StickMan Physics

StickMan Physics

Animated Physics Lessons

F=ma Practice Problems

F=ma problem set.

Practice solving for net force, using Newtons second law (F=ma), and relating F=ma to the acceleration equations.

In these practice problems we will either use F=ma or our 1D motion acceleration equations to solve force problems.

F=ma Equations

1. What is the acceleration of the 15 kg box that has 500 N of force applied to the right?

1

a = 33.33 m/s 2 Right

2. What is the acceleration of the 25 kg box that has 50 N of force applied to the right?

2

                a=2.0 m/s 2 Right

3. What is the acceleration of the 3 kg box that has 25 N of force applied to the right and 55 N left?

3

               a = 10.0 m/s 2 Left

4. What is the acceleration of the 5 kg box that has a 25 N force and 50 N force applied both right?

4

            a = 15.0 m/s 2 Right

5. What is the acceleration of the 25 kg box that has a 100 N force north and 50 N force east applied?

5

             a= 4.47 m/s 2

5b. What direction would this box accelerate?

            63.43° North of East

6. Does a 795 kg Lorinser speedy, 6300 kg elephant, or 8.6 kg wagon have more inertia and why?

            6300 kg Elephant

            The more mass the more inertia

different masses

7. How much force is required to accelerate a 795 kg Lorinser Speedy by 15 m/s 2 ?

            F = 11925 N

8. How much force is required to accelerate an 8.6 kg wagon by 15 m/s 2 ?

            F = 129 N

9. How much does a 6300 kg elephant accelerate when you apply 500 N of force?

            a = 0.0794 m/s 2

10. What is the mass of an object if it takes a net force of 40 N to accelerate at a rate of 0.88 m/s 2 ?

            m = 45.45 kg

11. How much force is required to accelerate a 0.142 kg baseball to 44.7 m/s during a pitchers 1.5 meter delivery?

            F = 94.58 N

12. A 0.050 kg golf ball leaves the tee at a speed of 75.0 m/s. The club is in contact with the ball for 0.020 s. What is the net force of the club on the ball?

                F = 187.5 N

13. A 90.0 kg astronaut receives a 30.0 N force from her jetpack. How much faster is she be moving after 2.00 seconds?

            0.667 m/s faster

14. A 795 kg car starts from rest and travels 41 m in 3.0 s. How much force did the car engine provide?

            F = 7242 N

15. Joe and his sailboat have a combined weight of 450 kg. How far has Joe sailed when he started at 5 m/s and a gust of wind provided 600 Newtons of force for 4 seconds?

            x = 30.64 m

16. Tom pulls a 45 kilogram wagon with a force of 200 Newtons at a 15° angle to the horizontal from rest. How much faster will the wagon be moving after 2 seconds?

force at an angle

            v f = 8.58 m/s

  • Back to the Newtons Second Law Lesson
  • Continue to Mass and Weight
  • Back to the Main Forces Page
  • Back to the Stickman Physics Home Page
  • Equation Sheet

Terms and Conditions - Privacy Policy

easycalculation.com

Newton Second Law of Motion Example Problems with Answers

Newton's 2nd law of motion involves force, mass and acceleration of an object. It is the acceleration of an object produced by an action or force which is directly proportional to the magnitude of the net force in the same direction and inversely proportional to the object mass. Calculate net force, mass and acceleration of an object by referring the below Newton second law of motion example problems with answers.

Newton 2nd Law of Motion Problems with Solutions

Let us consider the problem: A 15 kg object moving to the west with an acceleration of 10m/s 2 . What is the net force acting on an object?

We can calculate Force, Mass and Acceleration using the given formula.

Newton's Second Law of Motion Formulae:

Substituting the values in the above given formula,

Net Force (F net )= 15 x 10 = 150 N Therefore, the value of Net force = 150 N

Refer the newton 2nd law of motion problems with solutions: A softball has a mass of 1.5 kg and hits the catcher's glove with a force of 30 N? What is the acceleration of the softball?

Substituting the values in the above given formula, Acceleration = 30 / 1.5 = 20 m/s 2 Therefore, the value of Acceleration is 20 m/s 2

Refer the problem with solution: What is the mass of a truck if it produces a force of 15000 N while accelerating at a rate of 6 m/s 2 ?

Substituting the values in the above given formula, Mass = 15000 / 6 = 2500 kg Therefore, the value of Mass is 2500 kg

Related Examples:

  • Potential Energy Examples
  • Young's Modulus Calculation Examples
  • Kinetic Energy Example
  • Force Examples
  • Work Physics Problems With Solutions
  • Difference Quotient Examples

Calculators and Converters

  • Classical Physics

Top Calculators

Popular calculators.

  • Derivative Calculator
  • Inverse of Matrix Calculator
  • Compound Interest Calculator
  • Pregnancy Calculator Online

Top Categories

6.1 Solving Problems with Newton’s Laws

Learning objectives.

By the end of this section, you will be able to:

  • Apply problem-solving techniques to solve for quantities in more complex systems of forces
  • Use concepts from kinematics to solve problems using Newton’s laws of motion
  • Solve more complex equilibrium problems
  • Solve more complex acceleration problems
  • Apply calculus to more advanced dynamics problems

Success in problem solving is necessary to understand and apply physical principles. We developed a pattern of analyzing and setting up the solutions to problems involving Newton’s laws in Newton’s Laws of Motion ; in this chapter, we continue to discuss these strategies and apply a step-by-step process.

Problem-Solving Strategies

We follow here the basics of problem solving presented earlier in this text, but we emphasize specific strategies that are useful in applying Newton’s laws of motion . Once you identify the physical principles involved in the problem and determine that they include Newton’s laws of motion, you can apply these steps to find a solution. These techniques also reinforce concepts that are useful in many other areas of physics. Many problem-solving strategies are stated outright in the worked examples, so the following techniques should reinforce skills you have already begun to develop.

Problem-Solving Strategy

Applying newton’s laws of motion.

  • Identify the physical principles involved by listing the givens and the quantities to be calculated.
  • Sketch the situation, using arrows to represent all forces.
  • Determine the system of interest. The result is a free-body diagram that is essential to solving the problem.
  • Apply Newton’s second law to solve the problem. If necessary, apply appropriate kinematic equations from the chapter on motion along a straight line.
  • Check the solution to see whether it is reasonable.

Let’s apply this problem-solving strategy to the challenge of lifting a grand piano into a second-story apartment. Once we have determined that Newton’s laws of motion are involved (if the problem involves forces), it is particularly important to draw a careful sketch of the situation. Such a sketch is shown in Figure 6.2 (a). Then, as in Figure 6.2 (b), we can represent all forces with arrows. Whenever sufficient information exists, it is best to label these arrows carefully and make the length and direction of each correspond to the represented force.

As with most problems, we next need to identify what needs to be determined and what is known or can be inferred from the problem as stated, that is, make a list of knowns and unknowns. It is particularly crucial to identify the system of interest, since Newton’s second law involves only external forces. We can then determine which forces are external and which are internal, a necessary step to employ Newton’s second law. (See Figure 6.2 (c).) Newton’s third law may be used to identify whether forces are exerted between components of a system (internal) or between the system and something outside (external). As illustrated in Newton’s Laws of Motion , the system of interest depends on the question we need to answer. Only forces are shown in free-body diagrams, not acceleration or velocity. We have drawn several free-body diagrams in previous worked examples. Figure 6.2 (c) shows a free-body diagram for the system of interest. Note that no internal forces are shown in a free-body diagram.

Once a free-body diagram is drawn, we apply Newton’s second law. This is done in Figure 6.2 (d) for a particular situation. In general, once external forces are clearly identified in free-body diagrams, it should be a straightforward task to put them into equation form and solve for the unknown, as done in all previous examples. If the problem is one-dimensional—that is, if all forces are parallel—then the forces can be handled algebraically. If the problem is two-dimensional, then it must be broken down into a pair of one-dimensional problems. We do this by projecting the force vectors onto a set of axes chosen for convenience. As seen in previous examples, the choice of axes can simplify the problem. For example, when an incline is involved, a set of axes with one axis parallel to the incline and one perpendicular to it is most convenient. It is almost always convenient to make one axis parallel to the direction of motion, if this is known. Generally, just write Newton’s second law in components along the different directions. Then, you have the following equations:

(If, for example, the system is accelerating horizontally, then you can then set a y = 0 . a y = 0 . ) We need this information to determine unknown forces acting on a system.

As always, we must check the solution. In some cases, it is easy to tell whether the solution is reasonable. For example, it is reasonable to find that friction causes an object to slide down an incline more slowly than when no friction exists. In practice, intuition develops gradually through problem solving; with experience, it becomes progressively easier to judge whether an answer is reasonable. Another way to check a solution is to check the units. If we are solving for force and end up with units of millimeters per second, then we have made a mistake.

There are many interesting applications of Newton’s laws of motion, a few more of which are presented in this section. These serve also to illustrate some further subtleties of physics and to help build problem-solving skills. We look first at problems involving particle equilibrium, which make use of Newton’s first law, and then consider particle acceleration, which involves Newton’s second law.

Particle Equilibrium

Recall that a particle in equilibrium is one for which the external forces are balanced. Static equilibrium involves objects at rest, and dynamic equilibrium involves objects in motion without acceleration, but it is important to remember that these conditions are relative. For example, an object may be at rest when viewed from our frame of reference, but the same object would appear to be in motion when viewed by someone moving at a constant velocity. We now make use of the knowledge attained in Newton’s Laws of Motion , regarding the different types of forces and the use of free-body diagrams, to solve additional problems in particle equilibrium .

Example 6.1

Different tensions at different angles.

Thus, as you might expect,

This gives us the following relationship:

Note that T 1 T 1 and T 2 T 2 are not equal in this case because the angles on either side are not equal. It is reasonable that T 2 T 2 ends up being greater than T 1 T 1 because it is exerted more vertically than T 1 . T 1 .

Now consider the force components along the vertical or y -axis:

This implies

Substituting the expressions for the vertical components gives

There are two unknowns in this equation, but substituting the expression for T 2 T 2 in terms of T 1 T 1 reduces this to one equation with one unknown:

which yields

Solving this last equation gives the magnitude of T 1 T 1 to be

Finally, we find the magnitude of T 2 T 2 by using the relationship between them, T 2 = 1.225 T 1 T 2 = 1.225 T 1 , found above. Thus we obtain

Significance

Particle acceleration.

We have given a variety of examples of particles in equilibrium. We now turn our attention to particle acceleration problems, which are the result of a nonzero net force. Refer again to the steps given at the beginning of this section, and notice how they are applied to the following examples.

Example 6.2

Drag force on a barge.

The drag of the water F → D F → D is in the direction opposite to the direction of motion of the boat; this force thus works against F → app , F → app , as shown in the free-body diagram in Figure 6.4 (b). The system of interest here is the barge, since the forces on it are given as well as its acceleration. Because the applied forces are perpendicular, the x - and y -axes are in the same direction as F → 1 F → 1 and F → 2 . F → 2 . The problem quickly becomes a one-dimensional problem along the direction of F → app F → app , since friction is in the direction opposite to F → app . F → app . Our strategy is to find the magnitude and direction of the net applied force F → app F → app and then apply Newton’s second law to solve for the drag force F → D . F → D .

The angle is given by

From Newton’s first law, we know this is the same direction as the acceleration. We also know that F → D F → D is in the opposite direction of F → app , F → app , since it acts to slow down the acceleration. Therefore, the net external force is in the same direction as F → app , F → app , but its magnitude is slightly less than F → app . F → app . The problem is now one-dimensional. From the free-body diagram, we can see that

However, Newton’s second law states that

This can be solved for the magnitude of the drag force of the water F D F D in terms of known quantities:

Substituting known values gives

The direction of F → D F → D has already been determined to be in the direction opposite to F → app , F → app , or at an angle of 53 ° 53 ° south of west.

In Newton’s Laws of Motion , we discussed the normal force , which is a contact force that acts normal to the surface so that an object does not have an acceleration perpendicular to the surface. The bathroom scale is an excellent example of a normal force acting on a body. It provides a quantitative reading of how much it must push upward to support the weight of an object. But can you predict what you would see on the dial of a bathroom scale if you stood on it during an elevator ride? Will you see a value greater than your weight when the elevator starts up? What about when the elevator moves upward at a constant speed? Take a guess before reading the next example.

Example 6.3

What does the bathroom scale read in an elevator.

From the free-body diagram, we see that F → net = F → s − w → , F → net = F → s − w → , so we have

Solving for F s F s gives us an equation with only one unknown:

or, because w = m g , w = m g , simply

No assumptions were made about the acceleration, so this solution should be valid for a variety of accelerations in addition to those in this situation. ( Note: We are considering the case when the elevator is accelerating upward. If the elevator is accelerating downward, Newton’s second law becomes F s − w = − m a . F s − w = − m a . )

  • We have a = 1.20 m/s 2 , a = 1.20 m/s 2 , so that F s = ( 75.0 kg ) ( 9.80 m/s 2 ) + ( 75.0 kg ) ( 1.20 m/s 2 ) F s = ( 75.0 kg ) ( 9.80 m/s 2 ) + ( 75.0 kg ) ( 1.20 m/s 2 ) yielding F s = 825 N . F s = 825 N .
  • Now, what happens when the elevator reaches a constant upward velocity? Will the scale still read more than his weight? For any constant velocity—up, down, or stationary—acceleration is zero because a = Δ v Δ t a = Δ v Δ t and Δ v = 0 . Δ v = 0 . Thus, F s = m a + m g = 0 + m g F s = m a + m g = 0 + m g or F s = ( 75.0 kg ) ( 9.80 m/s 2 ) , F s = ( 75.0 kg ) ( 9.80 m/s 2 ) , which gives F s = 735 N . F s = 735 N .

Thus, the scale reading in the elevator is greater than his 735-N (165-lb.) weight. This means that the scale is pushing up on the person with a force greater than his weight, as it must in order to accelerate him upward. Clearly, the greater the acceleration of the elevator, the greater the scale reading, consistent with what you feel in rapidly accelerating versus slowly accelerating elevators. In Figure 6.5 (b), the scale reading is 735 N, which equals the person’s weight. This is the case whenever the elevator has a constant velocity—moving up, moving down, or stationary.

Check Your Understanding 6.1

Now calculate the scale reading when the elevator accelerates downward at a rate of 1.20 m/s 2 . 1.20 m/s 2 .

The solution to the previous example also applies to an elevator accelerating downward, as mentioned. When an elevator accelerates downward, a is negative, and the scale reading is less than the weight of the person. If a constant downward velocity is reached, the scale reading again becomes equal to the person’s weight. If the elevator is in free fall and accelerating downward at g , then the scale reading is zero and the person appears to be weightless.

Example 6.4

Two attached blocks.

For block 1: T → + w → 1 + N → = m 1 a → 1 T → + w → 1 + N → = m 1 a → 1

For block 2: T → + w → 2 = m 2 a → 2 . T → + w → 2 = m 2 a → 2 .

Notice that T → T → is the same for both blocks. Since the string and the pulley have negligible mass, and since there is no friction in the pulley, the tension is the same throughout the string. We can now write component equations for each block. All forces are either horizontal or vertical, so we can use the same horizontal/vertical coordinate system for both objects

When block 1 moves to the right, block 2 travels an equal distance downward; thus, a 1 x = − a 2 y . a 1 x = − a 2 y . Writing the common acceleration of the blocks as a = a 1 x = − a 2 y , a = a 1 x = − a 2 y , we now have

From these two equations, we can express a and T in terms of the masses m 1 and m 2 , and g : m 1 and m 2 , and g :

Check Your Understanding 6.2

Calculate the acceleration of the system, and the tension in the string, when the masses are m 1 = 5.00 kg m 1 = 5.00 kg and m 2 = 3.00 kg . m 2 = 3.00 kg .

Example 6.5

Atwood machine.

  • We have For m 1 , ∑ F y = T − m 1 g = m 1 a . For m 2 , ∑ F y = T − m 2 g = − m 2 a . For m 1 , ∑ F y = T − m 1 g = m 1 a . For m 2 , ∑ F y = T − m 2 g = − m 2 a . (The negative sign in front of m 2 a m 2 a indicates that m 2 m 2 accelerates downward; both blocks accelerate at the same rate, but in opposite directions.) Solve the two equations simultaneously (subtract them) and the result is ( m 2 − m 1 ) g = ( m 1 + m 2 ) a . ( m 2 − m 1 ) g = ( m 1 + m 2 ) a . Solving for a : a = m 2 − m 1 m 1 + m 2 g = 4 kg − 2 kg 4 kg + 2 kg ( 9.8 m/s 2 ) = 3.27 m/s 2 . a = m 2 − m 1 m 1 + m 2 g = 4 kg − 2 kg 4 kg + 2 kg ( 9.8 m/s 2 ) = 3.27 m/s 2 .
  • Observing the first block, we see that T − m 1 g = m 1 a T = m 1 ( g + a ) = ( 2 kg ) ( 9.8 m/s 2 + 3.27 m/s 2 ) = 26.1 N . T − m 1 g = m 1 a T = m 1 ( g + a ) = ( 2 kg ) ( 9.8 m/s 2 + 3.27 m/s 2 ) = 26.1 N .

Check Your Understanding 6.3

Determine a general formula in terms of m 1 , m 2 m 1 , m 2 and g for calculating the tension in the string for the Atwood machine shown above.

Newton’s Laws of Motion and Kinematics

Physics is most interesting and most powerful when applied to general situations that involve more than a narrow set of physical principles. Newton’s laws of motion can also be integrated with other concepts that have been discussed previously in this text to solve problems of motion. For example, forces produce accelerations, a topic of kinematics , and hence the relevance of earlier chapters.

When approaching problems that involve various types of forces, acceleration, velocity, and/or position, listing the givens and the quantities to be calculated will allow you to identify the principles involved. Then, you can refer to the chapters that deal with a particular topic and solve the problem using strategies outlined in the text. The following worked example illustrates how the problem-solving strategy given earlier in this chapter, as well as strategies presented in other chapters, is applied to an integrated concept problem.

Example 6.6

What force must a soccer player exert to reach top speed.

  • We are given the initial and final velocities (zero and 8.00 m/s forward); thus, the change in velocity is Δ v = 8.00 m/s Δ v = 8.00 m/s . We are given the elapsed time, so Δ t = 2.50 s . Δ t = 2.50 s . The unknown is acceleration, which can be found from its definition: a = Δ v Δ t . a = Δ v Δ t . Substituting the known values yields a = 8.00 m/s 2.50 s = 3.20 m/s 2 . a = 8.00 m/s 2.50 s = 3.20 m/s 2 .
  • Here we are asked to find the average force the ground exerts on the runner to produce this acceleration. (Remember that we are dealing with the force or forces acting on the object of interest.) This is the reaction force to that exerted by the player backward against the ground, by Newton’s third law. Neglecting air resistance, this would be equal in magnitude to the net external force on the player, since this force causes her acceleration. Since we now know the player’s acceleration and are given her mass, we can use Newton’s second law to find the force exerted. That is, F net = m a . F net = m a . Substituting the known values of m and a gives F net = ( 70.0 kg ) ( 3.20 m/s 2 ) = 224 N . F net = ( 70.0 kg ) ( 3.20 m/s 2 ) = 224 N .

This is a reasonable result: The acceleration is attainable for an athlete in good condition. The force is about 50 pounds, a reasonable average force.

Check Your Understanding 6.4

The soccer player stops after completing the play described above, but now notices that the ball is in position to be stolen. If she now experiences a force of 126 N to attempt to steal the ball, which is 2.00 m away from her, how long will it take her to get to the ball?

Example 6.7

What force acts on a model helicopter.

The magnitude of the force is now easily found:

Check Your Understanding 6.5

Find the direction of the resultant for the 1.50-kg model helicopter.

Example 6.8

Baggage tractor.

  • ∑ F x = m system a x ∑ F x = m system a x and ∑ F x = 820.0 t , ∑ F x = 820.0 t , so 820.0 t = ( 650.0 + 250.0 + 150.0 ) a a = 0.7809 t . 820.0 t = ( 650.0 + 250.0 + 150.0 ) a a = 0.7809 t . Since acceleration is a function of time, we can determine the velocity of the tractor by using a = d v d t a = d v d t with the initial condition that v 0 = 0 v 0 = 0 at t = 0 . t = 0 . We integrate from t = 0 t = 0 to t = 3 : t = 3 : d v = a d t , ∫ 0 3 d v = ∫ 0 3.00 a d t = ∫ 0 3.00 0.7809 t d t , v = 0.3905 t 2 ] 0 3.00 = 3.51 m/s . d v = a d t , ∫ 0 3 d v = ∫ 0 3.00 a d t = ∫ 0 3.00 0.7809 t d t , v = 0.3905 t 2 ] 0 3.00 = 3.51 m/s .
  • Refer to the free-body diagram in Figure 6.8 (b). ∑ F x = m tractor a x 820.0 t − T = m tractor ( 0.7805 ) t ( 820.0 ) ( 3.00 ) − T = ( 650.0 ) ( 0.7805 ) ( 3.00 ) T = 938 N . ∑ F x = m tractor a x 820.0 t − T = m tractor ( 0.7805 ) t ( 820.0 ) ( 3.00 ) − T = ( 650.0 ) ( 0.7805 ) ( 3.00 ) T = 938 N .

Recall that v = d s d t v = d s d t and a = d v d t a = d v d t . If acceleration is a function of time, we can use the calculus forms developed in Motion Along a Straight Line , as shown in this example. However, sometimes acceleration is a function of displacement. In this case, we can derive an important result from these calculus relations. Solving for dt in each, we have d t = d s v d t = d s v and d t = d v a . d t = d v a . Now, equating these expressions, we have d s v = d v a . d s v = d v a . We can rearrange this to obtain a d s = v d v . a d s = v d v .

Example 6.9

Motion of a projectile fired vertically.

The acceleration depends on v and is therefore variable. Since a = f ( v ) , a = f ( v ) , we can relate a to v using the rearrangement described above,

We replace ds with dy because we are dealing with the vertical direction,

We now separate the variables ( v ’s and dv ’s on one side; dy on the other):

Thus, h = 114 m . h = 114 m .

Check Your Understanding 6.6

If atmospheric resistance is neglected, find the maximum height for the mortar shell. Is calculus required for this solution?

Interactive

Explore the forces at work in this simulation when you try to push a filing cabinet. Create an applied force and see the resulting frictional force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View a free-body diagram of all the forces (including gravitational and normal forces).

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
  • Authors: William Moebs, Samuel J. Ling, Jeff Sanny
  • Publisher/website: OpenStax
  • Book title: University Physics Volume 1
  • Publication date: Sep 19, 2016
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/university-physics-volume-1/pages/1-introduction
  • Section URL: https://openstax.org/books/university-physics-volume-1/pages/6-1-solving-problems-with-newtons-laws

© Jan 19, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Gurumuda Networks

Newton’s second law of motion – problems and solutions

Solved problems in Newton’s laws of motion – Newton’s second law of motion 

1. A 1 kg object accelerated at a constant 5 m/s 2 . Estimate the net force needed to accelerate the object.

Mass (m) = 1 kg

Acceleration (a) = 5 m/s 2

Wanted : net force (∑F)

We use Newton’s second law to get the net force.

∑ F = (1 kg)(5 m/s 2 ) = 5 kg m/s 2 = 5 Newton

2. Mass of an object = 1 kg, net force ∑F = 2 Newton. Determine the magnitude and direction of the object’s acceleration….

Newton's second law of motion – problems and solutions 1

Net force (∑F) = 2 Newton

Wanted : The magnitude and direction of the acceleration (a)

a = 2 m/s 2

The direction of the acceleration = the direction of the net force (∑F)

3. Object’s mass = 2 kg, F 1 = 5 Newton, F 2 = 3 Newton. The magnitude and direction of the acceleration is…

Newton's second law of motion – problems and solutions 2

Mass (m) = 2 kg

F 1 = 5 Newton

F 2 = 3 Newton

net force :

∑ F = F 1 – F 2 = 5 – 3 = 2 Newton

The magnitude of the acceleration :

a = 1 m/s 2

Direction of the acceleration = direction of the net force = direction of F 1

4. Object’s mass = 2 kg, F 1 = 10 Newton, F 2 = 1 Newton. The magnitude and direction of the acceleration is…

Newton's second law of motion – problems and solutions 3

F 2 = 1 Newton

F 1 = 10 Newton

F 1x = F 1 cos 60 o = (10)(0.5) = 5 Newton

Net force :

∑ F = F 1x – F 2 = 5 – 1 = 4 Newton

Direction of the acceleration = direction of the net force = direction of F 1x

5. F 1 = 10 Newton, F 2 = 1 Newton, m 1 = 1 kg, m 2 = 2 kg. The magnitude and direction of the acceleration is…

Newton's second law of motion – problems and solutions 5

Mass 1 (m 1 ) = 1 kg

Mass 2 (m 2 ) = 2 kg

The net force :

∑ F = F 1 – F 2 = 10 – 1 = 9 Newton

a = ∑F / (m 1 + m 2 )

a = 9 / (1 + 2)

a = 3 m/s 2

The direction of the acceleration = the direction of the net force = direction of F 1

A 40-kg block accelerated by a force of 200 N. Acceleration of the block is 3 m/ s 2 . Determine the magnitude of friction force experienced by the block.

Newton's second law of motion – problems and solutions 7

Mass (m) = 40 kg

Force (F) = 200 N

Acceleration (a) = 3 m/s 2

Wanted: Friction force (F g )

The equation of Newton’s second law of motion

∑ F = net force, m = mass, a = acceleration

The direction of force F rightward, the direction of friction force leftward (the direction of friction force is opposite with the direction of object’s motion).

Choose rightward as positive and leftward as negative.

F – F g = m a

200 – F g = (40)(3)

200 – F g = 120

F g = 200 – 120

F g = 80 Newton

The correct answer is D.

7. Block A with a mass of 100-gram place above block B with a mass of 300 gram, and then block b pushed with a force of 5 N vertically upward. Determine the normal force exerted by block B on block A.

Newton's second law of motion – problems and solutions 2

Force (F) = 5 Newton

Mass of block A (m A ) = 100 gram = 0.1 kg

Mass of block B (m B ) = 300 gram = 0.3 kg

Acceleration of gravity (g) = 10 m/s 2

Weight of block A (w A ) = (0.1 kg)(10 m/s 2 ) = 1 kg m/s 2 = 1 Newton

Weight of block B (w B ) = (0.3 kg)(10 m/s 2 ) = 3 kg m/s 2 = 3 Newton

Wanted : Normal force exerted by block B to block A

Newton's second law of motion – problems and solutions 3

F = push force (act on block B)

w A = weight of block A (act on block A)

w B = weight of block B (act on block B)

N A = normal force exerted by block B on block A (Act on block A)

N A ’ = normal force exerted by block A on block B (Act on block B)

Apply Newton’s second law of motion on both blocks :

F – w A – w B + N A – N A ’ = (m A + m B ) a

N A and N A ’ are action-reaction forces that have the same magnitude but opposite in direction so eliminated from the equation.

F – w A – w B = (m A + m B ) a

5 – 1 – 3 = (0.1 + 0.3) a

5 – 4 = (0.4) a

1 = (0.4) a

a = 1 / 0.4

a = 2.5 m/s 2

Apply Newton’s second law of motion on block A :

N A – w A = m A a

N A – 1 = (0.1)(2.5)

N A – 1 = 0.25

N A = 1 + 0.25

N A = 1.25 Newton

The correct answer is B.

8. An object with weight of 4 N supported by a cord and pulley. A force of 2 N acts on the block and one end of the cord pulled by a force of 9 N. Determine the net force acts on object X.

Newton's second law of motion – problems and solutions 4

B. 4 N downward

C. 9 N upward

D. 9 N downward

Weight of X (w X ) = 4 Newton

Pull force (F x ) = 2 Newton

Tension force (F T ) = 9 Newton

Wanted: Net force acts on object X

Vertically upward forces that act on object X :

The tension force has the same magnitude in all part of the cord. So the tension force is 9 N.

Vertically downward forces that act on object X :

There are two forces that act on object X and both forces are vertically downward, the horizontal component of weight w x and the horizontal component of force F x .

Net force act on the object X :

F T – w X – F x = 9 – 4 – 2 = 9 – 6 = 3

The net force act on the object X is 3 Newton, vertically upward.

The correct answer is A.

9. An object initially at rest on a smooth horizontal surface. A force of 16 N acts on the object so the object accelerated at 2 m/s 2 . If the same object at rest on a rough horizontal surface so the friction force acts on the object is 2 N, then determine the acceleration of the object if the same force of 16 N acts on the object.

A. 1.75 m/s 2

B. 1.50 m/s 2

C. 1.00 m/s 2

D. 0.88 m/s 2

Force (F) = 16 Newton = 16 kg m/s 2

Acceleration (a) = 2 m/s 2

Friction force (F fric ) = 2 Newton = 2 kg m/s 2

Wanted : Object’s acceleration ?

Smooth horizontal surface (no friction force) :

Newton's second law of motion – problems and solutions 5

Mass of object is 8 kilogram.

Rough horizontal surface (there is a friction force) :

Newton's second law of motion – problems and solutions 6

F – F fric = m a

16 – 2 = 8 a

a = 1.75 m/s 2

Object’s acceleration is 1.75 m/s 2 .

10. Tom and Andrew push an object on the smooth floor. Tom push the object with a force of 5.70 N. If the mass of the object is 2.00 kg and acceleration experienced by the object is 2.00 ms -2 , then determine the magnitude and direction of force act by Tom.

A. 1.70 N and its direction is opposite with force acted by Andre.w

B. 1.70 N and its direction same as force acted by Andrew

C. 2.30 N and its direction is opposite with force acted by Andrew.

D. 2.30 N and its direction same as force acted by Andrew.

Push force acted by Andrew (F 1 ) = 5.70 Newton

Mass of object (m) = 2.00 kg

Acceleration (a) = 2.00 m/s 2

Wanted : Magnitude and direction of force acted by Tom (F 2 ) ?

Apply Newton’s second law of motion :

F 1 + F 2 = m a

5.70 + F 2 = (2)(2)

5.70 + F 2 = 4

F 2 = 4 – 5.70

F 2 = – 1.7 Newton

Minus sign indicated that (F 2 ) is opposite with push force act by Andrew (F 1 ).

11. If the mass of the block is the same, which figure shows the smallest acceleration?

Newton's first law and Newton's second law 2

Net force A :

ΣF = 4 N + 2 N – 3 N = 6 N – 3 N = 3 Newton, leftward

Net force B :

ΣF = 2 N + 3 N – 4 N = 5 N – 4 N = 1 Newton, rightward

Net force C :

ΣF = 4 N + 3 N – 2 N = 7 N – 2 N = 5 Newton, rightward

Net force D :

ΣF = 3 N + 4 N + 2 N = 9 Newton, rightward

The equation of Newton’s second law :

a = acceleration, ΣF = net force, m = mass

Based on the above formula, the acceleration (a) is directly proportional to the net force (ΣF) and inversely proportional to mass (m). If the mass of an object is the same, the greater the resultant force, the greater the acceleration or the smaller the resultant force, the smaller the acceleration. Based on the above calculation, the smallest net force is 1 Newton so the acceleration is also smallest.

12. Some forces act on an object with a mass of 20 kg, as shown in the figure below.

Newton's first law and Newton's second law 3

Determine the object’s acceleration.

Mass of object (m) = 20 kg

Net force (ΣF) = 25 N + 30 N – 15 N = 40 N

Wanted: Acceleration of an object

Object’s acceleration calculated using the equation of Newton’s second law :

a = ΣF / m = 40 N / 20 kg = 2 N/kg = 2 m/s 2

13. Which statements below describes Newton’s third law?

(1) Passengers pushed forward when the bus braked suddenly

(2) B ooks on paper are not falling when the paper is pulled quickly

(3) When playing skateboard when the foot pushes the ground back then the skateboard will slide forward

(4) O ars pushed backward, boats moving forward

(1) Newton’s first law

(2) Newton’s first law

(3) Newton’s third law

(4) Newton’s third law

[wpdm_package id=’470′]

  • Mass and weight
  • Normal force
  • Newton’s second law of motion
  • Friction force
  • Motion on the horizontal surface without friction force
  • The motion of two bodies with the same acceleration on the rough horizontal surface with the friction force
  • Motion on the inclined plane without friction force
  • Motion on the rough inclined plane with the friction force
  • Motion in an elevator
  • The motion of bodies connected by cord and pulley
  • Two bodies with the same magnitude of accelerations
  • Rounding a flat curve – dynamics of circular motion
  • Rounding a banked curve – dynamics of circular motion
  • Uniform motion in a horizontal circle
  • Centripetal force in uniform circular motion

Print Friendly, PDF & Email

Share this:

Leave a comment cancel reply.

You must be logged in to post a comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Discover more from Physics

Subscribe now to keep reading and get access to the full archive.

Type your email…

Continue reading

law of acceleration problem solving worksheet with answers

Acceleration

Practice problem 1.

  • A car is said to go "zero to sixty in six point six seconds". What is its acceleration in m/s 2 ?
  • The driver can't release his foot from the gas pedal (a.k.a. the accelerator). How many additional seconds would it take for the driver to reach 80 mph assuming the aceleration remains constant?
  • A car moving at 80 mph has a speed of 35.8 m/s. What acceleration would it have if it took 5.0 s to come to a complete stop?

Well first of all, we shouldn't be dealing with English units. They're difficult to work with, so let's convert them straight away and then do the old "plug and chug".

Since the question asked for acceleration and acceleration is a vector quantity this answer is not complete. A proper answer must include a direction as well. This is quite easy to do. Since the car is starting from rest and moving forward, its acceleration must also be forward. The ultimate, complete answer to this problem is the car is accelerating at…

a  =  4.06 m/s 2  forward

We should convert the final speed to SI units.

Use the fact that change equals rate times time, and then add that change to our velocity at the end of the previous problem. Algebra will do the rest for us.

Alternate solution. We don't need no stinkin' conversions with this method. The ratio of eighty to sixty is a simple one, namely 4 3 . From our definition of acceleration, it should be apparent that time is directly proportional to change in velocity when acceleration is constant. Thus…

This is not the answer. It is the time elapsed from the moment when the car began to move. The question was about the additional time needed, so we should subtract the time required to go from zero to sixty. Thus…

∆ t  =  8.8 s − 6.6 s  =  2.2 s

The two methods give essentially the same answer.

Quite simple. Let's do it.

Nothing surprising there except the negative sign. When a vector quantity is negative what does it mean? There are several interpretations of this, but I think mine is the best. When a vector has a negative value, it means that it points in a direction opposite that of the positive vectors. In this problem, since the positive vectors are assumed to point forward (What other direction would a normal car drive?) the acceleration must be backward. Thus the complete answer to this problem is that the car's acceleration is…

a  =  7.16 m/s 2 backward

Although it is common to assign deceleration a negative value, negative acceleration does not automatically imply deceleration. When dealing with vector quantities, any direction can be assumed positive…

up, down, right, left, forward, backward, north, south, east, west

and the corresponding opposite direction assumed negative…

down, up, left, right, backward, forward, south, north, west, east.

It won't matter which you chose as long as you are consistent throughout a problem. Don't learn any rules for assigning signs to particular directions and don't let anyone tell you that a certain direction must be positive or must be negative.

practice problem 2

Acceleration is the rate of change of velocity with time. Since velocity is a vector, this definition means acceleration is also a vector. When it comes to vectors, direction matters as much as size. In a simple one-dimensional problem like this one, directions are indicated by algebraic sign. Every quantity that points away from the batter will be positive. Every quantity that points toward him will be negative. Thus, the ball comes in at −40 m/s and goes out at +50 m/s. If we didn't pay attention to this detail, we wouldn't get the right answer.

practice problem 3

Practice problem 4.

About me and why I created this physics website.

Acceleration Problems

acceleration problem coriolis

  • Search Website

Real World Applications — for high school level and above

  • Amusement Parks
  • Battle & Weapons
  • Engineering
  • Miscellaneous

Education & Theory — for high school level and above

  • Useful Formulas
  • Physics Questions
  • Example Mechanics Problems
  • Learn Physics Compendium

Kids Section

  • Physics For Kids
  • Science Experiments
  • Science Fair Ideas
  • Science Quiz
  • Science Toys
  • Teacher Resources
  • Commercial Disclosure
  • Privacy Policy

© Copyright 2009-2024 real-world-physics-problems.com

law of acceleration problem solving worksheet with answers

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Physics LibreTexts

6.3: Solving Problems with Newton's Laws (Part 2)

  • Last updated
  • Save as PDF
  • Page ID 5883

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Newton’s Laws of Motion and Kinematics

Physics is most interesting and most powerful when applied to general situations that involve more than a narrow set of physical principles. Newton’s laws of motion can also be integrated with other concepts that have been discussed previously in this text to solve problems of motion. For example, forces produce accelerations, a topic of kinematics, and hence the relevance of earlier chapters.

When approaching problems that involve various types of forces, acceleration, velocity, and/or position, listing the givens and the quantities to be calculated will allow you to identify the principles involved. Then, you can refer to the chapters that deal with a particular topic and solve the problem using strategies outlined in the text. The following worked example illustrates how the problem-solving strategy given earlier in this chapter, as well as strategies presented in other chapters, is applied to an integrated concept problem.

Example 6.6: What Force Must a Soccer Player Exert to Reach Top Speed?

A soccer player starts at rest and accelerates forward, reaching a velocity of 8.00 m/s in 2.50 s. (a) What is her average acceleration? (b) What average force does the ground exert forward on the runner so that she achieves this acceleration? The player’s mass is 70.0 kg, and air resistance is negligible.

To find the answers to this problem, we use the problem-solving strategy given earlier in this chapter. The solutions to each part of the example illustrate how to apply specific problem-solving steps. In this case, we do not need to use all of the steps. We simply identify the physical principles, and thus the knowns and unknowns; apply Newton’s second law; and check to see whether the answer is reasonable.

  • We are given the initial and final velocities (zero and 8.00 m/s forward); thus, the change in velocity is \(\Delta\)v = 8.00 m/s . We are given the elapsed time, so \(\Delta\)t = 2.50 s. The unknown is acceleration, which can be found from its definition: $$a = \frac{\Delta v}{\Delta t} \ldotp$$Substituting the known values yields $$a = \frac{8.00\; m/s}{2.50\; s} = 3.20\; m/s^{2} \ldotp$$
  • Here we are asked to find the average force the ground exerts on the runner to produce this acceleration. (Remember that we are dealing with the force or forces acting on the object of interest.) This is the reaction force to that exerted by the player backward against the ground, by Newton’s third law. Neglecting air resistance, this would be equal in magnitude to the net external force on the player, since this force causes her acceleration. Since we now know the player’s acceleration and are given her mass, we can use Newton’s second law to find the force exerted. That is, $$F_{net} = ma \ldotp$$Substituting the known values of m and a gives $$F_{net} = (70.0\; kg)(3.20\; m/s^{2}) = 224\; N \ldotp$$

This is a reasonable result: The acceleration is attainable for an athlete in good condition. The force is about 50 pounds, a reasonable average force.

Significance

This example illustrates how to apply problem-solving strategies to situations that include topics from different chapters. The first step is to identify the physical principles, the knowns, and the unknowns involved in the problem. The second step is to solve for the unknown, in this case using Newton’s second law. Finally, we check our answer to ensure it is reasonable. These techniques for integrated concept problems will be useful in applications of physics outside of a physics course, such as in your profession, in other science disciplines, and in everyday life.

Exercise 6.4

The soccer player stops after completing the play described above, but now notices that the ball is in position to be stolen. If she now experiences a force of 126 N to attempt to steal the ball, which is 2.00 m away from her, how long will it take her to get to the ball?

Example 6.7: What Force Acts on a Model Helicopter?

A 1.50-kg model helicopter has a velocity of 5.00 \(\hat{j}\) m/s at t = 0. It is accelerated at a constant rate for two seconds (2.00 s) after which it has a velocity of (6.00 \(\hat{i}\) + 12.00 \(\hat{j}\)) m/s. What is the magnitude of the resultant force acting on the helicopter during this time interval?

We can easily set up a coordinate system in which the x-axis (\(\hat{i}\) direction) is horizontal, and the y-axis (\(\hat{j}\) direction) is vertical. We know that \(\Delta\)t = 2.00s and \(\Delta\)v = (6.00 \(\hat{i}\) + 12.00 \(\hat{j}\) m/s) − (5.00 \(\hat{j}\) m/s). From this, we can calculate the acceleration by the definition; we can then apply Newton’s second law.

\[a = \frac{\Delta v}{\Delta t} = \frac{(6.00 \hat{i} + 12.00 \hat{j}\; m/s) - (5.00 \hat{j}\; m/s)}{2.00\; s} = 3.00 \hat{i} + 3.50 \hat{j}\; m/s^{2}$$ $$\sum \vec{F} = m \vec{a} = (1.50\; kg)(3.00 \hat{i} + 3.50 \hat{j}\; m/s^{2}) = 4.50 \hat{i} + 5.25 \hat{j}\; N \ldotp\]

The magnitude of the force is now easily found:

\[F = \sqrt{(4.50\; N)^{2} + (5.25\; N)^{2}} = 6.91\; N \ldotp\]

The original problem was stated in terms of \(\hat{i}\) − \(\hat{j}\) vector components, so we used vector methods. Compare this example with the previous example.

Exercise 6.5

Find the direction of the resultant for the 1.50-kg model helicopter.

Example 6.8: Baggage Tractor

Figure \(\PageIndex{7}\)(a) shows a baggage tractor pulling luggage carts from an airplane. The tractor has mass 650.0 kg, while cart A has mass 250.0 kg and cart B has mass 150.0 kg. The driving force acting for a brief period of time accelerates the system from rest and acts for 3.00 s. (a) If this driving force is given by F = (820.0t) N, find the speed after 3.00 seconds. (b) What is the horizontal force acting on the connecting cable between the tractor and cart A at this instant?

Figure (a) shows a baggage tractor driving to the left and pulling two luggage carts. The external forces on the system are shown. The forces on the tractor are F sub tractor, horizontally to the left, N sub tractor vertically up, and w sub tractor vertically down. The forces on the cart immediately behind the tractor, cart A, are N sub A vertically up, and w sub A vertically down. The forces on cart B, the one behind cart A, are N sub B vertically up, and w sub B vertically down. Figure (b) shows the free body diagram of the tractor, consisting of F sub tractor, horizontally to the left, N sub tractor vertically up, w sub tractor vertically down, and T horizontally to the right.

A free-body diagram shows the driving force of the tractor, which gives the system its acceleration. We only need to consider motion in the horizontal direction. The vertical forces balance each other and it is not necessary to consider them. For part b, we make use of a free-body diagram of the tractor alone to determine the force between it and cart A. This exposes the coupling force \(\vec{T}\), which is our objective.

  • $$\sum F_{x} = m_{system} a_{x}\; and\; \sum F_{x} = 820.0t,$$so $$820.0t = (650.0 + 250.0 + 150.0)a$$ $$a = 0.7809t \ldotp$$Since acceleration is a function of time, we can determine the velocity of the tractor by using a = \(\frac{dv}{dt}\) with the initial condition that v 0 = 0 at t = 0. We integrate from t = 0 to t = 3: $$\begin{split}dv & = adt \\ \int_{0}^{3} dv & = \int_{0}^{3.00} adt = \int_{0}^{3.00} 0.7809tdt \\ v & = 0.3905t^{2} \big]_{0}^{3.00} = 3.51\; m/s \ldotp \end{split}$$
  • Refer to the free-body diagram in Figure \(\PageIndex{7}\)(b) $$\begin{split} \sum F_{x} & = m_{tractor} a_{x} \\ 820.0t - T & = m_{tractor} (0.7805)t \\ (820.0)(3.00) - T & = (650.0)(0.7805)(3.00) \\ T & = 938\; N \ldotp \end{split}$$

Since the force varies with time, we must use calculus to solve this problem. Notice how the total mass of the system was important in solving Figure \(\PageIndex{7}\)(a), whereas only the mass of the truck (since it supplied the force) was of use in Figure \(\PageIndex{7}\)(b).

Recall that v = \(\frac{ds}{dt}\) and a = \(\frac{dv}{dt}\). If acceleration is a function of time, we can use the calculus forms developed in Motion Along a Straight Line , as shown in this example. However, sometimes acceleration is a function of displacement. In this case, we can derive an important result from these calculus relations. Solving for dt in each, we have dt = \(\frac{ds}{v}\) and dt = \(\frac{dv}{a}\). Now, equating these expressions, we have \(\frac{ds}{v}\) = \(\frac{dv}{a}\). We can rearrange this to obtain a ds = v dv.

Example 6.9: Motion of a Projectile Fired Vertically

A 10.0-kg mortar shell is fired vertically upward from the ground, with an initial velocity of 50.0 m/s (see Figure \(\PageIndex{8}\)). Determine the maximum height it will travel if atmospheric resistance is measured as F D = (0.0100 v 2 ) N, where v is the speed at any instant.

(a) A photograph of a soldier firing a mortar shell straight up. (b) A free body diagram of the mortar shell shows forces F sub D and w, both pointing vertically down. Force w is larger than force F sub D.

The known force on the mortar shell can be related to its acceleration using the equations of motion. Kinematics can then be used to relate the mortar shell’s acceleration to its position.

Initially, y 0 = 0 and v 0 = 50.0 m/s. At the maximum height y = h, v = 0. The free-body diagram shows F D to act downward, because it slows the upward motion of the mortar shell. Thus, we can write

\[\begin{split} \sum F_{y} & = ma_{y} \\ -F_{D} - w & = ma_{y} \\ -0.0100 v^{2} - 98.0 & = 10.0 a \\ a & = -0.00100 v^{2} - 9.80 \ldotp \end{split}\]

The acceleration depends on v and is therefore variable. Since a = f(v), we can relate a to v using the rearrangement described above,

\[a ds = v dv \ldotp\]

We replace ds with dy because we are dealing with the vertical direction,

\[\begin{split} ady & = vdv \\ (−0.00100v^{2} − 9.80)dy & = vdv \ldotp \end{split}\]

We now separate the variables (v’s and dv’s on one side; dy on the other):

\[\begin{split} \int_{0}^{h} dy & = \int_{50.0}^{0} \frac{vdv}{(-0.00100 v^{2} - 9.80)} \\ & = - \int_{50.0}^{0} \frac{vdv}{(-0.00100 v^{2} + 9.80)} \\ & = (-5 \times 10^{3}) \ln(0.00100v^{2} + 9.80) \Big|_{50.0}^{0} \ldotp \end{split}\]

Thus, h = 114 m.

Notice the need to apply calculus since the force is not constant, which also means that acceleration is not constant. To make matters worse, the force depends on v (not t), and so we must use the trick explained prior to the example. The answer for the height indicates a lower elevation if there were air resistance. We will deal with the effects of air resistance and other drag forces in greater detail in Drag Force and Terminal Speed .

Exercise 6.6

If atmospheric resistance is neglected, find the maximum height for the mortar shell. Is calculus required for this solution?

Explore the forces at work in this simulation when you try to push a filing cabinet. Create an applied force and see the resulting frictional force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View a free-body diagram of all the forces (including gravitational and normal forces).

Wyzant

Newton's Second Law of Motion - Basic Problem

Please do provide a detailed step-by-step solution and a final answer.

  • A truck with a mass of 3,500 kg, including the passengers, has an engine that produces a net horizontal force of 525 N. Assuming that there is no other forces involve in the motion, find the following:

a.) acceleration of the truck

b.) starting from rest, how long will it take for the truck to reach the velocity of 11.5 m/s?

2. An object with a mass m1 accelerates at 8.0 m/s2 when a force F is applied. A second object with a mass m2 accelerates at 4.0 m/s2 when the same force F is applied to it.

a.) Find the value of the ratio m2/m1.

b.) Find the acceleration of the combined mass under the action of force F.

1 Expert Answer

law of acceleration problem solving worksheet with answers

John B. answered • 10/20/21

Licensed Physics Instructor with Industry Experience

a) Since the engine is the only force acting, the net force is 525 N.

a=0.15 m/s 2

b) Using v=v 0 +at

11.5=0+(0.15)t

t=11.5/0.15

t=76.7 seconds

For the first mass F=m1(8)

For the second mass F=m2(4)

a) Therefore m2/m1 =(F/4)/(F/8) = 8/4 = 2

b) The combined mass is now m2 + m1 = F/8 + F/4 = 3F/8

Using F = (Combined Mass) x a

a= F/(3F/8)

a= 8/3 m/s 2 or 2.67 m/s 2

Still looking for help? Get the right answer, fast.

Get a free answer to a quick problem. Most questions answered within 4 hours.

Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.

RELATED TOPICS

Related questions, physics question (too big to fit in this box).

Answers · 3

I have a physics question

Answers · 10

physics buoyant

Answers · 6

how many days are in 2 million seconds?

Answers · 5

how does surface area affect rate of active transport?

Recommended tutors.

law of acceleration problem solving worksheet with answers

find an online tutor

  • Physics tutors
  • AP Physics tutors
  • AP Physics C tutors
  • Science tutors
  • Fluid Mechanics tutors
  • Thermodynamics tutors
  • Statics tutors
  • ACT Science tutors

related lessons

  • Center of Mass
  • Need help with something else? Try one of our lessons.

Youtube

  • TPC and eLearning
  • What's NEW at TPC?
  • Read Watch Interact
  • Practice Review Test
  • Teacher-Tools
  • Subscription Selection
  • Seat Calculator
  • Ad Free Account
  • Edit Profile Settings
  • Classes (Version 2)
  • Student Progress Edit
  • Task Properties
  • Export Student Progress
  • Task, Activities, and Scores
  • Metric Conversions Questions
  • Metric System Questions
  • Metric Estimation Questions
  • Significant Digits Questions
  • Proportional Reasoning
  • Acceleration
  • Distance-Displacement
  • Dots and Graphs
  • Graph That Motion
  • Match That Graph
  • Name That Motion
  • Motion Diagrams
  • Pos'n Time Graphs Numerical
  • Pos'n Time Graphs Conceptual
  • Up And Down - Questions
  • Balanced vs. Unbalanced Forces
  • Change of State
  • Force and Motion
  • Mass and Weight
  • Match That Free-Body Diagram
  • Net Force (and Acceleration) Ranking Tasks
  • Newton's Second Law
  • Normal Force Card Sort
  • Recognizing Forces
  • Air Resistance and Skydiving
  • Solve It! with Newton's Second Law
  • Which One Doesn't Belong?
  • Component Addition Questions
  • Head-to-Tail Vector Addition
  • Projectile Mathematics
  • Trajectory - Angle Launched Projectiles
  • Trajectory - Horizontally Launched Projectiles
  • Vector Addition
  • Vector Direction
  • Which One Doesn't Belong? Projectile Motion
  • Forces in 2-Dimensions
  • Being Impulsive About Momentum
  • Explosions - Law Breakers
  • Hit and Stick Collisions - Law Breakers
  • Case Studies: Impulse and Force
  • Impulse-Momentum Change Table
  • Keeping Track of Momentum - Hit and Stick
  • Keeping Track of Momentum - Hit and Bounce
  • What's Up (and Down) with KE and PE?
  • Energy Conservation Questions
  • Energy Dissipation Questions
  • Energy Ranking Tasks
  • LOL Charts (a.k.a., Energy Bar Charts)
  • Match That Bar Chart
  • Words and Charts Questions
  • Name That Energy
  • Stepping Up with PE and KE Questions
  • Case Studies - Circular Motion
  • Circular Logic
  • Forces and Free-Body Diagrams in Circular Motion
  • Gravitational Field Strength
  • Universal Gravitation
  • Angular Position and Displacement
  • Linear and Angular Velocity
  • Angular Acceleration
  • Rotational Inertia
  • Balanced vs. Unbalanced Torques
  • Getting a Handle on Torque
  • Torque-ing About Rotation
  • Properties of Matter
  • Fluid Pressure
  • Buoyant Force
  • Sinking, Floating, and Hanging
  • Pascal's Principle
  • Flow Velocity
  • Bernoulli's Principle
  • Balloon Interactions
  • Charge and Charging
  • Charge Interactions
  • Charging by Induction
  • Conductors and Insulators
  • Coulombs Law
  • Electric Field
  • Electric Field Intensity
  • Polarization
  • Case Studies: Electric Power
  • Know Your Potential
  • Light Bulb Anatomy
  • I = ∆V/R Equations as a Guide to Thinking
  • Parallel Circuits - ∆V = I•R Calculations
  • Resistance Ranking Tasks
  • Series Circuits - ∆V = I•R Calculations
  • Series vs. Parallel Circuits
  • Equivalent Resistance
  • Period and Frequency of a Pendulum
  • Pendulum Motion: Velocity and Force
  • Energy of a Pendulum
  • Period and Frequency of a Mass on a Spring
  • Horizontal Springs: Velocity and Force
  • Vertical Springs: Velocity and Force
  • Energy of a Mass on a Spring
  • Decibel Scale
  • Frequency and Period
  • Closed-End Air Columns
  • Name That Harmonic: Strings
  • Rocking the Boat
  • Wave Basics
  • Matching Pairs: Wave Characteristics
  • Wave Interference
  • Waves - Case Studies
  • Color Addition and Subtraction
  • Color Filters
  • If This, Then That: Color Subtraction
  • Light Intensity
  • Color Pigments
  • Converging Lenses
  • Curved Mirror Images
  • Law of Reflection
  • Refraction and Lenses
  • Total Internal Reflection
  • Who Can See Who?
  • Formulas and Atom Counting
  • Atomic Models
  • Bond Polarity
  • Entropy Questions
  • Cell Voltage Questions
  • Heat of Formation Questions
  • Reduction Potential Questions
  • Oxidation States Questions
  • Measuring the Quantity of Heat
  • Hess's Law
  • Oxidation-Reduction Questions
  • Galvanic Cells Questions
  • Thermal Stoichiometry
  • Molecular Polarity
  • Quantum Mechanics
  • Balancing Chemical Equations
  • Bronsted-Lowry Model of Acids and Bases
  • Classification of Matter
  • Collision Model of Reaction Rates
  • Density Ranking Tasks
  • Dissociation Reactions
  • Complete Electron Configurations
  • Elemental Measures
  • Enthalpy Change Questions
  • Equilibrium Concept
  • Equilibrium Constant Expression
  • Equilibrium Calculations - Questions
  • Equilibrium ICE Table
  • Intermolecular Forces Questions
  • Ionic Bonding
  • Lewis Electron Dot Structures
  • Limiting Reactants
  • Line Spectra Questions
  • Mass Stoichiometry
  • Measurement and Numbers
  • Metals, Nonmetals, and Metalloids
  • Metric Estimations
  • Metric System
  • Molarity Ranking Tasks
  • Mole Conversions
  • Name That Element
  • Names to Formulas
  • Names to Formulas 2
  • Nuclear Decay
  • Particles, Words, and Formulas
  • Periodic Trends
  • Precipitation Reactions and Net Ionic Equations
  • Pressure Concepts
  • Pressure-Temperature Gas Law
  • Pressure-Volume Gas Law
  • Chemical Reaction Types
  • Significant Digits and Measurement
  • States Of Matter Exercise
  • Stoichiometry Law Breakers
  • Stoichiometry - Math Relationships
  • Subatomic Particles
  • Spontaneity and Driving Forces
  • Gibbs Free Energy
  • Volume-Temperature Gas Law
  • Acid-Base Properties
  • Energy and Chemical Reactions
  • Chemical and Physical Properties
  • Valence Shell Electron Pair Repulsion Theory
  • Writing Balanced Chemical Equations
  • Mission CG1
  • Mission CG10
  • Mission CG2
  • Mission CG3
  • Mission CG4
  • Mission CG5
  • Mission CG6
  • Mission CG7
  • Mission CG8
  • Mission CG9
  • Mission EC1
  • Mission EC10
  • Mission EC11
  • Mission EC12
  • Mission EC2
  • Mission EC3
  • Mission EC4
  • Mission EC5
  • Mission EC6
  • Mission EC7
  • Mission EC8
  • Mission EC9
  • Mission RL1
  • Mission RL2
  • Mission RL3
  • Mission RL4
  • Mission RL5
  • Mission RL6
  • Mission KG7
  • Mission RL8
  • Mission KG9
  • Mission RL10
  • Mission RL11
  • Mission RM1
  • Mission RM2
  • Mission RM3
  • Mission RM4
  • Mission RM5
  • Mission RM6
  • Mission RM8
  • Mission RM10
  • Mission LC1
  • Mission RM11
  • Mission LC2
  • Mission LC3
  • Mission LC4
  • Mission LC5
  • Mission LC6
  • Mission LC8
  • Mission SM1
  • Mission SM2
  • Mission SM3
  • Mission SM4
  • Mission SM5
  • Mission SM6
  • Mission SM8
  • Mission SM10
  • Mission KG10
  • Mission SM11
  • Mission KG2
  • Mission KG3
  • Mission KG4
  • Mission KG5
  • Mission KG6
  • Mission KG8
  • Mission KG11
  • Mission F2D1
  • Mission F2D2
  • Mission F2D3
  • Mission F2D4
  • Mission F2D5
  • Mission F2D6
  • Mission KC1
  • Mission KC2
  • Mission KC3
  • Mission KC4
  • Mission KC5
  • Mission KC6
  • Mission KC7
  • Mission KC8
  • Mission AAA
  • Mission SM9
  • Mission LC7
  • Mission LC9
  • Mission NL1
  • Mission NL2
  • Mission NL3
  • Mission NL4
  • Mission NL5
  • Mission NL6
  • Mission NL7
  • Mission NL8
  • Mission NL9
  • Mission NL10
  • Mission NL11
  • Mission NL12
  • Mission MC1
  • Mission MC10
  • Mission MC2
  • Mission MC3
  • Mission MC4
  • Mission MC5
  • Mission MC6
  • Mission MC7
  • Mission MC8
  • Mission MC9
  • Mission RM7
  • Mission RM9
  • Mission RL7
  • Mission RL9
  • Mission SM7
  • Mission SE1
  • Mission SE10
  • Mission SE11
  • Mission SE12
  • Mission SE2
  • Mission SE3
  • Mission SE4
  • Mission SE5
  • Mission SE6
  • Mission SE7
  • Mission SE8
  • Mission SE9
  • Mission VP1
  • Mission VP10
  • Mission VP2
  • Mission VP3
  • Mission VP4
  • Mission VP5
  • Mission VP6
  • Mission VP7
  • Mission VP8
  • Mission VP9
  • Mission WM1
  • Mission WM2
  • Mission WM3
  • Mission WM4
  • Mission WM5
  • Mission WM6
  • Mission WM7
  • Mission WM8
  • Mission WE1
  • Mission WE10
  • Mission WE2
  • Mission WE3
  • Mission WE4
  • Mission WE5
  • Mission WE6
  • Mission WE7
  • Mission WE8
  • Mission WE9
  • Vector Walk Interactive
  • Name That Motion Interactive
  • Kinematic Graphing 1 Concept Checker
  • Kinematic Graphing 2 Concept Checker
  • Graph That Motion Interactive
  • Two Stage Rocket Interactive
  • Rocket Sled Concept Checker
  • Force Concept Checker
  • Free-Body Diagrams Concept Checker
  • Free-Body Diagrams The Sequel Concept Checker
  • Skydiving Concept Checker
  • Elevator Ride Concept Checker
  • Vector Addition Concept Checker
  • Vector Walk in Two Dimensions Interactive
  • Name That Vector Interactive
  • River Boat Simulator Concept Checker
  • Projectile Simulator 2 Concept Checker
  • Projectile Simulator 3 Concept Checker
  • Hit the Target Interactive
  • Turd the Target 1 Interactive
  • Turd the Target 2 Interactive
  • Balance It Interactive
  • Go For The Gold Interactive
  • Egg Drop Concept Checker
  • Fish Catch Concept Checker
  • Exploding Carts Concept Checker
  • Collision Carts - Inelastic Collisions Concept Checker
  • Its All Uphill Concept Checker
  • Stopping Distance Concept Checker
  • Chart That Motion Interactive
  • Roller Coaster Model Concept Checker
  • Uniform Circular Motion Concept Checker
  • Horizontal Circle Simulation Concept Checker
  • Vertical Circle Simulation Concept Checker
  • Race Track Concept Checker
  • Gravitational Fields Concept Checker
  • Orbital Motion Concept Checker
  • Angular Acceleration Concept Checker
  • Balance Beam Concept Checker
  • Torque Balancer Concept Checker
  • Aluminum Can Polarization Concept Checker
  • Charging Concept Checker
  • Name That Charge Simulation
  • Coulomb's Law Concept Checker
  • Electric Field Lines Concept Checker
  • Put the Charge in the Goal Concept Checker
  • Circuit Builder Concept Checker (Series Circuits)
  • Circuit Builder Concept Checker (Parallel Circuits)
  • Circuit Builder Concept Checker (∆V-I-R)
  • Circuit Builder Concept Checker (Voltage Drop)
  • Equivalent Resistance Interactive
  • Pendulum Motion Simulation Concept Checker
  • Mass on a Spring Simulation Concept Checker
  • Particle Wave Simulation Concept Checker
  • Boundary Behavior Simulation Concept Checker
  • Slinky Wave Simulator Concept Checker
  • Simple Wave Simulator Concept Checker
  • Wave Addition Simulation Concept Checker
  • Standing Wave Maker Simulation Concept Checker
  • Color Addition Concept Checker
  • Painting With CMY Concept Checker
  • Stage Lighting Concept Checker
  • Filtering Away Concept Checker
  • InterferencePatterns Concept Checker
  • Young's Experiment Interactive
  • Plane Mirror Images Interactive
  • Who Can See Who Concept Checker
  • Optics Bench (Mirrors) Concept Checker
  • Name That Image (Mirrors) Interactive
  • Refraction Concept Checker
  • Total Internal Reflection Concept Checker
  • Optics Bench (Lenses) Concept Checker
  • Kinematics Preview
  • Velocity Time Graphs Preview
  • Moving Cart on an Inclined Plane Preview
  • Stopping Distance Preview
  • Cart, Bricks, and Bands Preview
  • Fan Cart Study Preview
  • Friction Preview
  • Coffee Filter Lab Preview
  • Friction, Speed, and Stopping Distance Preview
  • Up and Down Preview
  • Projectile Range Preview
  • Ballistics Preview
  • Juggling Preview
  • Marshmallow Launcher Preview
  • Air Bag Safety Preview
  • Colliding Carts Preview
  • Collisions Preview
  • Engineering Safer Helmets Preview
  • Push the Plow Preview
  • Its All Uphill Preview
  • Energy on an Incline Preview
  • Modeling Roller Coasters Preview
  • Hot Wheels Stopping Distance Preview
  • Ball Bat Collision Preview
  • Energy in Fields Preview
  • Weightlessness Training Preview
  • Roller Coaster Loops Preview
  • Universal Gravitation Preview
  • Keplers Laws Preview
  • Kepler's Third Law Preview
  • Charge Interactions Preview
  • Sticky Tape Experiments Preview
  • Wire Gauge Preview
  • Voltage, Current, and Resistance Preview
  • Light Bulb Resistance Preview
  • Series and Parallel Circuits Preview
  • Thermal Equilibrium Preview
  • Linear Expansion Preview
  • Heating Curves Preview
  • Electricity and Magnetism - Part 1 Preview
  • Electricity and Magnetism - Part 2 Preview
  • Vibrating Mass on a Spring Preview
  • Period of a Pendulum Preview
  • Wave Speed Preview
  • Slinky-Experiments Preview
  • Standing Waves in a Rope Preview
  • Sound as a Pressure Wave Preview
  • DeciBel Scale Preview
  • DeciBels, Phons, and Sones Preview
  • Sound of Music Preview
  • Shedding Light on Light Bulbs Preview
  • Models of Light Preview
  • Electromagnetic Radiation Preview
  • Electromagnetic Spectrum Preview
  • EM Wave Communication Preview
  • Digitized Data Preview
  • Light Intensity Preview
  • Concave Mirrors Preview
  • Object Image Relations Preview
  • Snells Law Preview
  • Reflection vs. Transmission Preview
  • Magnification Lab Preview
  • Reactivity Preview
  • Ions and the Periodic Table Preview
  • Periodic Trends Preview
  • Intermolecular Forces Preview
  • Melting Points and Boiling Points Preview
  • Reaction Rates Preview
  • Ammonia Factory Preview
  • Stoichiometry Preview
  • Nuclear Chemistry Preview
  • Gaining Teacher Access
  • Tasks and Classes
  • Tasks - Classic
  • Subscription
  • Subscription Locator
  • 1-D Kinematics
  • Newton's Laws
  • Vectors - Motion and Forces in Two Dimensions
  • Momentum and Its Conservation
  • Work and Energy
  • Circular Motion and Satellite Motion
  • Thermal Physics
  • Static Electricity
  • Electric Circuits
  • Vibrations and Waves
  • Sound Waves and Music
  • Light and Color
  • Reflection and Mirrors
  • About the Physics Interactives
  • Task Tracker
  • Usage Policy
  • Newtons Laws
  • Vectors and Projectiles
  • Forces in 2D
  • Momentum and Collisions
  • Circular and Satellite Motion
  • Balance and Rotation
  • Electromagnetism
  • Waves and Sound
  • Atomic Physics
  • Forces in Two Dimensions
  • Work, Energy, and Power
  • Circular Motion and Gravitation
  • Sound Waves
  • 1-Dimensional Kinematics
  • Circular, Satellite, and Rotational Motion
  • Einstein's Theory of Special Relativity
  • Waves, Sound and Light
  • QuickTime Movies
  • About the Concept Builders
  • Pricing For Schools
  • Directions for Version 2
  • Measurement and Units
  • Relationships and Graphs
  • Rotation and Balance
  • Vibrational Motion
  • Reflection and Refraction
  • Teacher Accounts
  • Task Tracker Directions
  • Kinematic Concepts
  • Kinematic Graphing
  • Wave Motion
  • Sound and Music
  • About CalcPad
  • 1D Kinematics
  • Vectors and Forces in 2D
  • Simple Harmonic Motion
  • Rotational Kinematics
  • Rotation and Torque
  • Rotational Dynamics
  • Electric Fields, Potential, and Capacitance
  • Transient RC Circuits
  • Light Waves
  • Units and Measurement
  • Stoichiometry
  • Molarity and Solutions
  • Thermal Chemistry
  • Acids and Bases
  • Kinetics and Equilibrium
  • Solution Equilibria
  • Oxidation-Reduction
  • Nuclear Chemistry
  • Newton's Laws of Motion
  • Work and Energy Packet
  • Static Electricity Review
  • NGSS Alignments
  • 1D-Kinematics
  • Projectiles
  • Circular Motion
  • Magnetism and Electromagnetism
  • Graphing Practice
  • About the ACT
  • ACT Preparation
  • For Teachers
  • Other Resources
  • Solutions Guide
  • Solutions Guide Digital Download
  • Motion in One Dimension
  • Work, Energy and Power
  • Algebra Based Physics
  • Other Tools
  • Frequently Asked Questions
  • Purchasing the Download
  • Purchasing the CD
  • Purchasing the Digital Download
  • About the NGSS Corner
  • NGSS Search
  • Force and Motion DCIs - High School
  • Energy DCIs - High School
  • Wave Applications DCIs - High School
  • Force and Motion PEs - High School
  • Energy PEs - High School
  • Wave Applications PEs - High School
  • Crosscutting Concepts
  • The Practices
  • Physics Topics
  • NGSS Corner: Activity List
  • NGSS Corner: Infographics
  • About the Toolkits
  • Position-Velocity-Acceleration
  • Position-Time Graphs
  • Velocity-Time Graphs
  • Newton's First Law
  • Newton's Second Law
  • Newton's Third Law
  • Terminal Velocity
  • Projectile Motion
  • Forces in 2 Dimensions
  • Impulse and Momentum Change
  • Momentum Conservation
  • Work-Energy Fundamentals
  • Work-Energy Relationship
  • Roller Coaster Physics
  • Satellite Motion
  • Electric Fields
  • Circuit Concepts
  • Series Circuits
  • Parallel Circuits
  • Describing-Waves
  • Wave Behavior Toolkit
  • Standing Wave Patterns
  • Resonating Air Columns
  • Wave Model of Light
  • Plane Mirrors
  • Curved Mirrors
  • Teacher Guide
  • Using Lab Notebooks
  • Current Electricity
  • Light Waves and Color
  • Reflection and Ray Model of Light
  • Refraction and Ray Model of Light
  • Classes (Legacy Version)
  • Teacher Resources
  • Subscriptions

law of acceleration problem solving worksheet with answers

  • Newton's Laws
  • Einstein's Theory of Special Relativity
  • About Concept Checkers
  • School Pricing
  • Newton's Laws of Motion
  • Newton's First Law
  • Newton's Third Law
  • Sample Problems and Solutions
  • Kinematic Equations Introduction
  • Solving Problems with Kinematic Equations
  • Kinematic Equations and Free Fall
  • Kinematic Equations and Kinematic Graphs

UsingKinEqns1ThN.png

Check Your Understanding

Answer: d = 1720 m

Answer: a = 8.10 m/s/s

Answers: d = 33.1 m and v f = 25.5 m/s

Answers: a = 11.2 m/s/s and d = 79.8 m

Answer: t = 1.29 s

Answers: a = 243 m/s/s

Answer: a = 0.712 m/s/s

Answer: d = 704 m

Answer: d = 28.6 m

Answer: v i = 7.17 m/s

Answer: v i = 5.03 m/s and hang time = 1.03 s (except for in sports commericals)

Answer: a = 1.62*10 5 m/s/s

Answer: d = 48.0 m

Answer: t = 8.69 s

Answer: a = -1.08*10^6 m/s/s

Answer: d = -57.0 m (57.0 meters deep) 

Answer: v i = 47.6 m/s

Answer: a = 2.86 m/s/s and t = 30. 8 s

Answer: a = 15.8 m/s/s

Answer: v i = 94.4 mi/hr

Solutions to Above Problems

d = (0 m/s)*(32.8 s)+ 0.5*(3.20 m/s 2 )*(32.8 s) 2

Return to Problem 1

110 m = (0 m/s)*(5.21 s)+ 0.5*(a)*(5.21 s) 2

110 m = (13.57 s 2 )*a

a = (110 m)/(13.57 s 2 )

a = 8.10 m/ s 2

Return to Problem 2

d = (0 m/s)*(2.60 s)+ 0.5*(-9.8 m/s 2 )*(2.60 s) 2

d = -33.1 m (- indicates direction)

v f = v i + a*t

v f = 0 + (-9.8 m/s 2 )*(2.60 s)

v f = -25.5 m/s (- indicates direction)

Return to Problem 3

a = (46.1 m/s - 18.5 m/s)/(2.47 s)

a = 11.2 m/s 2

d = v i *t + 0.5*a*t 2

d = (18.5 m/s)*(2.47 s)+ 0.5*(11.2 m/s 2 )*(2.47 s) 2

d = 45.7 m + 34.1 m

(Note: the d can also be calculated using the equation v f 2 = v i 2 + 2*a*d)

Return to Problem 4

-1.40 m = (0 m/s)*(t)+ 0.5*(-1.67 m/s 2 )*(t) 2

-1.40 m = 0+ (-0.835 m/s 2 )*(t) 2

(-1.40 m)/(-0.835 m/s 2 ) = t 2

1.68 s 2 = t 2

Return to Problem 5

a = (444 m/s - 0 m/s)/(1.83 s)

a = 243 m/s 2

d = (0 m/s)*(1.83 s)+ 0.5*(243 m/s 2 )*(1.83 s) 2

d = 0 m + 406 m

Return to Problem 6

(7.10 m/s) 2 = (0 m/s) 2 + 2*(a)*(35.4 m)

50.4 m 2 /s 2 = (0 m/s) 2 + (70.8 m)*a

(50.4 m 2 /s 2 )/(70.8 m) = a

a = 0.712 m/s 2

Return to Problem 7

(65 m/s) 2 = (0 m/s) 2 + 2*(3 m/s 2 )*d

4225 m 2 /s 2 = (0 m/s) 2 + (6 m/s 2 )*d

(4225 m 2 /s 2 )/(6 m/s 2 ) = d

Return to Problem 8

d = (22.4 m/s + 0 m/s)/2 *2.55 s

d = (11.2 m/s)*2.55 s

Return to Problem 9

(0 m/s) 2 = v i 2 + 2*(-9.8 m/s 2 )*(2.62 m)

0 m 2 /s 2 = v i 2 - 51.35 m 2 /s 2

51.35 m 2 /s 2 = v i 2

v i = 7.17 m/s

Return to Problem 10

(0 m/s) 2 = v i 2 + 2*(-9.8 m/s 2 )*(1.29 m)

0 m 2 /s 2 = v i 2 - 25.28 m 2 /s 2

25.28 m 2 /s 2 = v i 2

v i = 5.03 m/s

To find hang time, find the time to the peak and then double it.

0 m/s = 5.03 m/s + (-9.8 m/s 2 )*t up

-5.03 m/s = (-9.8 m/s 2 )*t up

(-5.03 m/s)/(-9.8 m/s 2 ) = t up

t up = 0.513 s

hang time = 1.03 s

Return to Problem 11

(521 m/s) 2 = (0 m/s) 2 + 2*(a)*(0.840 m)

271441 m 2 /s 2 = (0 m/s) 2 + (1.68 m)*a

(271441 m 2 /s 2 )/(1.68 m) = a

a = 1.62*10 5 m /s 2

Return to Problem 12

  • (NOTE: the time required to move to the peak of the trajectory is one-half the total hang time - 3.125 s.)

First use:  v f  = v i  + a*t

0 m/s = v i  + (-9.8  m/s 2 )*(3.13 s)

0 m/s = v i  - 30.7 m/s

v i  = 30.7 m/s  (30.674 m/s)

Now use:  v f 2  = v i 2  + 2*a*d

(0 m/s) 2  = (30.7 m/s) 2  + 2*(-9.8  m/s 2 )*(d)

0 m 2 /s 2  = (940 m 2 /s 2 ) + (-19.6  m/s 2 )*d

-940  m 2 /s 2  = (-19.6  m/s 2 )*d

(-940  m 2 /s 2 )/(-19.6  m/s 2 ) = d

Return to Problem 13

-370 m = (0 m/s)*(t)+ 0.5*(-9.8 m/s 2 )*(t) 2

-370 m = 0+ (-4.9 m/s 2 )*(t) 2

(-370 m)/(-4.9 m/s 2 ) = t 2

75.5 s 2 = t 2

Return to Problem 14

(0 m/s) 2 = (367 m/s) 2 + 2*(a)*(0.0621 m)

0 m 2 /s 2 = (134689 m 2 /s 2 ) + (0.1242 m)*a

-134689 m 2 /s 2 = (0.1242 m)*a

(-134689 m 2 /s 2 )/(0.1242 m) = a

a = -1.08*10 6 m /s 2

(The - sign indicates that the bullet slowed down.)

Return to Problem 15

d = (0 m/s)*(3.41 s)+ 0.5*(-9.8 m/s 2 )*(3.41 s) 2

d = 0 m+ 0.5*(-9.8 m/s 2 )*(11.63 s 2 )

d = -57.0 m

(NOTE: the - sign indicates direction)

Return to Problem 16

(0 m/s) 2 = v i 2 + 2*(- 3.90 m/s 2 )*(290 m)

0 m 2 /s 2 = v i 2 - 2262 m 2 /s 2

2262 m 2 /s 2 = v i 2

v i = 47.6 m /s

Return to Problem 17

( 88.3 m/s) 2 = (0 m/s) 2 + 2*(a)*(1365 m)

7797 m 2 /s 2 = (0 m 2 /s 2 ) + (2730 m)*a

7797 m 2 /s 2 = (2730 m)*a

(7797 m 2 /s 2 )/(2730 m) = a

a = 2.86 m/s 2

88.3 m/s = 0 m/s + (2.86 m/s 2 )*t

(88.3 m/s)/(2.86 m/s 2 ) = t

t = 30. 8 s

Return to Problem 18

( 112 m/s) 2 = (0 m/s) 2 + 2*(a)*(398 m)

12544 m 2 /s 2 = 0 m 2 /s 2 + (796 m)*a

12544 m 2 /s 2 = (796 m)*a

(12544 m 2 /s 2 )/(796 m) = a

a = 15.8 m/s 2

Return to Problem 19

v f 2 = v i 2 + 2*a*d

(0 m/s) 2 = v i 2 + 2*(-9.8 m/s 2 )*(91.5 m)

0 m 2 /s 2 = v i 2 - 1793 m 2 /s 2

1793 m 2 /s 2 = v i 2

v i = 42.3 m/s

Now convert from m/s to mi/hr:

v i = 42.3 m/s * (2.23 mi/hr)/(1 m/s)

v i = 94.4 mi/hr

Return to Problem 20

IMAGES

  1. Acceleration Practice Problems Worksheet Answers Pdf › Athens Mutual Student Corner

    law of acceleration problem solving worksheet with answers

  2. Acceleration Problems Worksheet Answer Key

    law of acceleration problem solving worksheet with answers

  3. 33 Acceleration Problems Worksheet Answer Key

    law of acceleration problem solving worksheet with answers

  4. Acceleration Practice Problems Worksheet Answers Pdf › Athens Mutual Student Corner

    law of acceleration problem solving worksheet with answers

  5. Acceleration Practice Problems Pdf Answer Key › Athens Mutual Student Corner

    law of acceleration problem solving worksheet with answers

  6. Acceleration Problems Worksheet Answers

    law of acceleration problem solving worksheet with answers

VIDEO

  1. Physics. Problem solving. 01_10

  2. Kinematics Problem Solving (Uniform Acceleration)

  3. Law of Acceleration (Multi-concept Problems)

  4. Newton's Laws of Motion Tutorial sheet 5 Questions premium

  5. Speed, Velocity, and Acceleration

  6. Newton's 2nd Law Practice and Worksheet

COMMENTS

  1. PDF 10 Worksheet Practice Problems for Newton's 2 law

    The relationship is stated by Newton's second law of motion, Force=Mass x Acceleration. -or-. F=ma. where F is the force, m is the mass, and a is the acceleration. The units are Newtons (N) for force, kilograms (kg) for mass, and meters per second squared (m/s2) for acceleration. The other forms of the equation can be used to solve for mass or ...

  2. PDF Newton's 2nd Law Practice Problems

    Force (F) - anything that acts on a body to change its rate of acceleration or alter its momentum. It is measured in Newtons (N). Mass (m) - the amount of matter in an object. It is measured in kilograms (kg). PROBLEMS (and answers) Find the acceleration of an object with 1 kg and 1 N. A: 1 m/s² A force of 20 N acts upon a 5 kg block ...

  3. Newton's Law Problem Sets

    Problem 22: Brandon is the catcher for the Varsity baseball team. He exerts a forward force on the .145-kg baseball to bring it to rest from a speed of 38.2 m/s. During the process, his hand recoils a distance of 0.135 m. Determine the acceleration of the ball and the force which is applied to it by Brandon.

  4. acceleration worksheet with answers with PDF Download

    Question 1:- The displacement (in meter) of a particle moving along x-axis is given by x = 18t +5t2 x = 18 t + 5 t 2. Calculate. (i) Instantaneous velocity at t =2s t = 2 s. (ii) average velocity between t =2s t = 2 s and t = 3s t = 3 s, (iii) Instantaneous acceleration. Solution:- Given in the question that.

  5. F=ma Practice Problems

    F=ma Problem Set. Practice solving for net force, using Newtons second law (F=ma), and relating F=ma to the acceleration equations. In these practice problems we will either use F=ma or our 1D motion acceleration equations to solve force problems. 1.

  6. PDF Newton's Second Law of Motion Problems Worksheet

    Newton's second law is best described with a mathematical equation that relates three variables, force, acceleration and mass, to one another. The equation can be stated in three forms: force = mass • acceleration mass = _____ acceleration acceleration = _____ mass In the first set of problems below, you will be given the mass of an object ...

  7. Newtons Second Law and Problem Solving

    Newton's Second Law and Problem Solving (PDF) The Curriculum Corner contains a complete ready-to-use curriculum for the high school physics classroom. This collection of pages comprise worksheets in PDF format that developmentally target key concepts and mathematics commonly covered in a high school physics curriculum.

  8. Newton Second Law of Motion Example Problems with Answers

    It is the acceleration of an object produced by an action or force which is directly proportional to the magnitude of the net force in the same direction and inversely proportional to the object mass. Calculate net force, mass and acceleration of an object by referring the below Newton second law of motion example problems with answers.

  9. Newton's Second Law of Motion

    Newton's second law describes the affect of net force and mass upon the acceleration of an object. Often expressed as the equation a = Fnet/m (or rearranged to Fnet=m*a), the equation is probably the most important equation in all of Mechanics. It is used to predict how an object will accelerated (magnitude and direction) in the presence of an unbalanced force.

  10. Newton's second law of motion (video)

    Transcript. Newton's second law of motion states that F = ma, or net force is equal to mass times acceleration. A larger net force acting on an object causes a larger acceleration, and objects with larger mass require more force to accelerate. Both the net force acting on an object and the object's mass determine how the object will accelerate.

  11. 6.1 Solving Problems with Newton's Laws

    Sketch the situation, using arrows to represent all forces. Determine the system of interest. The result is a free-body diagram that is essential to solving the problem. Apply Newton's second law to solve the problem. If necessary, apply appropriate kinematic equations from the chapter on motion along a straight line.

  12. PDF Newton's Laws Worksheets

    13. Apply Newtonʼs Third Law of Motion to Problems. 14. Be able to identify the "reaction force" in a given situation. 15. Distinguish between the concepts of mass and weight. 16. Memorize the value for the acceleration of any object near the surface of the Earth. (a) Describe what it means to be weightless. 17.

  13. Newton's second law of motion

    Solution : We use Newton's second law to get the net force. ∑ F = m a. ∑ F = (1 kg) (5 m/s2) = 5 kg m/s2 = 5 Newton. See also Isobaric thermodynamics processes - problems and solutions. 2. Mass of an object = 1 kg, net force ∑F = 2 Newton. Determine the magnitude and direction of the object's acceleration…. Known :

  14. Newton's Laws of Motion Worksheets

    Many of our present understandings are grounded on these three principles. Newton's laws of motion are the laws of inertia, force and acceleration, and action and reaction. These three laws connect the concepts of force, physical objects, and the resulting motion. They also help explain more complex ideas and theories in physics.

  15. Newton's second law: Solving for force, mass, and acceleration

    Learn for free about math, art, computer programming, economics, physics, chemistry, biology, medicine, finance, history, and more. Khan Academy is a nonprofit with the mission of providing a free, world-class education for anyone, anywhere.

  16. Acceleration

    A proper answer must include a direction as well. This is quite easy to do. Since the car is starting from rest and moving forward, its acceleration must also be forward. The ultimate, complete answer to this problem is the car is accelerating at… a = 4.06 m/s 2 forward. We should convert the final speed to SI units.

  17. Practice Worksheet: Net Forces and Acceleration

    For each of the following problems, give the net force on the block, and the acceleration, including units. 10 N 30 N. For problems 6-9, using the formula net Force = Mass • Acceleration, calculate the net force on the object. 10) Challenge: A student is pushing a 50 kg cart, with a force of 600 N.

  18. 6.2: Solving Problems with Newton's Laws (Part 1)

    It is almost always convenient to make one axis parallel to the direction of motion, if this is known. Generally, just write Newton's second law in components along the different directions. Then, you have the following equations: ∑Fx = max, ∑Fy = may. (6.2.1) (6.2.1) ∑ F x = m a x, ∑ F y = m a y.

  19. Acceleration Problems

    Problem # 6. Using Newton's Law of Gravitational Attraction, calculate the gravitational acceleration of an object dropped from an altitude of 500 km above the earth's surface. Use an earth radius of 6400 km. (Answer: 8.37 m/s 2 ) Problem # 7. A disk of diameter 15 cm is spinning at 3000 RPM.

  20. Acceleration questions (practice)

    Acceleration questions. Google Classroom. An ambulance is currently traveling at 15m/s, and is accelerating with a constant acceleration of 5 m/s 2 . The ambulance is attempting to pass a car which is moving at a constant velocity of 30m/s. How far must the ambulance travel until it matches the car's velocity? Choose 1 answer:

  21. 6.3: Solving Problems with Newton's Laws (Part 2)

    a = Δ v Δ t. (6.3.1) Substituting the known values yields a = 8.00 m / s 2.50 s = 3.20 m / s2. a = 8.00 m / s 2.50 s = 3.20 m / s 2. (6.3.2) Here we are asked to find the average force the ground exerts on the runner to produce this acceleration. (Remember that we are dealing with the force or forces acting on the object of interest.)

  22. Newton's Second Law of Motion

    Please do provide a detailed step-by-step solution and a final answer. A truck with a mass of 3,500 kg, including the passengers, has an engine that produces a net horizontal force of 525 N. Assuming that there is no other forces involve in the motion, find the following: a.) acceleration of the truck

  23. Kinematic Equations: Sample Problems and Solutions

    Kinematic equations relate the variables of motion to one another. Each equation contains four variables. The variables include acceleration (a), time (t), displacement (d), final velocity (vf), and initial velocity (vi). If values of three variables are known, then the others can be calculated using the equations. This page demonstrates the process with 20 sample problems and accompanying ...