Presentation Layer: Protocols, Examples, Services | Functions of Presentation Layer

Presentation Layer is the 6th layer in the Open System Interconnection (OSI) model where all application programmer consider data structure and presentation, beyond of simply sending the data into form of datagram otherwise packets in between the hosts. Now, we will explain about what is presentation layer with its protocols, example, service ; involving with major functions of presentation Layer with ease. At the end of this article, you will completely educate about What is Presentation Layer in OSI Model without any hassle.

  • What is Presentation Layer?

Definition : Presentation layer is 6th layer in the OSI model , and its main objective is to present all messages to upper layer as a standardized format. It is also known as the “ Translation layer “.  This layer takes care of syntax and semantics of messages exchanged in between two communication systems. Presentation layer has responsible that receiver can understand all data, and it will be to implement all data languages can be dissimilar of two communication system.

presentation layer

Presentation layer is capable to handle abstract data structures, and further it helps to defined and exchange of higher-level data structures.

Presentation Layer Tutorial Headlines:

In this section, we will show you all headlines about this entire article; you can check them as your choice; below shown all:

  • Functions of Presentation Layer

Protocols of Presentation Layer

  • Example of Presentation Layer Protocols

Presentation Layer Services

Design issues with presentation layer, faqs (frequently asked questions), what is meant by presentation layer in osi model, what protocols are used in the presentation layer, can you explain some presentation layer examples, what are the main functions of the presentation layer, what are services of presentation layer in osi, let’s get started,   functions of presentation layer.

Presentation layer performs various functions in the OSI model ; below explain each one – 

  • Presentation layer helps to translate from American standard code for information interchange (ASCII) to the extended binary code decimal interchange code (EBCDIC).
  • It deals with user interface as well as supporting for several services such as email and file transfer.
  • It provides encoding mechanism for translating all messages from user dependent format with common format and vice – versa.
  • It’s main goal for data encryption and decryption of entire data before they are getting transmission over all common platforms.
  • It provides data compression mechanism for source point to decrease the all bits which are transmitted. Due to this data compression system, user are able to transmit enlarge multimedia file at fastest file transfer rate.
  • Due to use of Data Encryption and Decryption algorithm, presentation layer provides more network protection and confidentiality while transmission data over the entire network.
  • This layer offers best flexibility for data translation for making connections with various kinds of servers , computers, and mainframes over the similar network.
  • Presentation layer has responsible to fix all translations in between all network systems .

Presentation layer is used various protocols; below list is available –

  • Multipurpose Internet Mail Extensions
  • File Transfer Protocol
  • Network News Transfer Protocol
  • Apple Filing Protocol (AFP)
  • Independent Computing Architecture (ICA), the Citrix system core protocol
  • Lightweight Presentation Protocol (LPP)
  • NetWare Core Protocol (NCP)
  • Network Data Representation (NDR)
  • Telnet (a remote terminal access protocol)
  • Tox Protocol
  • eXternal Data Representation (XDR)
  • 25 Packet Assembler/Disassembler Protocol (PAD)

Example of Presentation Layer Protocols:

Here, we will discuss all examples of presentation layer protocols; below explain each one –  

Multipurpose Internet Mail Extensions (MIME) : MIME protocol was introduced by Bell Communications in 1991, and it is an internet standard that provides scalable capable of email for attaching of images, sounds and text in a message.

File Transfer Protocol (FTP) : FTP is a internet protocol, and its main goal is to transmit all files in between one host to other hosts over the internet on TCP/IP connections.

Network News Transfer Protocol (NNTP) : This protocol is used to make connection with Usenet server and transmit all newsgroup articles in between system over internet.

Apple Filing Protocol (AFP ) : AFP protocol is designed by Apple company for sharing all files over the entire network .

Lightweight Presentation Protocol (LPP) : This protocol is used to offer ISO presentation services on top of TCP/IP based protocol stacks.

NetWare Core Protocol (NCP) : NCP is a Novell client server model protocol that is designed especially for Local Area Network (LAN). It is capable to perform several functions like as file/print-sharing, clock synchronization, remote processing and messaging.

Network Data Representation (NDR) : NDR is an data encoding standard, and it is implement in the Distributed Computing Environment (DCE).

Telnet (Telecommunication Network) : Telnet protocol was introduced in 1969, and it offers the command line interface for making communication along with remote device or server .

Tox : The Tox protocol is sometimes regarded as part of both the presentation and application layer , and it is used for sending peer-to-peer instant-messaging as well as video calling.

eXternal Data Representation (XDR) : This protocol provides the description and encoding of entire data, and  it’s main goal is to transfer data in between dissimilar computer architecture.

25 Packet Assembler/Disassembler Protocol (PAD) : Main objective of this protocol is to obtain all data from group of terminal and allots the data into X. 25 packets.

Presentation layer provides several services like as –

  • Data conversion
  • Character code translation
  • Compression
  • Encryption and Decryption
  • It helps to handle and maintain Syntax and Semantics of the message transmitted.
  • Encoding data can be done as standard agreed like as String, double, date, and more.
  • Standard Encoding can be done on wire.

Presentation Layer is the 6th layer in the Open System Interconnection (OSI) model that is the lowest layer, where all application programmer consider data structure and presentation, beyond of simply sending the data into form of datagram otherwise packets in between the hosts.

Presentation layer is used various protocols like as:

Yes! In this article, already we have been explained many examples of presentation layer; you can check them.

Presentation layer has a responsibility for formatting, translation, and delivery of the information for getting to process otherwise display .

Now, i hope that you have completely learnt about what is presentation layer with its protocols, example, service ; involving with major functions of presentation Layer with ease. If this post is useful for you, then please share it along with your friends, family members or relatives over social media platforms like as Facebook, Instagram, Linked In, Twitter, and more.

Also Read: Data Link Layer: Protocols, Examples | Functions of Data Link Layer

If you have any experience, tips, tricks, or query regarding this issue? You can drop a comment!

Related Posts

transport layer

  • Engineering Mathematics
  • Discrete Mathematics
  • Operating System
  • Computer Networks
  • Digital Logic and Design
  • C Programming
  • Data Structures
  • Theory of Computation
  • Compiler Design
  • Computer Org and Architecture
  • Computer Network Tutorial

Basics of Computer Network

  • Basics of Computer Networking
  • Introduction to basic Networking Terminology
  • Goals of Networks
  • Basic characteristics of Computer Networks
  • Challenges of Computer Network
  • Physical Components of Computer Network

Network Hardware and Software

  • Types of Computer Networks
  • LAN Full Form
  • How to Set Up a LAN Network?
  • MAN Full Form in Computer Networking
  • MAN Full Form
  • WAN Full Form
  • Introduction of Internetworking
  • Difference between Internet, Intranet and Extranet
  • Protocol Hierarchies in Computer Network
  • Network Devices (Hub, Repeater, Bridge, Switch, Router, Gateways and Brouter)
  • Introduction of a Router
  • Introduction of Gateways
  • What is a network switch, and how does it work?

Network Topology

  • Types of Network Topology
  • Difference between Physical and Logical Topology
  • What is OSI Model? - Layers of OSI Model
  • Physical Layer in OSI Model
  • Data Link Layer
  • Session Layer in OSI model

Presentation Layer in OSI model

  • Application Layer in OSI Model
  • Protocol and Standard in Computer Networks
  • Examples of Data Link Layer Protocols
  • TCP/IP Model
  • TCP/IP Ports and Its Applications
  • What is Transmission Control Protocol (TCP)?
  • TCP 3-Way Handshake Process
  • Services and Segment structure in TCP
  • TCP Connection Establishment
  • TCP Connection Termination
  • Fast Recovery Technique For Loss Recovery in TCP
  • Difference Between OSI Model and TCP/IP Model

Medium Access Control

  • MAC Full Form
  • Channel Allocation Problem in Computer Network
  • Multiple Access Protocols in Computer Network
  • Carrier Sense Multiple Access (CSMA)
  • Collision Detection in CSMA/CD
  • Controlled Access Protocols in Computer Network

SLIDING WINDOW PROTOCOLS

  • Stop and Wait ARQ
  • Sliding Window Protocol | Set 3 (Selective Repeat)
  • Piggybacking in Computer Networks

IP Addressing

  • What is IPv4?
  • What is IPv6?
  • Introduction of Classful IP Addressing
  • Classless Addressing in IP Addressing
  • Classful Vs Classless Addressing
  • Classless Inter Domain Routing (CIDR)
  • Supernetting in Network Layer
  • Introduction To Subnetting
  • Difference between Subnetting and Supernetting
  • Types of Routing
  • Difference between Static and Dynamic Routing
  • Unicast Routing - Link State Routing
  • Distance Vector Routing (DVR) Protocol
  • Fixed and Flooding Routing algorithms
  • Introduction of Firewall in Computer Network

Congestion Control Algorithms

  • Congestion Control in Computer Networks
  • Congestion Control techniques in Computer Networks
  • Computer Network | Leaky bucket algorithm
  • TCP Congestion Control

Network Switching

  • Circuit Switching in Computer Network
  • Message switching techniques
  • Packet Switching and Delays in Computer Network
  • Differences Between Virtual Circuits and Datagram Networks

Application Layer:DNS

  • Domain Name System (DNS) in Application Layer
  • Details on DNS
  • Introduction to Electronic Mail
  • E-Mail Format
  • World Wide Web (WWW)
  • HTTP Full Form
  • Streaming Stored Video
  • What is a Content Distribution Network and how does it work?

CN Interview Quetions

  • Top 50 Networking Interview Questions (2024)
  • Top 50 TCP/IP interview questions and answers
  • Top 50 IP addressing interview questions and answers
  • Last Minute Notes - Computer Networks
  • Computer Network - Cheat Sheet
  • Network Layer
  • Transport Layer
  • Application Layer

Prerequisite : OSI Model

Introduction : Presentation Layer is the 6th layer in the Open System Interconnection (OSI) model. This layer is also known as Translation layer, as this layer serves as a data translator for the network. The data which this layer receives from the Application Layer is extracted and manipulated here as per the required format to transmit over the network. The main responsibility of this layer is to provide or define the data format and encryption. The presentation layer is also called as Syntax layer since it is responsible for maintaining the proper syntax of the data which it either receives or transmits to other layer(s).

Functions of Presentation Layer :

The presentation layer, being the 6th layer in the OSI model, performs several types of functions, which are described below-

  • Presentation layer format and encrypts data to be sent across the network.
  • This layer takes care that the data is sent in such a way that the receiver will understand the information (data) and will be able to use the data efficiently and effectively.
  • This layer manages the abstract data structures and allows high-level data structures (example- banking records), which are to be defined or exchanged.
  • This layer carries out the encryption at the transmitter and decryption at the receiver.
  • This layer carries out data compression to reduce the bandwidth of the data to be transmitted (the primary goal of data compression is to reduce the number of bits which is to be transmitted).
  • This layer is responsible for interoperability (ability of computers to exchange and make use of information) between encoding methods as different computers use different encoding methods.
  • This layer basically deals with the presentation part of the data.
  • Presentation layer, carries out the data compression (number of bits reduction while transmission), which in return improves the data throughput.
  • This layer also deals with the issues of string representation.
  • The presentation layer is also responsible for integrating all the formats into a standardized format for efficient and effective communication.
  • This layer encodes the message from the user-dependent format to the common format and vice-versa for communication between dissimilar systems.
  • This layer deals with the syntax and semantics of the messages.
  • This layer also ensures that the messages which are to be presented to the upper as well as the lower layer should be standardized as well as in an accurate format too.
  • Presentation layer is also responsible for translation, formatting, and delivery of information for processing or display.
  • This layer also performs serialization (process of translating a data structure or an object into a format that can be stored or transmitted easily).

Features of Presentation Layer in the OSI model: Presentation layer, being the 6th layer in the OSI model, plays a vital role while communication is taking place between two devices in a network.

List of features which are provided by the presentation layer are:

  • Presentation layer could apply certain sophisticated compression techniques, so fewer bytes of data are required to represent the information when it is sent over the network.
  • If two or more devices are communicating over an encrypted connection, then this presentation layer is responsible for adding encryption on the sender’s end as well as the decoding the encryption on the receiver’s end so that it can represent the application layer with unencrypted, readable data.
  • This layer formats and encrypts data to be sent over a network, providing freedom from compatibility problems.
  • This presentation layer also negotiates the Transfer Syntax.
  • This presentation layer is also responsible for compressing data it receives from the application layer before delivering it to the session layer (which is the 5th layer in the OSI model) and thus improves the speed as well as the efficiency of communication by minimizing the amount of the data to be transferred.

Working of Presentation Layer in the OSI model : Presentation layer in the OSI model, as a translator, converts the data sent by the application layer of the transmitting node into an acceptable and compatible data format based on the applicable network protocol and architecture.  Upon arrival at the receiving computer, the presentation layer translates data into an acceptable format usable by the application layer. Basically, in other words, this layer takes care of any issues occurring when transmitted data must be viewed in a format different from the original format. Being the functional part of the OSI mode, the presentation layer performs a multitude (large number of) data conversion algorithms and character translation functions. Mainly, this layer is responsible for managing two network characteristics: protocol (set of rules) and architecture.

Presentation Layer Protocols : Presentation layer being the 6th layer, but the most important layer in the OSI model performs several types of functionalities, which makes sure that data which is being transferred or received should be accurate or clear to all the devices which are there in a closed network. Presentation Layer, for performing translations or other specified functions, needs to use certain protocols which are defined below –

  • Apple Filing Protocol (AFP): Apple Filing Protocol is the proprietary network protocol (communications protocol) that offers services to macOS or the classic macOS. This is basically the network file control protocol specifically designed for Mac-based platforms.
  • Lightweight Presentation Protocol (LPP): Lightweight Presentation Protocol is that protocol which is used to provide ISO presentation services on the top of TCP/IP based protocol stacks.
  • NetWare Core Protocol (NCP): NetWare Core Protocol is the network protocol which is used to access file, print, directory, clock synchronization, messaging, remote command execution and other network service functions.
  • Network Data Representation (NDR): Network Data Representation is basically the implementation of the presentation layer in the OSI model, which provides or defines various primitive data types, constructed data types and also several types of data representations.
  • External Data Representation (XDR): External Data Representation (XDR) is the standard for the description and encoding of data. It is useful for transferring data between computer architectures and has been used to communicate data between very diverse machines. Converting from local representation to XDR is called encoding, whereas converting XDR into local representation is called decoding.
  • Secure Socket Layer (SSL): The Secure Socket Layer protocol provides security to the data that is being transferred between the web browser and the server. SSL encrypts the link between a web server and a browser, which ensures that all data passed between them remains private and free from attacks.

Please Login to comment...

Similar reads.

author

  • What are Tiktok AI Avatars?
  • Poe Introduces A Price-per-message Revenue Model For AI Bot Creators
  • Truecaller For Web Now Available For Android Users In India
  • Google Introduces New AI-powered Vids App
  • 30 OOPs Interview Questions and Answers (2024)

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

  Layer 6 Presentation Layer

De/Encryption, Encoding, String representation

The presentation layer (data presentation layer, data provision level) sets the system-dependent representation of the data (for example, ASCII, EBCDIC) into an independent form, enabling the syntactically correct data exchange between different systems. Also, functions such as data compression and encryption are guaranteed that data to be sent by the application layer of a system that can be read by the application layer of another system to the layer 6. The presentation layer. If necessary, the presentation layer acts as a translator between different data formats, by making an understandable for both systems data format, the ASN.1 (Abstract Syntax Notation One) used.

OSI Layer 6 - Presentation Layer

The presentation layer is responsible for the delivery and formatting of information to the application layer for further processing or display. It relieves the application layer of concern regarding syntactical differences in data representation within the end-user systems. An example of a presentation service would be the conversion of an EBCDIC-coded text computer file to an ASCII-coded file. The presentation layer is the lowest layer at which application programmers consider data structure and presentation, instead of simply sending data in the form of datagrams or packets between hosts. This layer deals with issues of string representation - whether they use the Pascal method (an integer length field followed by the specified amount of bytes) or the C/C++ method (null-terminated strings, e.g. "thisisastring\0"). The idea is that the application layer should be able to point at the data to be moved, and the presentation layer will deal with the rest. Serialization of complex data structures into flat byte-strings (using mechanisms such as TLV or XML) can be thought of as the key functionality of the presentation layer. Encryption is typically done at this level too, although it can be done on the application, session, transport, or network layers, each having its own advantages and disadvantages. Decryption is also handled at the presentation layer. For example, when logging on to bank account sites the presentation layer will decrypt the data as it is received.[1] Another example is representing structure, which is normally standardized at this level, often by using XML. As well as simple pieces of data, like strings, more complicated things are standardized in this layer. Two common examples are 'objects' in object-oriented programming, and the exact way that streaming video is transmitted. In many widely used applications and protocols, no distinction is made between the presentation and application layers. For example, HyperText Transfer Protocol (HTTP), generally regarded as an application-layer protocol, has presentation-layer aspects such as the ability to identify character encoding for proper conversion, which is then done in the application layer. Within the service layering semantics of the OSI network architecture, the presentation layer responds to service requests from the application layer and issues service requests to the session layer. In the OSI model: the presentation layer ensures the information that the application layer of one system sends out is readable by the application layer of another system. For example, a PC program communicates with another computer, one using extended binary coded decimal interchange code (EBCDIC) and the other using ASCII to represent the same characters. If necessary, the presentation layer might be able to translate between multiple data formats by using a common format. Wikipedia
  • Data conversion
  • Character code translation
  • Compression
  • Encryption and Decryption

The Presentation OSI Layer is usually composed of 2 sublayers that are:

CASE common application service element

Sase specific application service element, layer 7   application layer, layer 6   presentation layer, layer 5   session layer, layer 4   transport layer, layer 3   network layer, layer 2   data link layer, layer 1   physical layer.

Please Whitelist This Site? I know everyone hates ads. But please understand that I am providing premium content for free that takes hundreds of hours of time to research and write. I don't want to go to a pay-only model like some sites, but when more and more people block ads, I end up working for free. And I have a family to support, just like you. :) If you like The TCP/IP Guide, please consider the download version . It's priced very economically and you can read all of it in a convenient format without ads. If you want to use this site for free, I'd be grateful if you could add the site to the whitelist for Adblock. To do so, just open the Adblock menu and select "Disable on tcpipguide.com". Or go to the Tools menu and select "Adblock Plus Preferences...". Then click "Add Filter..." at the bottom, and add this string: "@@||tcpipguide.com^$document". Then just click OK. Thanks for your understanding! Sincerely, Charles Kozierok Author and Publisher, The TCP/IP Guide

The presentation layer is the sixth layer of the OSI Reference Model protocol stack, and second from the top. It is different from the other layers in two key respects. First, it has a much more limited and specific function than the other layers; it's actually somewhat easy to describe, hurray! Second, it is used much less often than the other layers; in many types of connections it is not required.

The name of this layer suggests its main function as well: it deals with the presentation of data. More specifically, the presentation layer is charged with taking care of any issues that might arise where data sent from one system needs to be viewed in a different way by the other system. It also takes care of any special processing that must be done to data from the time an application tries to send it until the time it is sent over the network.

Here are some of the specific types of data handling issues that the presentation layer handles:

The reason that the presentation layer is not always used in network communications is that the jobs mentioned above are simply not always needed. Compression and encryption are usually considered “optional”, and translation features are also only needed in certain circumstances. Another reason why the presentation layer is sometimes not mentioned is that its functions may be performed as part of the application layer.

The fact that the translation job done by the presentation layer isn't always needed means that it is common for it to be “skipped” by actual protocol stack implementations. This means that protocols at layer seven may talk directly with those at layer five. Once again, this is part of the reason why all of the functions of layers five through seven may be included together in the same software package, as described in the overview of layers and layer groupings .

OSI Presentation and Application Layers

Cite this chapter.

Book cover

  • Paul D. Bartoli 3  

Part of the book series: Applications of Communications Theory ((ACTH))

251 Accesses

This chapter discusses the Application and Presentation Layers of the Reference Model of Open Systems Interconnection (OSI) [1]. The Application and Presentation Layers perform functions necessary to exchange information between application processes; the Application Layer is concerned with the semantic aspects of the information exchange, while the Presentation Layer is concerned with the syntactic aspects. The ability to manage the semantic and syntactic elements of the information to be exchanged is key to ensuring that the information can be interpreted by the communicants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Unable to display preview.  Download preview PDF.

ISO 7498, “Information processing systems—Open Systems Interconnection—Basic Reference Model,” 1984. CCITT Recommendation X.200, “Reference model of open systems interconnection for CCITT applications,” 1984 (updated expected in 1988).

Google Scholar  

ISO DIS 9545, “Information processing systems—Open Systems Interconnection—Application Layer structure,” September 1988.

ISO TR 9007, “Concepts and terminology for the conceptual schema and the information base,” 1985.

ISO 8649, “Information processing systems—Open systems interconnection—Service definition for the association control service element,” 1988. ISO 8650, “Information processing systems—Open systems interconnection—Protocol specification for the association control service element,” 1988. CCITT Recommendation X.217, “Association control service definition for open systems interconnection for CCITT applications,” 1988. CCITT Recommendation X.227, “Association control protocol specification for open systems interconnection for CCITT applications,” final text December, 1987.

ISO 8571, “Information processing systems—Open systems interconnection—File transfer, access, and management,” Parts 1–4, 1988.

ISO/DIS 9804, “Information processing systems”Open systems interconnection—Service definition for commitment, concurrency, and recovery,” 1988 (text in SC 21 N 2573, March, 1988). ISO DIS 9805, “Information processing systems—Open systems interconnection—Protocol specification for commitment, concurrency, and recovery,” 1988 (text in SC 21 N 2574, March, 1988). CCITT Recommendation X.237, “Commitment, concurrency, and recovery service definition,” Draft Text, 1988. CCITT Recommendation X.247, “Commitment, concurrency, and recovery protocol specification, Draft Text, 1988.

ISO DIS 9040, “Information processing systems—Open systems interconnection—Virtual terminal service—Basic class,” 1988 (text in SC 21 N 2615, March, 1988). ISO DIS 9041, “Information processing systems—Open systems interconnection—Virtual terminal protocol—Basic class,” 1988 (text in SC 21 N 2616, March, 1988).

ISO DIS 9066–1, “Reliable transfer service”, 1988 (text in SC 18 N 1408, March, 1988). ISO DIS 9066–2, “Reliable transfer protocol specification,” 1988 (text in SC 18 N 1409). CCITT Recommendation X.218, “Reliable transfer: Model and service definition,” 1988. CCITT Recommendation X.228, “Reliable transfer: Protocol specification,” 1988.

ISO DIS 9072–1, “Remote operations service,” 1988 (text in SC 18 N 1410, March, 1988). ISO DIS 9072–2, “Remote operations protocol specification,” 1988 (text in SC 18 N 1411, March, 1988). CCITT Recommendation X.219, “Remote operations: Model, notation, and service definition,” 1988. CCITT Recommendation X.229, “Remote operations: Protocol specification,” 1988.

ISO DIS 9594, “Information processing—Open systems interconnection—The directory,” parts 1–8, 1988 (text in SC 21 N 2751 through N 2758, April, 1988). CCITT X.500, “Series recommendations on directory,” November, 1987.

ISO DIS 10021, “Information processing—Text communication—Message oriented text interchange system,” 1988 (text in SC 18 N 1487 through N 1493, May, 1988). CCITT X.400, “Series recommendations for message handling systems,” 1988.

ISO 8613/1–8, “Office document architecture and interchange format,” 1988, awaiting publication. CCITT T.400, “Series recommendations for document architecture, transfer, and manipulation,” 1988.

ISO 8824, “Information processing systems—Open systems interconnection—Specification of abstract syntax notation one (ASN.1),” 1987; and ISO 8824/PDAD 1, “Information processing systems—Open systems interconnection—Specification for ASN.1: Proposed draft Addendum 1 on ASN.1 extensions,” 1988 (final text in SC 21 N 2341 Revised, April, 1988). CCITT Recommendation X.208, “Specification of abstract syntax notation one (ASN.1),” 1988.

ISO 8822, “Information processing systems—Open systems interconnection—Connection oriented presentation service definition,” 1988. CCITT Recommendation X.216, “Presentation service definition for open systems interconnection for CCITT applications,” 1988.

ISO 8825, “Information processing—Open systems interconnection—Specification of basic encoding rules for abstract syntax notation one (ASN.1),” 1987; and ISO 8825/ PDAD 1, “Information processing systems—Open systems interconnection—Specification of basic encoding rules for ASN.1: Proposed draft addendum 1 on ASN.1 extensions,” 1988 (text in SC 21 N 2342 Revised, April, 1988). CCITT Recommendation X.209, “Specification of basic encoding rules for abstract syntax notation one (ASN.1),” 1988.

ISO 8823, “Information processing systems—Open systems interconnection—Connection oriented presentation protocol specification,” 1988. CCITT Recommendation X.226, “Presentation protocol specification for open systems interconnection for CCITT applications,” 1988.

ISO 8326, “Information processing systems—Open systems interconnection—Basic connection oriented session service definition,” 1987; and ISO 8326/AD 2, “Information processing systems—Open systems interconnection—Basic connection oriented session service definition—Addendum 2: Incorporation of unlimited user data,” 1988. ISO 8327, “Information processing systems—Open systems interconnection—Basic connection oriented session protocol specification,” 1987; and ISO 8327/AD 2, “Information processing systems—Open systems interconnection—Basic connection oriented session protocol specification—Addendum 2: Unlimited session user data protocol specification,” 1988.

CCITT Recommendation X.215, “Session service definition for open systems interconnection for CCITT applications,” 1988. CCITT Recommendation X.225, “Session protocol specification for open systems interconnection for CCITT applications,” 1988.

Download references

Author information

Authors and affiliations.

AT&T Bell Laboratories, 07733, Holmdel, New Jersey, USA

Paul D. Bartoli

You can also search for this author in PubMed   Google Scholar

Editor information

Editors and affiliations.

Unisys West Coast Research Center, Santa Monica, 90406, California, USA

Carl A. Sunshine

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Bartoli, P.D. (1989). OSI Presentation and Application Layers. In: Sunshine, C.A. (eds) Computer Network Architectures and Protocols. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0809-6_13

Download citation

DOI : https://doi.org/10.1007/978-1-4613-0809-6_13

Publisher Name : Springer, Boston, MA

Print ISBN : 978-1-4612-8093-4

Online ISBN : 978-1-4613-0809-6

eBook Packages : Springer Book Archive

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Network Encyclopedia Logo

Presentation Layer

Last Edited

What is the Presentation Layer?

Presentation Layer is the Layer 6 of the seven-layer Open Systems Interconnection (OSI) reference model . The presentation layer structures data that is passed down from the application layer into a format suitable for network transmission. This layer is responsible for data encryption, data compression, character set conversion, interpretation of graphics commands, and so on. The network redirector also functions at this layer.

Presentation Layer

Presentation Layer functions

  • Translation:  Before being transmitted, information in the form of characters and numbers should be changed to bit streams. Layer 6 is responsible for interoperability between encoding methods as different computers use different encoding methods. It translates data between the formats the network requires and the format the computer.
  • Encryption:  Encryption at the transmitter and decryption at the receiver
  • Compression:  Data compression to reduce the bandwidth of the data to be transmitted. The primary role of  data compression  is to reduce the number of bits to be transmitted. Multimedia files, such as audio and video, are bigger than text files and compression is more important.

Role of Presentation Layer in the OSI Model

This layer is not always used in network communications because its functions are not always necessary. Translation is only needed if different types of machines need to talk with each other. Encryption is optional in communication. If the information is public there is no need to encrypt and decrypt info. Compression is also optional. If files are small there is no need for compression.

Explaining Layer 6 in video

Most real-world protocol suites, such as TCP/IP , do not use separate presentation layer protocols. This layer is mostly an abstraction in real-world networking.

An example of a program that loosely adheres to layer 6 of OSI is the tool that manages the Hypertext Transfer Protocol (HTTP) — although it’s technically considered an application-layer protocol per the TCP/IP model.

However, HTTP includes presentation layer services within it. HTTP works when the requesting device forwards user requests passed to the web browser onto a web server elsewhere in the network.

It receives a return message from the web server that includes a multipurpose internet mail extensions (MIME) header. The MIME header indicates the type of file – text, video, or audio – that has been received so that an appropriate player utility can be used to present the file to the user.

In short, the presentation layer

Makes sure that data which is being transferred or received should be accurate or clear to all the devices which are there, in a closed network.

  • ensures proper formatting and delivery to and from the application layer;
  • performs data encryption; and
  • manages serialization of data objects.
  • Introduction To Computer Networks
  • Uses of Computer Networks
  • Line Configuration
  • Types of Network Topology
  • Transmission Modes
  • Transmission Mediums
  • Bounded/Guided Transmission Media
  • UnBounded/UnGuided Transmission Media
  • Types of Communication Networks
  • Connection Oriented and Connectionless Services
  • Quality of Service(QoS)
  • Network Layer
  • IGMP Protocol
  • Reference Models
  • Digital Transmission
  • Multiplexing
  • Circuit-Switched
  • Message-Switched Networks
  • Packet Switching
  • Error Correction
  • Data Link Control
  • Flow and Error
  • Simplest Protocol
  • Stop-and-Wait Protocol
  • Go-Back-N Automatic Repeat
  • Sliding Window Protocol
  • HDLC Protocol
  • Point-to-Point Protocol
  • Multiple Access in DL
  • Channelization Protocols
  • Gigabit Ethernet
  • Random Access Protocol
  • Controlled Access Protocols
  • Carrier Sense Multiple Access
  • Transport Layer
  • Telnet vs SSH
  • UDP Protocol
  • TCP - Protocol
  • Introduction to Reference Models
  • OSI Model: Physical Layer
  • OSI Model: Datalink Layer
  • OSI Model: Network Layer
  • OSI Model: Transport Layer
  • OSI Model: Session Layer
  • OSI Model: Presentation Layer
  • OSI Model: Application Layer
  • The TCP/IP Reference Model
  • Difference between OSI and TCP/IP Model
  • Key Terms - Computer Network
  • Session Layer
  • Components of Computer Networks
  • Features of Computer Network
  • Protocols and Standards
  • Connection Oriented and Connectionless
  • OSI Vs TCP/IP

Presentation Layer

  • HTTP Protocol
  • FTP Protocol
  • SMTP Protocol
  • POP Protocol
  • SNMP Protocol
  • Electronic Mail
  • MIME Protocol
  • World Wide Web
  • DNS Protocol

In this tutorial, we will be covering the Presentation layer of the OSI reference model in Computer Networks.

The presentation layer is layer-6 of the OSI reference model . This layer mainly responds to the service requests from the application layer(that is layer-7) and issues the service requests to layer-6 that is (the session layer).

This layer mainly acts as the translator of the network. Another name of the presentation layer is the Syntax layer.

The primary goal of this layer is to take care of the syntax and semantics of the information exchanged between two communicating systems. The presentation layer takes care that the data is sent in such a way that the receiver will understand the information(data) and will be able to use the data. Languages(syntax) can be different between the two communicating systems. Under this condition, the presentation layer plays a role as translator.

In order to make it possible for computers with different data representations to communicate, the data structures to be exchanged can be defined in an abstract way. The presentation layer manages these abstract data structures and allows higher-level data structures(eg: banking records), to be defined and exchanged.

presentation layer protocols examples

We can say that the presentation layer may represent or encode the data in various ways (like data compression, data encryption). But the receiving device mainly decodes or converts the encoded message into its original form.

For the same data, the sender and receiver must need to agree upon a messaging format that is commonly known as the Presentation format.

Also, the presentation layer is a part of the operating system that mainly converts the data from one presentation format to another presentation format.

Protocols used at the Presentation layer

Given below are some of the protocols used at the presentation layer:

AFP(Apple filling protocol)

Secure Socket Layer(SSL)

FTP(file transfer protocol)

Lightweight Presentation Protocol(LPP)

SSH(Secure shell)

Functions of Presentation Layer

Translation: Before being transmitted, the information in the form of characters and numbers should be changed to bitstreams. The presentation layer is responsible for interoperability between encoding methods as different computers use different encoding methods. It translates data between the formats the network requires and the format of the computer.

Encryption: It carries out encryption at the transmitter and decryption at the receiver.

Compression: It carries out data compression to reduce the bandwidth of the data to be transmitted. The primary role of Data compression is to reduce the number of bits to be 0transmitted. It is important in transmitting multimedia such as audio, video, text, etc.

Design Issues with Presentation Layer

To manage and maintain the Syntax and Semantics of the information transmitted.

Encoding data in a standard agreed-upon way. Eg: String, double, date, etc.

Perform Standard Encoding on the wire.

  • ← OSI Vs TCP/IP ← PREV
  • HTTP Protocol → NEXT →

C language

Javatpoint Logo

Computer Network

  • Operating Systems
  • Computer Fundamentals
  • Interview Q

Physical Layer

Data link layer, network layer, routing algorithm, transport layer, application layer, application protocols, network security.

Interview Questions

JavaTpoint

  • Send your Feedback to [email protected]

Help Others, Please Share

facebook

Learn Latest Tutorials

Splunk tutorial

Transact-SQL

Tumblr tutorial

Reinforcement Learning

R Programming tutorial

R Programming

RxJS tutorial

React Native

Python Design Patterns

Python Design Patterns

Python Pillow tutorial

Python Pillow

Python Turtle tutorial

Python Turtle

Keras tutorial

Preparation

Aptitude

Verbal Ability

Interview Questions

Company Questions

Trending Technologies

Artificial Intelligence

Artificial Intelligence

AWS Tutorial

Cloud Computing

Hadoop tutorial

Data Science

Angular 7 Tutorial

Machine Learning

DevOps Tutorial

B.Tech / MCA

DBMS tutorial

Data Structures

DAA tutorial

Operating System

Computer Network tutorial

Compiler Design

Computer Organization and Architecture

Computer Organization

Discrete Mathematics Tutorial

Discrete Mathematics

Ethical Hacking

Ethical Hacking

Computer Graphics Tutorial

Computer Graphics

Software Engineering

Software Engineering

html tutorial

Web Technology

Cyber Security tutorial

Cyber Security

Automata Tutorial

C Programming

C++ tutorial

Control System

Data Mining Tutorial

Data Mining

Data Warehouse Tutorial

Data Warehouse

RSS Feed

Presentation layer and Session layer of the OSI model

There are two popular networking models: the OSI layers model and the TCP/IP layers model. The presentation layer and session layer exist only in the OSI layers models. The TCP/IP layers model merges them into the application layer.

The Presentation Layer

The presentation layer is the sixth layer of the OSI Reference model. It defines how data and information is transmitted and presented to the user. It translates data and format code in such a way that it is correctly used by the application layer.

It identifies the syntaxes that different applications use and formats data using those syntaxes. For example, a web browser receives a web page from a web server in the HTML language. HTML language includes many tags and markup that have no meaning for the end user but they have special meaning for the web browser. the web browser uses the presentation layer's logic to read those syntaxes and format data in such a way the web server wants it to be present to the user.

presentation layer

On the sender device, it encapsulates and compresses data before sending it to the network to increase the speed and security of the network. On the receiver device, it de-encapsulates and decompresses data before presenting it to the user.

Examples of the presentation layer

Example standards for representing graphical information: JPEG, GIF, JPEG, and TIFF.

Example standards for representing audio information: WAV, MIDI, MP3.

Example standards for representing video information: WMV, MOV, MP4, MPEG.

Example standards for representing text information: doc, xls, txt, pdf.

Functions of the presentation layer

  • It formats and presents data and information.
  • It encrypts and compresses data before giving it to the session layer.
  • It de-encrypts and decompresses the encrypted and compressed data it receives from the session layer.

Session layer

The session layer is the fifth layer of the OSI layers model. It is responsible for initiating, establishing, managing, and terminating sessions between the local application and the remote applications.

It defines standards for three modes of communication: full duplex, half-duplex, and simplex.

duplex modes

In the full duplex mode, both devices can send and receive data simultaneously. The internet connection is an example of the full duplex mode.

In the half duplex mode, only one device can send data at a time. A telephone conversation is an example of the half-duplex mode.

In the simplex mode, only one device can send data. A radio broadcast is an example of the simplex mode.

Functions of the session layer

  • It is responsible for terminating sessions, creating checkpoints, and recovering data when sessions are interrupted.
  • It opens and maintains logical communication channels between network applications running on the local host and network applications running on the remote host.
  • If a network application uses an authentication mechanism before it opens a logical communication channel (session) with the remote host, it handles the authentication process.

Examples of the session layer

Structure Query Language (SQL), Remote Procedure Call (RPC), and Network File System (NFS) are examples of the session layer.

By ComputerNetworkingNotes Updated on 2023-10-30 05:30:01 IST

ComputerNetworkingNotes CCNA Study Guide Presentation layer and Session layer of the OSI model

We do not accept any kind of Guest Post. Except Guest post submission, for any other query (such as adverting opportunity, product advertisement, feedback, suggestion, error reporting and technical issue) or simply just say to hello mail us [email protected]

presentation layer protocols examples

  • Network Fundamentals
  • Network Cabling
  • Ethernet Protocol
  • TCP-UDP Protocol
  • IP Protocol
  • Supernetting & CIDR
  • ICMP Protocol
  • Domain Name System (DNS)
  • Spanning Tree Protocol (STP)
  • VLAN Networks
  • Network Address Translation
  • Cisco Routers
  • Cisco Switches
  • Cisco Firewalls
  • Cisco Wireless
  • Cisco CallManager-CCME
  • Cisco Data Center (Nexus/UCS)
  • Cisco Services & Technologies
  • Palo Alto Networks
  • F5 Networks
  • SASE & SD-WAN
  • Security Service Edge (SSE)
  • Web Application Vulnerability Scanners
  • VPN Services & Guides
  • Windows Servers
  • Windows Workstations (XP, 7, 8, 10, 11)
  • Linux - Unix
  • Virtualization & VM Backup
  • OpManager - Network Monitoring & Management
  • ManageEngine Firewall Analyzer

EventLog Analyzer

  • Network Protocol Analyzers
  • IP PBX - Unified Communications
  • Security Articles
  • Reviews & Interviews
  • GFI Network Security
  • OpenMosix - Linux Supercomputer
  • More Reading

Firewall.cx

All-in-one protection

presentation layer protocols examples

Free Download

Ransomware protection.

presentation layer protocols examples

Download Now!

presentation layer protocols examples

Free Download!

Get 2 vms for free.

presentation layer protocols examples

Manage your Network!

The osi model: layer 6 - presentation layer.

The Presentation Layer gets its name from its purpose: It presents data to the Application layer. It's basically a translator and provides coding and conversion functions. A successful data transfer technique is to adapt the data into a standard format before transmission. Computers are configured to receive this generically formatted data and then convert the data back into its native format for reading. By providing translation services, the Presentation layer ensures that data transferred from the Application layer of one system can be read by the Application layer of another host.

JPEG: The Joint Photographic Experts Group brings these photo standards to us.

MIDI: The Musical Intrument Digital Interface is used for digitized music.

MPEG: The Moving Pictures Experts Group's standard for the compression and coding of motion video for CD's is very popular.

QuickTime: This is for use with Machintosh or Power PC programs, it manages audio and video applications.

The last 3 layers of the OSI model are reffered to the "Upper" layers. These layers are responsible for applications communicating between hosts. None of the upper layers know anything about networking or network addresses.

There are no protocols which work specificly at the Presentation layer, but the protocols which work at the Application layer are said to work on all 3 upper layers.

Next:   The OSI Model: Layer 7 - Application Layer

Your IP address:

185.80.150.64

  • All-in-one protection for Microsoft 365

All-in-one protection for Microsoft 365

FREE Hyper-V & VMware Backup

FREE Hyper-V & VMware Backup

Wi-Fi Key Generator

Follow firewall.cx.

Please enable the javascript to submit this form

Network and Server Monitoring

Network and Server Monitoring

Recommended Downloads

  • Network Management - Monitor & Alert
  • Free Hyper-V & VMware Backup

Bandwidth Monitor

  • Patch Manager Plus

Firewall Analyzer

Cisco password crack.

Decrypt Cisco Type-7 Passwords on the fly!

Decrypt Now!

Bandwidth Monitor

Free PatchManager

Free PatchManager

Related Articles

The osi model: layer 1 - physical layer, the osi model: layer 7 - application layer, the osi model: layer 4 - transport layer, the osi model: layer 5 - session layer, the osi model: layer 2 - datalink layer.

PrepBytes Blog

ONE-STOP RESOURCE FOR EVERYTHING RELATED TO CODING

Sign in to your account

Forgot your password?

Login via OTP

We will send you an one time password on your mobile number

An OTP has been sent to your mobile number please verify it below

Register with PrepBytes

Presentation layer in osi model.

' src=

Last Updated on March 7, 2024 by Abhishek Sharma

presentation layer protocols examples

The OSI (Open Systems Interconnection) model is a conceptual framework used to understand the functions of a telecommunication or computing system. It consists of seven layers, each responsible for specific tasks. The sixth layer, known as the Presentation Layer, plays a crucial role in ensuring that data exchanged between systems is readable and usable. Let’s explore the functions and importance of the Presentation Layer in the OSI model.

What is Presentation Layer in OSI Model?

The Presentation Layer, the sixth layer of the OSI (Open Systems Interconnection) model, is responsible for ensuring that data exchanged between systems is in a format that can be interpreted and used by the receiving system. It performs various functions, including data translation, encryption, compression, and formatting, to facilitate efficient and secure communication between networked devices.

Functions of the Presentation Layer

Below are some of the functions of the Presentation Layer in OSI Model:

  • Data Translation: The Presentation Layer translates data from the format used by the application layer into a format that can be transmitted over the network. This includes encoding, compression, and encryption.
  • Data Formatting: It ensures that data is formatted according to the specifications of the application layer. This includes converting between different character sets, such as ASCII and Unicode.
  • Data Compression: The Presentation Layer compresses data to reduce the amount of bandwidth required for transmission, improving network efficiency.
  • Data Encryption: It encrypts data to ensure that it remains secure during transmission, protecting it from unauthorized access.
  • Data Syntax: The Presentation Layer defines the syntax for data representation, ensuring that both the sender and receiver understand the structure of the data being exchanged.

Importance of the Presentation Layer

Importance of Presentation Layer are:

  • Data Integrity: By ensuring that data is formatted correctly and encrypted, the Presentation Layer helps maintain the integrity of data during transmission.
  • Interoperability: The Presentation Layer enables different systems to communicate with each other by ensuring that data is translated into a common format that both systems understand.
  • Efficiency: Data compression reduces the amount of data that needs to be transmitted, improving network efficiency and reducing bandwidth requirements.
  • Security: Encryption provided by the Presentation Layer ensures that data remains secure and protected from unauthorized access.

Conclusion The Presentation Layer is a crucial component of the OSI model, responsible for ensuring that data exchanged between systems is in a format that can be understood and used. By performing functions such as data translation, formatting, compression, and encryption, the Presentation Layer plays a vital role in maintaining data integrity, facilitating interoperability, and ensuring the security of data during transmission.

FAQs related to Presentation Layer in OSI Model

Here are some of the FAQs related to Presentation Layer in OSI Model:

Q1: What is the role of the Presentation Layer in the OSI model? The Presentation Layer ensures that data exchanged between systems is in a usable format, performing functions such as data translation, encryption, compression, and formatting.

Q2: How does the Presentation Layer ensure data security? The Presentation Layer encrypts data before transmission, making it unreadable to unauthorized parties, thus ensuring data security.

Q3: Why is data compression important in the Presentation Layer? Data compression reduces the size of data packets, leading to faster transmission speeds and optimized bandwidth usage, which is crucial in high-traffic networks.

Q4: How does the Presentation Layer facilitate interoperability between systems? By translating data into a common format that both sender and receiver understand, the Presentation Layer enables different systems to communicate with each other seamlessly.

Q5: Can the Presentation Layer be bypassed in data transmission? While it is possible to bypass the Presentation Layer in some cases, doing so can lead to compatibility issues between systems and is not recommended.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Linked List
  • Segment Tree
  • Backtracking
  • Dynamic Programming
  • Greedy Algorithm
  • Operating System
  • Company Placement
  • Interview Tips
  • General Interview Questions
  • Data Structure
  • Other Topics
  • Computational Geometry
  • Game Theory

Related Post

Quantum cryptography, introduction to sniffers, multiplexing and demultiplexing in transport layer, transport layer responsibilities, tacacs+ and radius.

IMAGES

  1. Presentation Layer

    presentation layer protocols examples

  2. Presentation Layer of OSI Model (Layer-6)

    presentation layer protocols examples

  3. Presentation Layer OSI Model

    presentation layer protocols examples

  4. Definition OSI Layer along with usability and how to work OSI Layer

    presentation layer protocols examples

  5. Presentation Layer Protocols

    presentation layer protocols examples

  6. Network Protocol Layers: A Powerful Model for Networked Services

    presentation layer protocols examples

VIDEO

  1. Lec-2.9: Application Layer

  2. 06_Transport Layer_2

  3. Presentation Layer Details OSI model in Hindi With Free Class Notes Presentation Layer Functionality

  4. Network Architecture: Layers, Protocol, Interface, Peers, Headers

  5. Network Protocols + Examples

  6. LEC02| Computer Networks |OSI REFERANCE MODEL Part-I by V. S. Pavan Kumar

COMMENTS

  1. Presentation Layer: Protocols, Examples, Services

    Example of Presentation Layer Protocols: Here, we will discuss all examples of presentation layer protocols; below explain each one - Multipurpose Internet Mail Extensions (MIME) : MIME protocol was introduced by Bell Communications in 1991, and it is an internet standard that provides scalable capable of email for attaching of images, sounds ...

  2. Presentation Layer in OSI model

    Prerequisite : OSI Model. Introduction : Presentation Layer is the 6th layer in the Open System Interconnection (OSI) model. This layer is also known as Translation layer, as this layer serves as a data translator for the network. The data which this layer receives from the Application Layer is extracted and manipulated here as per the required ...

  3. Presentation layer

    For example, HyperText Transfer Protocol (HTTP), generally regarded as an application-layer protocol, has presentation-layer aspects such as the ability to identify character encoding for proper conversion, which is then done in the application layer. The presentation layer is the lowest layer at which application programmers consider data ...

  4. Presentation Layer

    In many widely used applications and protocols, no distinction is made between the presentation and application layers. For example, HyperText Transfer Protocol (HTTP), generally regarded as an application-layer protocol, has presentation-layer aspects such as the ability to identify character encoding for proper conversion, which is then done ...

  5. OSI Seven Layers Model Explained with Examples

    Conversion, compression, and encryption are the main functions that the Presentation layer performs on the sending computer while on the receiving computer these functions are reconversion, decompression, and decryption. ASCII, BMP, GIF, JPEG, WAV, AVI, and MPEG are examples of standards and protocols that work in this layer.

  6. Presentation Layer of the OSI Model

    The presentation layer is a very important layer because it handles encryption, decryption, and the conversion of complex data into flat-byte strings, a format that is easily transmittable. The ...

  7. What is presentation layer?

    The presentation layer is located at Layer 6 of the OSI model. The tool that manages Hypertext Transfer Protocol ( HTTP) is an example of a program that loosely adheres to the presentation layer of OSI. Although it's technically considered an application-layer protocol per the TCP/IP model, HTTP includes presentation layer services within it.

  8. The TCP/IP Guide

    For example, one of the most popular encryption schemes that is usually associated with the presentation layer is the Secure Sockets Layer (SSL) protocol. Not all encryption is done at layer 6, however; some encryption is often done at lower layers in the protocol stack, in technologies such as IPSec. Presentation Layer Role in the OSI Model

  9. Presentation Layer

    The presentation layer translates information in a way that the application layer understands. Likewise, this layer translates information from the application layer to the session layer. Some examples of presentation layer protocols are SSL, HTTP/ HTML (agent), FTP (server), AppleTalk Filing Protocol,Telnet, and so on.

  10. PDF 13 OSI Presentation and Application Layers

    Presentation Layer is concerned with the syntactic aspects. The ability to manage the semantic and syntactic elements of the information to be ... For example, suppose that the enterprise of concern is an airline and ... Invocations communicate using OSI Application Layer protocols. In the OSI environment, communication between AP Invocations ...

  11. Presentation Layer

    Layer 6 OSI Model. An example of a program that loosely adheres to layer 6 of OSI is the tool that manages the Hypertext Transfer Protocol (HTTP) — although it's technically considered an application-layer protocol per the TCP/IP model. However, HTTP includes presentation layer services within it.

  12. Presentation Layer

    The presentation layer manages these abstract data structures and allows higher-level data structures (eg: banking records), to be defined and exchanged. We can say that the presentation layer may represent or encode the data in various ways (like data compression, data encryption). But the receiving device mainly decodes or converts the ...

  13. A Guide to the Presentation Layer

    The presentation layer is the sixth layer in the OSI model. Known as a translator, the presentation layer converts data into an accurate, well-defined, standard format after it receives it from the application layer. The converted format varies, however, based on the type of data received. Some formats include:

  14. Presentation Layer of OSI Model (Layer-6)

    Presentation Layer is responsible for representation & formatting of data for session Layer in encapsulation process. It is the 6th Layer in the seven layer OSI Model after Session Layer. Presentation layer serves like a translator & takes care that the data is sent in such a way that the receiver will understand the information or data and will be able to use the data.

  15. What is the presentation layer?

    The presentation layer is the sixth layer of the OSI model. It is primarily used to convert different file formats between the sender and the receiver. The OSI model is a reference model that is used to define communication standards between two devices within a network. The development of this standard began in the 1970s and it was first ...

  16. Presentation Layer in OSI Model

    Independent Computing Architecture (ICA): It is a presentation layer protocol in the OSI model, which was formed by Citrix Systems. It is used for transferring data from server to client. It is a very thin protocol as it does not require much overhead in order to transmit data from the server over to the client. It is well-optimized for the WAN.

  17. Presentation layer and Session layer of the OSI model

    The presentation layer is the sixth layer of the OSI Reference model. It defines how data and information is transmitted and presented to the user. It translates data and format code in such a way that it is correctly used by the application layer. It identifies the syntaxes that different applications use and formats data using those syntaxes.

  18. OSI model

    I think that presentation layer protocols define the format of data. This means protocols like XML or ASN.1. ... In other words, the layer "presents" data for the application or the network. A good example of this is encryption and decryption of data for secure transmission - this happens at Layer 6. Session Layer When two devices ...

  19. What is Presentation Layer in the OSI Model?

    The Presentation Layer, situated at Layer 6 of the OSI model, acts as an intermediary between the Application Layer (Layer 7) and the Session Layer (Layer 5). Its primary function is to ensure ...

  20. The OSI Model: Layer 6

    By providing translation services, the Presentation layer ensures that data transferred from the Application layer of one system can be read by the Application layer of another host. The OSI has protocol standards that define how standard data should be formatted. Tasks like data compression, decompression, encryption and decryption are ...

  21. Session And Presentation Layer Protocol Tutorial With Example

    Presentation Layer Protocol. Presentation layer protocol is the 6th layer of the OSI model. This is responsible for presenting the data to the application layer in an accurate, well defined and standardised format. It is sometimes called the Syntax Layer. The main responsibilities of the presentation layer protocol are:

  22. Presentation Layer in OSI Model

    The Presentation Layer is a crucial component of the OSI model, responsible for ensuring that data exchanged between systems is in a format that can be understood and used. By performing functions such as data translation, formatting, compression, and encryption, the Presentation Layer plays a vital role in maintaining data integrity ...