Back Home

  • Search Search Search …
  • Search Search …

Scientific Literacy and Critical Thinking Skills: Nurturing a Better Future

Scientific Literacy and Critical Thinking Skills

Scientific literacy and critical thinking are essential components of a well-rounded education, preparing students to better understand the world we live in and make informed decisions. As science and technology continue to advance and impact various aspects of our lives, it is increasingly important for individuals to develop the ability to think critically about scientific information, fostering a deeper understanding of the implications and consequences of such advancements. By fostering scientific literacy, students become equipped with the knowledge and skills to actively engage with science-related issues in a responsible and informed manner.

The development of critical thinking skills is crucial not only within the realm of science, but across all disciplines and aspects of life. These skills enable individuals to analyze, evaluate, and synthesize information—essential attributes for navigating the modern world. As science communication and dissemination become more widespread, having the ability to critically assess validity, objectivity, and authority is paramount to being a responsible and engaged citizen.

Focusing on scientific literacy and critical thinking in education prepares students for a world where science and technology play a pivotal role across numerous fields. By cultivating these capacities, students will be better prepared to face complex issues and tasks, contribute positively to society, and pave the way for continued advancements and innovations.

Key Concepts and Principles

Science education foundations.

Scientific literacy and critical thinking are essential components of a well-rounded science education. These foundational skills equip students with the ability to understand key concepts, develop scientific reasoning, and utilize scientific knowledge for personal and social purposes as defined in Science for All Americans .

A strong science education involves:

  • Acquiring scientific knowledge and understanding the core concepts of various disciplines
  • Developing the ability to analyze and evaluate scientific claims and arguments
  • Enhancing writing and communication skills to effectively convey scientific ideas

By focusing on these elements, educators empower students to think and function as responsible citizens in an increasingly science-driven world.

Metacognition and Reflection

Metacognition, or the process of thinking about one’s own thinking, plays a crucial role in fostering critical thinking skills in science education. Cambridge highlights key steps in the critical thinking process, which include:

  • Identifying a problem and asking questions about that problem
  • Selecting information to respond to the problem and evaluating it
  • Drawing conclusions from the evidence

By incorporating metacognitive strategies and promoting reflection throughout the learning process, educators enable students to actively engage with scientific concepts, building a deeper understanding and fostering critical thinking abilities.

In summary, a well-rounded science education places emphasis on the development of scientific literacy and critical thinking skills, based on a strong foundation in core concepts and knowledge. Incorporating metacognitive strategies and promoting reflection throughout the learning process further enhances these skills, equipping students for success in their future scientific endeavors. Remember to maintain a confident, knowledgeable, neutral, and clear tone of voice when discussing these topics.

Curriculum and Pedagogy

Teaching and learning approaches.

Teaching and learning approaches play a crucial role in promoting scientific literacy and critical thinking skills among students. One effective strategy for encouraging these skills is to create a thinking-based classroom, where the learning environment is shaped to support thinking and create opportunities for students to engage in scientific concepts 1 .

Educators can achieve this by incorporating a variety of pedagogical techniques, such as:

  • Scaffolded instruction : Gradually develop students’ understanding by modeling, guided instruction, and eventually allowing students to take ownership of their learning.
  • Inquiry-based learning : Encourage exploration and questions to build understanding of scientific concepts.
  • Collaborative learning : Use group projects and discussions to inspire debate and foster interaction among students, allowing them to learn from one another’s perspectives.

Incorporating Argumentation and Experimentation

Argumentation and experimentation are key components of scientific inquiry that contribute to students’ scientific literacy and critical thinking skills:

  • Argumentation : Incorporating argumentation in the curriculum helps students learn how to construct, evaluate, and refine scientific claims based on evidence 2 . This can be done through structured debates, teaching students to craft written scientific arguments, and evaluating peer arguments in a constructive manner.
  • Experimentation : Encouraging students to engage in hands-on experimentation allows them to explore scientific concepts more deeply while fostering their critical thinking skills 3 . Providing opportunities for experimentation can include designing experiments, carrying them out, analyzing data, and drawing conclusions.

By incorporating these teaching and learning approaches, as well as focusing on argumentation and experimentation, educators can effectively promote scientific literacy and critical thinking skills in their curriculum and pedagogy.

Assessing Scientific Literacy and Critical Thinking Skills

Test instruments and procedures.

There are various test instruments designed to assess students’ scientific literacy and critical thinking skills. One such instrument is the Test of Scientific Literacy Skills (TOSLS) , which focuses on measuring skills related to essential aspects of scientific literacy, such as:

  • Recognizing and analyzing the use of methods of inquiry that lead to scientific knowledge
  • Organizing, analyzing, and interpreting quantitative data and scientific information

The TOSLS is a multiple-choice test that allows educators to evaluate students’ understanding of scientific reasoning and their ability to apply scientific concepts in real-life situations.

Apart from standardized tests, it is crucial to incorporate critical thinking into everyday learning activities. Educators may use various methods, such as discussing complex scientific problems within the context of current events and engaging students in collaborative problem-solving tasks.

International Comparisons

When evaluating scientific literacy and critical thinking skills, it is helpful to put the findings into a broader context by comparing them with international standards and benchmarks. One significant international study is the Programme for International Student Assessment (PISA) , which measures the knowledge and skills of 15-year-olds in reading, math, and science every three years. PISA assesses students based on their abilities to use their scientific knowledge for:

  • Identifying scientific issues
  • Explaining phenomena scientifically
  • Evaluating and designing scientific enquires

By evaluating and comparing students’ performance across different countries, PISA contributes to a deeper understanding of different strategies and curricula used to foster scientific literacy and critical thinking skills in different educational contexts.

In conclusion, the assessment of scientific literacy and critical thinking skills is critical for evaluating the quality of science education. By using well-validated test instruments and comparing students’ performance internationally, educators can better understand the effectiveness of different teaching strategies and work to improve science literacy and critical thinking skills for all students.

Factors Influencing Performance and Motivation

Role of gender in physics education.

Research indicates that gender plays a significant role in students’ performance and motivation in physics education. Male and female students exhibit different levels of interest and confidence in the subject, which impact their academic achievements. A correlational study found a positive relationship between critical thinking skills and scientific literacy in both genders but did not identify any significant correlation between gender and these skills.

It is essential to recognize and address these gender differences when designing curriculum and learning environments to encourage equal participation and confidence in physics education for all students.

Decision Making and Problem-Solving

Developing strong decision-making and problem-solving skills are crucial components of scientific literacy. These skills enable students to apply scientific concepts and principles in real-world situations while reinforcing a more humanistic culture based on rational thinking, as highlighted in this article .

  • Motivation : A student’s motivation to learn and engage in scientific activities plays a vital role in the development of their decision-making and problem-solving skills. High motivation levels promote curiosity, actively seeking knowledge, and persistence in solving complex problems.
  • Correlation analysis : Studies have shown a positive relationship between scientific literacy, critical thinking, and the ability to use scientific knowledge for personal and social purposes. This correlation underlines the importance of fostering these skills in the education system.

When incorporating decision-making and problem-solving skills into science education, focus should be placed on engaging students in critical thinking exercises and creating a conducive learning environment that encourages curiosity, exploration, and collaboration.

Scientific Literacy in Everyday Life

Interpreting news reports.

Scientific literacy plays a crucial role in interpreting news reports. A confident, knowledgeable, and neutral understanding of scientific principles and facts allows individuals to critically evaluate the claims made in news articles or television segments, and determine the validity of the information presented.

For example, when encountering a news report about a new health study, it is essential to consider sample size, research methodology, and potential conflicts of interest among the researchers. A clear understanding of these factors can help prevent the spread of misinformation and promote informed decision-making.

Moreover, separating scientific facts from theories enables individuals to better grasp the certainty and uncertainty surrounding the news report. This distinction is crucial for discerning the current state of scientific knowledge and identifying areas where more research is needed.

Understanding and Evaluating Scientific Facts

Maintaining a neutral and clear perspective on science allows individuals to effectively understand and evaluate scientific facts. This involves understanding the difference between facts , which are verifiable pieces of information, and theories , which are well-substantiated explanations for observable phenomena.

For instance, the recognition that the Earth revolves around the Sun is a fact, while the theory of evolution provides a comprehensive explanation of the origin and development of species. Developing the ability to analyze and contextualize scientific information is crucial for forming well-grounded opinions and engaging in informed discussions.

Moreover, the promotion of scientific literacy allows for the appreciation of the interrelatedness of scientific disciplines. This comprehensive understanding can enhance the assessment of scientific facts and their implications in various aspects of daily life, such as making informed choices about healthcare, technology, and environmental issues. Keeping these considerations in mind, fostering scientific literacy and critical thinking skills are essential for responsible citizenship and decision-making in the modern world.

Future Research Agenda

Developing scientific literacy and critical thinking skills is crucial in today’s world, both for individual success and society as a whole. Consequently, a future research agenda exploring these areas is essential, particularly in relation to high school students as they prepare to become responsible citizens.

One of the key issues to address within this agenda is the relationship between science knowledge and attitudes toward science. This includes assessing whether a significant correlation exists between improved scientific understanding and more positive attitudes towards the scientific method and scientific discovery. Gaining insights into this aspect will help guide the development of educational resources and methodologies to foster a more science-minded society.

Another area of interest is the utility of scientific literacy in various career and life contexts. This would involve studying how scientific literacy can be applied to non-science fields, and how it influences individuals’ decision-making processes and problem-solving abilities.

Moreover, research should explore the relationship between science literacy and other literacy skills , such as mathematics, reading comprehension, and writing. This may help educators develop interdisciplinary curricula that promote the growth of critical thinking abilities and scientific understanding simultaneously.

Furthermore, emphasizing the role of scientific literacy for citizens as decision-makers is crucial. It is important to examine how improved scientific literacy influences students’ capacities to evaluate information, engage in public discourse, and make informed choices on matters that involve scientific data or principles.

Lastly, it might be beneficial to investigate the impact of innovative teaching methods, such as transformative science education and futures thinking, on developing students’ scientific literacy and critical thinking abilities. By shedding light on possible approaches that foster these essential skills, researchers can contribute to the continuous evolution of science education.

In summary, focusing on these key threads in a future research agenda will be invaluable in promoting a deeper understanding of scientific literacy and critical thinking skills. By doing so, we can work towards equipping high school students with the tools required to navigate an increasingly complex and science-driven world.

Frequently Asked Questions

What are the benefits of having scientific literacy and critical thinking skills.

Scientific literacy and critical thinking skills are essential for individuals to understand the world around them and make informed decisions. These skills enable people to differentiate science from pseudoscience and evaluate the credibility of information. Moreover, scientifically literate citizens are better equipped to participate in important societal discussions and contribute to policy-making processes.

How can educators effectively teach scientific literacy and critical thinking skills?

Educators can teach these skills by designing activities that promote critical thinking and scientific inquiry. For example, teachers can create learning experiences where students identify problems and ask questions about them, select relevant information, and draw conclusions based on evidence. Furthermore, incorporating case studies, group discussions, and scientific experiments into the curriculum can help students develop these skills.

What role does digital literacy play in promoting scientific literacy and critical thinking?

Digital literacy is an essential component in fostering scientific literacy and critical thinking. In today’s technology-driven world, individuals must be capable of navigating and evaluating online resources to access accurate information. Digital literacy skills, such as determining the credibility of websites and online articles, can help learners critically assess scientific information, weighing the evidence to form well-founded opinions.

How do life and career skills relate to scientific literacy and critical thinking?

Life and career skills, such as communication, problem solving, and adaptability, are intertwined with scientific literacy and critical thinking. These abilities are crucial in equipping individuals to face real-world challenges and make informed decisions in various fields, from science and technology to business and government. An understanding of scientific principles and the ability to think critically foster the development of crucial life and career skills that are increasingly sought-after in today’s world.

What’s the connection between problem-solving skills and scientific literacy?

Problem-solving skills are closely related to scientific literacy, as they empower individuals to analyze situations, identify problems, and devise appropriate solutions. Scientific literacy involves understanding scientific ways of knowing and thinking critically about the natural world. In essence, acquiring scientific literacy enables individuals to apply the principles and methods of science to problem-solving situations in various aspects of life.

How can reflective practice enhance critical thinking in science?

Reflective practice is a valuable tool in enhancing critical thinking skills in science. It involves examining one’s thoughts, actions, and experiences to learn and improve. By engaging in reflective practice, learners can identify personal biases, recognize gaps in their understanding, and determine ways to improve their scientific knowledge and thinking abilities. This process, in turn, promotes critical thinking and a deeper understanding of scientific concepts.

  • Eight Instructional Strategies for Promoting Critical Thinking ↩
  • Fostering Scientific Literacy and Critical Thinking in Elementary Science Education ↩
  • The Biochemical Literacy Framework: Inviting pedagogical innovation in bioscience education ↩

You may also like

Elements of Scientific Thinking

Elements of Scientific Thinking: A Guide to Effective Inquiry

Scientific thinking is a crucial aspect of modern-day society, as it enables individuals to approach complex situations and problems systematically and rationally. […]

Scientific Thinking and Research

Scientific Thinking and Research: Essential Guide to Methodological Approaches

Scientific thinking and research are integral to the advancement of human knowledge and understanding. Scientific thinking is a type of knowledge-seeking process […]

Scientific Thinking Examples

Scientific Thinking Examples: A Comprehensive Guide for Practical Application

Scientific thinking is a vital skill in today’s world, helping us unravel the mysteries of the natural and physical world around us. […]

Scientific Thinking Questions

Scientific Thinking Questions: A Comprehensive Guide to Developing Critical Skills

Scientific thinking is a skill that allows individuals to critically analyze and question the world around them. It involves the use of […]

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • CBE Life Sci Educ
  • v.17(1); Spring 2018

Understanding the Complex Relationship between Critical Thinking and Science Reasoning among Undergraduate Thesis Writers

Jason e. dowd.

† Department of Biology, Duke University, Durham, NC 27708

Robert J. Thompson, Jr.

‡ Department of Psychology and Neuroscience, Duke University, Durham, NC 27708

Leslie A. Schiff

§ Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455

Julie A. Reynolds

Associated data.

This study empirically examines the relationship between students’ critical-thinking skills and scientific reasoning as reflected in undergraduate thesis writing in biology. Writing offers a unique window into studying this relationship, and the findings raise potential implications for instruction.

Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students’ development of these constructs, and it offers a unique window into studying how they relate. In this study of undergraduate thesis writing in biology at two universities, we examine how scientific reasoning exhibited in writing (assessed using the Biology Thesis Assessment Protocol) relates to general and specific critical-thinking skills (assessed using the California Critical Thinking Skills Test), and we consider implications for instruction. We find that scientific reasoning in writing is strongly related to inference , while other aspects of science reasoning that emerge in writing (epistemological considerations, writing conventions, etc.) are not significantly related to critical-thinking skills. Science reasoning in writing is not merely a proxy for critical thinking. In linking features of students’ writing to their critical-thinking skills, this study 1) provides a bridge to prior work suggesting that engagement in science writing enhances critical thinking and 2) serves as a foundational step for subsequently determining whether instruction focused explicitly on developing critical-thinking skills (particularly inference ) can actually improve students’ scientific reasoning in their writing.

INTRODUCTION

Critical-thinking and scientific reasoning skills are core learning objectives of science education for all students, regardless of whether or not they intend to pursue a career in science or engineering. Consistent with the view of learning as construction of understanding and meaning ( National Research Council, 2000 ), the pedagogical practice of writing has been found to be effective not only in fostering the development of students’ conceptual and procedural knowledge ( Gerdeman et al. , 2007 ) and communication skills ( Clase et al. , 2010 ), but also scientific reasoning ( Reynolds et al. , 2012 ) and critical-thinking skills ( Quitadamo and Kurtz, 2007 ).

Critical thinking and scientific reasoning are similar but different constructs that include various types of higher-order cognitive processes, metacognitive strategies, and dispositions involved in making meaning of information. Critical thinking is generally understood as the broader construct ( Holyoak and Morrison, 2005 ), comprising an array of cognitive processes and dispostions that are drawn upon differentially in everyday life and across domains of inquiry such as the natural sciences, social sciences, and humanities. Scientific reasoning, then, may be interpreted as the subset of critical-thinking skills (cognitive and metacognitive processes and dispositions) that 1) are involved in making meaning of information in scientific domains and 2) support the epistemological commitment to scientific methodology and paradigm(s).

Although there has been an enduring focus in higher education on promoting critical thinking and reasoning as general or “transferable” skills, research evidence provides increasing support for the view that reasoning and critical thinking are also situational or domain specific ( Beyer et al. , 2013 ). Some researchers, such as Lawson (2010) , present frameworks in which science reasoning is characterized explicitly in terms of critical-thinking skills. There are, however, limited coherent frameworks and empirical evidence regarding either the general or domain-specific interrelationships of scientific reasoning, as it is most broadly defined, and critical-thinking skills.

The Vision and Change in Undergraduate Biology Education Initiative provides a framework for thinking about these constructs and their interrelationship in the context of the core competencies and disciplinary practice they describe ( American Association for the Advancement of Science, 2011 ). These learning objectives aim for undergraduates to “understand the process of science, the interdisciplinary nature of the new biology and how science is closely integrated within society; be competent in communication and collaboration; have quantitative competency and a basic ability to interpret data; and have some experience with modeling, simulation and computational and systems level approaches as well as with using large databases” ( Woodin et al. , 2010 , pp. 71–72). This framework makes clear that science reasoning and critical-thinking skills play key roles in major learning outcomes; for example, “understanding the process of science” requires students to engage in (and be metacognitive about) scientific reasoning, and having the “ability to interpret data” requires critical-thinking skills. To help students better achieve these core competencies, we must better understand the interrelationships of their composite parts. Thus, the next step is to determine which specific critical-thinking skills are drawn upon when students engage in science reasoning in general and with regard to the particular scientific domain being studied. Such a determination could be applied to improve science education for both majors and nonmajors through pedagogical approaches that foster critical-thinking skills that are most relevant to science reasoning.

Writing affords one of the most effective means for making thinking visible ( Reynolds et al. , 2012 ) and learning how to “think like” and “write like” disciplinary experts ( Meizlish et al. , 2013 ). As a result, student writing affords the opportunities to both foster and examine the interrelationship of scientific reasoning and critical-thinking skills within and across disciplinary contexts. The purpose of this study was to better understand the relationship between students’ critical-thinking skills and scientific reasoning skills as reflected in the genre of undergraduate thesis writing in biology departments at two research universities, the University of Minnesota and Duke University.

In the following subsections, we discuss in greater detail the constructs of scientific reasoning and critical thinking, as well as the assessment of scientific reasoning in students’ thesis writing. In subsequent sections, we discuss our study design, findings, and the implications for enhancing educational practices.

Critical Thinking

The advances in cognitive science in the 21st century have increased our understanding of the mental processes involved in thinking and reasoning, as well as memory, learning, and problem solving. Critical thinking is understood to include both a cognitive dimension and a disposition dimension (e.g., reflective thinking) and is defined as “purposeful, self-regulatory judgment which results in interpretation, analysis, evaluation, and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or contextual considera­tions upon which that judgment is based” ( Facione, 1990, p. 3 ). Although various other definitions of critical thinking have been proposed, researchers have generally coalesced on this consensus: expert view ( Blattner and Frazier, 2002 ; Condon and Kelly-Riley, 2004 ; Bissell and Lemons, 2006 ; Quitadamo and Kurtz, 2007 ) and the corresponding measures of critical-­thinking skills ( August, 2016 ; Stephenson and Sadler-McKnight, 2016 ).

Both the cognitive skills and dispositional components of critical thinking have been recognized as important to science education ( Quitadamo and Kurtz, 2007 ). Empirical research demonstrates that specific pedagogical practices in science courses are effective in fostering students’ critical-thinking skills. Quitadamo and Kurtz (2007) found that students who engaged in a laboratory writing component in the context of a general education biology course significantly improved their overall critical-thinking skills (and their analytical and inference skills, in particular), whereas students engaged in a traditional quiz-based laboratory did not improve their critical-thinking skills. In related work, Quitadamo et al. (2008) found that a community-based inquiry experience, involving inquiry, writing, research, and analysis, was associated with improved critical thinking in a biology course for nonmajors, compared with traditionally taught sections. In both studies, students who exhibited stronger presemester critical-thinking skills exhibited stronger gains, suggesting that “students who have not been explicitly taught how to think critically may not reach the same potential as peers who have been taught these skills” ( Quitadamo and Kurtz, 2007 , p. 151).

Recently, Stephenson and Sadler-McKnight (2016) found that first-year general chemistry students who engaged in a science writing heuristic laboratory, which is an inquiry-based, writing-to-learn approach to instruction ( Hand and Keys, 1999 ), had significantly greater gains in total critical-thinking scores than students who received traditional laboratory instruction. Each of the four components—inquiry, writing, collaboration, and reflection—have been linked to critical thinking ( Stephenson and Sadler-McKnight, 2016 ). Like the other studies, this work highlights the value of targeting critical-thinking skills and the effectiveness of an inquiry-based, writing-to-learn approach to enhance critical thinking. Across studies, authors advocate adopting critical thinking as the course framework ( Pukkila, 2004 ) and developing explicit examples of how critical thinking relates to the scientific method ( Miri et al. , 2007 ).

In these examples, the important connection between writing and critical thinking is highlighted by the fact that each intervention involves the incorporation of writing into science, technology, engineering, and mathematics education (either alone or in combination with other pedagogical practices). However, critical-thinking skills are not always the primary learning outcome; in some contexts, scientific reasoning is the primary outcome that is assessed.

Scientific Reasoning

Scientific reasoning is a complex process that is broadly defined as “the skills involved in inquiry, experimentation, evidence evaluation, and inference that are done in the service of conceptual change or scientific understanding” ( Zimmerman, 2007 , p. 172). Scientific reasoning is understood to include both conceptual knowledge and the cognitive processes involved with generation of hypotheses (i.e., inductive processes involved in the generation of hypotheses and the deductive processes used in the testing of hypotheses), experimentation strategies, and evidence evaluation strategies. These dimensions are interrelated, in that “experimentation and inference strategies are selected based on prior conceptual knowledge of the domain” ( Zimmerman, 2000 , p. 139). Furthermore, conceptual and procedural knowledge and cognitive process dimensions can be general and domain specific (or discipline specific).

With regard to conceptual knowledge, attention has been focused on the acquisition of core methodological concepts fundamental to scientists’ causal reasoning and metacognitive distancing (or decontextualized thinking), which is the ability to reason independently of prior knowledge or beliefs ( Greenhoot et al. , 2004 ). The latter involves what Kuhn and Dean (2004) refer to as the coordination of theory and evidence, which requires that one question existing theories (i.e., prior knowledge and beliefs), seek contradictory evidence, eliminate alternative explanations, and revise one’s prior beliefs in the face of contradictory evidence. Kuhn and colleagues (2008) further elaborate that scientific thinking requires “a mature understanding of the epistemological foundations of science, recognizing scientific knowledge as constructed by humans rather than simply discovered in the world,” and “the ability to engage in skilled argumentation in the scientific domain, with an appreciation of argumentation as entailing the coordination of theory and evidence” ( Kuhn et al. , 2008 , p. 435). “This approach to scientific reasoning not only highlights the skills of generating and evaluating evidence-based inferences, but also encompasses epistemological appreciation of the functions of evidence and theory” ( Ding et al. , 2016 , p. 616). Evaluating evidence-based inferences involves epistemic cognition, which Moshman (2015) defines as the subset of metacognition that is concerned with justification, truth, and associated forms of reasoning. Epistemic cognition is both general and domain specific (or discipline specific; Moshman, 2015 ).

There is empirical support for the contributions of both prior knowledge and an understanding of the epistemological foundations of science to scientific reasoning. In a study of undergraduate science students, advanced scientific reasoning was most often accompanied by accurate prior knowledge as well as sophisticated epistemological commitments; additionally, for students who had comparable levels of prior knowledge, skillful reasoning was associated with a strong epistemological commitment to the consistency of theory with evidence ( Zeineddin and Abd-El-Khalick, 2010 ). These findings highlight the importance of the need for instructional activities that intentionally help learners develop sophisticated epistemological commitments focused on the nature of knowledge and the role of evidence in supporting knowledge claims ( Zeineddin and Abd-El-Khalick, 2010 ).

Scientific Reasoning in Students’ Thesis Writing

Pedagogical approaches that incorporate writing have also focused on enhancing scientific reasoning. Many rubrics have been developed to assess aspects of scientific reasoning in written artifacts. For example, Timmerman and colleagues (2011) , in the course of describing their own rubric for assessing scientific reasoning, highlight several examples of scientific reasoning assessment criteria ( Haaga, 1993 ; Tariq et al. , 1998 ; Topping et al. , 2000 ; Kelly and Takao, 2002 ; Halonen et al. , 2003 ; Willison and O’Regan, 2007 ).

At both the University of Minnesota and Duke University, we have focused on the genre of the undergraduate honors thesis as the rhetorical context in which to study and improve students’ scientific reasoning and writing. We view the process of writing an undergraduate honors thesis as a form of professional development in the sciences (i.e., a way of engaging students in the practices of a community of discourse). We have found that structured courses designed to scaffold the thesis-­writing process and promote metacognition can improve writing and reasoning skills in biology, chemistry, and economics ( Reynolds and Thompson, 2011 ; Dowd et al. , 2015a , b ). In the context of this prior work, we have defined scientific reasoning in writing as the emergent, underlying construct measured across distinct aspects of students’ written discussion of independent research in their undergraduate theses.

The Biology Thesis Assessment Protocol (BioTAP) was developed at Duke University as a tool for systematically guiding students and faculty through a “draft–feedback–revision” writing process, modeled after professional scientific peer-review processes ( Reynolds et al. , 2009 ). BioTAP includes activities and worksheets that allow students to engage in critical peer review and provides detailed descriptions, presented as rubrics, of the questions (i.e., dimensions, shown in Table 1 ) upon which such review should focus. Nine rubric dimensions focus on communication to the broader scientific community, and four rubric dimensions focus on the accuracy and appropriateness of the research. These rubric dimensions provide criteria by which the thesis is assessed, and therefore allow BioTAP to be used as an assessment tool as well as a teaching resource ( Reynolds et al. , 2009 ). Full details are available at www.science-writing.org/biotap.html .

Theses assessment protocol dimensions

In previous work, we have used BioTAP to quantitatively assess students’ undergraduate honors theses and explore the relationship between thesis-writing courses (or specific interventions within the courses) and the strength of students’ science reasoning in writing across different science disciplines: biology ( Reynolds and Thompson, 2011 ); chemistry ( Dowd et al. , 2015b ); and economics ( Dowd et al. , 2015a ). We have focused exclusively on the nine dimensions related to reasoning and writing (questions 1–9), as the other four dimensions (questions 10–13) require topic-specific expertise and are intended to be used by the student’s thesis supervisor.

Beyond considering individual dimensions, we have investigated whether meaningful constructs underlie students’ thesis scores. We conducted exploratory factor analysis of students’ theses in biology, economics, and chemistry and found one dominant underlying factor in each discipline; we termed the factor “scientific reasoning in writing” ( Dowd et al. , 2015a , b , 2016 ). That is, each of the nine dimensions could be understood as reflecting, in different ways and to different degrees, the construct of scientific reasoning in writing. The findings indicated evidence of both general and discipline-specific components to scientific reasoning in writing that relate to epistemic beliefs and paradigms, in keeping with broader ideas about science reasoning discussed earlier. Specifically, scientific reasoning in writing is more strongly associated with formulating a compelling argument for the significance of the research in the context of current literature in biology, making meaning regarding the implications of the findings in chemistry, and providing an organizational framework for interpreting the thesis in economics. We suggested that instruction, whether occurring in writing studios or in writing courses to facilitate thesis preparation, should attend to both components.

Research Question and Study Design

The genre of thesis writing combines the pedagogies of writing and inquiry found to foster scientific reasoning ( Reynolds et al. , 2012 ) and critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-­McKnight, 2016 ). However, there is no empirical evidence regarding the general or domain-specific interrelationships of scientific reasoning and critical-thinking skills, particularly in the rhetorical context of the undergraduate thesis. The BioTAP studies discussed earlier indicate that the rubric-based assessment produces evidence of scientific reasoning in the undergraduate thesis, but it was not designed to foster or measure critical thinking. The current study was undertaken to address the research question: How are students’ critical-thinking skills related to scientific reasoning as reflected in the genre of undergraduate thesis writing in biology? Determining these interrelationships could guide efforts to enhance students’ scientific reasoning and writing skills through focusing instruction on specific critical-thinking skills as well as disciplinary conventions.

To address this research question, we focused on undergraduate thesis writers in biology courses at two institutions, Duke University and the University of Minnesota, and examined the extent to which students’ scientific reasoning in writing, assessed in the undergraduate thesis using BioTAP, corresponds to students’ critical-thinking skills, assessed using the California Critical Thinking Skills Test (CCTST; August, 2016 ).

Study Sample

The study sample was composed of students enrolled in courses designed to scaffold the thesis-writing process in the Department of Biology at Duke University and the College of Biological Sciences at the University of Minnesota. Both courses complement students’ individual work with research advisors. The course is required for thesis writers at the University of Minnesota and optional for writers at Duke University. Not all students are required to complete a thesis, though it is required for students to graduate with honors; at the University of Minnesota, such students are enrolled in an honors program within the college. In total, 28 students were enrolled in the course at Duke University and 44 students were enrolled in the course at the University of Minnesota. Of those students, two students did not consent to participate in the study; additionally, five students did not validly complete the CCTST (i.e., attempted fewer than 60% of items or completed the test in less than 15 minutes). Thus, our overall rate of valid participation is 90%, with 27 students from Duke University and 38 students from the University of Minnesota. We found no statistically significant differences in thesis assessment between students with valid CCTST scores and invalid CCTST scores. Therefore, we focus on the 65 students who consented to participate and for whom we have complete and valid data in most of this study. Additionally, in asking students for their consent to participate, we allowed them to choose whether to provide or decline access to academic and demographic background data. Of the 65 students who consented to participate, 52 students granted access to such data. Therefore, for additional analyses involving academic and background data, we focus on the 52 students who consented. We note that the 13 students who participated but declined to share additional data performed slightly lower on the CCTST than the 52 others (perhaps suggesting that they differ by other measures, but we cannot determine this with certainty). Among the 52 students, 60% identified as female and 10% identified as being from underrepresented ethnicities.

In both courses, students completed the CCTST online, either in class or on their own, late in the Spring 2016 semester. This is the same assessment that was used in prior studies of critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-McKnight, 2016 ). It is “an objective measure of the core reasoning skills needed for reflective decision making concerning what to believe or what to do” ( Insight Assessment, 2016a ). In the test, students are asked to read and consider information as they answer multiple-choice questions. The questions are intended to be appropriate for all users, so there is no expectation of prior disciplinary knowledge in biology (or any other subject). Although actual test items are protected, sample items are available on the Insight Assessment website ( Insight Assessment, 2016b ). We have included one sample item in the Supplemental Material.

The CCTST is based on a consensus definition of critical thinking, measures cognitive and metacognitive skills associated with critical thinking, and has been evaluated for validity and reliability at the college level ( August, 2016 ; Stephenson and Sadler-McKnight, 2016 ). In addition to providing overall critical-thinking score, the CCTST assesses seven dimensions of critical thinking: analysis, interpretation, inference, evaluation, explanation, induction, and deduction. Scores on each dimension are calculated based on students’ performance on items related to that dimension. Analysis focuses on identifying assumptions, reasons, and claims and examining how they interact to form arguments. Interpretation, related to analysis, focuses on determining the precise meaning and significance of information. Inference focuses on drawing conclusions from reasons and evidence. Evaluation focuses on assessing the credibility of sources of information and claims they make. Explanation, related to evaluation, focuses on describing the evidence, assumptions, or rationale for beliefs and conclusions. Induction focuses on drawing inferences about what is probably true based on evidence. Deduction focuses on drawing conclusions about what must be true when the context completely determines the outcome. These are not independent dimensions; the fact that they are related supports their collective interpretation as critical thinking. Together, the CCTST dimensions provide a basis for evaluating students’ overall strength in using reasoning to form reflective judgments about what to believe or what to do ( August, 2016 ). Each of the seven dimensions and the overall CCTST score are measured on a scale of 0–100, where higher scores indicate superior performance. Scores correspond to superior (86–100), strong (79–85), moderate (70–78), weak (63–69), or not manifested (62 and below) skills.

Scientific Reasoning in Writing

At the end of the semester, students’ final, submitted undergraduate theses were assessed using BioTAP, which consists of nine rubric dimensions that focus on communication to the broader scientific community and four additional dimensions that focus on the exhibition of topic-specific expertise ( Reynolds et al. , 2009 ). These dimensions, framed as questions, are displayed in Table 1 .

Student theses were assessed on questions 1–9 of BioTAP using the same procedures described in previous studies ( Reynolds and Thompson, 2011 ; Dowd et al. , 2015a , b ). In this study, six raters were trained in the valid, reliable use of BioTAP rubrics. Each dimension was rated on a five-point scale: 1 indicates the dimension is missing, incomplete, or below acceptable standards; 3 indicates that the dimension is adequate but not exhibiting mastery; and 5 indicates that the dimension is excellent and exhibits mastery (intermediate ratings of 2 and 4 are appropriate when different parts of the thesis make a single category challenging). After training, two raters independently assessed each thesis and then discussed their independent ratings with one another to form a consensus rating. The consensus score is not an average score, but rather an agreed-upon, discussion-based score. On a five-point scale, raters independently assessed dimensions to be within 1 point of each other 82.4% of the time before discussion and formed consensus ratings 100% of the time after discussion.

In this study, we consider both categorical (mastery/nonmastery, where a score of 5 corresponds to mastery) and numerical treatments of individual BioTAP scores to better relate the manifestation of critical thinking in BioTAP assessment to all of the prior studies. For comprehensive/cumulative measures of BioTAP, we focus on the partial sum of questions 1–5, as these questions relate to higher-order scientific reasoning (whereas questions 6–9 relate to mid- and lower-order writing mechanics [ Reynolds et al. , 2009 ]), and the factor scores (i.e., numerical representations of the extent to which each student exhibits the underlying factor), which are calculated from the factor loadings published by Dowd et al. (2016) . We do not focus on questions 6–9 individually in statistical analyses, because we do not expect critical-thinking skills to relate to mid- and lower-order writing skills.

The final, submitted thesis reflects the student’s writing, the student’s scientific reasoning, the quality of feedback provided to the student by peers and mentors, and the student’s ability to incorporate that feedback into his or her work. Therefore, our assessment is not the same as an assessment of unpolished, unrevised samples of students’ written work. While one might imagine that such an unpolished sample may be more strongly correlated with critical-thinking skills measured by the CCTST, we argue that the complete, submitted thesis, assessed using BioTAP, is ultimately a more appropriate reflection of how students exhibit science reasoning in the scientific community.

Statistical Analyses

We took several steps to analyze the collected data. First, to provide context for subsequent interpretations, we generated descriptive statistics for the CCTST scores of the participants based on the norms for undergraduate CCTST test takers. To determine the strength of relationships among CCTST dimensions (including overall score) and the BioTAP dimensions, partial-sum score (questions 1–5), and factor score, we calculated Pearson’s correlations for each pair of measures. To examine whether falling on one side of the nonmastery/mastery threshold (as opposed to a linear scale of performance) was related to critical thinking, we grouped BioTAP dimensions into categories (mastery/nonmastery) and conducted Student’s t tests to compare the means scores of the two groups on each of the seven dimensions and overall score of the CCTST. Finally, for the strongest relationship that emerged, we included additional academic and background variables as covariates in multiple linear-regression analysis to explore questions about how much observed relationships between critical-thinking skills and science reasoning in writing might be explained by variation in these other factors.

Although BioTAP scores represent discreet, ordinal bins, the five-point scale is intended to capture an underlying continuous construct (from inadequate to exhibiting mastery). It has been argued that five categories is an appropriate cutoff for treating ordinal variables as pseudo-continuous ( Rhemtulla et al. , 2012 )—and therefore using continuous-variable statistical methods (e.g., Pearson’s correlations)—as long as the underlying assumption that ordinal scores are linearly distributed is valid. Although we have no way to statistically test this assumption, we interpret adequate scores to be approximately halfway between inadequate and mastery scores, resulting in a linear scale. In part because this assumption is subject to disagreement, we also consider and interpret a categorical (mastery/nonmastery) treatment of BioTAP variables.

We corrected for multiple comparisons using the Holm-Bonferroni method ( Holm, 1979 ). At the most general level, where we consider the single, comprehensive measures for BioTAP (partial-sum and factor score) and the CCTST (overall score), there is no need to correct for multiple comparisons, because the multiple, individual dimensions are collapsed into single dimensions. When we considered individual CCTST dimensions in relation to comprehensive measures for BioTAP, we accounted for seven comparisons; similarly, when we considered individual dimensions of BioTAP in relation to overall CCTST score, we accounted for five comparisons. When all seven CCTST and five BioTAP dimensions were examined individually and without prior knowledge, we accounted for 35 comparisons; such a rigorous threshold is likely to reject weak and moderate relationships, but it is appropriate if there are no specific pre-existing hypotheses. All p values are presented in tables for complete transparency, and we carefully consider the implications of our interpretation of these data in the Discussion section.

CCTST scores for students in this sample ranged from the 39th to 99th percentile of the general population of undergraduate CCTST test takers (mean percentile = 84.3, median = 85th percentile; Table 2 ); these percentiles reflect overall scores that range from moderate to superior. Scores on individual dimensions and overall scores were sufficiently normal and far enough from the ceiling of the scale to justify subsequent statistical analyses.

Descriptive statistics of CCTST dimensions a

a Scores correspond to superior (86–100), strong (79–85), moderate (70–78), weak (63–69), or not manifested (62 and lower) skills.

The Pearson’s correlations between students’ cumulative scores on BioTAP (the factor score based on loadings published by Dowd et al. , 2016 , and the partial sum of scores on questions 1–5) and students’ overall scores on the CCTST are presented in Table 3 . We found that the partial-sum measure of BioTAP was significantly related to the overall measure of critical thinking ( r = 0.27, p = 0.03), while the BioTAP factor score was marginally related to overall CCTST ( r = 0.24, p = 0.05). When we looked at relationships between comprehensive BioTAP measures and scores for individual dimensions of the CCTST ( Table 3 ), we found significant positive correlations between the both BioTAP partial-sum and factor scores and CCTST inference ( r = 0.45, p < 0.001, and r = 0.41, p < 0.001, respectively). Although some other relationships have p values below 0.05 (e.g., the correlations between BioTAP partial-sum scores and CCTST induction and interpretation scores), they are not significant when we correct for multiple comparisons.

Correlations between dimensions of CCTST and dimensions of BioTAP a

a In each cell, the top number is the correlation, and the bottom, italicized number is the associated p value. Correlations that are statistically significant after correcting for multiple comparisons are shown in bold.

b This is the partial sum of BioTAP scores on questions 1–5.

c This is the factor score calculated from factor loadings published by Dowd et al. (2016) .

When we expanded comparisons to include all 35 potential correlations among individual BioTAP and CCTST dimensions—and, accordingly, corrected for 35 comparisons—we did not find any additional statistically significant relationships. The Pearson’s correlations between students’ scores on each dimension of BioTAP and students’ scores on each dimension of the CCTST range from −0.11 to 0.35 ( Table 3 ); although the relationship between discussion of implications (BioTAP question 5) and inference appears to be relatively large ( r = 0.35), it is not significant ( p = 0.005; the Holm-Bonferroni cutoff is 0.00143). We found no statistically significant relationships between BioTAP questions 6–9 and CCTST dimensions (unpublished data), regardless of whether we correct for multiple comparisons.

The results of Student’s t tests comparing scores on each dimension of the CCTST of students who exhibit mastery with those of students who do not exhibit mastery on each dimension of BioTAP are presented in Table 4 . Focusing first on the overall CCTST scores, we found that the difference between those who exhibit mastery and those who do not in discussing implications of results (BioTAP question 5) is statistically significant ( t = 2.73, p = 0.008, d = 0.71). When we expanded t tests to include all 35 comparisons—and, like above, corrected for 35 comparisons—we found a significant difference in inference scores between students who exhibit mastery on question 5 and students who do not ( t = 3.41, p = 0.0012, d = 0.88), as well as a marginally significant difference in these students’ induction scores ( t = 3.26, p = 0.0018, d = 0.84; the Holm-Bonferroni cutoff is p = 0.00147). Cohen’s d effect sizes, which reveal the strength of the differences for statistically significant relationships, range from 0.71 to 0.88.

The t statistics and effect sizes of differences in ­dimensions of CCTST across dimensions of BioTAP a

a In each cell, the top number is the t statistic for each comparison, and the middle, italicized number is the associated p value. The bottom number is the effect size. Correlations that are statistically significant after correcting for multiple comparisons are shown in bold.

Finally, we more closely examined the strongest relationship that we observed, which was between the CCTST dimension of inference and the BioTAP partial-sum composite score (shown in Table 3 ), using multiple regression analysis ( Table 5 ). Focusing on the 52 students for whom we have background information, we looked at the simple relationship between BioTAP and inference (model 1), a robust background model including multiple covariates that one might expect to explain some part of the variation in BioTAP (model 2), and a combined model including all variables (model 3). As model 3 shows, the covariates explain very little variation in BioTAP scores, and the relationship between inference and BioTAP persists even in the presence of all of the covariates.

Partial sum (questions 1–5) of BioTAP scores ( n = 52)

** p < 0.01.

*** p < 0.001.

The aim of this study was to examine the extent to which the various components of scientific reasoning—manifested in writing in the genre of undergraduate thesis and assessed using BioTAP—draw on general and specific critical-thinking skills (assessed using CCTST) and to consider the implications for educational practices. Although science reasoning involves critical-thinking skills, it also relates to conceptual knowledge and the epistemological foundations of science disciplines ( Kuhn et al. , 2008 ). Moreover, science reasoning in writing , captured in students’ undergraduate theses, reflects habits, conventions, and the incorporation of feedback that may alter evidence of individuals’ critical-thinking skills. Our findings, however, provide empirical evidence that cumulative measures of science reasoning in writing are nonetheless related to students’ overall critical-thinking skills ( Table 3 ). The particularly significant roles of inference skills ( Table 3 ) and the discussion of implications of results (BioTAP question 5; Table 4 ) provide a basis for more specific ideas about how these constructs relate to one another and what educational interventions may have the most success in fostering these skills.

Our results build on previous findings. The genre of thesis writing combines pedagogies of writing and inquiry found to foster scientific reasoning ( Reynolds et al. , 2012 ) and critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-McKnight, 2016 ). Quitadamo and Kurtz (2007) reported that students who engaged in a laboratory writing component in a general education biology course significantly improved their inference and analysis skills, and Quitadamo and colleagues (2008) found that participation in a community-based inquiry biology course (that included a writing component) was associated with significant gains in students’ inference and evaluation skills. The shared focus on inference is noteworthy, because these prior studies actually differ from the current study; the former considered critical-­thinking skills as the primary learning outcome of writing-­focused interventions, whereas the latter focused on emergent links between two learning outcomes (science reasoning in writing and critical thinking). In other words, inference skills are impacted by writing as well as manifested in writing.

Inference focuses on drawing conclusions from argument and evidence. According to the consensus definition of critical thinking, the specific skill of inference includes several processes: querying evidence, conjecturing alternatives, and drawing conclusions. All of these activities are central to the independent research at the core of writing an undergraduate thesis. Indeed, a critical part of what we call “science reasoning in writing” might be characterized as a measure of students’ ability to infer and make meaning of information and findings. Because the cumulative BioTAP measures distill underlying similarities and, to an extent, suppress unique aspects of individual dimensions, we argue that it is appropriate to relate inference to scientific reasoning in writing . Even when we control for other potentially relevant background characteristics, the relationship is strong ( Table 5 ).

In taking the complementary view and focusing on BioTAP, when we compared students who exhibit mastery with those who do not, we found that the specific dimension of “discussing the implications of results” (question 5) differentiates students’ performance on several critical-thinking skills. To achieve mastery on this dimension, students must make connections between their results and other published studies and discuss the future directions of the research; in short, they must demonstrate an understanding of the bigger picture. The specific relationship between question 5 and inference is the strongest observed among all individual comparisons. Altogether, perhaps more than any other BioTAP dimension, this aspect of students’ writing provides a clear view of the role of students’ critical-thinking skills (particularly inference and, marginally, induction) in science reasoning.

While inference and discussion of implications emerge as particularly strongly related dimensions in this work, we note that the strongest contribution to “science reasoning in writing in biology,” as determined through exploratory factor analysis, is “argument for the significance of research” (BioTAP question 2, not question 5; Dowd et al. , 2016 ). Question 2 is not clearly related to critical-thinking skills. These findings are not contradictory, but rather suggest that the epistemological and disciplinary-specific aspects of science reasoning that emerge in writing through BioTAP are not completely aligned with aspects related to critical thinking. In other words, science reasoning in writing is not simply a proxy for those critical-thinking skills that play a role in science reasoning.

In a similar vein, the content-related, epistemological aspects of science reasoning, as well as the conventions associated with writing the undergraduate thesis (including feedback from peers and revision), may explain the lack of significant relationships between some science reasoning dimensions and some critical-thinking skills that might otherwise seem counterintuitive (e.g., BioTAP question 2, which relates to making an argument, and the critical-thinking skill of argument). It is possible that an individual’s critical-thinking skills may explain some variation in a particular BioTAP dimension, but other aspects of science reasoning and practice exert much stronger influence. Although these relationships do not emerge in our analyses, the lack of significant correlation does not mean that there is definitively no correlation. Correcting for multiple comparisons suppresses type 1 error at the expense of exacerbating type 2 error, which, combined with the limited sample size, constrains statistical power and makes weak relationships more difficult to detect. Ultimately, though, the relationships that do emerge highlight places where individuals’ distinct critical-thinking skills emerge most coherently in thesis assessment, which is why we are particularly interested in unpacking those relationships.

We recognize that, because only honors students submit theses at these institutions, this study sample is composed of a selective subset of the larger population of biology majors. Although this is an inherent limitation of focusing on thesis writing, links between our findings and results of other studies (with different populations) suggest that observed relationships may occur more broadly. The goal of improved science reasoning and critical thinking is shared among all biology majors, particularly those engaged in capstone research experiences. So while the implications of this work most directly apply to honors thesis writers, we provisionally suggest that all students could benefit from further study of them.

There are several important implications of this study for science education practices. Students’ inference skills relate to the understanding and effective application of scientific content. The fact that we find no statistically significant relationships between BioTAP questions 6–9 and CCTST dimensions suggests that such mid- to lower-order elements of BioTAP ( Reynolds et al. , 2009 ), which tend to be more structural in nature, do not focus on aspects of the finished thesis that draw strongly on critical thinking. In keeping with prior analyses ( Reynolds and Thompson, 2011 ; Dowd et al. , 2016 ), these findings further reinforce the notion that disciplinary instructors, who are most capable of teaching and assessing scientific reasoning and perhaps least interested in the more mechanical aspects of writing, may nonetheless be best suited to effectively model and assess students’ writing.

The goal of the thesis writing course at both Duke University and the University of Minnesota is not merely to improve thesis scores but to move students’ writing into the category of mastery across BioTAP dimensions. Recognizing that students with differing critical-thinking skills (particularly inference) are more or less likely to achieve mastery in the undergraduate thesis (particularly in discussing implications [question 5]) is important for developing and testing targeted pedagogical interventions to improve learning outcomes for all students.

The competencies characterized by the Vision and Change in Undergraduate Biology Education Initiative provide a general framework for recognizing that science reasoning and critical-thinking skills play key roles in major learning outcomes of science education. Our findings highlight places where science reasoning–related competencies (like “understanding the process of science”) connect to critical-thinking skills and places where critical thinking–related competencies might be manifested in scientific products (such as the ability to discuss implications in scientific writing). We encourage broader efforts to build empirical connections between competencies and pedagogical practices to further improve science education.

One specific implication of this work for science education is to focus on providing opportunities for students to develop their critical-thinking skills (particularly inference). Of course, as this correlational study is not designed to test causality, we do not claim that enhancing students’ inference skills will improve science reasoning in writing. However, as prior work shows that science writing activities influence students’ inference skills ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ), there is reason to test such a hypothesis. Nevertheless, the focus must extend beyond inference as an isolated skill; rather, it is important to relate inference to the foundations of the scientific method ( Miri et al. , 2007 ) in terms of the epistemological appreciation of the functions and coordination of evidence ( Kuhn and Dean, 2004 ; Zeineddin and Abd-El-Khalick, 2010 ; Ding et al. , 2016 ) and disciplinary paradigms of truth and justification ( Moshman, 2015 ).

Although this study is limited to the domain of biology at two institutions with a relatively small number of students, the findings represent a foundational step in the direction of achieving success with more integrated learning outcomes. Hopefully, it will spur greater interest in empirically grounding discussions of the constructs of scientific reasoning and critical-thinking skills.

This study contributes to the efforts to improve science education, for both majors and nonmajors, through an empirically driven analysis of the relationships between scientific reasoning reflected in the genre of thesis writing and critical-thinking skills. This work is rooted in the usefulness of BioTAP as a method 1) to facilitate communication and learning and 2) to assess disciplinary-specific and general dimensions of science reasoning. The findings support the important role of the critical-thinking skill of inference in scientific reasoning in writing, while also highlighting ways in which other aspects of science reasoning (epistemological considerations, writing conventions, etc.) are not significantly related to critical thinking. Future research into the impact of interventions focused on specific critical-thinking skills (i.e., inference) for improved science reasoning in writing will build on this work and its implications for science education.

Supplementary Material

Acknowledgments.

We acknowledge the contributions of Kelaine Haas and Alexander Motten to the implementation and collection of data. We also thank Mine Çetinkaya-­Rundel for her insights regarding our statistical analyses. This research was funded by National Science Foundation award DUE-1525602.

  • American Association for the Advancement of Science. (2011). Vision and change in undergraduate biology education: A call to action . Washington, DC: Retrieved September 26, 2017, from https://visionandchange.org/files/2013/11/aaas-VISchange-web1113.pdf . [ Google Scholar ]
  • August D. (2016). California Critical Thinking Skills Test user manual and resource guide . San Jose: Insight Assessment/California Academic Press. [ Google Scholar ]
  • Beyer C. H., Taylor E., Gillmore G. M. (2013). Inside the undergraduate teaching experience: The University of Washington’s growth in faculty teaching study . Albany, NY: SUNY Press. [ Google Scholar ]
  • Bissell A. N., Lemons P. P. (2006). A new method for assessing critical thinking in the classroom . BioScience , ( 1 ), 66–72. https://doi.org/10.1641/0006-3568(2006)056[0066:ANMFAC]2.0.CO;2 . [ Google Scholar ]
  • Blattner N. H., Frazier C. L. (2002). Developing a performance-based assessment of students’ critical thinking skills . Assessing Writing , ( 1 ), 47–64. [ Google Scholar ]
  • Clase K. L., Gundlach E., Pelaez N. J. (2010). Calibrated peer review for computer-assisted learning of biological research competencies . Biochemistry and Molecular Biology Education , ( 5 ), 290–295. [ PubMed ] [ Google Scholar ]
  • Condon W., Kelly-Riley D. (2004). Assessing and teaching what we value: The relationship between college-level writing and critical thinking abilities . Assessing Writing , ( 1 ), 56–75. https://doi.org/10.1016/j.asw.2004.01.003 . [ Google Scholar ]
  • Ding L., Wei X., Liu X. (2016). Variations in university students’ scientific reasoning skills across majors, years, and types of institutions . Research in Science Education , ( 5 ), 613–632. https://doi.org/10.1007/s11165-015-9473-y . [ Google Scholar ]
  • Dowd J. E., Connolly M. P., Thompson R. J., Jr., Reynolds J. A. (2015a). Improved reasoning in undergraduate writing through structured workshops . Journal of Economic Education , ( 1 ), 14–27. https://doi.org/10.1080/00220485.2014.978924 . [ Google Scholar ]
  • Dowd J. E., Roy C. P., Thompson R. J., Jr., Reynolds J. A. (2015b). “On course” for supporting expanded participation and improving scientific reasoning in undergraduate thesis writing . Journal of Chemical Education , ( 1 ), 39–45. https://doi.org/10.1021/ed500298r . [ Google Scholar ]
  • Dowd J. E., Thompson R. J., Jr., Reynolds J. A. (2016). Quantitative genre analysis of undergraduate theses: Uncovering different ways of writing and thinking in science disciplines . WAC Journal , , 36–51. [ Google Scholar ]
  • Facione P. A. (1990). Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations . Newark, DE: American Philosophical Association; Retrieved September 26, 2017, from https://philpapers.org/archive/FACCTA.pdf . [ Google Scholar ]
  • Gerdeman R. D., Russell A. A., Worden K. J., Gerdeman R. D., Russell A. A., Worden K. J. (2007). Web-based student writing and reviewing in a large biology lecture course . Journal of College Science Teaching , ( 5 ), 46–52. [ Google Scholar ]
  • Greenhoot A. F., Semb G., Colombo J., Schreiber T. (2004). Prior beliefs and methodological concepts in scientific reasoning . Applied Cognitive Psychology , ( 2 ), 203–221. https://doi.org/10.1002/acp.959 . [ Google Scholar ]
  • Haaga D. A. F. (1993). Peer review of term papers in graduate psychology courses . Teaching of Psychology , ( 1 ), 28–32. https://doi.org/10.1207/s15328023top2001_5 . [ Google Scholar ]
  • Halonen J. S., Bosack T., Clay S., McCarthy M., Dunn D. S., Hill G. W., Whitlock K. (2003). A rubric for learning, teaching, and assessing scientific inquiry in psychology . Teaching of Psychology , ( 3 ), 196–208. https://doi.org/10.1207/S15328023TOP3003_01 . [ Google Scholar ]
  • Hand B., Keys C. W. (1999). Inquiry investigation . Science Teacher , ( 4 ), 27–29. [ Google Scholar ]
  • Holm S. (1979). A simple sequentially rejective multiple test procedure . Scandinavian Journal of Statistics , ( 2 ), 65–70. [ Google Scholar ]
  • Holyoak K. J., Morrison R. G. (2005). The Cambridge handbook of thinking and reasoning . New York: Cambridge University Press. [ Google Scholar ]
  • Insight Assessment. (2016a). California Critical Thinking Skills Test (CCTST) Retrieved September 26, 2017, from www.insightassessment.com/Products/Products-Summary/Critical-Thinking-Skills-Tests/California-Critical-Thinking-Skills-Test-CCTST .
  • Insight Assessment. (2016b). Sample thinking skills questions. Retrieved September 26, 2017, from www.insightassessment.com/Resources/Teaching-Training-and-Learning-Tools/node_1487 .
  • Kelly G. J., Takao A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing . Science Education , ( 3 ), 314–342. https://doi.org/10.1002/sce.10024 . [ Google Scholar ]
  • Kuhn D., Dean D., Jr. (2004). Connecting scientific reasoning and causal inference . Journal of Cognition and Development , ( 2 ), 261–288. https://doi.org/10.1207/s15327647jcd0502_5 . [ Google Scholar ]
  • Kuhn D., Iordanou K., Pease M., Wirkala C. (2008). Beyond control of variables: What needs to develop to achieve skilled scientific thinking? . Cognitive Development , ( 4 ), 435–451. https://doi.org/10.1016/j.cogdev.2008.09.006 . [ Google Scholar ]
  • Lawson A. E. (2010). Basic inferences of scientific reasoning, argumentation, and discovery . Science Education , ( 2 ), 336–364. https://doi.org/­10.1002/sce.20357 . [ Google Scholar ]
  • Meizlish D., LaVaque-Manty D., Silver N., Kaplan M. (2013). Think like/write like: Metacognitive strategies to foster students’ development as disciplinary thinkers and writers . In Thompson R. J. (Ed.), Changing the conversation about higher education (pp. 53–73). Lanham, MD: Rowman & Littlefield. [ Google Scholar ]
  • Miri B., David B.-C., Uri Z. (2007). Purposely teaching for the promotion of higher-order thinking skills: A case of critical thinking . Research in Science Education , ( 4 ), 353–369. https://doi.org/10.1007/s11165-006-9029-2 . [ Google Scholar ]
  • Moshman D. (2015). Epistemic cognition and development: The psychology of justification and truth . New York: Psychology Press. [ Google Scholar ]
  • National Research Council. (2000). How people learn: Brain, mind, experience, and school . Expanded ed. Washington, DC: National Academies Press. [ Google Scholar ]
  • Pukkila P. J. (2004). Introducing student inquiry in large introductory genetics classes . Genetics , ( 1 ), 11–18. https://doi.org/10.1534/genetics.166.1.11 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Quitadamo I. J., Faiola C. L., Johnson J. E., Kurtz M. J. (2008). Community-based inquiry improves critical thinking in general education biology . CBE—Life Sciences Education , ( 3 ), 327–337. https://doi.org/10.1187/cbe.07-11-0097 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Quitadamo I. J., Kurtz M. J. (2007). Learning to improve: Using writing to increase critical thinking performance in general education biology . CBE—Life Sciences Education , ( 2 ), 140–154. https://doi.org/10.1187/cbe.06-11-0203 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Reynolds J. A., Smith R., Moskovitz C., Sayle A. (2009). BioTAP: A systematic approach to teaching scientific writing and evaluating undergraduate theses . BioScience , ( 10 ), 896–903. https://doi.org/10.1525/bio.2009.59.10.11 . [ Google Scholar ]
  • Reynolds J. A., Thaiss C., Katkin W., Thompson R. J. (2012). Writing-to-learn in undergraduate science education: A community-based, conceptually driven approach . CBE—Life Sciences Education , ( 1 ), 17–25. https://doi.org/10.1187/cbe.11-08-0064 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Reynolds J. A., Thompson R. J. (2011). Want to improve undergraduate thesis writing? Engage students and their faculty readers in scientific peer review . CBE—Life Sciences Education , ( 2 ), 209–215. https://doi.org/­10.1187/cbe.10-10-0127 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Rhemtulla M., Brosseau-Liard P. E., Savalei V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions . Psychological Methods , ( 3 ), 354–373. https://doi.org/­10.1037/a0029315 . [ PubMed ] [ Google Scholar ]
  • Stephenson N. S., Sadler-McKnight N. P. (2016). Developing critical thinking skills using the science writing heuristic in the chemistry laboratory . Chemistry Education Research and Practice , ( 1 ), 72–79. https://doi.org/­10.1039/C5RP00102A . [ Google Scholar ]
  • Tariq V. N., Stefani L. A. J., Butcher A. C., Heylings D. J. A. (1998). Developing a new approach to the assessment of project work . Assessment and Evaluation in Higher Education , ( 3 ), 221–240. https://doi.org/­10.1080/0260293980230301 . [ Google Scholar ]
  • Timmerman B. E. C., Strickland D. C., Johnson R. L., Payne J. R. (2011). Development of a “universal” rubric for assessing undergraduates’ scientific reasoning skills using scientific writing . Assessment and Evaluation in Higher Education , ( 5 ), 509–547. https://doi.org/10.1080/­02602930903540991 . [ Google Scholar ]
  • Topping K. J., Smith E. F., Swanson I., Elliot A. (2000). Formative peer assessment of academic writing between postgraduate students . Assessment and Evaluation in Higher Education , ( 2 ), 149–169. https://doi.org/10.1080/713611428 . [ Google Scholar ]
  • Willison J., O’Regan K. (2007). Commonly known, commonly not known, totally unknown: A framework for students becoming researchers . Higher Education Research and Development , ( 4 ), 393–409. https://doi.org/10.1080/07294360701658609 . [ Google Scholar ]
  • Woodin T., Carter V. C., Fletcher L. (2010). Vision and Change in Biology Undergraduate Education: A Call for Action—Initial responses . CBE—Life Sciences Education , ( 2 ), 71–73. https://doi.org/10.1187/cbe.10-03-0044 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Zeineddin A., Abd-El-Khalick F. (2010). Scientific reasoning and epistemological commitments: Coordination of theory and evidence among college science students . Journal of Research in Science Teaching , ( 9 ), 1064–1093. https://doi.org/10.1002/tea.20368 . [ Google Scholar ]
  • Zimmerman C. (2000). The development of scientific reasoning skills . Developmental Review , ( 1 ), 99–149. https://doi.org/10.1006/drev.1999.0497 . [ Google Scholar ]
  • Zimmerman C. (2007). The development of scientific thinking skills in elementary and middle school . Developmental Review , ( 2 ), 172–223. https://doi.org/10.1016/j.dr.2006.12.001 . [ Google Scholar ]

Artículos

Critical thinking and reflective practice in the science education practicum in Kuwait

Pensamiento crítico y práctica reflexiva en el desarrollo de la educación científica en Kuwait

reflection about scientific literacy and critical thinking skills

Utopía y Praxis Latinoamericana , vol. 24 , núm. Esp.6 , pp. 85-96 , 2019

Universidad del Zulia

reflection about scientific literacy and critical thinking skills

Recepción: 15 Noviembre 2019

Aprobación: 18 Noviembre 2019

Resumen: This is a speculative paper linking critical thinking to reflective practice in science education teaching practicum for the prospective teachers of science in Kuwait. The writer has identified that student teachers lack in a critical thinking approach to teaching sciences, promoting science literacy, and critically linking science to society and technology, definition of critical thinking has been interpreted in a context of reflective practice, with a redefinition of the factors contributing to unexamined, uncritically absorbed assumptions about teaching and learning. The paper has also shed light on how critical thinking can be evaluated in the teaching practice component.

Palabras clave: alfabetización científica, pensamiento crítico, práctica docente, práctica reflexiva.

Resumen: Este es un documento especulativo que vincula el pensamiento crítico con la práctica reflexiva en la práctica de la enseñanza de la educación científica para los futuros profesores de ciencias en Kuwait. El escritor ha identificado que los estudiantes docentes carecen de un enfoque de pensamiento crítico para enseñar ciencias, promover la alfabetización científica y vincular críticamente la ciencia con la sociedad y la tecnología. La definición del pensamiento crítico se ha interpretado en un contexto de práctica reflexiva, con una redefinición de los factores, contribuyendo a suposiciones no examinadas, absorbidas sin crítica sobre la enseñanza y el aprendizaje. El documento también ha arrojado luz sobre cómo se puede evaluar el pensamiento crítico en el componente de práctica docente.

Keywords: Critical thinking, reflective practice, science literacy, teaching practicum

1.INTRODUCTION

An informal investigation into the nature of science teachers’ practice in the College of Education at Kuwait indicates that student teachers lack pro-environmental attitudes, which are presumably due to carelessness and a thoughtless way of thinking about the sciences.

Therefore, given that the core of education has assumedly been learning to learn (meta-learning) andlearning to think for oneself and collaborative learning, thus learning critical thinking that is conducive to reflective practice in the area of environmentalism will be an essential goal of our teaching programs and teaching practice, especially in the area of science education. It is argued that the future now belongs to societies that organize themselves for learning, so nations that want high incomes and full employment must develop policies that emphasize the acquisition of knowledge and skills by everyone, not just a selected few (Marshall & Tucker: 1992), hence, the significance of future teachers' programs and practica. In pre-service teacher programs (PRESET), a tendency towards critical thinking and reflective practice is now replacing traditional methods of knowledge and skill acquisition, given the massive smorgasbord of knowledge available in the post-information era.

Critical thinking is a process of purposeful, self-regulatory judgment- a process that reasons consideration to evidence, context, conceptualizations, methods, and criteria (American Philosophical Association: 1990, pp.315-423). In this context; (Gunn et al.: 2008, pp.165-183)

The need to develop creative thinking and critical thinkers is growing progressively more important. Technological changes have improved communication, health management, and lifestyle. Unfortunately, rapid change comes with a cost as future citizens will be required to make even greater moral and ethical decisions for themselves, for others and the planet. As science educators, it is our responsibility to assist students in thinking critically about what science is what it represents, and whether its impact is for the greater good.

Therefore, the link between reflective practice, which is an ad hoc process of evaluation and reinforcement of skills and information acquired or in the process of acquisition, is closely linked to critical thinking. Those two processes of critical thinking and reflective practice in PRESETS provide an understanding of the methods, principles, theories, and ways of achieving knowledge, which is proper to the different intellectual realms. (Facione: 1998). In addition, these two processes furnish the student teachers with an encounter with the cultural, artistic and spiritual dimensions of life, and, hence, the evolution of one's decision-making to a level of principled integrity. However, the realization of ways prone to generating a proactive attitude towards sciences requires rigorous pro-science education programs for future teachers who will shortly take over the responsibility of educating the younger generations in the state of Kuwait.

We have an educational problem. It is not a problem about the shortage in information and data aboutenvironmental problems and challenges. The problem, as Whiston (2000) notes, "may be more of information overload rather than a paucity of data from which to choose". This was not the case a few decades earlier when environmentalists were struggling to assemble their information regarding the environment, ecology, and systems of interaction with our environment vis-à-vis science literacy and science role in society.

Therefore, this study seeks to lay the theoretical foundations of a teaching practicum for student teachers of science in Kuwait that takes as its basis critical thinking and reflective practice as the methodological approach to teaching science in Kuwait schools. The study based on an environmental consciousness survey that gathered data from seniors at the Faculty of Education at Kuwait University, the results of which indicate a necessary reshaping of teaching practica to be grounded in critical thinking and reflective practice.

The concept of 'reflective practice' has received considerable attention in the education literature, where it is described as the method par excellence to learn from field-based practicum situations and advance the art and practice of teaching, especially in the sciences. So influential are the writings on reflective practice, that it has now been identified as a prerequisite competency for pre-service and beginning practitioners around the world, and urge enough for us here in Kuwait to follow suit. To date, nearly no empirical studies have been undertaken to examine what reflective practice is, how individuals use reflective thinking, and how it contributes to learning, especially in terms of critical thinking. The discourse in the literature, particularly among science educators, has become increasingly muddled and justifies the question as to whether there is a shared and common understanding of the concept of reflective thinking.

Reflection requires critical thinking: I will call reflective practice, which involves critical thinking critical reflection. Time to think back over things, to ponder, to make connections, to analyze, assimilate, and make sense of a situation is what constitutes critical reflection. Science teachers and social studies teachers as well are primarily responsible for the students' awareness and perception of their environment and the role of science in society and hence the significance of science literacy involving critical reflection on society, and societal and environmental problems. However, as stated in the problem of this study, it is not appropriate to raise and develop scientific and environmental awareness through cramming information. Awareness, as used in the study, is not confined solitarily to a state of mental perception; it goes far beyond to include a mental attitude, which is pro-environmental and motivates the individuals to behave in a friendly fashion towards the environment. For developing this attitudinal system, critical thinking is instrumental. This is what critical reflection is supposed to play in our practicum, for reflection involves critically appraising situations and events that have occurred and trying to make sense of them so that practice can improve in the future.

Reflective practice based on critical thinking, or what I have already called critical reflection, is aninteresting and important concept in the literature on teaching and learning in higher education.

Reflective practice involves thinking about and learning from our practice and the practices of others, to gain new perspectives on the dilemmas and contradictions inherent in our educational situations, improve judgment, and increase the probability of taking informed action when situations are complex, unique and uncertain. With ongoing reflection, our student teachers' practice can develop into a systematic inquiry that begins alone with a reflection on their own teaching and learning experiences but becomes collective when informed by interactions with colleagues, students, and theoretical literature. However, teaching practices in our practicum here in Kuwait often reflect an unquestioned acceptance of values, norms, and practices defined by others about what is "in the best interests" of students and teachers, and a lack of awareness of alternative practices set in an authoritative environment that lacks in critical thinking and critical reflection for later practices. Both uncritically assimilated practices and new alternatives need critical examination from several perspectives so that the learning and teaching strategies one uses are consistent with their values, beliefs, and assumptions about learning: this is the core problem that our practicum falls short of. In this context, (MacKinnon: 2006, pp.433-445) mentions words of a student

If I actually constructed the entire map, rather than taking your map to start with, you would see how my ideas flow one to the other; in a sense it doesn't matter how you might teach it, I may learn quite differently than you anticipated; my map would give you a window into how your lecture is "received" and processed; that could be a very useful tool for the instructor.

The following diagram illustrates this dilemma:

Figure 1. The Dilemma of Unexamined Assumptions

Student teachers have built-in assumptions about learning and teaching, which are usually absorbed in an unexamined fashion from four sources: 1) their educators and peers; 2) their students in the field practice and the school environment; 3) the theory that they study uncritically at the college of education as well as the content material and methods of teaching the subject matter; 4) and the whole underpinning value system prevalent in society or communicated by their pupils' parents in schools.

Reflective practice begins with critical reflection in which the science educator and the student-teacher or beginning science teachers question and examine their own subjectively held ideas and assumptions about learning and teaching. In addition, examining their own positive and negative learning experiences can help them understand why they are inclined towards specific ways of doing things and avoiding others. It helps them to develop and communicate the rationale that underlies the teaching and learning strategies they use or are recommended for them. The rationale is an organizing vision that provides direction, purpose, and meaning, prioritizing what is important in for teaching, and informing the actions they may take - a set of critically examined core beliefs, values, and assumptions about why they do what they do in the way that they do it.

Critical thinking is a process of purposeful, self-regulatory judgment. In this process, consideration of the evidence, context, conceptualizations, methods, and criteria are reasoned (Facione: 1990, p.423). The process involves specific skills, basic amongst which are analysis, inferencing, interpretation, and evaluation.

Figure 2. Core Critical Thinking Skills

The internal and personal process of defining phenomena, establishing criteria, evaluating information, and choosing what is probably right and "safe" to believe is essential to critical thinking. This involves the use of logic and inferencing skills, which are principally based on analysis and interpretation of science phenomena. There is some research to support the notion that reasoning can be taught, and that it is "possible to train such foundations of reasoning as to how to use dimensions to analyze and organize similarities and differences and how to identify the structure of simple propositions in science and technology vis-à-vis society.

Chance (1986) defines critical thinking as "the ability to analyze facts, generate and organize ideas, defend opinions, make comparisons, draw inferences, evaluate arguments, and solve problems". Tama (1989) sees it as a way of reasoning that demands adequate support of one’s be life and an unwillingness to be persuaded unless support is forthcoming. Hickey (1990) adds that it "involves analytical thinking to evaluate what is read". Mertes (1991) elaborates on the previous definition by Hickey viewing critical thinking as a conscious and deliberate process that is used to interpret or evaluate information and experiences with a set of reflective attitudes and abilities that guide the rational beliefs and actions.

Scriven & Paul (1992) further elaborates on the concept explaining that critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and or evaluating information gathered from, or generated by observation, experience reflection, reasoning, or communication (Ennis: 1992). Scriven & Paul's definition complimented or explained by Ennis (1992) is similar in many ways to the model of critical thinking proposed by Facione in 1998. However, critical thinkers acknowledge that there is no single correct way to understand and evaluate arguments and that all attempts are not necessarily successful (Mayer & Goodchild: 1995).

Since critical thinking can be defined in several different ways consistent with each other, we should not put much weight on any one definition. Definitions are at best scaffolding for the mind. With this qualification in mind, here is a bit of scaffolding: critical thinking is thinking about your thinking while you are thinking in order to make your thinking better. Two things are crucial: 1) Critical thinking is not just thinking, but thinking which entails self-improvement and, 2) This improvement comes from skill in using standards by which one appropriately assesses thinking. To put it briefly, it is self-improvement (in thinking) through standards (that assess thinking).

Why do we look forward to a critically reflective approach to instruction? Oliver & Utermohlen (1995) seestudents as too often passive receptors of information. Through technology, the amount of information available today is massive. This information explosion is likely to continue in the future. Students need a guide to weed through the information and not just passively accept it. Students need to "develop and effectively apply critical thinking skills to their academic studies, to the complex problems that they will face, and to the critical choices they will be forced to make as a result of the information explosion and other rapid technological changes" (Oliver & Utermohlen: 1995).

Assessment of the credibility of statements or other representations which are accounts or descriptions or a person’s perception, experience, situation, judgment, belief, or opinions, and assessment of the logical strength of the actual or intended inferential relationships among statements, descriptions, questions or other forms of representation.

1- Analysis: Identifying the intended and actual inferential relationships among statements, questions concepts, description, or other forms of representation intended to express belief, judgment, experiences, reasons, information, or opinions.

Evaluation and synthesis are two types of thinking that have much in common but are quite different inpurpose. The evaluation, which partially equivalent to critical thinking, focuses on making an assessment onjudgment based on an analysis of a statement or proposition. Synthesis, which is partially equivalent to creative thinking, requires an individual to look at parts and relationships (analysis) and then to put these together in a new and original form research evidence suggests that this equivalent but the different relationship between critical/evaluative and creative synthetic thinking is appropriate. Huitt (1992) classified techniques used in problem-solving and decision making into two groups, roughly corresponding to the critical, creative dichotomy. The first set of techniques tend to be linear and serial, more structured, more rational and analytical, and more goal-oriented; these techniques are often taught as part of critical thinking exercises. The distinction corresponds to what is sometimes referred to as left-brain thinking (analytical, serial, logical, objective as compared to right-brain thinking (global, parallel, emotional, subjective) (Springer & Deutsch: 1993).

Given that critical thinking is the general method of all the sciences, mathematics, logic, philosophy, andother related intellectual activities, one could well spend the rest of one's life getting to know this activity and coming to better polish one's skills.

Corbet has specified critical thinking skills as follows:

  • 1. Coming to understand that the smallest unit of "meaning" is not the CLAIM or SENTENCE or BELIEF, but the ARGUMENT.
  • 2. Recognizing the thesis.
  • 3. Recognizing the argument.
  • 4. Recognizing and assessing the logic of the argument.
  • 5. Practicing negative criticism which is to show or discover that some part of the argument is mistaken or otherwise inadequate.
  • 6. Practicing positive criticism which is not simply to agree. Rather, it can be to shore up some part of the argument that is weak.
  • 7. Positive criticism may also be to anticipate the most serious objections which are likely to be raised and to build a defense against them within the rules of critical thinking.
  • 8. Understanding and using the distinction between theme (or topic) and thesis (or main belief).
  • 9. Understanding and using the concept of a "prima facia" claim.
  • 10. Understanding and using a counter-argument.
  • 11. Understanding and using a paradigm case.
  • 12. Understanding, recognizing and using the distinction between chronological order and logical order.
  • 13. Understanding and using the distinction between the "context of discovery" the "context of proof."

To reiterate, critical thinking and reflective pedagogy are crucially central to science education. By itself, however, reflection is not necessarily critical (Marcus: 1988). And since there is not a particularly exclusive component, called critical thinking education in the teaching practicum of prospective teachers in Kuwait, it could pervade the teaching practicum of science teachers in the fashion of critical thinking skills and reflective practice formatted in exercises and activities to brush up on their active knowledge and their critical thinking skills in the sciences for science literacy purposes.

This could happen through collaborations in and beyond the teaching practicum to promote a vision ofcritical science and environmental education that extends from improving the teaching of science and science literacy, scientific concepts, and methods to the involvement of citizens in community-based research. More substantially, it is in the physical and biological science courses, students and teachers (or student teachers in our case) experience the rigor and practice of scientific inquiry through classroom and lab work. They learn to consider analytically the methods of describing, predicting understanding, and explaining physical and biological phenomena, i.e., the representations of the environment. In these courses, students confront thesocial, economic, political, and ethical implications of science and ecology as well as the dilemmas that crop up due to misuse of science and technology.

We need to start with the present science education faculty and science teachers in schools who are our stakeholders in the process of teaching practice. Accreditation expectations are such that science educators must develop their own definitions of critical thinking, determine criteria, measure outcomes, and revise the curriculum in light of their own conceptions. However, science educators also need to achieve a consensus about methods and tools to be used for the evaluation of critical thinking. In this context, (Swafford & Rafferty: 2016, pp.13-17) "FCS educators help individuals use critical thinking to make informed decisions about daily life occurrences."

In this context also, Dexter et al. (1997) call for standardization of a conception of critical thinking and make an application in a manner that faculty could more readily utilize the theoretical information. For example, they accepted the APA Delphi study definition of critical thinking, a theoretical composite of multi-disciplinary perspectives. They applied this definition at the operational level for the six identified components, i.e., interpretation, analysis, evaluation, inference, explanation, and self-regulation. Competency outcomes were identified for each critical thinking component and for each differentiated level for each of the four educational programs. While standards differ at each educational level, Dexter et al. (1997) state the faculty needs to have a consensus about what behaviors demonstrate each of the six components of critical thinking. While admittedly a "cookbook" approach to teaching critical thinking, Dexter et al. state they are seeking to raise the "average level of student instruction . . . " by faculty who are not specialists in critical thinking. The change in focus to critical thinking needs to occur in a decentralized manner so that faculties are cognitively open to new paradigms and perspectives.

A great deal of attention has been devoted to the topic of reflection and the development of reflective practitioners (Barth: 1990; Powell: 2000, pp.96-111). Powell (2000) notes that " reflective practice is the practice of colleagues joining together to observe and analyze the consequences for students learning of different teaching behaviors and materials in order to gain insights that will result in the continuous evaluation and modification of pedagogy". To engage in critical reflection requires “moving beyond the acquisition of new knowledge and understanding, into, values, and perspectives”. In other words, reflective practice of teaching is developing collegiality rather than new knowledge, and by collegiality, we mean a critical towards learning and teaching. Little (1982) who first introduce the concept of collegiality as a cornerstone of reflective practice, comprises four specific teacher behaviors:

  • 1. teachers talk about teaching, and these conversations are frequent, continuous, concrete and precise;
  • 2. teachers observe each other engaged in the practice of teaching;
  • 3. teachers work on curriculum together, designing, researching and evaluating the substance of what is taught; and
  • 4. Teachers teach each other what they know about teaching and learning. Craft knowledge is revealed, articulated, and shared.

Therefore, assisting adults in undertaking critical reflection is a frequently espoused aim of adult education (e.g., Marcus: 1988), but it is a goal that is not easily achieved. Usually, people do not engage in giving, receiving, and not to mention probing feedback, which is at the core of reflective practice and hence the impediment to reflective practice. Powell (2000) calls the reason for this "leviathan inertia" when teachers are profoundly resistant to change. Meyers in an experiment elicited different layman interpretations of what critical reflective practice virtually means: according to his informants,

  • 1. Critical thinking is a learnable skill with teachers and peers serving as resources. o Problems, questions, and issues serve as the source of motivation for the learner. o Courses are assignment centered rather than text or lecture oriented.
  • 2. Goals, methods, and evaluation emphasize using content rather than simply acquiring it.
  • 3. Students need to formulate and justify their ideas in writing.
  • 4. Students collaborate to learn and enhance their thinking (Meyers: 1986).

These straightforward ideas are easily applicable to classroom settings only when both administrators and teachers model an adult learning predisposition for their student teachers. Therefore, teachers must refocus their thinking away from individual mastery of the resources and the product of competency to a focus on teaching the process of information discovery within the learner's own contextual meaning, especially in sciences.

Lack of a common definition for critical reflection has also led to the interchangeable use of the terms reflection and critical reflection that may “tacitly belie the different ideologies which can underpin reflective practice”. When discussing the origins of reflection in education, the ideas of Dewey, Schön, and Mezirow are most frequently mentioned but only Mezirow seems to emphasize the critical nature of reflection. When adult educators write about critical reflection, they frequently cite critical reflection as an element of Mezirow’s work on transformative learning. The effect on students who are encouraged to engage in critical reflection is another issue that emerges in the literature. The phrase “tales from the dark side” (Marcus: 1988) is used to describe the experiences of a group of adult education graduate students who engaged in activities designed to foster critical reflection. They found that critical reflection led to self-doubt, feelings of isolation, and uncertainty.

Critical reflection in a group context can also be unsettling as described by Haddock, who “was confronted and challenged by others. . . and who then found it] difficult to avoid examining personal values and the extent to which they affect attitudes, beliefs and ideas which one holds on to”. Adult learners who engage in activities to facilitate critical reflection must be supported in their efforts. Another issue related to the experiences of students who engage in critical reflection has to do with the kind of teaching that supports critical reflection. As described by Foley and Millar, it is labor-intensive and may require a restructuring of existing curricula. In addition, not all learners may be predisposed to engage in critical reflection, which can be problematic. Teachers should also be prepared to support adult learners as they struggle with the dark side of critical reflection, a role that they may find uncomfortable. Teaching adults to be critically reflective can be a rewarding experience that results in critical reflection on the part of the instructor.

The following model proposes a structure of a critical thinking paradigm associated with the reflective practice for student teachers at Kuwait who will be involved in science teaching with a particular reference to pro-environmental consciousness-raising predisposition and STS orientation:

This model proposes three aspects of critical thinking that must be considered all in one package: theseaspects are affective, cognitive, and behavioral.

Figure 4. Standards for Intellectual Assessment

The model appropriates the definition by Mertes (1991) and Scriven & Paul (1992) in which included are beliefs and behaviors. The starting point is cognition. A stimulating piece of environmental / science- society knowledge presents an argument or proposition (Here is the level of cognition). Here, students are enabled to infer a conclusion from one or multiple premises. To do so requires examining logical relationships among statements or data.

There is then an affective disposition to use critical thinking that must activate the critical thinking processes, As a result of critical thinking a previously held belief is confirmed or a new belief is established. For critical thinkers are skeptical, open-minded, value fair-mindedness, respect evidence and reasoning, respect clarity and precision, look at different points of view and will change positions when reason leads them to do so. Finally, to think well is to impose discipline and restraint on our thinking-by means of intellectual standards in order to raise thinking to a level of "reflection and perfection" or quality that is not natural or likely in undisciplined, spontaneous thought. The dimension of critical thinking least understood is that of intellectual standards. Most teachers were not taught how to assess thinking through standards; indeed, often the thinking of teachers themselves is much "undisciplined" and reflects a lack of internalized intellectual standards. To think critically, must apply criteria. We need to have conditions that must be met for something to be judged as believable. Although the argument can be made that each subject area has different criteria, some standards apply to all subjects. "... an assertion must... be based on relevant, accurate facts; based on credible sources; precise; unbiased; free from logical fallacies; logically consistent; and strongly reasoned" (Beyer: 1995).

The following figure sums up the elements of critical reflective practice:

Figure 5. Elements of critical reflective practice

Be spontaneous and open to new ideas:

Firstly, student teachers should be asked to be open and honest about what they think is right from a scientific point of view and tell it as they feel it. They should express themselves freely. These are their reflections and they are legitimate for them. If they are writing, they should be asked not to be constrained by the formalities of grammar, punctuation, spelling - it is more important to get to the heart of the issue by simply writing. As well, they should be asked to be open to ideas: sometimes they may find answers as they reflect, but do not jump on these insights as being absolute answers. They should try to leave ideas open and treat them as tentatively as possible. Jumping to conclusions may inhibit further insights and solutions, so be prepared for twists and turns in their thinking, and allow that some questions may have to remain unanswered for a while.

Plan the timing of reflective practice:

Secondly, people function best at different times of the day - some are early birds, others prefer to workat night. Some people prefer to work under the constraint of time limits while others fail to do so. Time to reflect should be quality time for our student teachers.

Choose a reflective method:

Student teachers need to keep a record of their practice diary (or notes) for review. Maybe there issomething in the "kitbag of strategies" mentioned earlier that will suit them, or perhaps they prefer to reflect when they are studying science or teaching it at schools.

4.CONCLUSION

This paper has dealt with two major themes in the area of teacher education with particular reference to the case of science educators in their pre-service education programme, the practicum component provided by the College of Education in Kuwait. These are critical thinking and reflective practice as two interwoven processes involved in orienting the student teachers to develop benevolent attitudes towards the sciences in their pupils as well as brushing up on the student teachers' practices of teaching in the practicum component of the science teacher education component. It seems that in an age of informatics and explosion in science knowledge both science teachers and students of science have to develop critical thinking skills about teaching and learning processes. A tentative model for critical reflective practice as applied to science education is proposed in this paper.

ABDULLAH AL-HASHIM : Abdullah is from Salford University, UK. He was assistant secretary-general of human and environmental affairs sectors with the cooperation council for Arab states of Gulf from 2006-2016. He received a Ph.D. degree in curricula and method of teaching science (Environmental Sciences) from University of Northern Colorado-USA and a Master of Science in environmental sciences from University of Northern Colorado-USA in 1979. He is a well social and environmental consultant, affiliated with some companies. Ha has good background of research published in reputable journals and also writer of four books based on environmental education.

BIBLIOGRAPHY

AMERICAN PHILOSOPHICAL ASSOCIATION (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction. The Delphi Report: research findings and recommendations prepared for the committee on pre-college philosophy, pp.315-423.

BARTH, RS (1990). Improving schools from within: Teachers, parents, and principals can make the difference. Jossey-Bass Inc., Publishers, 350 Sansome Street, San Francisco, CA 94104-1310.

BEYER, BK (1995). Critical Thinking. Fastback 385. Phi Delta Kappa, 408 N. Union, PO Box 789, Bloomington, IN 47402-0789.

CHANCE, P (1986(. Thinking in the Classroom: A Survey of Programs. Teachers College Press, 1234 Amsterdam Ave., New York, NY 10027

DEXTER, P, APPLEGATE, M, BACKER, J, CLAYTOR, K, KEFFER, J, NORTON, B, & ROSS, B (1997). “Aproposed framework for teaching and evaluating critical thinking in nursing”, in: Journal of Professional Nursing, 13(3), pp.160-167.

ENNIS, R (1992). Critical thinking: What is it? Proceedings of the Forty-Eighth Annual Meeting of the Philosophy of Education Society Denver, Colorado, March 27-30.

FACIONE, PA (1990). APA Delphi Research Report, critical thinking: A statement of expert consensus for purposes of educational assessment and instruction. ERIC Doc. No.: ED, 315, p.423.

FACIONE, PA (1998). Critical thinking: What it is and why it counts. Millbrae. California Academic Press. Haziran, 13, p.2009.

GUNN, TM, GRIGG, LM, & POMAHAC, GA (2008). “Critical thinking in science education: Can bioethical issues and questioning strategies increase scientific understandings”, in: The journal of Educational thought, 42(2), pp.165-183.

HICKEY, M (1990). “Reading and social studies: The critical connection”, in: Social Education, 54(3), pp.175- 179.

HUITT, W (1992). “Problem solving and decision making: Consideration of individual differences using the Myers-Briggs Type Indicator”, in: Journal of Psychological type, 24(1), pp.33-44.

LITTLE, JW (1982). “Norms of collegiality and experimentation: Workplace conditions of school success”, in:American educational research journal, 19(3), pp.325-340

MACKINNON, G (2006). "Contentious issues in science education: Building critical thinking patterns through two-dimensional concept mapping”, in: Journal of Educational Multimedia and Hypermedia, 15(4), pp.433- 445.

MARCUS, EC (1988). Developing Critical Thinkers: Challenging Adults to Explore Alternative Ways of Thinking and Acting.

MARSHALL, R, & TUCKER, M (1992). Thinking for a Living: Education and the Wealth of Nations. Basic Books, 10 East 53rd Street, New York, NY 10022-5299.

MAYER, RE, & GOODCHILD, FM (1995). The critical thinker: Thinking and learning strategies for psychology students. Iowa Department for the Blind.

MERTES, L.M (1991). “Thinking and writing”, in: Middle School Journal, 22(5), pp.24-25.

MEYERS, C (1986). Teaching Students to Think Critically. A Guide for Faculty in All Disciplines. Jossey-Bass Higher Education Series. Jossey-Bass Inc., Publishers, 433 California Street, Suite 1000, San Francisco, CA 94104-2091.

OLIVER, H, & UTERMOHLEN, R (1995). An Innovative Teaching Strategy: Using Critical Thinking To Give Students a Guide to the Future.

POWELL, W (2013). Professional development and reflective practice. International schools and international education: Improving teaching, management and quality, pp.96-111.

SCRIVEN, M, & PAUL, R (1992). November. Critical thinking defined. In Handout given at Critical Thinking Conference, Atlanta, GA.

SPRINGER, SP, & DEUTSCH, G (1993). Left Brain. Right Brain. W H.

SWAFFORD, M, & RAFFERTY, E (2016). “Critical Thinking Skills in Family and Consumer Sciences Education”. Journal of Family & Consumer Sciences, 108(4), pp.13-17.

TAMA, MC (1989). Critical thinking: Promoting it in the classroom. ERIC Clearinghouse.

WHISTON, TG (2000). Environmental consciousness and the challenges and barriers to communicating environmental knowledge/indicators. Environmental Behaviour and Quality of Life: Ecological, sociological, psychological and communicational indicators of sustainability, p.91.

Advertisement

Advertisement

Scientific Thinking and Critical Thinking in Science Education 

Two Distinct but Symbiotically Related Intellectual Processes

  • Open access
  • Published: 05 September 2023

Cite this article

You have full access to this open access article

reflection about scientific literacy and critical thinking skills

  • Antonio García-Carmona   ORCID: orcid.org/0000-0001-5952-0340 1  

4489 Accesses

Explore all metrics

Scientific thinking and critical thinking are two intellectual processes that are considered keys in the basic and comprehensive education of citizens. For this reason, their development is also contemplated as among the main objectives of science education. However, in the literature about the two types of thinking in the context of science education, there are quite frequent allusions to one or the other indistinctly to refer to the same cognitive and metacognitive skills, usually leaving unclear what are their differences and what are their common aspects. The present work therefore was aimed at elucidating what the differences and relationships between these two types of thinking are. The conclusion reached was that, while they differ in regard to the purposes of their application and some skills or processes, they also share others and are related symbiotically in a metaphorical sense; i.e., each one makes sense or develops appropriately when it is nourished or enriched by the other. Finally, an orientative proposal is presented for an integrated development of the two types of thinking in science classes.

Similar content being viewed by others

reflection about scientific literacy and critical thinking skills

Philosophical Inquiry and Critical Thinking in Primary and Secondary Science Education

Fostering scientific literacy and critical thinking in elementary science education.

Rui Marques Vieira & Celina Tenreiro-Vieira

reflection about scientific literacy and critical thinking skills

Enhancing Scientific Thinking Through the Development of Critical Thinking in Higher Education

Avoid common mistakes on your manuscript.

Education is not the learning of facts, but the training of the mind to think. Albert Einstein

1 Introduction

In consulting technical reports, theoretical frameworks, research, and curricular reforms related to science education, one commonly finds appeals to scientific thinking and critical thinking as essential educational processes or objectives. This is confirmed in some studies that include exhaustive reviews of the literature in this regard such as those of Bailin ( 2002 ), Costa et al. ( 2020 ), and Santos ( 2017 ) on critical thinking, and of Klarh et al. ( 2019 ) and Lehrer and Schauble ( 2006 ) on scientific thinking. However, conceptualizing and differentiating between both types of thinking based on the above-mentioned documents of science education are generally difficult. In many cases, they are referred to without defining them, or they are used interchangeably to represent virtually the same thing. Thus, for example, the document A Framework for K-12 Science Education points out that “Critical thinking is required, whether in developing and refining an idea (an explanation or design) or in conducting an investigation” (National Research Council (NRC), 2012 , p. 46). The same document also refers to scientific thinking when it suggests that basic scientific education should “provide students with opportunities for a range of scientific activities and scientific thinking , including, but not limited to inquiry and investigation, collection and analysis of evidence, logical reasoning, and communication and application of information” (NRC, 2012 , p. 251).

A few years earlier, the report Science Teaching in Schools in Europe: Policies and Research (European Commission/Eurydice, 2006 ) included the dimension “scientific thinking” as part of standardized national science tests in European countries. This dimension consisted of three basic abilities: (i) to solve problems formulated in theoretical terms , (ii) to frame a problem in scientific terms , and (iii) to formulate scientific hypotheses . In contrast, critical thinking was not even mentioned in such a report. However, in subsequent similar reports by the European Commission/Eurydice ( 2011 , 2022 ), there are some references to the fact that the development of critical thinking should be a basic objective of science teaching, although these reports do not define it at any point.

The ENCIENDE report on early-year science education in Spain also includes an explicit allusion to critical thinking among its recommendations: “Providing students with learning tools means helping them to develop critical thinking , to form their own opinions, to distinguish between knowledge founded on the evidence available at a certain moment (evidence which can change) and unfounded beliefs” (Confederation of Scientific Societies in Spain (COSCE), 2011 , p. 62). However, the report makes no explicit mention to scientific thinking. More recently, the document “ Enseñando ciencia con ciencia ” (Teaching science with science) (Couso et al., 2020 ), sponsored by Spain’s Ministry of Education, also addresses critical thinking:

(…) with the teaching approach through guided inquiry students learn scientific content, learn to do science (procedures), learn what science is and how it is built, and this (...) helps to develop critical thinking , that is, to question any statement that is not supported by evidence. (Couso et al., 2020 , p. 54)

On the other hand, in referring to what is practically the same thing, the European report Science Education for Responsible Citizenship speaks of scientific thinking when it establishes that one of the challenges of scientific education should be: “To promote a culture of scientific thinking and inspire citizens to use evidence-based reasoning for decision making” (European Commission, 2015 , p. 14). However, the Pisa 2024 Strategic Vision and Direction for Science report does not mention scientific thinking but does mention critical thinking in noting that “More generally, (students) should be able to recognize the limitations of scientific inquiry and apply critical thinking when engaging with its results” (Organization for Economic Co-operation and Development (OECD), 2020 , p. 9).

The new Spanish science curriculum for basic education (Royal Decree 217/ 2022 ) does make explicit reference to scientific thinking. For example, one of the STEM (Science, Technology, Engineering, and Mathematics) competency descriptors for compulsory secondary education reads:

Use scientific thinking to understand and explain the phenomena that occur around them, trusting in knowledge as a motor for development, asking questions and checking hypotheses through experimentation and inquiry (...) showing a critical attitude about the scope and limitations of science. (p. 41,599)

Furthermore, when developing the curriculum for the subjects of physics and chemistry, the same provision clarifies that “The essence of scientific thinking is to understand what are the reasons for the phenomena that occur in the natural environment to then try to explain them through the appropriate laws of physics and chemistry” (Royal Decree 217/ 2022 , p. 41,659). However, within the science subjects (i.e., Biology and Geology, and Physics and Chemistry), critical thinking is not mentioned as such. Footnote 1 It is only more or less directly alluded to with such expressions as “critical analysis”, “critical assessment”, “critical reflection”, “critical attitude”, and “critical spirit”, with no attempt to conceptualize it as is done with regard to scientific thinking.

The above is just a small sample of the concepts of scientific thinking and critical thinking only being differentiated in some cases, while in others they are presented as interchangeable, using one or the other indistinctly to talk about the same cognitive/metacognitive processes or practices. In fairness, however, it has to be acknowledged—as said at the beginning—that it is far from easy to conceptualize these two types of thinking (Bailin, 2002 ; Dwyer et al., 2014 ; Ennis, 2018 ; Lehrer & Schauble, 2006 ; Kuhn, 1993 , 1999 ) since they feed back on each other, partially overlap, and share certain features (Cáceres et al., 2020 ; Vázquez-Alonso & Manassero-Mas, 2018 ). Neither is there unanimity in the literature on how to characterize each of them, and rarely have they been analyzed comparatively (e.g., Hyytinen et al., 2019 ). For these reasons, I believed it necessary to address this issue with the present work in order to offer some guidelines for science teachers interested in deepening into these two intellectual processes to promote them in their classes.

2 An Attempt to Delimit Scientific Thinking in Science Education

For many years, cognitive science has been interested in studying what scientific thinking is and how it can be taught in order to improve students’ science learning (Klarh et al., 2019 ; Zimmerman & Klarh, 2018 ). To this end, Kuhn et al. propose taking a characterization of science as argument (Kuhn, 1993 ; Kuhn et al., 2008 ). They argue that this is a suitable way of linking the activity of how scientists think with that of the students and of the public in general, since science is a social activity which is subject to ongoing debate, in which the construction of arguments plays a key role. Lehrer and Schauble ( 2006 ) link scientific thinking with scientific literacy, paying especial attention to the different images of science. According to those authors, these images would guide the development of the said literacy in class. The images of science that Leherer and Schauble highlight as characterizing scientific thinking are: (i) science-as-logical reasoning (role of domain-general forms of scientific reasoning, including formal logic, heuristic, and strategies applied in different fields of science), (ii) science-as-theory change (science is subject to permanent revision and change), and (iii) science-as-practice (scientific knowledge and reasoning are components of a larger set of activities that include rules of participation, procedural skills, epistemological knowledge, etc.).

Based on a literature review, Jirout ( 2020 ) defines scientific thinking as an intellectual process whose purpose is the intentional search for information about a phenomenon or facts by formulating questions, checking hypotheses, carrying out observations, recognizing patterns, and making inferences (a detailed description of all these scientific practices or competencies can be found, for example, in NRC, 2012 ; OECD, 2019 ). Therefore, for Jirout, the development of scientific thinking would involve bringing into play the basic science skills/practices common to the inquiry-based approach to learning science (García-Carmona, 2020 ; Harlen, 2014 ). For other authors, scientific thinking would include a whole spectrum of scientific reasoning competencies (Krell et al., 2022 ; Moore, 2019 ; Tytler & Peterson, 2004 ). However, these competences usually cover the same science skills/practices mentioned above. Indeed, a conceptual overlap between scientific thinking, scientific reasoning, and scientific inquiry is often found in science education goals (Krell et al., 2022 ). Although, according to Leherer and Schauble ( 2006 ), scientific thinking is a broader construct that encompasses the other two.

It could be said that scientific thinking is a particular way of searching for information using science practices Footnote 2 (Klarh et al., 2019 ; Zimmerman & Klarh, 2018 ; Vázquez-Alonso & Manassero-Mas, 2018 ). This intellectual process provides the individual with the ability to evaluate the robustness of evidence for or against a certain idea, in order to explain a phenomenon (Clouse, 2017 ). But the development of scientific thinking also requires metacognition processes. According to what Kuhn ( 2022 ) argues, metacognition is fundamental to the permanent control or revision of what an individual thinks and knows, as well as that of the other individuals with whom it interacts, when engaging in scientific practices. In short, scientific thinking demands a good connection between reasoning and metacognition (Kuhn, 2022 ). Footnote 3

From that perspective, Zimmerman and Klarh ( 2018 ) have synthesized a taxonomy categorizing scientific thinking, relating cognitive processes with the corresponding science practices (Table 1 ). It has to be noted that this taxonomy was prepared in line with the categorization of scientific practices proposed in the document A Framework for K-12 Science Education (NRC, 2012 ). This is why one needs to understand that, for example, the cognitive process of elaboration and refinement of hypotheses is not explicitly associated with the scientific practice of hypothesizing but only with the formulation of questions. Indeed, the K-12 Framework document does not establish hypothesis formulation as a basic scientific practice. Lederman et al. ( 2014 ) justify it by arguing that not all scientific research necessarily allows or requires the verification of hypotheses, for example, in cases of exploratory or descriptive research. However, the aforementioned document (NRC, 2012 , p. 50) does refer to hypotheses when describing the practice of developing and using models , appealing to the fact that they facilitate the testing of hypothetical explanations .

In the literature, there are also other interesting taxonomies characterizing scientific thinking for educational purposes. One of them is that of Vázquez-Alonso and Manassero-Mas ( 2018 ) who, instead of science practices, refer to skills associated with scientific thinking . Their characterization basically consists of breaking down into greater detail the content of those science practices that would be related to the different cognitive and metacognitive processes of scientific thinking. Also, unlike Zimmerman and Klarh’s ( 2018 ) proposal, Vázquez-Alonso and Manassero-Mas’s ( 2018 ) proposal explicitly mentions metacognition as one of the aspects of scientific thinking, which they call meta-process . In my opinion, the proposal of the latter authors, which shells out scientific thinking into a broader range of skills/practices, can be more conducive in order to favor its approach in science classes, as teachers would have more options to choose from to address components of this intellectual process depending on their teaching interests, the educational needs of their students and/or the learning objectives pursued. Table 2 presents an adapted characterization of the Vázquez-Alonso and Manassero-Mas’s ( 2018 ) proposal to address scientific thinking in science education.

3 Contextualization of Critical Thinking in Science Education

Theorization and research about critical thinking also has a long tradition in the field of the psychology of learning (Ennis, 2018 ; Kuhn, 1999 ), and its application extends far beyond science education (Dwyer et al., 2014 ). Indeed, the development of critical thinking is commonly accepted as being an essential goal of people’s overall education (Ennis, 2018 ; Hitchcock, 2017 ; Kuhn, 1999 ; Willingham, 2008 ). However, its conceptualization is not simple and there is no unanimous position taken on it in the literature (Costa et al., 2020 ; Dwyer et al., 2014 ); especially when trying to relate it to scientific thinking. Thus, while Tena-Sánchez and León-Medina ( 2022 ) Footnote 4 and McBain et al. ( 2020 ) consider critical thinking to be the basis of or forms part of scientific thinking, Dowd et al. ( 2018 ) understand scientific thinking to be just a subset of critical thinking. However, Vázquez-Alonso and Manassero-Mas ( 2018 ) do not seek to determine whether critical thinking encompasses scientific thinking or vice versa. They consider that both types of knowledge share numerous skills/practices and the progressive development of one fosters the development of the other as a virtuous circle of improvement. Other authors, such as Schafersman ( 1991 ), even go so far as to say that critical thinking and scientific thinking are the same thing. In addition, some views on the relationship between critical thinking and scientific thinking seem to be context-dependent. For example, Hyytine et al. ( 2019 ) point out that in the perspective of scientific thinking as a component of critical thinking, the former is often used to designate evidence-based thinking in the sciences, although this view tends to dominate in Europe but not in the USA context. Perhaps because of this lack of consensus, the two types of thinking are often confused, overlapping, or conceived as interchangeable in education.

Even with such a lack of unanimous or consensus vision, there are some interesting theoretical frameworks and definitions for the development of critical thinking in education. One of the most popular definitions of critical thinking is that proposed by The National Council for Excellence in Critical Thinking (1987, cited in Inter-American Teacher Education Network, 2015 , p. 6). This conceives of it as “the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action”. In other words, critical thinking can be regarded as a reflective and reasonable class of thinking that provides people with the ability to evaluate multiple statements or positions that are defensible to then decide which is the most defensible (Clouse, 2017 ; Ennis, 2018 ). It thus requires, in addition to a basic scientific competency, notions about epistemology (Kuhn, 1999 ) to understand how knowledge is constructed. Similarly, it requires skills for metacognition (Hyytine et al., 2019 ; Kuhn, 1999 ; Magno, 2010 ) since critical thinking “entails awareness of one’s own thinking and reflection on the thinking of self and others as objects of cognition” (Dean & Kuhn, 2003 , p. 3).

In science education, one of the most suitable scenarios or resources, but not the only one, Footnote 5 to address all these aspects of critical thinking is through the analysis of socioscientific issues (SSI) (Taylor et al., 2006 ; Zeidler & Nichols, 2009 ). Without wishing to expand on this here, I will only say that interesting works can be found in the literature that have analyzed how the discussion of SSIs can favor the development of critical thinking skills (see, e.g., López-Fernández et al., 2022 ; Solbes et al., 2018 ). For example, López-Fernández et al. ( 2022 ) focused their teaching-learning sequence on the following critical thinking skills: information analysis, argumentation, decision making, and communication of decisions. Even some authors add the nature of science (NOS) to this framework (i.e., SSI-NOS-critical thinking), as, for example, Yacoubian and Khishfe ( 2018 ) in order to develop critical thinking and how this can also favor the understanding of NOS (Yacoubian, 2020 ). In effect, as I argued in another work on the COVID-19 pandemic as an SSI, in which special emphasis was placed on critical thinking, an informed understanding of how science works would have helped the public understand why scientists were changing their criteria to face the pandemic in the light of new data and its reinterpretations, or that it was not possible to go faster to get an effective and secure medical treatment for the disease (García-Carmona, 2021b ).

In the recent literature, there have also been some proposals intended to characterize critical thinking in the context of science education. Table 3 presents two of these by way of example. As can be seen, both proposals share various components for the development of critical thinking (respect for evidence, critically analyzing/assessing the validity/reliability of information, adoption of independent opinions/decisions, participation, etc.), but that of Blanco et al. ( 2017 ) is more clearly contextualized in science education. Likewise, that of these authors includes some more aspects (or at least does so more explicitly), such as developing epistemological Footnote 6 knowledge of science (vision of science…) and on its interactions with technology, society, and environment (STSA relationships), and communication skills. Therefore, it offers a wider range of options for choosing critical thinking skills/processes to promote it in science classes. However, neither proposal refers to metacognitive skills, which are also essential for developing critical thinking (Kuhn, 1999 ).

3.1 Critical thinking vs. scientific thinking in science education: differences and similarities

In accordance with the above, it could be said that scientific thinking is nourished by critical thinking, especially when deciding between several possible interpretations and explanations of the same phenomenon since this generally takes place in a context of debate in the scientific community (Acevedo-Díaz & García-Carmona, 2017 ). Thus, the scientific attitude that is perhaps most clearly linked to critical thinking is the skepticism with which scientists tend to welcome new ideas (Normand, 2008 ; Sagan, 1987 ; Tena-Sánchez and León-Medina, 2022 ), especially if they are contrary to well-established scientific knowledge (Bell, 2009 ). A good example of this was the OPERA experiment (García-Carmona & Acevedo-Díaz, 2016a ), which initially seemed to find that neutrinos could move faster than the speed of light. This finding was supposed to invalidate Albert Einstein’s theory of relativity (the finding was later proved wrong). In response, Nobel laureate in physics Sheldon L. Glashow went so far as to state that:

the result obtained by the OPERA collaboration cannot be correct. If it were, we would have to give up so many things, it would be such a huge sacrifice... But if it is, I am officially announcing it: I will shout to Mother Nature: I’m giving up! And I will give up Physics. (BBVA Foundation, 2011 )

Indeed, scientific thinking is ultimately focused on getting evidence that may support an idea or explanation about a phenomenon, and consequently allow others that are less convincing or precise to be discarded. Therefore when, with the evidence available, science has more than one equally defensible position with respect to a problem, the investigation is considered inconclusive (Clouse, 2017 ). In certain cases, this gives rise to scientific controversies (Acevedo-Díaz & García-Carmona, 2017 ) which are not always resolved based exclusively on epistemic or rational factors (Elliott & McKaughan, 2014 ; Vallverdú, 2005 ). Hence, it is also necessary to integrate non-epistemic practices into the framework of scientific thinking (García-Carmona, 2021a ; García-Carmona & Acevedo-Díaz, 2018 ), practices that transcend the purely rational or cognitive processes, including, for example, those related to emotional or affective issues (Sinatra & Hofer, 2021 ). From an educational point of view, this suggests that for students to become more authentically immersed in the way of working or thinking scientifically, they should also learn to feel as scientists do when they carry out their work (Davidson et al., 2020 ). Davidson et al. ( 2020 ) call it epistemic affect , and they suggest that it could be approach in science classes by teaching students to manage their frustrations when they fail to achieve the expected results; Footnote 7 or, for example, to moderate their enthusiasm with favorable results in a scientific inquiry by activating a certain skepticism that encourages them to do more testing. And, as mentioned above, for some authors, having a skeptical attitude is one of the actions that best visualize the application of critical thinking in the framework of scientific thinking (Normand, 2008 ; Sagan, 1987 ; Tena-Sánchez and León-Medina, 2022 ).

On the other hand, critical thinking also draws on many of the skills or practices of scientific thinking, as discussed above. However, in contrast to scientific thinking, the coexistence of two or more defensible ideas is not, in principle, a problem for critical thinking since its purpose is not so much to invalidate some ideas or explanations with respect to others, but rather to provide the individual with the foundations on which to position themself with the idea/argument they find most defensible among several that are possible (Ennis, 2018 ). For example, science with its methods has managed to explain the greenhouse effect, the phenomenon of the tides, or the transmission mechanism of the coronavirus. For this, it had to discard other possible explanations as they were less valid in the investigations carried out. These are therefore issues resolved by the scientific community which create hardly any discussion at the present time. However, taking a position for or against the production of energy in nuclear power plants transcends the scope of scientific thinking since both positions are, in principle, equally defensible. Indeed, within the scientific community itself there are supporters and detractors of the two positions, based on the same scientific knowledge. Consequently, it is critical thinking, which requires the management of knowledge and scientific skills, a basic understanding of epistemic (rational or cognitive) and non-epistemic (social, ethical/moral, economic, psychological, cultural, ...) aspects of the nature of science, as well as metacognitive skills, which helps the individual forge a personal foundation on which to position themself in one place or another, or maintain an uncertain, undecided opinion.

In view of the above, one can summarize that scientific thinking and critical thinking are two different intellectual processes in terms of purpose, but are related symbiotically (i.e., one would make no sense without the other or both feed on each other) and that, in their performance, they share a fair number of features, actions, or mental skills. According to Cáceres et al. ( 2020 ) and Hyytine et al. ( 2019 ), the intellectual skills that are most clearly common to both types of thinking would be searching for relationships between evidence and explanations , as well as investigating and logical thinking to make inferences . To this common space, I would also add skills for metacognition in accordance with what has been discussed about both types of knowledge (Khun, 1999 , 2022 ).

In order to compile in a compact way all that has been argued so far, in Table 4 , I present my overview of the relationship between scientific thinking and critical thinking. I would like to point out that I do not intend to be extremely extensive in the compilation, in the sense that possibly more elements could be added in the different sections, but rather to represent above all the aspects that distinguish and share them, as well as the mutual enrichment (or symbiosis) between them.

4 A Proposal for the Integrated Development of Critical Thinking and Scientific Thinking in Science Classes

Once the differences, common aspects, and relationships between critical thinking and scientific thinking have been discussed, it would be relevant to establish some type of specific proposal to foster them in science classes. Table 5 includes a possible script to address various skills or processes of both types of thinking in an integrated manner. However, before giving guidance on how such skills/processes could be approached, I would like to clarify that while all of them could be dealt within the context of a single school activity, I will not do so in this way. First, because I think that it can give the impression that the proposal is only valid if it is applied all at once in a specific learning situation, which can also discourage science teachers from implementing it in class due to lack of time or training to do so. Second, I think it can be more interesting to conceive the proposal as a set of thinking skills or actions that can be dealt with throughout the different science contents, selecting only (if so decided) some of them, according to educational needs or characteristics of the learning situation posed in each case. Therefore, in the orientations for each point of the script or grouping of these, I will use different examples and/or contexts. Likewise, these orientations in the form of comments, although founded in the literature, should be considered only as possibilities to do so, among many others possible.

Motivation and predisposition to reflect and discuss (point i ) demands, on the one hand, that issues are chosen which are attractive for the students. This can be achieved, for example, by asking the students directly what current issues, related to science and its impact or repercussions, they would like to learn about, and then decide on which issue to focus on (García-Carmona, 2008 ). Or the teacher puts forward the issue directly in class, trying for it be current, to be present in the media, social networks, etc., or what they think may be of interest to their students based on their teaching experience. In this way, each student is encouraged to feel questioned or concerned as a citizen because of the issue that is going to be addressed (García-Carmona, 2008 ). Also of possible interest is the analysis of contemporary, as yet unresolved socioscientific affairs (Solbes et al., 2018 ), such as climate change, science and social justice, transgenic foods, homeopathy, and alcohol and drug use in society. But also, everyday questions can be investigated which demand a decision to be made, such as “What car to buy?” (Moreno-Fontiveros et al., 2022 ), or “How can we prevent the arrival of another pandemic?” (Ushola & Puig, 2023 ).

On the other hand, it is essential that the discussion about the chosen issue is planned through an instructional process that generates an environment conducive to reflection and debate, with a view to engaging the students’ participation in it. This can be achieved, for example, by setting up a role-play game (Blanco-López et al., 2017 ), especially if the issue is socioscientific, or by critical and reflective reading of advertisements with scientific content (Campanario et al., 2001 ) or of science-related news in the daily media (García-Carmona, 2014 , 2021a ; Guerrero-Márquez & García-Carmona, 2020 ; Oliveras et al., 2013 ), etc., for subsequent discussion—all this, in a collaborative learning setting and with a clear democratic spirit.

Respect for scientific evidence (point ii ) should be the indispensable condition in any analysis and discussion from the prisms of scientific and of critical thinking (Erduran, 2021 ). Although scientific knowledge may be impregnated with subjectivity during its construction and is revisable in the light of new evidence ( tentativeness of scientific knowledge), when it is accepted by the scientific community it is as objective as possible (García-Carmona & Acevedo-Díaz, 2016b ). Therefore, promoting trust and respect for scientific evidence should be one of the primary educational challenges to combating pseudoscientists and science deniers (Díaz & Cabrera, 2022 ), whose arguments are based on false beliefs and assumptions, anecdotes, and conspiracy theories (Normand, 2008 ). Nevertheless, it is no simple task to achieve the promotion or respect for scientific evidence (Fackler, 2021 ) since science deniers, for example, consider that science is unreliable because it is imperfect (McIntyre, 2021 ). Hence the need to promote a basic understanding of NOS (point iii ) as a fundamental pillar for the development of both scientific thinking and critical thinking. A good way to do this would be through explicit and reflective discussion about controversies from the history of science (Acevedo-Díaz & García-Carmona, 2017 ) or contemporary controversies (García-Carmona, 2021b ; García-Carmona & Acevedo-Díaz, 2016a ).

Also, with respect to point iii of the proposal, it is necessary to manage basic scientific knowledge in the development of scientific and critical thinking skills (Willingham, 2008 ). Without this, it will be impossible to develop a minimally serious and convincing argument on the issue being analyzed. For example, if one does not know the transmission mechanism of a certain disease, it is likely to be very difficult to understand or justify certain patterns of social behavior when faced with it. In general, possessing appropriate scientific knowledge on the issue in question helps to make the best interpretation of the data and evidence available on this issue (OECD, 2019 ).

The search for information from reliable sources, together with its analysis and interpretation (points iv to vi ), are essential practices both in purely scientific contexts (e.g., learning about the behavior of a given physical phenomenon from literature or through enquiry) and in the application of critical thinking (e.g., when one wishes to take a personal, but informed, position on a particular socio-scientific issue). With regard to determining the credibility of information with scientific content on the Internet, Osborne et al. ( 2022 ) propose, among other strategies, to check whether the source is free of conflicts of interest, i.e., whether or not it is biased by ideological, political or economic motives. Also, it should be checked whether the source and the author(s) of the information are sufficiently reputable.

Regarding the interpretation of data and evidence, several studies have shown the difficulties that students often have with this practice in the context of enquiry activities (e.g., Gobert et al., 2018 ; Kanari & Millar, 2004 ; Pols et al., 2021 ), or when analyzing science news in the press (Norris et al., 2003 ). It is also found that they have significant difficulties in choosing the most appropriate data to support their arguments in causal analyses (Kuhn & Modrek, 2022 ). However, it must be recognized that making interpretations or inferences from data is not a simple task; among other reasons, because their construction is influenced by multiple factors, both epistemic (prior knowledge, experimental designs, etc.) and non-epistemic (personal expectations, ideology, sociopolitical context, etc.), which means that such interpretations are not always the same for all scientists (García-Carmona, 2021a ; García-Carmona & Acevedo-Díaz, 2018 ). For this reason, the performance of this scientific practice constitutes one of the phases or processes that generate the most debate or discussion in a scientific community, as long as no consensus is reached. In order to improve the practice of making inferences among students, Kuhn and Lerman ( 2021 ) propose activities that help them develop their own epistemological norms to connect causally their statements with the available evidence.

Point vii refers, on the one hand, to an essential scientific practice: the elaboration of evidence-based scientific explanations which generally, in a reasoned way, account for the causality, properties, and/or behavior of the phenomena (Brigandt, 2016 ). In addition, point vii concerns the practice of argumentation . Unlike scientific explanations, argumentation tries to justify an idea, explanation, or position with the clear purpose of persuading those who defend other different ones (Osborne & Patterson, 2011 ). As noted above, the complexity of most socioscientific issues implies that they have no unique valid solution or response. Therefore, the content of the arguments used to defend one position or another are not always based solely on purely rational factors such as data and scientific evidence. Some authors defend the need to also deal with non-epistemic aspects of the nature of science when teaching it (García-Carmona, 2021a ; García-Carmona & Acevedo-Díaz, 2018 ) since many scientific and socioscientific controversies are resolved by different factors or go beyond just the epistemic (Vallverdú, 2005 ).

To defend an idea or position taken on an issue, it is not enough to have scientific evidence that supports it. It is also essential to have skills for the communication and discussion of ideas (point viii ). The history of science shows how the difficulties some scientists had in communicating their ideas scientifically led to those ideas not being accepted at the time. A good example for students to become aware of this is the historical case of Semmelweis and puerperal fever (Aragón-Méndez et al., 2019 ). Its reflective reading makes it possible to conclude that the proposal of this doctor that gynecologists disinfect their hands, when passing from one parturient to another to avoid contagions that provoked the fever, was rejected by the medical community not only for epistemic reasons, but also for the difficulties that he had to communicate his idea. The history of science also reveals that some scientific interpretations were imposed on others at certain historical moments due to the rhetorical skills of their proponents although none of the explanations would convincingly explain the phenomenon studied. An example is the case of the controversy between Pasteur and Liebig about the phenomenon of fermentation (García-Carmona & Acevedo-Díaz, 2017 ), whose reading and discussion in science class would also be recommended in this context of this critical and scientific thinking skill. With the COVID-19 pandemic, for example, the arguments of some charlatans in the media and on social networks managed to gain a certain influence in the population, even though scientifically they were muddled nonsense (García-Carmona, 2021b ). Therefore, the reflective reading of news on current SSIs such as this also constitutes a good resource for the same educational purpose. In general, according to Spektor-Levy et al. ( 2009 ), scientific communication skills should be addressed explicitly in class, in a progressive and continuous manner, including tasks of information seeking, reading, scientific writing, representation of information, and representation of the knowledge acquired.

Finally (point ix ), a good scientific/critical thinker must be aware of what they know, of what they have doubts about or do not know, to this end continuously practicing metacognitive exercises (Dean & Kuhn, 2003 ; Hyytine et al., 2019 ; Magno, 2010 ; Willingham, 2008 ). At the same time, they must recognize the weaknesses and strengths of the arguments of their peers in the debate in order to be self-critical if necessary, as well as to revising their own ideas and arguments to improve and reorient them, etc. ( self-regulation ). I see one of the keys of both scientific and critical thinking being the capacity or willingness to change one’s mind, without it being frowned upon. Indeed, quite the opposite since one assumes it to occur thanks to the arguments being enriched and more solidly founded. In other words, scientific and critical thinking and arrogance or haughtiness towards the rectification of ideas or opinions do not stick well together.

5 Final Remarks

For decades, scientific thinking and critical thinking have received particular attention from different disciplines such as psychology, philosophy, pedagogy, and specific areas of this last such as science education. The two types of knowledge represent intellectual processes whose development in students, and in society in general, is considered indispensable for the exercise of responsible citizenship in accord with the demands of today’s society (European Commission, 2006 , 2015 ; NRC, 2012 ; OECD, 2020 ). As has been shown however, the task of their conceptualization is complex, and teaching students to think scientifically and critically is a difficult educational challenge (Willingham, 2008 ).

Aware of this, and after many years dedicated to science education, I felt the need to organize my ideas regarding the aforementioned two types of thinking. In consulting the literature about these, I found that, in many publications, scientific thinking and critical thinking are presented or perceived as being interchangeable or indistinguishable; a conclusion also shared by Hyytine et al. ( 2019 ). Rarely have their differences, relationships, or common features been explicitly studied. So, I considered that it was a matter needing to be addressed because, in science education, the development of scientific thinking is an inherent objective, but, when critical thinking is added to the learning objectives, there arise more than reasonable doubts about when one or the other would be used, or both at the same time. The present work came about motivated by this, with the intention of making a particular contribution, but based on the relevant literature, to advance in the question raised. This converges in conceiving scientific thinking and critical thinking as two intellectual processes that overlap and feed into each other in many aspects but are different with respect to certain cognitive skills and in terms of their purpose. Thus, in the case of scientific thinking, the aim is to choose the best possible explanation of a phenomenon based on the available evidence, and it therefore involves the rejection of alternative explanatory proposals that are shown to be less coherent or convincing. Whereas, from the perspective of critical thinking, the purpose is to choose the most defensible idea/option among others that are also defensible, using both scientific and extra-scientific (i.e., moral, ethical, political, etc.) arguments. With this in mind, I have described a proposal to guide their development in the classroom, integrating them under a conception that I have called, metaphorically, a symbiotic relationship between two modes of thinking.

Critical thinking is mentioned literally in other of the curricular provisions’ subjects such as in Education in Civics and Ethical Values or in Geography and History (Royal Decree 217/2022).

García-Carmona ( 2021a ) conceives of them as activities that require the comprehensive application of procedural skills, cognitive and metacognitive processes, and both scientific knowledge and knowledge of the nature of scientific practice .

Kuhn ( 2021 ) argues that the relationship between scientific reasoning and metacognition is especially fostered by what she calls inhibitory control , which basically consists of breaking down the whole of a thought into parts in such a way that attention is inhibited on some of those parts to allow a focused examination of the intended mental content.

Specifically, Tena-Sánchez and León-Medina (2020) assume that critical thinking is at the basis of rational or scientific skepticism that leads to questioning any claim that does not have empirical support.

As discussed in the introduction, the inquiry-based approach is also considered conducive to addressing critical thinking in science education (Couso et al., 2020 ; NRC, 2012 ).

Epistemic skills should not be confused with epistemological knowledge (García-Carmona, 2021a ). The former refers to skills to construct, evaluate, and use knowledge, and the latter to understanding about the origin, nature, scope, and limits of scientific knowledge.

For this purpose, it can be very useful to address in class, with the help of the history and philosophy of science, that scientists get more wrong than right in their research, and that error is always an opportunity to learn (García-Carmona & Acevedo-Díaz, 2018 ).

Acevedo-Díaz, J. A., & García-Carmona, A. (2017). Controversias en la historia de la ciencia y cultura científica [Controversies in the history of science and scientific culture]. Los Libros de la Catarata.

Aragón-Méndez, M. D. M., Acevedo-Díaz, J. A., & García-Carmona, A. (2019). Prospective biology teachers’ understanding of the nature of science through an analysis of the historical case of Semmelweis and childbed fever. Cultural Studies of Science Education , 14 (3), 525–555. https://doi.org/10.1007/s11422-018-9868-y

Bailin, S. (2002). Critical thinking and science education. Science & Education, 11 (4), 361–375. https://doi.org/10.1023/A:1016042608621

Article   Google Scholar  

BBVA Foundation (2011). El Nobel de Física Sheldon L. Glashow no cree que los neutrinos viajen más rápido que la luz [Physics Nobel laureate Sheldon L. Glashow does not believe neutrinos travel faster than light.]. https://www.fbbva.es/noticias/nobel-fisica-sheldon-l-glashow-no-cree-los-neutrinos-viajen-mas-rapido-la-luz/ . Accessed 5 Februray 2023.

Bell, R. L. (2009). Teaching the nature of science: Three critical questions. In Best Practices in Science Education . National Geographic School Publishing.

Google Scholar  

Blanco-López, A., España-Ramos, E., & Franco-Mariscal, A. J. (2017). Estrategias didácticas para el desarrollo del pensamiento crítico en el aula de ciencias [Teaching strategies for the development of critical thinking in the teaching of science]. Ápice. Revista de Educación Científica, 1 (1), 107–115. https://doi.org/10.17979/arec.2017.1.1.2004

Brigandt, I. (2016). Why the difference between explanation and argument matters to science education. Science & Education, 25 (3-4), 251–275. https://doi.org/10.1007/s11191-016-9826-6

Cáceres, M., Nussbaum, M., & Ortiz, J. (2020). Integrating critical thinking into the classroom: A teacher’s perspective. Thinking Skills and Creativity, 37 , 100674. https://doi.org/10.1016/j.tsc.2020.100674

Campanario, J. M., Moya, A., & Otero, J. (2001). Invocaciones y usos inadecuados de la ciencia en la publicidad [Invocations and misuses of science in advertising]. Enseñanza de las Ciencias, 19 (1), 45–56. https://doi.org/10.5565/rev/ensciencias.4013

Clouse, S. (2017). Scientific thinking is not critical thinking. https://medium.com/extra-extra/scientific-thinking-is-not-critical-thinking-b1ea9ebd8b31

Confederacion de Sociedades Cientificas de Espana [COSCE]. (2011). Informe ENCIENDE: Enseñanza de las ciencias en la didáctica escolar para edades tempranas en España [ENCIENDE report: Science education for early-year in Spain] . COSCE.

Costa, S. L. R., Obara, C. E., & Broietti, F. C. D. (2020). Critical thinking in science education publications: the research contexts. International Journal of Development Research, 10 (8), 39438. https://doi.org/10.37118/ijdr.19437.08.2020

Couso, D., Jiménez-Liso, M.R., Refojo, C. & Sacristán, J.A. (coords.) (2020). Enseñando ciencia con ciencia [Teaching science with science]. FECYT & Fundacion Lilly / Penguin Random House

Davidson, S. G., Jaber, L. Z., & Southerland, S. A. (2020). Emotions in the doing of science: Exploring epistemic affect in elementary teachers' science research experiences. Science Education, 104 (6), 1008–1040. https://doi.org/10.1002/sce.21596

Dean, D., & Kuhn, D. (2003). Metacognition and critical thinking. ERIC document. Reproduction No. ED477930 . https://files.eric.ed.gov/fulltext/ED477930.pdf

Díaz, C., & Cabrera, C. (2022). Desinformación científica en España . FECYT/IBERIFIER https://www.fecyt.es/es/publicacion/desinformacion-cientifica-en-espana

Dowd, J. E., Thompson, R. J., Jr., Schiff, L. A., & Reynolds, J. A. (2018). Understanding the complex relationship between critical thinking and science reasoning among undergraduate thesis writers. CBE—Life Sciences . Education, 17 (1), ar4. https://doi.org/10.1187/cbe.17-03-0052

Dwyer, C. P., Hogan, M. J., & Stewart, I. (2014). An integrated critical thinking framework for the 21st century. Thinking Skills and Creativity, 12 , 43–52. https://doi.org/10.1016/j.tsc.2013.12.004

Elliott, K. C., & McKaughan, D. J. (2014). Non-epistemic values and the multiple goals of science. Philosophy of Science, 81 (1), 1–21. https://doi.org/10.1086/674345

Ennis, R. H. (2018). Critical thinking across the curriculum: A vision. Topoi, 37 (1), 165–184. https://doi.org/10.1007/s11245-016-9401-4

Erduran, S. (2021). Respect for evidence: Can science education deliver it? Science & Education, 30 (3), 441–444. https://doi.org/10.1007/s11191-021-00245-8

European Commission. (2015). Science education for responsible citizenship . Publications Office https://op.europa.eu/en/publication-detail/-/publication/a1d14fa0-8dbe-11e5-b8b7-01aa75ed71a1

European Commission / Eurydice. (2011). Science education in Europe: National policies, practices and research . Publications Office. https://op.europa.eu/en/publication-detail/-/publication/bae53054-c26c-4c9f-8366-5f95e2187634

European Commission / Eurydice. (2022). Increasing achievement and motivation in mathematics and science learning in schools . Publications Office. https://eurydice.eacea.ec.europa.eu/publications/mathematics-and-science-learning-schools-2022

European Commission/Eurydice. (2006). Science teaching in schools in Europe. Policies and research . Publications Office. https://op.europa.eu/en/publication-detail/-/publication/1dc3df34-acdf-479e-bbbf-c404fa3bee8b

Fackler, A. (2021). When science denial meets epistemic understanding. Science & Education, 30 (3), 445–461. https://doi.org/10.1007/s11191-021-00198-y

García-Carmona, A. (2008). Relaciones CTS en la educación científica básica. II. Investigando los problemas del mundo [STS relationships in basic science education II. Researching the world problems]. Enseñanza de las Ciencias, 26 (3), 389–402. https://doi.org/10.5565/rev/ensciencias.3750

García-Carmona, A. (2014). Naturaleza de la ciencia en noticias científicas de la prensa: Análisis del contenido y potencialidades didácticas [Nature of science in press articles about science: Content analysis and pedagogical potential]. Enseñanza de las Ciencias, 32 (3), 493–509. https://doi.org/10.5565/rev/ensciencias.1307

García-Carmona, A., & Acevedo-Díaz, J. A. (2016). Learning about the nature of science using newspaper articles with scientific content. Science & Education, 25 (5–6), 523–546. https://doi.org/10.1007/s11191-016-9831-9

García-Carmona, A., & Acevedo-Díaz, J. A. (2016b). Concepciones de estudiantes de profesorado de Educación Primaria sobre la naturaleza de la ciencia: Una evaluación diagnóstica a partir de reflexiones en equipo [Preservice elementary teachers' conceptions of the nature of science: a diagnostic evaluation based on team reflections]. Revista Mexicana de Investigación Educativa, 21 (69), 583–610. https://www.redalyc.org/articulo.oa?id=14045395010

García-Carmona, A., & Acevedo-Díaz, J. A. (2017). Understanding the nature of science through a critical and reflective analysis of the controversy between Pasteur and Liebig on fermentation. Science & Education, 26 (1–2), 65–91. https://doi.org/10.1007/s11191-017-9876-4

García-Carmona, A., & Acevedo-Díaz, J. A. (2018). The nature of scientific practice and science education. Science & Education, 27 (5–6), 435–455. https://doi.org/10.1007/s11191-018-9984-9

García-Carmona, A. (2020). From inquiry-based science education to the approach based on scientific practices. Science & Education, 29 (2), 443–463. https://doi.org/10.1007/s11191-020-00108-8

García-Carmona, A. (2021a). Prácticas no-epistémicas: ampliando la mirada en el enfoque didáctico basado en prácticas científicas [Non-epistemic practices: extending the view in the didactic approach based on scientific practices]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 18 (1), 1108. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1108

García-Carmona, A. (2021b). Learning about the nature of science through the critical and reflective reading of news on the COVID-19 pandemic. Cultural Studies of Science Education, 16 (4), 1015–1028. https://doi.org/10.1007/s11422-021-10092-2

Guerrero-Márquez, I., & García-Carmona, A. (2020). La energía y su impacto socioambiental en la prensa digital: temáticas y potencialidades didácticas para una educación CTS [Energy and its socio-environmental impact in the digital press: issues and didactic potentialities for STS education]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 17(3), 3301. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2020.v17.i3.3301

Gobert, J. D., Moussavi, R., Li, H., Sao Pedro, M., & Dickler, R. (2018). Real-time scaffolding of students’ online data interpretation during inquiry with Inq-ITS using educational data mining. In M. E. Auer, A. K. M. Azad, A. Edwards, & T. de Jong (Eds.), Cyber-physical laboratories in engineering and science education (pp. 191–217). Springer.

Chapter   Google Scholar  

Harlen, W. (2014). Helping children’s development of inquiry skills. Inquiry in Primary Science Education, 1 (1), 5–19. https://ipsejournal.files.wordpress.com/2015/03/3-ipse-volume-1-no-1-wynne-harlen-p-5-19.pdf

Hitchcock, D. (2017). Critical thinking as an educational ideal. In On reasoning and argument (pp. 477–497). Springer.

Hyytinen, H., Toom, A., & Shavelson, R. J. (2019). Enhancing scientific thinking through the development of critical thinking in higher education. In M. Murtonen & K. Balloo (Eds.), Redefining scientific thinking for higher education . Palgrave Macmillan.

Jiménez-Aleixandre, M. P., & Puig, B. (2022). Educating critical citizens to face post-truth: the time is now. In B. Puig & M. P. Jiménez-Aleixandre (Eds.), Critical thinking in biology and environmental education, Contributions from biology education research (pp. 3–19). Springer.

Jirout, J. J. (2020). Supporting early scientific thinking through curiosity. Frontiers in Psychology, 11 , 1717. https://doi.org/10.3389/fpsyg.2020.01717

Kanari, Z., & Millar, R. (2004). Reasoning from data: How students collect and interpret data in science investigations. Journal of Research in Science Teaching, 41 (7), 748–769. https://doi.org/10.1002/tea.20020

Klahr, D., Zimmerman, C., & Matlen, B. J. (2019). Improving students’ scientific thinking. In J. Dunlosky & K. A. Rawson (Eds.), The Cambridge handbook of cognition and education (pp. 67–99). Cambridge University Press.

Krell, M., Vorholzer, A., & Nehring, A. (2022). Scientific reasoning in science education: from global measures to fine-grained descriptions of students’ competencies. Education Sciences, 12 , 97. https://doi.org/10.3390/educsci12020097

Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science education, 77 (3), 319–337. https://doi.org/10.1002/sce.3730770306

Kuhn, D. (1999). A developmental model of critical thinking. Educational Researcher, 28 (2), 16–46. https://doi.org/10.3102/0013189X028002016

Kuhn, D. (2022). Metacognition matters in many ways. Educational Psychologist, 57 (2), 73–86. https://doi.org/10.1080/00461520.2021.1988603

Kuhn, D., Iordanou, K., Pease, M., & Wirkala, C. (2008). Beyond control of variables: What needs to develop to achieve skilled scientific thinking? Cognitive Development, 23 (4), 435–451. https://doi.org/10.1016/j.cogdev.2008.09.006

Kuhn, D., & Lerman, D. (2021). Yes but: Developing a critical stance toward evidence. International Journal of Science Education, 43 (7), 1036–1053. https://doi.org/10.1080/09500693.2021.1897897

Kuhn, D., & Modrek, A. S. (2022). Choose your evidence: Scientific thinking where it may most count. Science & Education, 31 (1), 21–31. https://doi.org/10.1007/s11191-021-00209-y

Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A., & Schwartz, R. S. (2014). Meaningful assessment of learners' understandings about scientific inquiry—The views about scientific inquiry (VASI) questionnaire. Journal of Research in Science Teaching, 51 (1), 65–83. https://doi.org/10.1002/tea.21125

Lehrer, R., & Schauble, L. (2006). Scientific thinking and science literacy. In K. A. Renninger, I. E. Sigel, W. Damon, & R. M. Lerner (Eds.), Handbook of child psychology: Child psychology in practice (pp. 153–196). John Wiley & Sons, Inc.

López-Fernández, M. D. M., González-García, F., & Franco-Mariscal, A. J. (2022). How can socio-scientific issues help develop critical thinking in chemistry education? A reflection on the problem of plastics. Journal of Chemical Education, 99 (10), 3435–3442. https://doi.org/10.1021/acs.jchemed.2c00223

Magno, C. (2010). The role of metacognitive skills in developing critical thinking. Metacognition and Learning, 5 , 137–156. https://doi.org/10.1007/s11409-010-9054-4

McBain, B., Yardy, A., Martin, F., Phelan, L., van Altena, I., McKeowen, J., Pembertond, C., Tosec, H., Fratuse, L., & Bowyer, M. (2020). Teaching science students how to think. International Journal of Innovation in Science and Mathematics Education, 28 (2), 28–35. https://openjournals.library.sydney.edu.au/CAL/article/view/14809/13480

McIntyre, L. (2021). Talking to science deniers and sceptics is not hopeless. Nature, 596 (7871), 165–165. https://doi.org/10.1038/d41586-021-02152-y

Moore, C. (2019). Teaching science thinking. Using scientific reasoning in the classroom . Routledge.

Moreno-Fontiveros, G., Cebrián-Robles, D., Blanco-López, A., & y España-Ramos, E. (2022). Decisiones de estudiantes de 14/15 años en una propuesta didáctica sobre la compra de un coche [Fourteen/fifteen-year-old students’ decisions in a teaching proposal on the buying of a car]. Enseñanza de las Ciencias, 40 (1), 199–219. https://doi.org/10.5565/rev/ensciencias.3292

National Research Council [NRC]. (2012). A framework for K-12 science education . National Academies Press.

Network, I.-A. T. E. (2015). Critical thinking toolkit . OAS/ITEN.

Normand, M. P. (2008). Science, skepticism, and applied behavior analysis. Behavior Analysis in Practice, 1 (2), 42–49. https://doi.org/10.1007/BF03391727

Norris, S. P., Phillips, L. M., & Korpan, C. A. (2003). University students’ interpretation of media reports of science and its relationship to background knowledge, interest, and reading difficulty. Public Understanding of Science, 12 (2), 123–145. https://doi.org/10.1177/09636625030122001

Oliveras, B., Márquez, C., & Sanmartí, N. (2013). The use of newspaper articles as a tool to develop critical thinking in science classes. International Journal of Science Education, 35 (6), 885–905. https://doi.org/10.1080/09500693.2011.586736

Organisation for Economic Co-operation and Development [OECD]. (2019). PISA 2018. Assessment and Analytical Framework . OECD Publishing. https://doi.org/10.1787/b25efab8-en

Book   Google Scholar  

Organisation for Economic Co-operation and Development [OECD]. (2020). PISA 2024: Strategic Vision and Direction for Science. https://www.oecd.org/pisa/publications/PISA-2024-Science-Strategic-Vision-Proposal.pdf

Osborne, J., Pimentel, D., Alberts, B., Allchin, D., Barzilai, S., Bergstrom, C., Coffey, J., Donovan, B., Kivinen, K., Kozyreva, A., & Wineburg, S. (2022). Science Education in an Age of Misinformation . Stanford University.

Osborne, J. F., & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education, 95 (4), 627–638. https://doi.org/10.1002/sce.20438

Pols, C. F. J., Dekkers, P. J. J. M., & De Vries, M. J. (2021). What do they know? Investigating students’ ability to analyse experimental data in secondary physics education. International Journal of Science Education, 43 (2), 274–297. https://doi.org/10.1080/09500693.2020.1865588

Royal Decree 217/2022. (2022). of 29 March, which establishes the organisation and minimum teaching of Compulsory Secondary Education (Vol. 76 , pp. 41571–41789). Spanish Official State Gazette. https://www.boe.es/eli/es/rd/2022/03/29/217

Sagan, C. (1987). The burden of skepticism. Skeptical Inquirer, 12 (1), 38–46. https://skepticalinquirer.org/1987/10/the-burden-of-skepticism/

Santos, L. F. (2017). The role of critical thinking in science education. Journal of Education and Practice, 8 (20), 160–173. https://eric.ed.gov/?id=ED575667

Schafersman, S. D. (1991). An introduction to critical thinking. https://facultycenter.ischool.syr.edu/wp-content/uploads/2012/02/Critical-Thinking.pdf . Accessed 10 May 2023.

Sinatra, G. M., & Hofer, B. K. (2021). How do emotions and attitudes influence science understanding? In Science denial: why it happens and what to do about it (pp. 142–180). Oxford Academic.

Solbes, J., Torres, N., & Traver, M. (2018). Use of socio-scientific issues in order to improve critical thinking competences. Asia-Pacific Forum on Science Learning & Teaching, 19 (1), 1–22. https://www.eduhk.hk/apfslt/

Spektor-Levy, O., Eylon, B. S., & Scherz, Z. (2009). Teaching scientific communication skills in science studies: Does it make a difference? International Journal of Science and Mathematics Education, 7 (5), 875–903. https://doi.org/10.1007/s10763-009-9150-6

Taylor, P., Lee, S. H., & Tal, T. (2006). Toward socio-scientific participation: changing culture in the science classroom and much more: Setting the stage. Cultural Studies of Science Education, 1 (4), 645–656. https://doi.org/10.1007/s11422-006-9028-7

Tena-Sánchez, J., & León-Medina, F. J. (2022). Y aún más al fondo del “bullshit”: El papel de la falsificación de preferencias en la difusión del oscurantismo en la teoría social y en la sociedad [And even deeper into “bullshit”: The role of preference falsification in the difussion of obscurantism in social theory and in society]. Scio, 22 , 209–233. https://doi.org/10.46583/scio_2022.22.949

Tytler, R., & Peterson, S. (2004). From “try it and see” to strategic exploration: Characterizing young children's scientific reasoning. Journal of Research in Science Teaching, 41 (1), 94–118. https://doi.org/10.1002/tea.10126

Uskola, A., & Puig, B. (2023). Development of systems and futures thinking skills by primary pre-service teachers for addressing epidemics. Research in Science Education , 1–17. https://doi.org/10.1007/s11165-023-10097-7

Vallverdú, J. (2005). ¿Cómo finalizan las controversias? Un nuevo modelo de análisis: la controvertida historia de la sacarina [How does controversies finish? A new model of analysis: the controversial history of saccharin]. Revista Iberoamericana de Ciencia, Tecnología y Sociedad, 2 (5), 19–50. http://www.revistacts.net/wp-content/uploads/2020/01/vol2-nro5-art01.pdf

Vázquez-Alonso, A., & Manassero-Mas, M. A. (2018). Más allá de la comprensión científica: educación científica para desarrollar el pensamiento [Beyond understanding of science: science education for teaching fair thinking]. Revista Electrónica de Enseñanza de las Ciencias, 17 (2), 309–336. http://reec.uvigo.es/volumenes/volumen17/REEC_17_2_02_ex1065.pdf

Willingham, D. T. (2008). Critical thinking: Why is it so hard to teach? Arts Education Policy Review, 109 (4), 21–32. https://doi.org/10.3200/AEPR.109.4.21-32

Yacoubian, H. A. (2020). Teaching nature of science through a critical thinking approach. In W. F. McComas (Ed.), Nature of Science in Science Instruction (pp. 199–212). Springer.

Yacoubian, H. A., & Khishfe, R. (2018). Argumentation, critical thinking, nature of science and socioscientific issues: a dialogue between two researchers. International Journal of Science Education, 40 (7), 796–807. https://doi.org/10.1080/09500693.2018.1449986

Zeidler, D. L., & Nichols, B. H. (2009). Socioscientific issues: Theory and practice. Journal of elementary science education, 21 (2), 49–58. https://doi.org/10.1007/BF03173684

Zimmerman, C., & Klahr, D. (2018). Development of scientific thinking. In J. T. Wixted (Ed.), Stevens’ handbook of experimental psychology and cognitive neuroscience (Vol. 4 , pp. 1–25). John Wiley & Sons, Inc..

Download references

Conflict of Interest

The author declares no conflict of interest.

Funding for open access publishing: Universidad de Sevilla/CBUA

Author information

Authors and affiliations.

Departamento de Didáctica de las Ciencias Experimentales y Sociales, Universidad de Sevilla, Seville, Spain

Antonio García-Carmona

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Antonio García-Carmona .

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

García-Carmona, A. Scientific Thinking and Critical Thinking in Science Education . Sci & Educ (2023). https://doi.org/10.1007/s11191-023-00460-5

Download citation

Accepted : 30 July 2023

Published : 05 September 2023

DOI : https://doi.org/10.1007/s11191-023-00460-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Cognitive skills
  • Critical thinking
  • Metacognitive skills
  • Science education
  • Scientific thinking
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. Critical Thinking Definition, Skills, and Examples

    reflection about scientific literacy and critical thinking skills

  2. 6 Examples of Critical Thinking Skills

    reflection about scientific literacy and critical thinking skills

  3. Critical_Thinking_Skills_Diagram_svg

    reflection about scientific literacy and critical thinking skills

  4. (PDF) Analysis of Students’ Critical Thinking Skills, Scientific

    reflection about scientific literacy and critical thinking skills

  5. Critical Thinking

    reflection about scientific literacy and critical thinking skills

  6. Critical Thinking Reflection Paper

    reflection about scientific literacy and critical thinking skills

VIDEO

  1. Empowered by Science: Rethinking Public Science Literacy

  2. "Teach Skills, Not Facts" Presentation at the University of Melbourne

  3. Immersive Critical Thinking Activities: Think Like A Scientist

  4. Media Literacy: Responding to a Captivating Photo

  5. Reflections on Literacy || Topic 3: Literacy, Thinking and Self Esteem

  6. Critical AI Literacy Skills

COMMENTS

  1. Fostering Scientific Literacy and Critical Thinking in Elementary

    Scientific literacy (SL) and critical thinking (CT) are key components of science education aiming to prepare students to think and to function as responsible citizens in a world increasingly affected by science and technology (S&T). Therefore, students should be given opportunities in their science classes to be engaged in learning experiences that promote SL and CT, which may trigger the ...

  2. PDF Science Literacy, Critical Thinking, and Scientific Literature

    does not go far enough to foster the higher-order critical-thinking skills that are such an integral part of science and would go a long way to cultivating science literacy. For the past 40 y, the emphasis in science education can be best described as learning science by doing science. Students would learn the basic tenets of the scientific

  3. Scientific Literacy and Critical Thinking Skills- Critical Thinking Secrets

    In summary, a well-rounded science education places emphasis on the development of scientific literacy and critical thinking skills, based on a strong foundation in core concepts and knowledge. Incorporating metacognitive strategies and promoting reflection throughout the learning process further enhances these skills, equipping students for ...

  4. Fostering students' scientific literacy by reflective ...

    In particular, the process of peer interaction promoted their self-reflection and scientific literacy skills. Developing students' scientific literacy is the most important educational goal and challenge of the 21st century. Many studies have confirmed that f ... nursing skills, self-efficacy, and critical thinking awareness in the flipped ...

  5. Developing Science Literacy in Students and Society: Theory, Research

    The subject of scientific literacy has never been more critical to the scientific community as well as society in general. As opportunities to spread misinformation increase with the rise of new technologies, it is critical for society to have at its disposal the means for ensuring that its citizens possess the basic scientific literacy necessary to make critical decisions on topics like ...

  6. An empirical analysis of the relationship between nature of science and

    Critical thinking (CRT) skills transversally pervade education and nature of science (NOS) knowledge is a key component of science literacy. Some science education researchers advocate that CRT skills and NOS knowledge have a mutual impact and relationship. However, few research studies have undertaken the empirical confirmation of this relationship and most fail to match the two terms of the ...

  7. Scientific Literacy

    Second is scientific literacy, which emphasizes scientific ways of knowing and the process of thinking critically and creatively about the natural world. Advocates of the second assume that it is good to have critical thinkers, that scientific literacy is an intrinsic good—on moral and other principled grounds.

  8. Fostering Scientific Literacy and Critical Thinking in Elementary

    Abstract. Scientific literacy (SL) and critical thinking (CT) are key components of science education aiming to prepare students to think and to function as responsible citizens in a world ...

  9. Understanding the Complex Relationship between Critical Thinking and

    This framework makes clear that science reasoning and critical-thinking skills play key roles in major learning outcomes; for example, "understanding the process of science" requires students to engage in (and be metacognitive about) scientific reasoning, and having the "ability to interpret data" requires critical-thinking skills.

  10. Understanding the Complex Relationship between Critical Thinking and

    Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students' development of these con-structs, and it offers a unique window into studying how they relate.

  11. Encouraging scientific literacy and critical thinking through the

    This project, completed as part of a Master's in Education with a focus on Curriculum and Instruction, examines techniques to teach critical thinking through the lens of scientific literacy. The focus of the project is to teach students to appreciate the interconnectedness of science and to equip them with the skills to question the science ...

  12. Science Literacy, Critical Thinking, and Scientific Literature

    Students critical thinking skills can be developed through science literacy-oriented learning Didit et al. (2016), because in the learning process is focused on building students' knowledge to use ...

  13. ERIC

    Scientific literacy (SL) and critical thinking (CT) are key components of science education aiming to prepare students to think and to function as responsible citizens in a world increasingly affected by science and technology (S&T). Therefore, students should be given opportunities in their science classes to be engaged in learning experiences that promote SL and CT, which may trigger the ...

  14. Critical thinking and reflective practice in the science ...

    Resumen: This is a speculative paper linking critical thinking to reflective practice in science education teaching practicum for the prospective teachers of science in Kuwait. The writer has identified that student teachers lack in a critical thinking approach to teaching sciences, promoting science literacy, and critically linking science to society and technology, definition of critical ...

  15. PDF LITERACY AND CRITICAL THINKING

    16+) population has basic literacy skills. While this number may seem decent, 16 percent equates to 774 million adults without any literacy skills. Furthermore, many of the 84 percent struggle through everyday life because more advanced literacy skills are necessary to succeed in today's highly educated workforce.

  16. PDF Relationship between Scientific Literacy and Critical Thinking of

    Empowering critical thinking skills can equip students to improve scientific literacy skills. Scientific literacy is critical for a person to adapt rapidly and increase competitiveness (Holbrook &

  17. Reflection literacy: A multilevel perspective on the challenges of

    1. Introduction. As higher education continues its shift away from passive learning towards greater student autonomy and active strategies (e.g. Chan, Wong, Law, Zhang, & Au, 2017; Lo, 2010), it has created more student-centred and experiential learning opportunities while also enabling students to become more responsible and self-directed learners.. Reflection, a pedagogical approach central ...

  18. PDF Fostering Scientific Literacy and Critical Thinking in Elementary

    Abstract. Scientific literacy (SL) and critical thinking (CT) are key components of science education aiming to prepare students to think and to function as responsible citizens in a world increasingly affected by science and technology (S&T). Therefore, students should be given opportunities in their science classes to be engaged in learning ...

  19. Scientific Thinking and Critical Thinking in Science Education

    Scientific thinking and critical thinking are two intellectual processes that are considered keys in the basic and comprehensive education of citizens. For this reason, their development is also contemplated as among the main objectives of science education. However, in the literature about the two types of thinking in the context of science education, there are quite frequent allusions to one ...

  20. Critical Reflection in Students' Critical Thinking Teaching and

    This manuscript deals with the problematic question of how students' critical reflection is manifested when reflecting on their experiences of learning critical thinking in higher education. Critical reflection is understood as the fusion of personal experience with new knowledge and study content, leading to a new understanding and a new sense of the meaning of oneself, one's learning ...

  21. Teaching futures thinking literacy and futures studies in schools

    The connection between critical thinking and scientific ... social responsibility and leadership skills, and assessment and reflection skills. 4.6.1 ... work that supports current notions of learning and knowledge creation and leads to development of futures thinking literacy. Thinking processes like scientific and creative thinking are ...

  22. Science literacy, critical thinking skill, and motivation: A

    Scientific literacy and critical thinking skill are the considerable 21st century competencies must be owned by nowadays students. This study aimed at determining the correlation among three ...

  23. (PDF) Students Critical Thinking Skill in Solving Scientific Literacy

    The purpose of this research is to measure students critical thinking skill in solving scientific literacy using a metacognitive test based on scientific literacy. This research is descriptive ...