Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 14 May 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write a Research Hypothesis: Good & Bad Examples

write a hypothesis for section 1 of the lab

What is a research hypothesis?

A research hypothesis is an attempt at explaining a phenomenon or the relationships between phenomena/variables in the real world. Hypotheses are sometimes called “educated guesses”, but they are in fact (or let’s say they should be) based on previous observations, existing theories, scientific evidence, and logic. A research hypothesis is also not a prediction—rather, predictions are ( should be) based on clearly formulated hypotheses. For example, “We tested the hypothesis that KLF2 knockout mice would show deficiencies in heart development” is an assumption or prediction, not a hypothesis. 

The research hypothesis at the basis of this prediction is “the product of the KLF2 gene is involved in the development of the cardiovascular system in mice”—and this hypothesis is probably (hopefully) based on a clear observation, such as that mice with low levels of Kruppel-like factor 2 (which KLF2 codes for) seem to have heart problems. From this hypothesis, you can derive the idea that a mouse in which this particular gene does not function cannot develop a normal cardiovascular system, and then make the prediction that we started with. 

What is the difference between a hypothesis and a prediction?

You might think that these are very subtle differences, and you will certainly come across many publications that do not contain an actual hypothesis or do not make these distinctions correctly. But considering that the formulation and testing of hypotheses is an integral part of the scientific method, it is good to be aware of the concepts underlying this approach. The two hallmarks of a scientific hypothesis are falsifiability (an evaluation standard that was introduced by the philosopher of science Karl Popper in 1934) and testability —if you cannot use experiments or data to decide whether an idea is true or false, then it is not a hypothesis (or at least a very bad one).

So, in a nutshell, you (1) look at existing evidence/theories, (2) come up with a hypothesis, (3) make a prediction that allows you to (4) design an experiment or data analysis to test it, and (5) come to a conclusion. Of course, not all studies have hypotheses (there is also exploratory or hypothesis-generating research), and you do not necessarily have to state your hypothesis as such in your paper. 

But for the sake of understanding the principles of the scientific method, let’s first take a closer look at the different types of hypotheses that research articles refer to and then give you a step-by-step guide for how to formulate a strong hypothesis for your own paper.

Types of Research Hypotheses

Hypotheses can be simple , which means they describe the relationship between one single independent variable (the one you observe variations in or plan to manipulate) and one single dependent variable (the one you expect to be affected by the variations/manipulation). If there are more variables on either side, you are dealing with a complex hypothesis. You can also distinguish hypotheses according to the kind of relationship between the variables you are interested in (e.g., causal or associative ). But apart from these variations, we are usually interested in what is called the “alternative hypothesis” and, in contrast to that, the “null hypothesis”. If you think these two should be listed the other way round, then you are right, logically speaking—the alternative should surely come second. However, since this is the hypothesis we (as researchers) are usually interested in, let’s start from there.

Alternative Hypothesis

If you predict a relationship between two variables in your study, then the research hypothesis that you formulate to describe that relationship is your alternative hypothesis (usually H1 in statistical terms). The goal of your hypothesis testing is thus to demonstrate that there is sufficient evidence that supports the alternative hypothesis, rather than evidence for the possibility that there is no such relationship. The alternative hypothesis is usually the research hypothesis of a study and is based on the literature, previous observations, and widely known theories. 

Null Hypothesis

The hypothesis that describes the other possible outcome, that is, that your variables are not related, is the null hypothesis ( H0 ). Based on your findings, you choose between the two hypotheses—usually that means that if your prediction was correct, you reject the null hypothesis and accept the alternative. Make sure, however, that you are not getting lost at this step of the thinking process: If your prediction is that there will be no difference or change, then you are trying to find support for the null hypothesis and reject H1. 

Directional Hypothesis

While the null hypothesis is obviously “static”, the alternative hypothesis can specify a direction for the observed relationship between variables—for example, that mice with higher expression levels of a certain protein are more active than those with lower levels. This is then called a one-tailed hypothesis. 

Another example for a directional one-tailed alternative hypothesis would be that 

H1: Attending private classes before important exams has a positive effect on performance. 

Your null hypothesis would then be that

H0: Attending private classes before important exams has no/a negative effect on performance.

Nondirectional Hypothesis

A nondirectional hypothesis does not specify the direction of the potentially observed effect, only that there is a relationship between the studied variables—this is called a two-tailed hypothesis. For instance, if you are studying a new drug that has shown some effects on pathways involved in a certain condition (e.g., anxiety) in vitro in the lab, but you can’t say for sure whether it will have the same effects in an animal model or maybe induce other/side effects that you can’t predict and potentially increase anxiety levels instead, you could state the two hypotheses like this:

H1: The only lab-tested drug (somehow) affects anxiety levels in an anxiety mouse model.

You then test this nondirectional alternative hypothesis against the null hypothesis:

H0: The only lab-tested drug has no effect on anxiety levels in an anxiety mouse model.

hypothesis in a research paper

How to Write a Hypothesis for a Research Paper

Now that we understand the important distinctions between different kinds of research hypotheses, let’s look at a simple process of how to write a hypothesis.

Writing a Hypothesis Step:1

Ask a question, based on earlier research. Research always starts with a question, but one that takes into account what is already known about a topic or phenomenon. For example, if you are interested in whether people who have pets are happier than those who don’t, do a literature search and find out what has already been demonstrated. You will probably realize that yes, there is quite a bit of research that shows a relationship between happiness and owning a pet—and even studies that show that owning a dog is more beneficial than owning a cat ! Let’s say you are so intrigued by this finding that you wonder: 

What is it that makes dog owners even happier than cat owners? 

Let’s move on to Step 2 and find an answer to that question.

Writing a Hypothesis Step 2:

Formulate a strong hypothesis by answering your own question. Again, you don’t want to make things up, take unicorns into account, or repeat/ignore what has already been done. Looking at the dog-vs-cat papers your literature search returned, you see that most studies are based on self-report questionnaires on personality traits, mental health, and life satisfaction. What you don’t find is any data on actual (mental or physical) health measures, and no experiments. You therefore decide to make a bold claim come up with the carefully thought-through hypothesis that it’s maybe the lifestyle of the dog owners, which includes walking their dog several times per day, engaging in fun and healthy activities such as agility competitions, and taking them on trips, that gives them that extra boost in happiness. You could therefore answer your question in the following way:

Dog owners are happier than cat owners because of the dog-related activities they engage in.

Now you have to verify that your hypothesis fulfills the two requirements we introduced at the beginning of this resource article: falsifiability and testability . If it can’t be wrong and can’t be tested, it’s not a hypothesis. We are lucky, however, because yes, we can test whether owning a dog but not engaging in any of those activities leads to lower levels of happiness or well-being than owning a dog and playing and running around with them or taking them on trips.  

Writing a Hypothesis Step 3:

Make your predictions and define your variables. We have verified that we can test our hypothesis, but now we have to define all the relevant variables, design our experiment or data analysis, and make precise predictions. You could, for example, decide to study dog owners (not surprising at this point), let them fill in questionnaires about their lifestyle as well as their life satisfaction (as other studies did), and then compare two groups of active and inactive dog owners. Alternatively, if you want to go beyond the data that earlier studies produced and analyzed and directly manipulate the activity level of your dog owners to study the effect of that manipulation, you could invite them to your lab, select groups of participants with similar lifestyles, make them change their lifestyle (e.g., couch potato dog owners start agility classes, very active ones have to refrain from any fun activities for a certain period of time) and assess their happiness levels before and after the intervention. In both cases, your independent variable would be “ level of engagement in fun activities with dog” and your dependent variable would be happiness or well-being . 

Examples of a Good and Bad Hypothesis

Let’s look at a few examples of good and bad hypotheses to get you started.

Good Hypothesis Examples

Bad hypothesis examples, tips for writing a research hypothesis.

If you understood the distinction between a hypothesis and a prediction we made at the beginning of this article, then you will have no problem formulating your hypotheses and predictions correctly. To refresh your memory: We have to (1) look at existing evidence, (2) come up with a hypothesis, (3) make a prediction, and (4) design an experiment. For example, you could summarize your dog/happiness study like this:

(1) While research suggests that dog owners are happier than cat owners, there are no reports on what factors drive this difference. (2) We hypothesized that it is the fun activities that many dog owners (but very few cat owners) engage in with their pets that increases their happiness levels. (3) We thus predicted that preventing very active dog owners from engaging in such activities for some time and making very inactive dog owners take up such activities would lead to an increase and decrease in their overall self-ratings of happiness, respectively. (4) To test this, we invited dog owners into our lab, assessed their mental and emotional well-being through questionnaires, and then assigned them to an “active” and an “inactive” group, depending on… 

Note that you use “we hypothesize” only for your hypothesis, not for your experimental prediction, and “would” or “if – then” only for your prediction, not your hypothesis. A hypothesis that states that something “would” affect something else sounds as if you don’t have enough confidence to make a clear statement—in which case you can’t expect your readers to believe in your research either. Write in the present tense, don’t use modal verbs that express varying degrees of certainty (such as may, might, or could ), and remember that you are not drawing a conclusion while trying not to exaggerate but making a clear statement that you then, in a way, try to disprove . And if that happens, that is not something to fear but an important part of the scientific process.

Similarly, don’t use “we hypothesize” when you explain the implications of your research or make predictions in the conclusion section of your manuscript, since these are clearly not hypotheses in the true sense of the word. As we said earlier, you will find that many authors of academic articles do not seem to care too much about these rather subtle distinctions, but thinking very clearly about your own research will not only help you write better but also ensure that even that infamous Reviewer 2 will find fewer reasons to nitpick about your manuscript. 

Perfect Your Manuscript With Professional Editing

Now that you know how to write a strong research hypothesis for your research paper, you might be interested in our free AI proofreader , Wordvice AI, which finds and fixes errors in grammar, punctuation, and word choice in academic texts. Or if you are interested in human proofreading , check out our English editing services , including research paper editing and manuscript editing .

On the Wordvice academic resources website , you can also find many more articles and other resources that can help you with writing the other parts of your research paper , with making a research paper outline before you put everything together, or with writing an effective cover letter once you are ready to submit.

Writing Studio

Writing a lab report: introduction and discussion section guide.

In an effort to make our handouts more accessible, we have begun converting our PDF handouts to web pages. Download this page as a PDF:   Writing a Lab Report Return to Writing Studio Handouts

Part 1 (of 2): Introducing a Lab Report

The introduction of a lab report states the objective of the experiment and provides the reader with background information. State the topic of your report clearly and concisely (in one or two sentences). Provide background theory, previous research, or formulas the reader should know. Usually, an instructor does not want you to repeat whatever the lab manual says, but to show your understanding of the problem.

Questions an Effective Lab Report Introduction Should Answer

What is the problem.

Describe the problem investigated. Summarize relevant research to provide context, key terms, and concepts so that your reader can understand the experiment.

Why is it important?

Review relevant research to provide a rationale for the investigation. What conflict, unanswered question, untested population, or untried method in existing research does your experiment address? How will you challenge or extend the findings of other researchers?

What solution (or step toward a solution) do you propose?

Briefly describe your experiment : hypothesis , research question , general experimental design or method , and a justification of your method (if alternatives exist).

Tips on Composing Your Lab Report’s Introduction

  • Move from the general to the specific – from a problem in research literature to the specifics of your experiment.
  • Engage your reader – answer the questions: “What did I do?” “Why should my reader care?”
  • Clarify the links between problem and solution, between question asked and research design, and between prior research and the specifics of your experiment.
  • Be selective, not exhaustive, in choosing studies to cite and the amount of detail to include. In general, the more relevant an article is to your study, the more space it deserves and the later in the introduction it appears.
  • Ask your instructor whether or not you should summarize results and/or conclusions in the Introduction.
  • “The objective of the experiment was …”
  • “The purpose of this report is …”
  • “Bragg’s Law for diffraction is …”
  • “The scanning electron microscope produces micrographs …”

Part 2 (of 2): Writing the “Discussion” Section of a Lab Report

The discussion is the most important part of your lab report, because here you show that you have not merely completed the experiment, but that you also understand its wider implications. The discussion section is reserved for putting experimental results in the context of the larger theory. Ask yourself: “What is the significance or meaning of the results?”

Elements of an Effective Discussion Section

What do the results indicate clearly? Based on your results, explain what you know with certainty and draw conclusions.

Interpretation

What is the significance of your results? What ambiguities exist? What are logical explanations for problems in the data? What questions might you raise about the methods used or the validity of the experiment? What can be logically deduced from your analysis?

Tips on the Discussion Section

1. explain your results in terms of theoretical issues..

How well has the theory been illustrated? What are the theoretical implications and practical applications of your results?

For each major result:

  • Describe the patterns, principles, and relationships that your results show.
  • Explain how your results relate to expectations and to literature cited in your Introduction. Explain any agreements, contradictions, or exceptions.
  • Describe what additional research might resolve contradictions or explain exceptions.

2. Relate results to your experimental objective(s).

If you set out to identify an unknown metal by finding its lattice parameter and its atomic structure, be sure that you have identified the metal and its attributes.

3. Compare expected results with those obtained.

If there were differences, how can you account for them? Were the instruments able to measure precisely? Was the sample contaminated? Did calculated values take account of friction?

4. Analyze experimental error along with the strengths and limitations of the experiment’s design.

Were any errors avoidable? Were they the result of equipment?  If the flaws resulted from the experiment design, explain how the design might be improved. Consider, as well, the precision of the instruments that were used.

5. Compare your results to similar investigations.

In some cases, it is legitimate to compare outcomes with classmates, not in order to change your answer, but in order to look for and to account for or analyze any anomalies between the groups. Also, consider comparing your results to published scientific literature on the topic.

The “Introducing a Lab Report” guide was adapted from the University of Toronto Engineering Communications Centre and University of Wisconsin-Madison Writing Center.

The “Writing the Discussion Section of a Lab Report” resource was adapted from the University of Toronto Engineering Communications Centre and University of Wisconsin-Madison Writing Center.

Last revised: 07/2008 | Adapted for web delivery: 02/2021

In order to access certain content on this page, you may need to download Adobe Acrobat Reader or an equivalent PDF viewer software.

Elsevier QRcode Wechat

  • Manuscript Preparation

What is and How to Write a Good Hypothesis in Research?

  • 4 minute read
  • 312.3K views

Table of Contents

One of the most important aspects of conducting research is constructing a strong hypothesis. But what makes a hypothesis in research effective? In this article, we’ll look at the difference between a hypothesis and a research question, as well as the elements of a good hypothesis in research. We’ll also include some examples of effective hypotheses, and what pitfalls to avoid.

What is a Hypothesis in Research?

Simply put, a hypothesis is a research question that also includes the predicted or expected result of the research. Without a hypothesis, there can be no basis for a scientific or research experiment. As such, it is critical that you carefully construct your hypothesis by being deliberate and thorough, even before you set pen to paper. Unless your hypothesis is clearly and carefully constructed, any flaw can have an adverse, and even grave, effect on the quality of your experiment and its subsequent results.

Research Question vs Hypothesis

It’s easy to confuse research questions with hypotheses, and vice versa. While they’re both critical to the Scientific Method, they have very specific differences. Primarily, a research question, just like a hypothesis, is focused and concise. But a hypothesis includes a prediction based on the proposed research, and is designed to forecast the relationship of and between two (or more) variables. Research questions are open-ended, and invite debate and discussion, while hypotheses are closed, e.g. “The relationship between A and B will be C.”

A hypothesis is generally used if your research topic is fairly well established, and you are relatively certain about the relationship between the variables that will be presented in your research. Since a hypothesis is ideally suited for experimental studies, it will, by its very existence, affect the design of your experiment. The research question is typically used for new topics that have not yet been researched extensively. Here, the relationship between different variables is less known. There is no prediction made, but there may be variables explored. The research question can be casual in nature, simply trying to understand if a relationship even exists, descriptive or comparative.

How to Write Hypothesis in Research

Writing an effective hypothesis starts before you even begin to type. Like any task, preparation is key, so you start first by conducting research yourself, and reading all you can about the topic that you plan to research. From there, you’ll gain the knowledge you need to understand where your focus within the topic will lie.

Remember that a hypothesis is a prediction of the relationship that exists between two or more variables. Your job is to write a hypothesis, and design the research, to “prove” whether or not your prediction is correct. A common pitfall is to use judgments that are subjective and inappropriate for the construction of a hypothesis. It’s important to keep the focus and language of your hypothesis objective.

An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions.

Use the following points as a checklist to evaluate the effectiveness of your research hypothesis:

  • Predicts the relationship and outcome
  • Simple and concise – avoid wordiness
  • Clear with no ambiguity or assumptions about the readers’ knowledge
  • Observable and testable results
  • Relevant and specific to the research question or problem

Research Hypothesis Example

Perhaps the best way to evaluate whether or not your hypothesis is effective is to compare it to those of your colleagues in the field. There is no need to reinvent the wheel when it comes to writing a powerful research hypothesis. As you’re reading and preparing your hypothesis, you’ll also read other hypotheses. These can help guide you on what works, and what doesn’t, when it comes to writing a strong research hypothesis.

Here are a few generic examples to get you started.

Eating an apple each day, after the age of 60, will result in a reduction of frequency of physician visits.

Budget airlines are more likely to receive more customer complaints. A budget airline is defined as an airline that offers lower fares and fewer amenities than a traditional full-service airline. (Note that the term “budget airline” is included in the hypothesis.

Workplaces that offer flexible working hours report higher levels of employee job satisfaction than workplaces with fixed hours.

Each of the above examples are specific, observable and measurable, and the statement of prediction can be verified or shown to be false by utilizing standard experimental practices. It should be noted, however, that often your hypothesis will change as your research progresses.

Language Editing Plus

Elsevier’s Language Editing Plus service can help ensure that your research hypothesis is well-designed, and articulates your research and conclusions. Our most comprehensive editing package, you can count on a thorough language review by native-English speakers who are PhDs or PhD candidates. We’ll check for effective logic and flow of your manuscript, as well as document formatting for your chosen journal, reference checks, and much more.

Systematic Literature Review or Literature Review

  • Research Process

Systematic Literature Review or Literature Review?

What is a Problem Statement

What is a Problem Statement? [with examples]

You may also like.

impactful introduction section

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

Writing an Impactful Paper

The Clear Path to An Impactful Paper: ②

Essentials of Writing to Communicate Research in Medicine

The Essentials of Writing to Communicate Research in Medicine

There are some recognizable elements and patterns often used for framing engaging sentences in English. Find here the sentence patterns in Academic Writing

Changing Lines: Sentence Patterns in Academic Writing

Input your search keywords and press Enter.

Enago Academy

How to Develop a Good Research Hypothesis

' src=

The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.

This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis

Table of Contents

What is Hypothesis?

Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study.  Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).

What is a Research Hypothesis?

Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).

Characteristics of a Good Research Hypothesis

As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.

A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.

To help you formulate a promising research hypothesis, you should ask yourself the following questions:

  • Is the language clear and focused?
  • What is the relationship between your hypothesis and your research topic?
  • Is your hypothesis testable? If yes, then how?
  • What are the possible explanations that you might want to explore?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate your variables without hampering the ethical standards?
  • Does your research predict the relationship and outcome?
  • Is your research simple and concise (avoids wordiness)?
  • Is it clear with no ambiguity or assumptions about the readers’ knowledge
  • Is your research observable and testable results?
  • Is it relevant and specific to the research question or problem?

research hypothesis example

The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.

Source: Educational Hub

How to formulate a research hypothesis.

A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.

1. State the problem that you are trying to solve.

Make sure that the hypothesis clearly defines the topic and the focus of the experiment.

2. Try to write the hypothesis as an if-then statement.

Follow this template: If a specific action is taken, then a certain outcome is expected.

3. Define the variables

Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.

Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.

4. Scrutinize the hypothesis

Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.

Types of Research Hypothesis

The types of research hypothesis are stated below:

1. Simple Hypothesis

It predicts the relationship between a single dependent variable and a single independent variable.

2. Complex Hypothesis

It predicts the relationship between two or more independent and dependent variables.

3. Directional Hypothesis

It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.

4. Non-directional Hypothesis

It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.

5. Associative and Causal Hypothesis

The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.

6. Null Hypothesis

Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.

7. Alternative Hypothesis

It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Research Hypothesis Examples of Independent and Dependent Variables

Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).
Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)

You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.

More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.

Importance of a Testable Hypothesis

To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:

  • There must be a possibility to prove that the hypothesis is true.
  • There must be a possibility to prove that the hypothesis is false.
  • The results of the hypothesis must be reproducible.

Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.

What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.

Frequently Asked Questions

The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis

Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.

Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.

Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.

The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.

' src=

Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.

Thanks a lot for your valuable guidance.

I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.

Useful piece!

This is awesome.Wow.

It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market

Nicely explained

It is really a useful for me Kindly give some examples of hypothesis

It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated

clear and concise. thanks.

So Good so Amazing

Good to learn

Thanks a lot for explaining to my level of understanding

Explained well and in simple terms. Quick read! Thank you

It awesome. It has really positioned me in my research project

Rate this article Cancel Reply

Your email address will not be published.

write a hypothesis for section 1 of the lab

Enago Academy's Most Popular Articles

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

write a hypothesis for section 1 of the lab

  • Industry News

COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards

The COPE forum discussion held in December 2023 initiated with a fundamental question — is…

Networking in Academic Conferences

  • Career Corner

Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research recommendation

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

How to Design Effective Research Questionnaires for Robust Findings

write a hypothesis for section 1 of the lab

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

write a hypothesis for section 1 of the lab

As a researcher, what do you consider most when choosing an image manipulation detector?

Banner

  • Scientific Lab Reports
  • Understanding the Assignment
  • Need a Topic?
  • Evaluating Sources
  • Brainstorming Strategies
  • Drafting Strategies
  • Thesis Formulation
  • Introductions
  • Conclusions
  • Show Don't Tell
  • Expand Your Draft
  • Flow & Lexical Coherence
  • Revision Checklist
  • Introduction to Style and Grammar
  • Apostrophes
  • Article Usage for ESL Learners
  • Capitalization
  • Clarity: Get Rid of Nominalizations
  • Cohesion: Does my Paragraph Flow?
  • Commas and Colons
  • Conciseness
  • Confusing Words
  • Parallel Structure
  • Passive Voice
  • Quotation Marks
  • Run-on Sentences
  • Subject-Verb Agreement
  • Writing Mechanics
  • Other Styles
  • Art History This link opens in a new window
  • Programming Lab Reports

Writing a Lab Report

Link to other resources.

  • Screenwriting
  • Publication Opportunities
  • Meet with a Tutor This link opens in a new window

Academic Resource Center Hours :

Monday-Thursday: 8:00 AM-6:00 PM

Friday: 8:00 AM-4:00 PM

Phone Number : 310-338-2847

Email :  [email protected]

www.lmu.edu/arc

We are located in Daum Hall on the 2nd floor!

Writing a scientific lab report is significantly different from writing for other classes like philosophy, English, and history. The most prominent form of writing in biology, chemistry, and environmental science is the lab report, which is a formally written description of results and discoveries found in an experiment. College lab reports should emulate and follow the same formats as reports found in scholarly journals, such as Nature , Cell , and The American Journal of Biochemistry .

Report Format

Title: The title says what you did. It should be brief (aim for ten words or less) and describe the main point of the experiment or investigation.

  • Example:  Caffeine Increases Amylase Activity in the Mealworm ( Tenebrio molitar).
  • If you can, begin your title using a keyword rather than an article like “The” or “A.”

Abstract: An abstract is a very concise summary of the purpose of the report, data presented, and major conclusions in about 100 - 200 words.  Abstracts are also commonly required for conference/presentation submissions because they summarize all of the essential materials necessary to understand the purpose of the experiment. They should consist of a background sentence , an introduction sentence , your hypothesis/purpose of the experiment, and a sentence about the results and what this means.

Introduction: The introduction of a lab report defines the subject of the report, provides background information and relevant studies, and outlines scientific purpose(s) and/or objective(s).

  • The introduction is a place to provide the reader with necessary research on the topic and properly cite sources used.
  • Summarizes the current literature on the topic including primary and secondary sources.
  • Introduces the paper’s aims and scope.
  • States the purpose of the experiment and the hypothesis.

Materials and Methods: The materials and methods section is a vital component of any formal lab report. This section of the report gives a detailed account of the procedure that was followed in completing the experiment as well as all important materials used. (This includes bacterial strains and species names in tests using living subjects.)

  • Discusses the procedure of the experiment in as much detail as possible.
  • Provides information about participants, apparatus, tools, substances, location of experiment, etc.
  • For field studies, be sure to clearly explain where and when the work was done.
  • It must be written so that anyone can use the methods section as instructions for exact replications.
  • Don’t hesitate to use subheadings to organize these categories.
  • Practice proper scientific writing forms. Be sure to use the proper abbreviations for units. Example: The 50mL sample was placed in a 5ºC room for 48hrs.

Results: The results section focuses on the findings, or data, in the experiment, as well as any statistical tests used to determine their significance.

  • Concentrate on general trends and differences and not on trivial details.
  • Summarize the data from the experiments without discussing their implications (This is where all the statistical analyses goes.)
  • Organize data into tables, figures, graphs, photographs, etc.  Data in a table should not be duplicated in a graph or figure. Be sure to refer to tables and graphs in the written portion, for example, “Figure 1 shows that the activity....”
  • Number and title all figures and tables separately, for example, Figure 1 and Table 1 and include a legend explaining symbols and abbreviations. Figures and graphs are labeled below the image while tables are labeled above.

  Discussion: The discussion section interprets the results, tying them back to background information and experiments performed by others in the past.This is also the area where further research opportunities shold be explored.

  • Interpret the data; do not restate the results.
  • Observations should also be noted in this section, especially anything unusual which may affect your results.

For example, if your bacteria was incubated at the wrong temperature or a piece of equipment failed mid-experiment, these should be noted in the results section.

  • Relate results to existing theories and knowledge.This can tie back to your introduction section because of the background you provided.
  • Explain the logic that allows you to accept or reject your original hypotheses.
  • Include suggestions for improving your techniques or design, or clarify areas of doubt for further research.

Acknowledgements and References: A references list should be compiled at the end of the report citing any works that were used to support the paper. Additionally, an acknowledgements section should be included to acknowledge research advisors/ partners, any group or person providing funding for the research and anyone outside the authors who contributed to the paper or research.

General Tips

  • In scientific papers, passive voice is perfectly acceptable. On the other hand, using “I” or “we” is not.

          Incorrect: We found that caffeine increased amylase levels in Tenebrio molitar.  Correct: It was discovered that caffeine increased amylase levels in Tenebrio molitar.   

  • It is expected that you use as much formal (bland) language and scientific terminology as you can. There should be no emphasis placed on “expressing yourself” or “keeping it interesting”; a lab report is not a narrative.
  • In a lab report, it is important to get to the point. Be descriptive enough that your audience can understand the experiment, but strive to be concise.
  • << Previous: Programming Lab Reports
  • Next: Screenwriting >>
  • Last Updated: Mar 14, 2024 12:00 PM
  • URL: https://libguides.lmu.edu/writing

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Biology LibreTexts

1.4: The Scientific Method

  • Last updated
  • Save as PDF
  • Page ID 36746

  • Orange County Biotechnology Education Collaborative
  • ASCCC Open Educational Resources Initiative

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Learning Objectives

  • Utilize the steps in the scientific method to design, collect and interpret scientific data.

Student Learning Outcomes:

Upon completion of this lab, students will be able to:

  • Formulate a hypothesis based on an observation.
  • Design their own experimental method including proper controls.
  • Collect results and describe colony growth (morphology) present.
  • Determine if data collected supports their hypothesis

INTRODUCTION

Microbes are all around us. In this lab, you will be introduced to this as well as to the scientific method. Throughout the semester, you will learn how to aseptically work with bacteria; meaning learning how to culture bacteria without contaminating yourself and keeping a pure sample of bacteria free from other unwanted bacteria. During this lab exercise, you are going to swab an area of your choice to see what bacteria and/or fungi are present there. You will also test the effect of some disinfectants on the bacterium Escherichia coli ( E. coli ) Using the scientific method, you will design an experiment, collect data, and interpret your results.

The scientific method is a generalized tool used to aid in asking and answering a scientific question by making observations and performing experiments. There are steps that are generally followed when conducting and designing an experiment. First, an initial observation is made. An observation can involve noting any event (a pattern, an action, a behavior, or a reaction). After making an observation, a question can be asked about the event. Once a question is asked, then research regarding what is already known relating to this question (finding background material) can be discovered to better understand the observation. This background information typically comes from publications in scientific literature, such as journal articles and reviews. Once the background information is understood, a hypothesis can be formed. This gathering of information and its application to a solution is an example of inductive reasoning. The hypothesis is then either supported or rejected depending on the analysis of the results of well-designed experiments. Each experiment needs dependent and independent variables . The value of the dependent variable is determined and is a function of the independent variable. In an ideal experimental setup, the independent variable is something over which we have some control and changes in some predetermined way, while changes in the dependent variable are observed and measured. A hypothesis must include both of these variables. A hypothesis can be generated by creating an “if-then” statement. For example, “If I treat cancer cells with drug x then they will die. “

Part I: Disk Diffusion Method to Evaluate Disinfectants

For this portion of the lab, you will be provided the protocol/instructions but you will choose the substances to test. You will develop and test your hypothesis.

forceps holding a small sterile circular paper disk

  • 1 culture of E. coli
  • sterile swabs (1 swab needed per plate)
  • sterile absorbent paper disks
  • sterile water (negative control)
  • 10% bleach (positive control)
  • 30% hydrogen peroxide (positive control)
  • 4 test disinfectant solutions
  • 1 petri plate (containing sterile nutrient agar)
  • Plan your experiment. In addition to the controls, which solutions would you like to test?
  • Answer parts A, B, and C below to help with your planning.
  • Dip the sterile swab into the E. coli solution then spread it over the entire surface of the NA plate by rubbing the swab over the entire surface. You want to coat the entire surface with the bacteria so do not leave spaces that have not been in contact with the swab. Be careful to only open the lid of the plate enough to work (like a clamshell). If you open the lid all the way, you risk contaminating the surface with unwanted bacteria/fungi from the environment.
  • Dispose of the swab in the appropriate waste container.
  • Using sterile forceps (tweezers) dedicated to the solution to be tested, dip sterile disks one at a time into the following solutions and place them onto the agar surface that has been inoculated with E. coli . Be sure not to allow the tweezers themselves to come in contact with the agar because that will cause them to become contaminated with bacteria.
  • Include all answers to your questions in your lab notebook along with your procedure for testing the disinfectants.

Observation

  • Based on your experience and observations, which solutions do you think will inhibit the growth (or kill) E. coli the most? Which solutions are you interested in testing?
  • Based on your observations, write the hypothesis you wish to test.

Experimental Design

Work with your group to write a protocol for your experiment based on the questions below. Start with the instructions and insert the necessary details such that a person with no knowledge of your project would be able to read your protocol and fully understand what to do.

  • Based on your hypothesis, which solutions will have the largest zone of inhibition around the disks?
  • What will you include as your experimental controls? (Which solutions WILL or will NOT inhibit the bacteria)?
  • How will you set up your experiment? (I recommend writing a map on your plate on the agar side where you will place the disks and then making a key to the map in your lab notebook).

Example Protocol

  • On the bottom of your NA agar plate (the side with the agar, NOT the lid!!), label the plate using a permanent marker with your initials, “Biotech Lab”, the date, E. coli test, and where you are placing each disk.
  • Take the sterile swab and dip it in the E. coli culture. ( Don’t place the lid for the E. coli on the desk or it will now be contaminated!) Place the labeled plate on the desk in front of you with the lid side of the plate up. With one hand, open the lid (only open it a little bit so that you can have access to the agar; think of a clam shell) and use the swab to spread the bacteria all over the plate. Make sure to move the swab around to cover the entire plate.
  • Cover the plate with the lid and discard the swab in the appropriate waste container

circular region without bacterial growth around a circular paper disk

  • Place plate in a 37⁰C incubator, with the agar side up. (note: you can place it into the same 32⁰C incubator as the next experiment)
  • The plate will grow in the incubator for 48 hours.
  • When incubation is complete, measure the diameter of any zones of inhibition using a millimeter (mm) scale. Report data in the table below.
  • Remove your plates from the incubator. DO NOT OPEN THE PLATES!
  • Take a picture of your plates and include them in your lab notebook. Be sure to clearly label each portion of the plate.
  • Make the following table in your notebook and record your data.
  • Which solution did you use as a negative control ? Did this control provide the expected result?
  • Based on your observations, which solution had the greatest effect on the E. coli ? Which has little or no effect?

Part II: Environmental Sampling

For this portion of the lab, you will develop and test your hypothesis as well as design the method to test it.

  • 1 tube of sterile water
  • sterile swabs (1 swab for each sample to be collected)
  • Luria broth (LB) or nutrient agar (NA) plates (1 plate for each sample to be collected)
  • Working with your group, determine your experimental design for this lab.
  • Complete parts A, B, and C below to help with your planning.
  • Include all answers to your questions in your lab notebook along with your procedure for collecting your samples.
  • Based on your observations of the world around you what surfaces do you think are most “dirty” or “clean”? Which surfaces are you interested in testing?
  • Based on your observations write the hypothesis you wish to test in your lab notebook.
  • Based on your hypothesis, how many surfaces/samples will you test?
  • What will you include as your experimental control?
  • How will you perform your experiment? (I recommend dipping your sterile swab into the sterile water and then swabbing your sample).
  • How long and in which pattern will you swab your samples? (roll, zigzag, etc.)
  • How many plates will you need and how will you section them? (you can use a sharpie to label the bottom of the plate and draw sections if needed).

Based on these questions: Work with your group to write a protocol for your experiment. Include enough detail that a person with no knowledge of your project would be able to read your protocol and fully understand what to do. Below is a general protocol for this lab to help you get started.

  • On the bottom of your NA agar plate (the side with the agar, NOT the lid!!), label the plate using a permanent marker with your initials, “Biotech Lab”, the date, and where you are choosing to swab.
  • Take the sterile swab and dip it in the sterile water (don’t place the lid for the sterile water on the desk or it will now be contaminated!). Then touch the wet swab to whatever surface you would like to test in order to pick up the bacteria. Place the labeled plate on the desk in front of you with the lid side up. With one hand, open the lid (only open it a little bit so that you can have access to the agar; think of a clam shell) and use the swab to spread the bacteria all over the plate. Make sure to move the swab around to cover the entire plate.
  • Cover the plate with the lid and discard the swab.
  • Place plate in a 32⁰C incubator, with the agar side up. (Some organisms in the environment do not grow well at 37⁰C.)
  • Make tables 2 and 3 in your notebook; record your data.

Use the image below to help you describe the morphology of the colonies present on your plates.

Nutrient agar media plate with various colony types growing on it

  • Based on your experimental data, which surfaces had the most bacterial/fungal growth?
  • Which surface had the most diverse number of bacteria/fungi?
  • Based on your observations, what types of bacteria/fungus do you think were present on your plate?

Study Questions

  • What are the steps of the scientific method?
  • Be able to write a hypothesis based on a given observation.
  • What is the purpose of an experimental control?
  • What is the definition of an independent variable? A dependent variable?
  • Why do we incubate plates upside down?
  • Why do we label the agar side of the plate?
  • What is the purpose of incubating the plates?
  • What is the purpose of the LB or NA in the plate?
  • Given a set of data, be able to formulate a conclusion based on the results given.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Chemistry LibreTexts

2.11: Hypothesis testing

  • Last updated
  • Save as PDF
  • Page ID 435348

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Safety and hazardous waste

At the beginning of this lab, you will observe an experiment (a "magic trick") without knowing the substances it contains. This experiment will change every year, with different safety considerations. Over the semester, we have handled acids and bases, flammable substances, toxic substances, gases, high and low temperatures, etc. Observe all precautions you observed for previous labs. If there are any special considerations, your professor will announce them at the beginning of the lab. Do not discard any of the solutions until you have received instructions from your professor.

Lab organization

We will explore a "magic trick" that is based on chemical reactions. You can use all of the concepts you learned in GenChem1 and GenChem2 to try to explain what is going on. You will work in three large groups which you can organize as you wish. Your group will present twice during the lab, first announcing your initial hypothesis and observations supporting or rejecting it (about 1 hour into the lab). You will again report out at the end of the lab, presenting your updated hypothesis. Individually, your job is to write a short report stating the hypothesis. This year, we will look at the blue bottle experiment, where a blue color appears (the dye methylene blue) and then disappears again.

Part 1

Your group will receive 25 mL of the magic solution in a screw-cap 50 mL vial. The solution contains 0.5 mol/L sodium hydroxide, a strong base you should only handle while wearing goggles. To start the trick, you shake the closed vial. Before you do so, make sure everyone is wearing their goggles, and the lid is screwed on finger-tight. After you tried the magic trick, consider the following questions:

  • What type of reactions might the "bluing" and "debluing" reactions be? We learned about three types of reactions in GenChem1: Acid/base, redox, and precipitation. What kind of experiment/observation could help you decide?
  • What role could the shaking step have in starting the reaction? Could you do something other than shaking to get the same effect? What kind of experiment/observation could help you decide?

You will have various equipment available (pH meter, pH paper, capped vials with a size between 1 mL and 50 mL, a magnetic stirrer and stir bar, a vortex mixer). Design experiments you can do with the given 25 mL of magic solution. Discuss the experiments with your instructor to make sure you are aware of all the safety considerations. Once you get the go-ahead, do the experiments and record your observations.

Once you are done, prepare a short presentation where you share the experiments you did and your conclusions from them with the entire class. This is a "chalk talk", so you just talk and use the white board, if necessary.

For this part, you will have the reagents available separately as three solutions A, B, and C. Solution A contains the strong base. This allows you to leave out reagents or change their concentration. For this part, there are three questions you should address:

  • Which reactants are necessary for debluing, and which are necessary for bluing?
  • Choose one of the following   a. How does lowering the concentration of components in solution A added change things? Is the content of B a reactant, a catalyst, or neither? b. How does lowering the concentration of components in solution B added change things? Is the content of B a reactant, a catalyst, or neither? c. How does length of shaking/mixing change things? Does the shaking add a reactant, an catalyst, or neither?
  •  What is your model of the bluing and of the debluing reaction? Which reagents do they require?
  •  How fast is the debluing reaction compared to the bluing reaction?

First, repeat the magic trick, using the three solutions (mix 8 parts of A with 1 part of B and 1 part of C). Then decide on a set of experiments to address the questions. Discuss the experiments with your instructor to make sure you are aware of all the safety considerations. Once you get the go-ahead, do the experiments and record your observations.

You can do the same magic trick by mixing solution A (the strong base) with blue sports drink. Try mixing 15 mL of the blue sports drink with 5 mL of 2 mol/L NaOH in a 50 mL vial (under the hood), cap the vial and swirl to see what happens to the color. Then, shake and observe. What ingredients in the sports drink correspond to the ingredients in solution B and C, making this variation of the trick possible?

Asking for reagents, supplies and equipment

In your exploration, you might suggest an experiment for which you need certain materials not available to you. If there is something you have used in previous experiments (thermometer, pipette pump, etc), your instructor might make it available to you. You can also ask for anything else, but don't be disappointed if your request is declined. All experimenters, even in highly funded research labs, will have real world limitations (too expensive, too dangerous, tool has not been invented yet, limited amount of sample) determining which experiments they can and which they can't pursue.

Discard reaction mixes in the container provided under the hood. As you rinse the tubes, remember that you are still handling 0.5 mol/L NaOH. This is a strong base, and you have to protect your eyes even while cleaning up. As a mental exercise while rinsing, try to estimate the pH of the reaction mix without a calculator (hint: the concentration is in between 0.1 mol/L and 1 mol/L).

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

Writing the Experimental Report: Overview, Introductions, and Literature Reviews

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

Experimental reports (also known as "lab reports") are reports of empirical research conducted by their authors. You should think of an experimental report as a "story" of your research in which you lead your readers through your experiment. As you are telling this story, you are crafting an argument about both the validity and reliability of your research, what your results mean, and how they fit into other previous work.

These next two sections provide an overview of the experimental report in APA format. Always check with your instructor, advisor, or journal editor for specific formatting guidelines.

General-specific-general format

Experimental reports follow a general to specific to general pattern. Your report will start off broadly in your introduction and discussion of the literature; the report narrows as it leads up to your specific hypotheses, methods, and results. Your discussion transitions from talking about your specific results to more general ramifications, future work, and trends relating to your research.

Experimental reports in APA format have a title page. Title page formatting is as follows:

  • A running head and page number in the upper right corner (right aligned)
  • A definition of running head in IN ALL CAPS below the running head (left aligned)
  • Vertically and horizontally centered paper title, followed by author and affiliation

Please see our sample APA title page .

Crafting your story

Before you begin to write, carefully consider your purpose in writing: what is it that you discovered, would like to share, or would like to argue? You can see report writing as crafting a story about your research and your findings. Consider the following.

  • What is the story you would like to tell?
  • What literature best speaks to that story?
  • How do your results tell the story?
  • How can you discuss the story in broad terms?

During each section of your paper, you should be focusing on your story. Consider how each sentence, each paragraph, and each section contributes to your overall purpose in writing. Here is a description of one student's process.

Briel is writing an experimental report on her results from her experimental psychology lab class. She was interested in looking at the role gender plays in persuading individuals to take financial risks. After her data analysis, she finds that men are more easily persuaded by women to take financial risks and that men are generally willing to take more financial risks.

When Briel begins to write, she focuses her introduction on financial risk taking and gender, focusing on male behaviors. She then presents relevant literature on financial risk taking and gender that help illuminate her own study, but also help demonstrate the need for her own work. Her introduction ends with a study overview that directly leads from the literature review. Because she has already broadly introduced her study through her introduction and literature review, her readers can anticipate where she is going when she gets to her study overview. Her methods and results continue that story. Finally, her discussion concludes that story, discussing her findings, implications of her work, and the need for more research in the area of gender and financial risk taking.

The abstract gives a concise summary of the contents of the report.

  • Abstracts should be brief (about 100 words)
  • Abstracts should be self-contained and provide a complete picture of what the study is about
  • Abstracts should be organized just like your experimental report—introduction, literature review, methods, results and discussion
  • Abstracts should be written last during your drafting stage

Introduction

The introduction in an experimental article should follow a general to specific pattern, where you first introduce the problem generally and then provide a short overview of your own study. The introduction includes three parts: opening statements, literature review, and study overview.

Opening statements: Define the problem broadly in plain English and then lead into the literature review (this is the "general" part of the introduction). Your opening statements should already be setting the stage for the story you are going to tell.

Literature review: Discusses literature (previous studies) relevant to your current study in a concise manner. Keep your story in mind as you organize your lit review and as you choose what literature to include. The following are tips when writing your literature review.

  • You should discuss studies that are directly related to your problem at hand and that logically lead to your own hypotheses.
  • You do not need to provide a complete historical overview nor provide literature that is peripheral to your own study.
  • Studies should be presented based on themes or concepts relevant to your research, not in a chronological format.
  • You should also consider what gap in the literature your own research fills. What hasn't been examined? What does your work do that others have not?

Study overview: The literature review should lead directly into the last section of the introduction—your study overview. Your short overview should provide your hypotheses and briefly describe your method. The study overview functions as a transition to your methods section.

You should always give good, descriptive names to your hypotheses that you use consistently throughout your study. When you number hypotheses, readers must go back to your introduction to find them, which makes your piece more difficult to read. Using descriptive names reminds readers what your hypotheses were and allows for better overall flow.

In our example above, Briel had three different hypotheses based on previous literature. Her first hypothesis, the "masculine risk-taking hypothesis" was that men would be more willing to take financial risks overall. She clearly named her hypothesis in the study overview, and then referred back to it in her results and discussion sections.

Thais and Sanford (2000) recommend the following organization for introductions.

  • Provide an introduction to your topic
  • Provide a very concise overview of the literature
  • State your hypotheses and how they connect to the literature
  • Provide an overview of the methods for investigation used in your research

Bem (2006) provides the following rules of thumb for writing introductions.

  • Write in plain English
  • Take the time and space to introduce readers to your problem step-by-step; do not plunge them into the middle of the problem without an introduction
  • Use examples to illustrate difficult or unfamiliar theories or concepts. The more complicated the concept or theory, the more important it is to have clear examples
  • Open with a discussion about people and their behavior, not about psychologists and their research

write a hypothesis for section 1 of the lab

Write a hypothesis for Section 1 of the lab, which is about the effect the type of material has on the absorption of sunlight on Earth's surface. Be sure to answer the lesson question: "What factors influence the absorption of sunlight at Earth's surface?"

Gauth ai solution.

IMAGES

  1. How to Formulate a Hypothesis for an Experiment

    write a hypothesis for section 1 of the lab

  2. How Write A Lab Report

    write a hypothesis for section 1 of the lab

  3. 😝 How to write hypothesis for lab report. Hypothesis For Lab Report

    write a hypothesis for section 1 of the lab

  4. TEP025 Writing the aims and hypotheses of your laboratory report

    write a hypothesis for section 1 of the lab

  5. How to write a hypothesis

    write a hypothesis for section 1 of the lab

  6. 10 Proven Steps: How to Find the Hypothesis in a Research Article

    write a hypothesis for section 1 of the lab

VIDEO

  1. How to Formulate Research Hypothesis?

  2. The fundamentals of hypothesis testing Lecture 6 Part 5

  3. Introduction to Hypothesis Testing

  4. How to write a hypothesis

  5. Section 11.1 ~ Hypothesis Test for Comparing Means (Ind Samples) February 14, 2024

  6. Statistics for Hypothesis Testing

COMMENTS

  1. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  2. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  3. A Guide on How to Write a Hypothesis in a Lab Report

    The dependent variable. A relationship between what is independent and dependent. The best way to compose a reliable hypothesis for a lab report is to first ask a question by formulating the problem and conducting preliminary research. Next, variables must be defined as the " IF X is so, then Y is that " pattern.

  4. 17.5: Scientific Method Lab Report

    Body of Report. Identify the different sections of the body of the report with headings. Introduction. The report should begin with a brief paragraph (complete sentences) that includes a statement of the problem and your hypothesis (remember your hypothesis should be written as a testable statement). Statement of the problem.

  5. LabWrite Middle School Worksheet Booklet

    Write your hypothesis: _____ _____ InLab: the lab experiment. Section 1 . Setting up the lab. Step 1: Review the procedures for the lab. Collect any materials that you are going to use. Step 2: Make a diagram below of any instruments or apparatus you will be using. Make sure you label your diagram. ...

  6. How to Write a Research Hypothesis: Good & Bad Examples

    You then test this nondirectional alternative hypothesis against the null hypothesis: H0: The only lab-tested drug has no effect on anxiety levels in an anxiety mouse model. In most research papers, the hypothesis or statement of purpose is placed at the end of the Introduction section. How to Write a Hypothesis for a Research Paper.

  7. How To Write A Lab Report

    Introduction. Your lab report introduction should set the scene for your experiment. One way to write your introduction is with a funnel (an inverted triangle) structure: Start with the broad, general research topic. Narrow your topic down your specific study focus. End with a clear research question.

  8. Writing a Lab Report: Introduction and Discussion Section Guide

    Download this page as a PDF: Writing a Lab Report. Return to Writing Studio Handouts. Part 1 (of 2): Introducing a Lab Report. The introduction of a lab report states the objective of the experiment and provides the reader with background information. State the topic of your report clearly and concisely (in one or two sentences).

  9. What is and How to Write a Good Hypothesis in Research?

    An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions. Use the following points as a checklist to evaluate the effectiveness of your research hypothesis: Predicts the relationship and outcome.

  10. Lab 1 Principles of Scientific Inquiry and the Scientific Method in the

    Completion of this lab exercise ensures that you will be able to… 1. Describe the difference between a scientific observation and a non-scientific observation 2. Outline the steps necessary to perform an experiment via the scientific method 3. Write a hypothesis to explain an observation that you made about how the human body functions.

  11. What is a Research Hypothesis and How to Write a Hypothesis

    The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem. 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a 'if-then' structure. 3.

  12. LabCheck : Improving your lab report

    Improving your Introduction. successfully establishes the scientific concept of the lab. To establish the scientific concept for the lab you need to do two things: 1. state what the lab is about, that is, what scientific concept (theory, principle, procedure, etc.) you are supposed to be learning about by doing the lab.

  13. Formulating Strong Hypotheses

    Formulating Strong Hypotheses. Before you write your research hypothesis, make sure to do some reading in your area of interest; good resources will include scholarly papers, articles, books, and other academic research. Because your research hypothesis will be a specific, testable prediction about what you expect to happen in a study, you will ...

  14. Scientific Lab Reports

    States the purpose of the experiment and the hypothesis. Materials and Methods: The materials and methods section is a vital component of any formal lab report. This section of the report gives a detailed account of the procedure that was followed in completing the experiment as well as all important materials used.

  15. 1.4: The Scientific Method

    The scientific method is a systematic way of testing hypotheses and drawing conclusions in biology. Learn the steps of this process and how to apply it to biotechnology experiments. This webpage also provides links to other related topics, such as bacterial growth, aseptic techniques, and staining methods.

  16. 2.11: Hypothesis testing

    This is a strong base, and you have to protect your eyes even while cleaning up. As a mental exercise while rinsing, try to estimate the pH of the reaction mix without a calculator (hint: the concentration is in between 0.1 mol/L and 1 mol/L). 2.11: Hypothesis testing is shared under a not declared license and was authored, remixed, and/or ...

  17. Write a hypothesis for Section 1 of the lab, which is about the effect

    A possible hypothesis for section 1 of the lab, which examines the impact of material type on sunlight absorption on Earth's surface, might be: 'Different materials absorb sunlight on Earth's surface at varying rates. Therefore, the type of material has a significant impact on the degree of sunlight absorption.'

  18. Experimental Reports 1

    Abstracts should be brief (about 100 words) Abstracts should be self-contained and provide a complete picture of what the study is about. Abstracts should be organized just like your experimental report—introduction, literature review, methods, results and discussion. Abstracts should be written last during your drafting stage.

  19. Lab: Newton's Laws of Motion Flashcards

    Write a hypothesis for Part II of the lab, which is about the relationship described by F = ma. In the lab, you will use a toy car and apply forces to it. Use the format of "if . . . then . . . because . . ." and be sure to answer the lesson question "How can Newton's laws be experimentally verified?" specific to Newton's second law.

  20. Write a hypothesis for Section 1 of the lab, which is about the effect

    Write a hypothesis for Section 1 of the lab, which is about the effect the type of material has on the absorption of sunlight on Earth's surface. Be sure to answer the lesson question: "What factors influence the absorption of sunlight at Earth's surface?"

  21. Solved: Write a hypothesis for Section 1 of the lab, which is about the

    A hypothesis for Section 1 of the lab investigating the effect of the type of material on the absorption of sunlight on Earth's surface could be: "The absorption of sunlight at Earth's surface is influenced by the type of material present, with darker materials absorbing more sunlight compared to lighter materials."

  22. Lab+2+worksheet

    Worksheet 2 for Lab 2 laboratory worksheet write hypothesis for each section of the lab. at voltage: wave frequency: vor: stimulus voltage high diminished. Skip to document. University; High School. Books; Discovery. ... 1. Write a hypothesis for each section of the lab. a. H-Reflex Voltage: b. H-Reflex Frequency: c. VOR: 2. Define a reflex ...