t-test Calculator

Table of contents

Welcome to our t-test calculator! Here you can not only easily perform one-sample t-tests , but also two-sample t-tests , as well as paired t-tests .

Do you prefer to find the p-value from t-test, or would you rather find the t-test critical values? Well, this t-test calculator can do both! 😊

What does a t-test tell you? Take a look at the text below, where we explain what actually gets tested when various types of t-tests are performed. Also, we explain when to use t-tests (in particular, whether to use the z-test vs. t-test) and what assumptions your data should satisfy for the results of a t-test to be valid. If you've ever wanted to know how to do a t-test by hand, we provide the necessary t-test formula, as well as tell you how to determine the number of degrees of freedom in a t-test.

When to use a t-test?

A t-test is one of the most popular statistical tests for location , i.e., it deals with the population(s) mean value(s).

There are different types of t-tests that you can perform:

  • A one-sample t-test;
  • A two-sample t-test; and
  • A paired t-test.

In the next section , we explain when to use which. Remember that a t-test can only be used for one or two groups . If you need to compare three (or more) means, use the analysis of variance ( ANOVA ) method.

The t-test is a parametric test, meaning that your data has to fulfill some assumptions :

  • The data points are independent; AND
  • The data, at least approximately, follow a normal distribution .

If your sample doesn't fit these assumptions, you can resort to nonparametric alternatives. Visit our Mann–Whitney U test calculator or the Wilcoxon rank-sum test calculator to learn more. Other possibilities include the Wilcoxon signed-rank test or the sign test.

Which t-test?

Your choice of t-test depends on whether you are studying one group or two groups:

One sample t-test

Choose the one-sample t-test to check if the mean of a population is equal to some pre-set hypothesized value .

The average volume of a drink sold in 0.33 l cans — is it really equal to 330 ml?

The average weight of people from a specific city — is it different from the national average?

Two-sample t-test

Choose the two-sample t-test to check if the difference between the means of two populations is equal to some pre-determined value when the two samples have been chosen independently of each other.

In particular, you can use this test to check whether the two groups are different from one another .

The average difference in weight gain in two groups of people: one group was on a high-carb diet and the other on a high-fat diet.

The average difference in the results of a math test from students at two different universities.

This test is sometimes referred to as an independent samples t-test , or an unpaired samples t-test .

Paired t-test

A paired t-test is used to investigate the change in the mean of a population before and after some experimental intervention , based on a paired sample, i.e., when each subject has been measured twice: before and after treatment.

In particular, you can use this test to check whether, on average, the treatment has had any effect on the population .

The change in student test performance before and after taking a course.

The change in blood pressure in patients before and after administering some drug.

How to do a t-test?

So, you've decided which t-test to perform. These next steps will tell you how to calculate the p-value from t-test or its critical values, and then which decision to make about the null hypothesis.

Decide on the alternative hypothesis :

Use a two-tailed t-test if you only care whether the population's mean (or, in the case of two populations, the difference between the populations' means) agrees or disagrees with the pre-set value.

Use a one-tailed t-test if you want to test whether this mean (or difference in means) is greater/less than the pre-set value.

Compute your T-score value :

Formulas for the test statistic in t-tests include the sample size , as well as its mean and standard deviation . The exact formula depends on the t-test type — check the sections dedicated to each particular test for more details.

Determine the degrees of freedom for the t-test:

The degrees of freedom are the number of observations in a sample that are free to vary as we estimate statistical parameters. In the simplest case, the number of degrees of freedom equals your sample size minus the number of parameters you need to estimate . Again, the exact formula depends on the t-test you want to perform — check the sections below for details.

The degrees of freedom are essential, as they determine the distribution followed by your T-score (under the null hypothesis). If there are d degrees of freedom, then the distribution of the test statistics is the t-Student distribution with d degrees of freedom . This distribution has a shape similar to N(0,1) (bell-shaped and symmetric) but has heavier tails . If the number of degrees of freedom is large (>30), which generically happens for large samples, the t-Student distribution is practically indistinguishable from N(0,1).

💡 The t-Student distribution owes its name to William Sealy Gosset, who, in 1908, published his paper on the t-test under the pseudonym "Student". Gosset worked at the famous Guinness Brewery in Dublin, Ireland, and devised the t-test as an economical way to monitor the quality of beer. Cheers! 🍺🍺🍺

p-value from t-test

Recall that the p-value is the probability (calculated under the assumption that the null hypothesis is true) that the test statistic will produce values at least as extreme as the T-score produced for your sample . As probabilities correspond to areas under the density function, p-value from t-test can be nicely illustrated with the help of the following pictures:

p-value from t-test

The following formulae say how to calculate p-value from t-test. By cdf t,d we denote the cumulative distribution function of the t-Student distribution with d degrees of freedom:

p-value from left-tailed t-test:

p-value = cdf t,d (t score )

p-value from right-tailed t-test:

p-value = 1 − cdf t,d (t score )

p-value from two-tailed t-test:

p-value = 2 × cdf t,d (−|t score |)

or, equivalently: p-value = 2 − 2 × cdf t,d (|t score |)

However, the cdf of the t-distribution is given by a somewhat complicated formula. To find the p-value by hand, you would need to resort to statistical tables, where approximate cdf values are collected, or to specialized statistical software. Fortunately, our t-test calculator determines the p-value from t-test for you in the blink of an eye!

t-test critical values

Recall, that in the critical values approach to hypothesis testing, you need to set a significance level, α, before computing the critical values , which in turn give rise to critical regions (a.k.a. rejection regions).

Formulas for critical values employ the quantile function of t-distribution, i.e., the inverse of the cdf :

Critical value for left-tailed t-test: cdf t,d -1 (α)

critical region:

(-∞, cdf t,d -1 (α)]

Critical value for right-tailed t-test: cdf t,d -1 (1-α)

[cdf t,d -1 (1-α), ∞)

Critical values for two-tailed t-test: ±cdf t,d -1 (1-α/2)

(-∞, -cdf t,d -1 (1-α/2)] ∪ [cdf t,d -1 (1-α/2), ∞)

To decide the fate of the null hypothesis, just check if your T-score lies within the critical region:

If your T-score belongs to the critical region , reject the null hypothesis and accept the alternative hypothesis.

If your T-score is outside the critical region , then you don't have enough evidence to reject the null hypothesis.

How to use our t-test calculator

Choose the type of t-test you wish to perform:

A one-sample t-test (to test the mean of a single group against a hypothesized mean);

A two-sample t-test (to compare the means for two groups); or

A paired t-test (to check how the mean from the same group changes after some intervention).

Two-tailed;

Left-tailed; or

Right-tailed.

This t-test calculator allows you to use either the p-value approach or the critical regions approach to hypothesis testing!

Enter your T-score and the number of degrees of freedom . If you don't know them, provide some data about your sample(s): sample size, mean, and standard deviation, and our t-test calculator will compute the T-score and degrees of freedom for you .

Once all the parameters are present, the p-value, or critical region, will immediately appear underneath the t-test calculator, along with an interpretation!

One-sample t-test

The null hypothesis is that the population mean is equal to some value μ 0 \mu_0 μ 0 ​ .

The alternative hypothesis is that the population mean is:

  • different from μ 0 \mu_0 μ 0 ​ ;
  • smaller than μ 0 \mu_0 μ 0 ​ ; or
  • greater than μ 0 \mu_0 μ 0 ​ .

One-sample t-test formula :

  • μ 0 \mu_0 μ 0 ​ — Mean postulated in the null hypothesis;
  • n n n — Sample size;
  • x ˉ \bar{x} x ˉ — Sample mean; and
  • s s s — Sample standard deviation.

Number of degrees of freedom in t-test (one-sample) = n − 1 n-1 n − 1 .

The null hypothesis is that the actual difference between these groups' means, μ 1 \mu_1 μ 1 ​ , and μ 2 \mu_2 μ 2 ​ , is equal to some pre-set value, Δ \Delta Δ .

The alternative hypothesis is that the difference μ 1 − μ 2 \mu_1 - \mu_2 μ 1 ​ − μ 2 ​ is:

  • Different from Δ \Delta Δ ;
  • Smaller than Δ \Delta Δ ; or
  • Greater than Δ \Delta Δ .

In particular, if this pre-determined difference is zero ( Δ = 0 \Delta = 0 Δ = 0 ):

The null hypothesis is that the population means are equal.

The alternate hypothesis is that the population means are:

  • μ 1 \mu_1 μ 1 ​ and μ 2 \mu_2 μ 2 ​ are different from one another;
  • μ 1 \mu_1 μ 1 ​ is smaller than μ 2 \mu_2 μ 2 ​ ; and
  • μ 1 \mu_1 μ 1 ​ is greater than μ 2 \mu_2 μ 2 ​ .

Formally, to perform a t-test, we should additionally assume that the variances of the two populations are equal (this assumption is called the homogeneity of variance ).

There is a version of a t-test that can be applied without the assumption of homogeneity of variance: it is called a Welch's t-test . For your convenience, we describe both versions.

Two-sample t-test if variances are equal

Use this test if you know that the two populations' variances are the same (or very similar).

Two-sample t-test formula (with equal variances) :

where s p s_p s p ​ is the so-called pooled standard deviation , which we compute as:

  • Δ \Delta Δ — Mean difference postulated in the null hypothesis;
  • n 1 n_1 n 1 ​ — First sample size;
  • x ˉ 1 \bar{x}_1 x ˉ 1 ​ — Mean for the first sample;
  • s 1 s_1 s 1 ​ — Standard deviation in the first sample;
  • n 2 n_2 n 2 ​ — Second sample size;
  • x ˉ 2 \bar{x}_2 x ˉ 2 ​ — Mean for the second sample; and
  • s 2 s_2 s 2 ​ — Standard deviation in the second sample.

Number of degrees of freedom in t-test (two samples, equal variances) = n 1 + n 2 − 2 n_1 + n_2 - 2 n 1 ​ + n 2 ​ − 2 .

Two-sample t-test if variances are unequal (Welch's t-test)

Use this test if the variances of your populations are different.

Two-sample Welch's t-test formula if variances are unequal:

  • s 1 s_1 s 1 ​ — Standard deviation in the first sample;
  • s 2 s_2 s 2 ​ — Standard deviation in the second sample.

The number of degrees of freedom in a Welch's t-test (two-sample t-test with unequal variances) is very difficult to count. We can approximate it with the help of the following Satterthwaite formula :

Alternatively, you can take the smaller of n 1 − 1 n_1 - 1 n 1 ​ − 1 and n 2 − 1 n_2 - 1 n 2 ​ − 1 as a conservative estimate for the number of degrees of freedom.

🔎 The Satterthwaite formula for the degrees of freedom can be rewritten as a scaled weighted harmonic mean of the degrees of freedom of the respective samples: n 1 − 1 n_1 - 1 n 1 ​ − 1 and n 2 − 1 n_2 - 1 n 2 ​ − 1 , and the weights are proportional to the standard deviations of the corresponding samples.

As we commonly perform a paired t-test when we have data about the same subjects measured twice (before and after some treatment), let us adopt the convention of referring to the samples as the pre-group and post-group.

The null hypothesis is that the true difference between the means of pre- and post-populations is equal to some pre-set value, Δ \Delta Δ .

The alternative hypothesis is that the actual difference between these means is:

Typically, this pre-determined difference is zero. We can then reformulate the hypotheses as follows:

The null hypothesis is that the pre- and post-means are the same, i.e., the treatment has no impact on the population .

The alternative hypothesis:

  • The pre- and post-means are different from one another (treatment has some effect);
  • The pre-mean is smaller than the post-mean (treatment increases the result); or
  • The pre-mean is greater than the post-mean (treatment decreases the result).

Paired t-test formula

In fact, a paired t-test is technically the same as a one-sample t-test! Let us see why it is so. Let x 1 , . . . , x n x_1, ... , x_n x 1 ​ , ... , x n ​ be the pre observations and y 1 , . . . , y n y_1, ... , y_n y 1 ​ , ... , y n ​ the respective post observations. That is, x i , y i x_i, y_i x i ​ , y i ​ are the before and after measurements of the i -th subject.

For each subject, compute the difference, d i : = x i − y i d_i := x_i - y_i d i ​ := x i ​ − y i ​ . All that happens next is just a one-sample t-test performed on the sample of differences d 1 , . . . , d n d_1, ... , d_n d 1 ​ , ... , d n ​ . Take a look at the formula for the T-score :

Δ \Delta Δ — Mean difference postulated in the null hypothesis;

n n n — Size of the sample of differences, i.e., the number of pairs;

x ˉ \bar{x} x ˉ — Mean of the sample of differences; and

s s s  — Standard deviation of the sample of differences.

Number of degrees of freedom in t-test (paired): n − 1 n - 1 n − 1

t-test vs Z-test

We use a Z-test when we want to test the population mean of a normally distributed dataset, which has a known population variance . If the number of degrees of freedom is large, then the t-Student distribution is very close to N(0,1).

Hence, if there are many data points (at least 30), you may swap a t-test for a Z-test, and the results will be almost identical. However, for small samples with unknown variance, remember to use the t-test because, in such cases, the t-Student distribution differs significantly from the N(0,1)!

🙋 Have you concluded you need to perform the z-test? Head straight to our z-test calculator !

What is a t-test?

A t-test is a widely used statistical test that analyzes the means of one or two groups of data. For instance, a t-test is performed on medical data to determine whether a new drug really helps.

What are different types of t-tests?

Different types of t-tests are:

  • One-sample t-test;
  • Two-sample t-test; and
  • Paired t-test.

How to find the t value in a one sample t-test?

To find the t-value:

  • Subtract the null hypothesis mean from the sample mean value.
  • Divide the difference by the standard deviation of the sample.
  • Multiply the resultant with the square root of the sample size.

.css-slt4t3.css-slt4t3{color:#2B3148;background-color:transparent;font-family:"Roboto","Helvetica","Arial",sans-serif;font-size:20px;line-height:24px;overflow:visible;padding-top:0px;position:relative;}.css-slt4t3.css-slt4t3:after{content:'';-webkit-transform:scale(0);-moz-transform:scale(0);-ms-transform:scale(0);transform:scale(0);position:absolute;border:2px solid #EA9430;border-radius:2px;inset:-8px;z-index:1;}.css-slt4t3 .js-external-link-button.link-like,.css-slt4t3 .js-external-link-anchor{color:inherit;border-radius:1px;-webkit-text-decoration:underline;text-decoration:underline;}.css-slt4t3 .js-external-link-button.link-like:hover,.css-slt4t3 .js-external-link-anchor:hover,.css-slt4t3 .js-external-link-button.link-like:active,.css-slt4t3 .js-external-link-anchor:active{text-decoration-thickness:2px;text-shadow:1px 0 0;}.css-slt4t3 .js-external-link-button.link-like:focus-visible,.css-slt4t3 .js-external-link-anchor:focus-visible{outline:transparent 2px dotted;box-shadow:0 0 0 2px #6314E6;}.css-slt4t3 p,.css-slt4t3 div{margin:0px;display:block;}.css-slt4t3 pre{margin:0px;display:block;}.css-slt4t3 pre code{display:block;width:-webkit-fit-content;width:-moz-fit-content;width:fit-content;}.css-slt4t3 pre:not(:first-child){padding-top:8px;}.css-slt4t3 ul,.css-slt4t3 ol{display:block margin:0px;padding-left:20px;}.css-slt4t3 ul li,.css-slt4t3 ol li{padding-top:8px;}.css-slt4t3 ul ul,.css-slt4t3 ol ul,.css-slt4t3 ul ol,.css-slt4t3 ol ol{padding-top:0px;}.css-slt4t3 ul:not(:first-child),.css-slt4t3 ol:not(:first-child){padding-top:4px;} .css-4okk7a{margin:auto;background-color:white;overflow:auto;overflow-wrap:break-word;word-break:break-word;}.css-4okk7a code,.css-4okk7a kbd,.css-4okk7a pre,.css-4okk7a samp{font-family:monospace;}.css-4okk7a code{padding:2px 4px;color:#444;background:#ddd;border-radius:4px;}.css-4okk7a figcaption,.css-4okk7a caption{text-align:center;}.css-4okk7a figcaption{font-size:12px;font-style:italic;overflow:hidden;}.css-4okk7a h3{font-size:1.75rem;}.css-4okk7a h4{font-size:1.5rem;}.css-4okk7a .mathBlock{font-size:24px;-webkit-padding-start:4px;padding-inline-start:4px;}.css-4okk7a .mathBlock .katex{font-size:24px;text-align:left;}.css-4okk7a .math-inline{background-color:#f0f0f0;display:inline-block;font-size:inherit;padding:0 3px;}.css-4okk7a .videoBlock,.css-4okk7a .imageBlock{margin-bottom:16px;}.css-4okk7a .imageBlock__image-align--left,.css-4okk7a .videoBlock__video-align--left{float:left;}.css-4okk7a .imageBlock__image-align--right,.css-4okk7a .videoBlock__video-align--right{float:right;}.css-4okk7a .imageBlock__image-align--center,.css-4okk7a .videoBlock__video-align--center{display:block;margin-left:auto;margin-right:auto;clear:both;}.css-4okk7a .imageBlock__image-align--none,.css-4okk7a .videoBlock__video-align--none{clear:both;margin-left:0;margin-right:0;}.css-4okk7a .videoBlock__video--wrapper{position:relative;padding-bottom:56.25%;height:0;}.css-4okk7a .videoBlock__video--wrapper iframe{position:absolute;top:0;left:0;width:100%;height:100%;}.css-4okk7a .videoBlock__caption{text-align:left;}@font-face{font-family:'KaTeX_AMS';src:url(/katex-fonts/KaTeX_AMS-Regular.woff2) format('woff2'),url(/katex-fonts/KaTeX_AMS-Regular.woff) format('woff'),url(/katex-fonts/KaTeX_AMS-Regular.ttf) format('truetype');font-weight:normal;font-style:normal;}@font-face{font-family:'KaTeX_Caligraphic';src:url(/katex-fonts/KaTeX_Caligraphic-Bold.woff2) format('woff2'),url(/katex-fonts/KaTeX_Caligraphic-Bold.woff) format('woff'),url(/katex-fonts/KaTeX_Caligraphic-Bold.ttf) format('truetype');font-weight:bold;font-style:normal;}@font-face{font-family:'KaTeX_Caligraphic';src:url(/katex-fonts/KaTeX_Caligraphic-Regular.woff2) format('woff2'),url(/katex-fonts/KaTeX_Caligraphic-Regular.woff) format('woff'),url(/katex-fonts/KaTeX_Caligraphic-Regular.ttf) format('truetype');font-weight:normal;font-style:normal;}@font-face{font-family:'KaTeX_Fraktur';src:url(/katex-fonts/KaTeX_Fraktur-Bold.woff2) format('woff2'),url(/katex-fonts/KaTeX_Fraktur-Bold.woff) format('woff'),url(/katex-fonts/KaTeX_Fraktur-Bold.ttf) format('truetype');font-weight:bold;font-style:normal;}@font-face{font-family:'KaTeX_Fraktur';src:url(/katex-fonts/KaTeX_Fraktur-Regular.woff2) format('woff2'),url(/katex-fonts/KaTeX_Fraktur-Regular.woff) format('woff'),url(/katex-fonts/KaTeX_Fraktur-Regular.ttf) format('truetype');font-weight:normal;font-style:normal;}@font-face{font-family:'KaTeX_Main';src:url(/katex-fonts/KaTeX_Main-Bold.woff2) format('woff2'),url(/katex-fonts/KaTeX_Main-Bold.woff) format('woff'),url(/katex-fonts/KaTeX_Main-Bold.ttf) format('truetype');font-weight:bold;font-style:normal;}@font-face{font-family:'KaTeX_Main';src:url(/katex-fonts/KaTeX_Main-BoldItalic.woff2) format('woff2'),url(/katex-fonts/KaTeX_Main-BoldItalic.woff) format('woff'),url(/katex-fonts/KaTeX_Main-BoldItalic.ttf) format('truetype');font-weight:bold;font-style:italic;}@font-face{font-family:'KaTeX_Main';src:url(/katex-fonts/KaTeX_Main-Italic.woff2) format('woff2'),url(/katex-fonts/KaTeX_Main-Italic.woff) format('woff'),url(/katex-fonts/KaTeX_Main-Italic.ttf) format('truetype');font-weight:normal;font-style:italic;}@font-face{font-family:'KaTeX_Main';src:url(/katex-fonts/KaTeX_Main-Regular.woff2) format('woff2'),url(/katex-fonts/KaTeX_Main-Regular.woff) format('woff'),url(/katex-fonts/KaTeX_Main-Regular.ttf) format('truetype');font-weight:normal;font-style:normal;}@font-face{font-family:'KaTeX_Math';src:url(/katex-fonts/KaTeX_Math-BoldItalic.woff2) format('woff2'),url(/katex-fonts/KaTeX_Math-BoldItalic.woff) format('woff'),url(/katex-fonts/KaTeX_Math-BoldItalic.ttf) format('truetype');font-weight:bold;font-style:italic;}@font-face{font-family:'KaTeX_Math';src:url(/katex-fonts/KaTeX_Math-Italic.woff2) format('woff2'),url(/katex-fonts/KaTeX_Math-Italic.woff) format('woff'),url(/katex-fonts/KaTeX_Math-Italic.ttf) format('truetype');font-weight:normal;font-style:italic;}@font-face{font-family:'KaTeX_SansSerif';src:url(/katex-fonts/KaTeX_SansSerif-Bold.woff2) format('woff2'),url(/katex-fonts/KaTeX_SansSerif-Bold.woff) format('woff'),url(/katex-fonts/KaTeX_SansSerif-Bold.ttf) format('truetype');font-weight:bold;font-style:normal;}@font-face{font-family:'KaTeX_SansSerif';src:url(/katex-fonts/KaTeX_SansSerif-Italic.woff2) format('woff2'),url(/katex-fonts/KaTeX_SansSerif-Italic.woff) format('woff'),url(/katex-fonts/KaTeX_SansSerif-Italic.ttf) format('truetype');font-weight:normal;font-style:italic;}@font-face{font-family:'KaTeX_SansSerif';src:url(/katex-fonts/KaTeX_SansSerif-Regular.woff2) format('woff2'),url(/katex-fonts/KaTeX_SansSerif-Regular.woff) format('woff'),url(/katex-fonts/KaTeX_SansSerif-Regular.ttf) format('truetype');font-weight:normal;font-style:normal;}@font-face{font-family:'KaTeX_Script';src:url(/katex-fonts/KaTeX_Script-Regular.woff2) format('woff2'),url(/katex-fonts/KaTeX_Script-Regular.woff) format('woff'),url(/katex-fonts/KaTeX_Script-Regular.ttf) format('truetype');font-weight:normal;font-style:normal;}@font-face{font-family:'KaTeX_Size1';src:url(/katex-fonts/KaTeX_Size1-Regular.woff2) format('woff2'),url(/katex-fonts/KaTeX_Size1-Regular.woff) format('woff'),url(/katex-fonts/KaTeX_Size1-Regular.ttf) format('truetype');font-weight:normal;font-style:normal;}@font-face{font-family:'KaTeX_Size2';src:url(/katex-fonts/KaTeX_Size2-Regular.woff2) format('woff2'),url(/katex-fonts/KaTeX_Size2-Regular.woff) format('woff'),url(/katex-fonts/KaTeX_Size2-Regular.ttf) format('truetype');font-weight:normal;font-style:normal;}@font-face{font-family:'KaTeX_Size3';src:url(/katex-fonts/KaTeX_Size3-Regular.woff2) format('woff2'),url(/katex-fonts/KaTeX_Size3-Regular.woff) format('woff'),url(/katex-fonts/KaTeX_Size3-Regular.ttf) format('truetype');font-weight:normal;font-style:normal;}@font-face{font-family:'KaTeX_Size4';src:url(/katex-fonts/KaTeX_Size4-Regular.woff2) format('woff2'),url(/katex-fonts/KaTeX_Size4-Regular.woff) format('woff'),url(/katex-fonts/KaTeX_Size4-Regular.ttf) format('truetype');font-weight:normal;font-style:normal;}@font-face{font-family:'KaTeX_Typewriter';src:url(/katex-fonts/KaTeX_Typewriter-Regular.woff2) format('woff2'),url(/katex-fonts/KaTeX_Typewriter-Regular.woff) format('woff'),url(/katex-fonts/KaTeX_Typewriter-Regular.ttf) format('truetype');font-weight:normal;font-style:normal;}.css-4okk7a .katex{font:normal 1.21em KaTeX_Main,Times New Roman,serif;line-height:1.2;text-indent:0;text-rendering:auto;}.css-4okk7a .katex *{-ms-high-contrast-adjust:none!important;border-color:currentColor;}.css-4okk7a .katex .katex-version::after{content:'0.13.13';}.css-4okk7a .katex .katex-mathml{position:absolute;clip:rect(1px, 1px, 1px, 1px);padding:0;border:0;height:1px;width:1px;overflow:hidden;}.css-4okk7a .katex .katex-html>.newline{display:block;}.css-4okk7a .katex .base{position:relative;display:inline-block;white-space:nowrap;width:-webkit-min-content;width:-moz-min-content;width:-webkit-min-content;width:-moz-min-content;width:min-content;}.css-4okk7a .katex .strut{display:inline-block;}.css-4okk7a .katex .textbf{font-weight:bold;}.css-4okk7a .katex .textit{font-style:italic;}.css-4okk7a .katex .textrm{font-family:KaTeX_Main;}.css-4okk7a .katex .textsf{font-family:KaTeX_SansSerif;}.css-4okk7a .katex .texttt{font-family:KaTeX_Typewriter;}.css-4okk7a .katex .mathnormal{font-family:KaTeX_Math;font-style:italic;}.css-4okk7a .katex .mathit{font-family:KaTeX_Main;font-style:italic;}.css-4okk7a .katex .mathrm{font-style:normal;}.css-4okk7a .katex .mathbf{font-family:KaTeX_Main;font-weight:bold;}.css-4okk7a .katex .boldsymbol{font-family:KaTeX_Math;font-weight:bold;font-style:italic;}.css-4okk7a .katex .amsrm{font-family:KaTeX_AMS;}.css-4okk7a .katex .mathbb,.css-4okk7a .katex .textbb{font-family:KaTeX_AMS;}.css-4okk7a .katex .mathcal{font-family:KaTeX_Caligraphic;}.css-4okk7a .katex .mathfrak,.css-4okk7a .katex .textfrak{font-family:KaTeX_Fraktur;}.css-4okk7a .katex .mathtt{font-family:KaTeX_Typewriter;}.css-4okk7a .katex .mathscr,.css-4okk7a .katex .textscr{font-family:KaTeX_Script;}.css-4okk7a .katex .mathsf,.css-4okk7a .katex .textsf{font-family:KaTeX_SansSerif;}.css-4okk7a .katex .mathboldsf,.css-4okk7a .katex .textboldsf{font-family:KaTeX_SansSerif;font-weight:bold;}.css-4okk7a .katex .mathitsf,.css-4okk7a .katex .textitsf{font-family:KaTeX_SansSerif;font-style:italic;}.css-4okk7a .katex .mainrm{font-family:KaTeX_Main;font-style:normal;}.css-4okk7a .katex .vlist-t{display:inline-table;table-layout:fixed;border-collapse:collapse;}.css-4okk7a .katex .vlist-r{display:table-row;}.css-4okk7a .katex .vlist{display:table-cell;vertical-align:bottom;position:relative;}.css-4okk7a .katex .vlist>span{display:block;height:0;position:relative;}.css-4okk7a .katex .vlist>span>span{display:inline-block;}.css-4okk7a .katex .vlist>span>.pstrut{overflow:hidden;width:0;}.css-4okk7a .katex .vlist-t2{margin-right:-2px;}.css-4okk7a .katex .vlist-s{display:table-cell;vertical-align:bottom;font-size:1px;width:2px;min-width:2px;}.css-4okk7a .katex .vbox{display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;-webkit-align-items:baseline;-webkit-box-align:baseline;-ms-flex-align:baseline;align-items:baseline;}.css-4okk7a .katex .hbox{display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;width:100%;}.css-4okk7a .katex .thinbox{display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;width:0;max-width:0;}.css-4okk7a .katex .msupsub{text-align:left;}.css-4okk7a .katex .mfrac>span>span{text-align:center;}.css-4okk7a .katex .mfrac .frac-line{display:inline-block;width:100%;border-bottom-style:solid;}.css-4okk7a .katex .mfrac .frac-line,.css-4okk7a .katex .overline .overline-line,.css-4okk7a .katex .underline .underline-line,.css-4okk7a .katex .hline,.css-4okk7a .katex .hdashline,.css-4okk7a .katex .rule{min-height:1px;}.css-4okk7a .katex .mspace{display:inline-block;}.css-4okk7a .katex .llap,.css-4okk7a .katex .rlap,.css-4okk7a .katex .clap{width:0;position:relative;}.css-4okk7a .katex .llap>.inner,.css-4okk7a .katex .rlap>.inner,.css-4okk7a .katex .clap>.inner{position:absolute;}.css-4okk7a .katex .llap>.fix,.css-4okk7a .katex .rlap>.fix,.css-4okk7a .katex .clap>.fix{display:inline-block;}.css-4okk7a .katex .llap>.inner{right:0;}.css-4okk7a .katex .rlap>.inner,.css-4okk7a .katex .clap>.inner{left:0;}.css-4okk7a .katex .clap>.inner>span{margin-left:-50%;margin-right:50%;}.css-4okk7a .katex .rule{display:inline-block;border:solid 0;position:relative;}.css-4okk7a .katex .overline .overline-line,.css-4okk7a .katex .underline .underline-line,.css-4okk7a .katex .hline{display:inline-block;width:100%;border-bottom-style:solid;}.css-4okk7a .katex .hdashline{display:inline-block;width:100%;border-bottom-style:dashed;}.css-4okk7a .katex .sqrt>.root{margin-left:0.27777778em;margin-right:-0.55555556em;}.css-4okk7a .katex .sizing.reset-size1.size1,.css-4okk7a .katex .fontsize-ensurer.reset-size1.size1{font-size:1em;}.css-4okk7a .katex .sizing.reset-size1.size2,.css-4okk7a .katex .fontsize-ensurer.reset-size1.size2{font-size:1.2em;}.css-4okk7a .katex .sizing.reset-size1.size3,.css-4okk7a .katex .fontsize-ensurer.reset-size1.size3{font-size:1.4em;}.css-4okk7a .katex .sizing.reset-size1.size4,.css-4okk7a .katex .fontsize-ensurer.reset-size1.size4{font-size:1.6em;}.css-4okk7a .katex .sizing.reset-size1.size5,.css-4okk7a .katex .fontsize-ensurer.reset-size1.size5{font-size:1.8em;}.css-4okk7a .katex .sizing.reset-size1.size6,.css-4okk7a .katex .fontsize-ensurer.reset-size1.size6{font-size:2em;}.css-4okk7a .katex .sizing.reset-size1.size7,.css-4okk7a .katex .fontsize-ensurer.reset-size1.size7{font-size:2.4em;}.css-4okk7a .katex .sizing.reset-size1.size8,.css-4okk7a .katex .fontsize-ensurer.reset-size1.size8{font-size:2.88em;}.css-4okk7a .katex .sizing.reset-size1.size9,.css-4okk7a .katex .fontsize-ensurer.reset-size1.size9{font-size:3.456em;}.css-4okk7a .katex .sizing.reset-size1.size10,.css-4okk7a .katex .fontsize-ensurer.reset-size1.size10{font-size:4.148em;}.css-4okk7a .katex .sizing.reset-size1.size11,.css-4okk7a .katex .fontsize-ensurer.reset-size1.size11{font-size:4.976em;}.css-4okk7a .katex .sizing.reset-size2.size1,.css-4okk7a .katex .fontsize-ensurer.reset-size2.size1{font-size:0.83333333em;}.css-4okk7a .katex .sizing.reset-size2.size2,.css-4okk7a .katex .fontsize-ensurer.reset-size2.size2{font-size:1em;}.css-4okk7a .katex .sizing.reset-size2.size3,.css-4okk7a .katex .fontsize-ensurer.reset-size2.size3{font-size:1.16666667em;}.css-4okk7a .katex .sizing.reset-size2.size4,.css-4okk7a .katex .fontsize-ensurer.reset-size2.size4{font-size:1.33333333em;}.css-4okk7a .katex .sizing.reset-size2.size5,.css-4okk7a .katex .fontsize-ensurer.reset-size2.size5{font-size:1.5em;}.css-4okk7a .katex .sizing.reset-size2.size6,.css-4okk7a .katex .fontsize-ensurer.reset-size2.size6{font-size:1.66666667em;}.css-4okk7a .katex .sizing.reset-size2.size7,.css-4okk7a .katex .fontsize-ensurer.reset-size2.size7{font-size:2em;}.css-4okk7a .katex .sizing.reset-size2.size8,.css-4okk7a .katex .fontsize-ensurer.reset-size2.size8{font-size:2.4em;}.css-4okk7a .katex .sizing.reset-size2.size9,.css-4okk7a .katex .fontsize-ensurer.reset-size2.size9{font-size:2.88em;}.css-4okk7a .katex .sizing.reset-size2.size10,.css-4okk7a .katex .fontsize-ensurer.reset-size2.size10{font-size:3.45666667em;}.css-4okk7a .katex .sizing.reset-size2.size11,.css-4okk7a .katex .fontsize-ensurer.reset-size2.size11{font-size:4.14666667em;}.css-4okk7a .katex .sizing.reset-size3.size1,.css-4okk7a .katex .fontsize-ensurer.reset-size3.size1{font-size:0.71428571em;}.css-4okk7a .katex .sizing.reset-size3.size2,.css-4okk7a .katex .fontsize-ensurer.reset-size3.size2{font-size:0.85714286em;}.css-4okk7a .katex .sizing.reset-size3.size3,.css-4okk7a .katex .fontsize-ensurer.reset-size3.size3{font-size:1em;}.css-4okk7a .katex .sizing.reset-size3.size4,.css-4okk7a .katex .fontsize-ensurer.reset-size3.size4{font-size:1.14285714em;}.css-4okk7a .katex .sizing.reset-size3.size5,.css-4okk7a .katex .fontsize-ensurer.reset-size3.size5{font-size:1.28571429em;}.css-4okk7a .katex .sizing.reset-size3.size6,.css-4okk7a .katex .fontsize-ensurer.reset-size3.size6{font-size:1.42857143em;}.css-4okk7a .katex .sizing.reset-size3.size7,.css-4okk7a .katex .fontsize-ensurer.reset-size3.size7{font-size:1.71428571em;}.css-4okk7a .katex .sizing.reset-size3.size8,.css-4okk7a .katex .fontsize-ensurer.reset-size3.size8{font-size:2.05714286em;}.css-4okk7a .katex .sizing.reset-size3.size9,.css-4okk7a .katex .fontsize-ensurer.reset-size3.size9{font-size:2.46857143em;}.css-4okk7a .katex .sizing.reset-size3.size10,.css-4okk7a .katex .fontsize-ensurer.reset-size3.size10{font-size:2.96285714em;}.css-4okk7a .katex .sizing.reset-size3.size11,.css-4okk7a .katex .fontsize-ensurer.reset-size3.size11{font-size:3.55428571em;}.css-4okk7a .katex .sizing.reset-size4.size1,.css-4okk7a .katex .fontsize-ensurer.reset-size4.size1{font-size:0.625em;}.css-4okk7a .katex .sizing.reset-size4.size2,.css-4okk7a .katex .fontsize-ensurer.reset-size4.size2{font-size:0.75em;}.css-4okk7a .katex .sizing.reset-size4.size3,.css-4okk7a .katex .fontsize-ensurer.reset-size4.size3{font-size:0.875em;}.css-4okk7a .katex .sizing.reset-size4.size4,.css-4okk7a .katex .fontsize-ensurer.reset-size4.size4{font-size:1em;}.css-4okk7a .katex .sizing.reset-size4.size5,.css-4okk7a .katex .fontsize-ensurer.reset-size4.size5{font-size:1.125em;}.css-4okk7a .katex .sizing.reset-size4.size6,.css-4okk7a .katex .fontsize-ensurer.reset-size4.size6{font-size:1.25em;}.css-4okk7a .katex .sizing.reset-size4.size7,.css-4okk7a .katex .fontsize-ensurer.reset-size4.size7{font-size:1.5em;}.css-4okk7a .katex .sizing.reset-size4.size8,.css-4okk7a .katex .fontsize-ensurer.reset-size4.size8{font-size:1.8em;}.css-4okk7a .katex .sizing.reset-size4.size9,.css-4okk7a .katex .fontsize-ensurer.reset-size4.size9{font-size:2.16em;}.css-4okk7a .katex .sizing.reset-size4.size10,.css-4okk7a .katex .fontsize-ensurer.reset-size4.size10{font-size:2.5925em;}.css-4okk7a .katex .sizing.reset-size4.size11,.css-4okk7a .katex .fontsize-ensurer.reset-size4.size11{font-size:3.11em;}.css-4okk7a .katex .sizing.reset-size5.size1,.css-4okk7a .katex .fontsize-ensurer.reset-size5.size1{font-size:0.55555556em;}.css-4okk7a .katex .sizing.reset-size5.size2,.css-4okk7a .katex .fontsize-ensurer.reset-size5.size2{font-size:0.66666667em;}.css-4okk7a .katex .sizing.reset-size5.size3,.css-4okk7a .katex .fontsize-ensurer.reset-size5.size3{font-size:0.77777778em;}.css-4okk7a .katex .sizing.reset-size5.size4,.css-4okk7a .katex .fontsize-ensurer.reset-size5.size4{font-size:0.88888889em;}.css-4okk7a .katex .sizing.reset-size5.size5,.css-4okk7a .katex .fontsize-ensurer.reset-size5.size5{font-size:1em;}.css-4okk7a .katex .sizing.reset-size5.size6,.css-4okk7a .katex .fontsize-ensurer.reset-size5.size6{font-size:1.11111111em;}.css-4okk7a .katex .sizing.reset-size5.size7,.css-4okk7a .katex .fontsize-ensurer.reset-size5.size7{font-size:1.33333333em;}.css-4okk7a .katex .sizing.reset-size5.size8,.css-4okk7a .katex .fontsize-ensurer.reset-size5.size8{font-size:1.6em;}.css-4okk7a .katex .sizing.reset-size5.size9,.css-4okk7a .katex .fontsize-ensurer.reset-size5.size9{font-size:1.92em;}.css-4okk7a .katex .sizing.reset-size5.size10,.css-4okk7a .katex .fontsize-ensurer.reset-size5.size10{font-size:2.30444444em;}.css-4okk7a .katex .sizing.reset-size5.size11,.css-4okk7a .katex .fontsize-ensurer.reset-size5.size11{font-size:2.76444444em;}.css-4okk7a .katex .sizing.reset-size6.size1,.css-4okk7a .katex .fontsize-ensurer.reset-size6.size1{font-size:0.5em;}.css-4okk7a .katex .sizing.reset-size6.size2,.css-4okk7a .katex .fontsize-ensurer.reset-size6.size2{font-size:0.6em;}.css-4okk7a .katex .sizing.reset-size6.size3,.css-4okk7a .katex .fontsize-ensurer.reset-size6.size3{font-size:0.7em;}.css-4okk7a .katex .sizing.reset-size6.size4,.css-4okk7a .katex .fontsize-ensurer.reset-size6.size4{font-size:0.8em;}.css-4okk7a .katex .sizing.reset-size6.size5,.css-4okk7a .katex .fontsize-ensurer.reset-size6.size5{font-size:0.9em;}.css-4okk7a .katex .sizing.reset-size6.size6,.css-4okk7a .katex .fontsize-ensurer.reset-size6.size6{font-size:1em;}.css-4okk7a .katex .sizing.reset-size6.size7,.css-4okk7a .katex .fontsize-ensurer.reset-size6.size7{font-size:1.2em;}.css-4okk7a .katex .sizing.reset-size6.size8,.css-4okk7a .katex .fontsize-ensurer.reset-size6.size8{font-size:1.44em;}.css-4okk7a .katex .sizing.reset-size6.size9,.css-4okk7a .katex .fontsize-ensurer.reset-size6.size9{font-size:1.728em;}.css-4okk7a .katex .sizing.reset-size6.size10,.css-4okk7a .katex .fontsize-ensurer.reset-size6.size10{font-size:2.074em;}.css-4okk7a .katex .sizing.reset-size6.size11,.css-4okk7a .katex .fontsize-ensurer.reset-size6.size11{font-size:2.488em;}.css-4okk7a .katex .sizing.reset-size7.size1,.css-4okk7a .katex .fontsize-ensurer.reset-size7.size1{font-size:0.41666667em;}.css-4okk7a .katex .sizing.reset-size7.size2,.css-4okk7a .katex .fontsize-ensurer.reset-size7.size2{font-size:0.5em;}.css-4okk7a .katex .sizing.reset-size7.size3,.css-4okk7a .katex .fontsize-ensurer.reset-size7.size3{font-size:0.58333333em;}.css-4okk7a .katex .sizing.reset-size7.size4,.css-4okk7a .katex .fontsize-ensurer.reset-size7.size4{font-size:0.66666667em;}.css-4okk7a .katex .sizing.reset-size7.size5,.css-4okk7a .katex .fontsize-ensurer.reset-size7.size5{font-size:0.75em;}.css-4okk7a .katex .sizing.reset-size7.size6,.css-4okk7a .katex .fontsize-ensurer.reset-size7.size6{font-size:0.83333333em;}.css-4okk7a .katex .sizing.reset-size7.size7,.css-4okk7a .katex .fontsize-ensurer.reset-size7.size7{font-size:1em;}.css-4okk7a .katex .sizing.reset-size7.size8,.css-4okk7a .katex .fontsize-ensurer.reset-size7.size8{font-size:1.2em;}.css-4okk7a .katex .sizing.reset-size7.size9,.css-4okk7a .katex .fontsize-ensurer.reset-size7.size9{font-size:1.44em;}.css-4okk7a .katex .sizing.reset-size7.size10,.css-4okk7a .katex .fontsize-ensurer.reset-size7.size10{font-size:1.72833333em;}.css-4okk7a .katex .sizing.reset-size7.size11,.css-4okk7a .katex .fontsize-ensurer.reset-size7.size11{font-size:2.07333333em;}.css-4okk7a .katex .sizing.reset-size8.size1,.css-4okk7a .katex .fontsize-ensurer.reset-size8.size1{font-size:0.34722222em;}.css-4okk7a .katex .sizing.reset-size8.size2,.css-4okk7a .katex .fontsize-ensurer.reset-size8.size2{font-size:0.41666667em;}.css-4okk7a .katex .sizing.reset-size8.size3,.css-4okk7a .katex .fontsize-ensurer.reset-size8.size3{font-size:0.48611111em;}.css-4okk7a .katex .sizing.reset-size8.size4,.css-4okk7a .katex .fontsize-ensurer.reset-size8.size4{font-size:0.55555556em;}.css-4okk7a .katex .sizing.reset-size8.size5,.css-4okk7a .katex .fontsize-ensurer.reset-size8.size5{font-size:0.625em;}.css-4okk7a .katex .sizing.reset-size8.size6,.css-4okk7a .katex .fontsize-ensurer.reset-size8.size6{font-size:0.69444444em;}.css-4okk7a .katex .sizing.reset-size8.size7,.css-4okk7a .katex .fontsize-ensurer.reset-size8.size7{font-size:0.83333333em;}.css-4okk7a .katex .sizing.reset-size8.size8,.css-4okk7a .katex .fontsize-ensurer.reset-size8.size8{font-size:1em;}.css-4okk7a .katex .sizing.reset-size8.size9,.css-4okk7a .katex .fontsize-ensurer.reset-size8.size9{font-size:1.2em;}.css-4okk7a .katex .sizing.reset-size8.size10,.css-4okk7a .katex .fontsize-ensurer.reset-size8.size10{font-size:1.44027778em;}.css-4okk7a .katex .sizing.reset-size8.size11,.css-4okk7a .katex .fontsize-ensurer.reset-size8.size11{font-size:1.72777778em;}.css-4okk7a .katex .sizing.reset-size9.size1,.css-4okk7a .katex .fontsize-ensurer.reset-size9.size1{font-size:0.28935185em;}.css-4okk7a .katex .sizing.reset-size9.size2,.css-4okk7a .katex .fontsize-ensurer.reset-size9.size2{font-size:0.34722222em;}.css-4okk7a .katex .sizing.reset-size9.size3,.css-4okk7a .katex .fontsize-ensurer.reset-size9.size3{font-size:0.40509259em;}.css-4okk7a .katex .sizing.reset-size9.size4,.css-4okk7a .katex .fontsize-ensurer.reset-size9.size4{font-size:0.46296296em;}.css-4okk7a .katex .sizing.reset-size9.size5,.css-4okk7a .katex .fontsize-ensurer.reset-size9.size5{font-size:0.52083333em;}.css-4okk7a .katex .sizing.reset-size9.size6,.css-4okk7a .katex .fontsize-ensurer.reset-size9.size6{font-size:0.5787037em;}.css-4okk7a .katex .sizing.reset-size9.size7,.css-4okk7a .katex .fontsize-ensurer.reset-size9.size7{font-size:0.69444444em;}.css-4okk7a .katex .sizing.reset-size9.size8,.css-4okk7a .katex .fontsize-ensurer.reset-size9.size8{font-size:0.83333333em;}.css-4okk7a .katex .sizing.reset-size9.size9,.css-4okk7a .katex .fontsize-ensurer.reset-size9.size9{font-size:1em;}.css-4okk7a .katex .sizing.reset-size9.size10,.css-4okk7a .katex .fontsize-ensurer.reset-size9.size10{font-size:1.20023148em;}.css-4okk7a .katex .sizing.reset-size9.size11,.css-4okk7a .katex .fontsize-ensurer.reset-size9.size11{font-size:1.43981481em;}.css-4okk7a .katex .sizing.reset-size10.size1,.css-4okk7a .katex .fontsize-ensurer.reset-size10.size1{font-size:0.24108004em;}.css-4okk7a .katex .sizing.reset-size10.size2,.css-4okk7a .katex .fontsize-ensurer.reset-size10.size2{font-size:0.28929605em;}.css-4okk7a .katex .sizing.reset-size10.size3,.css-4okk7a .katex .fontsize-ensurer.reset-size10.size3{font-size:0.33751205em;}.css-4okk7a .katex .sizing.reset-size10.size4,.css-4okk7a .katex .fontsize-ensurer.reset-size10.size4{font-size:0.38572806em;}.css-4okk7a .katex .sizing.reset-size10.size5,.css-4okk7a .katex .fontsize-ensurer.reset-size10.size5{font-size:0.43394407em;}.css-4okk7a .katex .sizing.reset-size10.size6,.css-4okk7a .katex .fontsize-ensurer.reset-size10.size6{font-size:0.48216008em;}.css-4okk7a .katex .sizing.reset-size10.size7,.css-4okk7a .katex .fontsize-ensurer.reset-size10.size7{font-size:0.57859209em;}.css-4okk7a .katex .sizing.reset-size10.size8,.css-4okk7a .katex .fontsize-ensurer.reset-size10.size8{font-size:0.69431051em;}.css-4okk7a .katex .sizing.reset-size10.size9,.css-4okk7a .katex .fontsize-ensurer.reset-size10.size9{font-size:0.83317261em;}.css-4okk7a .katex .sizing.reset-size10.size10,.css-4okk7a .katex .fontsize-ensurer.reset-size10.size10{font-size:1em;}.css-4okk7a .katex .sizing.reset-size10.size11,.css-4okk7a .katex .fontsize-ensurer.reset-size10.size11{font-size:1.19961427em;}.css-4okk7a .katex .sizing.reset-size11.size1,.css-4okk7a .katex .fontsize-ensurer.reset-size11.size1{font-size:0.20096463em;}.css-4okk7a .katex .sizing.reset-size11.size2,.css-4okk7a .katex .fontsize-ensurer.reset-size11.size2{font-size:0.24115756em;}.css-4okk7a .katex .sizing.reset-size11.size3,.css-4okk7a .katex .fontsize-ensurer.reset-size11.size3{font-size:0.28135048em;}.css-4okk7a .katex .sizing.reset-size11.size4,.css-4okk7a .katex .fontsize-ensurer.reset-size11.size4{font-size:0.32154341em;}.css-4okk7a .katex .sizing.reset-size11.size5,.css-4okk7a .katex .fontsize-ensurer.reset-size11.size5{font-size:0.36173633em;}.css-4okk7a .katex .sizing.reset-size11.size6,.css-4okk7a .katex .fontsize-ensurer.reset-size11.size6{font-size:0.40192926em;}.css-4okk7a .katex .sizing.reset-size11.size7,.css-4okk7a .katex .fontsize-ensurer.reset-size11.size7{font-size:0.48231511em;}.css-4okk7a .katex .sizing.reset-size11.size8,.css-4okk7a .katex .fontsize-ensurer.reset-size11.size8{font-size:0.57877814em;}.css-4okk7a .katex .sizing.reset-size11.size9,.css-4okk7a .katex .fontsize-ensurer.reset-size11.size9{font-size:0.69453376em;}.css-4okk7a .katex .sizing.reset-size11.size10,.css-4okk7a .katex .fontsize-ensurer.reset-size11.size10{font-size:0.83360129em;}.css-4okk7a .katex .sizing.reset-size11.size11,.css-4okk7a .katex .fontsize-ensurer.reset-size11.size11{font-size:1em;}.css-4okk7a .katex .delimsizing.size1{font-family:KaTeX_Size1;}.css-4okk7a .katex .delimsizing.size2{font-family:KaTeX_Size2;}.css-4okk7a .katex .delimsizing.size3{font-family:KaTeX_Size3;}.css-4okk7a .katex .delimsizing.size4{font-family:KaTeX_Size4;}.css-4okk7a .katex .delimsizing.mult .delim-size1>span{font-family:KaTeX_Size1;}.css-4okk7a .katex .delimsizing.mult .delim-size4>span{font-family:KaTeX_Size4;}.css-4okk7a .katex .nulldelimiter{display:inline-block;width:0.12em;}.css-4okk7a .katex .delimcenter{position:relative;}.css-4okk7a .katex .op-symbol{position:relative;}.css-4okk7a .katex .op-symbol.small-op{font-family:KaTeX_Size1;}.css-4okk7a .katex .op-symbol.large-op{font-family:KaTeX_Size2;}.css-4okk7a .katex .op-limits>.vlist-t{text-align:center;}.css-4okk7a .katex .accent>.vlist-t{text-align:center;}.css-4okk7a .katex .accent .accent-body{position:relative;}.css-4okk7a .katex .accent .accent-body:not(.accent-full){width:0;}.css-4okk7a .katex .overlay{display:block;}.css-4okk7a .katex .mtable .vertical-separator{display:inline-block;min-width:1px;}.css-4okk7a .katex .mtable .arraycolsep{display:inline-block;}.css-4okk7a .katex .mtable .col-align-c>.vlist-t{text-align:center;}.css-4okk7a .katex .mtable .col-align-l>.vlist-t{text-align:left;}.css-4okk7a .katex .mtable .col-align-r>.vlist-t{text-align:right;}.css-4okk7a .katex .svg-align{text-align:left;}.css-4okk7a .katex svg{display:block;position:absolute;width:100%;height:inherit;fill:currentColor;stroke:currentColor;fill-rule:nonzero;fill-opacity:1;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;}.css-4okk7a .katex svg path{stroke:none;}.css-4okk7a .katex img{border-style:none;min-width:0;min-height:0;max-width:none;max-height:none;}.css-4okk7a .katex .stretchy{width:100%;display:block;position:relative;overflow:hidden;}.css-4okk7a .katex .stretchy::before,.css-4okk7a .katex .stretchy::after{content:'';}.css-4okk7a .katex .hide-tail{width:100%;position:relative;overflow:hidden;}.css-4okk7a .katex .halfarrow-left{position:absolute;left:0;width:50.2%;overflow:hidden;}.css-4okk7a .katex .halfarrow-right{position:absolute;right:0;width:50.2%;overflow:hidden;}.css-4okk7a .katex .brace-left{position:absolute;left:0;width:25.1%;overflow:hidden;}.css-4okk7a .katex .brace-center{position:absolute;left:25%;width:50%;overflow:hidden;}.css-4okk7a .katex .brace-right{position:absolute;right:0;width:25.1%;overflow:hidden;}.css-4okk7a .katex .x-arrow-pad{padding:0 0.5em;}.css-4okk7a .katex .cd-arrow-pad{padding:0 0.55556em 0 0.27778em;}.css-4okk7a .katex .x-arrow,.css-4okk7a .katex .mover,.css-4okk7a .katex .munder{text-align:center;}.css-4okk7a .katex .boxpad{padding:0 0.3em 0 0.3em;}.css-4okk7a .katex .fbox,.css-4okk7a .katex .fcolorbox{box-sizing:border-box;border:0.04em solid;}.css-4okk7a .katex .cancel-pad{padding:0 0.2em 0 0.2em;}.css-4okk7a .katex .cancel-lap{margin-left:-0.2em;margin-right:-0.2em;}.css-4okk7a .katex .sout{border-bottom-style:solid;border-bottom-width:0.08em;}.css-4okk7a .katex .angl{box-sizing:border-box;border-top:0.049em solid;border-right:0.049em solid;margin-right:0.03889em;}.css-4okk7a .katex .anglpad{padding:0 0.03889em 0 0.03889em;}.css-4okk7a .katex .eqn-num::before{counter-increment:katexEqnNo;content:'(' counter(katexEqnNo) ')';}.css-4okk7a .katex .mml-eqn-num::before{counter-increment:mmlEqnNo;content:'(' counter(mmlEqnNo) ')';}.css-4okk7a .katex .mtr-glue{width:50%;}.css-4okk7a .katex .cd-vert-arrow{display:inline-block;position:relative;}.css-4okk7a .katex .cd-label-left{display:inline-block;position:absolute;right:calc(50% + 0.3em);text-align:left;}.css-4okk7a .katex .cd-label-right{display:inline-block;position:absolute;left:calc(50% + 0.3em);text-align:right;}.css-4okk7a .katex-display{display:block;margin:1em 0;text-align:center;}.css-4okk7a .katex-display>.katex{display:block;white-space:nowrap;}.css-4okk7a .katex-display>.katex>.katex-html{display:block;position:relative;}.css-4okk7a .katex-display>.katex>.katex-html>.tag{position:absolute;right:0;}.css-4okk7a .katex-display.leqno>.katex>.katex-html>.tag{left:0;right:auto;}.css-4okk7a .katex-display.fleqn>.katex{text-align:left;padding-left:2em;}.css-4okk7a body{counter-reset:katexEqnNo mmlEqnNo;}.css-4okk7a table{width:-webkit-max-content;width:-moz-max-content;width:max-content;}.css-4okk7a .tableBlock{max-width:100%;margin-bottom:1rem;overflow-y:scroll;}.css-4okk7a .tableBlock thead,.css-4okk7a .tableBlock thead th{border-bottom:1px solid #333!important;}.css-4okk7a .tableBlock th,.css-4okk7a .tableBlock td{padding:10px;text-align:left;}.css-4okk7a .tableBlock th{font-weight:bold!important;}.css-4okk7a .tableBlock caption{caption-side:bottom;color:#555;font-size:12px;font-style:italic;text-align:center;}.css-4okk7a .tableBlock caption>p{margin:0;}.css-4okk7a .tableBlock th>p,.css-4okk7a .tableBlock td>p{margin:0;}.css-4okk7a .tableBlock [data-background-color='aliceblue']{background-color:#f0f8ff;color:#000;}.css-4okk7a .tableBlock [data-background-color='black']{background-color:#000;color:#fff;}.css-4okk7a .tableBlock [data-background-color='chocolate']{background-color:#d2691e;color:#fff;}.css-4okk7a .tableBlock [data-background-color='cornflowerblue']{background-color:#6495ed;color:#fff;}.css-4okk7a .tableBlock [data-background-color='crimson']{background-color:#dc143c;color:#fff;}.css-4okk7a .tableBlock [data-background-color='darkblue']{background-color:#00008b;color:#fff;}.css-4okk7a .tableBlock [data-background-color='darkseagreen']{background-color:#8fbc8f;color:#000;}.css-4okk7a .tableBlock [data-background-color='deepskyblue']{background-color:#00bfff;color:#000;}.css-4okk7a .tableBlock [data-background-color='gainsboro']{background-color:#dcdcdc;color:#000;}.css-4okk7a .tableBlock [data-background-color='grey']{background-color:#808080;color:#fff;}.css-4okk7a .tableBlock [data-background-color='lemonchiffon']{background-color:#fffacd;color:#000;}.css-4okk7a .tableBlock [data-background-color='lightpink']{background-color:#ffb6c1;color:#000;}.css-4okk7a .tableBlock [data-background-color='lightsalmon']{background-color:#ffa07a;color:#000;}.css-4okk7a .tableBlock [data-background-color='lightskyblue']{background-color:#87cefa;color:#000;}.css-4okk7a .tableBlock [data-background-color='mediumblue']{background-color:#0000cd;color:#fff;}.css-4okk7a .tableBlock [data-background-color='omnigrey']{background-color:#f0f0f0;color:#000;}.css-4okk7a .tableBlock [data-background-color='white']{background-color:#fff;color:#000;}.css-4okk7a .tableBlock [data-text-align='center']{text-align:center;}.css-4okk7a .tableBlock [data-text-align='left']{text-align:left;}.css-4okk7a .tableBlock [data-text-align='right']{text-align:right;}.css-4okk7a .tableBlock [data-vertical-align='bottom']{vertical-align:bottom;}.css-4okk7a .tableBlock [data-vertical-align='middle']{vertical-align:middle;}.css-4okk7a .tableBlock [data-vertical-align='top']{vertical-align:top;}.css-4okk7a .tableBlock__font-size--xxsmall{font-size:10px;}.css-4okk7a .tableBlock__font-size--xsmall{font-size:12px;}.css-4okk7a .tableBlock__font-size--small{font-size:14px;}.css-4okk7a .tableBlock__font-size--large{font-size:18px;}.css-4okk7a .tableBlock__border--some tbody tr:not(:last-child){border-bottom:1px solid #e2e5e7;}.css-4okk7a .tableBlock__border--bordered td,.css-4okk7a .tableBlock__border--bordered th{border:1px solid #e2e5e7;}.css-4okk7a .tableBlock__border--borderless tbody+tbody,.css-4okk7a .tableBlock__border--borderless td,.css-4okk7a .tableBlock__border--borderless th,.css-4okk7a .tableBlock__border--borderless tr,.css-4okk7a .tableBlock__border--borderless thead,.css-4okk7a .tableBlock__border--borderless thead th{border:0!important;}.css-4okk7a .tableBlock:not(.tableBlock__table-striped) tbody tr{background-color:unset!important;}.css-4okk7a .tableBlock__table-striped tbody tr:nth-of-type(odd){background-color:#f9fafc!important;}.css-4okk7a .tableBlock__table-compactl th,.css-4okk7a .tableBlock__table-compact td{padding:3px!important;}.css-4okk7a .tableBlock__full-size{width:100%;}.css-4okk7a .textBlock{margin-bottom:16px;}.css-4okk7a .textBlock__text-formatting--finePrint{font-size:12px;}.css-4okk7a .textBlock__text-infoBox{padding:0.75rem 1.25rem;margin-bottom:1rem;border:1px solid transparent;border-radius:0.25rem;}.css-4okk7a .textBlock__text-infoBox p{margin:0;}.css-4okk7a .textBlock__text-infoBox--primary{background-color:#cce5ff;border-color:#b8daff;color:#004085;}.css-4okk7a .textBlock__text-infoBox--secondary{background-color:#e2e3e5;border-color:#d6d8db;color:#383d41;}.css-4okk7a .textBlock__text-infoBox--success{background-color:#d4edda;border-color:#c3e6cb;color:#155724;}.css-4okk7a .textBlock__text-infoBox--danger{background-color:#f8d7da;border-color:#f5c6cb;color:#721c24;}.css-4okk7a .textBlock__text-infoBox--warning{background-color:#fff3cd;border-color:#ffeeba;color:#856404;}.css-4okk7a .textBlock__text-infoBox--info{background-color:#d1ecf1;border-color:#bee5eb;color:#0c5460;}.css-4okk7a .textBlock__text-infoBox--dark{background-color:#d6d8d9;border-color:#c6c8ca;color:#1b1e21;}.css-4okk7a .text-overline{-webkit-text-decoration:overline;text-decoration:overline;}.css-4okk7a.css-4okk7a{color:#2B3148;background-color:transparent;font-family:"Roboto","Helvetica","Arial",sans-serif;font-size:20px;line-height:24px;overflow:visible;padding-top:0px;position:relative;}.css-4okk7a.css-4okk7a:after{content:'';-webkit-transform:scale(0);-moz-transform:scale(0);-ms-transform:scale(0);transform:scale(0);position:absolute;border:2px solid #EA9430;border-radius:2px;inset:-8px;z-index:1;}.css-4okk7a .js-external-link-button.link-like,.css-4okk7a .js-external-link-anchor{color:inherit;border-radius:1px;-webkit-text-decoration:underline;text-decoration:underline;}.css-4okk7a .js-external-link-button.link-like:hover,.css-4okk7a .js-external-link-anchor:hover,.css-4okk7a .js-external-link-button.link-like:active,.css-4okk7a .js-external-link-anchor:active{text-decoration-thickness:2px;text-shadow:1px 0 0;}.css-4okk7a .js-external-link-button.link-like:focus-visible,.css-4okk7a .js-external-link-anchor:focus-visible{outline:transparent 2px dotted;box-shadow:0 0 0 2px #6314E6;}.css-4okk7a p,.css-4okk7a div{margin:0px;display:block;}.css-4okk7a pre{margin:0px;display:block;}.css-4okk7a pre code{display:block;width:-webkit-fit-content;width:-moz-fit-content;width:fit-content;}.css-4okk7a pre:not(:first-child){padding-top:8px;}.css-4okk7a ul,.css-4okk7a ol{display:block margin:0px;padding-left:20px;}.css-4okk7a ul li,.css-4okk7a ol li{padding-top:8px;}.css-4okk7a ul ul,.css-4okk7a ol ul,.css-4okk7a ul ol,.css-4okk7a ol ol{padding-top:0px;}.css-4okk7a ul:not(:first-child),.css-4okk7a ol:not(:first-child){padding-top:4px;} Test setup

Choose test type

t-test for the population mean, μ, based on one independent sample . Null hypothesis H 0 : μ = μ 0  

Alternative hypothesis H 1

Test details

Significance level α

The probability that we reject a true H 0 (type I error).

Degrees of freedom

Calculated as sample size minus one.

Test results

An open portfolio of interoperable, industry leading products

The Dotmatics digital science platform provides the first true end-to-end solution for scientific R&D, combining an enterprise data platform with the most widely used applications for data analysis, biologics, flow cytometry, chemicals innovation, and more.

p value for testing null hypothesis calculator

Statistical analysis and graphing software for scientists

Bioinformatics, cloning, and antibody discovery software

Plan, visualize, & document core molecular biology procedures

Electronic Lab Notebook to organize, search and share data

Proteomics software for analysis of mass spec data

Modern cytometry analysis platform

Analysis, statistics, graphing and reporting of flow cytometry data

Software to optimize designs of clinical trials

P Value Calculator

Use this calculator to compute a two-tailed P value from any Z score, T score, F statistic, correlation coefficient (R), or chi-square value. Once you have obtained one of these statistics (from a publication or even another program) the P value helps interpret its statistical significance.

Learn more about how to find P value statistics in the description below the calculator.

P from chi 2

What is a p value.

P values (or probability values) are used in hypothesis testing to represent the chance that, assuming the null hypothesis is true, you could observe the result in your study or one even more extreme. P values help researchers avoid publication errors, specifically Type I Errors . While still widely used in scientific research, misuse of P values is at the heart of what is referred to as the " replicability crisis ".

They are reported as a decimal between 0 and 1, with some threshold (usually 0.05) deemed the significance critical value. This calculator only uses two-tailed P values .

P values are often considered the most widely misinterpreted concepts in all of statistics, often oversimplified to "the probability your outcome was due to chance". Here are a couple examples of correct P value interpretations compared to several incorrect ways to state P value results .

Check out this video on understanding P values for a quick refresher course if you are unsure about P values.

Below you can learn how to find P values for the most common statistical tests.

Performing hypothesis testing? We can help.

Sign up for more information on how to perform hypothesis testing and other common statistical analyses.

How do I interpret P values?

If the P value is less than that critical value, you reject the null hypothesis. If it is equivalent or higher than the critical value, you fail to reject the null hypothesis.

Keep in mind, smaller is "better" when it comes to interpreting P values for significance. The closer to 0 it is, the stronger the evidence that you should reject the null hypothesis.

What is a Z score?

The Z score is a measure of how many standard deviations a data point is away from the mean. Z scores rely on the standard normal distribution (or Gaussian) which has a mean of 0 and a standard deviation of 1. It is primarily used to test for differences between means for large samples.

The most common formula to calculate a Z score involves the observation (X), the hypothesized mean (μ), and hypothesized standard deviation (σ):

A Z score involves

Enter any number for Z to calculate the P value from Z score statistics. Entering your Z score as positive or negative will result in the same P value, because this test is two-sided.

What is a T score?

T scores (or T statistics) are used to test the difference between a sample mean and another sample mean or some theoretical value.

They are often confused with Z scores, and with large sample sizes, the two tests converge. While there are plenty of similarities, the key difference is that while z scores standardize and test differences for proportions, T scores are used for testing mean differences from small samples. The basic form of a T statistic formula is:

t test ratio

You can use this page to calculate the P value from T score statistics (and the correct degrees of freedom). Both positive and negative values of T will give the same result, and P values are interpreted similarly for all T tests.

What is an F statistic?

F statistics are most commonly used as part of ANOVA. They are calculated (usually by software) as a ratio of two components of the variance in a study. With ANOVA, they are used to analyze if some potentially predictive factor has an impact on the response variable.

You can use this page to calculate the P value from an F statistic (and the correct degrees of freedom). Only positive values of F are appropriate. Use the ANOVA framework for help with interpreting P values from F statistics .

Pearson's r is better known as the correlation coefficient . It quantifies the strength of the correlation between two variables, as well as the direction of the relationship.

R always falls between -1 and 1, with 0 representing no evidence of correlation. A perfectly linear negative relationship would be -1 ("as x goes up, y goes down"), while 1 represents a perfect positive linear relationship ("as x goes up, y also goes up").

The statistical test for correlation uses a null hypothesis that the correlation is 0 , which would indicate no correlation, so a P value less than the cutoff threshold indicates evidence that the variables are correlated.

Enter any number for r between -1 and 1 and the degrees of freedom (which is n-2) for your study to calculate the P value from r.

What is chi-square?

Chi-square is used to compare counts within grouped data. The two most common uses are contingency tables and comparing observed data to any given expected distribution.

The formula for chi-square involves a few steps, summing the results of an expression to compare observed (O) and expected (E) values.

Chi-square test calculation details

Here is an example of a chi-square calculator to compare expected and observed frequencies .

You can use this page to calculate the P value from chi-square values of your choice (and the correct degrees of freedom). Only positive values of chi-square are appropriate. Learn more about interpreting P values for chi-square (scroll to the bottom of the link).

Limitations of P values

  • They can be confusing to interpret. Sometimes a study's small sample size causes an insignificant result when the null hypothesis should be rejected.
  • P values can be " hacked " to give a significant result when one doesn't actually exist, leading to unreproducible research. Other times researchers approach hypothesis testing backwards, by letting the P value decide the hypothesis after the fact.
  • Confidence intervals give a range of possibilities that are more informative than a P value.
  • Outliers are not automatically detected, as they would be with a simple chart.

Despite its reputation as the ultimate endpoint in most studies, P values are not as important as a well-designed experiment and a keen eye for nuance in the data.

These calculators can reduce the confusion that comes with tables and are good for quick analysis.

Software like Prism helps simplify your entire analysis, from choosing the right test, to identifying outliers, to creating publication-quality graphics. We offer a free 30-day trial of Prism.

Analyze, graph and present your scientific work easily with GraphPad Prism. No coding required.

P-value Calculator

Please provide any one value below to compute p-value from z-score or vice versa for a normal distribution.

A p-value (probability value) is a value used in statistical hypothesis testing that is intended to determine whether the obtained results are significant. In statistical hypothesis testing, the null hypothesis is a type of hypothesis that states a default position, such as there is no association among groups or relationship between two observations. Assuming that the given null hypothesis is correct, a p-value is the probability of obtaining test results in an experiment that are at least as extreme as the observed results. In other words, determining a p-value helps you determine how likely it is that the observed results actually differ from the null hypothesis.

The smaller the p-value, the higher the significance, and the more evidence there is that the null hypothesis should be rejected for an alternative hypothesis. Typically, a p-value of ≤ 0.05 is accepted as significant and the null hypothesis is rejected, while a p-value > 0.05 indicates that there is not enough evidence against the null hypothesis to reject it.

Given that the data being studied follows a normal distribution, a Z-score table can be used to determine p-values, as in this calculator.

  • Skip to the content.
  • Skip to the primary sidebar.
  • Statistics Calculators
  • P-value Calculator

This online statistical tool calculates left-tailed and right-tailed P-values from various test scores (z-score, chi-square, Student’s t-value). Choose the type of the statistics distribution and enter the input data in the appropriate fields of this P-value Calculator to get the corresponding P-value.

Precision: decimal places

How to calculate P-value

The P-value (probability value) is a quantitative parameter used in statistical hypothesis testing to determine whether a null hypothesis (or claimed hypothesis) is true, or in other words, whether the obtained test results are significant.

Simply speaking, the P-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct. A very small P-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.

For instance, if the appropriate (left-tail or right-tail) P-value found is higher than conventional criteria for statistical significance (0.001-0.05), we usually do not reject the null hypothesis and assume that all the differences between observed result and expected value are due to chance.

• Normal Distribution.

For a given test statistic \(z\) in the case of Standard Normal Distribution , the right-tail P-value is defined as:

$${ P }_{ right } ( z ) = \frac{ 1 } {\sqrt{2\pi}}\int _{ z }^{ \infty }{{ e }^{ -\frac { { t }^{ 2 } }{ 2 } }dt },$$

and the left-tail P-value is defined as:

$${ P }_{ left }\left( z \right) = 1 – { P }_{ right }\left( z \right).$$

• Chi-Square Distribution.

For a given test statistic \({ \chi } ^{2}\) and \(k\) degrees of freedom in the case of Chi-Square Distribution , the right-tail P-value is defined as:

$${ P }_{ right }\left( { \chi }^{ 2 },k \right) = { \left[ { 2 }^{ k/2 }\Gamma \left( \frac { k }{ 2 } \right) \right] }^{ -1 }\int _{ { \chi }^{ 2 } }^{ \infty }{ { \left( t \right) }^{ \frac { k }{ 2 } -1 }{ e }^{ -\frac { t }{ 2 } }dt },$$

where \(Γ\) is the gamma function, which is the generalization of the factorial function to real and complex arguments: $$\Gamma \left( x \right) =\int _{ 0 }^{ \infty }{ { t }^{ x-1 }{ e }^{ -t }dt }. $$

The left-tail P-value is defined as:

$${ P }_{ left }\left( { \chi }^{ 2 },k \right) = 1 – { P }_{ right }\left( { \chi }^{ 2 },k \right).$$

• Student’s t-Distribution.

For a given test statistic \({ t }_{ e }\) and \(k\) degrees of freedom in the case of Student’s t-Distribution , the right-tail P-value is defined as:

$${ P }_{ right }\left( { t }_{ e },k \right) = \frac{\Gamma(\frac{k+1}{2})} {\sqrt{k\pi}\,\Gamma(\frac{k}{2})} \int _{ { t }_{ e } }^{ \infty } \left(1+\frac{t^2}{k} \right)^{\!-\frac{k+1}{2}}dt,$$

where \(Γ\) is the gamma function, and the left-tail P-value is defined as:

$${ P }_{ left }\left( { t }_{ e },k \right) = 1 – { P }_{ right }\left( { t }_{ e },k \right).$$

Related calculators

Check out our other statistics calculators such as Chi Square Calculator or Multinomial Distribution Calculator .

Share this via

Privacy overview.

  • 2×2 System of Linear Equations Calculator
  • 3×3 System of Linear Equations Calculator
  • Angle Between Two Vectors Calculator
  • Completing the Square Calculator
  • Cross Product Calculator
  • Cubic Equation Calculator
  • Distance Between Two Points Calculator
  • Dot Product Calculator
  • Factoring Trinomials Calculator
  • Matrix Calculator
  • Matrix Operations Calculator
  • Perfect Square Calculator
  • Point Slope Form Calculator
  • Quadratic Formula Calculator
  • Vector Addition Calculator
  • Vector Subtraction Calculator
  • Alcohol Dilution Calculator
  • Average Atomic Mass Calculator
  • Bond Order Calculator
  • Buffer pH Calculator
  • Chemical Equation Balancer Calculator
  • Chemical Reaction Calculator
  • Degree of Unsaturation Calculator
  • Dilution Calculator
  • Empirical Formula Calculator
  • Equilibrium Constant Calculator
  • Grams to Atoms Calculator
  • Half-Life Calculator
  • Ionic Strength Calculator
  • Mass Percent Calculator
  • Mass to Mole Calculator
  • Mixing Ratio Calculator
  • Molality Calculator
  • Molarity Calculator
  • Mole Calculator
  • Mole Fraction Calculator
  • Molecular Formula Calculator
  • Molecular Weight Calculator
  • Moles to Atoms Converter
  • Percent Composition Calculator
  • Percent Yield Calculator
  • pH Calculator
  • Stoichiometry Calculator
  • Theoretical Yield Calculator
  • Add Time Calculator
  • Average Time Calculator
  • Business Days Calculator
  • Chronological Age Calculator
  • Day Counter Calculator
  • Day of Week Calculator
  • Day of Year Calculator
  • Decimal to Time Calculator
  • Military Time Converter
  • Random Date Generator
  • Random Time Generator
  • Roman Numerals Date Converter
  • Subtract Time Calculator
  • Time to Decimal Calculator
  • Week Number Calculator
  • Basis Point Calculator
  • CAGR Calculator
  • Cap Rate Calculator
  • EBIT Calculator
  • EBITDA Calculator
  • Gross Margin Calculator
  • Internal Rate of Return Calculator
  • Markup Calculator
  • Net Present Value Calculator
  • Percent Growth Rate Calculator
  • Percent Off Calculator
  • Return on Investment Calculator
  • Simple Interest Calculator
  • Arc Length Calculator
  • Centroid Calculator
  • Circle Calculator
  • Cone Volume Calculator
  • Cylinder Volume Calculator
  • Ellipse Calculator
  • Pyramid Volume Calculator
  • Pythagorean Theorem Calculator
  • Rhombus Area Calculator
  • Right Triangle Calculator
  • Sector Area Calculator
  • Sphere Calculator
  • Triangle Calculator
  • A1C Calculator
  • BAI Calculator
  • Basal Metabolic Rate Calculator
  • Bedtime Calculator
  • Blood Alcohol Level Calculator
  • Blood Sugar Converter
  • BMI Calculator
  • BMI Calculator for Children
  • Body Fat Calculator
  • BSA Calculator
  • Caffeine Calculator
  • Child Blood Type Calculator
  • Child Height Predictor
  • FFMI Calculator
  • Ideal Body Weight Calculator
  • Lean Body Mass Calculator
  • Max Heart Rate Calculator
  • Mean Arterial Pressure Calculator
  • One Rep Max Calculator
  • Pace Calculator
  • Pregnancy Due Date Calculator
  • Prostate Volume Calculator
  • Sleep Calculator
  • Smoking Pack Year Calculator
  • Sobriety Calculator
  • Standard Drinks Calculator
  • Steps to Miles Calculator
  • Total Body Water Calculator
  • Waist to Hip Ratio Calculator
  • Wilks Calculator
  • Arithmetic Mean Calculator
  • Arithmetic Sequence Calculator
  • Binary Number Converter
  • Comparing Fractions Calculator
  • Complex Number Functions Calculator
  • Complex Numbers Calculator
  • Convolution Calculator
  • Cube Root Calculator
  • Decimal To Fraction Converter
  • Equivalent Fractions Calculator
  • Exponent Calculator
  • Exponential Decay Calculator
  • Factorial Calculator
  • Factoring Calculator
  • Fibonacci Calculator
  • Fraction Exponent Calculator
  • Fraction To Decimal Converter
  • Geometric Mean Calculator
  • Geometric Sequence Calculator
  • Golden Ratio Calculator
  • Greatest Common Divisor Calculator
  • Harmonic Mean Calculator
  • Hyperbolic Functions Calculator
  • Least Common Denominator Calculator
  • Least Common Multiple Calculator
  • Linear Interpolation Calculator
  • Midpoint Calculator
  • Mixed Fractions Calculator
  • Modulo Calculator
  • Parallel Line Calculator
  • Perpendicular Line Calculator
  • Polar Coordinates Calculator
  • Prime Factorization Calculator
  • Proportion Calculator
  • Reciprocal Calculator
  • Remainder Calculator
  • Roman Numerals Calculator
  • Rounding Calculator
  • Simplify Fraction Calculator
  • Simplifying Radical Expressions Calculator
  • Sum of Squares Calculator
  • Trigonometric Functions Calculator
  • Weighted Average Calculator
  • Average of Percentages Calculator
  • Decimal to Percent Calculator
  • Fraction to Percent Calculator
  • Percent Error Calculator
  • Percent to Decimal Calculator
  • Percent to Fraction Calculator
  • Percentage Calculator
  • Percentage Difference Calculator
  • Percentage Increase Calculator
  • Percentage of a Percentage Calculator
  • Acceleration Calculator
  • Boyle’s Law Calculator
  • Capacitance Calculator
  • Capacitive Reactance Calculator
  • Capacitor Energy Calculator
  • Capacitors in Series Calculator
  • Center of Mass Calculator
  • Centripetal Force Calculator
  • Charles’ Law Calculator
  • Coulomb’s Law Calculator
  • Electric Potential Calculator
  • Gay-Lussac’s Law Calculator
  • Gravitational Force Calculator
  • Hooke’s Law Calculator
  • Ideal Gas Law Calculator
  • Inductive Reactance Calculator
  • Inductors in Parallel Calculator
  • Inductors in Series Calculator
  • Kepler’s Third Law Calculator
  • Kinetic Energy Calculator
  • Moment of Inertia Calculator
  • Momentum Calculator
  • Ohm’s Law Calculator
  • Parallel Capacitor Calculator
  • Parallel Resistor Calculator
  • Pressure Calculator
  • Resonant Frequency Calculator
  • Series Resistor Calculator
  • Specific Heat Calculator
  • Torque Calculator
  • Velocity Calculator
  • Voltage Divider Calculator
  • Wavelength Calculator
  • Work Calculator
  • Average Calculator
  • Bayes’ Theorem Calculator
  • Benford’s Law Calculator
  • Binomial Coefficient Calculator
  • Binomial Probability Calculator
  • Birthday Paradox Calculator
  • Chebyshev’s Theorem Calculator
  • Chi Square Calculator
  • Correlation Coefficient Calculator
  • Covariance Calculator
  • Empirical Rule Calculator
  • Exponential Regression Calculator
  • Frequency Distribution Calculator
  • Hypergeometric Distribution Calculator
  • Linear Regression Calculator
  • Mean, Median, Mode Calculator
  • Midrange Calculator
  • Multinomial Distribution Calculator
  • Number Sorter
  • Odds To Probability Calculator
  • Outlier Calculator
  • Percentile Calculator
  • Percentile Rank Calculator
  • Permutations Calculator
  • Poisson Distribution Calculator
  • Pseudo Random Number Generator
  • Quadratic Regression Calculator
  • Quartile Calculator
  • Root Mean Square Calculator
  • Standard Deviation Calculator
  • Backwards Text Generator
  • Line Counter
  • List Randomizer
  • List Sorter
  • Number to Words Converter
  • Random Letter Generator
  • Reverse List Generator
  • Text Case Converter
  • Text Compare Tool
  • Text Repeater
  • Text Word Counter
  • Tiny Text Generator
  • Upside Down Text Generator
  • Wide Text Generator
  • Word Frequency Counter
  • Word Sorter
  • Words to Numbers Converter
  • Area Conversion Calculator
  • Centimeters to Pixels Converter
  • Clothing Sizes Converter
  • dBm to Watts Converter
  • Length Conversion Calculator
  • Mass Conversion Calculator
  • Power Conversion Calculator
  • PPM Calculator
  • Pressure Conversion Calculator
  • Radians to Degrees Conversion Calculator
  • Temperature Conversion Calculator
  • Time Converter

p value for testing null hypothesis calculator

p-value Calculator

p-value

Test Statistic:

Sample Size:

Test Type: Left-tail (Ha: μ < H0) Right-tail (Ha: μ > H0) Two-tail (Ha: μ ≠ H0)

Significance Level, α: 0.1% 0.5% 1% 2.5% 5% 10% 20% 25% 40%

Determining the p-value allows us to determine whether we should reject or not reject a claimed hypothesis.

Related Resources

P-value Calculator

Statistical significance calculator to easily calculate the p-value and determine whether the difference between two proportions or means (independent groups) is statistically significant. T-test calculator & z-test calculator to compute the Z-score or T-score for inference about absolute or relative difference (percentage change, percent effect). Suitable for analysis of simple A/B tests.

Related calculators

  • Using the p-value calculator
  • What is "p-value" and "significance level"
  • P-value formula
  • Why do we need a p-value?
  • How to interpret a statistically significant result / low p-value
  • P-value and significance for relative difference in means or proportions

    Using the p-value calculator

This statistical significance calculator allows you to perform a post-hoc statistical evaluation of a set of data when the outcome of interest is difference of two proportions (binomial data, e.g. conversion rate or event rate) or difference of two means (continuous data, e.g. height, weight, speed, time, revenue, etc.). You can use a Z-test (recommended) or a T-test to find the observed significance level (p-value statistic). The Student's T-test is recommended mostly for very small sample sizes, e.g. n < 30. In order to avoid type I error inflation which might occur with unequal variances the calculator automatically applies the Welch's T-test instead of Student's T-test if the sample sizes differ significantly or if one of them is less than 30 and the sampling ratio is different than one.

If entering proportions data, you need to know the sample sizes of the two groups as well as the number or rate of events. These can be entered as proportions (e.g. 0.10), percentages (e.g. 10%) or just raw numbers of events (e.g. 50).

If entering means data, simply copy/paste or type in the raw data, each observation separated by comma, space, new line or tab. Copy-pasting from a Google or Excel spreadsheet works fine.

The p-value calculator will output : p-value, significance level, T-score or Z-score (depending on the choice of statistical hypothesis test), degrees of freedom, and the observed difference. For means data it will also output the sample sizes, means, and pooled standard error of the mean. The p-value is for a one-sided hypothesis (one-tailed test), allowing you to infer the direction of the effect (more on one vs. two-tailed tests ). However, the probability value for the two-sided hypothesis (two-tailed p-value) is also calculated and displayed, although it should see little to no practical applications.

Warning: You must have fixed the sample size / stopping time of your experiment in advance, otherwise you will be guilty of optional stopping (fishing for significance) which will inflate the type I error of the test rendering the statistical significance level unusable. Also, you should not use this significance calculator for comparisons of more than two means or proportions, or for comparisons of two groups based on more than one metric. If a test involves more than one treatment group or more than one outcome variable you need a more advanced tool which corrects for multiple comparisons and multiple testing. This statistical calculator might help.

    What is "p-value" and "significance level"

The p-value is a heavily used test statistic that quantifies the uncertainty of a given measurement, usually as a part of an experiment, medical trial, as well as in observational studies. By definition, it is inseparable from inference through a Null-Hypothesis Statistical Test (NHST) . In it we pose a null hypothesis reflecting the currently established theory or a model of the world we don't want to dismiss without solid evidence (the tested hypothesis), and an alternative hypothesis: an alternative model of the world. For example, the statistical null hypothesis could be that exposure to ultraviolet light for prolonged periods of time has positive or neutral effects regarding developing skin cancer, while the alternative hypothesis can be that it has a negative effect on development of skin cancer.

In this framework a p-value is defined as the probability of observing the result which was observed, or a more extreme one, assuming the null hypothesis is true . In notation this is expressed as:

p(x 0 ) = Pr(d(X) > d(x 0 ); H 0 )

where x 0 is the observed data (x 1 ,x 2 ...x n ), d is a special function (statistic, e.g. calculating a Z-score), X is a random sample (X 1 ,X 2 ...X n ) from the sampling distribution of the null hypothesis. This equation is used in this p-value calculator and can be visualized as such:

p value statistical significance explained

Therefore the p-value expresses the probability of committing a type I error : rejecting the null hypothesis if it is in fact true. See below for a full proper interpretation of the p-value statistic .

Another way to think of the p-value is as a more user-friendly expression of how many standard deviations away from the normal a given observation is. For example, in a one-tailed test of significance for a normally-distributed variable like the difference of two means, a result which is 1.6448 standard deviations away (1.6448σ) results in a p-value of 0.05.

The term "statistical significance" or "significance level" is often used in conjunction to the p-value, either to say that a result is "statistically significant", which has a specific meaning in statistical inference ( see interpretation below ), or to refer to the percentage representation the level of significance: (1 - p value), e.g. a p-value of 0.05 is equivalent to significance level of 95% (1 - 0.05 * 100). A significance level can also be expressed as a T-score or Z-score, e.g. a result would be considered significant only if the Z-score is in the critical region above 1.96 (equivalent to a p-value of 0.025).

    P-value formula

There are different ways to arrive at a p-value depending on the assumption about the underlying distribution. This tool supports two such distributions: the Student's T-distribution and the normal Z-distribution (Gaussian) resulting in a T test and a Z test, respectively.

In both cases, to find the p-value start by estimating the variance and standard deviation, then derive the standard error of the mean, after which a standard score is found using the formula [2] :

test statistic

X (read "X bar") is the arithmetic mean of the population baseline or the control, μ 0 is the observed mean / treatment group mean, while σ x is the standard error of the mean (SEM, or standard deviation of the error of the mean).

When calculating a p-value using the Z-distribution the formula is Φ(Z) or Φ(-Z) for lower and upper-tailed tests, respectively. Φ is the standard normal cumulative distribution function and a Z-score is computed. In this mode the tool functions as a Z score calculator.

When using the T-distribution the formula is T n (Z) or T n (-Z) for lower and upper-tailed tests, respectively. T n is the cumulative distribution function for a T-distribution with n degrees of freedom and so a T-score is computed. Selecting this mode makes the tool behave as a T test calculator.

The population standard deviation is often unknown and is thus estimated from the samples, usually from the pooled samples variance. Knowing or estimating the standard deviation is a prerequisite for using a significance calculator. Note that differences in means or proportions are normally distributed according to the Central Limit Theorem (CLT) hence a Z-score is the relevant statistic for such a test.

    Why do we need a p-value?

If you are in the sciences, it is often a requirement by scientific journals. If you apply in business experiments (e.g. A/B testing) it is reported alongside confidence intervals and other estimates. However, what is the utility of p-values and by extension that of significance levels?

First, let us define the problem the p-value is intended to solve. People need to share information about the evidential strength of data that can be easily understood and easily compared between experiments. The picture below represents, albeit imperfectly, the results of two simple experiments, each ending up with the control with 10% event rate treatment group at 12% event rate.

why p value and significance

However, it is obvious that the evidential input of the data is not the same, demonstrating that communicating just the observed proportions or their difference (effect size) is not enough to estimate and communicate the evidential strength of the experiment. In order to fully describe the evidence and associated uncertainty , several statistics need to be communicated, for example, the sample size, sample proportions and the shape of the error distribution. Their interaction is not trivial to understand, so communicating them separately makes it very difficult for one to grasp what information is present in the data. What would you infer if told that the observed proportions are 0.1 and 0.12 (e.g. conversion rate of 10% and 12%), the sample sizes are 10,000 users each, and the error distribution is binomial?

Instead of communicating several statistics, a single statistic was developed that communicates all the necessary information in one piece: the p-value . A p-value was first derived in the late 18-th century by Pierre-Simon Laplace, when he observed data about a million births that showed an excess of boys, compared to girls. Using the calculation of significance he argued that the effect was real but unexplained at the time. We know this now to be true and there are several explanations for the phenomena coming from evolutionary biology. Statistical significance calculations were formally introduced in the early 20-th century by Pearson and popularized by Sir Ronald Fisher in his work, most notably "The Design of Experiments" (1935) [1] in which p-values were featured extensively. In business settings significance levels and p-values see widespread use in process control and various business experiments (such as online A/B tests, i.e. as part of conversion rate optimization, marketing optimization, etc.).

    How to interpret a statistically significant result / low p-value

Saying that a result is statistically significant means that the p-value is below the evidential threshold (significance level) decided for the statistical test before it was conducted. For example, if observing something which would only happen 1 out of 20 times if the null hypothesis is true is considered sufficient evidence to reject the null hypothesis, the threshold will be 0.05. In such case, observing a p-value of 0.025 would mean that the result is interpreted as statistically significant.

But what does that really mean? What inference can we make from seeing a result which was quite improbable if the null was true?

Observing any given low p-value can mean one of three things [3] :

  • There is a true effect from the tested treatment or intervention.
  • There is no true effect, but we happened to observe a rare outcome. The lower the p-value, the rarer (less likely, less probable) the outcome.
  • The statistical model is invalid (does not reflect reality).

Obviously, one can't simply jump to conclusion 1.) and claim it with one hundred percent certainty, as this would go against the whole idea of the p-value and statistical significance. In order to use p-values as a part of a decision process external factors part of the experimental design process need to be considered which includes deciding on the significance level (threshold), sample size and power (power analysis), and the expected effect size, among other things. If you are happy going forward with this much (or this little) uncertainty as is indicated by the p-value calculation suggests, then you have some quantifiable guarantees related to the effect and future performance of whatever you are testing, e.g. the efficacy of a vaccine or the conversion rate of an online shopping cart.

Note that it is incorrect to state that a Z-score or a p-value obtained from any statistical significance calculator tells how likely it is that the observation is "due to chance" or conversely - how unlikely it is to observe such an outcome due to "chance alone". P-values are calculated under specified statistical models hence 'chance' can be used only in reference to that specific data generating mechanism and has a technical meaning quite different from the colloquial one. For a deeper take on the p-value meaning and interpretation, including common misinterpretations, see: definition and interpretation of the p-value in statistics .

    P-value and significance for relative difference in means or proportions

When comparing two independent groups and the variable of interest is the relative (a.k.a. relative change, relative difference, percent change, percentage difference), as opposed to the absolute difference between the two means or proportions, the standard deviation of the variable is different which compels a different way of calculating p-values [5] . The need for a different statistical test is due to the fact that in calculating relative difference involves performing an additional division by a random variable: the event rate of the control during the experiment which adds more variance to the estimation and the resulting statistical significance is usually higher (the result will be less statistically significant). What this means is that p-values from a statistical hypothesis test for absolute difference in means would nominally meet the significance level, but they will be inadequate given the statistical inference for the hypothesis at hand.

In simulations I performed the difference in p-values was about 50% of nominal: a 0.05 p-value for absolute difference corresponded to probability of about 0.075 of observing the relative difference corresponding to the observed absolute difference. Therefore, if you are using p-values calculated for absolute difference when making an inference about percentage difference, you are likely reporting error rates which are about 50% of the actual, thus significantly overstating the statistical significance of your results and underestimating the uncertainty attached to them.

In short - switching from absolute to relative difference requires a different statistical hypothesis test. With this calculator you can avoid the mistake of using the wrong test simply by indicating the inference you want to make.

    References

1 Fisher R.A. (1935) – "The Design of Experiments", Edinburgh: Oliver & Boyd

2 Mayo D.G., Spanos A. (2010) – "Error Statistics", in P. S. Bandyopadhyay & M. R. Forster (Eds.), Philosophy of Statistics, (7, 152–198). Handbook of the Philosophy of Science . The Netherlands: Elsevier.

3 Georgiev G.Z. (2017) "Statistical Significance in A/B Testing – a Complete Guide", [online] https://blog.analytics-toolkit.com/2017/statistical-significance-ab-testing-complete-guide/ (accessed Apr 27, 2018)

4 Mayo D.G., Spanos A. (2006) – "Severe Testing as a Basic Concept in a Neyman–Pearson Philosophy of Induction", British Society for the Philosophy of Science , 57:323-357

5 Georgiev G.Z. (2018) "Confidence Intervals & P-values for Percent Change / Relative Difference", [online] https://blog.analytics-toolkit.com/2018/confidence-intervals-p-values-percent-change-relative-difference/ (accessed May 20, 2018)

Cite this calculator & page

If you'd like to cite this online calculator resource and information as provided on the page, you can use the following citation: Georgiev G.Z., "P-value Calculator" , [online] Available at: https://www.gigacalculator.com/calculators/p-value-significance-calculator.php URL [Accessed Date: 26 Apr, 2024].

Our statistical calculators have been featured in scientific papers and articles published in high-profile science journals by:

springer

The author of this tool

Georgi Z. Georgiev

     Statistical calculators

P-value-calculator

This incredible tool will allow you to find the p-value. You can use test statistics to determine which p-value is one-sided and which is two-sided.

p-value-calculator

Table of contents, what is the p-value, how do you calculate the p-value using test statistics.

  • Left-tailed test: p-value = cdf (x)
  • Right-tailed test: p-value = 1 - cdf (x)
  • Two-tailed test: p-value = 2 * min {{cdf (x) , 1 - cdf (x) }}

How do you interpret the p-value?

  • A high p-value means your data is compatible with the null hypothesis.
  • A small value of p is evidence against the null hypothesis. This means that your result would seem very unlikely if the null hypothesis was true.
  • If the p-value ≤ a, then reject the null hypothesis and accept the alternate hypothesis.
  • If the p-value ≥ a then doesn't have enough evidence to reject the null hypothesis.

How do I use the p-value calculator to calculate p-values from test statistics?

  • Choose from the alternative hypothesis.
  • Let us know the distribution for your test statistic in the null hypothesis. Is it N(0.1), t–Student, Snecor's F, chi-squared or t-Student? These sections are for those who are not sure.
  • If necessary, indicate the freedom distribution of the test statistic.
  • For your data sample, enter the value for the test statistic computed.
  • The calculator calculates the test statistic p-value and gives the decision regarding the null hypothesis. The standard significance is 0.05 by default.

How do I find the p-value of Z-scores?

  • Left-tailed z-test: 
  • Right-tailed z-test: 
  • Two-tailed z-test:

How do I find the p-value of t?

  • Left-tailed t-test: 
  • Right-tailed t-test:
  • Two-tailed t-test: 

Is it possible to have a negative p-value?

What does a high-value p-value signify, what does a low-value p-value signify.

Parmis Kazemi

P-value-calculator English

P-value-calculator in other languages, how to add p-value-calculator to my website.

You can easily add P-value-calculator to your own website with the help of our code. Paste the code to your website and the calculator will appear on that spot automatically!

How to add P-value-calculator widget to WordPress website?

Adding P-value-calculator to your Wordpres website is fast and easy! Find the page to which you want to add the calculator, go to edit mode, click 'Text', and paste the code to there.

Other mathematical calculators

Vector cross product calculator finds the cross product of two vectors in a three-dimensional space.

With our 30 60 90 triangle calculator you can solve the special right triangle.

This expected value calculator helps you to calculate an expected value (also called ​mean) of the given variable set with their probabilities.

This scientific calculator provides simple and advanced mathematical functions in an easy-to-use app.

This free calculator gives you the standard deviation, variance, mean, and sum of a given data set.

This percentage calculator is a free online calculator to calculate percentages. Find out what is X % of Y?

This free fraction calculator can be used to find the result for adding, subtracting, multiplying, and dividing two common fractions.

Find out correct measurements for your favourite recipe with this free calculator converts pounds to cups easily! Works with US cups and UK cups!

Use this free circle circumference calculator to calculate circle radius, circle diameter, circle circumference, and circle area.

Determine the double angle equivalent of a given angle with this free calculator! Find more information about the double angle formula.

This free calculator calculates the second, third and higher exponents and roots. Formula is also available.

Find out area of triangle easily with our free triangle area calculator! You can calculate with base and height, three different sides and many more. Works with angles and radians!

Find out coterminal angles with our coterminal angle calculator! Works with degrees and radians to find out positive and negative coterminal angles!

Calculate mathematical dot products, scalar products and dot product angles easily for your vectors.

Find out midpoints for a line or a triangle easily with our midpoint calculator! This page will also teach you valuable midpoint formula!

Find out the correct amount of significant figures in your number easily with our significant figure tool!

Find out easily length of a circle's arc with this online math calculator!

Calculate point estimate easily with our free online tool!

Calculate any percentage increase easily with our free online calculator!

Calculate percentage difference instantly with our mathematical percentage difference calculator!

This free online calculator calculates the linear interpolation and the linear extrapolation. It also provides the slope of the linear equation.

Find out orthonormal matrix and upper triangular matrix easily with our free online QR decomposition calculator!

This matrix transpose calculator helps you to find a transpose for any matrix.

Find out hypotenuse for all kinds of triangles easily with our free math calculator!

Calculate easily trigonometric values Sin, Cos, Tan, Cot, Sec and Csc with our free online calculator!

FInd out easily right side and angle of an triangle with our free online calculator!

Calculate hypotenuse, measurements and ratio easily with our 45 45 90 triangle calculator.

Calculate matrix multiplications easily with our free online math calculator!

Calculate mean average of numbers easily with our free online math calculator

This tool generates a truly random number between any two numbers.

This calculator calculates the margin of error for surveys based on sample size and proportion. It also allows you to set the desired level of confidence.

This online tool calculates the angle between two vectors and has all the possible vector combinations.

This calculator will help you find the LCM or LCD for a particular set of numbers.

This online calculator calculates the area of a shape measured in feet. Works with all shapes and measurement units!

This is an online calculator that can calculate exponents.

This online tool calculates the remainder of a division.

Calculate easily direct proportion of numbers with our free Rule of Three calculator.

Quadratic equations are any polynomial algebra of the second degree having the following form in algebra.

This summation notation calculator allows you to quickly calculate the summation of a set number, also known as Sigma. Therefore it is often called a sigma calculator. It also gives you a sample from the series to be a sum. It can be used in simple mode to calculate a simple sum using a given set of numbers.

This is a free online tool that will calculator the perimeter of different shapes.

This is a calculator that calculates the z-score of a data set.

This Fibonacci calculator can be used to calculate the terms arbitrarily of the Fibonacci sequence.

It is a free calculator that can help you find the volume of any capsule.

It is a free calculator that can help you find the volume of different shapes.

It is a free calculator that can help you find the volume of any triangular prism.

It is a free calculator that can help you find the volume of a box.

This calculator calculates cone volume and can be used to solve school problems.

This is an online tool that will calculate the volume of any cube.

This is an online tool that will calculate the volume of a cylinder.

This is an online calculator that will help you calculate the scale factor dilation of an object.

The Shannon biodiversity index calculator can be used to calculate the diversity of species in a community. Ecologists can use the Shannon diversity index to gain useful information about habitat.

Use this Bayes theorem calculator online to determine the probability of an event that is conditional on another. This calculation takes into account the prior probability of A, the probabilities B conditional and A conditional, and A conditional.

The antilog calculator allows you to calculate the inverse logarithm function. Calculate the antilogarithm for any number with any base, whether it's 10, natural antilog, or another number.

This amazing tool will allow you to compute e to the power of any number you choose.

This calculator will show you whether a number has a prime number or if it is a composite.

The exponential Growth Calculator calculates the final price of a quantity based on its initial values, rate of growth, and time.

Calculate sample size based on the population size, confidence level, and margin of error.

This online calculator will display the inverse log of the number and the base entered.

The Poisson distribution calculator will allow you to determine the likelihood of an event occurring a number of times during a certain time frame.

This calculator will help you find the multiplicative inverse of an integer, a decimal, a fraction, or a mixed number.

This calculator converts test marks to percentages. It can be used to quickly calculate the percentage of one or more test grades (marks), and the maximum number of marks.

This calculator can be used to determine the dimensions of images when you resize them.

The empirical rule calculator, also known as a "68 95 99 rule calculation", is a tool that allows you to determine the ranges that are either 1 or 2 standard deviations or 3 standard deviations. This calculator will show you the ranges in which 68, 95, or 99.7% of normally distributed data, respectively.

It is a free calculator that can help you find the volume of a sphere.

This online calculator will allow you to calculate the NPV (Net Present Value) of an investment. The calculation is based on the initial investment and the discount rate. You can also calculate Internal Rates of Return (IRR), gross returns, and net cash flows.

Use this calculator to find out how a percentage decrease by any amount will change the result. Simply enter the original value, the percentage decrease, and the new value to calculate the change.

Our intuitive tool lets you choose from different shapes and calculates their area in the blink of an eye.

The probability calculator lets you explore the relationships of likelihood between two separate events. This allows you to get a better understanding of how events are related, and thereby makes predictions more accurate.

Use our fraction to decimal calculator to easily convert fractions to decimals and back again!

Find out the factors of any number with our factor calculator

Convert a fraction to a mixed number calculator using our simple tool

  • Trending Blogs
  • Geeksforgeeks NEWS
  • Geeksforgeeks Blogs
  • Tips & Tricks
  • Website & Apps
  • ChatGPT Blogs
  • ChatGPT News
  • ChatGPT Tutorial

P-Value Calculator

  • How to calculate P Value?
  • How to Calculate Critical t-Value in R ?
  • Simple BMI calculator using Python
  • Ratio Calculator using PyQt5
  • Simple Calculator in Bash
  • Smart calculator in Python
  • PyQt5 - Percentile Calculator
  • Value of Pi
  • How to Calculate P-Hat?
  • Silver Ratio Calculator using PyQt5
  • Dog Years Calculator using PyQt5
  • HTML Scientific Calculator
  • Faulty calculator using Python
  • p5.js | value() Function
  • PyQt5 - Average Speed Calculator
  • Aspect Ratio Calculator using PyQt5
  • AntiLog Calculator
  • Python - Age Calculator using PyQt
  • PHP | lcg_value() Function
  • Top 10 Most Handsome Men in the World 2024
  • Clint Eastwood's Children: Meet his 8 Children
  • Beyonce and Jay-Z Kids (Names & Ages of All 3 Children)
  • List of Generation Names Year Wise: Gen Z, Millennials, Baby Boomers, Alpha Generation
  • 50 Greatest Rappers of All Time [2024 Updated]
  • MrBeast Net Worth 2023, Real Name, Age, Subscriber Count
  • Top 10 Most Popular Sports In The World [Ranked]
  • Top 200 Indian Baby Boy Names 2024
  • Top 10 Highest Paid Actors In The World: From Dwayne Johnson to Akshay Kumar (Complete List)
  • 100+ Good Comebacks, Roasts & One-Liners [2024]

P-Value Calculator is an easy-to-use online tool designed to help you with statistics. Whether you’re a student , a researcher , or a professional , understanding p-values is crucial for analyzing data and making decisions based on statistical tests. This calculator simplifies the process of finding the p-value , making it faster and ensuring accuracy in your results. The GeeksforGeeks online P-value calculator manages tasks in statistics , data analysis , and scientific research . Use this tool to quickly figure out the p-value and get clear insights into your data.

What Is a P-value Calculator?

A P-value calculator is a tool used in statistics to help understand the significance of research results. It tells us how likely it is that the observed data occurred by chance alone. This helps researchers decide if their findings are meaningful or if they could have happened randomly.

P-values are a part of math that many people get wrong. This is about numbers between 0 and 1. If the number is below 0.05 , it’s important. The calculator we’re talking about only looks at two-sided P values .

P-value Calculator Table

A P-value is a number that helps us understand if the results of a study are statistically significant. Here is a simple table that shows what different P-values mean:

In general, the smaller the P-value , the stronger the evidence against the null hypothesis (the hypothesis that there is no effect or no difference). If the P-value is less than or equal to 0.05 , we often consider the results to be statistically significant.

Remember, the interpretation of P-values should always be done in the context of the specific study and its design.

How P-value Calculator Works

A P-value calculator is like a tool that helps scientists and researchers figure out if their results are really meaningful or just happen by chance. Imagine you’re playing a game where you guess whether a coin will land heads or tails. If you guess right, it might be because you’re really good at guessing, or it might just be luck.

Similarly, when scientists do experiments or studies, they want to know if their results are because of something real they discovered or if it’s just a random chance. The P-value helps with this.

1. Collect Data : First, scientists collect information or data from their experiment or study. This could be anything from measuring people’s heights to testing a new medicine.

2. Set Up Hypothesis : They also have something called a hypothesis. It’s like a guess about what they think will happen. For example, they might guess that the new medicine will make people feel better.

3. Do Calculations : The P-value calculator then uses fancy math to compare the collected data with the hypothesis. It looks at how likely it is that the results happened just by random chance.

4. Interpret the Result : If the P-value is very small, it means the results probably didn’t happen by chance. So, scientists get more confident that their hypothesis might be true. But if the P-value is big, it suggests the results might just be luck, so the hypothesis might not be so reliable.

5. Make Decisions : Based on this information, scientists can decide if they need to do more experiments or if they can trust their results.

So, basically, a P-value calculator helps scientists figure out if what they found is real or just a fluke .

P-Value Calculator Formula 

The p-value calculator formula helps us figure out how likely our results are due to chance. Here’s how it works:

1. First, we gather data from our experiment.

2. Next, we use a statistical test (like t-test or chi-square test) to analyze the data.

3. The test gives us a p-value, which shows the probability of getting our results just by chance.

4. If the p-value is small (usually less than 0.05) , we say the results are statistically significant. This means they’re unlikely to happen by random chance.

5. If the p-value is large (more than 0.05), it suggests our results could easily occur randomly.

In short, the p-value calculator formula helps us understand if our results are meaningful or just random.

Solved Examples on P-value Calculator  

Suppose we have a sample of 30 students, and we want to test if their average score on a test is significantly different from the population average, which is 75. We perform a t-test and find that the sample mean is 72 with a standard deviation of 8. The null hypothesis is that there’s no difference in the means.

  • Sample mean (x̄) = 72
  • Population mean (μ) = 75
  • Standard deviation (σ) = 8
  • Sample size (n) = 30

Calculate the t-score:

image

Now, we look up this t-score in a t-distribution table or use software to find the p-value associated with this t-score and degrees of freedom (which would be \(n – 1\)) . Let’s say we find the p-value to be 0.025 .

Consider a binomial experiment where we flip a fair coin 50 times and count the number of heads. We want to test if the coin is fair (null hypothesis) against the alternative that it’s biased towards heads. We get 35 heads.

  • Number of trials (n) = 50
  • Number of successes (x) = 35

Using the binomial probability formula, we calculate the probability of getting 35 or more heads under the null hypothesis. This gives us the p-value .

Suppose we want to test whether there is a significant difference in the means of two independent groups. We have two samples, each with 25 observations. We perform a two-sample t-test.

  • Sample 1 mean (x̄1) = 65
  • Sample 2 mean (x̄2) = 70
  • Sample 1 standard deviation (σ1) = 8
  • Sample 2 standard deviation (σ2) = 7
  • Sample size for both groups (n1 = n2 = 25)

Calculate the pooled standard error:

image12

Then, compute the t-score u sing the formula:

image21

Again, look up this t-score in a t-distribution table or use software to find the p-value associated with this t-score and degrees of freedom.

Practical Question on P-value Calculator 

Q1. How do I use a P-value calculator?

Q2. Why is the P-value important?

Q3. What does it mean if my P-value is high?

Conclusion 

P-value calculators are handy tools for assessing the significance of research findings. They help researchers determine whether their results are likely due to chance or if they represent true effects. By understanding how to interpret P-values , researchers can make informed decisions about their hypotheses and draw reliable conclusions from their studies.

P-Value Calculator – FAQs

What is a p-value calculator.

A P-value calculator is a tool used in statistics to compute the probability (P-value) of obtaining results as extreme as the observed data, assuming that the null hypothesis is true.

How does a P-value calculator work?

A P-value calculator typically utilizes statistical formulas and algorithms to analyze test statistics, sample size, and other relevant data to compute the P-value.

What is the formula for calculating P-value?

The formula for calculating P-value varies depending on the statistical test being used. For example, in hypothesis testing, the P-value is calculated based on the test statistic and the null hypothesis.

When is a P-value considered significant?

A P-value is considered significant if it is less than a predetermined significance level, commonly denoted as alpha (α), often set at 0.05.

What should I do if my P-value is greater than 0.05?

If your P-value is greater than 0.05, it suggests that there’s not enough evidence to reject the null hypothesis. In such cases, you may conclude that there’s no significant difference or effect in your data. However, it’s essential to consider other factors such as sample size and practical significance.

Please Login to comment...

Similar reads.

advertisewithusBannerImg

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

p value for testing null hypothesis calculator

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

S.3.2 hypothesis testing (p-value approach).

The P -value approach involves determining "likely" or "unlikely" by determining the probability — assuming the null hypothesis was true — of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed. If the P -value is small, say less than (or equal to) \(\alpha\), then it is "unlikely." And, if the P -value is large, say more than \(\alpha\), then it is "likely."

If the P -value is less than (or equal to) \(\alpha\), then the null hypothesis is rejected in favor of the alternative hypothesis. And, if the P -value is greater than \(\alpha\), then the null hypothesis is not rejected.

Specifically, the four steps involved in using the P -value approach to conducting any hypothesis test are:

  • Specify the null and alternative hypotheses.
  • Using the sample data and assuming the null hypothesis is true, calculate the value of the test statistic. Again, to conduct the hypothesis test for the population mean μ , we use the t -statistic \(t^*=\frac{\bar{x}-\mu}{s/\sqrt{n}}\) which follows a t -distribution with n - 1 degrees of freedom.
  • Using the known distribution of the test statistic, calculate the P -value : "If the null hypothesis is true, what is the probability that we'd observe a more extreme test statistic in the direction of the alternative hypothesis than we did?" (Note how this question is equivalent to the question answered in criminal trials: "If the defendant is innocent, what is the chance that we'd observe such extreme criminal evidence?")
  • Set the significance level, \(\alpha\), the probability of making a Type I error to be small — 0.01, 0.05, or 0.10. Compare the P -value to \(\alpha\). If the P -value is less than (or equal to) \(\alpha\), reject the null hypothesis in favor of the alternative hypothesis. If the P -value is greater than \(\alpha\), do not reject the null hypothesis.

Example S.3.2.1

Mean gpa section  .

In our example concerning the mean grade point average, suppose that our random sample of n = 15 students majoring in mathematics yields a test statistic t * equaling 2.5. Since n = 15, our test statistic t * has n - 1 = 14 degrees of freedom. Also, suppose we set our significance level α at 0.05 so that we have only a 5% chance of making a Type I error.

Right Tailed

The P -value for conducting the right-tailed test H 0 : μ = 3 versus H A : μ > 3 is the probability that we would observe a test statistic greater than t * = 2.5 if the population mean \(\mu\) really were 3. Recall that probability equals the area under the probability curve. The P -value is therefore the area under a t n - 1 = t 14 curve and to the right of the test statistic t * = 2.5. It can be shown using statistical software that the P -value is 0.0127. The graph depicts this visually.

t-distrbution graph showing the right tail beyond a t value of 2.5

The P -value, 0.0127, tells us it is "unlikely" that we would observe such an extreme test statistic t * in the direction of H A if the null hypothesis were true. Therefore, our initial assumption that the null hypothesis is true must be incorrect. That is, since the P -value, 0.0127, is less than \(\alpha\) = 0.05, we reject the null hypothesis H 0 : μ = 3 in favor of the alternative hypothesis H A : μ > 3.

Note that we would not reject H 0 : μ = 3 in favor of H A : μ > 3 if we lowered our willingness to make a Type I error to \(\alpha\) = 0.01 instead, as the P -value, 0.0127, is then greater than \(\alpha\) = 0.01.

Left Tailed

In our example concerning the mean grade point average, suppose that our random sample of n = 15 students majoring in mathematics yields a test statistic t * instead of equaling -2.5. The P -value for conducting the left-tailed test H 0 : μ = 3 versus H A : μ < 3 is the probability that we would observe a test statistic less than t * = -2.5 if the population mean μ really were 3. The P -value is therefore the area under a t n - 1 = t 14 curve and to the left of the test statistic t* = -2.5. It can be shown using statistical software that the P -value is 0.0127. The graph depicts this visually.

t distribution graph showing left tail below t value of -2.5

The P -value, 0.0127, tells us it is "unlikely" that we would observe such an extreme test statistic t * in the direction of H A if the null hypothesis were true. Therefore, our initial assumption that the null hypothesis is true must be incorrect. That is, since the P -value, 0.0127, is less than α = 0.05, we reject the null hypothesis H 0 : μ = 3 in favor of the alternative hypothesis H A : μ < 3.

Note that we would not reject H 0 : μ = 3 in favor of H A : μ < 3 if we lowered our willingness to make a Type I error to α = 0.01 instead, as the P -value, 0.0127, is then greater than \(\alpha\) = 0.01.

In our example concerning the mean grade point average, suppose again that our random sample of n = 15 students majoring in mathematics yields a test statistic t * instead of equaling -2.5. The P -value for conducting the two-tailed test H 0 : μ = 3 versus H A : μ ≠ 3 is the probability that we would observe a test statistic less than -2.5 or greater than 2.5 if the population mean μ really was 3. That is, the two-tailed test requires taking into account the possibility that the test statistic could fall into either tail (hence the name "two-tailed" test). The P -value is, therefore, the area under a t n - 1 = t 14 curve to the left of -2.5 and to the right of 2.5. It can be shown using statistical software that the P -value is 0.0127 + 0.0127, or 0.0254. The graph depicts this visually.

t-distribution graph of two tailed probability for t values of -2.5 and 2.5

Note that the P -value for a two-tailed test is always two times the P -value for either of the one-tailed tests. The P -value, 0.0254, tells us it is "unlikely" that we would observe such an extreme test statistic t * in the direction of H A if the null hypothesis were true. Therefore, our initial assumption that the null hypothesis is true must be incorrect. That is, since the P -value, 0.0254, is less than α = 0.05, we reject the null hypothesis H 0 : μ = 3 in favor of the alternative hypothesis H A : μ ≠ 3.

Note that we would not reject H 0 : μ = 3 in favor of H A : μ ≠ 3 if we lowered our willingness to make a Type I error to α = 0.01 instead, as the P -value, 0.0254, is then greater than \(\alpha\) = 0.01.

Now that we have reviewed the critical value and P -value approach procedures for each of the three possible hypotheses, let's look at three new examples — one of a right-tailed test, one of a left-tailed test, and one of a two-tailed test.

The good news is that, whenever possible, we will take advantage of the test statistics and P -values reported in statistical software, such as Minitab, to conduct our hypothesis tests in this course.

P value calculator

P value calculator from z, p value calculator from t, p value calculator from f, p value calculator from chi square, what is p value, when is p value significant, why do we reject the null hypothesis when the p value is small, p value formula, calculators.

Easy Calculator Tools

Hypothesis Testing Calculator

Understanding Hypothesis Testing: A Guide to the Hypothesis Testing Calculator

Hypothesis testing is a crucial statistical method used to make informed decisions about data and draw conclusions. Whether you’re a student, researcher, or professional, a Hypothesis Testing Calculator can be an invaluable tool in your statistical toolkit. Let’s explore what hypothesis testing is and how this calculator can assist you:

Hypothesis Testing Basics:

  • Null Hypothesis (H0): This is the default assumption or claim that there is no significant difference or effect. It’s often denoted as H0.
  • Alternative Hypothesis (Ha): This is the statement that contradicts the null hypothesis. It suggests that there is a significant difference or effect. It’s denoted as Ha.
  • Significance Level (α): This is the predetermined threshold (e.g., 0.05 or 5%) used to determine statistical significance. If the calculated p-value is less than α, you reject the null hypothesis.
  • p-value: This is the probability of observing the results (or more extreme results) if the null hypothesis is true. A small p-value suggests that the results are unlikely under the null hypothesis.

Key Features of the Hypothesis Testing Calculator:

  • Input Parameters: The calculator typically requires you to input sample data, choose the type of test (e.g., t-test, chi-square test), specify the null and alternative hypotheses, and set the significance level.
  • Calculations: Once you input the data and parameters, the calculator performs the necessary statistical tests and calculations. It generates results such as the test statistic, degrees of freedom, and the p-value.
  • Interpretation: Based on the results, the calculator helps you determine whether to reject or fail to reject the null hypothesis. It provides an interpretation of the findings, which is crucial for drawing conclusions.
  • Visual Representation: Some calculators may offer visual aids like graphs or charts to help you better understand the data distribution and test results.

Significance of the Hypothesis Testing Calculator:

  • Scientific Research: Researchers across various fields use hypothesis testing to validate their hypotheses and draw meaningful conclusions from data.
  • Quality Control: Industries use hypothesis testing to ensure the quality and consistency of products and processes.
  • Medical Studies: In medical research, hypothesis testing helps assess the effectiveness of treatments or interventions.
  • Academics: Students and educators use hypothesis testing to teach and learn statistical concepts and conduct experiments.
  • Data-Driven Decisions: Businesses use hypothesis testing to make data-driven decisions, such as whether to launch a new product based on market research.

Conclusion:

The Hypothesis Testing Calculator is a powerful tool that simplifies complex statistical analysis and enables data-driven decision-making. Whether you’re conducting experiments, analyzing survey data, or performing quality control, understanding hypothesis testing and using this calculator can help you make informed choices and contribute to evidence-based research and decision-making.

Calculators24.com: Free Online Calculators – Math, Fitness, Finance, Science

Hypothesis Testing Calculator

Navigating hypothesis testing: unveiling the potential of the hypothesis testing calculator.

Embarking on the journey of statistical exploration, hypothesis testing stands out as an indispensable method for informed decision-making and drawing meaningful conclusions from data. Whether you find yourself in the academic realm, engaged in research endeavors, or navigating the professional landscape, having a trustworthy Hypothesis Testing Calculator in your statistical toolkit can prove to be a game-changer. Let’s delve into the intricacies of hypothesis testing and uncover how this calculator can be your ally in statistical analyses.

Demystifying Hypothesis Testing:

Null Hypothesis (H0): Positioned as the default assumption, the null hypothesis asserts the absence of any significant difference or effect and is commonly represented as H0.

Alternative Hypothesis (Ha): In direct contradiction to the null hypothesis, the alternative hypothesis posits the existence of a noteworthy difference or effect, denoted as Ha.

Significance Level (α): Acting as the predetermined threshold, typically set at 0.05 or 5%, the significance level plays a pivotal role in determining statistical significance. Should the calculated p-value fall below α, the null hypothesis is rejected.

p-value: Representing the likelihood of observing the results, or more extreme outcomes, under the assumption of the null hypothesis being true, a smaller p-value suggests the unlikelihood of the results occurring by chance.

Features that Define the Hypothesis Testing Calculator:

Input Parameters: The calculator demands input of sample data, selection of the test type (e.g., t-test, chi-square test), specification of null and alternative hypotheses, and determination of the significance level.

Calculations: Once armed with the requisite data and parameters, the calculator diligently executes statistical tests and computations. The output encompasses crucial details like the test statistic, degrees of freedom, and the all-important p-value.

Interpretation: Armed with the results, the calculator aids in the decision-making process, guiding whether to reject or accept the null hypothesis. An interpretation of the findings is provided, playing a pivotal role in drawing insightful conclusions.

Visual Representation: Some calculators go the extra mile by offering visual aids such as graphs or charts, facilitating a deeper understanding of data distribution and test outcomes.

Unveiling the Significance of the Hypothesis Testing Calculator:

In Scientific Research: Researchers spanning diverse fields leverage hypothesis testing to validate their hypotheses, thereby extracting meaningful insights from data.

In Quality Control: Industries rely on hypothesis testing as a quality assurance mechanism, ensuring the consistency and excellence of products and processes.

In Medical Studies: Within the realm of medical research, hypothesis testing serves as a critical tool for evaluating the effectiveness of treatments or interventions.

In Academics: Both students and educators find value in hypothesis testing as an educational tool, enabling the comprehension of statistical concepts and the conduct of experiments.

In Data-Driven Decision-Making: Businesses, keen on making decisions grounded in data, turn to hypothesis testing to navigate choices such as launching a new product based on comprehensive market research.

Concluding Insights:

The Hypothesis Testing Calculator emerges as a formidable ally, simplifying intricate statistical analyses and fostering data-driven decision-making. Whether you are in the midst of experimental undertakings, scrutinizing survey data, or overseeing quality control protocols, a solid understanding of hypothesis testing coupled with the use of this calculator empowers you to make well-informed choices. In doing so, you not only contribute to evidence-based research but also play a pivotal role in shaping decision-making processes across various domains.

free{}calculator

Find the best remote jobs with remotely →, p-value calculator, what is p-value .

The P-value is a statistical measure used to determine the probability of a given result occurring by chance. It is used to decide whether or not to accept a hypothesis, and is calculated by comparing the observed data to the expected data. A low P-value indicates that the observed data is unlikely to have occurred by chance, and therefore the hypothesis is accepted.

What is P-value Calculator ?

A P-value calculator is a tool used to calculate the probability of obtaining a certain result in a statistical test. It is used to determine whether the results of a study are statistically significant or not. The P-value is calculated by comparing the observed data to the expected data, and then determining the probability of obtaining the observed results if the null hypothesis is true.

How to Calculate P-value ?

The P-value is the probability of obtaining a result equal to or more extreme than what was actually observed, given that the null hypothesis is true. To calculate the P-value, you need to know the test statistic, the sample size, and the distribution of the test statistic under the null hypothesis. You then use this information to calculate the probability of obtaining a result equal to or more extreme than what was actually observed.

Cite this content, page or calculator as:

Andy, Cohen “ P-value Calculator ” at

from FreeCalculator.net,  https://www.freecalculator.net  

Statistics Calculators

Trigonometry Calculator

Hex to Decimal Converter

Feet to Meters Converter

Generic selectors Exact matches only Search in title Search in content Post Type Selectors

Popular categories

Business calculators, financial calculators, date & time calculators, health calculators, fitness calculators, math calculators.

terms of use

privacy policy

FreeCalculator.net’s sole focus is to provide fast, comprehensive, convenient, free online calculators in a plethora of areas. Currently, we have over 100 calculators to help you “do the math” quickly in areas such as finance, fitness, health, math, and others, and we are still developing more. Our goal is to become the one-stop, go-to site for people who need to make quick calculations. Additionally, we believe the internet should be a source of free information. Therefore, all of our tools and services are completely free, with no registration required. We coded and developed each calculator individually and put each one through strict, comprehensive testing. However, please inform us if you notice even the slightest error – your input is extremely valuable to us. While most calculators on FreeCalculator.net are designed to be universally applicable for worldwide usage, some are for specific countries only.

© 2021 – 2024 FreeCalculator.net | All rights reserved.

P-Value And Statistical Significance: What It Is & Why It Matters

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

The p-value in statistics quantifies the evidence against a null hypothesis. A low p-value suggests data is inconsistent with the null, potentially favoring an alternative hypothesis. Common significance thresholds are 0.05 or 0.01.

P-Value Explained in Normal Distribution

Hypothesis testing

When you perform a statistical test, a p-value helps you determine the significance of your results in relation to the null hypothesis.

The null hypothesis (H0) states no relationship exists between the two variables being studied (one variable does not affect the other). It states the results are due to chance and are not significant in supporting the idea being investigated. Thus, the null hypothesis assumes that whatever you try to prove did not happen.

The alternative hypothesis (Ha or H1) is the one you would believe if the null hypothesis is concluded to be untrue.

The alternative hypothesis states that the independent variable affected the dependent variable, and the results are significant in supporting the theory being investigated (i.e., the results are not due to random chance).

What a p-value tells you

A p-value, or probability value, is a number describing how likely it is that your data would have occurred by random chance (i.e., that the null hypothesis is true).

The level of statistical significance is often expressed as a p-value between 0 and 1.

The smaller the p -value, the less likely the results occurred by random chance, and the stronger the evidence that you should reject the null hypothesis.

Remember, a p-value doesn’t tell you if the null hypothesis is true or false. It just tells you how likely you’d see the data you observed (or more extreme data) if the null hypothesis was true. It’s a piece of evidence, not a definitive proof.

Example: Test Statistic and p-Value

Suppose you’re conducting a study to determine whether a new drug has an effect on pain relief compared to a placebo. If the new drug has no impact, your test statistic will be close to the one predicted by the null hypothesis (no difference between the drug and placebo groups), and the resulting p-value will be close to 1. It may not be precisely 1 because real-world variations may exist. Conversely, if the new drug indeed reduces pain significantly, your test statistic will diverge further from what’s expected under the null hypothesis, and the p-value will decrease. The p-value will never reach zero because there’s always a slim possibility, though highly improbable, that the observed results occurred by random chance.

P-value interpretation

The significance level (alpha) is a set probability threshold (often 0.05), while the p-value is the probability you calculate based on your study or analysis.

A p-value less than or equal to your significance level (typically ≤ 0.05) is statistically significant.

A p-value less than or equal to a predetermined significance level (often 0.05 or 0.01) indicates a statistically significant result, meaning the observed data provide strong evidence against the null hypothesis.

This suggests the effect under study likely represents a real relationship rather than just random chance.

For instance, if you set α = 0.05, you would reject the null hypothesis if your p -value ≤ 0.05. 

It indicates strong evidence against the null hypothesis, as there is less than a 5% probability the null is correct (and the results are random).

Therefore, we reject the null hypothesis and accept the alternative hypothesis.

Example: Statistical Significance

Upon analyzing the pain relief effects of the new drug compared to the placebo, the computed p-value is less than 0.01, which falls well below the predetermined alpha value of 0.05. Consequently, you conclude that there is a statistically significant difference in pain relief between the new drug and the placebo.

What does a p-value of 0.001 mean?

A p-value of 0.001 is highly statistically significant beyond the commonly used 0.05 threshold. It indicates strong evidence of a real effect or difference, rather than just random variation.

Specifically, a p-value of 0.001 means there is only a 0.1% chance of obtaining a result at least as extreme as the one observed, assuming the null hypothesis is correct.

Such a small p-value provides strong evidence against the null hypothesis, leading to rejecting the null in favor of the alternative hypothesis.

A p-value more than the significance level (typically p > 0.05) is not statistically significant and indicates strong evidence for the null hypothesis.

This means we retain the null hypothesis and reject the alternative hypothesis. You should note that you cannot accept the null hypothesis; we can only reject it or fail to reject it.

Note : when the p-value is above your threshold of significance,  it does not mean that there is a 95% probability that the alternative hypothesis is true.

One-Tailed Test

Probability and statistical significance in ab testing. Statistical significance in a b experiments

Two-Tailed Test

statistical significance two tailed

How do you calculate the p-value ?

Most statistical software packages like R, SPSS, and others automatically calculate your p-value. This is the easiest and most common way.

Online resources and tables are available to estimate the p-value based on your test statistic and degrees of freedom.

These tables help you understand how often you would expect to see your test statistic under the null hypothesis.

Understanding the Statistical Test:

Different statistical tests are designed to answer specific research questions or hypotheses. Each test has its own underlying assumptions and characteristics.

For example, you might use a t-test to compare means, a chi-squared test for categorical data, or a correlation test to measure the strength of a relationship between variables.

Be aware that the number of independent variables you include in your analysis can influence the magnitude of the test statistic needed to produce the same p-value.

This factor is particularly important to consider when comparing results across different analyses.

Example: Choosing a Statistical Test

If you’re comparing the effectiveness of just two different drugs in pain relief, a two-sample t-test is a suitable choice for comparing these two groups. However, when you’re examining the impact of three or more drugs, it’s more appropriate to employ an Analysis of Variance ( ANOVA) . Utilizing multiple pairwise comparisons in such cases can lead to artificially low p-values and an overestimation of the significance of differences between the drug groups.

How to report

A statistically significant result cannot prove that a research hypothesis is correct (which implies 100% certainty).

Instead, we may state our results “provide support for” or “give evidence for” our research hypothesis (as there is still a slight probability that the results occurred by chance and the null hypothesis was correct – e.g., less than 5%).

Example: Reporting the results

In our comparison of the pain relief effects of the new drug and the placebo, we observed that participants in the drug group experienced a significant reduction in pain ( M = 3.5; SD = 0.8) compared to those in the placebo group ( M = 5.2; SD  = 0.7), resulting in an average difference of 1.7 points on the pain scale (t(98) = -9.36; p < 0.001).

The 6th edition of the APA style manual (American Psychological Association, 2010) states the following on the topic of reporting p-values:

“When reporting p values, report exact p values (e.g., p = .031) to two or three decimal places. However, report p values less than .001 as p < .001.

The tradition of reporting p values in the form p < .10, p < .05, p < .01, and so forth, was appropriate in a time when only limited tables of critical values were available.” (p. 114)

  • Do not use 0 before the decimal point for the statistical value p as it cannot equal 1. In other words, write p = .001 instead of p = 0.001.
  • Please pay attention to issues of italics ( p is always italicized) and spacing (either side of the = sign).
  • p = .000 (as outputted by some statistical packages such as SPSS) is impossible and should be written as p < .001.
  • The opposite of significant is “nonsignificant,” not “insignificant.”

Why is the p -value not enough?

A lower p-value  is sometimes interpreted as meaning there is a stronger relationship between two variables.

However, statistical significance means that it is unlikely that the null hypothesis is true (less than 5%).

To understand the strength of the difference between the two groups (control vs. experimental) a researcher needs to calculate the effect size .

When do you reject the null hypothesis?

In statistical hypothesis testing, you reject the null hypothesis when the p-value is less than or equal to the significance level (α) you set before conducting your test. The significance level is the probability of rejecting the null hypothesis when it is true. Commonly used significance levels are 0.01, 0.05, and 0.10.

Remember, rejecting the null hypothesis doesn’t prove the alternative hypothesis; it just suggests that the alternative hypothesis may be plausible given the observed data.

The p -value is conditional upon the null hypothesis being true but is unrelated to the truth or falsity of the alternative hypothesis.

What does p-value of 0.05 mean?

If your p-value is less than or equal to 0.05 (the significance level), you would conclude that your result is statistically significant. This means the evidence is strong enough to reject the null hypothesis in favor of the alternative hypothesis.

Are all p-values below 0.05 considered statistically significant?

No, not all p-values below 0.05 are considered statistically significant. The threshold of 0.05 is commonly used, but it’s just a convention. Statistical significance depends on factors like the study design, sample size, and the magnitude of the observed effect.

A p-value below 0.05 means there is evidence against the null hypothesis, suggesting a real effect. However, it’s essential to consider the context and other factors when interpreting results.

Researchers also look at effect size and confidence intervals to determine the practical significance and reliability of findings.

How does sample size affect the interpretation of p-values?

Sample size can impact the interpretation of p-values. A larger sample size provides more reliable and precise estimates of the population, leading to narrower confidence intervals.

With a larger sample, even small differences between groups or effects can become statistically significant, yielding lower p-values. In contrast, smaller sample sizes may not have enough statistical power to detect smaller effects, resulting in higher p-values.

Therefore, a larger sample size increases the chances of finding statistically significant results when there is a genuine effect, making the findings more trustworthy and robust.

Can a non-significant p-value indicate that there is no effect or difference in the data?

No, a non-significant p-value does not necessarily indicate that there is no effect or difference in the data. It means that the observed data do not provide strong enough evidence to reject the null hypothesis.

There could still be a real effect or difference, but it might be smaller or more variable than the study was able to detect.

Other factors like sample size, study design, and measurement precision can influence the p-value. It’s important to consider the entire body of evidence and not rely solely on p-values when interpreting research findings.

Can P values be exactly zero?

While a p-value can be extremely small, it cannot technically be absolute zero. When a p-value is reported as p = 0.000, the actual p-value is too small for the software to display. This is often interpreted as strong evidence against the null hypothesis. For p values less than 0.001, report as p < .001

Further Information

  • P-values and significance tests (Kahn Academy)
  • Hypothesis testing and p-values (Kahn Academy)
  • Wasserstein, R. L., Schirm, A. L., & Lazar, N. A. (2019). Moving to a world beyond “ p “< 0.05”.
  • Criticism of using the “ p “< 0.05”.
  • Publication manual of the American Psychological Association
  • Statistics for Psychology Book Download

Bland, J. M., & Altman, D. G. (1994). One and two sided tests of significance: Authors’ reply.  BMJ: British Medical Journal ,  309 (6958), 874.

Goodman, S. N., & Royall, R. (1988). Evidence and scientific research.  American Journal of Public Health ,  78 (12), 1568-1574.

Goodman, S. (2008, July). A dirty dozen: twelve p-value misconceptions . In  Seminars in hematology  (Vol. 45, No. 3, pp. 135-140). WB Saunders.

Lang, J. M., Rothman, K. J., & Cann, C. I. (1998). That confounded P-value.  Epidemiology (Cambridge, Mass.) ,  9 (1), 7-8.

Print Friendly, PDF & Email

Open topic with navigation

The P value, or calculated probability, is the probability of finding the observed, or more extreme, results when the null hypothesis (H 0 ) of a study question is true – the definition of ‘extreme’ depends on how the hypothesis is being tested. P is also described in terms of rejecting H 0 when it is actually true, however, it is not a direct probability of this state.

The null hypothesis is usually an hypothesis of "no difference" e.g. no difference between blood pressures in group A and group B. Define a null hypothesis for each study question clearly before the start of your study.

The only situation in which you should use a one sided P value is when a large change in an unexpected direction would have absolutely no relevance to your study. This situation is unusual; if you are in any doubt then use a two sided P value.

The term significance level (alpha) is used to refer to a pre-chosen probability and the term "P value" is used to indicate a probability that you calculate after a given study.

The alternative hypothesis (H 1 ) is the opposite of the null hypothesis; in plain language terms this is usually the hypothesis you set out to investigate. For example, question is "is there a significant (not due to chance) difference in blood pressures between groups A and B if we give group A the test drug and group B a sugar pill?" and alternative hypothesis is " there is a difference in blood pressures between groups A and B if we give group A the test drug and group B a sugar pill".

If your P value is less than the chosen significance level then you reject the null hypothesis i.e. accept that your sample gives reasonable evidence to support the alternative hypothesis. It does NOT imply a "meaningful" or "important" difference; that is for you to decide when considering the real-world relevance of your result.

The choice of significance level at which you reject H 0 is arbitrary. Conventionally the 5% (less than 1 in 20 chance of being wrong), 1% and 0.1% (P < 0.05, 0.01 and 0.001) levels have been used. These numbers can give a false sense of security.

In the ideal world, we would be able to define a "perfectly" random sample, the most appropriate test and one definitive conclusion. We simply cannot. What we can do is try to optimise all stages of our research to minimise sources of uncertainty. When presenting P values some groups find it helpful to use the asterisk rating system as well as quoting the P value:

P < 0.05 *

P < 0.01 **

P < 0.001

Most authors refer to statistically significant as P < 0.05 and statistically highly significant as P < 0.001 (less than one in a thousand chance of being wrong).

The asterisk system avoids the woolly term "significant". Please note, however, that many statisticians do not like the asterisk rating system when it is used without showing P values. As a rule of thumb, if you can quote an exact P value then do. You might also want to refer to a quoted exact P value as an asterisk in text narrative or tables of contrasts elsewhere in a report.

At this point, a word about error. Type I error is the false rejection of the null hypothesis and type II error is the false acceptance of the null hypothesis. As an aid memoir: think that our cynical society rejects before it accepts.

The significance level (alpha) is the probability of type I error. The power of a test is one minus the probability of type II error (beta). Power should be maximised when selecting statistical methods. If you want to estimate sample sizes then you must understand all of the terms mentioned here.

The following table shows the relationship between power and error in hypothesis testing:

If you are interested in further details of probability and sampling theory at this point then please refer to one of the general texts listed in the reference section .

You must understand confidence intervals if you intend to quote P values in reports and papers. Statistical referees of scientific journals expect authors to quote confidence intervals with greater prominence than P values.

Notes about Type I error :

  • is the incorrect rejection of the null hypothesis
  • maximum probability is set in advance as alpha
  • is not affected by sample size as it is set in advance
  • increases with the number of tests or end points (i.e. do 20 rejections of H 0 and 1 is likely to be wrongly significant for alpha = 0.05)

Notes about Type II error :

  • is the incorrect acceptance of the null hypothesis
  • probability is beta
  • beta depends upon sample size and alpha
  • can't be estimated except as a function of the true population effect
  • beta gets smaller as the sample size gets larger
  • beta gets smaller as the number of tests or end points increases

Copyright © 2000-2024 StatsDirect Limited, all rights reserved. Download here .

IMAGES

  1. Hypothesis testing tutorial using p value method

    p value for testing null hypothesis calculator

  2. P-Value Method For Hypothesis Testing

    p value for testing null hypothesis calculator

  3. P-value Calculator & Statistical Significance Calculator

    p value for testing null hypothesis calculator

  4. What is P-value in hypothesis testing

    p value for testing null hypothesis calculator

  5. P value from hypothesis test calculator

    p value for testing null hypothesis calculator

  6. p-Value in Hypothesis Testing

    p value for testing null hypothesis calculator

VIDEO

  1. Hypothesis Testing

  2. Hypothesis Testing, P-Value and Type I & II Error

  3. t-TEST INTRODUCTION- HYPOTHESIS TESTING VIDEO-15

  4. t-TEST PROBLEM 2- HYPOTHESIS TESTING VIDEO-17

  5. t-TEST PROBLEM 1- HYPOTHESIS TESTING VIDEO-16

  6. Null Hypothesis, Alternative Hypothesis, Test Stat, P Value, given n and x Math 160 Stats Final 14A

COMMENTS

  1. Hypothesis Testing Calculator with Steps

    Unlike the p-value approach, the method we use to decide whether to reject the null hypothesis depends on the form of the hypothesis test. In a lower tail test, if the test statistic is less than or equal to the critical value, reject the null hypothesis. In an upper tail test, if the test statistic is greater than or equal to the critical ...

  2. p-value Calculator

    Formally, the p-value is the probability that the test statistic will produce values at least as extreme as the value it produced for your sample.It is crucial to remember that this probability is calculated under the assumption that the null hypothesis H 0 is true!. More intuitively, p-value answers the question: Assuming that I live in a world where the null hypothesis holds, how probable is ...

  3. P-value Calculator

    A P-value calculator is used to determine the statistical significance of an observed result in hypothesis testing. It takes as input the observed test statistic, the null hypothesis, and the relevant parameters of the statistical test (such as degrees of freedom), and computes the p-value.

  4. Hypothesis Test Calculator

    Calculation Example: There are six steps you would follow in hypothesis testing: Formulate the null and alternative hypotheses in three different ways: H 0: θ = θ 0 v e r s u s H 1: θ ≠ θ 0. H 0: θ ≤ θ 0 v e r s u s H 1: θ > θ 0. H 0: θ ≥ θ 0 v e r s u s H 1: θ < θ 0.

  5. t-test Calculator

    Recall that the p-value is the probability (calculated under the assumption that the null hypothesis is true) that the test statistic will produce values at least as extreme as the T-score produced for your sample. As probabilities correspond to areas under the density function, p-value from t-test can be nicely illustrated with the help of the ...

  6. P value calculator

    The statistical test for correlation uses a null hypothesis that the correlation is 0, which would indicate no correlation, so a P value less than the cutoff threshold indicates evidence that the variables are correlated. Enter any number for r between -1 and 1 and the degrees of freedom (which is n-2) for your study to calculate the P value ...

  7. P-value Calculator

    P-value Calculator. Please provide any one value below to compute p-value from z-score or vice versa for a normal distribution. A p-value (probability value) is a value used in statistical hypothesis testing that is intended to determine whether the obtained results are significant. In statistical hypothesis testing, the null hypothesis is a ...

  8. Understanding P-values

    The p value is a number, calculated from a statistical test, that describes how likely you are to have found a particular set of observations if the null hypothesis were true. P values are used in hypothesis testing to help decide whether to reject the null hypothesis. The smaller the p value, the more likely you are to reject the null hypothesis.

  9. P-value Calculator

    How to calculate P-value. The P-value (probability value) is a quantitative parameter used in statistical hypothesis testing to determine whether a null hypothesis (or claimed hypothesis) is true, or in other words, whether the obtained test results are significant.. Simply speaking, the P-value is the probability of obtaining test results at least as extreme as the results actually observed ...

  10. p-value Calculator

    This calculator calculates the p-value for a given set of data based on the test statistic, sample size, hypothesis testing type (left-tail, right-tail, or two-tail), and the significance level. The p-value represents the probability of a null hypothesis being true.

  11. P-value Calculator & Statistical Significance Calculator

    Powerful p-value calculator online: calculate statistical significance using a Z-test or T-test statistic (z test calculator / t-test calculator). P-value formula, Z-score formula, T-statistic formula and explanation of the inference procedure. Statistical significance for the difference between two independent groups (unpaired) - proportions (binomial) or means (non-binomial, continuous).

  12. How to Find the P value: Process and Calculations

    Null hypothesis value: 260; Let's work through the step-by-step process of how to calculate a p-value. First, we need to identify the correct test statistic. Because we're comparing one mean to a null value, we need to use a 1-sample t-test. Hence, the t-value is our test statistic, and the t-distribution is our sampling distribution.

  13. P-value-calculator

    Right-tailed test: p-value = 1 - cdf (x) Two-tailed test: p-value = 2 * min { {cdf (x) , 1 - cdf (x) }} Hypothesis testing is characterized by the most common probability distributions. This can make it difficult to calculate the p-value manually. It is likely that you will need to use a computer or a statistical table to calculate approximate ...

  14. P-Value Calculator (Free Online Calculator)

    For example, in hypothesis testing, the P-value is calculated based on the test statistic and the null hypothesis. When is a P-value considered significant? A P-value is considered significant if it is less than a predetermined significance level, commonly denoted as alpha (α), often set at 0.05.

  15. S.3.2 Hypothesis Testing (P-Value Approach)

    The P -value is, therefore, the area under a tn - 1 = t14 curve to the left of -2.5 and to the right of 2.5. It can be shown using statistical software that the P -value is 0.0127 + 0.0127, or 0.0254. The graph depicts this visually. Note that the P -value for a two-tailed test is always two times the P -value for either of the one-tailed tests.

  16. A p-value calculator with solutions for normal distribution (z), t

    Why do we reject the null hypothesis when the p value is small? The p-value is the probability of rejecting a correct H 0. When the p value is small, the probability of rejecting a correct H 0 is small, hence the probability for a mistake is small. P value formula. X is the test statistic value, and you know the distribution of X. For example X ...

  17. Hypothesis Testing Calculator

    Calculations: Once you input the data and parameters, the calculator performs the necessary statistical tests and calculations. It generates results such as the test statistic, degrees of freedom, and the p-value. Interpretation: Based on the results, the calculator helps you determine whether to reject or fail to reject the null hypothesis.

  18. Hypothesis Testing Calculator

    Should the calculated p-value fall below α, the null hypothesis is rejected. p-value: Representing the likelihood of observing the results, or more extreme outcomes, under the assumption of the null hypothesis being true, a smaller p-value suggests the unlikelihood of the results occurring by chance. Features that Define the Hypothesis Testing ...

  19. Free P-value Calculator

    To calculate the P-value, you need to know the test statistic, the sample size, and the distribution of the test statistic under the null hypothesis. You then use this information to calculate the probability of obtaining a result equal to or more extreme than what was actually observed. Powerful p-value calculator online: calculate statistical ...

  20. How to Find P Value from a Test Statistic

    Hypothesis tests are used to test the validity of a claim that is made about a population. This claim that's on trial, in essence, is called the null hypothesis (H 0).The alternative hypothesis (H a) is the one you would believe if the null hypothesis is concluded to be untrue.Learning how to find the p-value in statistics is a fundamental skill in testing, helping you weigh the evidence ...

  21. Understanding P-Values and Statistical Significance

    In statistical hypothesis testing, you reject the null hypothesis when the p-value is less than or equal to the significance level (α) you set before conducting your test. The significance level is the probability of rejecting the null hypothesis when it is true. Commonly used significance levels are 0.01, 0.05, and 0.10.

  22. The p-value and rejecting the null (for one- and two-tail tests)

    The p-value (or the observed level of significance) is the smallest level of significance at which you can reject the null hypothesis, assuming the null hypothesis is true. You can also think about the p-value as the total area of the region of rejection. Remember that in a one-tailed test, the regi

  23. P Values (Calculated Probability) and Hypothesis Testing

    P Values. The P value, or calculated probability, is the probability of finding the observed, or more extreme, results when the null hypothesis (H0) of a study question is true - the definition of 'extreme' depends on how the hypothesis is being tested. P is also described in terms of rejecting H0 when it is actually true, however, it is ...