubMed   PubMed Central   Google Scholar  

Maffulli N, Peretti GM. Treatment decisions for acute achilles tendon ruptures. Lancet. 2020;395(10222):397–8.

Gajhede-Knudsen M, Ekstrand J, Magnusson H, Maffulli N. Recurrence of achilles tendon injuries in elite male football players is more common after early return to play: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47(12):763–8.

Maffulli N, Irwin AS, Kenward MG, Smith F, Porter RW. Achilles tendon rupture and sciatica: a possible correlation. Br J Sports Med. 1998;32(2):174–7.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Hess GW. Achilles tendon rupture: a review of etiology, population, anatomy, risk factors, and injury prevention. Foot Ankle Spec. 2010;3(1):29–32.

Alves C, Mendes D, Marques FB. Fluoroquinolones and the risk of tendon injury: a systematic review and meta-analysis. Eur J Clin Pharmacol. 2019;75(10):1431–43.

Article   CAS   PubMed   Google Scholar  

Noback PC, Jang ES, Cuellar DO, Seetharaman M, Malagoli E, Greisberg JK, et al. Risk factors for achilles tendon rupture: a matched case control study. Injury. 2017;48(10):2342–7.

Macchi M, Spezia M, Elli S, Schiaffini G, Chisari E. Obesity increases the risk of tendinopathy, tendon tear and rupture, and postoperative complications: a systematic review of clinical studies. Clin Orthop Relat Res. 2020;478(8):1839–47.

Yasui Y, Tonogai I, Rosenbaum AJ, Shimozono Y, Kawano H, Kennedy JG. The risk of achilles tendon rupture in the patients with achilles tendinopathy: healthcare database analysis in the United States. Biomed Res Int. 2017;2017:7021862.

Xergia SA, Tsarbou C, Liveris NI, Hadjithoma M, Tzanetakou IP. Risk factors for achilles tendon rupture: an updated systematic review. Phys Sportsmed. 1–11.

Godoy-Santos AL, Bruschini H, Cury J, Srougi M, de Cesar-Netto C, Fonseca LF, et al. Fluoroquinolones and the risk of achilles tendon disorders: update on a neglected complication. Urology. 2018;113:20–5.

Campion EW, Glynn RJ, DeLabry LO. Asymptomatic hyperuricemia. Risks and consequences in the normative aging study. Am J Med. 1987;82(3):421–6.

Abate M, Schiavone C, Salini V, Andia I. Occurrence of tendon pathologies in metabolic disorders. Rheumatology (Oxford). 2013;52(4):599–608.

Pineda C, Amezcua-Guerra LM, Solano C, Rodriguez-Henriquez P, Hernandez-Diaz C, Vargas A, et al. Joint and tendon subclinical involvement suggestive of gouty arthritis in asymptomatic hyperuricemia: an ultrasound controlled study. Arthritis Res Ther. 2011;13(1):R4.

Fedorczyk JM, Barr AE, Rani S, Gao HG, Amin M, Amin S, et al. Exposure-dependent increases in IL-1beta, substance P, CTGF, and tendinosis in flexor digitorum tendons with upper extremity repetitive strain injury. J Orthop Res. 2010;28(3):298–307.

Johnson RJ, Bakris GL, Borghi C, Chonchol MB, Feldman D, Lanaspa MA, et al. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the National Kidney Foundation. Am J Kidney Dis. 2018;71(6):851–65.

Dodds WN, Burry HC. The relationship between achilles tendon rupture and serum uric acid level. Injury. 1984;16(2):94–5.

Beskin JL, Sanders RA, Hunter SC, Hughston JC. Surgical repair of achilles tendon ruptures. Am J Sports Med. 1987;15(1):1–8.

Gil-Melgosa L, Grasa J, Urbiola A, Llombart R, Susaeta Ruiz M, Montiel V, et al. Muscular and tendon degeneration after achilles rupture: new insights into future repair strategies. Biomedicines. 2021;10(1):19.

Liang J, Chen B, Li Y, Nie D, Lei C, Yang Q, et al. Asymptomatic hyperuricemia is associated with achilles tendon rupture through disrupting the normal functions of tendon stem/progenitor cells. Stem Cells Int. 2022;2022:6795573.

Chhana A, Callon KE, Dray M, Pool B, Naot D, Gamble GD, et al. Interactions between tenocytes and monosodium urate monohydrate crystals: implications for tendon involvement in gout. Ann Rheum Dis. 2014;73(9):1737–41.

Andia I, Abate M. Hyperuricemia in tendons. Adv Exp Med Biol. 2016;920:123–32.

Backer HC, Wong TT, Vosseller JT. MRI assessment of degeneration of the tendon in achilles tendon ruptures. Foot Ankle Int. 2019;40(8):895–9.

Download references

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and affiliations.

Department of Hand and Foot Surgery, Orthopedic Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China

Dongliang Chen, Jinwei Liu, Zhaohui Zhu, Zengfang Zhang, Deheng Liu & Liangxiao Zheng

You can also search for this author in PubMed   Google Scholar

Contributions

LZ designed the study protocol. JL and ZhZ collected and analyzed the clinical data of patients. DC wrote the first draft of the manuscript. ZZ and DL provided revision for intellectual content and final approval. The authors read and approved the final manuscript of the manuscript.

Corresponding author

Correspondence to Liangxiao Zheng .

Ethics declarations

Ethics approval and consent to participate.

The study was approved by the Institutional Review Board (KYLL-KS-2022044) and adhered to the Declaration of Helsinki and data protection regulations.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Chen, D., Liu, J., Zhu, Z. et al. Hyperuricemia as an independent risk factor for achilles tendon rupture in male: a case–control study. J Orthop Surg Res 19 , 215 (2024). https://doi.org/10.1186/s13018-024-04698-9

Download citation

Received : 24 February 2024

Accepted : 24 March 2024

Published : 01 April 2024

DOI : https://doi.org/10.1186/s13018-024-04698-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Achilles tendon rupture
  • Hyperuricemia
  • Risk factor
  • Receiver operating characteristic

Journal of Orthopaedic Surgery and Research

ISSN: 1749-799X

what is a case control studies in research

Study Design 101: Case Control Study

  • Case Report
  • Case Control Study
  • Cohort Study
  • Randomized Controlled Trial
  • Practice Guideline
  • Systematic Review
  • Meta-Analysis
  • Helpful Formulas
  • Finding Specific Study Types

A study that compares patients who have a disease or outcome of interest (cases) with patients who do not have the disease or outcome (controls), and looks back retrospectively to compare how frequently the exposure to a risk factor is present in each group to determine the relationship between the risk factor and the disease.

Case control studies are observational because no intervention is attempted and no attempt is made to alter the course of the disease. The goal is to retrospectively determine the exposure to the risk factor of interest from each of the two groups of individuals: cases and controls. These studies are designed to estimate odds.

Case control studies are also known as "retrospective studies" and "case-referent studies."

  • Good for studying rare conditions or diseases
  • Less time needed to conduct the study because the condition or disease has already occurred
  • Lets you simultaneously look at multiple risk factors
  • Useful as initial studies to establish an association
  • Can answer questions that could not be answered through other study designs

Disadvantages

  • Retrospective studies have more problems with data quality because they rely on memory and people with a condition will be more motivated to recall risk factors (also called recall bias).
  • Not good for evaluating diagnostic tests because it's already clear that the cases have the condition and the controls do not
  • It can be difficult to find a suitable control group

Design pitfalls to look out for

Care should be taken to avoid confounding, which arises when an exposure and an outcome are both strongly associated with a third variable. Controls should be subjects who might have been cases in the study but are selected independent of the exposure. Cases and controls should also not be "over-matched."

Is the control group appropriate for the population? Does the study use matching or pairing appropriately to avoid the effects of a confounding variable? Does it use appropriate inclusion and exclusion criteria?

Fictitious Example

There is a suspicion that zinc oxide, the white non-absorbent sunscreen traditionally worn by lifeguards is more effective at preventing sunburns that lead to skin cancer than absorbent sunscreen lotions. A case-control study was conducted to investigate if exposure to zinc oxide is a more effective skin cancer prevention measure. The study involved comparing a group of former lifeguards that had developed cancer on their cheeks and noses (cases) to a group of lifeguards without this type of cancer (controls) and assess their prior exposure to zinc oxide or absorbent sunscreen lotions.

This study would be retrospective in that the former lifeguards would be asked to recall which type of sunscreen they used on their face and approximately how often. This could be either a matched or unmatched study, but efforts would need to be made to ensure that the former lifeguards are of the same average age, and lifeguarded for a similar number of seasons and amount of time per season.

Real-life Examples

Boubekri, M., Cheung, I., Reid, K., Wang, C., & Zee, P. (2014). Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study. Journal of Clinical Sleep Medicine : JCSM : Official Publication of the American Academy of Sleep Medicine, 10 (6), 603-611. https://doi.org/10.5664/jcsm.3780

This pilot study explored the impact of exposure to daylight on the health of office workers (measuring well-being and sleep quality subjectively, and light exposure, activity level and sleep-wake patterns via actigraphy). Individuals with windows in their workplaces had more light exposure, longer sleep duration, and more physical activity. They also reported a better scores in the areas of vitality and role limitations due to physical problems, better sleep quality and less sleep disturbances.

Togha, M., Razeghi Jahromi, S., Ghorbani, Z., Martami, F., & Seifishahpar, M. (2018). Serum Vitamin D Status in a Group of Migraine Patients Compared With Healthy Controls: A Case-Control Study. Headache, 58 (10), 1530-1540. https://doi.org/10.1111/head.13423

This case-control study compared serum vitamin D levels in individuals who experience migraine headaches with their matched controls. Studied over a period of thirty days, individuals with higher levels of serum Vitamin D was associated with lower odds of migraine headache.

Related Formulas

  • Odds ratio in an unmatched study
  • Odds ratio in a matched study

Related Terms

A patient with the disease or outcome of interest.

Confounding

When an exposure and an outcome are both strongly associated with a third variable.

A patient who does not have the disease or outcome.

Matched Design

Each case is matched individually with a control according to certain characteristics such as age and gender. It is important to remember that the concordant pairs (pairs in which the case and control are either both exposed or both not exposed) tell us nothing about the risk of exposure separately for cases or controls.

Observed Assignment

The method of assignment of individuals to study and control groups in observational studies when the investigator does not intervene to perform the assignment.

Unmatched Design

The controls are a sample from a suitable non-affected population.

Now test yourself!

1. Case Control Studies are prospective in that they follow the cases and controls over time and observe what occurs.

a) True b) False

2. Which of the following is an advantage of Case Control Studies?

a) They can simultaneously look at multiple risk factors. b) They are useful to initially establish an association between a risk factor and a disease or outcome. c) They take less time to complete because the condition or disease has already occurred. d) b and c only e) a, b, and c

Evidence Pyramid - Navigation

  • Meta- Analysis
  • Case Reports
  • << Previous: Case Report
  • Next: Cohort Study >>

Creative Commons License

  • Last Updated: Sep 25, 2023 10:59 AM
  • URL: https://guides.himmelfarb.gwu.edu/studydesign101

GW logo

  • Himmelfarb Intranet
  • Privacy Notice
  • Terms of Use
  • GW is committed to digital accessibility. If you experience a barrier that affects your ability to access content on this page, let us know via the Accessibility Feedback Form .
  • Himmelfarb Health Sciences Library
  • 2300 Eye St., NW, Washington, DC 20037
  • Phone: (202) 994-2850
  • [email protected]
  • https://himmelfarb.gwu.edu

medRxiv

Effectiveness of Autumn 2023 COVID-19 vaccination and residual protection of prior doses against hospitalisation in England, estimated using a test-negative case-control study.

  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Freja Kirsebom
  • For correspondence: [email protected]
  • Info/History
  • Supplementary material
  • Preview PDF

Introduction The last COVID-19 vaccine offered to all adults in England became available from November 2021. The most recent booster programme commenced in September 2023. Bivalent BA.4-5 or monovalent XBB.1.5 boosters were given. During the study period, the JN.1 variant became dominant in England. Methods Vaccine effectiveness against hospitalisation was estimated throughout using the test-negative case-control study design where positive PCR tests from hospitalised individuals are cases and comparable negative PCR tests are controls. Multivariable logistic regression was used to assess vaccine effectiveness against hospitalisation with the test result as the outcome, vaccination status as the primary exposure variable of interest and confounder adjustment. Results There was no evidence of residual protection for boosters given as part of previous campaigns. There were 28,916 eligible tests included to estimate the effectiveness of the autumn 2023 boosters in those aged 65 years and older. VE peaked at 50.6% (95% CI: 44.2-56.3%) after 2-4 weeks, followed by waning to 13.6% (95% CI: -11.7-33.2%). Estimates were generally higher for the XBB.1.5 booster than the BA.4-5 booster, but this difference was not statistically significant. Point estimates were highest against XBB sub-lineages. Effectiveness was lower against both JN.1 and EG.5.1 variants with confidence intervals non-overlapping with the effectiveness of the XBB sub-lineages at 2-4 weeks for EG.5.1 where VE was 44.5% (95% CI: 20.2- 61.4%) and at 5-9 weeks for JN.1 where VE was 26.4% (95%CI: -3.4-47.6%). Conclusions The recent monovalent XBB.1.5 and bivalent BA.4-5 boosters provided comparable and good protection against hospitalisation, however there was evidence of lower VE against hospitalisation of these boosters against JN.1.

Competing Interest Statement

The Immunisation Department provides vaccine manufacturers (including Pfizer) with post-marketing surveillance reports about pneumococcal and meningococcal disease which the companies are required to submit to the UK Licensing authority in compliance with their Risk Management Strategy. A cost recovery charge is made for these reports.

Funding Statement

This study did not receive any external funding.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The study protocol was subject to an internal review by the UK Health Security Agency Research Ethics and Governance Group and was found to be fully compliant with all regulatory requirements. As no regulatory issues were identified, and ethical review is not a requirement for this type of work, it was decided that a full ethical review would not be necessary. UKHSA has legal permission, provided by Regulation 3 of The Health Service (Control of Patient Information) Regulations 2002, to process patient confidential information for national surveillance of communicable diseases and as such, individual patient consent is not required to access records.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Data Availability

This work is carried out under Regulation 3 of The Health Service (Control of Patient Information; Secretary of State for Health, 2002) using patient identification information without individual patient consent as part of the UKHSA legal requirement for public health surveillance and monitoring of vaccines. As such, authors cannot make the underlying dataset publicly available for ethical and legal reasons. However, all the data used for this analysis is included as aggregated data in the manuscript tables and appendix. Applications for relevant anonymised data should be submitted to the UKHSA Office for Data Release at https://www.gov.uk/government/publications/accessing-ukhsa-protected-data.

View the discussion thread.

Supplementary Material

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Reddit logo

Citation Manager Formats

  • EndNote (tagged)
  • EndNote 8 (xml)
  • RefWorks Tagged
  • Ref Manager
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
  • Addiction Medicine (314)
  • Allergy and Immunology (617)
  • Anesthesia (158)
  • Cardiovascular Medicine (2267)
  • Dentistry and Oral Medicine (279)
  • Dermatology (201)
  • Emergency Medicine (369)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (797)
  • Epidemiology (11555)
  • Forensic Medicine (10)
  • Gastroenterology (676)
  • Genetic and Genomic Medicine (3556)
  • Geriatric Medicine (336)
  • Health Economics (614)
  • Health Informatics (2292)
  • Health Policy (912)
  • Health Systems and Quality Improvement (859)
  • Hematology (333)
  • HIV/AIDS (745)
  • Infectious Diseases (except HIV/AIDS) (13132)
  • Intensive Care and Critical Care Medicine (755)
  • Medical Education (357)
  • Medical Ethics (100)
  • Nephrology (388)
  • Neurology (3339)
  • Nursing (191)
  • Nutrition (505)
  • Obstetrics and Gynecology (650)
  • Occupational and Environmental Health (643)
  • Oncology (1750)
  • Ophthalmology (524)
  • Orthopedics (208)
  • Otolaryngology (284)
  • Pain Medicine (223)
  • Palliative Medicine (66)
  • Pathology (437)
  • Pediatrics (998)
  • Pharmacology and Therapeutics (418)
  • Primary Care Research (401)
  • Psychiatry and Clinical Psychology (3047)
  • Public and Global Health (5979)
  • Radiology and Imaging (1217)
  • Rehabilitation Medicine and Physical Therapy (712)
  • Respiratory Medicine (808)
  • Rheumatology (367)
  • Sexual and Reproductive Health (346)
  • Sports Medicine (313)
  • Surgery (385)
  • Toxicology (50)
  • Transplantation (170)
  • Urology (142)

Read our research on: Abortion | Podcasts | Election 2024

Regions & Countries

What the data says about abortion in the u.s..

Pew Research Center has conducted many surveys about abortion over the years, providing a lens into Americans’ views on whether the procedure should be legal, among a host of other questions.

In a  Center survey  conducted nearly a year after the Supreme Court’s June 2022 decision that  ended the constitutional right to abortion , 62% of U.S. adults said the practice should be legal in all or most cases, while 36% said it should be illegal in all or most cases. Another survey conducted a few months before the decision showed that relatively few Americans take an absolutist view on the issue .

Find answers to common questions about abortion in America, based on data from the Centers for Disease Control and Prevention (CDC) and the Guttmacher Institute, which have tracked these patterns for several decades:

How many abortions are there in the U.S. each year?

How has the number of abortions in the u.s. changed over time, what is the abortion rate among women in the u.s. how has it changed over time, what are the most common types of abortion, how many abortion providers are there in the u.s., and how has that number changed, what percentage of abortions are for women who live in a different state from the abortion provider, what are the demographics of women who have had abortions, when during pregnancy do most abortions occur, how often are there medical complications from abortion.

This compilation of data on abortion in the United States draws mainly from two sources: the Centers for Disease Control and Prevention (CDC) and the Guttmacher Institute, both of which have regularly compiled national abortion data for approximately half a century, and which collect their data in different ways.

The CDC data that is highlighted in this post comes from the agency’s “abortion surveillance” reports, which have been published annually since 1974 (and which have included data from 1969). Its figures from 1973 through 1996 include data from all 50 states, the District of Columbia and New York City – 52 “reporting areas” in all. Since 1997, the CDC’s totals have lacked data from some states (most notably California) for the years that those states did not report data to the agency. The four reporting areas that did not submit data to the CDC in 2021 – California, Maryland, New Hampshire and New Jersey – accounted for approximately 25% of all legal induced abortions in the U.S. in 2020, according to Guttmacher’s data. Most states, though,  do  have data in the reports, and the figures for the vast majority of them came from each state’s central health agency, while for some states, the figures came from hospitals and other medical facilities.

Discussion of CDC abortion data involving women’s state of residence, marital status, race, ethnicity, age, abortion history and the number of previous live births excludes the low share of abortions where that information was not supplied. Read the methodology for the CDC’s latest abortion surveillance report , which includes data from 2021, for more details. Previous reports can be found at  stacks.cdc.gov  by entering “abortion surveillance” into the search box.

For the numbers of deaths caused by induced abortions in 1963 and 1965, this analysis looks at reports by the then-U.S. Department of Health, Education and Welfare, a precursor to the Department of Health and Human Services. In computing those figures, we excluded abortions listed in the report under the categories “spontaneous or unspecified” or as “other.” (“Spontaneous abortion” is another way of referring to miscarriages.)

Guttmacher data in this post comes from national surveys of abortion providers that Guttmacher has conducted 19 times since 1973. Guttmacher compiles its figures after contacting every known provider of abortions – clinics, hospitals and physicians’ offices – in the country. It uses questionnaires and health department data, and it provides estimates for abortion providers that don’t respond to its inquiries. (In 2020, the last year for which it has released data on the number of abortions in the U.S., it used estimates for 12% of abortions.) For most of the 2000s, Guttmacher has conducted these national surveys every three years, each time getting abortion data for the prior two years. For each interim year, Guttmacher has calculated estimates based on trends from its own figures and from other data.

The latest full summary of Guttmacher data came in the institute’s report titled “Abortion Incidence and Service Availability in the United States, 2020.” It includes figures for 2020 and 2019 and estimates for 2018. The report includes a methods section.

In addition, this post uses data from StatPearls, an online health care resource, on complications from abortion.

An exact answer is hard to come by. The CDC and the Guttmacher Institute have each tried to measure this for around half a century, but they use different methods and publish different figures.

The last year for which the CDC reported a yearly national total for abortions is 2021. It found there were 625,978 abortions in the District of Columbia and the 46 states with available data that year, up from 597,355 in those states and D.C. in 2020. The corresponding figure for 2019 was 607,720.

The last year for which Guttmacher reported a yearly national total was 2020. It said there were 930,160 abortions that year in all 50 states and the District of Columbia, compared with 916,460 in 2019.

  • How the CDC gets its data: It compiles figures that are voluntarily reported by states’ central health agencies, including separate figures for New York City and the District of Columbia. Its latest totals do not include figures from California, Maryland, New Hampshire or New Jersey, which did not report data to the CDC. ( Read the methodology from the latest CDC report .)
  • How Guttmacher gets its data: It compiles its figures after contacting every known abortion provider – clinics, hospitals and physicians’ offices – in the country. It uses questionnaires and health department data, then provides estimates for abortion providers that don’t respond. Guttmacher’s figures are higher than the CDC’s in part because they include data (and in some instances, estimates) from all 50 states. ( Read the institute’s latest full report and methodology .)

While the Guttmacher Institute supports abortion rights, its empirical data on abortions in the U.S. has been widely cited by  groups  and  publications  across the political spectrum, including by a  number of those  that  disagree with its positions .

These estimates from Guttmacher and the CDC are results of multiyear efforts to collect data on abortion across the U.S. Last year, Guttmacher also began publishing less precise estimates every few months , based on a much smaller sample of providers.

The figures reported by these organizations include only legal induced abortions conducted by clinics, hospitals or physicians’ offices, or those that make use of abortion pills dispensed from certified facilities such as clinics or physicians’ offices. They do not account for the use of abortion pills that were obtained  outside of clinical settings .

(Back to top)

A line chart showing the changing number of legal abortions in the U.S. since the 1970s.

The annual number of U.S. abortions rose for years after Roe v. Wade legalized the procedure in 1973, reaching its highest levels around the late 1980s and early 1990s, according to both the CDC and Guttmacher. Since then, abortions have generally decreased at what a CDC analysis called  “a slow yet steady pace.”

Guttmacher says the number of abortions occurring in the U.S. in 2020 was 40% lower than it was in 1991. According to the CDC, the number was 36% lower in 2021 than in 1991, looking just at the District of Columbia and the 46 states that reported both of those years.

(The corresponding line graph shows the long-term trend in the number of legal abortions reported by both organizations. To allow for consistent comparisons over time, the CDC figures in the chart have been adjusted to ensure that the same states are counted from one year to the next. Using that approach, the CDC figure for 2021 is 622,108 legal abortions.)

There have been occasional breaks in this long-term pattern of decline – during the middle of the first decade of the 2000s, and then again in the late 2010s. The CDC reported modest 1% and 2% increases in abortions in 2018 and 2019, and then, after a 2% decrease in 2020, a 5% increase in 2021. Guttmacher reported an 8% increase over the three-year period from 2017 to 2020.

As noted above, these figures do not include abortions that use pills obtained outside of clinical settings.

Guttmacher says that in 2020 there were 14.4 abortions in the U.S. per 1,000 women ages 15 to 44. Its data shows that the rate of abortions among women has generally been declining in the U.S. since 1981, when it reported there were 29.3 abortions per 1,000 women in that age range.

The CDC says that in 2021, there were 11.6 abortions in the U.S. per 1,000 women ages 15 to 44. (That figure excludes data from California, the District of Columbia, Maryland, New Hampshire and New Jersey.) Like Guttmacher’s data, the CDC’s figures also suggest a general decline in the abortion rate over time. In 1980, when the CDC reported on all 50 states and D.C., it said there were 25 abortions per 1,000 women ages 15 to 44.

That said, both Guttmacher and the CDC say there were slight increases in the rate of abortions during the late 2010s and early 2020s. Guttmacher says the abortion rate per 1,000 women ages 15 to 44 rose from 13.5 in 2017 to 14.4 in 2020. The CDC says it rose from 11.2 per 1,000 in 2017 to 11.4 in 2019, before falling back to 11.1 in 2020 and then rising again to 11.6 in 2021. (The CDC’s figures for those years exclude data from California, D.C., Maryland, New Hampshire and New Jersey.)

The CDC broadly divides abortions into two categories: surgical abortions and medication abortions, which involve pills. Since the Food and Drug Administration first approved abortion pills in 2000, their use has increased over time as a share of abortions nationally, according to both the CDC and Guttmacher.

The majority of abortions in the U.S. now involve pills, according to both the CDC and Guttmacher. The CDC says 56% of U.S. abortions in 2021 involved pills, up from 53% in 2020 and 44% in 2019. Its figures for 2021 include the District of Columbia and 44 states that provided this data; its figures for 2020 include D.C. and 44 states (though not all of the same states as in 2021), and its figures for 2019 include D.C. and 45 states.

Guttmacher, which measures this every three years, says 53% of U.S. abortions involved pills in 2020, up from 39% in 2017.

Two pills commonly used together for medication abortions are mifepristone, which, taken first, blocks hormones that support a pregnancy, and misoprostol, which then causes the uterus to empty. According to the FDA, medication abortions are safe  until 10 weeks into pregnancy.

Surgical abortions conducted  during the first trimester  of pregnancy typically use a suction process, while the relatively few surgical abortions that occur  during the second trimester  of a pregnancy typically use a process called dilation and evacuation, according to the UCLA School of Medicine.

In 2020, there were 1,603 facilities in the U.S. that provided abortions,  according to Guttmacher . This included 807 clinics, 530 hospitals and 266 physicians’ offices.

A horizontal stacked bar chart showing the total number of abortion providers down since 1982.

While clinics make up half of the facilities that provide abortions, they are the sites where the vast majority (96%) of abortions are administered, either through procedures or the distribution of pills, according to Guttmacher’s 2020 data. (This includes 54% of abortions that are administered at specialized abortion clinics and 43% at nonspecialized clinics.) Hospitals made up 33% of the facilities that provided abortions in 2020 but accounted for only 3% of abortions that year, while just 1% of abortions were conducted by physicians’ offices.

Looking just at clinics – that is, the total number of specialized abortion clinics and nonspecialized clinics in the U.S. – Guttmacher found the total virtually unchanged between 2017 (808 clinics) and 2020 (807 clinics). However, there were regional differences. In the Midwest, the number of clinics that provide abortions increased by 11% during those years, and in the West by 6%. The number of clinics  decreased  during those years by 9% in the Northeast and 3% in the South.

The total number of abortion providers has declined dramatically since the 1980s. In 1982, according to Guttmacher, there were 2,908 facilities providing abortions in the U.S., including 789 clinics, 1,405 hospitals and 714 physicians’ offices.

The CDC does not track the number of abortion providers.

In the District of Columbia and the 46 states that provided abortion and residency information to the CDC in 2021, 10.9% of all abortions were performed on women known to live outside the state where the abortion occurred – slightly higher than the percentage in 2020 (9.7%). That year, D.C. and 46 states (though not the same ones as in 2021) reported abortion and residency data. (The total number of abortions used in these calculations included figures for women with both known and unknown residential status.)

The share of reported abortions performed on women outside their state of residence was much higher before the 1973 Roe decision that stopped states from banning abortion. In 1972, 41% of all abortions in D.C. and the 20 states that provided this information to the CDC that year were performed on women outside their state of residence. In 1973, the corresponding figure was 21% in the District of Columbia and the 41 states that provided this information, and in 1974 it was 11% in D.C. and the 43 states that provided data.

In the District of Columbia and the 46 states that reported age data to  the CDC in 2021, the majority of women who had abortions (57%) were in their 20s, while about three-in-ten (31%) were in their 30s. Teens ages 13 to 19 accounted for 8% of those who had abortions, while women ages 40 to 44 accounted for about 4%.

The vast majority of women who had abortions in 2021 were unmarried (87%), while married women accounted for 13%, according to  the CDC , which had data on this from 37 states.

A pie chart showing that, in 2021, majority of abortions were for women who had never had one before.

In the District of Columbia, New York City (but not the rest of New York) and the 31 states that reported racial and ethnic data on abortion to  the CDC , 42% of all women who had abortions in 2021 were non-Hispanic Black, while 30% were non-Hispanic White, 22% were Hispanic and 6% were of other races.

Looking at abortion rates among those ages 15 to 44, there were 28.6 abortions per 1,000 non-Hispanic Black women in 2021; 12.3 abortions per 1,000 Hispanic women; 6.4 abortions per 1,000 non-Hispanic White women; and 9.2 abortions per 1,000 women of other races, the  CDC reported  from those same 31 states, D.C. and New York City.

For 57% of U.S. women who had induced abortions in 2021, it was the first time they had ever had one,  according to the CDC.  For nearly a quarter (24%), it was their second abortion. For 11% of women who had an abortion that year, it was their third, and for 8% it was their fourth or more. These CDC figures include data from 41 states and New York City, but not the rest of New York.

A bar chart showing that most U.S. abortions in 2021 were for women who had previously given birth.

Nearly four-in-ten women who had abortions in 2021 (39%) had no previous live births at the time they had an abortion,  according to the CDC . Almost a quarter (24%) of women who had abortions in 2021 had one previous live birth, 20% had two previous live births, 10% had three, and 7% had four or more previous live births. These CDC figures include data from 41 states and New York City, but not the rest of New York.

The vast majority of abortions occur during the first trimester of a pregnancy. In 2021, 93% of abortions occurred during the first trimester – that is, at or before 13 weeks of gestation,  according to the CDC . An additional 6% occurred between 14 and 20 weeks of pregnancy, and about 1% were performed at 21 weeks or more of gestation. These CDC figures include data from 40 states and New York City, but not the rest of New York.

About 2% of all abortions in the U.S. involve some type of complication for the woman , according to an article in StatPearls, an online health care resource. “Most complications are considered minor such as pain, bleeding, infection and post-anesthesia complications,” according to the article.

The CDC calculates  case-fatality rates for women from induced abortions – that is, how many women die from abortion-related complications, for every 100,000 legal abortions that occur in the U.S .  The rate was lowest during the most recent period examined by the agency (2013 to 2020), when there were 0.45 deaths to women per 100,000 legal induced abortions. The case-fatality rate reported by the CDC was highest during the first period examined by the agency (1973 to 1977), when it was 2.09 deaths to women per 100,000 legal induced abortions. During the five-year periods in between, the figure ranged from 0.52 (from 1993 to 1997) to 0.78 (from 1978 to 1982).

The CDC calculates death rates by five-year and seven-year periods because of year-to-year fluctuation in the numbers and due to the relatively low number of women who die from legal induced abortions.

In 2020, the last year for which the CDC has information , six women in the U.S. died due to complications from induced abortions. Four women died in this way in 2019, two in 2018, and three in 2017. (These deaths all followed legal abortions.) Since 1990, the annual number of deaths among women due to legal induced abortion has ranged from two to 12.

The annual number of reported deaths from induced abortions (legal and illegal) tended to be higher in the 1980s, when it ranged from nine to 16, and from 1972 to 1979, when it ranged from 13 to 63. One driver of the decline was the drop in deaths from illegal abortions. There were 39 deaths from illegal abortions in 1972, the last full year before Roe v. Wade. The total fell to 19 in 1973 and to single digits or zero every year after that. (The number of deaths from legal abortions has also declined since then, though with some slight variation over time.)

The number of deaths from induced abortions was considerably higher in the 1960s than afterward. For instance, there were 119 deaths from induced abortions in  1963  and 99 in  1965 , according to reports by the then-U.S. Department of Health, Education and Welfare, a precursor to the Department of Health and Human Services. The CDC is a division of Health and Human Services.

Note: This is an update of a post originally published May 27, 2022, and first updated June 24, 2022.

what is a case control studies in research

Sign up for our weekly newsletter

Fresh data delivered Saturday mornings

Key facts about the abortion debate in America

Public opinion on abortion, three-in-ten or more democrats and republicans don’t agree with their party on abortion, partisanship a bigger factor than geography in views of abortion access locally, do state laws on abortion reflect public opinion, most popular.

About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of The Pew Charitable Trusts .

Body Composition and Anthropometric Measurements in Children and Adolescents with Autism Spectrum Disorder: A Case-Control Study in Lebanon

Affiliations.

  • 1 Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon.
  • 2 UMR Inserm 1253 Ibrain, Université de Tours, 37032 Tours, France.
  • 3 Department of Nutrition and Food Sciences, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon.
  • PMID: 38542757
  • PMCID: PMC10976266
  • DOI: 10.3390/nu16060847

The occurrence of overweight and obesity among individuals with Autism Spectrum Disorder (ASD) has become a worldwide epidemic. However, there is limited research on this topic in the Lebanese population. Therefore, this study aimed to assess the differences in anthropometric measurements and body composition variables among Lebanese children, pre-adolescents, and adolescents diagnosed with ASD in contrast to typically developing peers across various developmental stages. Additionally, it aimed to investigate the prevalence of overweight and obesity within this population. A total of 86 participants with ASD and 86 controls were involved in this case-control study, conducted between June 2022 and June 2023. Anthropometric measurements and body composition variables were assessed, followed by statistical analyses to examine the differences between these two groups. The results revealed a significantly higher prevalence of overweight and obesity among individuals with ASD, particularly evident during childhood and pre-adolescence. Additionally, this group exhibited a higher body fat mass and total body fat percentage compared to controls. However, there were no significant differences observed between the two groups during adolescence. These findings emphasize the significance of monitoring and addressing weight status in individuals with ASD to improve their overall health outcomes. Future research directions could focus on investigating the underlying mechanisms contributing to the heightened prevalence of overweight and obesity in this population, ultimately enhancing their quality of life and well-being.

Keywords: Autism Spectrum Disorder (ASD); body composition; developmental stages; obesity; overweight; typically developing children.

  • Autism Spectrum Disorder* / diagnosis
  • Autism Spectrum Disorder* / epidemiology
  • Body Composition
  • Case-Control Studies
  • Lebanon / epidemiology
  • Obesity / epidemiology
  • Overweight / epidemiology
  • Quality of Life

Grants and funding

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • HHS Author Manuscripts

Logo of nihpa

Observational Studies: Cohort and Case-Control Studies

Jae w. song.

1 Research Fellow, Section of Plastic Surgery, Department of Surgery The University of Michigan Health System; Ann Arbor, MI

Kevin C. Chung

2 Professor of Surgery, Section of Plastic Surgery, Department of Surgery The University of Michigan Health System; Ann Arbor, MI

Observational studies are an important category of study designs. To address some investigative questions in plastic surgery, randomized controlled trials are not always indicated or ethical to conduct. Instead, observational studies may be the next best method to address these types of questions. Well-designed observational studies have been shown to provide results similar to randomized controlled trials, challenging the belief that observational studies are second-rate. Cohort studies and case-control studies are two primary types of observational studies that aid in evaluating associations between diseases and exposures. In this review article, we describe these study designs, methodological issues, and provide examples from the plastic surgery literature.

Because of the innovative nature of the specialty, plastic surgeons are frequently confronted with a spectrum of clinical questions by patients who inquire about “best practices.” It is thus essential that plastic surgeons know how to critically appraise the literature to understand and practice evidence-based medicine (EBM) and also contribute to the effort by carrying out high-quality investigations. 1 Well-designed randomized controlled trials (RCTs) have held the pre-eminent position in the hierarchy of EBM as level I evidence ( Table 1 ). However, RCT methodology, which was first developed for drug trials, can be difficult to conduct for surgical investigations. 3 Instead, well-designed observational studies, recognized as level II or III evidence, can play an important role in deriving evidence for plastic surgery. Results from observational studies are often criticized for being vulnerable to influences by unpredictable confounding factors. However, recent work has challenged this notion, showing comparable results between observational studies and RCTs. 4 , 5 Observational studies can also complement RCTs in hypothesis generation, establishing questions for future RCTs, and defining clinical conditions.

Levels of Evidence Based Medicine

From REF 1 .

Observational studies fall under the category of analytic study designs and are further sub-classified as observational or experimental study designs ( Figure 1 ). The goal of analytic studies is to identify and evaluate causes or risk factors of diseases or health-related events. The differentiating characteristic between observational and experimental study designs is that in the latter, the presence or absence of undergoing an intervention defines the groups. By contrast, in an observational study, the investigator does not intervene and rather simply “observes” and assesses the strength of the relationship between an exposure and disease variable. 6 Three types of observational studies include cohort studies, case-control studies, and cross-sectional studies ( Figure 1 ). Case-control and cohort studies offer specific advantages by measuring disease occurrence and its association with an exposure by offering a temporal dimension (i.e. prospective or retrospective study design). Cross-sectional studies, also known as prevalence studies, examine the data on disease and exposure at one particular time point ( Figure 2 ). 6 Because the temporal relationship between disease occurrence and exposure cannot be established, cross-sectional studies cannot assess the cause and effect relationship. In this review, we will primarily discuss cohort and case-control study designs and related methodologic issues.

An external file that holds a picture, illustration, etc.
Object name is nihms-237355-f0001.jpg

Analytic Study Designs. Adapted with permission from Joseph Eisenberg, Ph.D.

An external file that holds a picture, illustration, etc.
Object name is nihms-237355-f0002.jpg

Temporal Design of Observational Studies: Cross-sectional studies are known as prevalence studies and do not have an inherent temporal dimension. These studies evaluate subjects at one point in time, the present time. By contrast, cohort studies can be either retrospective (latin derived prefix, “retro” meaning “back, behind”) or prospective (greek derived prefix, “pro” meaning “before, in front of”). Retrospective studies “look back” in time contrasting with prospective studies, which “look ahead” to examine causal associations. Case-control study designs are also retrospective and assess the history of the subject for the presence or absence of an exposure.

COHORT STUDY

The term “cohort” is derived from the Latin word cohors . Roman legions were composed of ten cohorts. During battle each cohort, or military unit, consisting of a specific number of warriors and commanding centurions, were traceable. The word “cohort” has been adopted into epidemiology to define a set of people followed over a period of time. W.H. Frost, an epidemiologist from the early 1900s, was the first to use the word “cohort” in his 1935 publication assessing age-specific mortality rates and tuberculosis. 7 The modern epidemiological definition of the word now means a “group of people with defined characteristics who are followed up to determine incidence of, or mortality from, some specific disease, all causes of death, or some other outcome.” 7

Study Design

A well-designed cohort study can provide powerful results. In a cohort study, an outcome or disease-free study population is first identified by the exposure or event of interest and followed in time until the disease or outcome of interest occurs ( Figure 3A ). Because exposure is identified before the outcome, cohort studies have a temporal framework to assess causality and thus have the potential to provide the strongest scientific evidence. 8 Advantages and disadvantages of a cohort study are listed in Table 2 . 2 , 9 Cohort studies are particularly advantageous for examining rare exposures because subjects are selected by their exposure status. Additionally, the investigator can examine multiple outcomes simultaneously. Disadvantages include the need for a large sample size and the potentially long follow-up duration of the study design resulting in a costly endeavor.

An external file that holds a picture, illustration, etc.
Object name is nihms-237355-f0003.jpg

Cohort and Case-Control Study Designs

Advantages and Disadvantages of the Cohort Study

Cohort studies can be prospective or retrospective ( Figure 2 ). Prospective studies are carried out from the present time into the future. Because prospective studies are designed with specific data collection methods, it has the advantage of being tailored to collect specific exposure data and may be more complete. The disadvantage of a prospective cohort study may be the long follow-up period while waiting for events or diseases to occur. Thus, this study design is inefficient for investigating diseases with long latency periods and is vulnerable to a high loss to follow-up rate. Although prospective cohort studies are invaluable as exemplified by the landmark Framingham Heart Study, started in 1948 and still ongoing, 10 in the plastic surgery literature this study design is generally seen to be inefficient and impractical. Instead, retrospective cohort studies are better indicated given the timeliness and inexpensive nature of the study design.

Retrospective cohort studies, also known as historical cohort studies, are carried out at the present time and look to the past to examine medical events or outcomes. In other words, a cohort of subjects selected based on exposure status is chosen at the present time, and outcome data (i.e. disease status, event status), which was measured in the past, are reconstructed for analysis. The primary disadvantage of this study design is the limited control the investigator has over data collection. The existing data may be incomplete, inaccurate, or inconsistently measured between subjects. 2 However, because of the immediate availability of the data, this study design is comparatively less costly and shorter than prospective cohort studies. For example, Spear and colleagues examined the effect of obesity and complication rates after undergoing the pedicled TRAM flap reconstruction by retrospectively reviewing 224 pedicled TRAM flaps in 200 patients over a 10-year period. 11 In this example, subjects who underwent the pedicled TRAM flap reconstruction were selected and categorized into cohorts by their exposure status: normal/underweight, overweight, or obese. The outcomes of interest were various flap and donor site complications. The findings revealed that obese patients had a significantly higher incidence of donor site complications, multiple flap complications, and partial flap necrosis than normal or overweight patients. An advantage of the retrospective study design analysis is the immediate access to the data. A disadvantage is the limited control over the data collection because data was gathered retrospectively over 10-years; for example, a limitation reported by the authors is that mastectomy flap necrosis was not uniformly recorded for all subjects. 11

An important distinction lies between cohort studies and case-series. The distinguishing feature between these two types of studies is the presence of a control, or unexposed, group. Contrasting with epidemiological cohort studies, case-series are descriptive studies following one small group of subjects. In essence, they are extensions of case reports. Usually the cases are obtained from the authors' experiences, generally involve a small number of patients, and more importantly, lack a control group. 12 There is often confusion in designating studies as “cohort studies” when only one group of subjects is examined. Yet, unless a second comparative group serving as a control is present, these studies are defined as case-series. The next step in strengthening an observation from a case-series is selecting appropriate control groups to conduct a cohort or case-control study, the latter which is discussed in the following section about case-control studies. 9

Methodological Issues

Selection of subjects in cohort studies.

The hallmark of a cohort study is defining the selected group of subjects by exposure status at the start of the investigation. A critical characteristic of subject selection is to have both the exposed and unexposed groups be selected from the same source population ( Figure 4 ). 9 Subjects who are not at risk for developing the outcome should be excluded from the study. The source population is determined by practical considerations, such as sampling. Subjects may be effectively sampled from the hospital, be members of a community, or from a doctor's individual practice. A subset of these subjects will be eligible for the study.

An external file that holds a picture, illustration, etc.
Object name is nihms-237355-f0005.jpg

Levels of Subject Selection. Adapted from Ref 9 .

Attrition Bias (Loss to follow-up)

Because prospective cohort studies may require long follow-up periods, it is important to minimize loss to follow-up. Loss to follow-up is a situation in which the investigator loses contact with the subject, resulting in missing data. If too many subjects are loss to follow-up, the internal validity of the study is reduced. A general rule of thumb requires that the loss to follow-up rate not exceed 20% of the sample. 6 Any systematic differences related to the outcome or exposure of risk factors between those who drop out and those who stay in the study must be examined, if possible, by comparing individuals who remain in the study and those who were loss to follow-up or dropped out. It is therefore important to select subjects who can be followed for the entire duration of the cohort study. Methods to minimize loss to follow-up are listed in Table 3 .

Methods to Minimize Loss to Follow-Up

Adapted from REF 2 .

CASE-CONTROL STUDIES

Case-control studies were historically borne out of interest in disease etiology. The conceptual basis of the case-control study is similar to taking a history and physical; the diseased patient is questioned and examined, and elements from this history taking are knitted together to reveal characteristics or factors that predisposed the patient to the disease. In fact, the practice of interviewing patients about behaviors and conditions preceding illness dates back to the Hippocratic writings of the 4 th century B.C. 7

Reasons of practicality and feasibility inherent in the study design typically dictate whether a cohort study or case-control study is appropriate. This study design was first recognized in Janet Lane-Claypon's study of breast cancer in 1926, revealing the finding that low fertility rate raises the risk of breast cancer. 13 , 14 In the ensuing decades, case-control study methodology crystallized with the landmark publication linking smoking and lung cancer in the 1950s. 15 Since that time, retrospective case-control studies have become more prominent in the biomedical literature with more rigorous methodological advances in design, execution, and analysis.

Case-control studies identify subjects by outcome status at the outset of the investigation. Outcomes of interest may be whether the subject has undergone a specific type of surgery, experienced a complication, or is diagnosed with a disease ( Figure 3B ). Once outcome status is identified and subjects are categorized as cases, controls (subjects without the outcome but from the same source population) are selected. Data about exposure to a risk factor or several risk factors are then collected retrospectively, typically by interview, abstraction from records, or survey. Case-control studies are well suited to investigate rare outcomes or outcomes with a long latency period because subjects are selected from the outset by their outcome status. Thus in comparison to cohort studies, case-control studies are quick, relatively inexpensive to implement, require comparatively fewer subjects, and allow for multiple exposures or risk factors to be assessed for one outcome ( Table 4 ). 2 , 9

Advantages and Disadvantages of the Case-Control Study

An example of a case-control investigation is by Zhang and colleagues who examined the association of environmental and genetic factors associated with rare congenital microtia, 16 which has an estimated prevalence of 0.83 to 17.4 in 10,000. 17 They selected 121 congenital microtia cases based on clinical phenotype, and 152 unaffected controls, matched by age and sex in the same hospital and same period. Controls were of Hans Chinese origin from Jiangsu, China, the same area from where the cases were selected. This allowed both the controls and cases to have the same genetic background, important to note given the investigated association between genetic factors and congenital microtia. To examine environmental factors, a questionnaire was administered to the mothers of both cases and controls. The authors concluded that adverse maternal health was among the main risk factors for congenital microtia, specifically maternal disease during pregnancy (OR 5.89, 95% CI 2.36-14.72), maternal toxicity exposure during pregnancy (OR 4.76, 95% CI 1.66-13.68), and resident area, such as living near industries associated with air pollution (OR 7.00, 95% CI 2.09-23.47). 16 A case-control study design is most efficient for this investigation, given the rarity of the disease outcome. Because congenital microtia is thought to have multifactorial causes, an additional advantage of the case-control study design in this example is the ability to examine multiple exposures and risk factors.

Selection of Cases

Sampling in a case-control study design begins with selecting the cases. In a case-control study, it is imperative that the investigator has explicitly defined inclusion and exclusion criteria prior to the selection of cases. For example, if the outcome is having a disease, specific diagnostic criteria, disease subtype, stage of disease, or degree of severity should be defined. Such criteria ensure that all the cases are homogenous. Second, cases may be selected from a variety of sources, including hospital patients, clinic patients, or community subjects. Many communities maintain registries of patients with certain diseases and can serve as a valuable source of cases. However, despite the methodologic convenience of this method, validity issues may arise. For example, if cases are selected from one hospital, identified risk factors may be unique to that single hospital. This methodological choice may weaken the generalizability of the study findings. Another example is choosing cases from the hospital versus the community; most likely cases from the hospital sample will represent a more severe form of the disease than those in the community. 2 Finally, it is also important to select cases that are representative of cases in the target population to strengthen the study's external validity ( Figure 4 ). Potential reasons why cases from the original target population eventually filter through and are available as cases (study participants) for a case-control study are illustrated in Figure 5 .

An external file that holds a picture, illustration, etc.
Object name is nihms-237355-f0006.jpg

Levels of Case Selection. Adapted from Ref 2 .

Selection of Controls

Selecting the appropriate group of controls can be one of the most demanding aspects of a case-control study. An important principle is that the distribution of exposure should be the same among cases and controls; in other words, both cases and controls should stem from the same source population. The investigator may also consider the control group to be an at-risk population, with the potential to develop the outcome. Because the validity of the study depends upon the comparability of these two groups, cases and controls should otherwise meet the same inclusion criteria in the study.

A case-control study design that exemplifies this methodological feature is by Chung and colleagues, who examined maternal cigarette smoking during pregnancy and the risk of newborns developing cleft lip/palate. 18 A salient feature of this study is the use of the 1996 U.S. Natality database, a population database, from which both cases and controls were selected. This database provides a large sample size to assess newborn development of cleft lip/palate (outcome), which has a reported incidence of 1 in 1000 live births, 19 and also enabled the investigators to choose controls (i.e., healthy newborns) that were generalizable to the general population to strengthen the study's external validity. A significant relationship with maternal cigarette smoking and cleft lip/palate in the newborn was reported in this study (adjusted OR 1.34, 95% CI 1.36-1.76). 18

Matching is a method used in an attempt to ensure comparability between cases and controls and reduces variability and systematic differences due to background variables that are not of interest to the investigator. 8 Each case is typically individually paired with a control subject with respect to the background variables. The exposure to the risk factor of interest is then compared between the cases and the controls. This matching strategy is called individual matching. Age, sex, and race are often used to match cases and controls because they are typically strong confounders of disease. 20 Confounders are variables associated with the risk factor and may potentially be a cause of the outcome. 8 Table 5 lists several advantages and disadvantages with a matching design.

Advantages and Disadvantages for Using a Matching Strategy

Multiple Controls

Investigations examining rare outcomes may have a limited number of cases to select from, whereas the source population from which controls can be selected is much larger. In such scenarios, the study may be able to provide more information if multiple controls per case are selected. This method increases the “statistical power” of the investigation by increasing the sample size. The precision of the findings may improve by having up to about three or four controls per case. 21 - 23

Bias in Case-Control Studies

Evaluating exposure status can be the Achilles heel of case-control studies. Because information about exposure is typically collected by self-report, interview, or from recorded information, it is susceptible to recall bias, interviewer bias, or will rely on the completeness or accuracy of recorded information, respectively. These biases decrease the internal validity of the investigation and should be carefully addressed and reduced in the study design. Recall bias occurs when a differential response between cases and controls occurs. The common scenario is when a subject with disease (case) will unconsciously recall and report an exposure with better clarity due to the disease experience. Interviewer bias occurs when the interviewer asks leading questions or has an inconsistent interview approach between cases and controls. A good study design will implement a standardized interview in a non-judgemental atmosphere with well-trained interviewers to reduce interviewer bias. 9

The STROBE Statement: The Strengthening the Reporting of Observational Studies in Epidemiology Statement

In 2004, the first meeting of the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) group took place in Bristol, UK. 24 The aim of the group was to establish guidelines on reporting observational research to improve the transparency of the methods, thereby facilitating the critical appraisal of a study's findings. A well-designed but poorly reported study is disadvantaged in contributing to the literature because the results and generalizability of the findings may be difficult to assess. Thus a 22-item checklist was generated to enhance the reporting of observational studies across disciplines. 25 , 26 This checklist is also located at the following website: www.strobe-statement.org . This statement is applicable to cohort studies, case-control studies, and cross-sectional studies. In fact, 18 of the checklist items are common to all three types of observational studies, and 4 items are specific to each of the 3 specific study designs. In an effort to provide specific guidance to go along with this checklist, an “explanation and elaboration” article was published for users to better appreciate each item on the checklist. 27 Plastic surgery investigators should peruse this checklist prior to designing their study and when they are writing up the report for publication. In fact, some journals now require authors to follow the STROBE Statement. A list of participating journals can be found on this website: http://www.strobe-statement.org./index.php?id=strobe-endorsement .

Due to the limitations in carrying out RCTs in surgical investigations, observational studies are becoming more popular to investigate the relationship between exposures, such as risk factors or surgical interventions, and outcomes, such as disease states or complications. Recognizing that well-designed observational studies can provide valid results is important among the plastic surgery community, so that investigators can both critically appraise and appropriately design observational studies to address important clinical research questions. The investigator planning an observational study can certainly use the STROBE statement as a tool to outline key features of a study as well as coming back to it again at the end to enhance transparency in methodology reporting.

Acknowledgments

Supported in part by a Midcareer Investigator Award in Patient-Oriented Research (K24 AR053120) from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (to Dr. Kevin C. Chung).

None of the authors has a financial interest in any of the products, devices, or drugs mentioned in this manuscript.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

IMAGES

  1. Case Control

    what is a case control studies in research

  2. What is a Case Control Study?

    what is a case control studies in research

  3. A practical introduction to conducting and using case‐control studies

    what is a case control studies in research

  4. PPT

    what is a case control studies in research

  5. Case-control and Cohort studies: A brief overview

    what is a case control studies in research

  6. PPT

    what is a case control studies in research

VIDEO

  1. (3) Case control

  2. Case-Control studies

  3. Module 7 Case Control studies Research Program Certificate 20231

  4. Case control studies #mrcgpakt #generalpractitioner #medicaleducation #aktexam

  5. MPH 5323: General Epidemiology

  6. Medical Statistics

COMMENTS

  1. What Is a Case-Control Study?

    Case-control studies are a type of observational study often used in fields like medical research, environmental health, or epidemiology. While most observational studies are qualitative in nature, case-control studies can also be quantitative, and they often are in healthcare settings. Case-control studies can be used for both exploratory and ...

  2. Case Control Studies

    A case-control study is a type of observational study commonly used to look at factors associated with diseases or outcomes.[1] The case-control study starts with a group of cases, which are the individuals who have the outcome of interest. The researcher then tries to construct a second group of individuals called the controls, who are similar to the case individuals but do not have the ...

  3. A Practical Overview of Case-Control Studies in Clinical Practice

    Case-control studies are one of the major observational study designs for performing clinical research. The advantages of these study designs over other study designs are that they are relatively quick to perform, economical, and easy to design and implement. Case-control studies are particularly appropriate for studying disease outbreaks, rare diseases, or outcomes of interest. This article ...

  4. Case Control Study: Definition & Examples

    A case-control study is a research method where two groups of people are compared - those with the condition (cases) and those without (controls). By looking at their past, researchers try to identify what factors might have contributed to the condition in the 'case' group.

  5. Case Control Study: Definition, Benefits & Examples

    A case control study is a retrospective, observational study that compares two existing groups. Researchers form these groups based on the existence of a condition in the case group and the lack of that condition in the control group. They evaluate the differences in the histories between these two groups looking for factors that might cause a ...

  6. Research Design: Case-Control Studies

    Abstract. Case-control studies are observational studies in which cases are subjects who have a characteristic of interest, such as a clinical diagnosis, and controls are (usually) matched subjects who do not have that characteristic. After cases and controls are identified, researchers "look back" to determine what past events (exposures ...

  7. Case-control study

    A case-control study (also known as case-referent study) is a type of observational study in which two existing groups differing in outcome are identified and compared on the basis of some supposed causal attribute. Case-control studies are often used to identify factors that may contribute to a medical condition by comparing subjects who have the condition with patients who do not have ...

  8. Case-control study in medical research: Uses and limitations

    A case-control study is a type of medical research investigation often used to help determine the cause of a disease, particularly when investigating a disease outbreak or rare condition.

  9. Research Design: Case-Control Studies

    Abstract. Case-control studies are observational studies in which cases are subjects who have a characteristic of interest, such as a clinical diagnosis, and controls are (usually) matched subjects who do not have that characteristic. After cases and controls are identified, researchers "look back" to determine what past events (exposures ...

  10. Case Control Studies

    A case-control study is a type of observational study commonly used to look at factors associated with diseases or outcomes. The case-control study starts with a group of cases, which are the individuals who have the outcome of interest. The researcher then tries to construct a second group of individuals called the controls, who are similar to ...

  11. A Practical Overview of Case-Control Studies in Clinical Practice

    Abstract. Case-control studies are one of the major observational study designs for performing clinical research. The advantages of these study designs over other study designs are that they are relatively quick to perform, economical, and easy to design and implement. Case-control studies are particularly appropriate for studying disease ...

  12. Case Control

    Case control studies are observational because no intervention is attempted and no attempt is made to alter the course of the disease. The goal is to retrospectively determine the exposure to the risk factor of interest from each of the two groups of individuals: cases and controls. These studies are designed to estimate odds.

  13. Epidemiology in Practice: Case-Control Studies

    Introduction. A case-control study is designed to help determine if an exposure is associated with an outcome (i.e., disease or condition of interest). In theory, the case-control study can be described simply. First, identify the cases (a group known to have the outcome) and the controls (a group known to be free of the outcome).

  14. Case-control and Cohort studies: A brief overview

    Case-control studies. Case-control studies are retrospective. They clearly define two groups at the start: one with the outcome/disease and one without the outcome/disease. They look back to assess whether there is a statistically significant difference in the rates of exposure to a defined risk factor between the groups.

  15. LibGuides: Quantitative study designs: Case Control

    Case Control. In a Case-Control study there are two groups of people: one has a health issue (Case group), and this group is "matched" to a Control group without the health issue based on characteristics like age, gender, occupation. In this study type, we can look back in the patient's histories to look for exposure to risk factors that ...

  16. Case-Control Studies

    Case-control studies are a type of quantitative research "designed to sample a group of people with and a group of people without the disease or the outcome measure being studied" (Schmidt & Brown, 2019, p. 209). The cases are individuals with the disease or outcome measure, and the controls are individuals without the disease or outcome measure.

  17. What is a Case-Control Study?

    Abstract. Case-control (case-control, case-controlled) studies are beginning to appear more frequently in the neurosurgical literature. They can be more robust, if well designed, than the typical case series or even cohort study to determine or refine treatment algorithms. The purpose of this review is to define and explore the differences ...

  18. Case-Control Studies

    Case-control studies are a type of quantitative research "designed to sample a group of people with and a group of people without the disease or the outcome measure being studied" (Schmidt & Brown, 2019, p. 209). The cases are individuals with the disease or outcome measure, and the controls are individuals without the disease or outcome measure.

  19. Retrospective Cohort Study: Definition & Examples

    Case-control studies are performed on individuals who already have a disease, and researchers compare them with other individuals who share similar characteristics but do not have the disease. In a retrospective cohort study, on the other hand, researchers examine a group before any of the subjects have developed the disease.

  20. Design and data analysis case-controlled study in clinical research

    Introduction. Clinicians think of case-control study when they want to ascertain association between one clinical condition and an exposure or when a researcher wants to compare patients with disease exposed to the risk factors to non-exposed control group. In other words, case-control study compares subjects who have disease or outcome (cases ...

  21. Fatal Traffic Risks With a Total Solar Eclipse in the US

    This case-control study describes the incidence of fatal traffic crashes in the US during the 2017 total solar eclipse. ... 5 Center for Leading Injury Prevention Practice Education & Research, Toronto, Ontario, Canada. 6 Department of Medicine, University of British Columbia, Vancouver, ...

  22. Hyperuricemia as an independent risk factor for achilles tendon rupture

    This case control study has found that hyperuricemia is an autonomous risk factor for ATR in the male Chinese population. The analysis of blood biochemical test results showed a considerable difference in uric acid values between the two groups. To date, Studies on the association between hyperuricemia and ATR in male were scarce.

  23. Research Guides: Study Design 101: Case Control Study

    A case-control study was conducted to investigate if exposure to zinc oxide is a more effective skin cancer prevention measure. The study involved comparing a group of former lifeguards that had developed cancer on their cheeks and noses (cases) to a group of lifeguards without this type of cancer (controls) and assess their prior exposure to ...

  24. Effectiveness of Autumn 2023 COVID-19 vaccination and residual

    During the study period, the JN.1 variant became dominant in England. Methods Vaccine effectiveness against hospitalisation was estimated throughout using the test-negative case-control study design where positive PCR tests from hospitalised individuals are cases and comparable negative PCR tests are controls.

  25. An Introduction to the Fundamentals of Cohort and Case-Control Studies

    Design. In a case-control study, a number of cases and noncases (controls) are identified, and the occurrence of one or more prior exposures is compared between groups to evaluate drug-outcome associations ( Figure 1 ). A case-control study runs in reverse relative to a cohort study. 21 As such, study inception occurs when a patient ...

  26. What the data says about abortion in the U.S.

    The rate was lowest during the most recent period examined by the agency (2013 to 2020), when there were 0.45 deaths to women per 100,000 legal induced abortions. The case-fatality rate reported by the CDC was highest during the first period examined by the agency (1973 to 1977), when it was 2.09 deaths to women per 100,000 legal induced abortions.

  27. Methodology Series Module 2: Case-control Studies

    Case-Control study design is a type of observational study. In this design, participants are selected for the study based on their outcome status. Thus, some participants have the outcome of interest (referred to as cases), whereas others do not have the outcome of interest (referred to as controls). The investigator then assesses the exposure ...

  28. Body Composition and Anthropometric Measurements in Children ...

    A total of 86 participants with ASD and 86 controls were involved in this case-control study, conducted between June 2022 and June 2023. Anthropometric measurements and body composition variables were assessed, followed by statistical analyses to examine the differences between these two groups.

  29. Atmosphere

    This study addresses the pressing issue of urban air pollution impact, emphasizing the need for emissions control to ensure environmental equity. Focused on the Toluca Valley Metropolitan Area (TVMA), this research employs air quality modeling to examine ozone, sulfur dioxide, nitrogen dioxide, and carbon monoxide concentrations during three different periods in 2019.

  30. Observational Studies: Cohort and Case-Control Studies

    Cohort studies and case-control studies are two primary types of observational studies that aid in evaluating associations between diseases and exposures. In this review article, we describe these study designs, methodological issues, and provide examples from the plastic surgery literature. Keywords: observational studies, case-control study ...