100+ Great Chemistry Research Topics

image

Table of contents

  • 1 5 Tips for Writing Chemistry Research Papers
  • 2 Chemical Engineering Research Topics
  • 3 Organic Сhemistry Research Topics
  • 4 Іnorganic Сhemistry Research Topics
  • 5 Biomolecular Сhemistry Research Topics
  • 6 Analytical Chemistry Research Topics
  • 7 Computational Chemistry Research Topics
  • 8 Physical Chemistry Research Topics
  • 9 Innovative Chemistry Research Topics
  • 10 Environmental Chemistry Research Topics
  • 11 Green Chemistry Research Topics
  • 12.1 Conclusion

Do you need a topic for your chemistry research paper? Are you unsure of where to start? Don’t worry – we’re here to help. In this post, we’ll go over a series of the best chemistry research paper topics as well as Tips for Writing Chemistry Research Papers on different topics. By the time you finish reading this post, you’ll have plenty of ideas to get started on your next research project!

There are many different subfields of chemistry, so it can be tough to find interesting chemistry topics to write about. If you’re struggling to narrow down your topic, we’ll go over lists of topics in multiple fields of study.

Doing research is important to help scientists learn more about the world around us. By researching different compounds and elements, we can learn more about how they interact with one another and how they can be used to create new products or improve existing ones.

There are many different topics that you can choose to research in chemistry. Here are just a few examples:

  • The history of chemistry and how it has evolved over time
  • How different chemicals react with one another
  • How to create new compounds or improve existing ones
  • The role of chemistry in the environment
  • The health effects of different chemicals

5 Tips for Writing Chemistry Research Papers

Once you have chosen a topic for your research paper , it is important to follow some tips to ensure that your paper is well-written and accurate. Here are a few tips to get you started:

  • Start by doing some background research on your topic. This will help you understand the basics of the topic and give you a good foundation to build your paper on.
  • Make sure to cite all of the sources that you use in your paper. This will help to show where you got your information and will also help to add credibility to your work.
  • Be sure to proofread your paper before you submit it. This will ensure that there are no errors and that your paper is clear and concise.
  • Get help from a tutor or friend if you are struggling with your paper. They may be able to offer helpful advice or feedback.
  • Take your time when writing your research paper . This is not a race, and it is important to make sure that you do a good job on your research.

By following these tips, you can be sure that your chemistry research paper will be a success! So what are you waiting for? Let’s go over some of the best research paper topics out there.

Chemical Engineering Research Topics

Chemical Engineering is a branch of engineering that deals with the design and application of chemical processes. If you’re wondering how to choose a paper topic, here are some ideas to inspire you:

  • How to create new alloy compounds or improve existing ones
  • The health effects of the food industry chemicals
  • Chemical engineering and sustainable development
  • The future of chemical engineering
  • Chemical engineering and the food industry
  • Chemical engineering and the pharmaceutical industry
  • Chemical engineering and the cosmetics industry
  • Chemical engineering and the petrochemical industry
  • Biocompatible materials for drug delivery systems
  • Membrane technology in water treatment
  • Development of synthetic fibers for industrial use

These are just a few examples – there are many more possibilities out there! So get started on your research today. Who knows what you might discover!

know_shortcode

Organic Сhemistry Research Topics

Organic chemistry is the study of carbon-containing molecules. There are many different organic chemistry research topics that a student could choose to focus on and here are just a few examples of possible research projects in organic chemistry:

  • Investigating new methods for synthesizing chiral molecules
  • Studying the structure and reactivity of carbon nanotubes
  • Investigating metal complexes with organometallic ligands
  • Designing benzene derivatives with improved thermal stability
  • Exploring new ways to control the stereochemistry of chemical reactions
  • Studying the role of enzymes in organic synthesis
  • Investigating new strategies for combating drug resistance
  • Developing new methods for detecting explosives residues
  • Studying the photochemistry of organic molecules
  • Studying the behavior of organometallic compounds in biological systems
  • Synthetic routes for biodegradable plastics
  • Catalysis in organic synthesis
  • Development of non-toxic solvents

Іnorganic Сhemistry Research Topics

Inorganic Chemistry is the study of the chemistry of materials that do not contain carbon. Unlike other chemistry research topics, these include elements such as metals, minerals, and inorganic compounds. If you are looking for inorganic chemistry research topics on inorganic chemistry, here are some ideas to get you started:

  • How different metals react with one another
  • How to create new alloys or improve existing ones
  • The role of inorganic chemistry in the environment
  • Rare earth elements and their applications in electronics
  • Inorganic polymers in construction materials
  • Photoluminescent materials for energy conversion
  • Inorganic chemistry and sustainable development
  • The future of inorganic chemistry
  • Inorganic chemistry and the food industry
  • Inorganic chemistry and the pharmaceutical industry
  • Atomic structure progressive scale grading
  • Inorganiс Сhemistry and the cosmetics industry

more_shortcode

Biomolecular Сhemistry Research Topics

Biomolecular chemistry is the study of molecules that are important for life. These molecules can be found in all living things, from tiny bacteria to the largest animals. Researchers who work in this field use a variety of techniques to learn more about how these molecules function and how they interact with each other.

If you are looking for essential biomolecular chemistry research topics, here are some ideas to get you started:

  • The structure and function of DNA
  • Lipidomics and its applications in disease diagnostics
  • The structure and function of proteins
  • The role of carbohydrates in the body
  • The role of lipids in the body
  • How enzymes work
  • Protein engineering for therapeutic applications
  • The role of biochemistry in heart disease
  • Cyanides and their effect on the body
  • The role of biochemistry in cancer treatment
  • The role of biochemistry in Parkison’s disease treatment
  • The role of biochemistry in the immune system
  • Carbohydrate-based vaccines

The possibilities are endless for someone willing to dedicate some time to research.

Analytical Chemistry Research Topics

Analytical Chemistry is a type of chemistry that helps scientists figure out what something is made of. This can be done through a variety of methods, such as spectroscopy or chromatography. If you are looking for research topics, here are some ideas to get you started:

  • How food chemicals react with one another
  • Mass spectrometry
  • Microplastics detection in marine environments
  • Development of sensors for heavy metal detection in water
  • Analytical aspects of gas and liquid chromatography
  • Analytical chemistry and sustainable development
  • Atomic absorption spectroscopy methods and best practices
  • Analytical chemistry and the pharmaceutical industry in Ibuprofen consumption
  • Analytical chemistry and the cosmetics industry in UV protectors
  • High-throughput screening methods in pharmaceutical analysis
  • Dispersive X-ray analysis of damaged tissues

Analytical chemistry is considered by many a complex science and there is a lot yet to be discovered in the field.

more_shortcode

Computational Chemistry Research Topics

Computational chemistry is a way to use computers to help chemists understand chemical reactions. This can be done by simulating reactions or by designing new molecules. If you are looking for essential chemistry research topics in computational chemistry, here are some ideas to get you started:

  • Molecular mechanics simulation
  • Machine learning applications in predicting molecular properties
  • Reaction rates of complex chemical reactions
  • Designing new molecules: how can simulation help
  • The role of computers in the study of quantum mechanics
  • How to use computers to predict chemical reactions
  • Using computers to understand organic chemistry
  • The future of computational Chemistry in organic reactions
  • The impacts of simulation on the development of new medications
  • Combustion reaction simulation impact on engine development
  • Quantum-chemistry simulation review
  • Simulation of protein folding and misfolding in diseases
  • Development of algorithms for chemical synthesis planning
  • Applications of Metal-Organic Frameworks in water sequestration and catalysis

Computers are cutting-edge technology in chemical research and this relatively new field of study has a ton yet to be explored.

Physical Chemistry Research Topics

Physical chemistry is the study of how matter behaves. It looks at the physical and chemical properties of atoms and molecules and how they interact with each other. If you are looking for physical chemistry research topics, here are some ideas to get you started:

  • Standardization of pH scales
  • Structure of atom on a quantum scale
  • Bonding across atoms and molecules
  • The effect of temperature on chemical reactions
  • The role of light in in-body chemical reactions
  • Chemical kinetics
  • Molecular dynamics in confined spaces
  • Quantum computing for solving chemical problems
  • Studies on non-Newtonian fluids in industrial processes
  • Surface tension and its effects on mixtures
  • The role of pressure in chemical reactions
  • Rates of diffusion in gases and liquids
  • The role of entropy in chemical reactions

Here are just a few samples, but there are plenty more options! Start your research right now!

Innovative Chemistry Research Topics

Innovative chemistry is all about coming up with new ideas and ways to do things. This can be anything from creating new materials to finding new ways to make existing products. If you are looking for ground-breaking chemistry research topics, here are some ideas to get you started:

  • Amino acids side chain effects in protein folding
  • Chemistry in the production of nanomaterials
  • The role of enzymes in chemical reactions
  • Photocatalysis in 3D printing
  • Avoiding pesticides in agriculture
  • Combining chemical and biological processes
  • Gene modification in medicinal chemistry
  • The role of quantum mechanics in chemical reactions
  • Astrochemical research on extraterrestrial molecules
  • Spectroscopy signatures of pressurized organic components
  • Development of smart materials with responsive properties
  • Chemistry in space: studying chemical reactions in microgravity
  • Utilization of CO2 in chemical synthesis
  • Use of black soldier fly carcasses for bioplastic production using extracted chitin
  • Bioorthogonal chemistry for molecule synthesis inside living systems

If you need a hand, there are several sites that also offer research papers for sale and can be a great asset as you work to create your own research papers.

Whatever route you decide to take, good luck! And remember – the sky’s the limit when it comes to research! So get started today and see where your studies may take you. Who knows, you might just make a breakthrough discovery!

Environmental Chemistry Research Topics

Environmental Chemistry is the study of how chemicals interact with the environment. This can include anything from the air we breathe to the water we drink. If you are looking for environmental chemistry research topics, here are some ideas to get you started:

  • Plastic effects on ocean life
  • Urban ecology
  • The role of carbon in climate change
  • Air pollution and its effects
  • Water pollution and its effects
  • Chemicals in food and their effect on the body
  • The effect of chemicals on plant life
  • Earth temperature prediction models
  • Effects of pharmaceuticals in aquatic environments
  • Atmospheric chemistry and urban air quality
  • Bioremediation techniques for oil spill cleanup
  • Regulatory and environmental impact of Per- and Polyfluoroalkyl (PFA) substances
  • Comparison of chemical regulation impacts like PFA with historical cases such as lead in fuel

A lot of research on the environment is being conducted at the moment because the environment is in danger. There are a lot of environmental problems that need to be solved, and research is the key to solving them.

Green Chemistry Research Topics

Green chemistry is the study of how to make products and processes that are environmentally friendly. This can include anything from finding new ways to recycle materials to developing new products that are biodegradable. If you are looking for green chemistry research topics, here are some ideas to get you started:

  • Recycling and reuse of materials
  • Developing biodegradable materials
  • Improving existing recycling processes
  • Green chemistry and sustainable development
  • The future of green chemistry
  • Green chemistry and the food industry
  • Lifecycle assessment of chemical processes
  • Green chemistry and the pharmaceutical industry
  • Development of catalysts for green chemistry
  • Green chemistry and the cosmetics industry
  • Alternative energy sources for chemical synthesis

A more environmentally friendly world is something we all aspire for and a lot of research has been conducted on how we can achieve this, making this one of the most promising areas of study. The results have been varied, but there are a few key things we can do to make a difference.

Controversial Chemistry Research Topics

Controversial chemistry is all about hot-button topics that people are passionate about. This can include anything from the use of chemicals in warfare to the health effects of different chemicals. If you are looking for controversial topics to write about , here are some ideas to get you started:

  • The use of chemicals in warfare
  • Gene modification in human babies
  • Bioengineering
  • How fast food chemicals affect the human brain
  • The role of the government in regulating chemicals
  • Evolution of cigarette chemicals over time
  • Chemical effects of CBD oils
  • Ethical issues in genetic modification of organisms
  • Nuclear energy: risks and benefits
  • Use of chemicals in electronic waste recycling
  • Antidepressant chemical reactions
  • Synthetic molecule replication methods
  • Gene analysis

Controversial research papers often appear in the media before it has been peer-reviewed and published in a scientific journal. The reason for this is that the media is interested in stories that are new, exciting, and generate a lot of debate.

Chemistry is an incredibly diverse and interesting field, with many controversial topics to write about. If you are looking for a research topic, consider the examples listed in this article. With a little bit of effort, you are sure to find a topic that is both interesting and within your skillset.

In order to be a good researcher, it is important to be able to think critically and solve problems. However, innovation in chemistry research can be challenging. When thinking about how to innovate, it is important to consider both the practical and theoretical aspects of your research. Additionally, try to build on the work of others in order to create something new and unique. With a little bit of effort, you are sure to be able to find a topic that is both interesting and within your skillset.

Happy writing!

Readers also enjoyed

Exploring Cutting-Edge Trends: Engineering Research Paper Topics

WHY WAIT? PLACE AN ORDER RIGHT NOW!

Just fill out the form, press the button, and have no worries!

We use cookies to give you the best experience possible. By continuing we’ll assume you board with our cookie policy.

research project chemistry

StatAnalytica

201+ Chemistry Project Topics [Updated]

chemistry project topics

Chemistry, often hailed as the “central science,” plays a pivotal role in understanding the world around us. From the composition of substances to the reactions that transform them, chemistry influences nearly every aspect of our lives. One fascinating way to delve deeper into this field is through chemistry projects. These projects offer a hands-on approach to learning, allowing students and enthusiasts alike to explore various concepts and phenomena. In this blog, we’ll journey through a diverse array of chemistry project topics, offering insights into each area’s significance and potential for exploration.

How To Select Relevant Chemistry Project Topics?

Table of Contents

Selecting relevant chemistry project topics requires careful consideration of several factors to ensure that the chosen topic aligns with your interests, goals, and resources. Here’s a step-by-step guide to help you select the most suitable chemistry project topic:

  • Identify Your Interests: Consider your interests within the broad field of chemistry. Are you fascinated by organic synthesis, environmental chemistry, biochemistry, or another sub-discipline? Choosing a topic that aligns with your interests will keep you motivated throughout the project.
  • Assess Your Knowledge and Skills: Evaluate your current knowledge and skills in chemistry. Choose a topic that challenges you without being too overwhelming. If you’re a beginner, opt for a project that allows you to build upon your existing knowledge while learning new concepts.
  • Consider Available Resources: Take stock of the resources available to you, including laboratory equipment, chemicals, reference materials, and access to mentors or experts. Select a project that can be feasibly completed with the resources at your disposal.
  • Review Literature and Current Trends: Conduct a literature review to explore recent advancements, emerging trends, and unresolved questions in your chosen area of interest. This will help you identify gaps in knowledge or areas where further research is needed, guiding your selection of a relevant project topic.
  • Define Your Objectives and Goals: Clearly define your objectives and goals for the project. Determine what you aim to accomplish and what outcomes you hope to achieve. Your project topic should align with these objectives and contribute to fulfilling your academic or personal goals.
  • Consult with Mentors or Advisors: Seek guidance from mentors, advisors, or faculty members who can provide insights and suggestions based on their expertise. Discuss potential project topics with them and solicit their feedback to ensure that your chosen topic is relevant and feasible.
  • Brainstorm and Narrow Down Options: Brainstorm a list of potential project topics based on your interests, knowledge, resources, and goals. Narrow down your options by considering factors such as feasibility, novelty, and potential impact. Choose a topic that excites you and has the potential to make a meaningful contribution to the field of chemistry.
  • Refine Your Topic and Formulate a Research Plan: Once you’ve selected a topic, refine it further by clearly defining your research question or hypothesis. Develop a research plan outlining the specific objectives, methods, and timeline for your project. Be prepared to adapt and refine your plan as you progress with your research.

By following these steps, you can select relevant chemistry project topics that align with your interests, goals, and resources, setting the stage for a successful and rewarding research experience.

201+ Chemistry Project Topics: Beginners To Advanced

Organic chemistry projects.

  • Synthesis and characterization of aspirin.
  • Extraction and analysis of caffeine from tea leaves.
  • Isolation and identification of natural dyes from plants.
  • Synthesis of biodiesel from vegetable oil.
  • Investigating the acidity of fruit juices using titration.
  • Synthesis of esters for fragrance applications.
  • Preparation of soap from vegetable oils.
  • Studying the effect of catalysts on organic reactions.
  • Analysis of essential oils from aromatic plants.
  • Synthesis and purification of acetaminophen.
  • Investigating the properties of polymers.
  • Extraction of DNA from fruits or vegetables.
  • Synthesis of nylon-6,6.
  • Investigating the effects of different solvents on crystallization.
  • Studying the reactions of carbohydrates.
  • Synthesis of biodegradable plastics.
  • Analysis of food additives using chromatography.
  • Investigating the process of fermentation.
  • Synthesis and characterization of bioderived materials.
  • Studying the properties of antioxidants in foods.

Inorganic Chemistry Projects

  • Synthesis and characterization of metal oxides.
  • Investigating the properties of transition metal complexes.
  • Preparation of metal nanoparticles and their applications.
  • Studying the formation and properties of zeolites.
  • Synthesis of coordination compounds.
  • Investigating the redox properties of metal ions.
  • Preparation and characterization of metal alloys.
  • Studying the properties of rare earth elements.
  • Synthesis of metal-organic frameworks (MOFs).
  • Investigating the catalytic properties of metal nanoparticles.
  • Preparation and properties of superconductors.
  • Synthesis of semiconductor materials.
  • Investigating the properties of carbon allotropes (e.g., graphite, diamond).
  • Preparation and characterization of magnetic materials.
  • Studying the properties of chalcogenides.
  • Synthesis of nanocomposites for catalytic applications.
  • Investigating the properties of perovskite materials.
  • Preparation and characterization of phosphors.
  • Studying the properties of metal halides.
  • Synthesis of metal carbonyl complexes.

Analytical Chemistry Projects

  • Development of a method for heavy metal detection in water samples.
  • Analysis of food preservatives using spectroscopic techniques.
  • Determination of vitamin C content in fruit juices.
  • Quantification of caffeine in beverages using chromatography.
  • Development of a method for pesticide analysis in fruits and vegetables.
  • Analysis of air pollutants using gas chromatography.
  • Determination of pH in household products.
  • Quantitative analysis of alcohol content in beverages.
  • Development of a method for drug analysis in pharmaceutical formulations.
  • Analysis of mineral content in water samples.
  • Determination of total dissolved solids (TDS) in water samples.
  • Quantification of sugar content in soft drinks.
  • Development of a method for forensic analysis of trace evidence.
  • Analysis of heavy metals in soil samples.
  • Determination of acidity in vinegar samples.
  • Quantitative analysis of proteins in biological samples.
  • Development of a method for antioxidant analysis in food samples.
  • Analysis of volatile organic compounds (VOCs) in indoor air.
  • Determination of chlorophyll content in plant samples.
  • Quantification of nicotine in tobacco products.

Physical Chemistry Projects

  • Investigation of reaction kinetics using spectrophotometry.
  • Study of gas laws through Boyle’s and Charles’s experiments.
  • Determination of the heat of neutralization using calorimetry.
  • Investigation of solubility equilibria using conductivity measurements.
  • Study of colligative properties through freezing point depression.
  • Determination of molecular weight using vapor pressure measurements.
  • Investigation of electrochemical cells and their applications.
  • Study of phase transitions using differential scanning calorimetry (DSC).
  • Determination of rate constants using the method of initial rates.
  • Investigation of adsorption phenomena using surface area measurements.
  • Study of the behavior of ideal and non-ideal gases.
  • Determination of activation energy using the Arrhenius equation.
  • Investigation of chemical equilibria using Le Chatelier’s principle.
  • Study of reaction mechanisms using isotopic labeling techniques.
  • Determination of the heat capacity of solids using calorimetry.
  • Investigation of diffusion and osmosis phenomena.
  • Study of molecular spectroscopy using UV-Vis spectroscopy.
  • Determination of reaction enthalpy using Hess’s law.
  • Investigation of acid-base titrations and pH indicators.
  • Study of reaction rates using temperature-dependent kinetics.

Biochemistry Projects

  • Isolation and characterization of enzymes from biological sources.
  • Study of enzyme kinetics using spectrophotometry.
  • Investigation of metabolic pathways using biochemical assays.
  • Study of protein structure and function using SDS-PAGE.
  • Analysis of nucleic acids using gel electrophoresis.
  • Investigation of cellular respiration using respirometry.
  • Study of photosynthesis using chlorophyll fluorescence.
  • Analysis of biomolecules using mass spectrometry.
  • Investigation of DNA replication using PCR.
  • Study of gene expression using reporter assays.
  • Analysis of protein-protein interactions using co-immunoprecipitation.
  • Investigation of membrane transport using permeability assays.
  • Study of signal transduction pathways using ELISA.
  • Analysis of enzyme inhibition using kinetic assays.
  • Investigation of DNA damage using comet assays.
  • Study of protein folding using circular dichroism spectroscopy.
  • Analysis of cell viability using MTT assays.
  • Investigation of apoptosis using flow cytometry.
  • Study of protein purification using chromatography techniques.
  • Analysis of lipid metabolism using TLC.

Environmental Chemistry Projects

  • Analysis of heavy metal contamination in urban soils.
  • Study of water quality parameters in local streams.
  • Investigation of air pollution sources using atmospheric sampling.
  • Study of the effects of acid rain on aquatic ecosystems.
  • Analysis of microplastics in marine environments.
  • Investigation of nutrient pollution in freshwater systems.
  • Study of pesticide residues in agricultural soils.
  • Analysis of landfill leachate contaminants.
  • Investigation of emerging contaminants in drinking water.
  • Study of oil spill remediation techniques.
  • Analysis of pharmaceuticals in wastewater treatment plants.
  • Investigation of the effects of climate change on soil microbiota.
  • Study of ozone depletion in the stratosphere.
  • Analysis of indoor air pollutants in residential homes.
  • Investigation of eutrophication in freshwater lakes.
  • Study of bioaccumulation and biomagnification in food chains.
  • Analysis of heavy metal uptake in aquatic plants.
  • Investigation of the effects of deforestation on soil erosion.
  • Study of greenhouse gas emissions from agricultural activities.
  • Analysis of pollutants in urban stormwater runoff.

Interdisciplinary Chemistry Projects

  • Development of nanomaterials for drug delivery applications.
  • Study of the chemistry of art conservation and restoration.
  • Investigation of the role of chemistry in renewable energy technologies.
  • Study of the chemistry of food preservation techniques.
  • Analysis of chemical communication in ecological systems.
  • Investigation of the chemistry of brewing and fermentation.
  • Study of the chemistry of cosmetics and personal care products.
  • Analysis of the chemistry of natural and synthetic dyes.
  • Investigation of the chemistry of perfume formulation.
  • Study of the chemistry of materials science and engineering.
  • Analysis of the chemistry of medicinal plants and herbal remedies.
  • Investigation of the chemistry of wine production and aging.
  • Study of the chemistry of biodegradable plastics.
  • Analysis of the chemistry of flavor compounds in foods.
  • Investigation of the chemistry of natural products and pharmaceuticals.
  • Study of the chemistry of soil fertility and nutrient cycling.
  • Analysis of the chemistry of water treatment technologies.
  • Investigation of the chemistry of alternative fuels.
  • Study of the chemistry of insecticides and pest control.
  • Analysis of the chemistry of nanotechnology applications.

Advanced Chemistry Projects

  • Synthesis and characterization of novel organic frameworks.
  • Investigation of reaction mechanisms using computational chemistry.
  • Study of advanced spectroscopic techniques for molecular analysis.
  • Analysis of chemical kinetics using ultrafast laser spectroscopy.
  • Investigation of catalytic reactions using surface science techniques.
  • Study of quantum chemistry principles and applications.
  • Analysis of supramolecular assemblies and host-guest interactions.
  • Investigation of molecular modeling and simulation methods.
  • Study of advanced materials for energy storage and conversion.
  • Analysis of chemical dynamics and reaction kinetics.
  • Investigation of organometallic catalysis for organic synthesis.
  • Study of advanced techniques in NMR spectroscopy.
  • Analysis of photochemical reactions and photophysics.
  • Investigation of electron transfer processes in biological systems .
  • Study of theoretical approaches to chemical bonding.
  • Analysis of advanced electrochemical techniques.
  • Investigation of non-covalent interactions in molecular recognition.
  • Study of advanced techniques in mass spectrometry.
  • Analysis of quantum dots and their applications in nanotechnology.
  • Investigation of chemical sensors and biosensors.

Chemistry Education Projects

  • Development of interactive chemistry teaching modules.
  • Investigation of inquiry-based learning approaches in chemistry education.
  • Study of the use of multimedia resources in chemistry instruction.
  • Analysis of student misconceptions in chemistry learning.
  • Investigation of the effectiveness of laboratory experiments in teaching chemistry concepts.
  • Study of collaborative learning strategies in chemistry education.
  • Analysis of the integration of technology in chemistry classrooms.
  • Investigation of the role of assessment in promoting conceptual understanding in chemistry.
  • Study of the impact of hands-on activities on student engagement in chemistry.
  • Analysis of the use of real-world applications to enhance chemistry learning.
  • Investigation of the implementation of flipped classroom models in chemistry education.
  • Study of the development of critical thinking skills in chemistry students.
  • Analysis of the role of feedback in improving student performance in chemistry.
  • Investigation of the use of peer teaching and tutoring in chemistry education.
  • Study of the incorporation of environmental chemistry concepts in the curriculum.
  • Analysis of the influence of classroom climate on student motivation in chemistry.
  • Investigation of the role of metacognition in chemistry problem-solving.
  • Study of the use of concept maps and graphic organizers in chemistry instruction.
  • Analysis of the impact of teacher professional development on student achievement in chemistry.
  • Investigation of the use of authentic assessments in chemistry education.

Chemistry Outreach Projects

  • Development of chemistry demonstration shows for public outreach events.
  • Investigation of community-based science education programs in chemistry.
  • Study of chemistry-themed science fairs and competitions.
  • Analysis of chemistry outreach activities in underserved communities.
  • Investigation of the role of science communication in promoting chemistry awareness.
  • Study of chemistry-themed podcasts and educational videos.
  • Analysis of chemistry outreach efforts in museums and science centers.
  • Investigation of chemistry-themed summer camps and workshops.
  • Study of chemistry outreach initiatives in schools and universities.
  • Analysis of chemistry outreach efforts on social media platforms.
  • Investigation of the impact of chemistry outreach on public perception of science.
  • Study of chemistry-themed citizen science projects.
  • Analysis of chemistry outreach programs for adults and lifelong learners.
  • Investigation of the use of storytelling in chemistry outreach.
  • Study of chemistry-themed art and literature projects.
  • Analysis of chemistry outreach collaborations with industry partners.
  • Investigation of the role of role models and mentors in chemistry outreach.
  • Study of chemistry-themed escape rooms and puzzle games.
  • Analysis of chemistry outreach efforts during national science weeks.
  • Investigation of the use of virtual reality and augmented reality in chemistry outreach.
  • Study of chemistry-themed science cafés and public lectures.
  • Analysis of the impact of chemistry outreach on career aspirations in STEM fields.

Chemistry projects offer a dynamic and engaging way to explore the diverse facets of chemical science. Whether synthesizing new compounds, analyzing environmental samples, or unraveling biochemical processes, these projects foster curiosity, critical thinking, and innovation.

By delving into various chemistry project topics, students and enthusiasts can deepen their understanding of the world’s chemical complexity while contributing to scientific knowledge and societal progress.

So, let’s embark on this exciting journey of discovery and uncover the wonders of chemistry together!

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

  • Privacy Policy

Research Method

Home » 300+ Chemistry Research Topics

300+ Chemistry Research Topics

Table of Contents

Chemistry Research Topics

Chemistry is a fascinating and complex field that explores the composition, properties, and behavior of matter at the molecular and atomic level. As a result, there are numerous chemistry research topics that can be explored, ranging from the development of new materials and drugs to the study of natural compounds and the environment. In this rapidly evolving field, researchers are constantly uncovering new insights and pushing the boundaries of our understanding of chemistry. Whether you are a student, a professional researcher, or simply curious about the world around you, there is always something new to discover in the field of chemistry. In this post, we will explore some of the exciting and important research topics in chemistry today.

Chemistry Research Topics

Chemistry Research Topics are as follows:

Organic Chemistry Research Topics

Organic Chemistry Research Topics are as follows:

  • Development of novel synthetic routes for the production of biologically active natural products
  • Investigation of reaction mechanisms and kinetics for organic transformations
  • Design and synthesis of new catalysts for asymmetric organic reactions
  • Synthesis and characterization of chiral compounds for pharmaceutical applications
  • Development of sustainable methods for the synthesis of organic molecules using renewable resources
  • Discovery of new reaction pathways for the conversion of biomass into high-value chemicals
  • Study of molecular recognition and host-guest interactions for drug design
  • Design and synthesis of new materials for energy storage and conversion
  • Development of efficient and selective methods for C-H functionalization reactions
  • Exploration of the reactivity of reactive intermediates such as radicals and carbenes
  • Study of supramolecular chemistry and self-assembly of organic molecules
  • Development of new methods for the synthesis of heterocyclic compounds
  • Investigation of the biological activities and mechanisms of action of natural products
  • Synthesis of polymeric materials with controlled architecture and functionality
  • Development of new synthetic methodologies for the preparation of bioconjugates
  • Investigation of the mechanisms of enzyme catalysis and the design of enzyme inhibitors
  • Synthesis and characterization of novel fluorescent probes for biological imaging
  • Development of new synthetic strategies for the preparation of carbohydrates and glycoconjugates
  • Study of the properties and reactivity of carbon nanomaterials
  • Design and synthesis of novel drugs for the treatment of diseases such as cancer, diabetes, and Alzheimer’s disease.

Inorganic Chemistry Research Topics

Inorganic Chemistry Research Topics are as follows:

  • Synthesis and characterization of new metal-organic frameworks (MOFs) for gas storage and separation applications
  • Development of new catalysts for sustainable chemical synthesis reactions
  • Investigation of the electronic and magnetic properties of transition metal complexes for spintronics applications
  • Synthesis and characterization of novel nanomaterials for energy storage applications
  • Development of new ligands for metal coordination complexes with potential medical applications
  • Investigation of the mechanism of metal-catalyzed reactions using advanced spectroscopic techniques
  • Synthesis and characterization of new inorganic materials for photocatalytic water splitting
  • Development of new materials for electrochemical carbon dioxide reduction reactions
  • Investigation of the properties of transition metal oxides for energy storage and conversion applications
  • Synthesis and characterization of new metal chalcogenides for optoelectronic applications
  • Development of new methods for the preparation of inorganic nanoparticles with controlled size and shape
  • Investigation of the reactivity and catalytic properties of metal clusters
  • Synthesis and characterization of new metal-organic polyhedra (MOPs) for gas storage and separation applications
  • Development of new methods for the synthesis of metal nanoparticles using environmentally friendly reducing agents
  • Investigation of the properties of metal-organic frameworks for gas sensing applications
  • Synthesis and characterization of new coordination polymers with potential magnetic and electronic properties
  • Development of new materials for electrocatalytic water oxidation reactions
  • Investigation of the properties of metal-organic frameworks for carbon capture and storage applications
  • Synthesis and characterization of new metal-containing polymers with potential applications in electronics and energy storage
  • Development of new methods for the synthesis of metal-organic frameworks using green solvents and renewable resources.

Physical Chemistry Research Topics

Physical Chemistry Research Topics are as follows:

  • Investigation of the properties and interactions of ionic liquids in aqueous and non-aqueous solutions.
  • Development of advanced analytical techniques for the study of protein structure and dynamics.
  • Investigation of the thermodynamic properties of supercritical fluids for use in industrial applications.
  • Development of novel nanomaterials for energy storage applications.
  • Studies of the surface chemistry of catalysts for the optimization of their performance in chemical reactions.
  • Development of new methods for the synthesis of complex organic molecules with improved yields and selectivity.
  • Investigation of the molecular mechanisms involved in the catalysis of biochemical reactions.
  • Development of new strategies for the controlled release of drugs and other bioactive molecules.
  • Studies of the interaction of nanoparticles with biological systems for biomedical applications.
  • Investigation of the thermodynamic properties of materials under extreme conditions of temperature and pressure.
  • Development of new methods for the characterization of materials at the nanoscale.
  • Investigation of the electronic and magnetic properties of materials for use in spintronics.
  • Development of new materials for energy conversion and storage.
  • Studies of the kinetics and thermodynamics of adsorption processes on surfaces.
  • Investigation of the transport properties of ionic liquids for use in energy storage and conversion devices.
  • Development of new materials for the capture and sequestration of greenhouse gases.
  • Studies of the structure and properties of biomolecules for use in drug design and development.
  • Investigation of the dynamics of chemical reactions in solution using time-resolved spectroscopic techniques.
  • Development of new approaches for the synthesis of metallic and semiconductor nanoparticles with controlled size and shape.
  • Studies of the structure and properties of materials for use in electrochemical energy storage devices.

Analytical Chemistry Research Topics

Analytical Chemistry Research Topics are as follows:

  • Development and optimization of analytical techniques for the quantification of trace elements in food and environmental samples.
  • Design and synthesis of novel analytical probes for the detection of biomolecules in complex matrices.
  • Investigation of the fundamental mechanisms involved in the separation and detection of complex mixtures using chromatographic techniques.
  • Development of sensors and biosensors for the detection of chemical and biological species in real-time.
  • Investigation of the chemical and structural properties of nanomaterials and their applications in analytical chemistry.
  • Development and validation of analytical methods for the quantification of contaminants and pollutants in water, air, and soil.
  • Investigation of the molecular mechanisms underlying drug metabolism and toxicity using mass spectrometry.
  • Development of analytical tools for the identification and quantification of drugs of abuse in biological matrices.
  • Investigation of the chemical composition and properties of natural products and their applications in medicine and food science.
  • Development of advanced analytical techniques for the characterization of proteins and peptides.
  • Investigation of the chemistry and mechanism of action of antioxidants in foods and their impact on human health.
  • Development of analytical methods for the detection and quantification of microorganisms in food and environmental samples.
  • Investigation of the molecular mechanisms involved in the biosynthesis and degradation of important biomolecules such as proteins, carbohydrates, and lipids.
  • Development of analytical methods for the detection and quantification of environmental toxins and their impact on human health.
  • Investigation of the structure and properties of biological membranes and their role in drug delivery and disease.
  • Development of analytical techniques for the characterization of complex mixtures such as petroleum and crude oil.
  • Investigation of the chemistry and mechanism of action of natural and synthetic dyes.
  • Development of analytical techniques for the detection and quantification of pharmaceuticals and personal care products in water and wastewater.
  • Investigation of the chemical composition and properties of biopolymers and their applications in biomedicine and biomaterials.
  • Development of analytical methods for the identification and quantification of essential nutrients and vitamins in food and dietary supplements.

Biochemistry Research Topics

Biochemistry Research Topics are as follows:

  • The role of enzymes in metabolic pathways
  • The biochemistry of DNA replication and repair
  • Protein folding and misfolding diseases
  • Lipid metabolism and the pathogenesis of atherosclerosis
  • The role of vitamins and minerals in human metabolism
  • Biochemistry of cancer and the development of targeted therapies
  • The biochemistry of signal transduction pathways and their regulation
  • The mechanisms of antibiotic resistance in bacteria
  • The biochemistry of neurotransmitters and their roles in behavior and disease
  • The role of oxidative stress in aging and age-related diseases
  • The biochemistry of microbial fermentation and its applications in industry
  • The biochemistry of the immune system and its response to pathogens
  • The biochemistry of plant metabolism and its regulation
  • The molecular basis of genetic diseases and gene therapy
  • The biochemistry of membrane transport and its role in cell function
  • The biochemistry of muscle contraction and its regulation
  • The role of lipids in membrane structure and function
  • The biochemistry of photosynthesis and its regulation
  • The biochemistry of RNA splicing and alternative splicing events
  • The biochemistry of epigenetics and its regulation in gene expression.

Environmental Chemistry Research Topics

Environmental Chemistry Research Topics are as follows:

  • Investigating the effects of microplastics on aquatic ecosystems and their potential impact on human health.
  • Examining the impact of climate change on soil quality and nutrient availability in agricultural systems.
  • Developing methods to improve the removal of heavy metals from contaminated soils and waterways.
  • Assessing the effectiveness of natural and synthetic antioxidants in mitigating the effects of air pollution on human health.
  • Investigating the potential for using algae and other microorganisms to sequester carbon dioxide from the atmosphere.
  • Studying the role of biodegradable plastics in reducing plastic waste and their impact on the environment.
  • Examining the impact of pesticides and other agricultural chemicals on water quality and the health of aquatic organisms.
  • Investigating the effects of ocean acidification on marine organisms and ecosystems.
  • Developing new materials and technologies to reduce carbon emissions from industrial processes.
  • Evaluating the effectiveness of phytoremediation in cleaning up contaminated soils and waterways.
  • Studying the impact of microplastics on terrestrial ecosystems and their potential to enter the food chain.
  • Developing sustainable methods for managing and recycling electronic waste.
  • Investigating the role of natural processes, such as weathering and erosion, in regulating atmospheric carbon dioxide levels.
  • Assessing the impact of urbanization on air quality and developing strategies to mitigate pollution in cities.
  • Examining the effects of climate change on the distribution and abundance of species in different ecosystems.
  • Investigating the impact of ocean currents on the distribution of pollutants and other environmental contaminants.
  • Developing new materials and technologies for renewable energy generation and storage.
  • Studying the effects of deforestation on soil quality, water availability, and biodiversity.
  • Assessing the potential for using waste materials, such as agricultural residues and municipal solid waste, as sources of renewable energy.
  • Investigating the role of natural and synthetic chemicals in regulating ecosystem functions, such as nutrient cycling and carbon sequestration.

Polymer Chemistry Research Topics

Polymer Chemistry Research Topics are as follows:

  • Development of new monomers for high-performance polymers
  • Synthesis and characterization of biodegradable polymers for sustainable packaging
  • Design of stimuli-responsive polymers for drug delivery applications
  • Investigation of the properties and applications of conductive polymers
  • Development of new catalysts for controlled/living polymerization
  • Synthesis of polymers with tailored mechanical properties
  • Characterization of the structure-property relationship in polymer nanocomposites
  • Study of the impact of polymer architecture on material properties
  • Design and synthesis of new polymeric materials for energy storage
  • Development of high-throughput methods for polymer synthesis and characterization
  • Exploration of new strategies for polymer recycling and upcycling
  • Synthesis and characterization of responsive polymer networks for smart textiles
  • Design of advanced polymer coatings with self-healing properties
  • Investigation of the impact of processing conditions on the morphology and properties of polymer materials
  • Study of the interactions between polymers and biological systems
  • Development of biocompatible polymers for tissue engineering applications
  • Synthesis and characterization of block copolymers for advanced membrane applications
  • Exploration of the potential of polymer-based sensors and actuators
  • Design of novel polymer electrolytes for advanced batteries and fuel cells
  • Study of the behavior of polymers under extreme conditions, such as high pressure or temperature.

Materials Chemistry Research Topics

Materials Chemistry Research Topics are as follows:

  • Development of new advanced materials for energy storage and conversion
  • Synthesis and characterization of nanomaterials for environmental remediation
  • Design and fabrication of stimuli-responsive materials for drug delivery
  • Investigation of electrocatalytic materials for fuel cells and electrolysis
  • Fabrication of flexible and stretchable electronic materials for wearable devices
  • Development of novel materials for high-performance electronic devices
  • Exploration of organic-inorganic hybrid materials for optoelectronic applications
  • Study of corrosion-resistant coatings for metallic materials
  • Investigation of biomaterials for tissue engineering and regenerative medicine
  • Synthesis and characterization of metal-organic frameworks for gas storage and separation
  • Design and fabrication of new materials for water purification
  • Investigation of carbon-based materials for supercapacitors and batteries
  • Synthesis and characterization of self-healing materials for structural applications
  • Development of new materials for catalysis and chemical reactions
  • Exploration of magnetic materials for spintronic devices
  • Investigation of thermoelectric materials for energy conversion
  • Study of 2D materials for electronic and optoelectronic applications
  • Development of sustainable and eco-friendly materials for packaging
  • Fabrication of advanced materials for sensors and actuators
  • Investigation of materials for high-temperature applications such as aerospace and nuclear industries.

Nuclear Chemistry Research Topics

Nuclear Chemistry Research Topics are as follows:

  • Nuclear fission and fusion reactions
  • Nuclear power plant safety and radiation protection
  • Radioactive waste management and disposal
  • Nuclear fuel cycle and waste reprocessing
  • Nuclear energy and its impact on climate change
  • Radiation therapy for cancer treatment
  • Radiopharmaceuticals for medical imaging
  • Nuclear medicine and its role in diagnostics
  • Nuclear forensics and nuclear security
  • Isotopic analysis in environmental monitoring and pollution control
  • Nuclear magnetic resonance (NMR) spectroscopy
  • Nuclear magnetic resonance imaging (MRI)
  • Radiation damage in materials and radiation effects on electronic devices
  • Nuclear data evaluation and validation
  • Nuclear reactors design and optimization
  • Nuclear fuel performance and irradiation behavior
  • Nuclear energy systems integration and optimization
  • Neutron and gamma-ray detection and measurement techniques
  • Nuclear astrophysics and cosmology
  • Nuclear weapons proliferation and disarmament.

Medicinal Chemistry Research Topics

Medicinal Chemistry Research Topics are as follows:

  • Drug discovery and development
  • Design and synthesis of novel drugs
  • Medicinal chemistry of natural products
  • Structure-activity relationships (SAR) of drugs
  • Rational drug design using computational methods
  • Target identification and validation
  • Drug metabolism and pharmacokinetics (DMPK)
  • Drug delivery systems
  • Development of new antibiotics
  • Design of drugs for the treatment of cancer
  • Development of drugs for the treatment of neurological disorders
  • Medicinal chemistry of peptides and proteins
  • Development of drugs for the treatment of infectious diseases
  • Discovery of new antiviral agents
  • Design of drugs for the treatment of cardiovascular diseases
  • Medicinal chemistry of enzyme inhibitors
  • Development of drugs for the treatment of inflammatory diseases
  • Design of drugs for the treatment of metabolic disorders
  • Medicinal chemistry of anti-cancer agents
  • Development of drugs for the treatment of rare diseases.

Food Chemistry Research Topics

Food Chemistry Research Topics are as follows:

  • Investigating the effect of cooking methods on the nutritional value of food.
  • Analyzing the role of antioxidants in preventing food spoilage and degradation.
  • Examining the effect of food processing techniques on the nutritional value of fruits and vegetables.
  • Studying the chemistry of food additives and their impact on human health.
  • Evaluating the role of enzymes in food digestion and processing.
  • Investigating the chemical properties and functional uses of food proteins.
  • Analyzing the effect of food packaging materials on the quality and safety of food products.
  • Examining the chemistry of food flavorings and the impact of flavor on consumer acceptance.
  • Studying the role of carbohydrates in food texture and structure.
  • Investigating the chemistry of food lipids and their impact on human health.
  • Analyzing the chemical properties and functional uses of food gums and emulsifiers.
  • Examining the effect of processing on the flavor and aroma of food products.
  • Studying the chemistry of food preservatives and their impact on food safety.
  • Investigating the chemical properties and functional uses of food fibers.
  • Analyzing the effect of food processing on the bioavailability of nutrients.
  • Examining the chemistry of food colorants and their impact on consumer acceptance.
  • Studying the role of vitamins and minerals in food and their impact on human health.
  • Investigating the chemical properties and functional uses of food hydrocolloids.
  • Analyzing the effect of food processing on the allergenicity of food products.
  • Examining the chemistry of food sweeteners and their impact on human health.

Industrial Chemistry Research Topics

Industrial Chemistry Research Topics are as follows:

  • Development of catalysts for selective hydrogenation reactions in the petrochemical industry.
  • Green chemistry approaches for the synthesis of biodegradable polymers from renewable sources.
  • Optimization of solvent extraction processes for the separation of rare earth elements from ores.
  • Development of novel materials for energy storage applications, such as lithium-ion batteries.
  • Production of biofuels from non-food sources, such as algae or waste biomass.
  • Application of computational chemistry to optimize the design of new catalysts and materials.
  • Design and optimization of continuous flow processes for large-scale chemical production.
  • Development of new synthetic routes for the production of pharmaceutical intermediates.
  • Investigation of the environmental impact of industrial processes and development of sustainable alternatives.
  • Development of innovative water treatment technologies for industrial wastewater.
  • Synthesis of functionalized nanoparticles for use in drug delivery and other biomedical applications.
  • Optimization of processes for the production of high-performance polymers, such as polyamides or polyesters.
  • Design and optimization of process control strategies for efficient and safe chemical production.
  • Development of new methods for the detection and removal of heavy metal ions from industrial effluents.
  • Investigation of the behavior of surfactants in complex mixtures, such as crude oil or food products.
  • Development of new materials for catalytic oxidation reactions, such as the removal of volatile organic compounds from air.
  • Investigation of the properties and behavior of materials under extreme conditions, such as high pressure or high temperature.
  • Development of new processes for the production of chemicals from renewable resources, such as bio-based building blocks.
  • Study of the kinetics and mechanism of chemical reactions in complex systems, such as multi-phase reactors.
  • Optimization of the production of fine chemicals, such as flavors and fragrances, using biocatalytic processes.

Computational Chemistry Research Topics

Computational Chemistry Research Topics are as follows:

  • Development and application of machine learning algorithms for predicting chemical reactions and properties.
  • Investigation of the role of solvents in chemical reactions using molecular dynamics simulations.
  • Modeling and simulation of protein-ligand interactions to aid drug design.
  • Study of the electronic structure and reactivity of catalysts for sustainable energy production.
  • Analysis of the thermodynamics and kinetics of complex chemical reactions using quantum chemistry methods.
  • Exploration of the mechanism and kinetics of enzyme-catalyzed reactions using molecular dynamics simulations.
  • Investigation of the properties and behavior of nanoparticles using computational modeling.
  • Development of computational tools for the prediction of chemical toxicity and environmental impact.
  • Study of the electronic properties of graphene and other 2D materials for applications in electronics and energy storage.
  • Investigation of the mechanisms of protein folding and aggregation using molecular dynamics simulations.
  • Development and optimization of computational methods for calculating thermodynamic properties of liquids and solids.
  • Study of the properties of supercritical fluids for applications in separation and extraction processes.
  • Development of new methods for the calculation of electron transfer rates in complex systems.
  • Investigation of the electronic and mechanical properties of carbon nanotubes for applications in nanoelectronics and nanocomposites.
  • Development of new approaches for modeling the interaction of biomolecules with biological membranes.
  • Study of the mechanisms of charge transfer in molecular and hybrid solar cells.
  • Analysis of the structural and mechanical properties of materials under extreme conditions using molecular dynamics simulations.
  • Development of new approaches for the calculation of free energy differences in complex systems.
  • Investigation of the reaction mechanisms of metalloenzymes using quantum mechanics/molecular mechanics (QM/MM) methods.
  • Study of the properties of ionic liquids for applications in catalysis and energy storage.

Theoretical Chemistry Research Topics

Theoretical Chemistry Research Topics are as follows:

  • Quantum Chemical Studies of Excited State Processes in Organic Molecules
  • Theoretical Investigation of Structure and Reactivity of Metal-Organic Frameworks
  • Computational Modeling of Reaction Mechanisms and Kinetics in Enzyme Catalysis
  • Theoretical Investigation of Non-Covalent Interactions in Supramolecular Chemistry
  • Quantum Chemical Studies of Photochemical Processes in Organic Molecules
  • Theoretical Analysis of Charge Transport in Organic and Inorganic Materials
  • Computational Modeling of Protein Folding and Dynamics
  • Quantum Chemical Investigations of Electron Transfer Processes in Complex Systems
  • Theoretical Studies of Surface Chemistry and Catalysis
  • Computational Design of Novel Materials for Energy Storage Applications
  • Theoretical Analysis of Chemical Bonding and Molecular Orbital Theory
  • Quantum Chemical Investigations of Magnetic Properties of Complex Systems
  • Computational Modeling of Biological Membranes and Transport Processes
  • Theoretical Studies of Nonlinear Optical Properties of Molecules and Materials
  • Quantum Chemical Studies of Spectroscopic Properties of Molecules
  • Theoretical Investigations of Reaction Mechanisms in Organometallic Chemistry
  • Computational Modeling of Heterogeneous Catalysis
  • Quantum Chemical Studies of Excited State Dynamics in Photosynthesis
  • Theoretical Analysis of Chemical Reaction Networks
  • Computational Design of Nanomaterials for Biomedical Applications

Astrochemistry Research Topics

Astrochemistry Research Topics are as follows:

  • Investigating the chemical composition of protoplanetary disks and its implications for planet formation
  • Examining the role of magnetic fields in the formation of complex organic molecules in space
  • Studying the effects of interstellar radiation on the chemical evolution of molecular clouds
  • Exploring the chemistry of comets and asteroids to better understand the early solar system
  • Investigating the origin and evolution of interstellar dust and its relationship to organic molecules
  • Examining the formation and destruction of interstellar molecules in shocked gas
  • Studying the chemical processes that occur in the atmospheres of planets and moons in our solar system
  • Exploring the possibility of life on other planets through astrobiology and astrochemistry
  • Investigating the chemistry of planetary nebulae and their role in the evolution of stars
  • Studying the chemical properties of exoplanets and their potential habitability
  • Examining the chemical reactions that occur in the interstellar medium
  • Investigating the chemical composition of supernova remnants and their impact on the evolution of galaxies
  • Studying the chemical composition of interstellar grains and their role in the formation of stars and planets
  • Exploring the chemistry of astrocytes and their role in the evolution of galaxies
  • Investigating the formation of interstellar ice and its implications for the origin of life
  • Examining the chemistry of molecular clouds and its relationship to star formation
  • Studying the chemical composition of the interstellar medium in different galaxies and how it varies
  • Investigating the role of cosmic rays in the formation of complex organic molecules in space
  • Exploring the chemical properties of interstellar filaments and their relationship to star formation
  • Studying the chemistry of protostars and the role of turbulence in the formation of stars.

Geochemistry Research Topics

Geochemistry Research Topics are as follows:

  • Understanding the role of mineralogical and geochemical factors on metal mobility in contaminated soils
  • Investigating the sources and fate of dissolved organic matter in aquatic systems
  • Exploring the geochemical signatures of ancient sedimentary rocks to reconstruct Earth’s past atmospheric conditions
  • Studying the impacts of land-use change on soil organic matter content and quality
  • Investigating the impact of acid mine drainage on water quality and ecosystem health
  • Examining the processes controlling the behavior and fate of emerging contaminants in the environment
  • Characterizing the organic matter composition of shale gas formations to better understand hydrocarbon storage and migration
  • Evaluating the potential for carbon capture and storage in geologic formations
  • Investigating the geochemical processes controlling the formation and evolution of ore deposits
  • Studying the geochemistry of geothermal systems to better understand energy production potential and environmental impacts
  • Exploring the impacts of climate change on the biogeochemistry of terrestrial ecosystems
  • Investigating the geochemical cycling of nutrients in coastal marine environments
  • Characterizing the isotopic composition of minerals and fluids to understand Earth’s evolution
  • Developing new analytical techniques to better understand the chemistry of natural waters
  • Studying the impact of anthropogenic activities on the geochemistry of urban soils
  • Investigating the role of microbial processes in geochemical cycling of elements in soils and sediments
  • Examining the impact of wildfires on soil and water chemistry
  • Characterizing the geochemistry of mineral dust and its impact on climate and biogeochemical cycles
  • Investigating the geochemical factors controlling the release and transport of contaminants from mine tailings
  • Exploring the biogeochemistry of wetlands and their role in carbon sequestration and nutrient cycling.

Electrochemistry Research Topics

Electrochemistry Research Topics are as follows:

  • Development of high-performance electrocatalysts for efficient electrochemical conversion of CO2 to fuels and chemicals
  • Investigation of electrode-electrolyte interfaces in lithium-ion batteries for enhanced battery performance and durability
  • Design and synthesis of novel electrolytes for high-energy-density and stable lithium-sulfur batteries
  • Development of advanced electrochemical sensors for the detection of trace-levels of analytes in biological and environmental samples
  • Analysis of the electrochemical behavior of new materials and their electrocatalytic properties in fuel cells
  • Study of the kinetics of electrochemical reactions and their effect on the efficiency and selectivity of electrochemical processes
  • Development of novel strategies for the electrochemical synthesis of value-added chemicals from biomass and waste materials
  • Analysis of the electrochemical properties of metal-organic frameworks (MOFs) for energy storage and conversion applications
  • Investigation of the electrochemical degradation mechanisms of polymer electrolyte membranes in fuel cells
  • Study of the electrochemical properties of 2D materials and their applications in energy storage and conversion devices
  • Development of efficient electrochemical systems for desalination and water treatment applications
  • Investigation of the electrochemical properties of metal-oxide nanoparticles for energy storage and conversion applications
  • Analysis of the electrochemical behavior of redox-active organic molecules and their application in energy storage and conversion devices
  • Study of the electrochemical behavior of metal-organic frameworks (MOFs) for the catalytic conversion of CO2 to value-added chemicals
  • Development of novel electrode materials for electrochemical capacitors with high energy density and fast charge/discharge rates
  • Investigation of the electrochemical properties of perovskite materials for energy storage and conversion applications
  • Study of the electrochemical behavior of enzymes and their application in bioelectrochemical systems
  • Development of advanced electrochemical techniques for the characterization of interfacial processes in electrochemical systems
  • Analysis of the electrochemical behavior of nanocarbons and their application in electrochemical energy storage devices
  • Investigation of the electrochemical properties of ionic liquids for energy storage and conversion applications.

Surface Chemistry Research Topics

Surface Chemistry Research Topics are as follows:

  • Surface modification of nanoparticles for enhanced catalytic activity
  • Investigating the effect of surface roughness on the wetting behavior of materials
  • Development of new materials for solar cell applications through surface chemistry techniques
  • Surface chemistry of graphene and its applications in electronic devices
  • Surface functionalization of biomaterials for biomedical applications
  • Characterization of surface defects and their effect on material properties
  • Surface modification of carbon nanotubes for energy storage applications
  • Developing surface coatings for corrosion protection of metals
  • Synthesis of self-assembled monolayers on surfaces for sensor applications
  • Surface chemistry of metal-organic frameworks for gas storage and separation
  • Investigating the role of surface charge in protein adsorption
  • Developing surfaces with superhydrophobic or superoleophobic properties for self-cleaning applications
  • Surface functionalization of nanoparticles for drug delivery applications
  • Surface chemistry of semiconductors and its effect on photovoltaic properties
  • Development of surface-enhanced Raman scattering (SERS) substrates for trace analyte detection
  • Surface functionalization of graphene oxide for water purification applications
  • Investigating the role of surface tension in emulsion formation and stabilization
  • Surface modification of membranes for water desalination and purification
  • Synthesis and characterization of metal nanoparticles for catalytic applications
  • Development of surfaces with controlled wettability for microfluidic applications.

Atmospheric Chemistry Research Topics

Atmospheric Chemistry Research Topics are as follows:

  • The impact of wildfires on atmospheric chemistry
  • The role of aerosols in atmospheric chemistry
  • The chemistry and physics of ozone depletion in the stratosphere
  • The chemistry and dynamics of the upper atmosphere
  • The impact of anthropogenic emissions on atmospheric chemistry
  • The role of clouds in atmospheric chemistry
  • The chemistry of atmospheric particulate matter
  • The impact of nitrogen oxides on atmospheric chemistry and air quality
  • The effects of climate change on atmospheric chemistry
  • The impact of atmospheric chemistry on climate change
  • The chemistry and physics of atmospheric mercury cycling
  • The impact of volcanic eruptions on atmospheric chemistry
  • The chemistry and physics of acid rain formation and effects
  • The role of halogen chemistry in the atmosphere
  • The chemistry of atmospheric radicals and their impact on air quality and health
  • The impact of urbanization on atmospheric chemistry
  • The chemistry and physics of stratospheric polar vortex dynamics
  • The role of natural sources (e.g. ocean, plants) in atmospheric chemistry
  • The impact of atmospheric chemistry on the biosphere
  • The chemistry and dynamics of the ozone hole over Antarctica.

Photochemistry Research Topics

Photochemistry Research Topics are as follows:

  • Investigating the mechanisms of photoinduced electron transfer reactions in organic photovoltaic materials.
  • Developing novel photoredox catalysts for photochemical reactions.
  • Understanding the effects of light on DNA and RNA stability and replication.
  • Studying the photochemistry of atmospheric pollutants and their impact on air quality.
  • Designing new photoresponsive materials for advanced photonic and electronic devices.
  • Exploring the photochemistry of metalloporphyrins for potential applications in catalysis.
  • Investigating the photochemistry of transition metal complexes and their use as photodynamic therapy agents.
  • Developing new photocatalytic systems for sustainable energy production.
  • Studying the photochemistry of natural products and their potential pharmaceutical applications.
  • Investigating the role of light in the formation and degradation of environmental contaminants.
  • Designing new photochromic materials for smart windows and displays.
  • Exploring the photochemistry of carbon nanomaterials for energy storage and conversion.
  • Developing new light-driven molecular machines for nanotechnology applications.
  • Investigating the photochemistry of organic dyes for potential applications in dye-sensitized solar cells.
  • Studying the effects of light on the behavior of biological macromolecules.
  • Designing new photoresponsive hydrogels for drug delivery applications.
  • Exploring the photochemistry of semiconductor nanoparticles for potential applications in quantum computing.
  • Investigating the mechanisms of photochemical reactions in ionic liquids.
  • Developing new photonic sensors for chemical and biological detection.
  • Studying the photochemistry of transition metal complexes for potential applications in water splitting and hydrogen production.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Funny Research Topics

200+ Funny Research Topics

Sports Research Topics

500+ Sports Research Topics

American History Research Paper Topics

300+ American History Research Paper Topics

Cyber Security Research Topics

500+ Cyber Security Research Topics

Environmental Research Topics

500+ Environmental Research Topics

Economics Research Topics

500+ Economics Research Topics

50+ Remarkable Chemistry Project Topics for BSC Students: Chemical Kinetics

Chemistry Project Topics for BSC Students

  • Post author By admin
  • October 6, 2023

Explore a comprehensive list of chemistry project topics for BSC students. Enhance your knowledge and excel in your academic pursuits.

Welcome to the captivating world of chemistry! For Bachelor of Science (BSC) students, the journey through the diverse landscapes of chemical science is an exciting adventure.

Central to this journey are chemistry projects—opportunities for hands-on exploration, experimentation, and discovery.

Yet, the secret to a truly rewarding project lies in the choice of the right topic—one that not only aligns with academic goals but also stirs up genuine curiosity and enthusiasm.

In this article, we’re about to embark on an inspiring quest through a specially curated list of chemistry project topics, tailor-made for BSC students like you.

These topics promise not only to enhance your academic journey but also to kindle your passion for the captivating world of chemistry.

So, let’s dive in and explore the boundless possibilities and wonders that await in the realm of chemistry projects!

Table of Contents

What is Chemistry Project Topics ?

Chemistry, often dubbed the central science, has its fingerprints on virtually every facet of our lives. It’s the hidden force behind the scents we love, the reactions that fuel our cars, and even the medicines that keep us healthy.

Now, suppose this: BSC students are at the forefront of this captivating science, armed with a unique chance to dive headfirst into its various branches through project work.

These projects aren’t just your run-of-the-mill assignments; they’re like scientific adventures.

They do much more than boost your knowledge; they’re contributions to the grand tapestry of scientific discovery. So, imagine being part of this world, where you not only learn but also shape the future of chemistry!

The Importance of Choosing the Right Chemistry Project

Have a close look at the importance of choosing the right chemistry project:-

Personal Engagement

A well-suited project captures your interest and keeps you engaged throughout, making your academic journey more enjoyable.

It should align with your coursework and academic goals, ensuring that your efforts contribute meaningfully to your education.

Contribution

Choosing the right project means you’re not just benefiting yourself; you’re also adding to the body of scientific knowledge and benefiting the broader scientific community.

Skill Development

The right project challenges you, helping you acquire and refine valuable skills essential for your academic and professional growth.

When you’re passionate about your project, it transforms the work into a thrilling journey filled with curiosity, discovery, and enthusiasm.

In summary, the importance of selecting the right chemistry project goes beyond academics; it influences your engagement, relevance, contribution, skill development, and passion, enriching your scientific experience and personal growth.

Chemistry Project Topics for BSC Students

Here are Chemistry Project Topics for BSC Students:-

Organic Chemistry Projects

  • Synthesis of Aspirin: Investigate the synthesis process, purity, and properties of this widely used pain reliever.
  • Extraction of Natural Pigments: Explore the extraction of pigments from various plants and assess their applications in dyes and cosmetics.
  • Analysis of Essential Oils: Analyze the chemical composition of essential oils from different sources and study their potential medicinal properties.
  • Green Chemistry: Investigate environmentally friendly synthesis methods and processes in organic chemistry.
  • Organic Synthesis of Pharmaceuticals: Design and synthesize organic compounds with potential pharmaceutical applications.
  • Study of Aromatic Compounds: Explore the properties and reactions of aromatic compounds, such as benzene and its derivatives.
  • Polymer Chemistry: Investigate the synthesis and properties of polymers, including their applications in various industries.
  • Organic Chemistry of Natural Products: Analyze the chemical makeup of natural products like alkaloids, terpenes, and flavonoids.
  • Organometallic Chemistry: Study the bonding and reactivity of compounds containing metal-carbon bonds.
  • Organic Photochemistry: Explore the effects of light on organic compounds and their photochemical reactions.

Inorganic Chemistry Projects

  • Synthesis of Metal Complexes: Investigate the preparation and characterization of metal complexes with ligands of varying structures.
  • Coordination Chemistry: Explore the coordination behavior of transition metal ions with different ligands.
  • Inorganic Synthesis of Nanoparticles: Synthesize and characterize metal or metal oxide nanoparticles with potential applications in catalysis or nanotechnology.
  • Study of Lanthanides and Actinides: Investigate the properties and applications of lanthanide and actinide series elements.
  • Inorganic Reaction Mechanisms: Analyze the reaction mechanisms of various inorganic reactions, such as redox reactions or ligand substitution reactions.
  • Organometallic Synthesis: Study the synthesis and reactivity of organometallic compounds containing metal-carbon bonds.
  • Bioinorganic Chemistry: Explore the role of metal ions in biological systems and their significance in biochemical processes.
  • Main Group Chemistry: Investigate the chemistry of main group elements and their compounds.
  • Inorganic Synthesis of Coordination Polymers: Synthesize and characterize coordination polymers with unique structures and properties.
  • Supramolecular Chemistry: Study non-covalent interactions in inorganic chemistry, such as host-guest complexes and molecular recognition.

Physical Chemistry Projects

  • Chemical Kinetics: Investigate the rate of chemical reactions under different conditions and analyze reaction mechanisms.
  • Electrochemistry: Explore the principles of electrochemical cells, study electrode processes, and investigate applications in energy storage.
  • Thermodynamics of Reactions: Study the thermodynamic parameters of chemical reactions, including enthalpy, entropy, and Gibbs free energy.
  • Quantum Chemistry: Apply quantum mechanical principles to predict molecular structures and electronic properties of chemical compounds.
  • Statistical Mechanics: Explore the statistical behavior of particles in systems, including the Boltzmann distribution and partition functions.
  • Surface Chemistry: Investigate the physical and chemical properties of surfaces and interfaces, including adsorption and catalysis.
  • Chemical Thermodynamics: Study the thermodynamic properties of chemical systems and phase equilibria.
  • Spectroscopy and Molecular Structure: Analyze the interaction of matter with electromagnetic radiation and determine molecular structures.
  • Chemical Equilibrium: Investigate chemical equilibrium and the factors that influence it in various chemical reactions.
  • Photochemistry: Explore the effects of light on chemical reactions, including photochemical mechanisms and applications.

These diverse project topics encompass a wide range of subfields within chemistry, offering BSC students opportunities for hands-on exploration and research in their chosen area of interest.

How to Select the Ideal Chemistry Project Topic?

Selecting the ideal chemistry project topic is a crucial step that can significantly impact your academic journey and research experience. Here’s a guide on how to make the right choice:

Personal Interest

Start by considering your personal interests within the field of chemistry. What topics or areas intrigue you the most? Projects aligned with your passions are more likely to keep you motivated and engaged throughout.

Academic Alignment

Ensure that the chosen topic aligns with your coursework and academic goals. It should complement your studies and contribute to your overall understanding of chemistry.

Research Existing Knowledge

Before finalizing a topic, research existing literature and studies in that area. Understanding what has already been explored can help you identify gaps in knowledge or areas where further investigation is needed.

Consult with Professors

Seek guidance from your professors or mentors. They can provide valuable insights into potential project topics, offer suggestions, and help you refine your ideas.

Available Resources

Consider the resources available to you, including laboratory equipment, chemicals, and access to research materials. Ensure that your chosen project is feasible within your academic environment.

Scope and Complexity

Assess the scope and complexity of the project. It should be challenging enough to stimulate your intellectual growth but not so complex that it becomes unmanageable.

Relevance and Impact

Think about the broader relevance and potential impact of your project. How does it contribute to the field of chemistry or address real-world issues? Projects with practical applications or scientific significance can be particularly rewarding.

Feasibility

Evaluate the feasibility of your project in terms of time, budget, and available support. Ensure that you have a clear plan for conducting experiments and gathering data.

Ethical Considerations

Be aware of any ethical considerations related to your project, especially if it involves human subjects, animals, or hazardous materials. Ensure that your research adheres to ethical guidelines.

Flexibility

Keep some degree of flexibility in your project plan. Research may take unexpected turns, and being adaptable can help you navigate challenges and make the most of unexpected discoveries.

Passion and Curiosity

Choose a topic that genuinely excites your curiosity. A project driven by passion often leads to more enthusiastic and successful research.

Peer Feedback

Discuss your ideas with peers or fellow students. Their perspectives and feedback can offer valuable insights and help you refine your project concept.

By carefully considering these factors and conducting thorough research, you can select an ideal chemistry project topic that not only aligns with your interests and academic goals but also offers a rewarding and enriching research experience.

Tips for Successful Project Execution

Have a close look at the tips for successful project execution:-

Detailed Planning

Start with a well-structured project plan. Define your objectives, set clear goals, and create a timeline outlining each phase of your project.

Research Extensively

Before conducting experiments, thoroughly research the relevant literature to understand existing knowledge and methodologies related to your topic.

Prioritize safety at all times. Familiarize yourself with safety protocols, wear appropriate protective gear, and handle chemicals and equipment with care.

Experimental Design

Design your experiments carefully, considering variables, controls, and potential sources of error. Consult with professors or advisors for input on your experimental setup.

Data Collection

Maintain accurate and organized records of your experiments, including measurements, observations, and any unexpected results.

Analytical Tools

Utilize appropriate analytical tools and techniques for data analysis. This may involve statistical analysis, spectroscopy, chromatography, or other methods depending on your project.

Troubleshooting

Be prepared to encounter challenges during experiments. Develop problem-solving skills and seek guidance from mentors or colleagues when needed.

Regular Updates

Keep your professors or advisors informed of your progress. Regular meetings can provide valuable feedback and help you stay on track.

Documentation

Create a detailed laboratory notebook or digital records that document your procedures, results, and any modifications made during the project.

Data Interpretation

Analyze your data critically and draw meaningful conclusions. Discuss your findings with mentors and peers to gain different perspectives.

Adaptability

Be flexible in your approach. If your initial experiments do not yield the expected results, be open to adjusting your methods or hypotheses.

Time Management

Manage your time effectively to meet project milestones and deadlines. Avoid procrastination and allocate sufficient time for analysis and report writing.

Communication Skills

Develop strong communication skills to convey your research findings clearly and effectively, both in written reports and oral presentations.

Collaboration

Collaborate with colleagues or fellow students when applicable. Sharing ideas and resources can enhance the quality of your research.

Continuous Learning

Stay updated with the latest developments in your field through scientific journals, conferences, and discussions with experts.

Ethical Conduct

Adhere to ethical guidelines and principles in your research. Ensure that your work is conducted with integrity and honesty.

Feedback Incorporation

Embrace constructive feedback from mentors, peers, or reviewers, and use it to improve your project and research skills.

Celebrate Milestones

Acknowledge and celebrate your achievements and milestones throughout the project. It can boost motivation and morale.

Stay Organized

Maintain a well-organized workspace and records. A tidy and systematic approach can save time and prevent errors.

Reflect and Learn

After completing your project, reflect on your experiences and lessons learned. Consider how you can apply these insights to future research endeavors.

By following these tips and maintaining a dedicated and systematic approach, you can enhance the chances of successful project execution in the field of chemistry.

Benefits of Chemistry Projects for BSC Students

Certainly, here are the benefits of chemistry projects for BSC (Bachelor of Science) students:

Hands-On Experience

Chemistry projects provide students with practical, hands-on experience in conducting experiments, handling chemicals, and using laboratory equipment. This experience is invaluable for future careers in science.

Deeper Understanding

Engaging in research projects allows students to delve deeper into specific areas of chemistry, gaining a more profound understanding of concepts and theories.

Problem-Solving Skills

Projects often involve troubleshooting and problem-solving, honing students’ critical thinking and analytical skills . They learn to overcome challenges and adapt their approaches.

BSC students acquire a wide range of laboratory and research skills, including data collection, analysis, and interpretation. These skills are transferable and valuable in various scientific fields.

Research Ethics

Students learn about research ethics, including responsible conduct and the importance of integrity in scientific inquiry.

Scientific Method

Projects follow the scientific method, teaching students how to formulate hypotheses, design experiments, and draw conclusions based on evidence.

Encouragement to explore unique topics fosters creativity and innovation. Students may discover new approaches or solutions to existing problems.

Interdisciplinary Learning

Chemistry projects often intersect with other scientific disciplines, providing opportunities for interdisciplinary learning and collaboration.

Publication and Presentation

Successful projects can lead to publications or presentations at conferences, enhancing students’ academic and professional portfolios.

Career Preparation

The skills and experiences gained from chemistry projects prepare students for careers in research, academia, industry, or healthcare.

Increased Confidence

Completing a project independently or as part of a team boosts students’ confidence in their abilities to tackle complex scientific challenges.

Projects often involve interaction with professors, mentors, and peers, helping students build a professional network within the scientific community.

Resume Enhancement

A well-executed project can serve as a strong addition to a student’s resume or graduate school application, setting them apart from their peers.

Real-World Applications

Many chemistry projects have real-world applications, allowing students to see the practical relevance of their studies.

Contributions to Knowledge

Students may make meaningful contributions to the field of chemistry by generating new data, theories, or insights.

Personal Fulfillment

Successfully completing a challenging project can provide a sense of personal fulfillment and accomplishment.

Preparation for Advanced Degrees

For those considering postgraduate studies, chemistry projects provide valuable research experience and strengthen applications for advanced degrees.

Critical Evaluation

Students learn to critically evaluate existing literature and research, improving their ability to assess scientific claims and findings.

Teamwork and Leadership

Collaborative projects enhance teamwork and leadership skills, important attributes for any career path.

Life-Long Learning: Engaging in research projects fosters a love for learning and encourages students to continue exploring and discovering throughout their careers.

What is the best topic for chemistry project?

Selecting the right chemistry project topic is crucial for a successful project. The ideal topic should align with your interests, offer access to ample research materials, and be suitable for your skill level and experience.

Here are some ideas to consider for chemistry projects:

Chemical Composition Analysis

Investigate the chemical composition of a commonly used household product. This can provide insights into the ingredients and their properties.

Factors Affecting Chemical Reactions

Explore how various factors, such as temperature or pH levels, impact a chemical reaction. This research can reveal the variables influencing reaction outcomes.

Innovative Compound Synthesis

Develop a novel method for synthesizing a chemical compound. This project offers an opportunity to innovate and create something new.

Material Properties Study

Study the properties of a recently discovered material. This can involve characterizing its physical, chemical, and structural attributes.

Experimental Hypothesis Testing

Design and conduct an experiment to test a scientific hypothesis related to chemistry. This approach allows you to apply the scientific method.

If you find yourself unsure about the right topic, consider seeking suggestions from your teacher or browsing the internet for a wealth of chemistry project ideas.

Remember, the key is to choose a topic that sparks your curiosity and aligns with your abilities, ensuring a rewarding and successful project.

What are hot topics in chemistry?

In the realm of chemistry, 2023 brings forth some scintillating and cutting-edge areas of research:

Sustainable Chemistry

With a laser focus on eco-friendliness, sustainable chemistry aims to birth cleaner chemical processes and products. Think novel catalysts for green energy, inventive techniques for recycling and waste reduction, and biodegradable, non-toxic materials.

Materials Science

This arena is all about crafting and scrutinizing new materials, from polymers to metals, ceramics, and composites. Researchers are fashioning materials for advanced batteries, solar cells, medical devices, and robust, lightweight structural applications.

Biochemistry

At the intersection of chemistry and life itself, biochemistry explores the intricate chemistry of living organisms.

Dive into the study of proteins and enzymes, the development of groundbreaking drugs and therapies, and the engineering of microorganisms to yield valuable products.

Quantum Chemistry

The captivating fusion of quantum mechanics and chemistry gives birth to groundbreaking methods for simulating and predicting molecular properties. Think about the design and synthesis of new materials and the rise of quantum computing.

Artificial Intelligence (AI)

AI’s infusion into the chemistry landscape is revolutionary. It’s shaping the development of next-gen drugs that are both potent and gentle, as well as the creation of robust, lightweight materials.

Moreover, AI is predicting chemical reaction outcomes, optimizing processes, and pushing the boundaries of innovation.

These are just a glimpse into the dynamic world of chemistry research in 2023. It’s a vast and swiftly evolving domain, teeming with opportunities for groundbreaking discoveries and scientific progress.

What is an example of a chemistry topic?

A chemistry topic worth exploring is the impact of temperature on chemical reaction rates. This intriguing area can be probed through experimentation.

Imagine having two identical sets of reactants, each subjected to different temperatures, with the reaction rate meticulously measured at each temperature point.

The data collected can then be plotted on a graph, revealing the relationship between reaction rate and temperature.

This graphical representation can unveil critical insights, including the activation energy of the reaction and how the reaction rate fluctuates at varying temperatures.

Another captivating chemistry topic involves the synthesis of aspirin, a widely used pain reliever. Aspirin can be created through the reaction of acetic anhydride and salicylic acid.

Delving into this process entails carefully combining the two reactants in precise proportions and subjecting them to specific conditions.

The resulting product can then undergo purification and rigorous analysis to ascertain its purity and identity.

These examples merely scratch the surface of the diverse world of chemistry topics. The field encompasses an array of areas ripe for exploration, such as:

  • Unraveling the mysteries of matter’s structure and properties.
  • Exploring the intricacies of chemical bonding.
  • Unearthing the mechanisms behind chemical reactions.
  • Probing the fascinating realms of thermodynamics and kinetics.
  • Delving into the electrifying world of electrochemistry.
  • Mastering the art of analytical chemistry.
  • Navigating the intricate pathways of organic and inorganic chemistry.
  • Investigating the physical forces that drive chemical phenomena.
  • Exploring the chemistry of life itself through biochemistry.

The specific chemistry topic you choose to explore should align with your interests and objectives. If you’re keen on delving deeper into a particular facet of chemistry, consider perusing research papers, articles, and discussions on the subject.

Engaging with your teacher or a knowledgeable chemistry professor can also provide valuable guidance and suggestions.

Which is the best project in MSC chemistry?

Selecting the perfect M.Sc. chemistry project is a crucial step in your academic journey. It should both captivate your interest and pose a satisfying challenge.

Equally important is the feasibility of completing the project within the confines of your program’s time constraints.

Consider these ideas for M.Sc. chemistry projects:

Embark on the creation of a groundbreaking method for synthesizing a chemical compound, pushing the boundaries of chemical innovation.

Material Exploration

Dive into the study of a novel material’s properties, shedding light on its characteristics and potential applications.

Design and execute experiments aimed at testing scientific hypotheses, employing meticulous methods and precise data analysis.

Factors Shaping Reactions

Investigate the intricate dance of different factors, such as temperature or pH levels, on the outcomes of chemical reactions, revealing the secrets of chemical kinetics.

Complex Sample Analysis

Analyze the intricate chemical composition of complex samples like plant extracts or biological fluids, offering insights into the mysteries of nature.

Analytical Advancements

Pave the way for cutting-edge analytical methods capable of detecting or quantifying specific chemical compounds with precision.

Therapeutic Innovation

Design and synthesize a new pharmaceutical or therapeutic agent, potentially impacting healthcare and medicine.

Molecular Insights

Delve deep into the molecular mechanisms underlying biological processes like photosynthesis or cell signaling, unraveling nature’s secrets.

Computational Chemistry

Forge new frontiers in computational chemistry by developing methods to predict the properties of molecules or materials.

Environmental Impact Assessment

Scrutinize the environmental consequences of chemicals or chemical processes, contributing to sustainability efforts.

Champion sustainability by crafting novel chemical processes or products that are gentle on the planet.

If you find yourself uncertain about the ideal topic, engage in discussions with your advisor or other seasoned professors within your department.

They possess valuable insights and can help pinpoint a project that aligns seamlessly with your interests and expertise.

Once you’ve chosen your focus, meticulously craft a research plan. Outline your research question, delineate the research methods, establish a timeline for completion, and identify necessary resources, including equipment, materials, and potential funding.

With your advisor’s approval, embark on your project, keeping detailed records of your work and maintaining regular communication with your mentor.

Upon project completion, compile your findings into a comprehensive thesis or dissertation. Additionally, consider presenting your research at seminars or conferences, sharing your discoveries with the scientific community.

Undertaking an M.Sc. chemistry project is a formidable yet gratifying endeavor. It’s an opportunity to cultivate new skills, conduct independent research, and contribute meaningfully to the realm of chemistry.

In wrapping up, the world of chemistry is like an endless playground for BSC students, filled with intriguing possibilities waiting to be explored.

Think of it as your chance to embark on a captivating adventure where every project is a new chapter in your scientific journey.

Choosing the right topic is your compass, guiding you toward a project that not only aligns with your interests but also fuels your academic ambitions. Remember, it’s not just an academic checkbox; it’s your gateway to an exhilarating exploration.

As you dive into your chosen project, consider it a rendezvous with curiosity, a chance to develop invaluable skills, and an opportunity to contribute your unique brushstroke to the canvas of scientific knowledge.

Throughout this adventure, you’ll navigate the twists and turns of experimentation, data analysis, and the thrill of discovery. Your dedication and inquisitiveness will be your trusty companions on this scientific quest.

In the grand scheme of things, every chemistry project is a stepping stone towards a deeper comprehension of the marvelous world of molecules and reactions.

It’s your invitation to join a community of scientists, explorers of the unknown, and seekers of truth.

So, as you venture forth into your chemistry project as a BSC student, do so with a heart full of excitement and a mind buzzing with questions.

Your journey promises not only academic growth but also the potential to make your mark on the ever-evolving landscape of scientific understanding. Enjoy the ride!

Frequently Asked Questions

How do i choose the best chemistry project topic for me.

Consider your interests, available resources, and relevance to your coursework.

Can I collaborate with professors on a project?

Yes, collaborating with professors can provide valuable guidance and resources.

What are the key skills I can gain from a chemistry project?

Skills include research, experimentation, data analysis, and critical thinking.

Are there any online resources for chemistry project ideas?

Yes, various websites and academic journals offer project ideas.

Where can I find more information on project execution and methodology?

University libraries and online databases are excellent sources for project guidance.

  • australia (2)
  • duolingo (13)
  • Education (281)
  • General (75)
  • How To (16)
  • IELTS (127)
  • Latest Updates (162)
  • Malta Visa (6)
  • Permanent residency (1)
  • Programming (31)
  • Scholarship (1)
  • Sponsored (4)
  • Study Abroad (187)
  • Technology (12)
  • work permit (8)

Recent Posts

10 Reasons Why Students Should Wear Uniforms

Students & Educators  —Menu

  • Educational Resources
  • Educators & Faculty
  • College Planning
  • ACS ChemClub
  • Project SEED
  • U.S. National Chemistry Olympiad
  • Student Chapters
  • ACS Meeting Information
  • Undergraduate Research
  • Internships, Summer Jobs & Coops
  • Study Abroad Programs
  • Finding a Mentor
  • Two Year/Community College Students
  • Social Distancing Socials

Planning for Graduate School

  • Grants & Fellowships
  • Career Planning
  • International Students
  • Planning for Graduate Work in Chemistry
  • ACS Bridge Project
  • Graduate Student Organizations (GSOs)
  • Schedule-at-a-Glance
  • Standards & Guidelines
  • Explore Chemistry
  • Science Outreach
  • Publications
  • ACS Student Communities
  • You are here:
  • American Chemical Society
  • Students & Educators
  • Undergraduate
  • Undergraduate Research Guide

Undergraduate Research in Chemistry Guide

Research is the pursuit of new knowledge through the process of discovery. Scientific research involves diligent inquiry and systematic observation of phenomena. Most scientific research projects involve experimentation, often requiring testing the effect of changing conditions on the results. The conditions under which specific observations are made must be carefully controlled, and records must be meticulously maintained. This ensures that observations and results can be are reproduced. Scientific research can be basic (fundamental) or applied. What is the difference? The National Science Foundation uses the following definitions in its resource surveys:

  • Basic research The objective of basic research is to gain more comprehensive knowledge or understanding of the subject under study, without specific applications in mind. In industry, basic research is defined as research that advances scientific knowledge but does not have specific immediate commercial objectives, although it may be in fields of present or potential commercial interest.
  • Applied research Applied research is aimed at gaining knowledge or understanding to determine the means by which a specific, recognized need may be met. In industry, applied research includes investigations oriented to discovering new scientific knowledge that has specific commercial objectives with respect to products, processes, or services.

Planning for Graduate Work

Get on the path to graduate school with our comprehensive guide to selecting an institution and preparing for graduate studies.

What is research at the undergraduate level?

At the undergraduate level, research is self-directed work under the guidance and supervision of a mentor/advisor ― usually a university professor. A gradual transition towards independence is encouraged as a student gains confidence and is able to work with minor supervision. Students normally participate in an ongoing research project and investigate phenomena of interest to them and their advisor. In the chemical sciences, the range of research areas is quite broad. A few groups maintain their research area within a single classical field of analytical, inorganic, organic, physical, chemical education or theoretical chemistry. More commonly, research groups today are interdisciplinary, crossing boundaries across fields and across other disciplines, such as physics, biology, materials science, engineering and medicine.

What are the benefits of being involved in undergraduate research?

There are many benefits to undergraduate research, but the most important are:

  • Learning, learning, learning. Most chemists learn by working in a laboratory setting. Information learned in the classroom is more clearly understood and it is more easily remembered once it has been put into practice. This knowledge expands through experience and further reading. From the learning standpoint, research is an extremely productive cycle.
  • Experiencing chemistry in a real world setting. The equipment, instrumentation and materials used in research labs are generally more sophisticated, advanced, and of far better quality than those used in lab courses
  • Getting the excitement of discovery. If science is truly your vocation, regardless of any negative results, the moment of discovery will be truly exhilarating. Your results are exclusive. No one has ever seen them before.
  • Preparing for graduate school. A graduate degree in a chemistry-related science is mostly a research degree. Undergraduate research will not only give you an excellent foundation, but working alongside graduate students and post-doctorates will provide you with a unique opportunity to learn what it will be like.

Is undergraduate research required for graduation?

Many chemistry programs now require undergraduate research for graduation. There are plenty of opportunities for undergraduate students to get involved in research, either during the academic year, summer, or both. If your home institution is not research intensive, you may find opportunities at other institutions, government labs, and industries.

What will I learn by participating in an undergraduate research program?

Conducting a research project involves a series of steps that start at the inquiry level and end in a report. In the process, you learn to:

  • Conduct scientific literature searches
  • Read, interpret and extract information from journal articles relevant to the project
  • Design experimental procedures to obtain data and/or products of interest
  • Operate instruments and implement laboratory techniques not usually available in laboratories associated with course work
  • Interpret results, reach conclusions, and generate new ideas based on results
  • Interact professionally (and socially) with students and professors within the research group, department and school as well as others from different schools, countries, cultures and backgrounds
  • Communicate results orally and in writing to other peers, mentors, faculty advisors, and members of the scientific community at large via the following informal group meeting presentations, reports to mentor/advisor, poster presentations at college-wide, regional, national or international meetings; formal oral presentations at scientific meetings; or journal articles prepared for publication

When should I get involved in undergraduate research?

Chemistry is an experimental science. We recommended that you get involved in research as early in your college life as possible. Ample undergraduate research experience gives you an edge in the eyes of potential employers and graduate programs.

While most mentors prefer to accept students in their research labs once they have developed some basic lab skills through general and organic lab courses, some institutions have programs that involve students in research projects the summer prior to their freshman year. Others even involve senior high school students in summer research programs. Ask your academic/departmental advisor about the options available to you.

How much time should I allocate to research?

The quick answer is as much as possible without jeopardizing your course work. The rule of thumb is to spend 3 to 4 hours working in the lab for every credit hour in which you enroll. However, depending on the project, some progress can be achieved in just 3-4 hours of research/week. Most advisors would recommend 8-10 hours/week.

Depending on your project, a few of those hours may be of intense work and the rest may be spent simply monitoring the progress of a reaction or an instrumental analysis. Many research groups work on weekends. Saturdays are excellent days for long, uninterrupted periods of lab work.

How do I select an advisor?

This is probably the most important step in getting involved in undergraduate research. The best approach is multifaceted. Get informed about research areas and projects available in your department, which are usually posted on your departmental website under each professor’s name.

Talk to other students who are already involved in research. If your school has an ACS Student Chapter , make a point to talk to the chapter’s members. Ask your current chemistry professor and lab instructor for advice. They can usually guide you in the right direction. If a particular research area catches your interest, make an appointment with the corresponding professor.

Let the professor know that you are considering getting involved in research, you have read a bit about her/his research program, and that you would like to find out more. Professors understand that students are not experts in the field, and they will explain their research at a level that you will be able to follow. Here are some recommended questions to ask when you meet with this advisor:

  • Is there a project(s) within her/his research program suitable for an undergraduate student?
  • Does she/he have a position/space in the lab for you?
  • If you were to work in her/his lab, would you be supervised directly by her/him or by a graduate student? If it is a graduate student, make a point of meeting with the student and other members of the research group. Determine if their schedule matches yours. A night owl may not be able to work effectively with a morning person.
  • Does she/he have funding to support the project? Unfunded projects may indicate that there may not be enough resources in the lab to carry out the project to completion. It may also be an indication that funding agencies/peers do not consider this work sufficiently important enough for funding support. Of course there are exceptions. For example, a newly hired assistant professor may not have external funding yet, but he/she may have received “start-up funds” from the university and certainly has the vote of confidence of the rest of the faculty. Otherwise he/she would not have been hired. Another classical exception is computational chemistry research, for which mostly fast computers are necessary and therefore external funding is needed to support research assistants and computer equipment only. No chemicals, glassware, or instrumentation will be found in a computational chemistry lab.
  • How many of his/her articles got published in the last two or three years? When prior work has been published, it is a good indicator that the research is considered worthwhile by the scientific community that reviews articles for publication. Ask for printed references. Number of publications in reputable refereed journals (for example ACS journals) is an excellent indicator of the reputation of the researcher and the quality of his/her work.

Here is one last piece of advice: If the project really excites you and you get satisfactory answers to all your questions, make sure that you and the advisor will get along and that you will enjoy working with him/her and other members of the research group.

Remember that this advisor may be writing recommendation letters on your behalf to future employers, graduate schools, etc., so you want to leave a good impression. To do this, you should understand that the research must move forward and that if you become part of a research team, you should do your best to achieve this goal. At the same time, your advisor should understand your obligations to your course work and provide you with a degree of flexibility.

Ultimately, it is your responsibility to do your best on both course work and research. Make sure that the advisor is committed to supervising you as much as you are committed to doing the required work and putting in the necessary/agreed upon hours.

What are some potential challenges?

  • Time management . Each project is unique, and it will be up to you and your supervisor to decide when to be in the lab and how to best utilize the time available to move the project forward.
  • Different approaches and styles . Not everyone is as clean and respectful of the equipment of others as you are. Not everyone is as punctual as you are. Not everyone follows safety procedures as diligently as you do. Some groups have established protocols for keeping the lab and equipment clean, for borrowing equipment from other members, for handling common equipment, for research meetings, for specific safety procedures, etc. Part of learning to work in a team is to avoid unnecessary conflict while establishing your ground to doing your work efficiently.
  • “The project does not work.” This is a statement that advisors commonly hear from students. Although projects are generally very well conceived, and it is people that make projects work, the nature of research is such that it requires patience, perseverance, critical thinking, and on many occasions, a change in direction. Thoroughness, attention to detail, and comprehensive notes are crucial when reporting the progress of a project.

Be informed, attentive, analytical, and objective. Read all the background information. Read user manuals for instruments and equipment. In many instances the reason for failure may be related to dirty equipment, contaminated reagents, improperly set instruments, poorly chosen conditions, lack of thoroughness, and/or lack of resourcefulness. Repeating a procedure while changing one parameter may work sometimes, while repeating the procedure multiple times without systematic changes and observations probably will not.

When reporting failures or problems, make sure that you have all details at hand. Be thorough in you assessment. Then ask questions. Advisors usually have sufficient experience to detect errors in procedures and are able to lead you in the right direction when the student is able to provide all the necessary details. They also have enough experience to know when to change directions. Many times one result may be unexpected, but it may be interesting enough to lead the investigation into a totally different avenue. Communicate with your advisor/mentor often.

Are there places other than my institution where I can conduct research?

Absolutely! Your school may be close to other universities, government labs and/or industries that offer part-time research opportunities during the academic year. There may also be summer opportunities in these institutions as well as in REU sites (see next question).

Contact your chemistry department advisor first. He/she may have some information readily available for you. You can also contact nearby universities, local industries and government labs directly or through the career center at your school. You can also find listings through ACS resources:

  • Research Opportunities (US only)
  • International Research Opportunities
  • Internships and Summer Jobs

What are Research Experiences for Undergraduates (REU) sites? When should I apply for a position in one of them?

REU is a program established by the National Science Foundation (NSF) to support active research participation by undergraduate students at host institutions in the United States or abroad. An REU site may offer projects within a single department/discipline or it may have projects that are inter-departmental and interdisciplinary. There are currently over 70 domestic and approximately 5 international REU sites with a chemistry theme. Sites consist of 10-12 students each, although there are larger sites that supplement NSF funding with other sources. Students receive stipends and, in most cases, assistance with housing and travel.

Most REU sites invite rising juniors and rising seniors to participate in research during the summer. Experience in research is not required to apply, except for international sites where at least one semester or summer of prior research experience is recommended. Applications usually open around November or December for participation during the following summer. Undergraduate students supported with NSF funds must be citizens or permanent residents of the United States or its possessions. Some REU sites with supplementary funds from other sources may accept international students that are enrolled at US institutions.

  • Get more information about REU sites

How do I prepare a scientific research poster?

Here are some links to sites with very useful information and samples.

  • How to Prepare a Proper Scientific Paper or Poster
  • Creating Effective Poster Presentations
  • Designing Effective Poster Presentations

Research and Internship Opportunities

  • Internships and Fellowships Find internships, fellowships, and cooperative education opportunities.
  • SCI Scholars Internship Program Industrial internships for chemistry and chemical engineering undergraduates.
  • ACS International Center Fellowships, scholarships, and research opportunities around the globe

Accept & Close The ACS takes your privacy seriously as it relates to cookies. We use cookies to remember users, better understand ways to serve them, improve our value proposition, and optimize their experience. Learn more about managing your cookies at Cookies Policy .

1155 Sixteenth Street, NW, Washington, DC 20036, USA |  service@acs.org  | 1-800-333-9511 (US and Canada) | 614-447-3776 (outside North America)

  • Terms of Use
  • Accessibility

Copyright © 2024 American Chemical Society

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

  • ACS Publications

28 Must-Read Topics in Chemistry

  • Mar 4, 2021
  • 14 min read

ACS Publications regularly produces collections of the most important chemistry research topics. These Virtual Collections of the most important chemistry research topics bring together the most important ideas in the field in a variety of ways, including Special Issues and ACS Selects from across the portfolio journals. These collections reflect the most important chemistry research […]

research project chemistry

ACS Publications regularly produces collections of the most important chemistry research topics. These Virtual Collections of the most important chemistry research topics bring together the most important ideas in the field in a variety of ways, including Special Issues and ACS Selects from across the portfolio journals. These collections reflect the most important chemistry research topics of current scientific interest and are designed for experienced investigators and educators alike.

Browse 28 of the most important, engaging topics in chemists with Virtual Collections released by ACS Publications journals in Q4 2020:

Crystalline molecular materials: from structure to function.

research project chemistry

This Virtual Special Issue focuses on the design and study of materials wherein the target properties arise from, or are enhanced by, the three-dimensional assembly of molecules in a solid phase. The “structure−function” relationship transcends the nature of the individual molecule, and supramolecular organization is a key component in the material’s properties. The goal of this issue is to assemble contributions from a broad community of scientists with similar research interests, as defined by the need to understand and manipulate the bulk assembly of molecules. Placing emphasis on a common interest in supramolecular architecture, this issue showcases work in apparently disparate fields, including molecule-based magnetism, rare zero thermal expansion properties, and catalytic activity.

Read the Issue. ***

Materials for Thermoelectric Energy Conversion

research project chemistry

This virtual issue of ACS Applied Materials & Interfaces and ACS Applied Energy Materials presents cutting edge articles in the field of Thermoelectric Energy Conversion. Thermoelectric materials and devices are central for energy conversion and management as they convert waste heat into electricity. Given the ubiquitous nature of heat, thermoelectric materials provide total-package solutions to mitigate environmental crisis and energy needs. The realization of this has caused a surge in the development of high-performance, environmentally benign, robust, and earth-abundant inorganic materials, which can be used in heat to electrical energy generations in power plants, space, automobiles, households, battery technology, and data centers. Interestingly, flexible thermoelectric materials, mainly based on organic/polymer materials, have successfully been integrated into body-worn fabrics and watches, which simply utilize body heat to generate electricity. Furthermore, using the Peltier effect, thermoelectric coolers are developed and are one of the mainstays in the consumer market for refrigeration purposes, especially for portable applications. Hence, thermoelectricity is foreseen as a potential frontrunner in energy management for the near future.

Interfacialscience Developments at the Chinese Academy of Sciences

research project chemistry

This virtual issue is a sampling of some of the most recent work from the Chinese Academy of Sciences, with an emphasis on work from this year (2020) so far. The 46 articles in this virtual issue cover a broad range of research topics, examples of which include Janus particle engineering and interfacial assembly, surface modification of colloid particles, stability of water monolayer in mineral under high pressure, nano-bubbles adsorption on surface, switching of underwater superhydrophilicity and superoleophobicity, nanostructured de-icing surface, lithium ion battery anode binder, bio-inspired smart liquid directional transport control, corrosion resistance of alloys, behavior of polymers at solid/liquid interface, and effect of polymer conformation on protein resistance.

Celebrating 90% Completion of the Human Proteome

research project chemistry

Twenty years after the establishment of the international Human Proteome Organization (HUPO) and ten years after its launch of the Human Proteome Project (HPP), researchers have much to celebrate. Today, HUPO will release the draft human proteome at the 19th Human Proteome Organization World Congress, connecting virtually, with this Virtual Issue published in the Journal of Proteome Research.

Read the Issue . ***

Nanomaterials-based Membranes for Chemical Separations

research project chemistry

Membranes are a critical area of research in academia and have been used in industrial applications for decades. Membrane-based separations are desired in industry because they can be highly energy efficient and up to an order of magnitude less expensive than other techniques such as distillation. In addition, these separations are easily scaled to industrial levels so that advances in the laboratory can be translated to real applications. The key challenges in this field are how to separate chemicals with similar sizes by having a high flux for only one chemical through a membrane. This difference in flux should translate into a high selectivity for one chemical over one or more other chemicals present in a mixture. An unfortunate trade-off in membrane-based separations is that as the permeation of a chemical increases, the selectivity of the membrane will often decrease. To address these challenges, scientists often use cross-linked polymers with ill-defined pores, hard materials such as zeolites with well-defined pores, 2D materials, coated nanofibers, carbon nanotubes, metal nanoparticles, or other nanomaterials.

Organic Chemistry in China: Synthetic Methodology, Natural Products, and More

During the past 20 years, China has become a powerhouse in chemistry research, now leading globally in submissions of research articles to chemical journals. In recognizing these developments, Organic Letters presents a Virtual Issue that includes a collection of 25 research articles contributed by Chinese chemists during 2019-2020, selected from among the more than 1,000 articles published in the journal from China over this period.

Advances in Microfluidics Research

research project chemistry

This Virtual Issue highlights articles published in Analytical Chemistry that showcase advances in microfluidics research over the past several years. The articles below are separated by sub-field and span research on virus detection to cell manipulation to 3D-printing, and are all at the cutting edge of microfluidics technologies. The thirty articles included in this collection were selected by Associate Editor Yoshinobu Baba and include previous winners of the Chemical & Biological Microsystems Society (CBMS)/ Analytical Chemistry co-sponsored Young Innovator Award.

Chemistry in Korea: IBS and Beyond

research project chemistry

This virtual issue of “Chemistry in Korea: IBS and Beyond” highlights the latest contributions from eight IBS centers along with exciting advances from other emerging scientists in South Korea. Topics encompass a wide range of chemistry and its cross-boundary researches from theory and simulations, nanomaterials, molecular synthesis, catalysts, spectroscopy, supramolecular chemistry, soft materials to nanomedicine.

Highlighting Analytical Chemistry 2020 Advisory Board Members

research project chemistry

The members of Analytical Chemistry ‘s Editorial Advisory Board (EAB) and Early Career Board (ECB) panels devote substantial voluntary time and energy to support Analytical Chemistry and deserve special recognition for their contributions. In recognition of their service, this new virtual issue is dedicated to the members of both the journal’s EAB and ECB, with each selecting one of their recent Analytical Chemistry articles to highlight.

A Bright New World of Ferroelectrics: Magic of Spontaneous Polarization

research project chemistry

Ferroelectric materials featured with spontaneous polarization have experienced a century of vigorous development. The permanent electric dipole moment makes ferroelectric an outstanding multifunctional material for a wide range of applications. Ferroelectrics with unique coupling effects among electric, optical, mechanical, thermal, and magnetic orders, have been developed for a wide range of functional devices and triggered a new world-wide wave of ferroelectric research. This virtual issue highlights some of the key state-of-the-art findings in ferroelectrics published in ACS Applied Materials & Interfaces and ACS Applied Electronic Materials , and the editorial attempts to reflect the rapid development and provide a perspective in this field.

Peter J. Rossky Festschrift

This Virtual Special Issue honors Professor Peter J. Rossky and his contributions to the field of physical chemistry.

Computational and Experimental Advances in Biomembranes

research project chemistry

As an integral component of cellular architecture and signalling, cell membranes are central to cell physiology. Comprising a vastly heterogeneous mixture of proteins and lipids, cell membranes are constantly adapting their structural organization to regulate cellular processes. Malfunction at the level of lipid-protein interaction is implicated in numerous diseases, and hence, understanding cell membrane organization at the molecular level is of critical importance. The collection of articles in this Virtual Special Issue from The Journal of Physical Chemistry B provides a survey of the advances in both computational and experimental characterization of the complex processes underlying the behavior of cellular membranes.

Sensors and Industry

research project chemistry

In this virtual issue, ACS Sensors and Analytical Chemistry highlight 30 of these outstanding industrial co-authored papers recently published in the two journals. The breadth of the articles in this collection emphasizes the incredible research on diagnostic methods being performed in both universities and industries, and highlights the benefits of collaboration between the two. Read the Issue . ***

Machine Learning in Physical Chemistry

research project chemistry

Physical chemistry stands today at an exciting transition state where the integration of machine learning and data science tools into all corners of the field is poised to do nothing short of revolutionizing the discipline. These powerful techniques – when appropriately combined with domain knowledge, tools, and expertise – have led to new physical insights, better understanding, accelerated discovery, rational design, and inverse engineering that transcend traditional approaches to materials, molecular, and chemical science and engineering. This collection of nearly 150 manuscripts from The Journal of Physical Chemistry A / B / C and The Journal of Physical Chemistry Letters reflects the relevance and popularity of this topic in physical chemistry by both the depth and breadth of excellent articles in this exciting collection.

Self-Healing Materials

research project chemistry

This is a spotlight on applications discusses developments made over the last six years that have enabled the fabrication of increasingly high-performance spray-coated perovskite solar cells. In particular, the various approaches adopted to spray-cast perovskite films (one-step vs two-step processes) ware charted and the development of sophisticated techniques used to control thin-film crystallinity is described. Finally, remaining research challenges are discussed that, once solved, may allow the mass deployment of low-cost solar energy.

Women in Mass Spectrometry

research project chemistry

This virtual issue was assembled to feature talented women mass spectrometrists who publish in JASMS as the corresponding author. The articles compiled are among the most highly cited that were published in the journal in the last 5 years, regardless of gender, and are representative of the best mass spectrometry science reported in JASMS .

In Memory of Mario Molina (1943-2020)

research project chemistry

Mario Molina was a Mexican chemist who shared the 1995 Nobel Prize in chemistry with the late F. Sherwood Rowland of UC Irvine and Paul Crutzen of the Max Planck Institute for Chemistry in Mainz “for their work in atmospheric chemistry particularly concerning the formation and decomposition of ozone.” Molina passed away in his birth city of Mexico City at age 77 on 7 October 2020. A physical chemist at heart, Molina published about 80 papers in The Journal of Physical Chemistry . His mentees remember him by celebrating 30 of them. His indelible legacy lives on through his publications, his collaborators, the scholars that he trained, the innovations in experimental design he made, the thousands who were inspired and informed by his science communication, and the millions whose quality of life improved thanks to his work on stratospheric ozone depletion and air quality in megacities.

Women Scientists at the Forefront of Energy Research: A Virtual Issue, Part 3

research project chemistry

This is the third part of a series that recognizes women energy researchers who have published new advances from their laboratories in ACS Energy Letters . The inspirational stories and advice to newcomers in the field contained in this issue should provide motivation to advance the scientific research in energy conversion and storage. Through their personal reflections, these researchers discuss the successful career paths they have taken to become leaders in the scientific community.

Scalable Organic Chemistry: A Virtual Issue to highlight Organic Process Research & Development

research project chemistry

From small-scale use in academic research to large-scale application in industrial processes, only select chemistries make the cut to be relevant throughout the scale-up process. This virtual issue showcases a collection of innovative and industrially-relevant papers on key topics from academic and industrial chemists in Organic Process Research & Development .

Virtual Issue in Memoriam of Dr. Alan Poland (1940-2020)

research project chemistry

Dr. Alan Poland was a major influence on the development of modern molecular toxicology and the understanding of how chemicals cause cancer. He is most widely known for his groundbreaking work to explain the adverse effects of dioxins, chemicals and related environmental pollutants.

Deep Eutectic Solvents

research project chemistry

This virtual issue focuses on scientific and engineering advances related to Deep Eutectic Solvents. It includes papers that have appeared in the last two years in ACS Sustainable Chemistry & Engineering , Industrial & Engineering Chemistry Research , Journal of Chemical & Engineering Data , and Journal of Physical Chemistry B and C .

Celebrating ACS Sensors ‘ Editorial Advisory Board

research project chemistry

Metal-Organic Frameworks: Fundamental Study and Applications

research project chemistry

Exciting developments in metal-organic frameworks (MOFs) are the focus of this Virtual Issue that is jointly produced by Langmuir and ACS Applied Materials & Interfaces ( ACS AMI ). These two journals publish complementary and ground-breaking work on interfacial science. ACS AMI has a strong focus on practical applications whereas Langmuir encourages reports of both fundamental and applied nature, when rational design is a highlighted feature of the work.

Inorganic Synthesis in Uncommon Reaction Media

research project chemistry

Water and organic solvents have long been the most common reaction media for chemical synthesis. Nevertheless, given limits in solubility and the need for extreme temperatures sometimes, especially for inorganic substances, chemists have had a growing interest in moving to “uncommon” reaction media to improve the access to certain compounds or to permit the fundamental study of the behavior of chemicals under unique conditions. In this Virtual Issue, “Inorganic Synthesis in Uncommon Reaction Media,” Guest Editor Julia Chan and Associate Editor Stefanie Dehnen highlight recent reports from Inorganic Chemistry and additionally from Chemistry of Materials and Crystal Growth & Design that feature reactions taking place in currently used uncommon systems: molten metals (metal flux), molten salts (nonmetal flux), ionic liquids (ionothermal if carried out under elevated temperatures), supercritical solvents (solvothermal), and liquefied gases.

The Challenge of Antibacterial Drug Permeation and Current Advances

research project chemistry

Recent advances in the area of drug permeation feed the pipeline of antibacterial agents with new and improved activities and keep the ever-changing landscape of antibiotic resistance effectively managed by small molecule therapeutics. The articles included in this Virtual Issue broadly represent three areas of research: 1) new experimental approaches to analyze intracellular accumulation of compounds in whole cells and compound permeation across model membranes; 2) new computational models of drug permeation across the outer membrane and integrated kinetic models of drug permeation across membranes with active efflux; and 3) new antibiotic screening campaigns and exploration of synergistic drug combinations bypassing bacterial permeation barriers.

Organic Chemistry in Japan: A Strong Foundation and Honorable Tradition

Organic chemistry has a strong foundation and honorable tradition in Japan, centering in recent decades predominantly on the development of synthetic methodologies, particularly in an interdisciplinary fashion focusing on cross-coupling and C-H activation and functionalization, the total synthesis of natural products, chemical biology research, supramolecular chemistry, and applications of (opto)electronic materials—all with an eye toward fostering international collaborations. This new Organic Letters Virtual Issue features 25 selected articles form 2019-2020 to highlight these achievements.

research project chemistry

This virtual issue in Environmental Science & Technology ( ES&T ) marks the 50-year anniversary of the United States Environmental Protection Agency (US EPA). Recognizing this significant milestone brings an opportunity to reflect on the enormous achievements and impact this federal agency has had on the remediation and protection of the environment, reaching both domestically within the USA and globally since its official beginnings on December 2nd, 1970.

Bioconjugate Chemistry 30th Anniversary Reviews

research project chemistry

The breadth and impact of these 30th anniversary reviews demonstrate how the Bioconjugate Chemistry of today continues the forward-looking embrace of new science and systems while maintaining the old-fashioned virtues of scientific rigor and reproducibility.

Want the latest stories delivered to your inbox each month?

ACS Applied Energy Materials

ACS Applied Energy Materials

Illustration

  • Research Paper Guides
  • Research Paper Topics

200+ Chemistry Research Topics for Papers

  • Speech Topics
  • Basics of Essay Writing
  • Essay Topics
  • Other Essays
  • Main Academic Essays
  • Basics of Research Paper Writing
  • Miscellaneous
  • Chicago/ Turabian
  • Data & Statistics
  • Methodology
  • Admission Writing Tips
  • Admission Advice
  • Other Guides
  • Student Life
  • Studying Tips
  • Understanding Plagiarism
  • Academic Writing Tips
  • Basics of Dissertation & Thesis Writing

Illustration

  • Essay Guides
  • Formatting Guides
  • Basics of Research Process
  • Admission Guides
  • Dissertation & Thesis Guides

Chemistry_Research_Topics

Table of contents

Illustration

Use our free Readability checker

Do you find identifying suitable chemistry research topics difficult? You are not alone! Many students consider it challenging and time-consuming to choose an interesting chemistry topic for a research paper. In this blog post, we will discuss various research topics in chemistry to help simplify your research process. Continue reading to familiarize yourself with ideas from different fields and academic levels. Apart from defining research topics and discussing how to select one, we have provided examples to help kick-start your research project or assignments. Got a deadline approaching fast? Entrust your chemistry research paper to professional writers. Our academic service proceeds all ‘ write my paper for me ’ inquiries quickly and efficiently. Get your paper written now by an expert!

What Are Chemistry Research Topics?

Chemistry is a field of science that covers the structure, composition, and properties of elements and compounds. As a student taking this subject, you will encounter multiple experiments, chemical reactions, and analytical study methods. This branch of science can be subdivided into multiple areas, including organic, inorganic, biochemistry, physical, analytical, and nuclear science, among others. Chemistry research paper topics are talking points related to the branches of science outlined above. To ensure that all learning objectives are met, instructors may require students to work on various topics in chemistry. You would be expected to source your chemistry research topics ideas from all possible branches. In one instance, your topic could be associated with analytical science, in another - with practical discussions, which is an entirely different thing despite both areas being categorized as chemistry subfields.

Characteristics of Good Chemistry Research Topics

Selecting a good research topic for chemistry plays a vital role in determining the probability of success when writing your paper. It is, therefore, important to know the characteristics of good chemistry topics for a research paper. Although you can derive discussions from many sub-areas, these research topic ideas share many common characteristics. A great research topic should be:

  • Precise, meaningful, clear, and straightforward
  • Analytical and researchable using logical methodologies
  • Of theoretical or practical significance
  • Supported by numerous academic evidence and sources.

How to Choose a Chemistry Research Topic?

Chemistry is a broad subject with multiple research areas. If you are not keen enough, you may easily get lost in its variety and fail to select a congenial title. So, how do you deal with this issue? In a nutshell, the process comes down to two aspects – your passion and competence. Below are step-by-step guidelines that you can follow to determine interesting topics about chemistry:

  • Pick chemistry research topics with your knowledge capabilities in mind. Do not choose a topic that is beyond your academic level.
  • Choose something that is interesting to you. If you are fascinated with the selected topic, you will find responding to the research questions to be much simpler.
  • Select a research title that is convenient to work on due to the sufficient amount and availability of existing evidence and references.
  • Ensure that the chosen chemistry topics for research paper are within the subfield you are majoring in and that it meets your instructor’s requirements.

Once you select the most appropriate title, see how to write a research paper like an expert.

Chemistry Research Paper Topics List

There are many research topics for chemistry to choose from. In this section, we have compiled examples of the best topics from various sub-areas. Below is a list of chemistry research topics for papers:

  • Latest developments in DNA technology.
  • Negative effects of using pesticides in food production.
  • Importance and potential drawbacks of using fertilizer in commercial agriculture.
  • Acids and bases: composition, properties, and applications.
  • Industrial chemicals and environmental pollution.
  • Dangers and side effects of using ibuprofen.
  • Acid-base neutralization process.
  • Air pollution implication on global warming and climate change.
  • Ageing and the brain.
  • Catalytic reaction mechanisms.

The chemistry research topics list above is created by drawing ideas from different sub-areas, thus covering a significant part of scholars’ inquiries.

Interesting Topics in Chemistry

In some instances, one may select a research topic because it is just fascinating. There are interesting chemistry topics that can explain intriguing phenomena in your day-to-day life. Alternatively, you can also opt for something related to essential issues in the current society. Here are sample chemistry interesting topics you can research into:

  • Composition and effects of e-cigarettes.
  • Food dye composition.
  • Measuring electrical conductivity in a salt solution.
  • How to change a penny’s color to gold.
  • The scientific explanation of foam formation.
  • Silicon usage in cosmetic surgery.
  • Evidence and application of surface tension in day-to-day life.
  • Examining pesticide residue in farm products from different grocery stores.
  • How does molecule composition affect the physical appearance of things?
  • Sodium metal reaction on water surfaces.
  • How to separate dissolved sugar from water.
  • How to clean up oil spills at sea.
  • Rust formation on metal surfaces.
  • How to chemically remove rust from stainless steel.
  • The science behind turning boiling water into “snow” in a cold winter.

Easy Chemistry Research Topics

The science studied in high schools is way simpler compared to postgraduate one. You can find easy chemistry topics to research if you focus on certain academic levels and sub-areas. For example, physical chemistry has easy chemistry topics to do research paper on. On the other side, inorganic or analytical sub-areas tend to offer scientific research research topics that are more technical. The list below outlines easy topic examples you can pick from:

  • Determining the percentage composition of oxygen in the air.
  • Patterns in the periodic table.
  • Atomic theory: primary principles and applications.
  • Chemical and physical properties of starch.
  • Determining the pH level of various liquids.
  • Properties of acids and bases.
  • Why is glass the preferred material in laboratories?
  • Balancing chemical equations.
  • Analyzing different chemical bonds.
  • Alkali metals and their properties.
  • General characteristics of metals.
  • Noble gasses: properties and reaction characteristics.
  • Water purification methods.
  • The periodic table: its historical background.
  • Alkaline earth metals: properties and reactivity.

Innovative Research Topics in Chemistry

Innovative chemistry topics for research paper relate to new ideas and ways to go about things. Using these ground-breaking topics related to chemistry, you can discuss new materials or methodologies. If you are interested in innovative research topics, here are some examples you can borrow from:

  • Gene modification in medical chemistry .
  • Improved cancer treatment using bacteria-based biohybrid microrobots.
  • New methods used to detect explosive residues.
  • Studying the molecular makeup of particles in space.
  • Substitute for pesticides in farming.
  • Nanophotonics in aeronautics.
  • Nanomaterials production process and techniques.
  • Clean energy alternatives for fossil fuels.
  • Photocatalysis usage in 3D printing technology.
  • Biodegradable polymers as alternatives for plastics.
  • Silicon dioxide usage in solar cells.
  • Chemical reactions in lithium-ion batteries.
  • Self-healing concrete: basic principles.
  • New materials for lightweight planes and vehicles.
  • Polymer analysis in a restricted environment.

Cool Chemistry Research Topics

Sometimes, our title selection might be guided by how cool and fun the study results will be. If you are looking for cool chemistry topics to research on, you are in the right place. We have compiled some cool chemistry topics for you to choose from.

  • How World War II influenced computational chemistry.
  • How do chemicals in our brains create different moods?
  • Composition and properties of laughing gas.
  • European alchemy: historical background and its impact on modern science.
  • Developing a film at home: chemicals required and process.
  • Why lemon juice stops apples from browning.
  • Different flame colors and their scientific explanation.
  • Using a potato to light a bulb.
  • Principles of chromatography.
  • Utilizing cloud seeding in alleviating drought conditions.
  • Finding iron in a mixture of metals.
  • Gas chromatography: how it works and its applications.
  • Application of vibrational spectroscopy.
  • Surface tension and the dish soap experiment.
  • How to make a homemade water filter.

Have you spotted any ideas but can’t get the research process started? Contact our professional writing service where you can pay for research paper and be sure that you will get outstanding results within your deadline. 

Intriguing Chemistry Topics for Research

There are many chemistry topics to write about. However, not all topics are intriguing (and frankly, most are the other way around). Below are topic examples that can instantly draw readers’ attention:

  • Non-existing chemical compounds.
  • Molecular structure of artificial honey as compared to natural honey.
  • Stem cell studies: ethical implications.
  • Principles of polymerase chain reaction and DNA replication.
  • Organic chemistry applications in our daily living.
  • Chemicals as weapons of mass destruction.
  • How does adding sugar to a soft drink affect its density?
  • Synthetic molecules in the pharmaceutical industry .
  • Aerosol formation and its application in body spray manufacture.
  • Analyzing the gasoline production process.
  • Benzene molecular structure and its use in the cosmetic industry.
  • Why are 96,000,000 black balls dumped into the LA reservoir?
  • Water recycling methods.
  • The discovery of oxygen.
  • Importance of esters in our day-to-day living.

If you closely review the research topics for chemistry paper above, you will find them arousing your curiosity much more than the ones in other sections. These topics will challenge your initial line of thinking or introduce you to the concepts that just stand out.

Unique Chemistry Research Topics

There are some chemistry paper topics that are rarely worked on by students. People ignore these topics because they are either complex or lack adequate conclusive information from previous studies. If you are brave enough and wish to have a unique presentation, you can consider the research topics in chemistry below:

  • Organosilicon compounds and their use.
  • Nucleophiles and electrophiles.
  • Molecular structure of Teflon and its industrial application.
  • Sodium azide usage in automobile airbags.
  • Dangers of COVID-19 tests that use sodium azide as the reaction reagent.
  • Chemical composition of steroids and their effects on human beings.
  • Artificial diamond production process.
  • Insulin production biotechnology.
  • Evolution of lethal injection.
  • Effects of chiral class drugs on human health.
  • Chemical residues in livestock.
  • Artificial organs and their potential implication on transplantation.
  • Role of nanoreactors in nanotechnology and biotechnology.
  • Dangers of phosgene to human health.
  • Production of dry ice.

Popular Chemistry Research Paper Topics

Unlike the unique study subjects discussed in the previous section, popular topics relating to chemistry are widely researched. Students favor these topics due to reasons like their simplicity, availability of adequate evidence, and their relevance to current issues. You can pick a hot topic in chemistry from the list below:

  • Metal oxide usage in electronics.
  • Importance of nitrogen to human survival.
  • How do temperature changes affect chemical reactions?
  • Lewis structure for ionic compounds.
  • Analysis of the hydrophobic effect.
  • Hydrogen as an alternative to fossil fuel.
  • Application of thermodynamics law in our lives.
  • pH level calculations and analysis.
  • Gas laws and their application.
  • Why is Earth viewed as a closed thermodynamic system?
  • Redox reactions and their industrial applications.
  • Decomposition process of polymers.
  • The anomalous expansion of water.
  • Impact of fluoride ion on dental health .
  • The use of lithium, magnesium, and calcium compounds in clinical medicine.

>> View more: Medical Research Paper Topics

Controversial Chemistry Topics for Papers

Just like in any other subject, there exist chemistry project topics that are controversial in nature. People are understandably more passionate about some subject matters compared to others. Discussions related to, for instance, chemical usage in battlefields and the health effects of using certain chemicals tend to attract heated debates. Below are some controversial topics in chemistry that you can write about:

  • Biochemicals usage in warfare.
  • Impact of fast-food chemicals on the human brain.
  • Gene modification in human embryos.
  • Bioconjugation techniques and how they are used in drug delivery.
  • Synthetic molecules replication techniques.
  • Use of lethal injection in execution of criminals.
  • Ethical justification for euthanasia.
  • Manufacture of chemical poisons.
  • Fritz Haber’s controversial inventions.
  • Artificial organs and their role in healthcare.
  • Electromagnetic energy conversion to chemical energy.
  • Dangers of using fertilizer in farming.
  • Analyzing the water memory effect.
  • Synthesis of food from non-edible items.
  • Bio-inspired molecular machines and their applications.

Chemistry Research Ideas for Students

Students are often required to work on some chemistry project ideas to successfully complete their course. Depending on the sub-area one specializes in, and the academic level, research matters will vary significantly. For instance, chemistry undergraduate research project ideas are incomparable to highschool research titles. Some subject matters are only suitable for professional research. This section sorts the research ideas into their respective academic levels.

Chemistry Research Topics for High School

Chemistry research project ideas for highschool students are relatively easy compared to higher academic levels. The tasks are not very demanding in terms of the research methodologies used and the time required to complete them. At this level, students are introduced to the basic concepts of the subject. Common chemistry topics for high school are outlined in the list below.

  • Acids and bases in the reduction-oxidation reaction.
  • Importance of studying chemicals and chemical processes in high school.
  • Ionization techniques for the mass spectrometry process.
  • Avogadro’s Law: analysis, formulae, and application.
  • Thermochemistry lab experiments.
  • Laboratory safety rules.
  • The hydrolysis analysis.
  • Acids: structural composition, properties, and use.
  • Noble gasses configuration.
  • States of matter and their characteristics.
  • Optimizing indoor plants life through chemistry.
  • Role of enzymes in chemical and biological reactions.
  • Thermal effects of chemical reactions.
  • The law of multiple proportions in chemical reactions.
  • Constant and changing variables in Boyle’s law .

Chemistry Research Topics for College Students

Chemistry project ideas for college often require students to dive deep into a subject. Rather than explaining the basic concepts, you may be instructed to apply them in addressing problems. A college chemistry project will require you to dedicate more time and conduct more research. Below are some of the title ideas for college students and undergraduates:

  • How much energy is produced from burning nuts and chips?
  • Dangers of using radon in construction and potential solutions.
  • Chemical composition of aspirin and its effect on human physiology.
  • Green chemistry application in the food industry.
  • Phosphorescence versus fluorescence.
  • Dihydroxyacetone phosphate conversion.
  • Big data and biocomputing in chemical studies.
  • Thermoelectric properties of materials.
  • Artificial organic tissue development in laboratories.
  • Nuclear fusion: primary concepts and applications.
  • Power production process in lithium nickel batteries.
  • Medico-biological importance of group 3B and 4B elements.
  • Global cycle of biologically active elements.
  • Importance of chemical knowledge in cancer treatment.
  • Inorganic materials usage in the military.

Chemistry Research Topics in Different Fields

Chemistry can be divided into many sub-areas. Each subfield has interesting chemistry topics to research into. To choose a research topic in chemistry, you need to first determine a sub-area you would wish to specialize in. However, even within these fields, there are still many title options to choose from. To help reduce the confusion and simplify the selection process, we have categorized potential research discussions into their respective sub-areas.

Organic Chemistry Research Topics

Organic chemistry mainly involves studying the structure, composition, properties, and reaction of carbon-based compounds. It is among the most commercially applied subfields, which makes organic chemistry research paper topics very common. I am sure you must have encountered products manufactured using organic chemistry principles within your surroundings. If you wish to learn more about these products, you can explore these latest research topics in organic chemistry:

  • Pain relief medicine: chemical structure and composition.
  • Composition, use, and effects of polymers.
  • Retin-A usage in acne treatment.
  • Organic chemistry usage and application in daily life.
  • Types of organic compounds isomerism.
  • Aromatic hydrocarbons as industrial raw materials.
  • Alcohol hydrophilicity in aqueous solutions.
  • Physical and chemical properties of polyhydric alcohols.
  • Synthetic polymer applications: synthetic fiber, Teflon, and isoprene rubber.
  • Fetal alcohol syndrome: types and symptoms.
  • Structure and properties of phenols.
  • The application of organic chemistry in birth control.
  • Nucleic acid stability.
  • Parameters affecting proton chemical shifts.
  • Structure and properties of lipids.

Inorganic Chemistry Research Topics

This branch deals with the study of structure, composition, and properties of materials that do not contain carbon. Research paper topics for inorganic chemistry focus on metals, minerals, and inorganic compounds. The list below compiles chemistry projects topics and ideas related to inorganic chemistry.

  • How to create new and improve existing alloys.
  • Implication of inorganic chemistry on the environment.
  • Application of inorganic chemistry in the cosmetic industry.
  • Interaction between sulfuric acid and organic materials.
  • Lattice energy and enthalpy for different ionic bonds.
  • Characteristics of different types of nucleosyntheses.
  • Uniqueness of hydrogen bonds and polarity.
  • Hard and soft acids and bases ( HSAB ) theory.
  • Dalton’s Law: principles and applications.
  • Structure of a gemstone and how it impacts its appearance.
  • Relationship between inorganic and biochemistry.
  • Parameters affecting Bronsted-Lowry acidity.
  • Crystal field theory: analysis and disadvantages.
  • Application of angular overlap model.
  • Primary laws of photochemistry.

Analytical Chemistry Research Topics

The determination of the objects’ primary makeup of objects is the main interest of this branch. Various analytical methods, including spectroscopy, chromatography, and electroanalytical techniques, are often discussed in the subfield. As such, many analytical chemistry research paper topics focus on these or other analysis techniques. Below is a list of research topics on analytical chemistry:

  • Analytical techniques used in forensic science.
  • Examining the electroanalytical techniques.
  • Importance of analytical chemistry to the environment.
  • Miniaturization and its use in analyzing pharmaceutical substances.
  • Evaluating the working principles of activation analysis.
  • Gravimetric analysis principles.
  • GMOs usage and their potential hazards to human health.
  • Potentiometric measurement methods.
  • Liquid and gas chromatography.
  • Spectroscopy methods and their use in detecting and quantifying molecular and structural composition of samples.
  • Dispersive X-ray analysis of tissues.
  • Analytical methods for determining the side effects of ibuprofen usage.
  • Benefits of the isomerism framework.
  • Acid-base titration as a quantitative analysis technique.
  • Application of spectroscopy in medicine.

Environment Chemistry Topics for Research

The apparent global warming and climate change threats have led to the development of a new area of study. This sub-area has project topics in chemistry that explore the impact of human activity on the environment and the potential solutions for slowing down and reversing the climate change process. Common environmental chemistry related topics include:

  • Negative effects of deep-sea mining.
  • Ground water contamination: causes, dangers, and potential solutions.
  • Oil spillage and its effect on marine life.
  • Effect of heat engines on the environment.
  • Safe disposal of toxic waste.
  • Global warming: causes and potential remedies.
  • Potential alternatives to fossil fuels.
  • Innovative methods to minimize pesticide usage in agriculture.
  • Cultivated meat as an alternative to livestock farming.
  • How efficient is artificial photosynthesis.
  • The Chernobyl ecological disaster.
  • Analysis of life-cycle assessment (LCA).
  • Environmental benefits of using energy-saving lamps.
  • Environmental pollution by nano toxins.
  • Potential solutions for global warming.

Need more ideas on the environment? Check our list of the best environmental research topics for students. 

Physical Chemistry Research Topics

Physical chemistry is the study of the behavior of matter. Physical chemistry topics for research papers focus on analyzing the physical and chemical properties of atoms and molecules and how they interact with each other. You can use a project topic on chemistry from the list below:

  • Surface tension and its impact on mixtures.
  • Diffusion of liquid and gasses.
  • Reaction of bromine under UV rays.
  • Pressure effect in chemical reactions.
  • Bonding between atoms and molecules.
  • Analyzing Schrodinger’s equation.
  • Hess’s laws: principles and application.
  • Effects of intermolecular forces on the melting point of a material.
  • Entropy law of thermodynamics.
  • Relationship between quantum mechanics and atomic orbitals.
  • Chemical kinetics in pharmacy.
  • Analyzing the physical and chemical indicators of milk.
  • How to determine atoms’ electron configuration.
  • Why isotopes exist.
  • Determining the group based on its successive ionization energies.

Chemical Engineering Research Topics

In this section, we will discuss research topics of chemistry related to the design and application of chemical processes. Here are some of the chemical research project ideas that will impress your instructor:

  • Chemical engineering concepts in the food production industry.
  • Analyzing wastewater treatment techniques.
  • Conversion of rocket fuel to energy.
  • Analyzing different mixture separation techniques.
  • Industrial application of chemical engineering concepts.
  • Non-reactive mass balances and mass balance with reaction.
  • Binary distillation and its application.
  • Gas absorption usage in the chemical industry.
  • Reaction kinetics in a plug flow reactor.
  • Water splitting for hydrogen production.
  • The application of MIMO theory in the control of chemical process operation.
  • Chemical engineering applications in the healthcare sector.
  • Nanofiltration member usages in pharmaceutical wastewater treatment.
  • General overview of microfluidics.
  • Production of high-quality foam.

Nuclear Chemistry Research Topics

A nuclear chemistry research project deals with radioactivity-related processes. You may encounter this branch of science in nuclear energy production, military applications, and even in the hospital. Some of the researchable topics in chemistry of nuclei transformation include:

  • Computation of an element’s half-life.
  • Radioactive elements in real life and how they are being used.
  • Nuclear fusion: the process and its function.
  • Types of radioactive decay.
  • Effects of radiation on biological systems.
  • Safe radioactive waste disposal.
  • Application of nuclear science in the healthcare sector.
  • Analyzing the three types of radiation.
  • How to destroy toxic organic compounds using irradiation.
  • Is there a possibility of cold fusion ever happening?
  • Biological application of radiochemistry.
  • Dangerous consequences of ionizing versus non-ionizing radiation.
  • Optical chemo sensors: principles and applications.
  • Interaction between water and radioactive materials.
  • Radiation accident cases in human history.

There is a vast assortment of research ideas for your study on our platform. Be it biology research topics or nursing research paper topics , we have all of them here.

Bottom Line on Chemistry Research Topics

In sum, chemistry is a broad subject with multiple sub-areas. Depending on your preference, you can choose interesting chemistry research topics for papers from the many subfields. Apart from selecting a good research subject, also remember that is always mandatory to adhere to proper writing procedures! Besides, select chemistry essay topics that will keep you excited till the end of research, as you wouldn’t want to quit in the middle and switch to another topic. If you combine all provided tips together, you will definitely find it easy to select and work on research in chemistry topics.

Illustration

Our academic writing service is always happy to help. Our platform was created by students who also struggled. So the writers deliver excellent papers focusing on fast and high-quality writing. 

Joe_Eckel_1_ab59a03630.jpg

Joe Eckel is an expert on Dissertations writing. He makes sure that each student gets precious insights on composing A-grade academic writing.

You may also like

thumbnail@2x.png

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Chemistry articles from across Nature Portfolio

Chemistry is a branch of science that involves the study of the composition, structure and properties of matter. Often known as the central science, it is a creative discipline chiefly concerned with atomic and molecular structure and its change, for instance through chemical reactions.

research project chemistry

Metal-free catalysts for hydrogenation

Ethylene feedstocks must be ultrapure for plastics production, but metal-based catalysts used for acetylene removal are limited by cost, scarcity and durability. Now, electrochemical studies demonstrate that 2-thiolimidazole exceeds the efficiency of traditional metal-based catalysts with remarkable selectivity and conversion rates.

  • Quanbin Dai

research project chemistry

Layered self-pillared zeolites convert polyethylene to gasoline

State-of-the-art plastic deconstruction technologies typically require noble metals, consume hydrogen gas, and generate waste methane. Now it has been shown that earth-abundant layered self-pillared zeolite catalysts selectively convert polyethylene to high-octane products without requiring molecular hydrogen.

  • Chris Torres
  • Julie E. Rorrer

research project chemistry

Cyclopropenium functionalization

Although functionalized cyclopropenes have found uses in many applications, their synthesis has been severely limited. Now, a hypervalent iodine reagent, in conjunction with gold catalysis, has been utilized to control their reactivity, allowing efficient formation of cyclopropenyl alkynes/alkenes.

  • Sayad Doobary
  • Berit Olofsson

Related Subjects

  • Analytical chemistry
  • Biochemistry
  • Biosynthesis
  • Chemical biology
  • Chemical education
  • Chemical engineering
  • Chemical safety
  • Cheminformatics
  • Chemistry publishing
  • Communicating chemistry
  • Coordination chemistry
  • Electrochemistry
  • Environmental chemistry
  • Green chemistry
  • History of chemistry
  • Inorganic chemistry
  • Materials chemistry
  • Medicinal chemistry
  • Nuclear chemistry
  • Organic chemistry
  • Chemical origin of life
  • Photochemistry
  • Physical chemistry
  • Polymer chemistry
  • Process chemistry
  • Supramolecular chemistry
  • Surface chemistry
  • Chemical synthesis
  • Theoretical chemistry

Latest Research and Reviews

research project chemistry

Atroposelective synthesis of biaxial bridged eight-membered terphenyls via a Co/SPDO-catalyzed aerobic oxidative coupling/desymmetrization of phenols

Biaryl compounds with an axial chirality are valuable architectures but few methods have been developed for the construction of bridged biaryls, a subclass of these compounds that bear a tether to connect the two arenes and form a medium-sized ring. Here, the authors design a Co/SPDO-catalyzed aerobic oxidative coupling/desymmetrization sequence of prochiral phenols for the enantioselective synthesis of biaxial bridged m-terphenyls embedded in an azocane.

  • Shuang-Hu Wang
  • Shi-Qiang Wei
  • Tong-Mei Ding

research project chemistry

Nanomaterials functionalized acidic ionic organosilica as highly active catalyst in the selective synthesis of benzimidazole via dehydrogenative coupling of diamines and alcohols

  • Fatemeh Rajabi
  • Afsaneh Feiz

research project chemistry

Rapid automated iterative small-molecule synthesis

Automated iterative small-molecule synthesis has generally been limited to around one carbon–carbon bond-forming step per day. Now, a next-generation automated synthesizer enables rapid, automated, iterative synthesis of a variety of small molecules. Improvements to chemistry and automation leads to a tenfold decrease in reaction time over previous automated platforms.

  • Wesley Wang
  • Nicholas H. Angello
  • Martin D. Burke

research project chemistry

Catalytic asymmetric synthesis of planar-chiral dianthranilides via (Dynamic) kinetic resolution

Chirality has long fascinated chemists, but asymmetric synthesis has largely focused on central, axial, and helical chirality to date. Here, the authors synthesize dianthranilides with planar chirality, via cinchona alkaloid-catalyzed (dynamic) kinetic resolution.

  • Chun-Yan Guan
  • Guang-Jian Mei

research project chemistry

Efficient CO and acrolein co-production via paired electrolysis

Paired electrosynthesis is an efficient green process that minimizes resource and energy consumption as well as waste generation. The authors demonstrate an electrolysis system that pairs CO 2 reduction to CO at the cathode with allyl alcohol oxidation to acrolein at the anode.

  • Edward H. Sargent

research project chemistry

Molecular-strain induced phosphinidene reactivity of a phosphanorcaradiene

Phosphanorcaradienes can serve as synthons for transient phosphinidene but the synthesis remains challenging. Here, the authors report a synthesis protocol for a phosphanorcaradiene, in which one of the benzene rings is intramolecularly dearomatized through attachment to the phosphorus atom.

  • Yizhen Chen
  • Gengwen Tan

Advertisement

News and Comment

research project chemistry

N -heteroarenes via transmutation

  • Jan-Stefan Völler

research project chemistry

A boronic enzyme

  • Francesco Zamberlan

research project chemistry

Open questions on carbonaceous matter in meteorites

Extraterrestrial carbon gives insights into the origin of life and processes that took place billions of years ago in our solar system. Here, the authors provide an overview of what is known and of unanswered questions with a meteoritical focus.

  • Oliver Christ
  • Fabrizio Nestola
  • Matteo Alvaro

research project chemistry

How AI could improve robotics, the cockroach’s origins, and promethium spills its secrets

We round up some recent stories from the Nature Briefing.

  • Benjamin Thompson
  • Elizabeth Gibney
  • Flora Graham

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research project chemistry

Royal Society of Chemistry

A guide to research question writing for undergraduate chemistry education research students

ORCID logo

Welcome to chemistry education research

There is no doubt that there are particular challenges associated with chemistry students taking up a project that brings together familiar aspects of chemistry with aspects of social sciences that are likely unfamiliar. There is a new world of terminology and literature and approaches that may initially seem insurmountable. However, as chemistry students, you bring something unique to the discussion on education: your expertise in chemistry and your experience of being a chemistry student. The combination of discipline speciality and focus on education has given rise to a new genre of education research, known as discipline based education research, or DBER ( NRC, 2012 ). The focus on chemistry, known as chemistry education research , intends to offer insights into issues affecting teaching and learning of chemistry from the perspective of chemistry, and offers enormous insight into factors affecting learning in our discipline. This journal ( www.rsc.org/cerp ) along with the Journal of Chemical Education published by the American Chemical Society (http://pubs.acs.org/journal/jceda8) and Chemistry Teacher International published for IUPAC (http://www.degruyter.com/view/j/cti) focus on discipline specific issues relating to chemistry education, and their prominence in being associated with major societies in chemistry indicates the high status chemistry education and chemistry education research has attained with the family of chemistry sub-disciplines.

In an attempt to help students new to chemistry education research take some first steps in their research work, this editorial focuses on the important early stage of immersing in project work: deciding what it is you want to research. Other sources of information relating to project work include the associated editorials in this journal describing more fully other parts of conducting research ( Seery et al. , 2019 ), as well as thinking about how theses published as part of university studies compare to education research publications ( Lawrie et al. , 2020 ). These editorials should be useful to students in the planning and writing stages of their research work respectively and, like all articles published in this journal, are free to access. Guidance on completing a literature review in chemistry education research is available online ( Seery, 2017 ).

What do you want to find out? Defining your research question

The “good” news is that this initial experience is very common. The task at the beginning stage of your first project is to determine what general area you would like to research, and narrow this down iteratively until you decide on a particular question you would like to answer. We will go through this process below, but an important thing to keep in mind at this stage is that work on your first project is both about the research you will do and also what you learn about doing research. Choosing a topic of interest is important for your own motivation. But regardless of the topic, doing a project in this field will involve lots of learning about the research processes and this research field. These associated skills and knowledge will likely be of most benefit to you after you complete your dissertation and go on into a future career and further studies.

Deciding on your research topic

Choosing what you want to work on when you are not quite sure of the menu to select from is very difficult. Start by writing down what kinds of things interest you that could form general topics of study. You could structure these using the following prompts:

• What from your own learning experience was satisfactory or unsatisfactory? When did you feel like you really understood something, or when did you feel really lost? Sketch out some thoughts, and discuss with some classmates to see if they had similar experiences. The task is to identify particular topics in chemistry or particular approaches of teaching that emerge, and use those as a basis for narrowing your interest to a specific theme.

• What issues from the media are topical in relation to education? Perhaps there have been changes to assessment approaches in schools, or there is a focus on graduate employability? What issues relating to education are emerging in reaction to the impact of COVID-19? Is there something current that interests you that you would like to focus on?

• Are there societal issues that are important to you? Perhaps you would like to explore the experience or performance of particular groups within education, or look at historical data and research trends. You might wish to explore education policy and subsequent impact in chemistry education.

It is likely that several broad topics will emerge that will be of interest to you. But you only have one year and one project, so you will need to choose one! So before you choose, take a shortlist of about three broad topics that interest you and find out a little more about them. The aim here is to dip your toe in the water of these topics and get a feel for what kinds of things people do, and see which one piques your interest most, and which one has most potential for a meaningful and achievable research project.

To find out a little more, you should engage in preliminary reading. This is not a literature review – the task here is to find one or two recent articles associated with each topic. To achieve this, you could go directly to one of the journal pages linked above and type in some search terms. With each article of interest you retrieve, use the following prompts to guide your reading:

1. The introduction to the article usually sets the context of the research, with some general issues relating to the research in this topic, while the final section of the paper (“limitations” or “conclusions” sections) give some specific detail on what needs further study. Read over these sections: are the issues being discussed of interest to you?

2. The experimental or methods section of the article usually describes the sample used in the study. If you were to research in this area, can you see how questions you are interested in would translate to your setting? While we will discuss scope of research more carefully below, the task here is to put yourself in the moment of doing a research project to think: what would I do? And then ask; does that moment pique your interest?

3. The results and discussion section of the article describes data the researchers report and what they think it means in the wider context of the research area. Again, while the data that you get in your project will depend on what you set out to do, use this reading to see what kind of data is impressing you, and whether you find the discussion of interest.

This kind of “sampling” of the vast literature available is a little ad hoc , but it can be useful to help bring focus on the kinds of research that are feasible and help refine some conversations that you can have with your research supervisor. While embarking on a new project will always have a big “unknown” associated with it, your task is to become as familiar as possible with your chosen topic as you can in advance, so that you are making as informed a decision as possible about your research topic. Once you have – you are ready to continue your research!

From research topic to research question

While we don’t often explicitly state the research question in chemistry research, scientists do have an implicit sense that different questions lean on different areas of theory and require different methods to answer them. We can use some of this basis in translating the context to chemistry education research; namely that the research question and the underpinning theory are clearly interdependent, and the research question we ask will mandate the approaches that we take to answer it.

In fact, in (chemistry) education research, we are very explicit with research questions, and setting out the research question at the start of a study is a major component of the research process ( White, 2008 ). As you will find repeatedly in your project, all the components of a research process are interdependent, so that the research question will determine the methods that will determine the kinds of data you can get, which in turn determine the question you can answer. The research question determines what particular aspect within a general research topic you are going to consider. Blaikie (2000, p. 58) wrote (emphasis in original):

“In my view, formulating research questions is the most critical and, perhaps, the most difficult part of a research design… Establishing research questions makes it possible to select research strategies and methods with confidence. In other words, a research project is built on the foundation of research questions .”

So there is a lot of pressure on research questions! The good news is that while you do need to start writing down your research question near the beginning of the project, it will change during the early stages of scoping out projects when considering feasibility, and as you learn more from reading. It could change as a result of ethical considerations ( Taber, 2014 ). And it will probably change and be fine-tuned as you refine your instruments and embark on your study. So the first time you write out a research question will not be the last. But the act of writing it out, however bluntly at the start, helps set the direction of the project, indicates what methods are likely to be used in the project (those that can help answer the question), and keeps the project focussed when other tempting questions arise and threaten to steer you off-course. So put the kettle on, get out a pen and a lot of paper, and start drafting your first research question!

Defining your research question

To assist your thinking and guide you through this process, an example is used to show how this might happen in practice. In this example, a student has decided that they want to research something related to a general topic of work-experience in chemistry degree programmes. The student had previously completed some work experience in an industrial chemistry laboratory, and knows of peers who have completed it formally as part of their degree programme. The student's experience and anecdotal reports from peers are that this was a very valuable part of their undergraduate studies, and that they felt much more motivated when returning to study in formal teaching at university, as well as having a much clearer idea on their career aspirations after university.

Stage 1: what type of question do you want to answer?

Some foreshadowed questions that might emerge in early stages of this research design might include:

• What kinds of industrial experience options are available to chemistry students?

• What experiences are reported by students on industrial experience?

• Why do some students choose to take up industrial placements?

• How does a students’ perception of their career-related skills change as a result of industrial experience?

• How do students on industrial experience compare to students without such experience?

All of these questions – and you can probably think of many more – are specific to the general topic of industrial experience. But as they stand, they are too broad and need some focussing. To help, we will first think about the general kind of research we want to do ( White, 2008 ).

Types of research

A second broad area of research is explanatory research, which tends to answer questions that start with “how” or “why”. Explanatory research has less of a focus on the subject of the research, and more on the processes the subjects are engaged with, seeking to establish what structures led to observed outcomes so that reasons for them can be elucidated.

A third broad area of research is comparative research, which tends to compare observations or outcomes in two or more different scenarios, using the comparison to identify useful insights into the differences observed. Many people new to education research seek to focus on comparative questions, looking to answer the generic question of is “X” better than “Y”? This is naturally attractive, especially to those with a scientific background, but it is worthwhile being cautious in approaching comparative studies. Even in well-designed research scenarios where research does find that “X” is indeed better than “Y” (and designing those experimental research scenarios is fraught with difficulty in education studies), the question immediately turns to: “but why”? Having richer research about descriptions or explanations associated with one or both of the scenarios is necessary to begin to answer that question.

Let us think again about our foreshadowed questions in the context of general types of question. The aim here is to simply bundle together foreshadowed questions by question type, and using the question type, begin to focus a little more on the particular aspects of interest to us. The intention here is to begin to elaborate on what these general questions would involve in terms of research (beginning to consider feasibility), as well as the kinds of outcomes that might be determined (beginning to consider value of research).

The descriptive questions above could be further explored as follows:

• What kinds of industrial experience options are available to chemistry students? In answering this question, our research might begin to focus on describing the types of industrial experience that are available, their location, their length, placement in the curriculum, and perhaps draw data from a range of universities. In this first iteration, it is clear that this question will provide useful baseline data, but it is unlikely to yield interesting outcomes on its own.

• What experiences are reported by students on industrial experience? In answering this question, we are likely going to focus on interviewing students individually or in groups to find out their experience, guided by whatever particular focus we are interested in, such as questions about motivation, career awareness, learning from placement, etc. This research has the potential to uncover rich narratives informing our understanding of industrial placements from the student perspective.

The explanatory questions above can be further explored as follows:

• How does students’ perception of their career-related skills change as a result of industrial experience? In answering this question, our research would remain focussed on student reports of their experiences, but look at it in the context of their sense of career development, their awareness of development of such skills, or perhaps identifying commonalities that emerge across a cohort of students. This research has the potential to surface such issues and inform the support of career development activities.

• Why do some students choose to take up industrial placements? In answering this question, our research would likely involve finding out more about individual students’ choices. But it is likely to uncover rich seams that can be explored across cohorts – do particular types of students complete placements, or are there any barriers to identify regarding encouraging students to complete placements? “Why” questions tend to throw up a lot of follow-on questions, and their feasibility and scope need to be attended to carefully. But they can offer a lot of insight and power in understanding more deeply issues around particular educational approaches.

The comparative question above can be further explored as follows:

• How do students on industrial experience compare to students without such experience? In answering this question, research might compare educational outcomes or reports of educational experience of students who did and did not complete industrial experience, and draw some inference from that. This type of question is very common among novice researchers, keen to find out whether a particular approach is better or worse, but extreme caution is needed. There may be unobservable issues relating to students who choose particular options that result in other observable measures such as grades, and in uncovering any differences in comparing cohorts, care is needed that an incorrect inference is not made. Handle comparisons with caution!

At this stage, you should pause reading, and dwell on your research topic with the above considerations in mind. Write out some general research areas that have piqued your interest (the foreshadowed questions) and identify them as descriptive, explanatory, or comparative. Use those headline categories to tease out a little more what each question entails: what would research look like, who would it involve, and what information would be obtained (in general terms). From the list of questions you identify, prioritise them in terms of their interest to you. From the exercise above, I think that the “how” question is of most interest to me – I am an educator and therefore am keen to know how we can best support students’ return to studies after being away on placement. I want to know more about difficulties experienced in relation to chemistry concepts during that reimmersion process so that I can make changes and include supports for students. For your research area and your list of foreshadowed questions, you should aim to think about what more focussed topics interest and motivate you, and write out the reason why. This is important; writing it out helps to express your interest and motivation in tangible terms, as well as continuing the process of refining what exactly it is you want to research.

Once you have, we can begin the next stage of writing your research question which involves finding some more context about your research from the literature.

Stage 2: establishing the context for your research

Finding your feet, types of context.

Let's make some of this tangible. In focussing my foreshadowed questions, I have narrowed my interest to considering how students on work experience are aware of their career development, how they acknowledge skills gained, and are able to express that knowledge. Therefore I want to have some theoretical underpinnings to this – what existing work can I lean on that will allow me to further refine my question.

As an example of how reading some literature can help refine the question, consider the notes made about the following two articles.

• A 2017 article that discusses perceived employability among business graduates in an Australian and a UK university, with the latter incorporating work experience ( Jackson and Wilton, 2017 ): this study introduces me to the term “perceived employability”, the extent to which students believe they will be employed after graduation. It highlights the need to consider development of career awareness at the individual level. It discusses the benefits of work experience on perceived employability, although a minimum length is hinted at for this to be effective. It introduces (but does not measure) concepts of self-worth and confidence. Data to inform the paper is collected by a previously published survey instrument. Future work calls for similar studies in other disciplines.

• A 2017 article that discusses undergraduate perceptions of the skills gained from their chemistry degree in a UK university ( Galloway, 2017 ): this study reports on the career relevant skills undergraduate students wished to gain from their degree studies. This study informs us about the extent to which undergraduates are thinking about their career skills, with some comparison between students who were choosing to go on to a chemistry career and those who were considering some other career. It identifies career-related skills students wished to have more of in the chemistry curriculum. Most of the data is collected by a previously published survey. This work helps me locate my general reading in the context of chemistry.

Just considering these two articles and my foreshadowed question, it is possible to clarify the research question a little more. The first article gives some insight into some theoretical issues by introducing a construct of perceived employability – that is something that can be measured (thinking about how something can be measured is called operationalisation). This is related to concepts of self-worth and confidence (something that will seed further reading). Linking this with the second article, we can begin to relate it to chemistry; we can draw on a list of skills that are important to chemistry students (whether or not they intend to pursue chemistry careers), and the perceptions about how they are developed in an undergraduate context. Both articles provide some methodological insights – the use of established surveys to elicit student opinion, and the reporting of career-important skills from the perspective of professional and regulatory bodies for chemistry, as well as chemistry students.

Taking these two readings into account, we might further refine our question. The original foreshadowed question was:

“ How does students’ perception of their career-related skills change as a result of industrial experience? ”

If we wished to draw on the literature just cited, we could refine this to:

“ How does undergraduate chemistry students’ perceived employability and awareness of career-related skills gained change as a result of a year-long industrial placement? ”

This step in focussing is beginning to move the research question development into a phase where particular methods that will answer it begin to emerge. By changing the phrase “perception” to “perceived employability”, we are moving to a particular aspect of perception that could be measured, if we follow methods used in previous studies. We can relate this rather abstract term to the work in chemistry education by also incorporating some consideration of students’ awareness of skills reported to be important for chemistry students. We are also making the details of the study a little more specific; referring to undergraduate chemistry students and the length of the industrial placement. This question then is including:

– The focus of the research: perception of development of career skills.

– The subject of the research: undergraduate chemistry students on placement.

– The data likely to be collected: perceived employment and awareness of career related skills.

It is likely that as more reading is completed, some aspects of this question might change; it may become more refined or more limited in scope. It may change subject from looking at a whole cohort to just one or two individual student journeys. But as the question crystallises, so will the associated methodology and it is important in early readings not to be immediately swayed in one direction or another. Read as broadly as you can, looking at different methods and approaches, and find something that lines up with what it is you want to explore in more detail.

Stage 3: testing your research question

Personal biases.

Whatever we like to tell ourselves, there will always be personal bias. In my own research on learning in laboratories, I have a bias whereby I cannot imagine chemistry programmes without laboratory work ( Seery, 2020 ). If I were to engage in research that examined, for example, the replacement of laboratory work with virtual reality, my personal bias would be that I could not countenance that such an approach could replace the reality of laboratory work. This is a visceral reaction – it is grounded in emotion and personal experience, rather than research, because at the time of writing, little research on this topic exists. Therefore I would need to plan carefully any study that investigated the role of virtual reality in laboratory education to ensure that it was proofed from my own biases, and work hard to ensure that voices or results that challenged my bias were allowed to emerge. The point is that we all have biases, and they need to be openly acknowledged and continually aired. I suggest to my students that they write out their own biases related to their research early in their studies as a useful checkpoint. Any results that come in that agree with the tendency of a bias are scrutinised and challenged in detail. This can be more formally done by writing out a hypothesis, which is essentially a prediction or a preconception of what a finding might be. Hypotheses are just that – they need to be tested against evidence that is powerful enough to confirm or refute them.

Bias can also emerge in research questions. Clearly, our research question written in the format: “why are industrial placements so much better than a year of lecture courses?” is exposing the bias of the author plainly. Biases can be more subtle. Asking leading questions such as “what are the advantages of…” or “what additional benefits are there to…” are not quite as explicitly biased, but there is an implicit suggestion that there will be advantages and benefits. Your research question should not pre-empt the outcome; to do so negates the power of your research. Similarly, asking dichotomous questions (is placement or in-house lecturing best?) implies the assumption that one or the other is “best”, when the reality is that both may have distinct advantages and drawbacks, and a richer approach is to explore what each of those are.

Question scope

Feasibility relates to lots of aspects of the project. In our study on industrial experience, the question asks how something will change, and this immediately implies that we will at least find out what the situation was at the beginning of the placement and at some point during or after the placement. Will that be feasible? Researchers should ask themselves how they will access those they wish to research. This becomes a particular challenge if the intention is to research students based in a different institution. The question should also be reviewed to ensure that it is feasible to achieve an answer with the resources you have to hand. Asking for example, whether doing an industrial placement influences future career choices would be difficult to answer as it would necessitate tracking down a sufficient sample of people who had (and had not) completed placements, and finding a robust way of exploring the influence of placement on their career choice. This might be feasible, but not in the timeframe or with the budget you have assigned to you. Finally, feasibility in terms of what you intend to explore should be considered. In our example research question, we have used the term “perceived employability”, as this is defined and described in previous literature with an instrument that can elicit some value associated with it. Care is needed when writing questions to ensure that you are seeking to find something that can be measured.

Of course researchers will naturally over-extend their research intentions, primarily because that initial motivation they have tapped into will prompt an eagerness to find out as much as possible about their topic of study. One way of addressing this is to write out a list of questions that draw from the main research question, with each one addressing some particular aspect of the research question. For our main research question:

we could envisage some additional related questions:

(a) Are there differences between different types of placement?

(b) Are the observations linked to experience on placement or some other factors?

(c) What career development support did students get during placement?

(d) How did students’ subsequent career plans change as a result of placement?

And the list could go on (and on). Writing out a list of related questions allows you to elaborate on as many aspects of the main question as you can. The task now is to prioritise them. You may find that in prioritising them, one of these questions itself becomes your main question. Or that you will have a main question and a list of subsidiary questions. Subsidiary questions are those which relate to the main question but take a particular focus on some aspect of the research. A good subsidiary question to our main question is question (a), above. This will drill down into the data we collect in the main question and elicit more detail. Care should be taken when identifying subsidiary questions. Firstly, subsidiary questions need to be addressed in full and with the same consideration as the main questions. Research that reports subsidiary question findings that are vague or not fully answered is poor, and undermines the value and power of the findings from the main research questions. If you don’t think you can address it in the scope of your study, it is best to leave it out. Secondly, questions that broaden the scope of the study rather than lead to a deeper focus are not subsidiary questions but rather are ancillary questions. These are effectively new and additional questions to your main research, and it is unlikely that you will have the time or scope to consider them in this iteration. Question (d) is an example of an ancillary question.

Question structure

The length of a research question is the subject of much discussion, and in essence, your question needs to be as long as it needs to be, but no longer. Questions that are too brief will not provide sufficient context for the research, whereas those that are too long will likely confuse the reader as to what it is you are actually looking to do. New researchers tend to write overly long questions, and tactics to address this include thinking about whether the question includes too many aspects. Critiquing my own question, I would point out that I am asking two things in one question – change in perceived employability and change in awareness of career-related skills gained – and if I were to shorten it, I could refer to each of those aspects in subsidiary questions instead. This would clarify that there are two components to the research, and while related, each will have their own data collection requirements and analysis protocols.

Research questions should be written as clearly as possible. While we have mentioned issues relating to language to ensure it is understandable, language issues also need to be considered in our use of terms. Words such as “frequent” or “effective” or “successful” are open to interpretation, and are best avoided, using more specific terms instead ( Kane, 1984 ). The word “significant” in education research has a specific meaning derived from statistical testing, and should only be used in that context. Care is needed when referring to groups of people as well. Researching “working class” students’ experiences on industrial placement is problematic, as the term is vague and can be viewed as emotive. It is better to use terms that can be more easily defined and better reflect a cohort profile (for example, “first generation” refers to students who are the first in their family to attend university) or terms that relate to government classifications, such as particular postcodes assigned a socio-economic status based on income.

As well as clarity with language, research questions should aim to be as precise as possible. Vagueness in research questions relating to what is going to be answered or what the detail of the research is in terms of sample or focus can lead to vagueness in the research itself, as the researcher will not have a clear guide to keep them focussed during the research process. Check that your question and any subsidiary questions are focussed on researching a specific aspect within a defined group for a clear purpose.

Moving on from research question writing

  • Blaikie N., (2000), Designing social research , Oxford: Blackwell.
  • Galloway K. W., (2017), Undergraduate perceptions of value: degree skills and career skills, Chem. Educ. Res. Pract. , 18 (3), 435–440.
  • Jackson D. and Wilton N., (2017), Perceived employability among undergraduates and the importance of career self-management, work experience and individual characteristics, High. Educ. Res. Dev. , 36 (4), 747–762.
  • Kane E., (1984), Doing Your Own Research: Basic Descriptive Research in the Social Sciences and Humanities , London: Marion Boyars.
  • Lawrie G. A., Graulich N., Kahveci A. and Lewis S. E., (2020), Steps towards publishing your thesis or dissertation research: avoiding the pitfalls in turning a treasured tome into a highly-focussed article for CERP, Chem. Educ. Res. Pract. , 21 (3), 694–697.
  • NRC, (2012), Discipline-based education research: Understanding and improving learning in undergraduate science and engineering , National Academies Press.
  • RSC, (2015), Accreditation of Degree Programmes , Cambridge: Royal Society of Chemistry.
  • Seery M. K., (2009), The role of prior knowledge and student aptitude in undergraduate performance in chemistry: a correlation-prediction study, Chem. Educ. Res. Pract. , 10 (3), 227–232.
  • Seery M. K., (2017), How to do a literature review when studying chemistry education. Retrieved from http://michaelseery.com/how-to-do-a-literature-review-when-studying-chemistry-education/.
  • Seery M. K., (2020), Establishing the Laboratory as the Place to Learn How to Do Chemistry, J. Chem. Educ. , 97 (6), 1511–1514.
  • Seery M. K., Kahveci A., Lawrie G. A. and Lewis S. E., (2019), Evaluating articles submitted for publication in Chemistry Education Research and Practice, Chem. Educ. Res. Pract. , 20 , 335–339.
  • Taber K. S., (2014), Ethical considerations of chemistry education research involving ‘human subjects’, Chem. Educ. Res. Pract. , 15 (2), 109–113.
  • White P., (2008), Developing Research Questions: A Guide for Social Scientists , Basingstoke: Palgrave MacMillan.

12 Chemistry Research and Passion Project Ideas For High School Students

research project chemistry

By Alex Yang

Graduate student at Southern Methodist University

8 minute read

Chemistry is much more than just a subject taught in classrooms, it's also the science that explains the world at the molecular level. For students with an interest in experimentation, the elements that make up our universe, and a desire to dive deeper into careers like nutrition, medicine, environmental science, or energy, creating a chemistry passion project can be a valuable journey. A unique aspect of a chemistry passion project is that it has the flexibility to be more research oriented, or more hands-on and experimental.

In this article, we’ll dive into chemistry research and passion project ideas that you can either try to execute on your own or use as inspiration for a project you design. We’ll also cover how you can decide which project or topic to focus on, and navigate the diverse range of ideas within the field of chemistry.

Finding Your Chemistry Passion Project Focus

There are many different directions you can take with your chemistry passion project, so first it’s important to sit down and think through what specific topics within chemistry you’re interested in. Maybe you’re more interested in the medical side of chemistry, or perhaps you’re intrigued by the environmental science applications of chemistry. If you find yourself in that position, great! You can choose to dive deeper into any of those interests. 

After you’ve found some initial passion project ideas , the easiest step from there is just to Google or YouTube those topics and start learning more about them. You’ll find that as you start to conduct preliminary research into a few ideas, one will start to stand out to you more.

12 Chemistry Passion Project Ideas

1. what's in my water .

Most water contains heavy metal ions such as copper, iron, and zinc. Not all metal ions are bad but at high concentrations they can be unsafe. In this project you could collect water samples within your community and measure the metal ion levels such as ferric and ferrous water. Research techniques for how to accurately measure metal ion levels in water. In this project, you’ll learn more analytical chemistry techniques and explore a question relevant to public health.

Idea by chemistry research mentor Grace

2. Ocean acidification 

As the world moves towards global warming, we are seeing increasing concentration of carbon dioxide in the atmosphere. This constantly shifts the equilibrium of carbon dioxide in the atmosphere and the concentration of carbon dioxide in the ocean, forming an acidic compound that results in lowering the pH of the ocean gradually. This can have detrimental effects on organisms that live there. This project could be used to do a deeper dive into the acidification rate of the ocean and examine potential impacts to specific organisms living in the ocean.

Idea by chemistry research mentor Janson

3. Metals for life 

If asked about metals important to life, chances are iron and calcium would first come to mind, as they are important parts of our blood and bones. There are many more metals that are needed for essential biological functions, however. In this project you will dive into scientific literature to learn about different life metals, find out what their roles are in biology, and learn what kind of life forms need them. You will also learn about the newest addition to the life metals - the lanthanides. Then, choose one life metal and review two recent scientific articles involving your metal of choice. Finally, generate a description of the metal's function in biology. Your creativity is the limit as to how you show the importance of metals for life.

Idea by chemistry research mentor Nathan

4. Sustainable chemical production 

Most chemicals in our world today are produced with petrochemical feedstocks (e.g., oil, natural gas). Research and discuss the possibility for replacing the petrochemical feedstock with a renewable one, such as biomass. What are the current realistic options? Which chemicals can be (and are already) produced with renewable feedstocks and which chemicals will be more difficult or require more research to produce sustainably?

Idea by chemistry research mentor James

5. Sleep medication: a bottle of lies or a bottle of dreams? 

There are many drugs and other substances (such as melatonin) that are prescribed to people that have issues sleeping. However many of these medications have mixed efficacy and it is unknown exactly what they do. This project could revolve around investigating a currently known drug/ substance (e.g., Ambien, melatonin), and researching how the drug affects the brain and its efficacy. You could also investigate potential future sleep therapies that could have better results than the current sleep drug market. Another potential route is developing a survey to determine how well these drugs are helping people sleep.

Idea by chemistry research mentor Sean

6. All about rubber

Polymers are some of the most relevant and impactful materials for everyday life, and the basis of all polymer science lies in understanding the structure-property relationships present in these macromolecules. In this project, you will gain a better understanding of the chemical and mechanical properties of rubber, an extremely familiar yet remarkably unique polymeric material. Through either hands-on experimentation or an in-depth literature review, you will research the chemical structure of rubber in order to understand the effect of temperature and vulcanization on its mechanical behavior. 

Idea by chemistry research mentor Sarah

7. Battery storage 

Batteries are proving to be a great way to store large amounts of energy from intermittent renewable sources. This project could involve researching current battery technologies and showing through graphs or some other visual representation of how much battery storage a city (or state/province) would need to run 100% off of renewable sources.

Idea by chemistry research mentor Landon

8. Designing a chemical production process 

In this project, a student will work on designing a chemical production process for a chemical. They would research the chemical reaction, learn about the critical research and engineering decisions that go into engineering a process, and propose a design for a more efficient manufacturing route.

Idea by chemistry research mentor Lucas

9. Water absorbent polymers for home gardening 

You'll conduct experiments and/or conduct surveys to determine what commercially-available water absorbent polymers are useful and cost-effective for home gardeners and write a research paper summarizing your results. You'll dive into polymer and agriculture science while also learning core research skills.

10. Why do some people respond differently to diabetes treatments?

Approximately 37 million Americans have diabetes . However, the response to diabetes treatment can be variable as a result of the many mutations. Using published literature and online databases, identify the most common type 2 diabetes medications and the genetic mutations that cause differential responses to these medications.

Idea by chemistry research mentor Geralle

11. Understanding novel non-opioid pain therapies 

Opioids, though very effective in managing specific pain states, are extremely dangerous and can often lead to overdose. The dual chronic pain and opioid epidemic outline the need for novel, non-opioid therapies to treat pain. In this project, you can look to understand more about current opioid shortcomings, the landscape of emerging pain therapies, and the future of pain management in the United States.

Idea by chemistry research mentor David

12. Is nuclear energy worth pursuing? 

The world faces a climate crisis, one in which immediate and drastic action is needed. Promising technologies such as nuclear power have faced public opposition and regulatory hurdles for years. Explore whether it is technically viable (i.e., is it better than other energy generation techniques?) and practically acceptable (i.e., is it safe and what are the long-term consequences?) to pursue nuclear energy.

Idea by chemistry research mentor Uday

How to Showcase Your Chemistry Passion Project

After you’ve put in all the hard work of researching and learning new skills, it’s also equally important to decide how you want to showcase your project . You can see that in many of the project ideas above, there is a clear topic of focus but the final product of the project is open-ended. You could try to publish a research paper, create a podcast or video, or even create an informative blog or website. You’ll find that although many project ideas may feel like they should culminate in a paper, many actually lend themselves well to another form of showcasing. Try to be creative and showcase your work in a way that feels authentic to you!

Examples of Chemistry Passion Projects Completed by Polygence Students

There are several chemistry passion projects created by Polygence students that we want to highlight and show for inspiration! 

Nicolette was able to explore how diseases like typhoid, malaria, and COVID-19 are cured using African herbal remedies and why the field is declining, culminating in a research paper and blog post. 

Natasha’s project explored how the inclusion of specific enzymes in sunscreen can help people with UV-induced skin diseases. Natasha’s project was presented in the form of a review paper.

Want to start a project of your own?

Click below to get matched with one of our expert mentors who can help take your project off the ground!

In this article, we covered how to find a chemistry passion project that interests you and shared 12 different research and passion project ideas from our extensive network of research mentors. Of course, these are just a few of many different potential chemistry project ideas, and we encourage you to be curious and explore chemistry project ideas beyond this list.

If you’re interested in pursuing a chemistry passion project, Polygence’s programs are a great place to start and learn from excellent mentors.

Related Content

STEM Research Paper Outlines: The Ultimate Guide

Skimming Articles for Research: A How-To

How to Write a Research Paper as a High School Student

Why Passion is Important for Success in Work and Life

Science Experiments for High School Students: How to Do Them at Home

Do Your Own Research Through Polygence

Your passion can be your college admissions edge! Polygence provides high schoolers a personalized, flexible research experience proven to boost your admission odds. Get matched to a mentor now!"

Final Summer I 2024 Application Deadline is June 2, 2024.  

Click here to apply.

One__3_-removebg-preview.png

Featured Posts

research project chemistry

10 AI Project Ideas for High School Students

The Warner Bros. Reach Honorship Program — Should You Apply?

The Warner Bros. Reach Honorship Program — Should You Apply?

10 Free Summer Programs for High School Students in NYC  (New York City)

10 Free Summer Programs for High School Students in NYC (New York City)

Is Applying to Tech Flex Leaders Worth It?

Is Applying to Tech Flex Leaders Worth It?

research project chemistry

8 Awesome Biology Articles for High School Students

8 Medical Camps for Middle School Students

8 Medical Camps for Middle School Students

research project chemistry

10 Graphic Design Internships for High School Students

10 Art History Summer Programs for High School Students

10 Art History Summer Programs for High School Students

research project chemistry

Everything You Need To Know About College Tours as a High School Student

MITE at UT Austin- Is it Worth it?

MITE at UT Austin- Is it Worth it?

25 Research Ideas in Chemistry for High School Students

Have you wanted to get into chemistry research, but didn’t know where to begin? Read this article to learn more on how you can start your own research project.

What Makes a Good Research Idea?

Before starting, having a good research idea will provide a firm foundation for your work. Before you begin, make sure to confirm if your research topic is:

What area are you addressing in your research project, and does it fill in some gap of knowledge? If your research has been done before or has been already thoroughly examined, then it’s unlikely your idea will be as compelling as an original paper that leaves room for future questions and innovations.

Interesting

Do you find the topic interesting? If you have passion in your work, you will be excited and engaged in your work, which others in the industry will definitely pick up on. If you don’t find your research interesting, it’s better to brainstorm which areas you’d be more passionate about.

Feasibility

Is the research doable? Make sure to take a deep look into your capabilities and resources, and use what’s available to you in order to pursue your research. While there are many projects that can be done at home or through the computer, you can reach out to a local college or laboratory if you’d like to get a more professional experience.

Okay, I Have a Research Idea, What’s Next?

Once you’ve picked a research idea, it may seem daunting on what to do next. You should develop a detailed research plan and reach out to teachers, professors, and scientists who can help you. Having a mentor can provide helpful comments on your research idea and your next steps.

For example, a mentored program like the Lumiere Research Scholar Program can be a great opportunity to experience the full research cycle. Those who are selected for the Lumiere Research Scholar Program are given 1-1 mentorship with top PhDs. Below, we share some of the chemistry research ideas that have been proposed by our research mentors.

Chemistry Research Ideas for High School Students

Research category #1 : energy and climate change.

Climate change has been one of the widely talked about topics in public discourse. With more media and political attention on this issue than ever before, it’s no wonder that there are many opportunities to explore how chemistry can be applied to help the planet. Therefore, researching in this field will yield potential benefits for society and beyond , making applications of this research especially compelling for passionate high school students.

1. Use green chemistry as a tool to achieve sustainability targets in the fields of energy, water remediation, agriculture or sensing.

2. Find novel chemicals that can be used to shape the next generation of batteries, green fuels, and energy harvesting.

3. Research materials can be developed to improve CO2 capture and Utilization (CCU).

4. Analyze different energy storage options currently available, and compare and contrast technologies' chemistries, performance, lifetime, cost, geographic and resource constraints, and more.

5. Learn the newest and most promising technologies in sustainability science, with a focus on how startups and the private sector are critical to our society's transition to a green future and how products are commercialized from lab to market.

Suggested by Lumiere PhD mentors at Harvard University, University of California, Berkeley, Yale University, and University of Cambridge.

Research Category #2 : Computation and Machine Learning

Data processing is becoming increasingly efficient, and especially in the advent of artificial intelligence systems, scientists are interested in learning how to apply new technologies to their line of work. If you’re looking for knowledge within computer science or computer engineering, these topics may stand out to you.

6. Apply machine learning for chemical challenges, such as how AI can bring benefits into the area of chemistry and how big data can be processed.

7. Merge chemistry with computational tools to design molecules and predict their properties.

8. Study molecular and biological systems via computational modeling, including finding the advantages and disadvantages of different techniques and types of computational analysis.

9. Implement machine learning for reaction optimization, process chemistry, reaction kinetics, mixing, scale-up and safety.

Suggested by Lumiere PhD mentors at Duke University, University of Cambridge, and University of Leeds.

Research Category #3 : Nanotechnology and Nanomaterials

The benefits of nanotechnology are clear – more developments in this field can lead to lower costs and stronger properties of materials. The area of technology is incredibly new, so if you want to get involved in a burgeoning research field , see if the following ideas interest you.

10. Conduct a general study on the focus on nanomaterials and their applications.

11. Understand how material nano-structure can create specific properties and take advantage of that "structure-property" understanding to engineer new materials.

12. Be exposed to the frontiers of material science and the host of meta-stable man-made materials with exotic properties.

Suggested by Lumiere PhD mentors at Technical University of Munich and Georgia Institute of Technology.

Research Category #4 : Chemical Reactions

One of the most major fundamental aspects of chemistry is understanding how different elements and molecules interact to create new products. Understanding more about how these reactions take place and which interactions are favored can yield better ideas on how to utilize them. If you’d like to better your chemistry skills, take a look at these topics:

13. Investigate how molecules are made in nature,such as what reactions are performed by enzymes to make natural products.

14. Study a reaction that changes color as it proceeds using your phone to measure the RGB-code evolution.

15. Delve into the synthesis of chemicals within organic chemistry, biochemistry, analytical chemistry.

16. Learn how to design, synthesize, and use molecular boxes for separating targeted compounds.

Suggested by Lumiere PhD mentors at Duke University and University of Cambridge.

Research Category #5 : Drug Discovery

Unsurprisingly, pharmaceuticals heavily utilizes the concepts of chemistry to create life saving drugs and treatments for people worldwide. If you’re interested in learning how chemical reactions can treat diseases within the human body , see below for more information.

17. Communicate the causes of drug resistance in tuberculosis, HIV/AIDS, or another infectious disease

18. Explore the connections between drug discovery, pharmaceutical development, flow chemistry, organic synthesis, electrochemistry, photochemistry, and biochemical and enzymatic synthesis.

19. Conduct a detailed research on proteins, their role in human disease, and how understanding protein structure can inform drug discovery.

20. Observe the characteristics of good drug candidates and the biological experiments performed to prove clinical viability.

21. Determine the role small molecules play in imaging, labeling, target identification, inhibiting native protein functions and facilitating foreign ones, especially in new techniques being used to understand disease pathways.

Suggested by Lumiere PhD mentors at Harvard University, Stanford University, University of Leeds, Cornell University, and Johns Hopkins University.

Research Category #6 : Life Sciences

Beyond the scope of drug discovery, how does chemistry support life itself? Biochemistry is an intriguing field that aims to answer how biological processes take place , and more discoveries are taking place everyday on the mystery of life. If you’d like to learn how biology and chemistry work in tandem, these research topics may be the right fit for you.

22. Develop theory of chemical kinetics and how they are used to study reactions that are critically important for biology to maintain life.

23. Learn the biological processes of living cells such as human cells, yeast, bacteria, and such.

24. Utilize different techniques to determine structures of biomolecules present in humans.

25. Employ molecular modeling and simulation techniques to tackle problems that involve the function or interactions of a protein.

Suggested by Lumiere PhD mentors at University of Illinois at Urbana-Champaign, Duke University, University of Cambridge, and University of Oxford.

This article provides only a small glimpse into the endless possibilities of chemistry research, but hopefully, the variety of different fields that chemistry is involved in piqued your interest; whether you’d like to learn more about climate change, computers, or biology, there is definitely an applicable chemistry research project that you can do.

If you are passionate about chemistry and hope to do advanced research under expert mentorship, consider applying to the Lumiere Scholar Program . You can find the application form here .

Lydia is currently a sophomore at Harvard University, studying Molecular and Cellular Biology. During high school, she pursued engineering activities like attending the Governor's School of Engineering and Technology. In her spare time, she likes to create digital art while listening to music.

The Australian National University

Research School of Chemistry ANU College of Science

Student projects

  • Research projects

Below we list current research topics in the Research School of Chemistry with links to relevant researchers and groups. We have a wide range of potential chemistry research projects, ranging from short-term summer research projects to year-long honours and graduate projects to three-year PhD projects. Please contact the listed project supervisor for further discussion and ideas.

3D printing of functional materials for green chemistry

This project is ideal for Honours/Master students interested in the cutting-edge field of 3D printing and sustainable chemistry. You will gain valuable skills and experience in both areas, which will prepare you for a career in materials science, chemistry, or related fields.

  • Energy, Environment and Green Chemistry

Student intake

Open for Honours, Master, PhD, Summer scholar students

A new spin on hydrogen: supercharging NMR

Hydrogen is well recognized for its potential as a future energy source – but few people are aware of another remarkable ability of the simple H2 molecule. The challenge is this: how can we incorporate para-hydrogen into molecules?

  • Analytical Chemistry and Sensors
  • Organic chemistry
  • Norcott Group

A Trojan horse to combat malaria

Our goal is to develop an anti-malarial Trojan horse that will deliver a chemical payload to the malaria parasite that it cannot avoid, thus limiting the potential for resistance.

  • Medicinal Chemistry and Drug Development
  • McLeod Group

Accessing Designer Peptides Using Electro-Organic Synthesis

This project will explore additional opportunities for the efficient electrochemical modification of peptides, including through the use of novel “electrochemically-active” amino acids.

  • Malins Group

Advanced nanocatalysts for energy conversion

This project offers a unique opportunity to gain experience in materials synthesis, characterization, and catalysis, as well as contribute to cutting-edge research in the field of sustainable energy.

Advanced Optical Spectroscopy of the Chlorophylls

Why does nature strongly favor chlorophyll a? What are the consequences of the differences between the chlorophylls for photosynthetic function? Using our unique optical spectrometer, this project aims to address these key fundamental questions.

  • Physical and Biophysical Chemistry

Open for Honours, PhD students

AI and data co-driven materials discovery for advanced energy conversion and wearable systems

This project will provide hands-on experience with some of the most exciting and rapidly evolving technologies in materials science today. Join our team and be at the forefront of the field, making new discoveries and pushing the boundaries of what's possible.

  • Computational and Theoretical Chemistry

Allosteric inhibitors of an important drug target

This project will involve collaboration with industry partners (Beta Therapeutics) and partners within the Centre of Excellence in Peptide and Protein Science.

  • Jackson Group

Anti-doping chemistry and designer steroids

This project will combine analytical and synthetic chemistry to study the metabolic fate and biological activity arising from designer steroids use, with the goal of developing assays to detect the abuse of these agents in sport.

Artificial biomaterials: strong and self-healing polymer materials

This project will develop these materials for biological applications, for example as an artificial skin (below).

  • Connal Group

Big and Small Chains of Carbon

We are studying compounds in which a single atom of carbon is held between two metal centres LnM=C=MLn. In most cases the M=C=M spine is linear but we have recently isolated the first examples where the carbon is bent and displays nucleophilic character.

  • Functional Materials and Interfaces
  • Inorganic Chemistry and Organometallic Chemistry
  • Supramolecular Chemistry

Biocompatible synthesis of bicyclic peptides

This project will capitalise on these achievements and explore biocompatible synthetic routes to various kinds of bicycles and their applications in drug discovery.

  • Nitsche Group

Boronic acids as potential therapeutics for dengue fever

This project will screen numerous boronic acid derivatives available at the Research School of Chemistry (optional: computational screening of data banks). Screening hits will be modified to generate drug-like inhibitors with anti-dengue activity.

Catenanes and/or rotaxanes

This project will involve a reasonable amount of organic synthesis, as well as some host-guest binding studies and potentially some X-ray crystallography.

  • White Group

Characterizing defect sites in functional materials and catalysts using Multidimensional Electron Paramagnetic Resonance

Students with an interest in instrumentation development can pursue coupling EPR platform in situ electrochemistry, in situ gas exchange and in situ light (Solar, UV, LED, laser) excitation, allowing operando characterization of defects and their evolution.

  • Bachelor of Science
  • Bachelor of Philosophy (Honours)
  • Bachelor of Science (Advanced) (Honours)
  • Honours in Chemistry
  • Master of Science in Materials Science
  • PhD & MPhil
  • Bridging course
  • Chemistry Ambassador program
  • Majors, minors & specialisations
  • Student profiles
  • Research areas
  • Research groups
  • Research facilities
  • Research stories
  • Battery lab
  • Compounds ANU
  • Professional staff
  • Emeritus and Honorary
  • Past events
  • Event series
  • Chemistry Future Fund
  • Environmental Sustainability Research Grants
  • Australian Drug Observatory
  • How to give
  • Inclusion, diversity, equity and access
  • The Arthur Birch lecture
  • David Craig visiting professorship
  • Rita Cornforth Fellowship
  • Future students enquiries
  • General enquiries
  • Current students enquiries
  • Current students
  • HDR students

School of Chemistry & Biochemistry

College of sciences, undergraduate research projects, currently available projects for undergraduates.

research project chemistry

  • Search UNH.edu
  • Search College of Engineering and Physical Sciences

Commonly Searched Items:

  • Academic Calendar
  • Diversity and Inclusion
  • Faculty & Staff Directory
  • Tell Us About You
  • Chemistry Advisory Board
  • Chemistry Graduate Student Association
  • Available Positions
  • Programs of Study
  • Undergraduate Programs
  • Graduate Programs
  • Research Projects
  • Spring 2024 Seminar Series
  • Fall 2024 Seminar Series
  • Harold A. Iddles Seminar Series
  • The Chemistry and Sustainability Lecture Series
  • Alumni Engagement Speaker Series
  • LaMattina Lecture Series
  • Organic Syntheses Distinguished Lecture Series
  • Chemistry Stockroom
  • Student Course Lab Supplies
  • Advising Forms and Info
  • Graduate Student Graduation
  • Instrumentation
  • Give to UNH Chemistry

Current Research Projects

Student exam results chart

Christopher Bauer designs psychometrically sound assessments to measure chemistry understanding, attitude, and motivation, and studies how that information may be used to develop improved inquiry-based curricula that enhances student learning and success, particularly at the college level. This work includes fundamental studies of student misconceptions of atoms, molecules, chemical reactions, and phenomena.

Erik Berda studies the design and synthesis of polymers programmed to adopt discrete tertiary structures, their self-assembly, responsive "smart" polymers, and other complex macromolecular architectures.

Polymers

Christine Caputo designs and synthesizes new organic and organometallic complexes using Earth-abundant metals that can act as catalysts or precursors for the development of new photoactive materials. Current research projects employ photochemical and electrochemical techniques to study the catalytic conversion of small molecules into more valuable sustainable fuel precursors using sunlight.

Mass Spec Data

needs alt text

Anyin Li uses new materials and devices to improve analytical performance of mass spectrometry (MS). Current research projects aim at 1) enhancing sample-utilization efficiency in tandem MS characterization, and 2) developing novel quantitation method. Using MS based technologies, the group also creates atomically dispersed (noble metal) hybrid material for applications in catalysis, diagnosis, and flexible electronics. 

Photocatalysis

Chem. Commun. , 2014 , 50(47), 6221-6224

Gonghu Li is interested in bridging surface chemistry with molecular catalysis for solar energy applications. Particular projects include solar fuel generation by photochemical and photoelectrochemical CO 2 reduction, TiO 2 materials for energy and environmental photocatalysis.

Glen Miller performs research at the intersections of organic chemistry, materials science, and nanotechnology. His group synthesizes and characterizes both small molecules and derivatives of nanostructured carbons. They then utilize these species in structural materials and in thin-film electronic devices like photovoltaics and light emitting diodes.

crystal pattern structure

J. Phys. Chem. C. , 2014 , 118 (46), 26955-26963.

Nate Oldenhuis   creates new biomaterials, polymers, and supramolecular networks using tools and techniques from organic chemistry, biochemistry, and molecular biology. These new materials are used for a variety of applications from studying polymer network topology to drug delivery and 3D cell culture.

Research structure for Prof. Roy Planalp

Roy Planalp studies Medicinal and Environmental Inorganic chemistry with a focus on iron, copper and zinc, both in essential and toxic senses of metal coordination and redox chemistry. We design ligands with conjugation to biomolecules and fluorophores to modulate cellular metal metabolism of healthy and diseased states. Environmental analysis, sensing and nuclear medicine are also of interest.

John Tsavalas specializes in the synthesis, characterization, and modeling of polymer colloids. His group is engaged in a wide range of activities including controlling colloidal morphology in polymeric nanoparticle synthesis; synthesizing stimuli-responsive coatings and composites; dynamic modeling of colloidal interactions and reaction kinetics, and probing the distribution of water within polymer colloids.

Brittany White-Mathieu uses organic chemistry for the development of fluorescent molecules that address major challenges in biology. Focusing on the essential roles of membranes in cells, these novel fluorescent scaffolds are designed to investigate cellular signaling pathways and enable super-resolution imagingof cellular structures. Inspired by the unique properties of macrocyclic strictures, the lab also aims to develop a new class of next-generation fluorophores with superior optical properties.

Brittany White-Mathieu Research

College of Engineering and Physical Sciences

  • Honors in Major
  • Peer Led Team Learning (PLTL)
  • Chemistry Graduate Student Handbook
  • Graduation Information
  • Dry Ice and Liquid Nitrogen
  • Research Lab Supplies

University of New Hampshire Shield Logo

  • Sustainability
  • Embrace New Hampshire
  • University News
  • The Future of UNH
  • Campus Locations
  • Calendars & Events
  • Directories
  • Facts & Figures
  • Academic Advising
  • Colleges & Schools
  • Degrees & Programs
  • Undeclared Students
  • Course Search
  • Study Abroad
  • Career Services
  • How to Apply
  • Visit Campus
  • Undergraduate Admissions
  • Costs & Financial Aid
  • Net Price Calculator
  • Graduate Admissions
  • UNH Franklin Pierce School of Law
  • Housing & Residential Life
  • Clubs & Organizations
  • New Student Programs
  • Student Support
  • Fitness & Recreation
  • Student Union
  • Health & Wellness
  • Student Life Leadership
  • Sport Clubs
  • UNH Wildcats
  • Intramural Sports
  • Campus Recreation
  • Centers & Institutes
  • Undergraduate Research
  • Research Office
  • Graduate Research
  • FindScholars@UNH
  • Business Partnerships with UNH
  • Professional Development & Continuing Education
  • Research and Technology at UNH
  • Request Information
  • Current Students
  • Faculty & Staff
  • Alumni & Friends

A gloved hand takes water into a test tube from a city reservoir.

Five chemistry research projects that you can get involved in

research project chemistry

Professor of Science Communication and Chemistry, University of Hull

research project chemistry

Lecturer of Analytical Chemistry, University of Hull

Disclosure statement

Mark Lorch receives funding from European Regional Development Fund through the Interreg VB North Sea Region Programme

[email protected] receives funding from European Regional Development Fund through the Interreg VB North Sea Region Programme.

University of Hull provides funding as a member of The Conversation UK.

View all partners

Sometimes the most powerful tool in research is people spending a few minutes to record their observations while going about their daily lives. An early example of this sort of “citizen science” is the annual garden bird watch in the UK, which has been running since 1978 and is organised by the nature conservation charity, RSBP . All you need do to take part is spending an hour watching the wildlife in you garden or local park.

Today, citizen science projects are increasingly popular, with people surveying and monitoring everything from weather events , invasive plant species and ladybirds to planets orbiting stars other than our Sun.

As the citizen science field has developed, boundaries have blurred and scientists have begun involving citizens as more active researchers – carrying out important experiments, collecting environmental measurements and generating data.

Here are five just such projects with a distinctly chemical theme.

Our new paper, published in PLOS One , presents the results of such a project, RiverDip , which enables and encourages citizens to monitor the chemical health of their local waterways.

This involves monitoring phosphates and nitrates – essential nutrients, making up the basis of agricultural fertilisers. But if they run off fields and into waterways they cause significant problems.

The fertilisers encourage rapid growth of algae and weeds, which form dense green mats on the surface of waterways. These block out the light to other plants. What’s more, later, when they rot they use up some of the dissolved oxygen in the water, resulting in deoxygenation that harms other aquatic plants and animals.

Schematic picture showing the steps of the RiverDip experiment.

RiverDip was developed as part of the EU-funded Sullied Sediments project as a means to allow citizens to monitor the phosphate levels in waterways. We provided interested folk with paper-based sensors that change colour in the presence of phosphates. The measurement takes just three minutes. After it’s done, volunteers upload their results via a bespoke mobile app.

Together we have collected hundreds of measurements and begun to map phosphate levels across the Europe’s North Sea Region, consisting of countries including the Scandinavian nations, England, the Netherlands and Germany. Having lots of measurements from different seasons will help us to understand how nutrient levels change over time, and we are currently looking for interested volunteer groups to continue this project.

The Big Compost experiment

If you like rummaging in the garden, this one is for you. Lots of packaging is now labelled as biodegradable or compostable, but what does this really mean and do these products really break down in a domestic compost bin? The Big Compost experiment investigates new ways of reducing plastic waste, asking participants to check how well biodegradable and compostable packaging breaks down.

You can help answer these questions by simply bagging up materials that claim to be compostable (such as some tea bags, carrier bags and disposable cups), placing them in your compost heap and then observing what happens. You can record your results via the experiment’s home page .

Fold-at-home

If you fancy something easier and less messy, there are some great projects which you can contribute to from the comfort of your sofa.

Proteins are the molecular machines that govern all the chemical processes and interactions that make up a living organism. And like any machine (be it a proteins or a motor car), they help to understand how all the parts fit together when designing modifications and upgrades. So understanding proteins’ incredibly complex structures, how they interact with each other and potential drugs provides pharmaceutical developers with critical information that allows them to design more effective therapeutics. But modelling this requires vast amounts of computing power. One approach would therefore be to use vast amounts of money to build a computer dedicated to solving this problem.

But scientists have realised that, alternatively, you could ask people to contribute spare computing power of their home PCs to form a giant global supercomputer. All you need do is install the Fold-at-home software on your computer and when you nip off to make a cup of tea or plug into the television, your computer gets to work on folding proteins, which could lead to the development of COVID drugs or cancer therapies.

If puzzles and computer games are more your cup of tea, you may enjoy Fold-it . This project attempts to predict the structure of a protein, but this time it needs a bit more human input. It takes advantage of people’s puzzle-solving intuitions when playing games competitively and challenges them to fold the best proteins.

Screen shot from the Fold-It game.

This information helps researchers understand if human pattern recognition and puzzle solving abilities are better than current computer programs. Such information could be used to develop new computer strategies to predict protein structures even faster. This is really helpful as understanding how proteins fold and interact enables scientists to develop new proteins to help combat diseases such as Alzheimer’s and HIV/AIDS.

Sensor community

The sensor community project aims to build a network of small sensors to collect and openly share environmental data such as the nitrogen dioxide air pollution generated by internal combustion engines and burning of fossil fuels.

Currently, the community has constructed and deployed nearly 14,000 active sensors in 69 countries, all of which are returning data in real time. To take part in this project, you build sensors using kits developed by the researchers and place them somewhere. The project has different communities that focus on different aspects of environmental pollution (including noise).

Getting involved in these kind of citizen sciences projects can be a great way to have a positive impact on the world, collecting large volumes of data that enable us to understand our impact on the planet.

  • Citizen science

research project chemistry

Data Manager

research project chemistry

Director, Social Policy

research project chemistry

Communications Coordinator

research project chemistry

Head, School of Psychology

research project chemistry

Senior Research Fellow - Women's Health Services

Logo

Oxford is one of the leading chemistry departments in the world with over 80 academic staff carrying out pioneering work.

Research in Oxford Chemistry focuses on fundamental science aimed at making significant and sustained long-term impact. We provide an environment that enables research by hiring, developing, and supporting talented researchers, many recognised as international leaders, across the spectrum of the chemical sciences.  Our students and staff work in excellent research facilities to deliver field-leading research crossing traditional boundaries and engaging strongly with other disciplines, both within Oxford and across a range of external sectors.

The impact of our research in the wider economy and society is manifest in our many industrial and clinical collaborations and successful start-ups.  Our eight research themes and business engagements showcase the breadth and depth of our research across the chemical sciences.

9 Undergraduate Research Projects That Wowed Us This Year

The telegraph. The polio vaccine. The bar code. Light beer. Throughout its history, NYU has been known for innovation, with faculty and alumni in every generation contributing to some of the most notable inventions and scientific breakthroughs of their time. But you don’t wind up in the history books—or peer-reviewed journals—by accident; academic research, like any specialized discipline, takes hard work and lots of practice. 

And at NYU, for students who are interested, that training can start early—including during an undergraduate's first years on campus. Whether through assistantships in faculty labs, summer internships, senior capstones, or independent projects inspired by coursework, undergrad students have many opportunities to take what they’re learning in the classroom and apply it to create original scholarship throughout their time at NYU. Many present their work at research conferences, and some even co-author work with faculty and graduate students that leads to publication. 

As 2023-2024 drew to a close, the NYU News team coordinated with the Office of the Provost to pull together a snapshot of the research efforts that students undertook during this school year. The nine featured here represent just a small fraction of the impressive work we encountered in fields ranging from biology, chemistry, and engineering to the social sciences, humanities, and the arts. 

These projects were presented at NYU research conferences for undergrads, including Migration and Im/Mobility , Pathways for Discovery: Undergraduate Research and Writing Symposium , Social Impact: NYU’s Applied Undergraduate Research Conference , Arts-Based Undergraduate Research Conference , Gallatin Student Research Conference ,  Dreammaker’s Summit , Tandon’s Research Excellence Exhibit , and Global Engagement Symposium . Learn more about these undergrad research opportunities and others.

Jordan Janowski (CAS '24)

Sade Chaffatt (NYU Abu Dhabi '24)

Elsa Nyongesa (GPH, CAS ’24 )

Anthony Offiah (Gallatin ’26)

Kimberly Sinchi (Tandon ’24) and Sarah Moughal (Tandon ’25)

Rohan Bajaj (Stern '24)

Lizette Saucedo (Liberal Studies ’24)

Eva Fuentes (CAS '24)

Andrea Durham (Tandon ’26)

Jordan Janowski (CAS ’24) Major: Biochemistry Thesis title: “Engineering Chirality for Functionality in Crystalline DNA”

Jordan Janowski (CAS '24). Photo by Tracey Friedman

I work in the Structural DNA Nanotechnology Lab, which was founded by the late NYU professor Ned Seeman, who is known as the father of the field. My current projects are manipulating DNA sequences to self-assemble into high order structures.

Essentially, we’re using DNA as a building material, instead of just analyzing it for its biological functions. It constantly amazes me that this is possible.

I came in as a pre-med student, but when I started working in the lab I realized that I was really interested in continuing my research there. I co-wrote a paper with postdoc Dr. Simon Vecchioni who has been a mentor to me and helped me navigate applying to grad school. I’m headed to Scripps Research in the fall. This research experience has led me to explore some of the molecules that make up life and how they could be engineered into truly unnatural curiosities and technologies.

My PI, Prof. Yoel Ohayon , has been super supportive of my place on the  NYU women’s basketball team, which I’m a  member of. He’s been coming to my games since sophomore year, and he’ll text me with the score and “great game!”— it’s been so nice to have that support for my interests beyond the lab.

Anthony Offiah (Gallatin ’26) Concentration: Fashion design and business administration MLK Scholars research project title: “project: DREAMER”

Anthony Offiah (Gallatin '26). Photo by Tracey Friedman

In “project: DREAMER,” I explored how much a person’s sense of fashion is a result of their environment or societal pressures based on their identity. Certain groups are pressured or engineered to present a certain way, and I wanted to see how much of the opposing force—their character, their personality—affected their sense of style. 

This was a summer research project through the MLK Scholars Program . I did ethnographic interviews with a few people, and asked them to co-design their ideal garments with me. They told me who they are, how they identify, and what they like in fashion, and we synthesized that into their dream garments. And then we had a photo shoot where they were empowered to make artistic choices. 

Some people told me they had a hard time conveying their sense of style because they were apprehensive about being the center of attention or of being dissimilar to the people around them. So they chose to conform to protect themselves. And then others spoke about wanting to safeguard the artistic or vulnerable—or one person used the word “feminine”—side of them so they consciously didn’t dress how they ideally would. 

We ended the interviews by stating an objective about how this co-designing process didn’t end with them just getting new clothes—it was about approaching fashion differently than how they started and unlearning how society might put them in a certain box without their approval.  

My concentration in Gallatin is fashion design and business administration. In the industry some clothing is critiqued and some clothing is praised—and navigating that is challenging, because what you like might not be well received. So doing bespoke fashion for just one person is freeing in a sense because you don’t have to worry about all that extra stuff. It’s just the art. And I like being an artist first and thinking about the business second.

Lizette Saucedo (Global Liberal Studies ’24) Major: Politics, rights, and development Thesis title: “Acknowledging and Remembering Deceased Migrants Crossing the U.S.-Mexican Border”

Lizette Saucedo (Global Liberal Studies '24). Photo by Tracey Friedman

My thesis project is on commemorating migrants who are dying on their journey north to cross the U.S.–Mexican border. I look at it through different theoretical lenses, and one of the terms is necropolitics—how politics shapes the way the State governs life and especially death. And then of the main issues aside from the deaths is that a lot of people in the U.S. don’t know about them, due to the government trying to eschew responsibility for migrant suffering. In the final portion of the thesis, I argue for presenting what some researchers call “migrant artifacts”—the personal belongings left behind by people trying to cross over—to the public, so that people can become aware and have more of a human understanding of what’s going on. 

This is my senior thesis for Liberal Studies, but the idea for it started in an International Human Rights course I took with professor Joyce Apsel . We read a book by Jason De León called The Land of the Open Graves , which I kept in the back of my mind. And then when I studied abroad in Germany during my junior year, I noticed all the different memorials and museums, and wondered why we didn’t have the equivalent in the U.S. My family comes from Mexico—my parents migrated—and ultimately all of these interests came together.

I came into NYU through the Liberal Studies program and I loved it. It’s transdisciplinary, which shaped how I view my studies. My major is politics, rights, and development and my minor is social work, but I’ve also studied museum studies, and I’ve always loved the arts. The experience of getting to work one-on-one on this thesis has really fortified my belief that I can combine all those things.

Sade Chaffatt (Abu Dhabi ’24) Major: Biology Thesis title: “The Polycomb repressive component, EED in mouse hepatocytes regulates liver homeostasis and survival following partial hepatectomy.”

Sade Chaffatt (NYU Abu Dhabi '24). Photo courtesy of NYUAD

Imagine your liver as a room. Within the liver there are epigenetic mechanisms that control gene expression. Imagine these epigenetic mechanisms as a dimmer switch, so that you could adjust the light in the room. If we remove a protein that is involved in regulating these mechanisms, there might be dysregulation—as though the light is too bright or too dim. One such protein, EED, plays a crucial role in regulating gene expression. And so my project focuses on investigating whether EED is required in mouse hepatocytes to regulate liver homeostasis and to regulate survival following surgical resection.

Stepping into the field of research is very intimidating when you’re an undergraduate student and know nothing. But my capstone mentor, Dr. Kirsten Sadler , encourages students to present their data at lab meetings and to speak with scientists. Even though this is nerve-wracking, it helps to promote your confidence in communicating science to others in the field.

If you’d asked 16-year-old me, I never would’ve imagined that I’d be doing research at this point. Representation matters a lot, and you often don't see women—especially not Black women—in research. Being at NYUAD has really allowed me to see more women in these spaces. Having had some experience in the medical field through internships, I can now say I’m more interested in research and hope to pursue a PhD in the future.

Kimberly Sinchi (Tandon ’24) Major: Computer Science Sarah Moughal (Tandon ’25) Major: Computer Science Project: Robotic Design Team's TITAN

Sarah Moughal (Tandon '25, left) and Kimberly Sinchi (Tandon '24). Photo by Tracey Friedman

Kimberly: The Robotic Design Team has been active at NYU for at least five years. We’re 60-plus undergrad and grad students majoring in electrical engineering, mechanical engineering, computer science, and integrated design. We’ve named our current project TITAN because of how huge it is. TITAN stands for “Tandon’s innovation in terraforming and autonomous navigation.”

Sarah: We compete in NASA’s lunatics competition every year, which means we build a robot from scratch to be able to compete in lunar excavation and construction. We make pretty much everything in house in the Tandon MakerSpace, and everyone gets a little experience with machining, even if you're not mechanical. A lot of it is about learning how to work with other people—communicating across majors and disciplines and learning how to explain our needs to someone who may not be as well versed in particular technologies as we are. 

Kimberly: With NYU’s Vertically Integrated Project I’ve been able to take what I was interested in and actually have a real world impact with it. NASA takes notes on every Rover that enters this competition. What worked and what didn’t actually influences their designs for rovers they send to the moon and to Mars.

Eva Fuentes (CAS ’24) Major: Anthropology Thesis title: “Examining the relationship between pelvic shape and numbers of lumbar vertebrae in primates”

Eva Fuentes (CAS '24). Photo by Tracey Friedman

I came into NYU thinking I wanted to be an art history major with maybe an archeology minor. To do the archeology minor, you have to take the core classes in anthropology, and so I had to take an intro to human evolution course. I was like, this is the coolest thing I’ve learned—ever. So I emailed people in the department to see if I could get involved. 

Since my sophomore year, I’ve been working in the Evolutionary Morphology Lab with Scott Williams, who is primarily interested in the vertebral column of primates in the fossil record because of how it can inform the evolution of posture and locomotion in humans.

For my senior thesis, I’m looking at the number of lumbar vertebrae—the vertebrae that are in the lower back specifically—and aspects of pelvic shape to see if it is possible to make inferences about the number of lumbar vertebrae a fossil may have had. The bones of the lower back are important because they tell us about posture and locomotion.

I committed to a PhD program at Washington University in St. Louis a few weeks ago to study biological anthropology. I never anticipated being super immersed in the academic world. I don’t come from an academic family. I had no idea what I was doing when I started, but Scott Williams, and everyone in the lab, is extremely welcoming and easy to talk to. It wasn't intimidating to come into this lab at all.

Elsa Nyongesa (GPH, CAS ’24 ) Major: Global Public Health and Biology Project: “Diversity in Breast Oncological Studies: Impacts on Black Women’s Health Outcomes”

Elsa Nyongesa (GPH, CAS '24). Photo by Tracey Friedman

I interned at Weill Cornell Medicine through their Travelers Summer Research Fellowship Program where I worked with my mentor, Dr. Lisa Newman, who is the head of the International Center for the Study of Breast Cancer Subtypes. I analyzed data on the frequency of different types of breast cancer across racial and ethnic groups in New York. At the same time, I was also working with Dr. Rachel Kowolsky to study minority underrepresentation in clinical research. 

In an experiential learning course taught by Professor Joyce Moon Howard in the GPH department, I created a research question based on my internship experience. I thought about how I could combine my experiences from the program which led to my exploration of the correlation between minority underrepresentation in breast oncological studies, and how it affects the health outcomes of Black women with breast cancer.

In my major, we learn about the large scope of health disparities across different groups. This opportunity allowed me to learn more about these disparities in the context of breast cancer research. As a premedical student, this experience broadened my perspective on health. I learned more about the social, economic, and environmental factors influencing health outcomes. It also encouraged me to examine literature more critically to find gaps in knowledge and to think about potential solutions to health problems. Overall, this experience deepened my philosophy of service, emphasizing the importance of health equity and advocacy at the research and clinical level.

Rohan Bajaj (Stern ’24) Major: Finance and statistics Thesis title: “Measuring Socioeconomic Changes and Investor Attitude in Chicago’s Post-Covid Economic Recovery”

Rohan Bajaj (Stern '24). Photo by Tracey Friedman

My thesis is focused on understanding the effects of community-proposed infrastructure on both the socioeconomic demographics of cities and on fiscal health. I’m originally from Chicago, so it made a lot of sense to pay tribute back to the place that raised me. I’m compiling a list of characteristics of infrastructure that has been developed since 2021 as a part of the Chicago Recovery Plan and then assessing how neighborhoods have changed geographically and economically. 

I’m looking at municipal bond yields in Chicago as a way of evaluating the fiscal health of the city. Turns out a lot of community-proposed infrastructure is focused in lower income areas within Chicago rather than higher income areas. So that makes the research question interesting, to see if there’s a correlation between the proposed and developed infrastructure projects, and if these neighborhoods are being gentrified alongside development.

I kind of stumbled into the impact investing industry accidentally from an internship I had during my time at NYU. I started working at a renewable energies brokerage in midtown, where my main job was collecting a lot of market research trends and delivering insights on how these different energy markets would come into play. I then worked with the New York State Insurance Fund, where I helped construct and execute their sustainable investment strategy from the ground up. 

I also took a class called “Design with Climate Change” with Peter Anker in Gallatin during my junior year, and a lot of that class was focused on how to have climate resilient and publicly developed infrastructure, and understanding the effects it has on society. It made me start thinking about the vital role that physical surroundings play in steering communities.

In the short term I want to continue diving into impact-focused investing and help identify urban planners and city government to develop their communities responsibly and effectively.

Andrea Durham (Tandon, ’26)  Major: Biomolecular science Research essay title: “The Rise and Fall of Aduhelm”

Andrea Durham (Tandon '26). Photo by Tracey Friedman

This is an essay I wrote last year in an advanced college essay writing class with Professor Lorraine Doran on the approval of a drug for Alzheimer’s disease called Aduhelm—a monoclonal antibody therapy developed by Biogen in 2021, which was described as being momentous and groundbreaking. But there were irregularities ranging from the design of its clinical trials to government involvement that led to the resignation of three scientists on an advisory panel, because not everybody in the scientific community agreed that it should be approved.

When I was six years old, my grandmother was diagnosed. Seeing the impact that it had over the years broke my heart and ignited a passion in me to pursue research. 

When I started at NYU, I wasn’t really sure what I was going to do in the future, or what opportunities I would go after. This writing class really gave me an opportunity to reflect on the things that were important to me in my life. The September after I wrote this paper, I started volunteering in a lab at Mount Sinai for Alzheimer's disease research, and that’s what I’m doing now—working as a volunteer at the Center for Molecular Integrative Neuroresilience under Dr. Giulio Pasinetti. I have this opportunity to be at the forefront, and because of the work I did in my writing class I feel prepared going into these settings with an understanding of the importance of conducting ethical research and working with integrity.

Atmospheric System Research

Two Graduate Students to Pursue ASR Research Through DOE’s SCGSR Program

New projects focus on research of interest to asr.

To prepare more graduate students for careers in science, technology, engineering, and mathematics (STEM), the U.S. Department of Energy (DOE)  Office of Science Graduate Student Research (SCGSR) program provides awards to outstanding U.S. graduate students, allowing them to conduct part of their thesis research at DOE laboratories.

“The Graduate Student Research program is a unique opportunity for graduate students to complete their PhD training with teams of world-class experts aiming to answer some of the most challenging problems in fundamental science,” said Harriet Kung, Acting Director of the DOE Office of Science. “Gaining access to cutting-edge tools for scientific discovery at DOE national laboratories will be instrumental in preparing the next generation of scientific leaders.”

SCGSR awardees work on research projects significant to the Office of Science mission , including atmospheric and climate science. In late April, DOE announced the selection of 86 graduate students from 31 U.S. states and Puerto Rico in the SCGSR program’s 2023 Solicitation 2 cycle.

According to Atmospheric System Research (ASR) Program Manager Jeff Stehr, by providing world-class training and access to state-of-the-art facilities and resources at DOE national laboratories, SCGSR is preparing graduate students for research careers.

“We must invest in the next generation of scientists,” says Stehr. “We are very excited to have such talented SCGSR awardees focusing on ASR-related work.”

Alexandra Ng, University of North Carolina at Chapel Hill

Alexandra Ng, University of North Carolina at Chapel Hill

Alexandra Ng, a University of North Carolina at Chapel Hill doctoral student in environmental sciences and engineering, will use model parameterizations in her SCGSR project to study aerosol optical properties and model cloud activation for non-ideal secondary organic aerosols. The model will be implemented in the regional Weather Research and Forecasting model coupled to Chemistry (WRF-Chem) and compared with new field data collected at the Atmospheric Radiation Measurement (ARM) user facility’s Bankhead National Forest (BNF) observatory in northern Alabama.

Ng’s project is designed to improve understanding of non-ideal secondary organic aerosol (SOA) feedbacks on climate by enhancing novel aerosol optical property algorithms in WRF-Chem. “Non-ideal” SOAs have complex morphologies and phase states, such as liquid, semi-solid, and glassy.

Ng will work with Manish Shrivastava , an earth scientist at Pacific Northwest National Laboratory (PNNL) in Washington state. Shrivastava’s research broadly encompasses the climate impacts of aerosols, atmospheric chemistry, new particle formation and growth, regional and global modeling, and analyses of the interactions between human pollution and natural forested regions, the formation of secondary organic aerosols, and the influence of human activities on air quality.

Shrivastava is a co-investigator for the Integrated Cloud, Land-surface, and Aerosol System Study (ICLASS) —one of ASR’s Science Focus Areas. He is also a co-investigator for ASR’s “ A Community Laboratory Facility for Exploring and Sensing of Aerosol-Cloud-Drizzle Processes: The Aerosol-Cloud-Drizzle Convection Chamber ” project. In 2018, Shrivastava received a DOE Early Career Research Program award .

Desiree Sarmiento, University of Denver

Desiree Sarmiento, University of Denver.

Desiree Sarmiento is a doctoral student at the University of Denver, where she studies free radical formation in particulate matter and the photooxidation of organic pollutants in the atmosphere. Her SCGSR project, “Role of Environmentally Persistent Free Radicals in Aged Soot Ice Nucleating Particles,” will seek to provide a better understanding of the formation, stability, and transformation of pyrogenic environmentally persistent free radicals upon photoaging and ice nucleation.

She will work with Swarup China , a PNNL chemist who leads the Terrestrial-Atmospheric Processes Integrated Research Platform at the Environmental Molecular Sciences Laboratory (EMSL) .

Sarmiento’s project is designed to provide fundamental insights into the role of environmentally persistent free radicals in ice formation on soot and cold-cloud processing of soot particles. Her work will use EMSL’s ice nucleation platform interfaced with an environmental scanning electron microscope (IN-ESEM) and a portable ice nucleation experiment (PINE) chamber, which can provide valuable information about the ice nucleating potential of soot particles and how those particles’ physicochemical properties affect ice nucleation.

China’s research areas include atmospheric aerosol properties and processes, atmospheric aerosol chemistry, heterogeneous ice nucleation, and aerosol-cloud interactions. His work is focused on a better understanding of the physical chemistry of atmospheric particles controlling aerosol-cloud interactions.

About the SCGSR Program

DOE’s SCGSR program allows students to advance their PhD thesis research while working at a DOE national laboratory, collaborating with scientists and using state-of-the-art facilities and scientific instrumentation.

SCGSR awards are open to graduate students who are currently pursuing a PhD in the areas of physics, chemistry, materials science, biology (non-medical), mathematics, engineering, computer or computational sciences, and specific areas of environmental sciences that are aligned with the mission of the Office of Science.

A list of all SCGSR 2023 Solicitation 2 cycle award recipients can be found here .

Author: Mike Wasem , Staff Writer, Pacific Northwest National Laboratory

This work was supported by the U.S. Department of Energy’s Office of Science, through the Biological and Environmental Research program as part of the Atmospheric System Research program.

Microsoft Research AI for Science

Chris Bishop and Frank Noé in conversation

AI for Science in Conversation: Chris Bishop and Frank Noé discuss setting up a team in Berlin

Screenshot of Bonnie Kruft from The fifth paradigm of scientific discovery plenary

Watch Research Summit "Fifth Paradigm of Scientific Discovery" plenary on demand

Christopher Bishop, Technical Fellow and Director, Microsoft Research AI4Science

AI for Science to empower the fifth paradigm of scientific discovery

Christopher Bishop, Technical Fellow, and Director, AI4Science

“Over the coming decade, deep learning looks set to have a transformational impact on the natural sciences. The consequences are potentially far-reaching and could dramatically improve our ability to model and predict natural phenomena over widely varying scales of space and time. Our AI4Science team encompasses world experts in machine learning, quantum physics, computational chemistry, molecular biology, fluid dynamics, software engineering, and other disciplines, who are working together to tackle some of the most pressing challenges in this field.“ 未来十年,深度学习注定将会给自然科学带来变革性的影响。其结果具有潜在的深远意义,可能会极大地提高我们在差异巨大的空间和时间尺度上对自然现象进行建模和预测的能力。为此,微软研究院科学智能中心(AI4Science)集结了机器学习、计算物理、计算化学、分子生物学、软件工程和其他学科领域的世界级专家,共同致力于解决该领域中最紧迫的挑战。 Professor Chris Bishop , Technical Fellow, and Director, AI for Science

Work with us

Senior researcher – machine learning  .

Location : Beijing, China

Technical Program Manager 2 – AI for Science  

Our locations.

Amsterdam Netherlands, sunset city skyline of Dutch house at canal waterfront

Amsterdam, Netherlands

Photo of the Beijing lab

Beijing, China

Berlin skyline at night

Berlin, Germany

Microsoft Research Cambridge

Cambridge, UK

Building 99 in Redmond

Redmond, USA

Cityscape of Shanghai, showing the MSR office

Shanghai, China

  • Follow on Twitter
  • Like on Facebook
  • Follow on LinkedIn
  • Subscribe on Youtube
  • Follow on Instagram
  • Subscribe to our RSS feed

Share this page:

  • Share on Twitter
  • Share on Facebook
  • Share on LinkedIn
  • Share on Reddit

NASA Logo

Growing Beyond Earth Annual Student Research Symposium

NASA Science Activation's Growing Beyond Earth project is a 6th-12th grade classroom-based citizen science project developed by Fairchild Tropical Botanic Garden in partnership with scientists at NASA, designed to advance NASA research on growing plants in space. It includes a series of plant experiments conducted by students in a Fairchild-designed plant habitat similar to the Vegetable Production System (Veggie) on the International Space Station. Tens of thousands of middle and high school students and their teachers nationwide have contributed hundreds of thousands of data points and tested 180 varieties of edible plants for NASA, with four having been flown on the International Space Station based on the student's results.

On April 20, 2024, 400+ students and teachers from 75 schools across the nation (and world) gathered at Fairchild Tropical Botanic Garden to participate in the annual Growing Beyond Earth Student Research Symposium. Participants presented their original ISS-analogue space crop research in-person to a panel of judges from NASA Kennedy Space Center and/or virtually to two dozen university and NASA scientists. Experiments ranged from “Effect of Sargassum Extract Fertilizer on Growth of Chervil Vertissimo” to “Magnetoelectric Effect on Purple Magic Pac Choi”. A big congratulations to all the teacher and student scientists who presented their research and much heartfelt appreciation to all involved in Growing Beyond Earth for inspiring and encouraging the next generation of explorers.

Middle or high school teachers interested in bringing Growing Beyond Earth Citizen Science into your classrooms are invited to join the upcoming information sessions, during which the Growing Beyond Earth team will explain the program and its implementation in the classroom (followed by a Q&A session).

Two Dates Available: June 10, 7-8 p.m. EST: Join the Webinar July 1, 11 a.m. - 12 p.m. EST: Join the Webinar

The Growing Beyond Earth project is supported by NASA under cooperative agreement award number NNH21ZDA001N-SciAct and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

A student speaks into a microphone while pointing up at the projector screen behind them showing comparative graphs of their research results. Another student presenter stands near them on the stage.

Related Terms

  • Biological & Physical Sciences
  • Citizen Science
  • Grades 5 - 8 for Educators
  • Grades 9-12 for Educators
  • Opportunities For Educators to Get Involved
  • Opportunities For Students to Get Involved
  • Science Activation

Explore More

A composite screenshot of 12 participants on a video call.

Arizona Students Go on an Exoplanet Watch 

A computer screen still frame of the Aurorasaurus application showing a map of the US with green and red dots indicating the probability of a visible aurora.

Aurorasaurus Roars During Historic Solar Storm

The largest geomagnetic storm in 21 years lit up the sky last weekend, and NASA’s volunteers were ready. Between May 10th and 12th 2024, NASA’s Aurorasaurus project received an unprecedented number of reports from around the world. It also helped eager aurora chasers get a better view.

An image of the Sun shows a bright flash in the bottom right side where a solar flare erupts.

How NASA Tracked the Most Intense Solar Storm in Decades

Discover more topics from nasa.

James Webb Space Telescope

The image is divided horizontally by an undulating line between a cloudscape forming a nebula along the bottom portion and a comparatively clear upper portion. Speckled across both portions is a starfield, showing innumerable stars of many sizes. The smallest of these are small, distant, and faint points of light. The largest of these appear larger, closer, brighter, and more fully resolved with 8-point diffraction spikes. The upper portion of the image is blueish, and has wispy translucent cloud-like streaks rising from the nebula below. The orangish cloudy formation in the bottom half varies in density and ranges from translucent to opaque. The stars vary in color, the majority of which have a blue or orange hue. The cloud-like structure of the nebula contains ridges, peaks, and valleys – an appearance very similar to a mountain range. Three long diffraction spikes from the top right edge of the image suggest the presence of a large star just out of view.

Perseverance Rover

research project chemistry

Parker Solar Probe

research project chemistry

An official website of the United States government

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS. A lock ( Lock Locked padlock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Alert: Due to extended maintenance, NSF.gov will be unavailable from 11:00 PM on 5/31 to 2:00 AM on 6/1. Most other NSF systems, including Research.gov, will be unavailable from 11:00 PM on 5/31 to 1:00 PM on 6/1. We apologize for any inconvenience.

banner for the expeditions in computing award

NSF invests $36M in computing projects that promise to maximize performance, reduce energy demands

The U.S. National Science Foundation is awarding $36 million to three projects selected for their potential to revolutionize computing and make significant impacts in reducing the carbon footprint of the lifecycle of computers. Funding for the projects comes from the NSF Expeditions in Computing (Expeditions) program, an ambitious initiative that supports transformative research poised to yield lasting impacts on society, the economy and technological advancement. Projects funded by Expeditions are characterized by their ambition and potential for transformation, leveraging advances in computing and cyberinfrastructure to accelerate discovery and innovation across various domains of science and engineering. 

"We are thrilled to announce these visionary projects that will advance environmental responsibility and foster innovation in the field of computing," said Dilma DaSilva, acting assistant director for the NSF Directorate for Computer and Information Science and Engineering (CISE). "Congratulations to these pioneering teams whose research will forge new pathways in computational decarbonization and in revolutionizing operating system design with machine learning.    

The 2024 NSF Expeditions awardees   

NSF Expeditions in Computing: Carbon Connect--An Ecosystem for Sustainable Computing . Led by Harvard University, this multi-institutional, five-year research initiative will lay the foundations for sustainable computing, with a focus on reducing the environmental impact of computer systems. This shift toward sustainability could spark a transformation in how computer systems are manufactured, allocated and consumed, leading to a more responsible and sustainable approach to advancing computing technologies. By redefining the way computer scientists consider environmental sustainability, Carbon Connect will establish new standards for carbon accounting in the computing industry, thereby influencing future energy policy and legislation. 

Collaborators on this project include the University of Pennsylvania, the California Institute of Technology, Carnegie Mellon University, Cornell University, Yale University and The Ohio State University. 

NSF Expeditions in Computing for Computational Decarbonization of Societal Infrastructures at Mesoscales . Led by the University of Massachusetts Amherst, this project will develop the new field of computational decarbonization, (CoDec), which focuses on optimizing and reducing the lifecycle of carbon emissions of complex computing and societal infrastructure systems. CoDec will tackle interdependencies across multiple aspects of infrastructure, including computing, transportation, buildings and the electric power grid. Through innovative sensing approaches, optimization methods grounded in theory and artificial intelligence, and software-defined interfaces, CoDec seeks to automate and coordinate carbon-efficiency optimizations across time, space and sectors. These efforts will enable scientific discoveries in decarbonization while supporting sustainable growth, advancing technology and strengthening national security.   

Collaborators of this project include Carnegie Mellon University, the Massachusetts Institute of Technology, the University of Chicago, UCLA and the University of Wisconsin-Madison. 

NSF Expeditions in Computing: Learning Directed Operating System--A Clean-Slate Paradigm for Operating Systems Design and Implementation . Led by The University of Texas at Austin, this project aims to revolutionize the design of operating systems (OSes) by integrating advanced machine learning (ML) into resource management. Current OSes employ rigid, manually designed approaches for allocating hardware resources among running applications. This inflexibility makes it hard to adapt to evolving application needs and hardware, leading to inefficiency and poor performance. This research will develop a learning-directed operating system with intrinsic intelligence and auto-adaptation, enabling ML-driven resource management that optimizes performance and efficiency and requires minimal human intervention. By fundamentally rethinking OS design with ML at its core, this research has the potential to significantly improve the energy efficiency of cloud computing, enable real-time edge computing applications and create innovative computing devices.   

About the Expeditions program  

Established in 2008, the NSF Expeditions awards represent some of the largest investments provided by the CISE directorate. Pioneering work funded by the program includes the Robobee Project and CompSustNet .  

Expeditions projects focus on creating transformative technologies, methodologies and infrastructure that can be adopted by the broader research community, industry or society at large. The program emphasizes the translation of research outcomes into practical applications, thus driving advancements in computer science and its real-world applications. 

  • For more information, see the Expeditions award page

Research areas

An official website of the United States government

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS. A lock ( Lock Locked padlock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Alert: Due to extended maintenance, NSF.gov will be unavailable from 11:00 PM on 5/31 to 2:00 AM on 6/1. Most other NSF systems, including Research.gov, will be unavailable from 11:00 PM on 5/31 to 1:00 PM on 6/1. We apologize for any inconvenience.

Dear Colleague Letter: National Artificial Intelligence Research Resource (NAIRR) Pilot Demonstration Projects

May 28, 2024

Dear Colleagues:

The National Artificial Intelligence Research Resource (NAIRR) Pilot, led by the Office of Advanced Cyberinfrastructure (OAC) of the National Science Foundation (NSF), has been launched as a proof of concept to demonstrate the value and potential impact of the NAIRR concept as described in the NAIRR Task Force Report . Activities aligned with the NAIRR Pilot vision include facilitating researcher and educator requests for computing, model access, and other resources; integrating data, software, platforms, and tools; reaching new and broad communities; fostering positive end user experiences; and building a NAIRR pilot user community. These activities are administered by designated working groups and overseen by the NAIRR Pilot Program Management Office (PPMO). More information about the NAIRR Pilot and contributing organizations can be found at the NAIRR Pilot NSF site and at nairrpilot.org .

This Dear Colleague Letter (DCL) announces NSF's interest in receiving Early-concept Grants for Exploratory Research (EAGER) proposals and supplemental funding requests for NAIRR Demonstration Projects to highlight innovative use cases and technologies that make use of the NAIRR Pilot.

NAIRR Pilot Demonstration Projects are multi-disciplinary efforts involving a team of AI researchers, domain scientists, and/or cyberinfrastructure specialists who are undertaking specific research challenges that innovatively use, integrate with, or rely on one or more NAIRR Pilot requestable resources. Demonstration Projects should result in prominent scientific publications and demonstrate potential capabilities of a future full NAIRR.

Proposed projects should be submitted as supplemental funding requests from existing collaborative teams or as EAGER proposals from new collaborative teams to make innovative use of NAIRR resources to undertake ambitious, near-term research through demonstration projects.

Submissions led by teams located in Established Program to Stimulate Competitive Research (EPSCoR) jurisdictions and from Minority Serving Institutions are encouraged in response to this opportunity.

How to respond to this DCL

Proposers interested in the Demonstration Projects opportunity are required to first submit a concept outline to [email protected] and are encouraged to contact NSF through this email address to have preliminary discussions before submission of the concept outline. The concept outline is limited to three pages, including a draft budget, and must include a problem statement describing a specific research or cyberinfrastructure challenge relevant to the NAIRR, a description of the proposed work to address this challenge, and a description of NAIRR resources that will be needed to undertake the work.

Pending NSF approval of the concept outlines,

  • Multi-disciplinary teams with existing NSF awards may request supplements to those awards, and
  • New collaborative teams proposing exploratory, high risk-high reward AI integration work may submit EAGER proposals. EAGER awards may be for up to $300,000 for up to two years.

Complete guidance on the preparation and submission of an EAGER proposal is contained in Chapter II.F.3 of the NSF Proposal and Award Policies and Procedures Guide (PAPPG) . Complete guidance for supplemental funding requests can be found in Chapter VI E.5 of the PAPPG.

EAGER proposals and supplemental funding requests submitted without prior submission of a concept outline as described above and subsequent correspondence email from NSF inviting a full submission will be returned without review. Proposals and supplemental funding requests that fail to address the objectives and guidance described in this DCL will be returned without review. EAGER proposal titles should begin with “NAIRR Pilot: ” after the required prefix "EAGER:".

EAGER proposals and supplemental funding requests for demonstration projects submitted by July 10, 2024 , will have the highest opportunity to be funded in FY2024. Submissions after July 10, 2024 , may be considered in FY2025.

All questions concerning this DCL should be directed to [email protected] and not the signatories of this DCL.

Dilma Da Silva, Acting Assistant Director Directorate for Computer and Information Science and Engineering (CISE)

IMAGES

  1. 5 Chemistry Science Projects

    research project chemistry

  2. Best 75 Chemistry Research Topics For Student's Project

    research project chemistry

  3. Chemistry Projects for Class 11 & Working Models 2020

    research project chemistry

  4. Top 10 Best Chemistry Project of Science Exhibition for class 5, 6, 7 and 8

    research project chemistry

  5. 50+ Chemistry Research Topics for College Students

    research project chemistry

  6. 100+ Chemistry Research Topics Ideas for Your Paper

    research project chemistry

VIDEO

  1. investigatory project for CBSE 12 board practical chemistry

  2. 10 CHEMISTRY PROJECT TOPICS (100 INVESTIGATORY CHEMISTRY PROJECTS )/CHEMISTRY PROJECT WORKS

  3. How to write chemistry project work

  4. Summer chemistry research at PLU

  5. Investigatory Project (chemistry)

  6. Chemistry Research

COMMENTS

  1. 110 Great Chemistry Research Topics [2024]

    Organic chemistry is the study of carbon-containing molecules. There are many different organic chemistry research topics that a student could choose to focus on and here are just a few examples of possible research projects in organic chemistry: Investigating new methods for synthesizing chiral molecules

  2. 201+ Chemistry Project Topics [Updated]

    Explore 201+ chemistry project topics - from organic synthesis to environmental analysis - and uncover the wonders of chemical science. ... This will help you identify gaps in knowledge or areas where further research is needed, guiding your selection of a relevant project topic.

  3. 300+ Chemistry Research Topics

    Organic Chemistry Research Topics. Organic Chemistry Research Topics are as follows: Development of novel synthetic routes for the production of biologically active natural products. Investigation of reaction mechanisms and kinetics for organic transformations. Design and synthesis of new catalysts for asymmetric organic reactions.

  4. 50+ Remarkable Chemistry Project Topics for BSC Students ...

    Selecting the right chemistry project topic is crucial for a successful project. The ideal topic should align with your interests, offer access to ample research materials, and be suitable for your skill level and experience. Here are some ideas to consider for chemistry projects: Chemical Composition Analysis

  5. Undergraduate Research in Chemistry

    Undergraduate Research in Chemistry. Undergraduate research in chemistry is self-directed experimentation work under the guidance and supervision of a mentor or advisor. Students participate in an ongoing research project and investigate phenomena of interest to them and their advisor. There is a broad range of research areas in the chemical ...

  6. Undergraduate Research in Chemistry Guide

    Undergraduate Research in Chemistry Guide. Research is the pursuit of new knowledge through the process of discovery. Scientific research involves diligent inquiry and systematic observation of phenomena. Most scientific research projects involve experimentation, often requiring testing the effect of changing conditions on the results.

  7. 28 Must-Read Topics in Chemistry

    ACS Publications regularly produces collections of the most important chemistry research topics. These Virtual Collections of the most important chemistry research topics bring together the most important ideas in the field in a variety of ways, including Special Issues and ACS Selects from across the portfolio journals. These collections reflect the most important chemistry research […]

  8. 200+ Chemistry Research Topics & Ideas for Your Study

    In this section, we will discuss research topics of chemistry related to the design and application of chemical processes. Here are some of the chemical research project ideas that will impress your instructor: Chemical engineering concepts in the food production industry. Analyzing wastewater treatment techniques.

  9. 50+ Chemistry Research Topics To Help You With Studies

    Interesting Chemistry Research Areas. As one sees chemistry topics for research project, it is crucial to choose something that interests you and can fully reveal innovative approach to studies or laboratory work. For example, one can combine biology with genome analysis, which will lead to study of NanoChemistry - innovative and hot topic!

  10. Chemistry

    Chemistry is a branch of science that involves the study of the composition, structure and properties of matter. ... and outline challenges and opportunities for future directions of research ...

  11. Frontiers in Chemistry

    Diversifying Chemical Synthesis with Cascade Catalysis. Advances our understanding of how atoms, ions, and molecules come together and come apart. It explores the role of chemistry in our everyday lives - from electronic devices to health and wellbeing.

  12. A guide to research question writing for undergraduate chemistry

    Welcome to chemistry education research Many chemistry degree programmes offer the opportunity for students to undertake a chemistry education research project as part of their final year degree, and inclusion of chemistry education as a specialism has long been part of, for example, the Royal Society of Chemistry Accreditation of Degree Programmes guidance ().

  13. 30 Chemistry Research Ideas for High School Students

    Chemistry Research Area #3: Materials Science and Nanotechnology. Materials science and nanotechnology are fields that hold the key to groundbreaking innovations in various industries. For high school students looking for chemistry research ideas, these areas offer a unique blend of chemistry, physics, and engineering, providing a glimpse into ...

  14. 12 Chemistry Research and Passion Project Ideas

    In this project, you'll learn more analytical chemistry techniques and explore a question relevant to public health. Idea by chemistry research mentor Grace. 2. Ocean acidification. As the world moves towards global warming, we are seeing increasing concentration of carbon dioxide in the atmosphere.

  15. 25 Research Ideas in Chemistry for High School Students

    1. Use green chemistry as a tool to achieve sustainability targets in the fields of energy, water remediation, agriculture or sensing. 2. Find novel chemicals that can be used to shape the next generation of batteries, green fuels, and energy harvesting. 3.

  16. Research projects

    Below we list current research topics in the Research School of Chemistry with links to relevant researchers and groups. We have a wide range of potential chemistry research projects, ranging from short-term summer research projects to year-long honours and graduate projects to three-year PhD projects. Please contact the listed project supervisor for further discussion and ideas.

  17. Undergraduate Research Projects

    Traditional Chemistry Areas: Analytical, Biochemistry. Research: Credit. Start Date: Fall 2019. Required Courses: To be discussed during interview. Evans Group. Title of Research Project: Think-aloud Studies of Student Use of an App for Organic Reaction Mechanisms. Direct Mentor: Michael Evans.

  18. Research Projects

    Current research projects aim at 1) enhancing sample-utilization efficiency in tandem MS characterization, and 2) developing novel quantitation method. Using MS based technologies, the group also creates atomically dispersed (noble metal) hybrid material for applications in catalysis, diagnosis, and flexible electronics. Gonghu Li is interested ...

  19. Research Projects

    Current research projects aim at 1) enhancing sample-utilization efficiency in tandem MS characterization, and 2) developing novel quantitation method. Using MS based technologies, the group also creates atomically dispersed (noble metal) hybrid material for applications in catalysis, diagnosis, and flexible electronics. needs alt text.

  20. Five chemistry research projects that you can get involved in

    Screen shot from the Fold-It project. Animation Research Labs, University of Washington. This information helps researchers understand if human pattern recognition and puzzle solving abilities are ...

  21. Research

    Research. Oxford is one of the leading chemistry departments in the world with over 80 academic staff carrying out pioneering work. Research in Oxford Chemistry focuses on fundamental science aimed at making significant and sustained long-term impact. We provide an environment that enables research by hiring, developing, and supporting talented ...

  22. Chemistry Science Projects

    Chemistry Science Projects. (79 results) An experienced chemistry professor used to say that it took about one explosion per week to maintain college students' attention in chemistry lectures. At that rate, we'd get in pretty big trouble with a lot of parents and teachers! Don't worry, we still have lots of bubbles, fizzes, bangs, and color ...

  23. High School, Chemistry Science Projects

    Science Fair Project Idea. The iodine clock reaction is a favorite demonstration reaction in chemistry classes that usually requires toxic or hazardous chemicals. During the reaction, two clear liquids are mixed, resulting in another clear liquid. After some time, the solution suddenly turns dark blue.

  24. Tenth Grade, Chemistry Science Projects

    Tenth Grade, Chemistry Science Projects. (32 results) An experienced chemistry professor used to say that it took about one explosion per week to maintain college students' attention in chemistry lectures. At that rate, we'd get in pretty big trouble with a lot of parents and teachers! Don't worry, we still have lots of bubbles, fizzes, bangs ...

  25. 9 Undergraduate Research Projects That Wowed Us This Year

    Many present their work at research conferences, and some even co-author work with faculty and graduate students that leads to publication. As 2023-2024 drew to a close, the NYU News team coordinated with the Office of the Provost to pull together a snapshot of the research efforts that students undertook during this school year.

  26. ASR

    New projects focus on research of interest to ASR . To prepare more graduate students for careers in science, technology, engineering, and mathematics (STEM), the U.S. Department of Energy (DOE) Office of Science Graduate Student Research (SCGSR) program provides awards to outstanding U.S. graduate students, allowing them to conduct part of their thesis research at DOE laboratories.

  27. Microsoft Research AI for Science

    AI for Science to empower the fifth paradigm of scientific discovery. "Over the coming decade, deep learning looks set to have a transformational impact on the natural sciences. The consequences are potentially far-reaching and could dramatically improve our ability to model and predict natural phenomena over widely varying scales of space ...

  28. Growing Beyond Earth Annual Student Research Symposium

    NASA Science Activation's Growing Beyond Earth project is a 6th-12th grade classroom-based citizen science project developed by Fairchild Tropical Botanic Garden in partnership with scientists at NASA, designed to advance NASA research on growing plants in space. It includes a series of plant experiments conducted by students in a Fairchild-designed plant habitat similar to the […]

  29. NSF invests $36M in computing projects that promise to maximize

    Expeditions projects focus on creating transformative technologies, methodologies and infrastructure that can be adopted by the broader research community, industry or society at large. The program emphasizes the translation of research outcomes into practical applications, thus driving advancements in computer science and its real-world ...

  30. Dear Colleague Letter: National Artificial Intelligence Research ...

    May 28, 2024. Dear Colleagues: The National Artificial Intelligence Research Resource (NAIRR) Pilot, led by the Office of Advanced Cyberinfrastructure (OAC) of the National Science Foundation (NSF), has been launched as a proof of concept to demonstrate the value and potential impact of the NAIRR concept as described in the NAIRR Task Force Report. ...