Topics For Seminar

200 Interesting Physics Seminar and Powerpoint Presentation Topics

interesting topics for powerpoint presentation physics

Interesting topics for Powerpoint Presentation in Physics

  • Special Relativity and General Relativity
  • Quantum Computing
  • Time dilation
  • Physics of Babies
  • Nikola Tesla Inventions  ( PPT2 )
  • Greatest Physicists and their contribution
  • Physics-Chemistry-Biology Relation
  • Physics in Sports   Link 2
  • Physics in our everyday life
  • Newtonian and Non-newtonian fluid
  • Anti-Gravity
  • Thermodynamics in Everyday Life
  • Airborne Wind Energy / Flying Windmills
  • Pumped-storage hydroelectricity
  • Compressed air energy storage  ( PDF )
  • Magnetoresistance
  • Fusion Power Generation
  • Fluid Flow Continuity and Bernoulli’s Equation
  • Archimedes' Principle  and Its Applications
  • Physics of Touch Screens Technology  ( Article )
  • Exoplanets / Extra-Solar Planets
  • Space Telescopes ( Hubble / James Webb Space Telescope )
  • Carbon Nanotubes
  • The Physics of the Egyptian Pyramids
  • Magnus effect and its applications
  • Sustainable energy  ( PPT 2 )
  • The Physics of Fire  ( PPT )
  • The Motion of the Planets
  • Artificial Intelligence (AI) in Our Everyday Life
  • The String theory: A theory of Everything
  • Electromagnetism  and Its applications in daily life
  • Electromagnetic Induction
  • Electromagnetic Spectrum  / Electromagnetic Radiation
  • Transformers
  • Force sensor
  • Friction in our everyday life and Its types  ( PPT 2 ) ( PDF )
  • Magnetorheological fluid
  • Magnetic field due to currents in wires  ( PPT 2 )
  • Magnetic field patterns
  • Earth's Magnetic Field
  • Searching for Magnetic Monopoles
  • Electricity and Magnetism
  • Maglev Trains: Transrapid magnetic lift trains
  • Magnetic Levitation
  • Microwave Oven: How it works? ( PDF Report )
  • Physics Behind the Climate Change ( PDF Report )
  • Electromagnets and their uses
  • Fresnel's Equations
  • Electric Potential
  • Working of Motors
  • Working of Generators
  • Bioelectromagnetism
  • Kinematics in our daily lives
  • Real-Life Examples of Newton’s First Law (Inertia)
  • Zero Energy Buildings
  • Lightning Bolt Physics
  • Lightning Protection System  (Static Electricity)
  • Electromagnetic Railguns
  • LASERS 
  • Physics behind fidget spinner
  • Hoverboard (Self-balancing scooter)
  • Physics of roller coasters
  • Physics behind musical instruments
  • Physics Behind Bruce Lee's One-Inch Punch!
  • Electric Cars
  • Gauss’ Law
  • Working with simple electrical components
  • Current and charge
  • Ohm's law and resistance
  • Oscilloscope
  • String theory
  • Resistance effects
  • Electrical conduction through gases
  • Electrostatic charges
  • Van de Graaff generator
  • Energy conversion
  • Components of motion
  • Circular motion
  • Weightlessness
  • Forced vibrations and resonance
  • Momentum in two dimensions
  • Simple harmonic motion
  • Fiction and Its types
  • Friction at the atomic level
  • Coulomb model
  • Superfluidity
  • Transmission Lines
  • Peso Electricity
  • Atmospheric Optics
  • Wireless Electricity
  • Models of electric circuits
  • Wind Energy
  • Solar Power
  • Geothermal Energy
  • Wave Energy
  • Concentrated Solar Energy
  • Nuclear Power Generation
  • Physics behind the Aurora Borealis
  • Plasma Physics
  • Particle Detectors, Drift Chambers
  • Exponential decay and half-life
  • Nuclear Fission
  • Nuclear Fusion
  • Biogas Plant
  • Biomass Energy
  • First models of the atom
  • Cloud chambers
  • Particle Accelerators
  • Synchrotron
  • Model of the atom
  • Light behaving like a particle
  • Electrons behaving as waves
  • Evidence for the hollow atom
  • Nature of ionizing radiations
  • Radioactive sources: isotopes and availability
  • Acceleration due to gravity
  • Radio Waves
  • Antenna Theory and Design
  • How do Mobile networks work?
  • Solar System
  • Asteroid Belt Formation
  • Satellite Communication
  • Possibility of life on Mars
  • Mangalyaan (India's Mars Mission)
  • Chandrayaan-I (India's Lunar Mission)
  • Rocket Technology
  • Satellite Launch Vehicles
  • SpaceX: Falcon Heavy
  • Reusable Rockets
  • Space Organisations and their achievements
  • Global Navigation Satellite System 
  • Gravitational force and free fall
  • Radar Technologies
  • Newtonian fluid
  • Pinhole camera and lens camera
  • Diffraction of light
  • Reflection of light
  • Refraction of light
  • Radio Telescope
  • Formation of Galaxies
  • Hubble's Law (Evidence)
  • Gravity waves
  • Kepler’s laws
  • The Copernican revolution
  • Magnetic sail
  • Planetary motion and gravity
  • Big Bang (The Origin)
  • Beyond Solar System
  • Constellations
  • Life on Mars
  • Mars Exploration
  • Why is Venus So Hot?
  • Trans-Neptunian region
  • Space-Time Fabric
  • Journey of Photons
  • Atmospheric pressure
  • Einstein's Theory of Relativity
  • How do airplanes fly?
  • Aerodynamics
  • Types of waves
  • Young's slits
  • Superconductivity
  • LED | OLED | MicroLED
  • Thermal radiation from the human body
  • Thermal expansion of Solid and Liquid
  • Concept of density
  • Evidence for atoms
  • Molecular speed
  • Higgs boson
  • Chandrashekar limit
  • Nuclear Reactors
  • Large Hadron Collider
  • Quantum Mechanics (Introduction)
  • Young's double-slit experiment
  • Doppler effect in Sound
  • Doppler effect in Light
  • Integrated Circuits
  • Microprocessors
  • Display Technology
  • 3D Printing
  • Virtual Reality
  • Biosensors and Bioelectronics
  • Ambient intelligence
  • Storage Devices
  • Semiconductors
  • Fiber-optic communication
  • Three Phase Circuit
  • Home's electrical system
  • Types of Gear and working
  • Electric Bill Calculation
  • Impulse, Momentum, and Collisions
  • Dark Energy (Quantum Vacuum Energy) 
  • Dark Matter
  • Acoustic Levitator
  • Electrometer
  • Hydroelectricity
  • Optical instruments

Interesting Questions for Physics Powerpoint Presentation Ideas

  • Why do things move?
  • Does everything that goes up come down?
  • Why does a bicycle stay upright when it's moving but fall when it stops?
  • Why do we wear seatbelts?
  • Why doesn’t the moon fall into the earth?
  • Why is it tough to walk on ice?
  • Why does ice melt?
  • Why doesn’t the moon fall?
  • What is sound?
  • What is light?
  • What is lightning?
  • What makes rainbows?
  • How can a boat make of steel float?
  • Why can’t we see air, how do we know that it's there?
  • Why are some turns on roads banked?  
  • What keeps me from falling on the Silly  Silo at Adventureland?
  • Why do my socks sometimes stick together in the clothes dryer?
  • Why do I get a shock after I walk across the carpet room and touch something in winter? 
  • What’s the deal with magnets? Why do they stick on refrigerators?
  • By the way, how do refrigerators and air conditioners work?
  • Why can’t I cool my room by keeping the refrigerator door opened?
  • Why is it a bad idea to plug my TV,  stereo, computer, radio, and hairdryer into the same outlet?
  • Where does electricity come from?
  • Why doesn’t the electricity leak out of the outlet?
  • What do airplanes and curveballs have in common?
  • Why do my ears pop when I’m on a  plane?
  • Why can I see all of myself in a mirror that is half as tall as I am?
  • what is the Greenhouse effect?
  • what’s the deal with the ozone layer?
  • Is climate change real? Are we causing it? 
  • How do(es) x-rays, microwaves, ultrasound, MRIs, LASERS, and cable TV work.?
  • By the way, how does TV work?
  • Why does the water in my tub spin in a circle as it goes down the drain? Why does it always spin in the same direction? 
  • How does soap work?
  • Why is the sky blue during the day but red at sunset?
  • Are nuclear power plants safe?
  • How do they take my temperature by sticking that gadget into my ear?
  • Why does the cue ball stop dead when it hits another ball head-on?
  • What is a day, month, or year?
  • Why does a year on Jupiter last 12 years?
  • Are hydrogen fuel cells or hybrid cars the answer to the energy crisis?
  • What does it take to make an atomic bomb?

Incoming Searches:

  • Like on Facebook
  • Follow on Twitter
  • Follow on Slideshare
  • Follow on Pinterest
  • Subscribe on Youtube

Trending Seminar Topics

  • 100+ Seminar Topics for Youth, Teenagers, College Students Young people are on a never-ending quest for transcendence, which drives them to want to improve the environment, countries, communities,...
  • 30+ Technical Seminar Topics for Presentation: Latest Tech Trends Technology is rapidly evolving today, allowing for faster change and progress and accelerating the rate of change. However, it is not just t...
  • 100 PowerPoint Presentation Topics in Hindi (Download PPT) विद्यार्थियों के लिए प्रेजेंटेशन का महत्व प्रेजेंटेशन (presentation) देना शैक्षणिक पाठ्यक्रम का एक महत्वपूर्ण व्यावहारिक पाठ्यक्रम है, ...
  • 100+ Interesting Biology Presentation Topics with PPT Biology Topics for Presentation & Research Biology is a topic that every school student studies and university student who does major in...
  • 100 Interesting Fun Topics for Presentations Fun Topics for Presentations We have prepared for you a fantastic collection of fun topics for presentation with relevant links to the artic...

Recent Seminar Topics

Seminar topics.

  • 💻 Seminar Topics for CSE Computer Science Engineering
  • ⚙️ Seminar Topics for Mechanical Engineering ME
  • 📡 Seminar Topics for ECE Electronics and Communication
  • ⚡️ Seminar Topics for Electrical Engineering EEE
  • 👷🏻 Seminar Topics for Civil Engineering
  • 🏭 Seminar Topics for Production Engineering
  • 💡 Physics Seminar Topics
  • 🌎 Seminar Topics for Environment
  • ⚗️ Chemistry Seminar Topics
  • 📈 Business Seminar Topics
  • 👦🏻 Seminar Topics for Youth

Investigatory Projects Topics

  • 👨🏻‍🔬 Chemistry Investigatory Projects Topics
  • 📧 Contact Us For Seminar Topics
  • 👉🏼Follow us in Slideshare

Presentation Topics

  • 🌍 Environment Related Presentation Topics
  • ⚗️ Inorganic Chemistry Presentation Topics
  • 👨🏻‍🎓 General Presentation Topics
  • 🦚 Hindi Presentation Topics
  • 🪐 Physics Presentation Topics
  • 🧪 Chemistry: Interesting Presentation Topics
  • 🌿 Biology Presentation Topics
  • 🧬 Organic Chemistry Presentation Topics

Speech Topics and Ideas

  • 🦁 Informative and Persuasive Speech Topics on Animals
  • 🚗 Informative and Persuasive Speech Topics on Automotives
  • 💡 Ideas to Choose Right Informative Speech
  • 👩🏻‍🎓 Informative Speech Topics For College Students
  • 🔬 Informative Speech Topics on Science and Technology

The World of Teaching

Free Teacher resources including over 1000 Powerpoint presentations

Physics powerpoint presentations Free to download

Physics powerpoint presentations free to download and use for teaching.

Using PowerPoint for teaching physics can be an effective way to engage your students and present complex concepts visually. Here are some tips on how to use PowerPoint effectively for teaching physics:

Start with an outline: Plan your presentation by creating an outline that outlines the main topics and subtopics you want to cover. This will help you organize your content and ensure a logical flow.

Use visuals: Physics often involves abstract concepts that can be challenging for students to grasp. Incorporate relevant visuals such as diagrams, graphs, images, or videos to make the concepts more tangible and easier to understand.

Simplify complex ideas: Break down complex physics concepts into smaller, more digestible pieces. Use step-by-step explanations and visual representations to help students follow along and grasp the core principles.

Use animations and transitions: PowerPoint offers animation and transition features that can be used to demonstrate processes or show how variables change over time. For example, you can use animations to illustrate the motion of objects or the behavior of waves

Below are a list of physics powerpoint presentations.

These have been submitted by teachers to help other teachers. They can be used freely and modified to your own preferred format.

Physics powerpoint presentations- Please submit any powerpoints you have made at the bottom of this page

Please submit any of your own physics powerpoints using the form below. It is very much appreciated.

Your Name (required)

Your Email (required)

Your Message

virtual reality education

Other hints and tips for making physics powerpoint presentations

Incorporate real-world examples: Relate physics concepts to real-life examples and applications. Show how these concepts are used in everyday situations or in specific fields like engineering or astronomy. This can help students connect theory to practical applications.

Encourage active learning: Design interactive slides that encourage student participation. Include questions, quizzes, or problem-solving activities within your presentation. This promotes active engagement and helps students apply their knowledge.

Provide clear explanations: Use concise and clear explanations to convey information. Break down complex equations or formulas into smaller parts and explain each component separately. Use bullet points, charts, or diagrams to support your explanations.

Include practice problems: Dedicate slides to practice problems that allow students to apply the concepts they have learned. Walk them through the problem-solving process step by step and provide explanations for each step.

Allow for discussion and questions: Allocate time for students to ask questions or engage in discussions related to the presented material. Encourage active participation and create a supportive learning environment.

Keep it visually appealing: Use a consistent and visually appealing design throughout your presentation. Choose an appropriate font, color scheme, and layout that is easy to read and visually appealing. Avoid cluttered slides that may distract or confuse students.

Use multimedia elements: Consider incorporating videos, simulations, or interactive online resources to enhance student understanding and engagement. These can provide visual demonstrations or virtual experiments that supplement your teaching.

Review and summarize: End your presentation with a summary slide that recaps the main points covered. Reinforce key concepts and encourage students to review the material on their own.

Remember to adapt your presentation style to suit the needs of your students and adjust the pace of your presentation accordingly. Be prepared to answer questions and provide further clarification as needed.

StatAnalytica

Top 101 Physics Topics For Presentation [Updated]

physics topics for presentation

Physics, the science that seeks to understand the fundamental principles governing the universe, offers a vast array of intriguing topics suitable for presentations. From classical mechanics to quantum physics, the realm of physics encompasses a wide range of phenomena that shape our understanding of the natural world. In this blog, we’ll delve into various physics topics for presentations, exploring their significance, applications, and relevance in everyday life.

How to Make Your Physics Presentation?

Table of Contents

Creating a compelling physics presentation involves careful planning, research, and effective communication of complex concepts in a clear and engaging manner. Here are some steps to help you make your physics presentation:

  • Choose a Topic: Select a physics topic that interests you and aligns with your audience’s level of understanding. Consider the relevance and significance of the topic and its potential to engage and educate your audience.
  • Conduct Research: Research thoroughly using trusted sources like textbooks, scientific journals, and reputable websites to grasp the topic’s key concepts.
  • Develop an Outline: Organize your presentation into logical sections or themes. Use the outline provided earlier as a template, adapting it to suit your chosen topic and presentation format.
  • Create Visual Aids: Prepare visual aids such as slides, diagrams, and animations to complement your presentation. Use clear and concise graphics to illustrate complex concepts and enhance audience comprehension.
  • Craft a Clear Narrative: Structure your presentation with a clear beginning, middle, and end. Start with an attention-grabbing introduction to introduce the topic and establish its relevance. Present the main content in a logical sequence, highlighting key points and supporting evidence. Conclude with a summary of key takeaways and implications.
  • Practice Delivery: Rehearse your presentation multiple times to familiarize yourself with the content and refine your delivery. Pay attention to pacing, clarity, and nonverbal communication cues such as posture and gestures.
  • Engage Your Audience: Encourage active participation and interaction by asking questions, soliciting feedback, and incorporating interactive elements such as demonstrations or group activities. Tailor your presentation to the interests and background knowledge of your audience to keep them engaged and attentive.
  • Anticipate Questions: Prepare for potential questions from your audience by anticipating areas of confusion or ambiguity in your presentation. Be ready to provide clarifications, examples, or references to further resources to address any inquiries.
  • Seek Feedback: Solicit feedback from peers, mentors, or colleagues to gain valuable insights into areas for improvement. Consider their suggestions and incorporate constructive criticism to enhance the effectiveness of your presentation.
  • Reflect and Iterate: After delivering your presentation, take time to reflect on your performance and the audience’s response. Identify strengths and weaknesses, and consider how you can refine your approach for future presentations.

By following these steps and applying careful planning and preparation, you can create a compelling physics presentation that effectively communicates complex concepts and engages your audience in the wonders of the natural world.

Top 101 Physics Topics For Presentation

  • Newton’s Laws of Motion
  • Conservation of Energy
  • Conservation of Momentum
  • Projectile Motion
  • Friction: Types and Effects
  • Laws of Thermodynamics
  • Heat Transfer Mechanisms
  • Applications of Thermodynamics
  • Electric Fields and Charges
  • Magnetic Fields and Forces
  • Electromagnetic Induction
  • Applications of Electricity and Magnetism
  • Reflection and Refraction of Light
  • Wave Optics and Interference
  • Optical Instruments: Microscopes and Telescopes
  • Modern Optical Technologies
  • Wave-Particle Duality
  • Heisenberg’s Uncertainty Principle
  • Quantum Tunneling
  • Applications of Quantum Mechanics
  • Special Theory of Relativity
  • General Theory of Relativity
  • Time Dilation and Length Contraction
  • Black Holes: Formation and Properties
  • Dark Matter and Dark Energy
  • Atomic Structure and Spectroscopy
  • Radioactivity and Nuclear Reactions
  • Nuclear Energy: Pros and Cons
  • Nuclear Medicine: Applications and Techniques
  • Stars: Formation and Evolution
  • Stellar Structure and Dynamics
  • Galaxies: Types and Properties
  • Cosmology: The Big Bang Theory
  • Gravitational Waves: Detection and Significance
  • Quantum Gravity: Theoretical Concepts
  • String Theory: Basics and Implications
  • High Energy Physics: Particle Accelerators
  • Standard Model of Particle Physics
  • Quantum Field Theory
  • Symmetry in Physics
  • Chaos Theory: Deterministic Chaos
  • Fluid Dynamics: Flow Patterns and Applications
  • Aerodynamics: Principles and Applications
  • Bernoulli’s Principle
  • Newtonian and Non-Newtonian Fluids
  • Quantum Computing: Principles and Applications
  • Cryptography: Quantum Key Distribution
  • Quantum Teleportation
  • Quantum Entanglement
  • Bose-Einstein Condensate
  • Superconductivity: Phenomena and Applications
  • Magnetic Levitation: Maglev Trains
  • Quantum Dots: Properties and Uses
  • Nanotechnology: Applications in Physics
  • Carbon Nanotubes: Structure and Properties
  • Graphene: Properties and Potential Applications
  • Optoelectronics: Devices and Technologies
  • Photonics: Light-based Technologies
  • Lasers: Principles and Applications
  • Holography: 3D Imaging Techniques
  • Quantum Sensors: Principles and Applications
  • Quantum Metrology: Precision Measurements
  • Quantum Biology: Biological Processes from a Quantum Perspective
  • Quantum Optics: Manipulation of Light at the Quantum Level
  • Quantum Materials: Properties and Potential Applications
  • Quantum Algorithms: Computational Advantages of Quantum Computing
  • Topological Insulators: Unique Electronic Properties
  • Neutrinos: Properties and Detection
  • Neutron Stars and Pulsars
  • Magnetars: Extremely Magnetic Neutron Stars
  • Cosmic Rays: Origins and Effects
  • Solar Physics: Sunspots and Solar Flares
  • Aurora Borealis and Aurora Australis
  • Space Weather: Impact on Earth and Satellites
  • Plasma Physics: Properties and Applications
  • Fusion Energy: Achievements and Challenges
  • Particle Astrophysics: Cosmic Rays and High-Energy Particles
  • Quantum Astrophysics: Applying Quantum Mechanics to Cosmological Phenomena
  • Exoplanets: Discoveries and Characterization
  • Astrobiology: Search for Extraterrestrial Life
  • Cosmic Microwave Background Radiation
  • Black Hole Thermodynamics
  • Gravitational Lensing: Observational Effects
  • Multiverse Theory: Theoretical Implications of Cosmology
  • Quantum Consciousness: Theoretical Considerations
  • Quantum Gravity: Unifying Quantum Mechanics and General Relativity
  • Quantum Cosmology: Cosmological Models Based on Quantum Theory
  • Quantum Field Theory: Foundations and Applications in Particle Physics
  • Quantum Gravity: Approaches and Challenges
  • Quantum Chromodynamics: Theory of Strong Interactions
  • Quantum Electrodynamics: Theory of Electromagnetic Interactions
  • Quantum Spin: Properties and Applications
  • Quantum Hall Effect: Topological Phenomenon in Condensed Matter Physics
  • Quantum Phase Transitions: Critical Phenomena in Quantum Systems
  • Quantum Computing: Architectures and Algorithms
  • Quantum Communication: Secure Communication Based on Quantum Principles
  • Quantum Simulation: Modeling Complex Quantum Systems
  • Quantum Cryptography : Secure Communication Using Quantum Key Distribution
  • Quantum Sensing: Ultra-Precise Measurement Techniques
  • Quantum Metrology: Achieving High Precision with Quantum Techniques
  • Quantum Technologies: Emerging Applications of Quantum Physics

Tips to Fellow to Make Physics Presentation Successful

Making a physics presentation successful requires careful planning, effective communication, and engaging presentation skills. Here are some tips to help your fellow make their physics presentation successful:

  • Know Your Audience: Understand the background knowledge and interests of your audience to tailor your presentation accordingly. Adjust the level of technical detail and terminology to ensure clarity and engagement.
  • Define Clear Objectives: Clearly define the objectives of your presentation, outlining what you aim to achieve and the key points you intend to convey. This will help you stay focused and ensure that your presentation delivers a coherent message.
  • Organize Your Content: Structure your presentation in a logical manner, with a clear introduction, main body, and conclusion. Use headings, subheadings, and bullet points to organize your content and guide the audience through your presentation.
  • Use Visual Aids Wisely: Incorporate visual aids such as slides, diagrams, and animations to enhance understanding and retention of key concepts. Keep visual elements clear, concise, and relevant to the content of your presentation.
  • Practice Delivery: Rehearse your presentation multiple times to familiarize yourself with the content and refine your delivery. Pay attention to pacing, tone of voice, and body language to ensure confident and engaging presentation delivery.
  • Engage Your Audience: Encourage active participation and interaction by asking questions, soliciting feedback, and incorporating interactive elements such as demonstrations or group activities. Engage with your audience to maintain their interest and attention throughout your presentation.
  • Clarify Complex Concepts: Break down complex concepts into simpler, more understandable terms, using analogies, examples, and real-world applications to illustrate key points. Clarify any technical jargon or terminology to ensure that all audience members can follow along.
  • Be Prepared for Questions: Anticipate questions from your audience and prepare thoughtful responses in advance. Be open to feedback and willing to address any uncertainties or misconceptions that may arise during the Q&A session.
  • Demonstrate Enthusiasm: Convey your passion and enthusiasm for the subject matter through your presentation delivery. Demonstrate genuine interest and excitement in sharing your knowledge with your audience, inspiring curiosity and engagement.
  • Seek Feedback: After delivering your presentation, solicit feedback from your audience and peers to gain valuable insights into areas for improvement. Reflect on their input and incorporate constructive criticism to enhance the effectiveness of your future presentations.

Physics is fascinating! It’s like a colorful quilt filled with amazing ideas and things that make us wonder about the universe. Whether we’re talking about basic stuff like how things move or super cool things like quantum mechanics, physics presentations help us understand how the world works. They show us the important rules that make everything tick, from tiny atoms to huge galaxies.

By learning about physics, we can see how clever humans are in figuring out nature’s secrets and using them to make awesome technology. It’s like unlocking a treasure chest full of wonders and surprises!

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

The Science of Physics

Chapter Overview

  • Nature of physics and its related fields
  • Scientific method of inquiry
  • Role of models
  • Basic SI units
  • Precision vs. accuracy
  • Scientific notation
  • Significant digits
  • Various ways of summarizing data
  • Dimensional analysis
  • Estimation procedures

Section 1.1 What is Physics?

  • Identify activities and fields that involve the major areas within physics
  • Describe the processes of the scientific method
  • Describe the role of models and diagrams in physics

1.1 What is Physics?

  • The study of the physical world
  • Use a small number of basic concepts, equations, and assumptions to describe the physical world
  • Can be used to make predictions about a broad range of phenomena
  • Appliances, tools, buildings, inventions are all basic physics principles put to test

Thermodynamics – Efficient engines, use of coolants

Electromagnetism – Battery, starter, headlights

Optics – Headlights, rearview mirrors

Vibrations and mechanical waves – Shock absorbers, radio speakers, sound insulation

Mechanics – spinning motion of the wheels, tires that provide enough friction or traction

Physics is Everywhere

  • When you buy ice cream, why do you put it in the freezer when you get home?
  • **Any problem that deals with temperature, size, motion, position, shape, or color involves physics**
  • There are major areas of physics that deal with each of these
  • Design, build, and operate
  • Best shape so that is remains stable and floating, yet quick and maneuverable
  • Knowledge of fluids
  • Efficient shape for sails and how to arrange them
  • Understanding motion and its causes
  • Balancing loads
  • So port isn't heavier than starboard
  • Knowledge on how the keel keeps the boat moving in one direction
  • Even though the wind i s blowing in another

The Scientific Method

  • No single procedure is always taken in an experiment
  • Certain common steps in all good scientific investigations
  • There was a car accident and the police were investigating… use the scientific method:
  • Observations/Data:
  • Hypothesis:
  • Experiments/Tests:
  • Interpret/Revise Hypothesis:
  • Conclusion:
  • Simple models are often used to explain the most fundamental features of various phenomena
  • Common technique
  • Break an event down into different parts
  • Use a model for each section

WE WILL ALWAYS DRAW

MODELS!!!!!!

  • Observations
  • Ball’s size, spin, weight, color, surroundings, time in the air, speed, and sound when hitting ground
  • Identify the system
  • A single object and the items immediately affecting it
  • Ball and its motion
  • Disregard any characteristics that don't matter
  • Color, sound when hitting the ground
  • In some studies of motion, even size and spin are disregarded

Models Help Build Hypothesis

  • A hypothesis is a reasonable explanation for observations
  • Can be tested with additional experiments
  • Modeling a situation can help identify variables as well
  • Galileo’s ‘thought experiment’

Models Help Guide Experiments

  • Galileo performed many experiments
  • Observing weight only
  • Used same size objects, just different weight
  • No way to eliminate air resistance
  • Used rolling ball down smooth ramps as a model
  • The steeper the ramp, the closer the representation

Experiments

  • Must deal with variables
  • Majority of the time a controlled experiment
  • Only one variable changed at a time
  • Used same set of different weight balls
  • Just down a steeper ramp each time

Hypothesis to Prediction

  • Until the invention of the air pump, it was impossible to perform direct tests in the absence of air resistance
  • Reasonably accurate predictions were still made
  • Experiments are run until results match each other and are in agreement with the hypothesis
  • If not there could be error
  • Then the hypothesis must be revised
  • Conclusions
  • Are only valid if they can be duplicated and verified by other people under the same conditions
  • Not only so scientists conduct experiments to test hypothesis
  • They also RESEARCH!!!
  • Steps to doing scientific research
  • Identifying reliable resources
  • Searching the sources to find references
  • Checking carefully for opposing views
  • Documenting sources
  • Presenting findings to other scientists for review and discussion

Section 1.2 Measurements In Experiments

  • List basic SI units and the quantities they describe
  • Convert measurements into scientific notation
  • Distinguish between accuracy and precision
  • Use significant figures in measurements and calculations

Numbers as Measurements

  • When in physics numbers will never stand alone
  • Means absolutely nothing
  • Must have units following the number
  • (anything labeled without units will be wrong) ☺
  • Length, mass, time, or something else?
  • If length: inches, centimeters, kilometers, l ight-years?
  • The units helps tell us what kind of physical quantity being measured
  • Basic dimensions – length, mass, time
  • There are many other dimensions as well
  • Force, velocity , energy, volume, and acceleration
  • All combinations of length, mass, and time
  • SI is the standard measurement system for science
  • Scientists like to use the same system of units for measurement
  • If not that would be a lot of converting ☹
  • 7 base units that each describe a single dimension
  • Length – meters (m)
  • Mass – grams (g)
  • Time – seconds (s)
  • Other units derived from the 3 bases

SI Prefixes

  • A very wide range of measurements will be used
  • 100,000,000,000,000,000 m for distances between stars
  • .000 000 001 m distances between atoms in a solid
  • Can deal with powers of ten
  • Prefixes to go with the powers

Conversions

  • Using SI, with the prefixes and same base
  • Conversion factors will always = 1
  • Any measurement multiplied by a fraction will be multiplied by 1
  • The number and unit will change but the quantity will stay the same

Dimensional Analysis

  • Mathematical techniques that uses conversion factors to convert from one unit to another
  • A typical bacterium has a mass of about 2.0μg. Express this in terms of grams and kilograms.
  • The mass of an average person is 60,000,000 mg. Express this in grams and kilograms.

Dimension and Units Must Agree

  • Can’t measure a length then label in kilograms (kg)
  • Must make sure use correct unit
  • We will ALWAYS use metric!!
  • No inches, feet, miles, lbs, tons

Accuracy and Precision

  • The closeness of measurements to the correct or accepted value
  • Closeness of a set of measurements of the same quantity made in the same way

Accepted Value = 55 km/h

Problems with Accuracy are Due to Error

  • Experimental work is never free of error
  • Important to minimize as much as possible
  • Should never have human error
  • Mistake in reading measurement
  • Mistake in recording results
  • Method should always be the same
  • Same instrument
  • Check calculations

Precision of Instrument

  • Poor accuracy can be corrected
  • Precision based on the instrument
  • Instruments can only be so precise

Precise to the .1

Estimate the last place

Significant Figures

  • Measurement that consists of all known digits with an uncertain digit at the end
  • Uncertain digit
  • The digit that you as the experimenter must estimate
  • All digits are significant, but not necessarily certain
  • Insignificant digits are never reported
  • YOU WILL ALWAYS NEED TO USE SIGNIFICANT FIGURES!!!!!

Sig Fig Rules

Sample Problems

  • How many significant figures?
  • Always round to significant figures
  • If adding 2 numbers with 3 significant figures each
  • Answer will have 3 significant figures
  • Use normal rounding
  • 5 and up – round up
  • 4 and down – stay the same

Sig Fig Math

  • Adding and Subtracting
  • Answer must have the same number of digits to the right of the decimal point as there are in the measurement having the fewest digits to the right of the decimal point.
  • 2.59 + 6.8974 = 9.49
  • Multiplying and Dividing
  • Answer can have no more significant figures than are in the measurement with the fewest number of significant figures.
  • 3.05/8.47 = .360

Practice Problems

  • 5.44m – 2.6103m =
  • 2.4g/mL x 15.82 mL =

Conversion Factors and Sig Figs

  • Because a measurement is considered exact, after conversion there is no rounding

Section 1.3 The Language of Physics

  • Interpret data in tables and graphs, and recognize equations that summarize data
  • Distinguish between conventions for abbreviating units and quantities
  • Use dimensional analysis to check the validity of expressions
  • Perform order of magnitude calculations

Mathematics and Physics

  • Tools are used to summarize and analyze data and observations
  • Often times mathematical relationships
  • In forms of charts and graphs
  • Provides a visual of time versus distance
  • Can determine distance traveled at any time
  • Through this equation

(change in position m) = 4.9 x (time of fall s) 2

  • How far would the ball have fallen at .500 s?

Equations Indicate Relationships

  • Equations show how two or more variables are related
  • Many equations do not have numbers
  • But symbols representing physical constants
  • Δ means difference or change in
  • Usually final minus initial
  • Units should help with equations
  • Units must cancel correctly
  • Want the units that match your answer
  • If finding velocity should end with units of m/s

Units or Variables?

  • Variables are usually boldface
  • Stand for a measurement with specific units
  • Always check the context of the problem
  • Find the mass of something
  • Mass is variable m, units would be g or kg
  • Examples of Variables
  • Δx, Δy, Δt, c, m, a, v
  • Examples of Units
  • m, kg, m/s, m/s 2 , s
  • Use to check validity of equations
  • A car is moving at a speed of 88 km/h and has traveled 725 km, how long did this trip take?

Mr. Wright's Classroom Resources

Grades, attendance, calendar, and other useful school related resources are at FACTS .

Are you not my student and have these helped you?

powerpoint presentation on physics topics

Physics Powerpoints

As .pptx (powerpoint 2010) files, as .pdf files.

Creative Commons License

Visit my favorite educational institutions

Andrews Academy

Physics 1425 PowerPoint Slides

Michael Fowler, UVa

These are the slides I created for Physics 1425 (Physics I for Engineers) in the Spring of 2010. They were supplemented with some clicker questions supplied with the textbook (Giancoli), but most of the slides used are here (in PDF format).

To get the .pptx files, click to open the pdf, then type pptx in place of pdf.

  • 1. Introduction
  • 2. Kinematics
  • 3. Falling Motion
  • 4. Two-Dimensional Motion
  • 5. Projectile Motion
  • 6. Newton's Laws
  • 7. Using Newton's Laws
  • 8. Friction
  • 9. Circular Motion
  • 10. More Circular Motion
  • 11. Gravitation
  • 12. Work and Energy
  • 13. Kinetic Energy
  • 14. More About Energy
  • 15. Momentum
  • 16. More Momentum
  • 17. Center of Mass
  • 18. More Circular Motion
  • 19. Rotational Dynamics
  • 20. More Rotational Dynamics
  • 21. Angular Momentum
  • 22. More Angular Momentum
  • 23. Statics
  • 24. More Statics
  • 25. Hydrostatics
  • 26. More Hydrostatics
  • 27. Hydrodynamics
  • 28. Simple Harmonic Motion
  • 29. Damped Driven Oscillators
  • 30. Temperature, Expansion, Ideal Gas Law
  • 31. Kinetic Theory Gases
  • 32. More Kinetic Theory
  • 33. Heat and Energy
  • 34. Gas Processes and Heat Transport
  • 35. Second Law and heat Engines
  • 36. Entropy

Google

Follow me...

Follow on Facebook

Cyberphysics - a web-based teaching aid - for students of physics, their teachers and parents....

powerpoint presentation on physics topics

Browse Course Material

Course info.

  • Prof. Markus Klute

Departments

As taught in.

  • Nuclear Physics
  • Particle Physics

Learning Resource Types

Introduction to nuclear and particle physics, lecture slides.

facebook

You are leaving MIT OpenCourseWare

Home / Free Education Presentation templates / Free Physics PowerPoint Template and Google Slides

Free Physics PowerPoint Template and Google Slides

Physics PowerPoint template

About the Template

To understand how the world works as it does, then Physics lessons can give you the answers. To make your understanding easy and lessons creative, here we have free Physics PowerPoint template and Google slides . With this amazing Physics ppt template, we guarantee you create a presentation that looks appealing and conveys necessary information precisely to your students.

Learning Physics isn’t interesting for everyone; for some, it can be a joyous experience. If you want a template to illustrate Physics or Science related information, try using these creative Physics designs.

The template has cool icons and illustrations, which makes the template look super-stunning. This Physics deck template includes 18 slides with a dark background that includes formulas and laws to focus on the topic at all times. With this interactive design, your audience will feel very comfortable learning the lessons as it includes wholly well-designed and eye-catching elements. Moreover, students can use these Physics backgrounds as Physics project front page design. So, what are you waiting for? Be confident, make the most of this cool template, and inspire your kids to love Physics.

Isn’t it what you looking for? Then check out our free education template gallery for more.

Features of this template:

  • Super-easy to customize
  • 18 Unique designs
  • Dark background with lots of cliparts, icons, and illustrations which makes the template look creative
  • Compatible with Microsoft PowerPoint and Google Slides
  • 16:9 widescreen perfect for all popular screens.

Google Slide,PowerPoint

100% Fully Customizable

Free to use

Free Active Template Library

Illustration

Dark theme Physics background

Free Physics Background for PowerPoint & Google Slides

history theme presentation template

Free Google Slides History Template PowerPoint

science background

Free Science Background PowerPoint & Google Slides

free carnival template

Free Carnival Slides for PowerPoint & Google Slides

Cover image including amazing Maths background images

Free Google Slides Maths Background & PowerPoint Template

Are you looking for custom presentation template designs.

It is a long established fact that a reader will be distracted by the readable content of a page when or randomised words which don’t look even slightly believable

Youtube

  • TPC and eLearning
  • What's NEW at TPC?
  • Read Watch Interact
  • Practice Review Test
  • Teacher-Tools
  • Subscription Selection
  • Seat Calculator
  • Ad Free Account
  • Edit Profile Settings
  • Classes (Version 2)
  • Student Progress Edit
  • Task Properties
  • Export Student Progress
  • Task, Activities, and Scores
  • Metric Conversions Questions
  • Metric System Questions
  • Metric Estimation Questions
  • Significant Digits Questions
  • Proportional Reasoning
  • Acceleration
  • Distance-Displacement
  • Dots and Graphs
  • Graph That Motion
  • Match That Graph
  • Name That Motion
  • Motion Diagrams
  • Pos'n Time Graphs Numerical
  • Pos'n Time Graphs Conceptual
  • Up And Down - Questions
  • Balanced vs. Unbalanced Forces
  • Change of State
  • Force and Motion
  • Mass and Weight
  • Match That Free-Body Diagram
  • Net Force (and Acceleration) Ranking Tasks
  • Newton's Second Law
  • Normal Force Card Sort
  • Recognizing Forces
  • Air Resistance and Skydiving
  • Solve It! with Newton's Second Law
  • Which One Doesn't Belong?
  • Component Addition Questions
  • Head-to-Tail Vector Addition
  • Projectile Mathematics
  • Trajectory - Angle Launched Projectiles
  • Trajectory - Horizontally Launched Projectiles
  • Vector Addition
  • Vector Direction
  • Which One Doesn't Belong? Projectile Motion
  • Forces in 2-Dimensions
  • Being Impulsive About Momentum
  • Explosions - Law Breakers
  • Hit and Stick Collisions - Law Breakers
  • Case Studies: Impulse and Force
  • Impulse-Momentum Change Table
  • Keeping Track of Momentum - Hit and Stick
  • Keeping Track of Momentum - Hit and Bounce
  • What's Up (and Down) with KE and PE?
  • Energy Conservation Questions
  • Energy Dissipation Questions
  • Energy Ranking Tasks
  • LOL Charts (a.k.a., Energy Bar Charts)
  • Match That Bar Chart
  • Words and Charts Questions
  • Name That Energy
  • Stepping Up with PE and KE Questions
  • Case Studies - Circular Motion
  • Circular Logic
  • Forces and Free-Body Diagrams in Circular Motion
  • Gravitational Field Strength
  • Universal Gravitation
  • Angular Position and Displacement
  • Linear and Angular Velocity
  • Angular Acceleration
  • Rotational Inertia
  • Balanced vs. Unbalanced Torques
  • Getting a Handle on Torque
  • Torque-ing About Rotation
  • Properties of Matter
  • Fluid Pressure
  • Buoyant Force
  • Sinking, Floating, and Hanging
  • Pascal's Principle
  • Flow Velocity
  • Bernoulli's Principle
  • Balloon Interactions
  • Charge and Charging
  • Charge Interactions
  • Charging by Induction
  • Conductors and Insulators
  • Coulombs Law
  • Electric Field
  • Electric Field Intensity
  • Polarization
  • Case Studies: Electric Power
  • Know Your Potential
  • Light Bulb Anatomy
  • I = ∆V/R Equations as a Guide to Thinking
  • Parallel Circuits - ∆V = I•R Calculations
  • Resistance Ranking Tasks
  • Series Circuits - ∆V = I•R Calculations
  • Series vs. Parallel Circuits
  • Equivalent Resistance
  • Period and Frequency of a Pendulum
  • Pendulum Motion: Velocity and Force
  • Energy of a Pendulum
  • Period and Frequency of a Mass on a Spring
  • Horizontal Springs: Velocity and Force
  • Vertical Springs: Velocity and Force
  • Energy of a Mass on a Spring
  • Decibel Scale
  • Frequency and Period
  • Closed-End Air Columns
  • Name That Harmonic: Strings
  • Rocking the Boat
  • Wave Basics
  • Matching Pairs: Wave Characteristics
  • Wave Interference
  • Waves - Case Studies
  • Color Addition and Subtraction
  • Color Filters
  • If This, Then That: Color Subtraction
  • Light Intensity
  • Color Pigments
  • Converging Lenses
  • Curved Mirror Images
  • Law of Reflection
  • Refraction and Lenses
  • Total Internal Reflection
  • Who Can See Who?
  • Formulas and Atom Counting
  • Atomic Models
  • Bond Polarity
  • Entropy Questions
  • Cell Voltage Questions
  • Heat of Formation Questions
  • Reduction Potential Questions
  • Oxidation States Questions
  • Measuring the Quantity of Heat
  • Hess's Law
  • Oxidation-Reduction Questions
  • Galvanic Cells Questions
  • Thermal Stoichiometry
  • Molecular Polarity
  • Quantum Mechanics
  • Balancing Chemical Equations
  • Bronsted-Lowry Model of Acids and Bases
  • Classification of Matter
  • Collision Model of Reaction Rates
  • Density Ranking Tasks
  • Dissociation Reactions
  • Complete Electron Configurations
  • Elemental Measures
  • Enthalpy Change Questions
  • Equilibrium Concept
  • Equilibrium Constant Expression
  • Equilibrium Calculations - Questions
  • Equilibrium ICE Table
  • Intermolecular Forces Questions
  • Ionic Bonding
  • Lewis Electron Dot Structures
  • Limiting Reactants
  • Line Spectra Questions
  • Mass Stoichiometry
  • Measurement and Numbers
  • Metals, Nonmetals, and Metalloids
  • Metric Estimations
  • Metric System
  • Molarity Ranking Tasks
  • Mole Conversions
  • Name That Element
  • Names to Formulas
  • Names to Formulas 2
  • Nuclear Decay
  • Particles, Words, and Formulas
  • Periodic Trends
  • Precipitation Reactions and Net Ionic Equations
  • Pressure Concepts
  • Pressure-Temperature Gas Law
  • Pressure-Volume Gas Law
  • Chemical Reaction Types
  • Significant Digits and Measurement
  • States Of Matter Exercise
  • Stoichiometry Law Breakers
  • Stoichiometry - Math Relationships
  • Subatomic Particles
  • Spontaneity and Driving Forces
  • Gibbs Free Energy
  • Volume-Temperature Gas Law
  • Acid-Base Properties
  • Energy and Chemical Reactions
  • Chemical and Physical Properties
  • Valence Shell Electron Pair Repulsion Theory
  • Writing Balanced Chemical Equations
  • Mission CG1
  • Mission CG10
  • Mission CG2
  • Mission CG3
  • Mission CG4
  • Mission CG5
  • Mission CG6
  • Mission CG7
  • Mission CG8
  • Mission CG9
  • Mission EC1
  • Mission EC10
  • Mission EC11
  • Mission EC12
  • Mission EC2
  • Mission EC3
  • Mission EC4
  • Mission EC5
  • Mission EC6
  • Mission EC7
  • Mission EC8
  • Mission EC9
  • Mission RL1
  • Mission RL2
  • Mission RL3
  • Mission RL4
  • Mission RL5
  • Mission RL6
  • Mission KG7
  • Mission RL8
  • Mission KG9
  • Mission RL10
  • Mission RL11
  • Mission RM1
  • Mission RM2
  • Mission RM3
  • Mission RM4
  • Mission RM5
  • Mission RM6
  • Mission RM8
  • Mission RM10
  • Mission LC1
  • Mission RM11
  • Mission LC2
  • Mission LC3
  • Mission LC4
  • Mission LC5
  • Mission LC6
  • Mission LC8
  • Mission SM1
  • Mission SM2
  • Mission SM3
  • Mission SM4
  • Mission SM5
  • Mission SM6
  • Mission SM8
  • Mission SM10
  • Mission KG10
  • Mission SM11
  • Mission KG2
  • Mission KG3
  • Mission KG4
  • Mission KG5
  • Mission KG6
  • Mission KG8
  • Mission KG11
  • Mission F2D1
  • Mission F2D2
  • Mission F2D3
  • Mission F2D4
  • Mission F2D5
  • Mission F2D6
  • Mission KC1
  • Mission KC2
  • Mission KC3
  • Mission KC4
  • Mission KC5
  • Mission KC6
  • Mission KC7
  • Mission KC8
  • Mission AAA
  • Mission SM9
  • Mission LC7
  • Mission LC9
  • Mission NL1
  • Mission NL2
  • Mission NL3
  • Mission NL4
  • Mission NL5
  • Mission NL6
  • Mission NL7
  • Mission NL8
  • Mission NL9
  • Mission NL10
  • Mission NL11
  • Mission NL12
  • Mission MC1
  • Mission MC10
  • Mission MC2
  • Mission MC3
  • Mission MC4
  • Mission MC5
  • Mission MC6
  • Mission MC7
  • Mission MC8
  • Mission MC9
  • Mission RM7
  • Mission RM9
  • Mission RL7
  • Mission RL9
  • Mission SM7
  • Mission SE1
  • Mission SE10
  • Mission SE11
  • Mission SE12
  • Mission SE2
  • Mission SE3
  • Mission SE4
  • Mission SE5
  • Mission SE6
  • Mission SE7
  • Mission SE8
  • Mission SE9
  • Mission VP1
  • Mission VP10
  • Mission VP2
  • Mission VP3
  • Mission VP4
  • Mission VP5
  • Mission VP6
  • Mission VP7
  • Mission VP8
  • Mission VP9
  • Mission WM1
  • Mission WM2
  • Mission WM3
  • Mission WM4
  • Mission WM5
  • Mission WM6
  • Mission WM7
  • Mission WM8
  • Mission WE1
  • Mission WE10
  • Mission WE2
  • Mission WE3
  • Mission WE4
  • Mission WE5
  • Mission WE6
  • Mission WE7
  • Mission WE8
  • Mission WE9
  • Vector Walk Interactive
  • Name That Motion Interactive
  • Kinematic Graphing 1 Concept Checker
  • Kinematic Graphing 2 Concept Checker
  • Graph That Motion Interactive
  • Two Stage Rocket Interactive
  • Rocket Sled Concept Checker
  • Force Concept Checker
  • Free-Body Diagrams Concept Checker
  • Free-Body Diagrams The Sequel Concept Checker
  • Skydiving Concept Checker
  • Elevator Ride Concept Checker
  • Vector Addition Concept Checker
  • Vector Walk in Two Dimensions Interactive
  • Name That Vector Interactive
  • River Boat Simulator Concept Checker
  • Projectile Simulator 2 Concept Checker
  • Projectile Simulator 3 Concept Checker
  • Hit the Target Interactive
  • Turd the Target 1 Interactive
  • Turd the Target 2 Interactive
  • Balance It Interactive
  • Go For The Gold Interactive
  • Egg Drop Concept Checker
  • Fish Catch Concept Checker
  • Exploding Carts Concept Checker
  • Collision Carts - Inelastic Collisions Concept Checker
  • Its All Uphill Concept Checker
  • Stopping Distance Concept Checker
  • Chart That Motion Interactive
  • Roller Coaster Model Concept Checker
  • Uniform Circular Motion Concept Checker
  • Horizontal Circle Simulation Concept Checker
  • Vertical Circle Simulation Concept Checker
  • Race Track Concept Checker
  • Gravitational Fields Concept Checker
  • Orbital Motion Concept Checker
  • Angular Acceleration Concept Checker
  • Balance Beam Concept Checker
  • Torque Balancer Concept Checker
  • Aluminum Can Polarization Concept Checker
  • Charging Concept Checker
  • Name That Charge Simulation
  • Coulomb's Law Concept Checker
  • Electric Field Lines Concept Checker
  • Put the Charge in the Goal Concept Checker
  • Circuit Builder Concept Checker (Series Circuits)
  • Circuit Builder Concept Checker (Parallel Circuits)
  • Circuit Builder Concept Checker (∆V-I-R)
  • Circuit Builder Concept Checker (Voltage Drop)
  • Equivalent Resistance Interactive
  • Pendulum Motion Simulation Concept Checker
  • Mass on a Spring Simulation Concept Checker
  • Particle Wave Simulation Concept Checker
  • Boundary Behavior Simulation Concept Checker
  • Slinky Wave Simulator Concept Checker
  • Simple Wave Simulator Concept Checker
  • Wave Addition Simulation Concept Checker
  • Standing Wave Maker Simulation Concept Checker
  • Color Addition Concept Checker
  • Painting With CMY Concept Checker
  • Stage Lighting Concept Checker
  • Filtering Away Concept Checker
  • InterferencePatterns Concept Checker
  • Young's Experiment Interactive
  • Plane Mirror Images Interactive
  • Who Can See Who Concept Checker
  • Optics Bench (Mirrors) Concept Checker
  • Name That Image (Mirrors) Interactive
  • Refraction Concept Checker
  • Total Internal Reflection Concept Checker
  • Optics Bench (Lenses) Concept Checker
  • Kinematics Preview
  • Velocity Time Graphs Preview
  • Moving Cart on an Inclined Plane Preview
  • Stopping Distance Preview
  • Cart, Bricks, and Bands Preview
  • Fan Cart Study Preview
  • Friction Preview
  • Coffee Filter Lab Preview
  • Friction, Speed, and Stopping Distance Preview
  • Up and Down Preview
  • Projectile Range Preview
  • Ballistics Preview
  • Juggling Preview
  • Marshmallow Launcher Preview
  • Air Bag Safety Preview
  • Colliding Carts Preview
  • Collisions Preview
  • Engineering Safer Helmets Preview
  • Push the Plow Preview
  • Its All Uphill Preview
  • Energy on an Incline Preview
  • Modeling Roller Coasters Preview
  • Hot Wheels Stopping Distance Preview
  • Ball Bat Collision Preview
  • Energy in Fields Preview
  • Weightlessness Training Preview
  • Roller Coaster Loops Preview
  • Universal Gravitation Preview
  • Keplers Laws Preview
  • Kepler's Third Law Preview
  • Charge Interactions Preview
  • Sticky Tape Experiments Preview
  • Wire Gauge Preview
  • Voltage, Current, and Resistance Preview
  • Light Bulb Resistance Preview
  • Series and Parallel Circuits Preview
  • Thermal Equilibrium Preview
  • Linear Expansion Preview
  • Heating Curves Preview
  • Electricity and Magnetism - Part 1 Preview
  • Electricity and Magnetism - Part 2 Preview
  • Vibrating Mass on a Spring Preview
  • Period of a Pendulum Preview
  • Wave Speed Preview
  • Slinky-Experiments Preview
  • Standing Waves in a Rope Preview
  • Sound as a Pressure Wave Preview
  • DeciBel Scale Preview
  • DeciBels, Phons, and Sones Preview
  • Sound of Music Preview
  • Shedding Light on Light Bulbs Preview
  • Models of Light Preview
  • Electromagnetic Radiation Preview
  • Electromagnetic Spectrum Preview
  • EM Wave Communication Preview
  • Digitized Data Preview
  • Light Intensity Preview
  • Concave Mirrors Preview
  • Object Image Relations Preview
  • Snells Law Preview
  • Reflection vs. Transmission Preview
  • Magnification Lab Preview
  • Reactivity Preview
  • Ions and the Periodic Table Preview
  • Periodic Trends Preview
  • Intermolecular Forces Preview
  • Melting Points and Boiling Points Preview
  • Reaction Rates Preview
  • Ammonia Factory Preview
  • Stoichiometry Preview
  • Nuclear Chemistry Preview
  • Gaining Teacher Access
  • Tasks and Classes
  • Tasks - Classic
  • Subscription
  • Subscription Locator
  • 1-D Kinematics
  • Newton's Laws
  • Vectors - Motion and Forces in Two Dimensions
  • Momentum and Its Conservation
  • Work and Energy
  • Circular Motion and Satellite Motion
  • Thermal Physics
  • Static Electricity
  • Electric Circuits
  • Vibrations and Waves
  • Sound Waves and Music
  • Light and Color
  • Reflection and Mirrors
  • About the Physics Interactives
  • Task Tracker
  • Usage Policy
  • Newtons Laws
  • Vectors and Projectiles
  • Forces in 2D
  • Momentum and Collisions
  • Circular and Satellite Motion
  • Balance and Rotation
  • Electromagnetism
  • Waves and Sound
  • Atomic Physics
  • Forces in Two Dimensions
  • Work, Energy, and Power
  • Circular Motion and Gravitation
  • Sound Waves
  • 1-Dimensional Kinematics
  • Circular, Satellite, and Rotational Motion
  • Einstein's Theory of Special Relativity
  • Waves, Sound and Light
  • QuickTime Movies
  • About the Concept Builders
  • Pricing For Schools
  • Directions for Version 2
  • Measurement and Units
  • Relationships and Graphs
  • Rotation and Balance
  • Vibrational Motion
  • Reflection and Refraction
  • Teacher Accounts
  • Task Tracker Directions
  • Kinematic Concepts
  • Kinematic Graphing
  • Wave Motion
  • Sound and Music
  • About CalcPad
  • 1D Kinematics
  • Vectors and Forces in 2D
  • Simple Harmonic Motion
  • Rotational Kinematics
  • Rotation and Torque
  • Rotational Dynamics
  • Electric Fields, Potential, and Capacitance
  • Transient RC Circuits
  • Light Waves
  • Units and Measurement
  • Stoichiometry
  • Molarity and Solutions
  • Thermal Chemistry
  • Acids and Bases
  • Kinetics and Equilibrium
  • Solution Equilibria
  • Oxidation-Reduction
  • Nuclear Chemistry
  • Newton's Laws of Motion
  • Work and Energy Packet
  • Static Electricity Review
  • NGSS Alignments
  • 1D-Kinematics
  • Projectiles
  • Circular Motion
  • Magnetism and Electromagnetism
  • Graphing Practice
  • About the ACT
  • ACT Preparation
  • For Teachers
  • Other Resources
  • Solutions Guide
  • Solutions Guide Digital Download
  • Motion in One Dimension
  • Work, Energy and Power
  • Algebra Based Physics
  • Other Tools
  • Frequently Asked Questions
  • Purchasing the Download
  • Purchasing the CD
  • Purchasing the Digital Download
  • About the NGSS Corner
  • NGSS Search
  • Force and Motion DCIs - High School
  • Energy DCIs - High School
  • Wave Applications DCIs - High School
  • Force and Motion PEs - High School
  • Energy PEs - High School
  • Wave Applications PEs - High School
  • Crosscutting Concepts
  • The Practices
  • Physics Topics
  • NGSS Corner: Activity List
  • NGSS Corner: Infographics
  • About the Toolkits
  • Position-Velocity-Acceleration
  • Position-Time Graphs
  • Velocity-Time Graphs
  • Newton's First Law
  • Newton's Second Law
  • Newton's Third Law
  • Terminal Velocity
  • Projectile Motion
  • Forces in 2 Dimensions
  • Impulse and Momentum Change
  • Momentum Conservation
  • Work-Energy Fundamentals
  • Work-Energy Relationship
  • Roller Coaster Physics
  • Satellite Motion
  • Electric Fields
  • Circuit Concepts
  • Series Circuits
  • Parallel Circuits
  • Describing-Waves
  • Wave Behavior Toolkit
  • Standing Wave Patterns
  • Resonating Air Columns
  • Wave Model of Light
  • Plane Mirrors
  • Curved Mirrors
  • Teacher Guide
  • Using Lab Notebooks
  • Current Electricity
  • Light Waves and Color
  • Reflection and Ray Model of Light
  • Refraction and Ray Model of Light
  • Classes (Legacy Version)
  • Teacher Resources
  • Subscriptions

powerpoint presentation on physics topics

  • Newton's Laws
  • Einstein's Theory of Special Relativity
  • About Concept Checkers
  • School Pricing
  • Newton's Laws of Motion
  • Newton's First Law
  • Newton's Third Law

The Physics Classroom's Teacher Presentation Pack

powerpoint presentation on physics topics

Content and Topics || Frequently-Asked Questions || Purchase Page

Slidesgo.net is an independent website that offers free powerpoint templates and is not part of Freepik/any particular brand. Read the privacy policies

physics Powerpoint templates and Google Slides themes

Discover the best physics PowerPoint templates and Google Slides themes that you can use in your presentations.

Capsule With Money-Medical PPT Templates

3d atom model powerpoint templates, slidesgo categories.

  • Abstract 13 templates
  • Agency 15 templates
  • All Diagrams 1331 templates
  • Brand Guidelines 3 templates
  • Business 195 templates
  • Computer 66 templates
  • Education 97 templates
  • Finance 54 templates
  • Food 57 templates
  • Formal 60 templates
  • Fun 6 templates
  • Industry 91 templates
  • Lesson 67 templates
  • Marketing 57 templates
  • Marketing Plan 19 templates
  • Medical 71 templates
  • Military 21 templates
  • Nature 119 templates
  • Newsletter 5 templates
  • Real Estate 46 templates
  • Recreation 53 templates
  • Religion 30 templates
  • School 557 templates
  • Simple 5 templates
  • Social Media 8 templates
  • Sports 46 templates
  • Travel 26 templates
  • Workshop 4 templates

Slidesgo templates have all the elements you need to effectively communicate your message and impress your audience.

Suitable for PowerPoint and Google Slides

Download your presentation as a PowerPoint template or use it online as a Google Slides theme. 100% free, no registration or download limits.

Want to know more?

  • Frequently Asked Questions
  • Google Slides Help
  • PowerPoint help
  • Who makes Slidesgo?

This page contains fully editable PowerPoint slideshows for the current International Baccalaureate (IB) course in Physics. Topics 1 to 8 cover the Standard Level course and you will also find slideshows for Higher Level topics 9 to 12, along with the optional Engineering unit.

Powerpoints for the following units:

Topic 1 - measurements and uncertainties.

This slideshow covers the content of Topic 1 from the IB Physics course. It includes: standard form, prefixes, SI units, derived units, estimations, true values, accuracy, uncertainty expressed as an absolute and as a percentage, example micrometer measurements, percentage differences, precision, random errors, zero errors, systematic errors, drawing error boxes on a graph, uncertainties in gradients, compounding uncertainties, vector quantities, how to resolve vectors.

Topic 2 - Mechanics

This slideshow covers Topic 2 from the IB Physics course, including: distance, speed and time, acceleration, distance vs displacement, speed vs velocity, vector and scalar quantities, distance-time graphs, velocity-time graphs, equations of motion for uniformly accelerating objects (SUVAT equations), resolving vectors, vertical projection, projectile motion, terminal velocity in liquids, different types of force, the four fundamental forces, weight vs mass, Newton's 3 Laws of Motion, free body force diagrams, friction, the coefficient of friction, static and dynamic friction, types of energy, calculating kinetic and gravitational potential energy, conservation of energy and using it to determine speed, elastic potential energy, work done, power, efficiency, momentum, conservation of momentum in collisions and explosions, impulse, force-time graphs and change in momentum, energy loss in collisions, elastic and inelastic collisions, kinetic energy of particles.

Topic 3 - Thermal Physics

This slideshow covers: revision of particle theory, specific latent heat, energy changes during changes of state, latent heat of fusion, specific heat capacity, how to determine specific heat capacity and specific latent heat by experiment, particle motion in gases, pressure, pressure and volume in gases, Boyle's Law, pressure and temperature in gases, absolute temperature, Charles' Law, moles and molecules, the Ideal Gas Equation, real gases vs ideal gases, molecular speed and temperature.

Topic 4 - Waves

This topic covers the entire "Waves" unit from the International Baccalaureate Physics course, including: definitions of terms such as amplitude and frequency, phase difference, simple harmonic motion, graphs of displacement, velocity and acceleration for SHM, maximum values for SHM, energy changes during SHM, travelling waves, the wave equation, transverse and longitudinal waves, measuring the speed of waves, electromagnetic radiation, the EM spectrum, wavefronts, dissipation of a wave, superposition, constructive and destructive interference, polarisation, Malus' Law, reflection of waves, refraction of waves, Snell's Law, the critical angle, example questions on the critical angle, measuring the refractive index of a material, diffraction, path difference, interference patterns from single and double slits, Young's Double Slit experiment, standing waves, nodes and antinodes, harmonics in wind and string instruments, nodes and antinodes in open and closed pipes.

Topic 5 - Electricity and Magnetism

This slideshow includes PowerPoint slides to help you teach topic 5 from the IB Physics course, including: electric current, conventional current, revision of AC and DC, charge and current, calculating charge using Q=It, definition of voltage, electrical work done, electric fields and point charges (positive and negative), Coulomb's Law, uniform electric fields, the electronvolt, carrier density, drift speed, drift speeds down wires of different areas, current and voltage in series and parallel circuits, Kirchoff's Laws, resistances of voltmeters and ammeters, the heating effect of currents, V=IR, calculating resistance, Ohmic and non-Ohmic conductors, I-V graphs for bulbs and diodes, resistors in series and parallel circuits, potential dividers, practical applications of potential dividers in circuits, resistivity, electrical power, EMF, internal resistance, electric potentials, how cells lose voltage over time, recharging a battery, magnetic fields around bar magnets and wires, making an electromagnet, the motor effect, F=BIL, charged particles in magnetic fields, F=BQv, circular paths of charged particles.

Topic 6 - Circular Motion and Gravitation

This slideshow covers: circular motion and how it relates to speed and velocity, centripetal acceleration, centripetal force, using radians, circular motion equations with example questions, Newton's Law of Gravitation, gravitational fields, gravity and centripetal force, gravitational field strength, comparison between gravitational and electromagnetic fields.

Topic 7 - Atomic, Nuclear and Particle Physics

This slideshow covers: spectra, absorption and emission spectra, energy levels, converting energy changes into discrete energy levels, absorption and emission of radiation and how it relates to energy levels, facts about the atom, mass and atomic number, isotopes, background radiation, changes in mass and proton number during radioactive decay, blocking radiation, half life, evidence for neutrinos, radioactive decay equations, the unified atomic mass unit, binding energy, energy-mass equivalence, binding energy by nucleon, nuclear fusion and fission, calculating energy released by fission and fusion, using different units for mass, the structure of an atom, Rutherford Scattering, fundamental particles, the Standard Model, quarks and their properties, antiquarks, baryons and mesons, hadrons and leptons, conserving properties such as lepton number and baryon number, four fundamental forces, exchange bosons, particle interactions, Feynman diagrams and how to draw them, strangeness, confinement, the Higgs Boson.

Topic 8 - Energy Production

This slideshow matches topic 8 from the IB Physics course, including: efficiency, drawing energy transfers, Sankey Diagrams, comparing efficient and non-efficient bulbs, fuels, renewable and non-renewable sources of energy, power stations, energy changes in power stations, fossil fuels, nuclear power and how it works, primary and secondary energy sources, wind power, hydroelectric power, solar power, specific energy, energy density, conduction in metals and non-metals, convection currents, infra-red radiation, heat transfer in practical situations, luminosity, blackbodies, emissivity, intensity, the Solar Constant, albedo, how colour relates to temperature, radiation from blackbodies, Wien's Displacement Law, the temperature of the Earth and what it depends on, the Greenhouse Effect, absorption of radiation by the atmosphere, average temperature of the Earth, Wien's Law and the Greenhouse Effect.

Topic 9 - Wave Phenomena

This slideshow covers: a recap of circular motion and its equations, simple harmonic motion, graphs of displacement, velocity and time for SHM, SHM equations with trig functions, maximum values for SHM, mass-spring and pendulum systems as examples of SHM, energy changes during SHM, diffraction from single slits, how wavelength or slit size effects the diffraction pattern, coherence, superposition, path difference for constructive and destructive interference, Young's Double Slit experiment, interference patterns from two slits, modulation, thin film interference and how it works, the maths of thin film interference, how refractive index affects thin film interference, image resolution, the Rayleigh Criterion, diffraction gratings, resolvance using diffraction gratings, the Doppler Effect, spectra, moving light sources and how their wavelength and frequency are affected, example questions on the maths of the Doppler Effect.

Topic 10 - Fields

This PowerPoint covers: a recap of the different types of force, electric fields around point charges, uniform electric fields between parallel plates, equipotentials between charged plates and around a charged point, gravitational equipotentials, work done, gravitational field strength, inverse square laws concerning electric and gravitational fields, graphs of gravitational and electrostatic field strengths as a function of distance, electric potential, field strength in terms of potential, potential gradients, drawing fields, escape velocity, orbital kinetic energy, orbital speed, total orbital energy.

Topic 11 - Electromagnetic Induction

his slideshow covers: a recap of the Motor Effect, electromagnetic induction and how it works, flux, flux linkage, Faraday's Law, EM induction caused by a magnet falling through a coil, Lenz's Law, how Lenz's Law is a consequence of energy conservation, cutting field lines, AC generators, how transformers work, a revision of alternating current, RMS value, resistance and average power, the transformer equation, power in transformers, how transformers are used in power distribution, why transformers are not 100% efficient, how to improve the efficiency of a transformer, diodes, how diodes work, full-wave rectification using diodes, smoothing, capacitors, definition of capacitance, dielectrics, charging and discharging a capacitor, current-time graph for capacitors, how resistance affects charging and discharging times, capacitor combinations, time constant, energy stored in a capacitor, exponential decay functions for capacitors, turning exponential decay into a straight line graph.

Topic 12 - Quantum and Nuclear Phyics

This PowerPoint covers: a recap of emission spectra, the electromagnetic spectrum, gold leaf electroscopes, photoelectric emission and how it depends on frequency, photoelectron energy and how to measure it, photocurrents and factors that affect them, stopping voltages, threshold frequencies, wave-particle duality, interference patterns from double slits, electron diffraction, energy-mass equivalence, paid production and annihilation, the Bohr model of the atom, the Heisenberg Uncertainty Principle, electron confinement, the Schrodinger Wave equation, electron tunnelling, the structure of the atom, a recap of Rutherford Scattering, isotopes, nuclear radius, types of radioactivity, radioactive decay, half life, the decay constant, atomic energy levels, nuclear energy levels, how beta radiation gives evidence for nuclear energy levels, neutrinos, probability waves, electron beams, electron diffraction, deviations from Rutherford Scattering.

Topic B - Engineering Physics

This slideshow covers: rotational forces, turning moments and torques, balancing seesaws, Newton's 1st Law and angular equilibrium, balancing a bridge, non-perpendicular forces, angular speed and acceleration, graphs of angular motion, equations for angular motion, Newton's 2nd law in angles, moments of inertia, rotational kinetic energy, rolling a ball down a slope, conservation of momentum applied to angular motion, torque-time graphs, phase changes for ice, internal energy, particle motion in gases, doing work to a gas, the First Law of Thermodynamics, Boyle's Law, pressure-volume graphs, adiabatic expansion, cyclic processes, heat engines, efficiency of a heat engine, Carnot cycles, theoretical efficiency, entropy, the Second Law of Thermodynamics (including Clausius and Kelvin-Plank statements), density, pressure, hydrostatic equilibrium, pressure in fluids, upthrust, hydraulic systems, ideal fluids, the Continuity Equation, the Bernoulli Equation, Bernoulli's Principle, pitot tubes, venturi tubes, laminar and turbulent flow, terminal velocity in fluids, Stoke's Law, the Reynolds Number, SHM, free vs forced oscillations, resonance, damping, underdamping, overdamping and critically damping, the Q factor.

powerpoint presentation on physics topics

Art of Presentations

25 Useful Presentation Topics for Science

By: Author Shrot Katewa

25 Useful Presentation Topics for Science

We are mostly asked questions about Presentation Design. But, sometimes, we do have our patrons reaching out to us to seek help with the “content” that needs to be created even before we begin with the design of the presentation.

So, today we are sharing a few really easy-to-cover super useful presentation topics for Science. This is especially helpful for all those teachers and parents who are looking to increase the curiosity of aspiring students and children.

So, let’s dive right into it –

A Quick Note Before We Begin – if you want to make jaw-dropping presentations, I would recommend using one of these Presentation Designs . The best part is – it is only $16.5 a month, but you get to download and use as many presentation designs as you like! I personally use it from time-to-time, and it makes my task of making beautiful presentations really quick and easy!

1. Big Bang Theory – Origin of Our Universe

As a kid, I was always curious about how we came into existence! How the planet Earth was created? How did it all start? This is a great topic to really generate and at times, even quench the curiosity of your students or children. While it is a great topic for presentation in class, it is also an equally good topic for a dinner conversation with your kids.

2. DNA structure

Our DNA is the very core of our life. If the Big Bang Theory is how the universe came into being, DNA is where our personal journey begins. While the structure of DNA is quite fascinating, the impact it has on our lives and how it affects our characteristics is mind-boggling!

It is another great topic for a Science Presentation. Do keep in mind, use of visual aids will most likely improve comprehension and retention among your audience.

3. Gene Editing & Its Uses

In case you choose to go with the previous topic of DNA, Gene Editing serves as a perfect extension of that topic even though it can be a great topic in itself. Sharing insights on Gene Editing and how it works, can showcase the capacity of human endeavors and its resolve to make things better.

4. Important Discoveries of Science

Okay, so this can really be a fun topic. As a kid, it was always fascinating to know about some of the world’s greatest discoveries and inventions.

Be it Penicillium or the first flight by the Wright Brothers, such topics allow you to take your audience on a journey and relive the times in which these discoveries and inventions were made. The thing that I like the most about this topic is that it doesn’t have to be completed in one session.

In fact, this can be turned into a knowledge series of multiple sessions as the list of discoveries is endless.

5. Aerodynamics

Most kids and students are really fascinated with planes. But, only a few really understand the basic principles of how a plane works. Explaining Aerodynamics can be an interesting topic.

It also allows you to introduce props such as a plane and practical exercises such as creating your own plane and analyzing its aerodynamics. The introduction of visuals for such a topic can greatly enhance the learning experience.

So this is a topic that most of the kids and students would have at least heard of, most might know about it a little. But very few would really understand how gravity truly changed our concepts not just on Earth, but also beyond our Planet in our Solar System.

Gravity alone is responsible for the tectonic shift of mindset that the Earth was the center of our Solar System to the fact that the Sun is the center of our Solar System around which the rest of the planets revolve. That and much more!

Explaining the stories of Galileo who first challenged this assumption and how Newton turned everything we knew upside down (almost literally!)

7. Photosynthesis

Another interesting Science topic for a presentation.

How do non-moving organisms produce and consume food? How Photosynthesis is not just limited to trees but virtually drives all lifeforms on Earth through the transfer of energy.

Also, touching upon the fact how Photosynthesis has led to the revolutionary discovery of Solar cells and how it is potentially going to be powering our future.

8. Artificial Intelligence – Boon or Bane

When it comes to Artificial Intelligence, there is a lot that we can do to engage the curiosity of our kids and students. It is an evolving part of Science as we haven’t fully applied and utilized AI.

One of the reasons this can be a great topic is because it engages your students or kids to really think. You may consider forming 2 teams and allowing an open debate on how AI could be a boon or a bane – a great way to promote cross-learning.

9. Ocean – The Unknown World

Our Ocean is what sets our planet Earth apart from the other planets in our solar planet. It is not only one of the main factors contributing to life on earth, the Ocean holds a world of its own with hidden creatures which have only recently been explored.

There is a lot to cover when it comes to the Ocean. Don’t limit your imagination to just lifeforms as you can even talk about treasures troves contained in the ships that sank!

10. Astronomy

So I have a confession to make. Which is this – Astronomy astonished me as a kid, and it amazes me even now! There have been countless nights that I gazed at the stars in the sky in amazement trying to locate a planet, and falling stars and other man-made satellites in the sky.

This is not just an amazing topic for a presentation, but if you could get hold of a telescope for a practical session, it will make a night to remember for the kids and the students!

11. Light and its effects

This is another topic that can turn into a great practical session!

Presentations can be accompanied by a trip to the physics lab or even using equipment like a prism to take the session experience of your audience to a totally different level! Experiencing the various colors that form light is one thing, but understanding how it impacts almost every single thing in our day-to-day activities makes us admire it.

12. Atoms – Building Blocks of Matter

While there is a whole universe outside of our Planet, there is a completely different world that exists when we go granular inside any matter.

There are literally billions and billions of atoms inside just our human body. Each atom has its own world making it as diverse as you can imagine.

How these atoms interact with each other and what makes an atom can be a really engaging topic to bubble the curiosity of the students or your kids!

13. Sound & Waves

Another super interesting presentation topic for Science for kids and students is to understand how Sound works.

There are several things to cover as part of this ranging from simple waves to frequency and resonance experiments. Sound is not just a good topic for a presentation but also for experiments and physical demos.

14. Technology

Technology as a topic has a lot to cover. As we all know that technology touches each of our lives on a daily basis, students can find this topic relatable quite easily. The canvas for exploration and presentation is quite broad giving you a wide range of technology topics to present from.

15. Human Brain

Many believe that we only use 10% of the capacity of our human brain. We have to date only barely managed to understand how our brain works.

Even the parts that we have gathered an understanding about, we don’t quite fully understand. The human brain has remained a topic of astonishment for scientists for a long time. It is only logical to conclude that if presented effectively, this can be a good presentation topic on science.

16. Evolution

When Charles Darwin presented his Theory of Evolution by Natural Selection in his book “The Origin of Species”, it took the world of science by storm.

How the species have evolved over a period of millions of years is quite interesting. There were quite a few interesting learnings that Darwin had and he shared that as a summary. This is something that has been also covered in the TV series Cosmos by Neil Degrasse Tyson.

I highly recommend giving this TV series a watch to get inspiration for some topics for presentation.

17. Magnetism

The majority of the kids have handled and spent hours in awe playing with a magnet. Many try to understand how a magnet really works! But, only a few are able to really understand the science behind it.

Magnetism can be a really fun topic to give a presentation on. Additionally, this topic also allows enough space to display, experiment, and have fun with real magnet and iron filings to showcase the effect of magnetism.

18. Electricity

Electricity is pretty much everywhere.

Today, if there is no electricity, the region is considered underdeveloped or backward. The discovery and the use of electricity is probably one of the greatest inventions of the 20th century.

It has been single-handedly responsible for industrialization, powering growth, and the development of the human race.

19. Steam Engine

Steam Engine was the first step of the human race towards powered locomotives.

From the discovery of the steam engine to how it was responsible for creating a time standard and time zones along with the stories related to it, can all be very fascinating and take you back in time to relive history!

A perfect presentation topic for science students.

20. Science of Medicine

No list of presentation topics for Science would be complete without mentioning medicine and its benefits.

The discovery of medicines and drugs has been responsible for nearly doubling the average human age. The impact is far-reaching with several pros and cons that constitute an interesting topic for presentation.

21. Periodic Table

Students often find this topic very dull. However, if you can help them understand the beauty and significance of this periodic table, it can be an amazing topic.

To really understand how Mendeleev could predict the existence of various elements even before they were discovered, is mind-boggling!

The periodic table is such a perfect table that explains how the elements are arranged in a well-structured manner in nature. This topic can be turned into a very interesting topic but a bit of effort and some out-of-the-box thinking may be required.

22. Buoyancy

Okay, so we all may have heard the story of Archimedes in a bathtub and how he shouted “Eureka” when he managed to solve the problem that was tasked to him. He did this using the Buoyancy principle.

While this story is something we relate to buoyancy the most, there is a lot more than we can truly learn and apply using this principle. This can be a very helpful topic for a presentation as well as a practical science experiment.

23. Health & Nutrition

Health & Nutrition is a very important aspect of our life. Its importance is often not completely understood by kids and students alike. Presenting about Health & Nutrition can go a long way to benefit the students to maintain a very healthy life!

24. Our Solar System

Our Solar System is a topic that is mostly taught since you join the school.

However, while most of us know about our solar system, there are enough mysteries about it to capture and captivate the attention of your audience. Questions like – why is Pluto not a planet anymore?

Or other questions such as – are we alone in this universe or even topics around the Sun as a star or even the asteroid belt between Mars and Jupiter can all lead to great engaging presentations and discussions.

25. Stem Cell

Stem cell research has become cutting-edge medical research. Thus, it is often a hot topic for discussion but is often not completely understood.

This topic will also provide you an opportunity to engage your audience in a debate that could be centered around the ethics of stem cells and their application.

This is a perfect topic as this allows your students or kids to learn and share their opinion with others.

Science is a vast world. Even though there are several other topics that can be covered, we decided to list topics that are relatively common such that it widely applies to a large set of people. If you have shortlisted your presentation topic and are looking for help to create a visually appealing presentation that captures the attention of your audience, be sure to reach out to us!

Our goal on this blog is to create content that helps YOU create fantastic presentations; especially if you have never been a designer. We’ve started our blog with non-designers in mind, and we have got some amazing content on our site to help YOU design better.

If you have any topics in mind that you would want us to write about, be sure to drop us a comment below. In case you need us to work with you and improve the design of your presentation, write to us on [email protected] . Our team will be happy to help you with your requirements.

Lastly, your contribution can make this world a better place for presentations . All you have to do is simply share this blog in your network and help other fellow non-designers with their designs!

CBSECONTENT.COM LOGO

Physics Presentation for Class 12

Book 1 - physics, chapter 1: electric charges and fields, chapter 2: electrostatic potential and capacitance, chapter 3: current electricity, chapter 4: moving charges and magnetism, chapter 5: magnetism and matter, chapter 6: electromagnetic induction, chapter 7: alternating current, chapter 8: electromagnetic wave, book 2 - physics, chapter 9: ray optics and optical instruments, chapter 10: wave optics, chapter 11: dual nature of radiation and matter, chapter 12: atoms, chapter 13: nuclei, chapter 14: semiconductor electronics.

powerpoint presentation on physics topics

Amazon Affiliate Disclaimer:    cbsecontent.com is a part of Amazon Services LLC Associates Program, an affiliate advertising program  designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.in. As an amazon associates we earn from qualifying purchases.

guest

  • Draft and add content
  • Rewrite text
  • Chat with Copilot
  • Create a summary
  • Copilot in Word on mobile devices
  • Frequently asked questions
  • Create a new presentation
  • Add a slide or image
  • Summarize your presentation
  • Organize your presentation
  • Use your organization's branding
  • Copilot in PowerPoint for mobile devices
  • Draft an Outlook email message
  • Summarize an email thread
  • Suggested drafts in Outlook
  • Email coaching
  • Get started with Copilot in Excel
  • Identify insights
  • Highlight, sort, and filter your data
  • Generate formula columns
  • Summarize your OneNote notes
  • Create a to-do list and tasks
  • Create project plans in OneNote

powerpoint presentation on physics topics

Create a new presentation with Copilot in PowerPoint

Note:  This feature is available to customers with a Copilot for Microsoft 365 license or Copilot Pro license.

Create a new presentation in PowerPoint.

Screenshot of the Copilot in PowerPoint button in the ribbon menu

Select Send . Copilot will draft a presentation for you!

Edit the presentation to suit your needs, ask Copilot to add a slide , or start over with a new presentation and refine your prompt to include more specifics. For example, "Create a presentation about hybrid meeting best practices that includes examples for team building.”

Create a presentation with a template

Note:  This feature is only available to customers with a Copilot for Microsoft 365 (work) license. It is not currently available to customers with a Copilot Pro (home) license.

Copilot can use your existing themes and templates to create a presentation. Learn more about making your presentations look great with Copilot in PowerPoint .

Selecting a theme for a new presentation on Office.com.

Enter your prompt or select Create presentation from file to create a first draft of your presentation using your theme or template.

Screenshot of a warning in Copilot in PowerPoint about how creating a new presentation will replace existing slides

Edit the presentation to suit your needs, ask Copilot to add a slide , organize your presentation, or add images.

Create a presentation from a file with Copilot

Note:  This feature is only available to customers with a Copilot for Microsoft 365 (work) license. It is not currently available to customers with a Copilot Pro (home) license.

Your browser does not support video. Install Microsoft Silverlight, Adobe Flash Player, or Internet Explorer 9.

With Copilot in PowerPoint, you can create a presentation from an existing Word document. Point Copilot in PowerPoint to your Word document, and it will generate slides, apply layouts, create speaker notes, and choose a theme for you.

Screenshot of the Copilot in PowerPoint prompt menu with Create a presentation from file option highlighted

Select the Word document you want from the picker that appears. If you don't see the document you want, start typing any part of the filename to search for it.

Note:  If the file picker doesn't appear type a front slash (/) to cause it to pop up.

Best practices when creating a presentation from a Word document

Leverage word styles to help copilot understand the structure of your document.

By using Styles in Word to organize your document, Copilot will better understand your document structure and how to break it up into slides of a presentation. Structure your content under Titles and Headers when appropriate and Copilot will do its best to generate a presentation for you.

Include images that are relevant to your presentation

When creating a presentation, Copilot will try to incorporate the images in your Word document. If you have images that you would like to be brought over to your presentation, be sure to include them in your Word document.

Start with your organization’s template

If your organization uses a standard template, start with this file before creating a presentation with Copilot. Starting with a template will let Copilot know that you would like to retain the presentation’s theme and design. Copilot will use existing layouts to build a presentation for you. Learn more about Making your presentations look great with Copilot in PowerPoint .

Tip:  Copilot works best with Word documents that are less than 24 MB.

Welcome to Copilot in PowerPoint

Frequently Asked Questions about Copilot in PowerPoint

Where can I get Microsoft Copilot?

Copilot Lab - Start your Copilot journey

Facebook

Need more help?

Want more options.

Explore subscription benefits, browse training courses, learn how to secure your device, and more.

powerpoint presentation on physics topics

Microsoft 365 subscription benefits

powerpoint presentation on physics topics

Microsoft 365 training

powerpoint presentation on physics topics

Microsoft security

powerpoint presentation on physics topics

Accessibility center

Communities help you ask and answer questions, give feedback, and hear from experts with rich knowledge.

powerpoint presentation on physics topics

Ask the Microsoft Community

powerpoint presentation on physics topics

Microsoft Tech Community

powerpoint presentation on physics topics

Windows Insiders

Microsoft 365 Insiders

Find solutions to common problems or get help from a support agent.

powerpoint presentation on physics topics

Online support

Was this information helpful?

Thank you for your feedback.

Quantum physics may help lasers see through fog, aid in surveillance

AI-generated image of two particles, one red and blue, colliding

Military surveillance and communication can be hampered by adverse conditions such as fog, extreme temperatures or long distances. An engineer in the McKelvey School of Engineering at Washington University in St. Louis is implementing quantum technology to develop ways that lasers can operate effectively in these challenging environments.

Jung-Tsung Shen , an associate professor in the Preston M. Green Department of Electrical & Systems Engineering, is developing a prototype of a quantum photonic-dimer laser with a two-year $1 million grant from the Defense Advanced Research Projects Agency (DARPA) of the U.S. Department of Defense. With the funding, Shen will implement his lab’s two-color photonic dimer laser technology, in which carefully controlled pairs of light particles, or photonic dimers, are used to generate a powerful and concentrated beam of light, or laser. Quantum photonic-dimer lasers take advantage of quantum effects to bind two photons together, increasing their energy and efficiency.

Photons, or particles that represent a quantum of light, travel very quickly and don’t carry a charge, so it is difficult to get them to interact with each other and to manipulate them. Shen’s lab found that when he “glued” two photons of different colors together to form a photonic dimer using the power of quantum mechanics, they took on the behavior of a blue photon. The entanglement between the two photons within the dimer may revolutionize applications in communication and imaging, offering unprecedented capabilities, Shen said.

“Photons encode information when they travel, but the travel through the atmosphere is very damaging to them,” Shen said. “When two photons are bound together, they still suffer the effects of the atmosphere, but they can protect each other so that some phase information can still be preserved.”

These two-color dimers can be tailored to the atmosphere or to the fog through a unique property of quantum mechanics known as quantum entanglement, Shen said.

“Quantum entanglement is a correlation between photons,” he said. “We are trying to exploit the property of entanglement to do something innovative. The entanglement can do many things that we can only dream of — this is just the tip of the iceberg.”

Shen previously received funding from the Chan Zuckerberg Initiative to develop the technology for deep brain imaging. Researchers can implant fluorescent molecules in the brain and use photons to excite them, which allows the photons to collect information about the brain’s structure.

Now, Shen is exploring more of that vast iceberg to move toward the realization of applications in telecommunications, quantum computing and more, in addition to the military applications supported by DARPA.

Shen’s team, which includes graduate student Qihang Liu and collaborators from Texas A&M University’s Institute for Quantum Science & Engineering , will introduce the quantum photonic-dimer laser methods that will allow them to create different states of two-color dimers at a rate of 1 million pairs per second — a rate that has never been seen before.

“The unique thing about this project is its dual focus on generating these novel strongly correlated quantum photonic states and developing the theoretical framework and advanced algorithms for their efficient detection, potentially revolutionizing quantum imaging and communication,” Shen said.

Shawn Ballard contributed to this story.

Originally published on the McKelvey School of Engineering website.

Comments and respectful dialogue are encouraged, but content will be moderated. Please, no personal attacks, obscenity or profanity, selling of commercial products, or endorsements of political candidates or positions. We reserve the right to remove any inappropriate comments. We also cannot address individual medical concerns or provide medical advice in this forum.

You Might Also Like

With NASA support, device for future lunar mission being developed at WashU

Latest from the Newsroom

Recent stories.

Coolidge shares message of self-acceptance at WashU Commencement

$5 million grant supports innovative immunotherapies against blood cancers

Brown School students engage with St. Louis neighborhoods

WashU Experts

DeFake tool protects voice recordings from cybercriminals

Tremor a reminder that East Coast, Midwest earthquake threat is real

NASPA chair, WashU vice chancellor on the future of student affairs

WashU in the News

Jennifer Coolidge gives nod to ‘White Lotus’ character during commencement speech

Ultrasound Isn’t Just for Pregnancy. How It’s Helping Treat the Brain.

Opinion: Could these laws fix America’s broken work culture?

powerpoint presentation on physics topics

  • Follow us on Facebook
  • Follow us on Twitter
  • Follow us on LinkedIn
  • Watch us on Youtube
  • Latest Explore all the latest news and information on Physics World
  • Research updates Keep track of the most exciting research breakthroughs and technology innovations
  • News Stay informed about the latest developments that affect scientists in all parts of the world
  • Features Take a deeper look at the emerging trends and key issues within the global scientific community
  • Opinion and reviews Find out whether you agree with our expert commentators
  • Interviews Discover the views of leading figures in the scientific community
  • Analysis Discover the stories behind the headlines
  • Blog Enjoy a more personal take on the key events in and around science
  • Physics World Live
  • Impact Explore the value of scientific research for industry, the economy and society
  • Events Plan the meetings and conferences you want to attend with our comprehensive events calendar
  • Innovation showcases A round-up of the latest innovation from our corporate partners
  • Collections Explore special collections that bring together our best content on trending topics
  • Artificial intelligence Explore the ways in which today’s world relies on AI, and ponder how this technology might shape the world of tomorrow
  • #BlackInPhysics Celebrating Black physicists and revealing a more complete picture of what a physicist looks like
  • Nanotechnology in action The challenges and opportunities of turning advances in nanotechnology into commercial products
  • The Nobel Prize for Physics Explore the work of recent Nobel laureates, find out what happens behind the scenes, and discover some who were overlooked for the prize
  • Revolutions in computing Find out how scientists are exploiting digital technologies to understand online behaviour and drive research progress
  • The science and business of space Explore the latest trends and opportunities associated with designing, building, launching and exploiting space-based technologies
  • Supercool physics Experiments that probe the exotic behaviour of matter at ultralow temperatures depend on the latest cryogenics technology
  • Women in physics Celebrating women in physics and their contributions to the field
  • Audio and video Explore the sights and sounds of the scientific world
  • Podcasts Our regular conversations with inspiring figures from the scientific community
  • Video Watch our specially filmed videos to get a different slant on the latest science
  • Webinars Tune into online presentations that allow expert speakers to explain novel tools and applications
  • IOP Publishing
  • Enter e-mail address
  • Show Enter password
  • Remember me Forgot your password?
  • Access more than 20 years of online content
  • Manage which e-mail newsletters you want to receive
  • Read about the big breakthroughs and innovations across 13 scientific topics
  • Explore the key issues and trends within the global scientific community
  • Choose which e-mail newsletters you want to receive

Reset your password

Please enter the e-mail address you used to register to reset your password

Registration complete

Thank you for registering with Physics World If you'd like to change your details at any time, please visit My account

  • Research update

Pump–probe microscopy reveals how historical paintings fade

Munch's Despair

New insights into how a yellow pigment widely used in historical artwork fades over time have been gained by researchers in the US. Using an imaging technique that they had developed to detect skin cancer, Martin Fischer and colleagues at Duke University showed how signs of paint degradation can appear on a microscopic scale, before it is visible to the eye.

As they painted their masterpieces, artists throughout history knew that the colours they used would fade over time. Recently, however, analytical techniques are providing insights into the properties of microscopic grains of pigment and why they fade. This allows us to imagine artworks as they looked when they were first painted, and how to conserve and restore paintings.

“Understanding the reason for pigment degradation is extremely important to halt damage that has occurred, prevent damage that has not yet happened, and to get an idea how a degraded masterpiece might have looked originally,” Fischer explains.

One of the most challenging aspects of this task is the deep complexity hidden beneath the surface of a painting. In many paintings, numerous pigments have been mixed together and layered on top of each other, making them difficult to analyse without damaging the artwork.

In their study, Fischer and colleagues overcame this challenge using a method called pump-probe microscopy, which uses pairs of synchronized femtosecond laser pulses. The two different pulsed laser beams are superimposed and then focused onto the sample being imaged, with a controlled delay between the arrival of the pump and pulse. The pump pulse comes first and creates excitations within the sample. Then the probe pulse interacts with the sample such that the reflected light contains information about specific excitations and therefore the chemical composition of the sample.

Powerful technique

Pump–prove microscopy has become a powerful technique for generating high-contrast images of non-fluorescent images, especially in living tissues. Indeed, Fischer’s team have already adapted it to examine moles for signs of skin cancer. Now, the group has used technique to examine the degradation of pigments hidden within complex layers of paint. They focused on pigments containing cadmium sulphide, which are bright yellow and have played an important role in the history of art.

“CdS was popular with artists like Edvard Munch, Henri Matisse, and Pablo Picasso, but is also very prone to degradation,” Fischer explains. “Despite the importance of CdS, the influence of the environmental conditions and manufacturing methods on the degradation process is not very well understood.”

To investigate the effect, the team started by synthesizing a CdS pigment, using a historical method often used by artists of the past.  They then accelerated the aging process by exposing their pigment to high levels of light and humidity. This quickly degraded the CdS grains into hydrated cadmium sulphate, causing the yellow colour to fade.

Variable breakdown

During the degradation process, the researchers used pump–probe microscopy to monitor changes to individual CdS grains. Their experiment revealed that the breakdown process can vary widely, depending on the size and shape of the grains.

“We discovered that degradation tends to happen more strongly for small, rough CdS crystals that are closer to the surface,” Fischer explains. In contrast, “degradation in larger crystals tends to start from the outside in, and from top to bottom.”

The experiment also showed that signs of degradation can start to appear well before they are visible even to the sharp eyes of art conservators. “Having such an early warning signal could be very helpful to adjust storage or display conditions for the artwork or to indicate the need for early intervention,” Fischer adds.

Based on their success, Fischer and colleagues now hope that pump–probe microscopy will help them to gain a better understanding of the degradation processes that cause fading in other types of pigment. In turn, their work could enable conservators to develop new and improved techniques, helping them to protect priceless historical artwork for years to come.

The research is described in JPhys Photonics .

Want to read more?

  • E-mail Address

Sam Jarman is a science writer based in the UK

powerpoint presentation on physics topics

Download your publishing guide

A step-by-step guide unlocking your research’s scientific impact

  • Advanced materials

Sucking up crude oil with laser-treated cork

  • 2D materials

Domain walls in twisted graphene make 1D superconductors

Discover more from physics world.

powerpoint presentation on physics topics

The future of 2D materials: grand challenges and opportunities

Top Ten BOTY 2023

  • Culture, history and society

Physics World reveals its top 10 Breakthroughs of the Year for 2023

Artist's drawing of graphene membranes, represented as overlapping hexagons of carbon atoms

Related jobs

Thin-film coating specialist, senior engineer technical lead - synthetic environments and simulation, senior staff associate iii – cleanroom director, related events.

  • Materials | Conference 12th International Conference On Recent Challenges In Engineering And Technology (ICRCET) 16—17 June 2024 | Jakarta, Indonesia
  • Materials | Conference 23rd International Conference on Solid Compounds of Transition Elements 17—21 June 2024 | Prague, Czech Republic
  • Materials | Exhibition The Battery Show Europe and Electric & Hybrid Vehicle Technology Expo Europe 18—20 June 2024 | Stuttgart, Germany
  • Skip to main content
  • Skip to FDA Search
  • Skip to in this section menu
  • Skip to footer links

U.S. flag

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

U.S. Food and Drug Administration

  •   Search
  •   Menu
  • Advisory Committees
  • Advisory Committee Calendar
  • UPDATED PUBLIC PARTICIPATION INFORMATION: June 4, 2024: Meeting of the Psychopharmacologic Drugs Advisory Committee Meeting Announcement - 06/04/2024

Advisory Committee Meeting | Mixed

Event Title UPDATED PUBLIC PARTICIPATION INFORMATION: June 4, 2024: Meeting of the Psychopharmacologic Drugs Advisory Committee Meeting Announcement June 4, 2024

What is an advisory committee.

Advisory committees provide independent expert advice to the FDA on broad scientific topics or on certain products to help the agency make sound decisions based on the available science. Advisory committees make non-binding recommendations to the FDA, which generally follows the recommendations but is not legally bound to do so. Please see, " Advisory Committees Give FDA Critical Advice and the Public a Voice ," for more information.

UPDATED INFORMATION (as of May 15, 2024):

The public participation information has been changed for the June 4, 2024, meeting of the Psychopharmacologic Drugs Advisory Committee. The deadline for making formal oral presentation requests has been extended from Friday, May 17, 2024 to Tuesday, May 21, 2024 . The contact person will notify interested persons regarding their request to speak by May 22, 2024 .

All other information remains the same.

ORIGINAL INFORMATION:

Center: Center for Drug Evaluation and Research

Location: FDA and invited participants may attend the meeting at FDA White Oak Campus, 10903 New Hampshire Ave., Bldg. 31 Conference Center, the Great Room (Rm. 1503), Silver Spring, MD 20993-0002. The public will have the option to participate via an online teleconferencing and/or video conferencing platform, and the advisory committee meeting will be heard, viewed, captioned, and recorded through an online teleconferencing and/or video conferencing platform.

The meeting presentations will be heard, viewed, captioned, and recorded through an online teleconferencing and/or video conferencing platform. The Committee will discuss new drug application 215455, for midomafetamine (MDMA) capsules, submitted by Lykos Therapeutics, for the proposed indication of treatment of post-traumatic stress disorder. The Committee will be asked to discuss the overall benefit-risk profile of the product, including the potential public health impact.

Meeting Materials

FDA intends to make background material and the link to the live webcast available to the public no later than two (2) business days before the meeting in the Event Materials section of this web page. If FDA is unable to post the background material on its website prior to the meeting, the background material will be made publicly available on FDA’s website at the time of the advisory committee meeting. The meeting will include slide presentations with audio and video components to allow the presentation of materials for online participants in a manner that most closely resembles an in-person advisory committee meeting.

Public Participation Information

Interested persons may present data, information, or views, orally or in writing, on issues pending before the committee.

FDA is establishing a docket for public comment on this meeting. The docket number is FDA-2024-N-1938 . Please note that late, untimely filed comments will not be considered. The docket will close on June 3, 2024. The https://www.regulations.gov electronic filing system will accept comments until 11:59 p.m. Eastern Time at the end of June 3, 2024. Comments received by mail/hand delivery/courier (for written/paper submissions) will be considered timely if they are received on or before that date.

Comments received on or before May 23, 2024 will be provided to the Committee. Comments received after that date will be taken into consideration by FDA. In the event that the meeting is cancelled, FDA will continue to evaluate any relevant applications or information, and consider any comments submitted to the docket, as appropriate. You may submit comments as follows:

Electronic Submissions

Submit electronic comments in the following way:

  • Federal eRulemaking Portal: https://www.regulations.gov . Follow the instructions for submitting comments. Comments submitted electronically, including attachments, to https://www.regulations.gov will be posted to the docket unchanged. Because your comment will be made public, you are solely responsible for ensuring that your comment does not include any confidential information that you or a third party may not wish to be posted, such as medical information, your or anyone else’s Social Security number, or confidential business information, such as a manufacturing process. Please note that if you include your name, contact information, or other information that identifies you in the body of your comments, that information will be posted on https://www.regulations.gov .
  • If you want to submit a comment with confidential information that you do not wish to be made available to the public, submit the comment as a written/paper submission and in the manner detailed (see “Written/Paper Submissions” and “Instructions”).

Written/Paper Submissions

Submit written/paper submissions as follows:

  • Mail/Hand delivery/Courier (for written/paper submissions): Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852.
  • For written/paper comments submitted to the Dockets Management Staff, FDA will post your comment, as well as any attachments, except for information submitted, marked and identified, as confidential, if submitted as detailed in “Instructions.”

Instructions: All submissions received must include the Docket No. FDA-2024-N-1938 for “Psychopharmacologic Drugs Advisory Committee; Notice of Meeting; Establishment of a Public Docket; Request for Comments-- midomafetamine (MDMA) capsules.” Received comments, those filed in a timely manner, will be placed in the docket and, except for those submitted as “Confidential Submissions,” publicly viewable at https://www.regulations.gov or at the Dockets Management Staff between 9 a.m. and 4 p.m., Monday through Friday, 240-402-7500.

  • Confidential Submissions--To submit a comment with confidential information that you do not wish to be made publicly available, submit your comments only as a written/paper submission. You should submit two copies total. One copy will include the information you claim to be confidential with a heading or cover note that states “THIS DOCUMENT CONTAINS CONFIDENTIAL INFORMATION.” FDA will review this copy, including the claimed confidential information, in its consideration of comments. The second copy, which will have the claimed confidential information redacted/blacked out, will be available for public viewing and posted on https://www.regulations.gov . Submit both copies to the Dockets Management Staff. If you do not wish your name and contact information be made publicly available, you can provide this information on the cover sheet and not in the body of your comments and you must identify the information as “confidential.” Any information marked as “confidential” will not be disclosed except in accordance with 21 CFR 10.20 and other applicable disclosure law. For more information about FDA’s posting of comments to public dockets, see 80 FR 56469, September 18, 2015, or access the information at: https://www.gpo.gov/fdsys/pkg/FR-2015-09-18/pdf/2015-23389.pdf .

Docket: For access to the docket to read background documents or the electronic and written/paper comments received, go to https://www.regulations.gov and insert the docket number, found in brackets in the heading of this document, into the “Search” box and follow the prompts and/or go to the Dockets Management Staff, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852, 240-402-7500.

Oral Presentations

Oral presentations from the public will be scheduled between approximately 2 p.m. and 3.p.m Eastern Time and will take place entirely through an online meeting platform. Those individuals interested in making formal oral presentations should notify the contact person and submit a brief statement of the general nature of the evidence or arguments they wish to present, the names and addresses of proposed participants, and an indication of the approximate time requested to make their presentation on or before May 17, 2024.

Time allotted for each presentation may be limited. If the number of registrants requesting to speak is greater than can be reasonably accommodated during the scheduled open public hearing session, FDA may conduct a lottery to determine the speakers for the scheduled open public hearing session. The contact person will notify interested persons regarding their request to speak by May 20, 2024.

Webcast Information

CDER plans to provide a free of charge, live webcast of the upcoming advisory committee meeting. If there are instances where the webcast transmission is not successful, staff will work to re-establish the transmission as soon as possible. Further information regarding the webcast, including the web address for the webcast, will be made available no later than two (2) business days before the meeting in the Event Materials section of this web page.

CDER plans to post archived webcasts after the meeting, however, in cases where transmission was not successful, archived webcasts will not be available.

Contact Information

  • Joyce Frimpong, PharmD Center for Drug Evaluation and Research Food and Drug Administration 10903 New Hampshire Avenue WO31-2417 Silver Spring, MD 20993-0002 Phone: 240-762-8729 Email: [email protected]
  • FDA Advisory Committee Information Line 1-800-741-8138 (301-443-0572 in the Washington DC area) Please call the Information Line for up-to-date information on this meeting.
  • For press inquiries, please contact the Office of Media Affairs at [email protected] or 301–796–4540.

A notice in the Federal Register about last minute modifications that impact a previously announced advisory committee meeting cannot always be published quickly enough to provide timely notice. Therefore, you should always check the agency’s website or call the committee’s Designated Federal Officer (see Contact Information) to learn about possible modifications before coming to the meeting.

Persons attending FDA’s advisory committee meetings are advised that the agency is not responsible for providing access to electrical outlets. FDA welcomes the attendance of the public at its advisory committee meetings and will make every effort to accommodate persons with disabilities. If you require accommodations due to a disability, please contact the committee’s Designated Federal Officer (see Contact Information) at least 7 days in advance of the meeting.

Answers to commonly asked questions including information regarding special accommodations due to a disability may be accessed at: Common Questions and Answers about FDA Advisory Committee Meetings .

FDA is committed to the orderly conduct of its advisory committee meetings. Please visit our Web site at Public Conduct During FDA Advisory Committee Meetings for procedures on public conduct during advisory committee meetings.

Notice of this meeting is given under the Federal Advisory Committee Act (5 U.S.C. app.2).

powerpoint presentation on physics topics

Got any suggestions?

We want to hear from you! Send us a message and help improve Slidesgo

Top searches

Trending searches

powerpoint presentation on physics topics

11 templates

powerpoint presentation on physics topics

20 templates

powerpoint presentation on physics topics

holy spirit

36 templates

powerpoint presentation on physics topics

9 templates

powerpoint presentation on physics topics

25 templates

powerpoint presentation on physics topics

memorial day

12 templates

Physical Science - Physics - 7th Grade

It seems that you like this template, physical science - physics - 7th grade presentation, premium google slides theme and powerpoint template.

Ignite the scientific curiosity in your 7th grade students with this comprehensive Google Slides and PowerPoint template. Styled in a cheerful yellow, this fun and illustrated template is guaranteed to guide your students through the fascinating world of physics. Get ready to unveil the laws of physics, with the plethora of editable text slides and dynamic visuals this template has to offer. Prepare your students for an exciting journey into the realm of physical science. Download this charming slide deck and transform your physics class into a thrilling scientific exploration.

Features of this template

  • 100% editable and easy to modify
  • 35 different slides to impress your audience
  • Contains easy-to-edit graphics such as graphs, maps, tables, timelines and mockups
  • Includes 500+ icons and Flaticon’s extension for customizing your slides
  • Designed to be used in Google Slides and Microsoft PowerPoint
  • 16:9 widescreen format suitable for all types of screens
  • Includes information about fonts, colors, and credits of the resources used

What are the benefits of having a Premium account?

What Premium plans do you have?

What can I do to have unlimited downloads?

Don’t want to attribute Slidesgo?

Gain access to over 24200 templates & presentations with premium from 1.67€/month.

Are you already Premium? Log in

Related posts on our blog

How to Add, Duplicate, Move, Delete or Hide Slides in Google Slides | Quick Tips & Tutorial for your presentations

How to Add, Duplicate, Move, Delete or Hide Slides in Google Slides

How to Change Layouts in PowerPoint | Quick Tips & Tutorial for your presentations

How to Change Layouts in PowerPoint

How to Change the Slide Size in Google Slides | Quick Tips & Tutorial for your presentations

How to Change the Slide Size in Google Slides

Related presentations.

Physical Sciences - Science - 6th Grade presentation template

Premium template

Unlock this template and gain unlimited access

Science Subject for Middle School - 6th Grade: Physical Science presentation template

Register for free and start editing online

IMAGES

  1. 200 Interesting Physics Seminar and Powerpoint Presentation Topics

    powerpoint presentation on physics topics

  2. PPT

    powerpoint presentation on physics topics

  3. PPT

    powerpoint presentation on physics topics

  4. Free Physics PowerPoint Template and Google Slides

    powerpoint presentation on physics topics

  5. Free Physics PowerPoint Template and Google Slides

    powerpoint presentation on physics topics

  6. 200 Interesting Physics Seminar and Powerpoint Presentation Topics

    powerpoint presentation on physics topics

VIDEO

  1. This is a great feature to start your next PowerPoint Presentation || S. J. INSTITUTION

  2. @#PowerPoint presentation of physics in my college &¥, what abouts my presentation? like@comment 🥰💓💕

  3. This is a great feature to start your next PowerPoint Presentation || S. J. INSTITUTION

  4. Making a Presentation

  5. six ideas that shaped physics an overview

  6. Speech Topics/Presentation Topics for Students/Science PPT Topics/Science Speech Topics

COMMENTS

  1. 200 Interesting Physics Seminar and Powerpoint Presentation Topics

    On this page, we have listed 200+ interesting Physics Seminar Topics and interesting Powerpoint Presentation topics for school and graduate students. You may want to make your own variation of one of the suggested Physics Seminar Topics below. The goal of the Physics Seminar Powerpoint Presentation is to increase the knowledge about fundamental principles and to search for new phenomena.

  2. Physics powerpoint presentations Free to download

    Using PowerPoint for teaching physics can be an effective way to engage your students and present complex concepts visually. Here are some tips on how to use PowerPoint effectively for teaching physics: Start with an outline: Plan your presentation by creating an outline that outlines the main topics and subtopics you want to cover.

  3. Top 101 Physics Topics For Presentation [Updated]

    Physics, the science that seeks to understand the fundamental principles governing the universe, offers a vast array of intriguing topics suitable for presentations. From classical mechanics to quantum physics, the realm of physics encompasses a wide range of phenomena that shape our understanding of the natural world.

  4. Chapter 1

    1.1 What is Physics? The study of the physical world. Use a small number of basic concepts, equations, and assumptions to describe the physical world. Can be used to make predictions about a broad range of phenomena. Appliances, tools, buildings, inventions are all basic physics principles put to test.

  5. Free Physics templates for Google Slides and PowerPoint

    Download the "Energy and Waves - Physics - 11th Grade" presentation for PowerPoint or Google Slides. High school students are approaching adulthood, and therefore, this template's design reflects the mature nature of their education. Customize the well-defined sections, integrate multimedia and interactive elements and allow space for ...

  6. Physics PowerPoints

    Physics 11-Electromagnetic Waves and Optics (2016).pdf: 7.53Mb; Physics 12-Special Relativity (2016).pdf: 919.56kb; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. Contact Me. Visit my favorite educational institutions.

  7. Physics 1425 PowerPoint Slides

    These are the slides I created for Physics 1425 (Physics I for Engineers) in the Spring of 2010. They were supplemented with some clicker questions supplied with the textbook (Giancoli), but most of the slides used are here (in PDF format). To get the .pptx files, click to open the pdf, then type pptx in place of pdf. 1.

  8. Physics PowerPoint Presentations

    It is written and maintained by a fully qualified British Physics Teacher. Topics include atomic and nuclear physics, electricity and magnetism, heat transfer, geophysics, light and the electromagnetic spectrum, earth, forces, radioactivity, particle physics, space, waves, sound and medical physics.

  9. Free PPT Slides for Physics

    3. 4. 5. Unlock a Vast Repository of Physics PPT Slides, Meticulously Curated by Our Expert Tutors and Institutes. Download Free and Enhance Your Learning!

  10. Physics for High School

    35 different slides to impress your audience. Contains easy-to-edit graphics such as graphs, maps, tables, timelines and mockups. Includes 500+ icons and Flaticon's extension for customizing your slides. Designed to be used in Google Slides, Canva, and Microsoft PowerPoint. 16:9 widescreen format suitable for all types of screens.

  11. Lecture Slides

    Particle Interaction with Matter (PDF - 1.1MB) 10.2. Tracking Detectors (PDF) 10.3. Calorimetry (PDF) 10.4. Accelerators (PDF - 5MB) [adapted from the Advanced Accelerator Physics slides by Prof. Georg Hoffstaetter, Cornell University] This section includes 67 short lecture slides.

  12. Free Physics PowerPoint Template and Google Slides

    This Physics deck template includes 18 slides with a dark background that includes formulas and laws to focus on the topic at all times. With this interactive design, your audience will feel very comfortable learning the lessons as it includes wholly well-designed and eye-catching elements. Moreover, students can use these Physics backgrounds ...

  13. 200 Interesting Physics Seminar and Powerpoint Presentation Topics

    200 Interesting Physics Seminar and Powerpoint Presentation Topics - Free download as PDF File (.pdf), Text File (.txt) or read online for free. This document lists 200 potential topics for physics seminar and powerpoint presentations. Some example topics included are special and general relativity, time dilation, physics in sports, anti-gravity wheels, renewable energy sources like wind and ...

  14. Page 2

    Download the "Energy and Conservation Laws - Physics - 10th Grade" presentation for PowerPoint or Google Slides. High school students are approaching adulthood, and therefore, this template's design reflects the mature nature of their education. Customize the well-defined sections, integrate multimedia and interactive elements and allow space ...

  15. Teacher Presentation Pack for Physics

    Our Teacher Presentation Pack is a teacher resource designed to facilitate lesson planning, curriculum development, and presentations. The project was inspired and is supported by the Physics Video Tutorial section of our website. The download is packed with nearly 190 Microsoft PowerPoint slide decks, the corresponding Lesson Notes (as PDF and ...

  16. physics Powerpoint templates and Google Slides themes

    Social Media. 8 templates. Sports. 46 templates. Travel. 26 templates. Workshop. 4 templates. Download your presentation as a PowerPoint template or use it online as a Google Slides theme. 100% free, no registration or download limits.

  17. IB Physics

    Topic 5 - Electricity and Magnetism. This slideshow includes PowerPoint slides to help you teach topic 5 from the IB Physics course, including: electric current, conventional current, revision of AC and DC, charge and current, calculating charge using Q=It, definition of voltage, electrical work done, electric fields and point charges (positive ...

  18. 25 Useful Presentation Topics for Science

    This is a great topic to really generate and at times, even quench the curiosity of your students or children. While it is a great topic for presentation in class, it is also an equally good topic for a dinner conversation with your kids. 2. DNA structure. Our DNA is the very core of our life.

  19. Physics Presentations for Class 12 Chapter Wise

    MasterMind CBSE Chapterwise Question Bank Physics, Chemistry and Mathematics Class 12 Term 2 includes MCQs For 2022 Exams Amazon Affiliate Disclaimer: cbsecontent.com is a part of Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to ...

  20. Create a new presentation with Copilot in PowerPoint

    Edit the presentation to suit your needs, ask Copilot to add a slide, or start over with a new presentation and refine your prompt to include more specifics.For example, "Create a presentation about hybrid meeting best practices that includes examples for team building." Create a presentation with a template

  21. Physics Major for College: Fluid Mechanics

    Disney Templates with your favorite Disney and Pixar characters Slidesclass Ready-to-go classes on many topics for everyone Editor's Choice Our favorite slides Multi-purpose Presentations that suit any project Teacher Toolkit Content for teachers Interactive ... Fluid mechanics is the branch of physics that studies the behavior of fluids ...

  22. Researchers split on merits and pitfalls of AI in peer review, IOP

    IOP Publishing, which publishes Physics World, currently does not allow the use of generative AI to "write or augment" peer-review reports or for AI tools to be named as authors on manuscripts.Instead, it encourages authors to be "open and transparent" about their use of such tools in their work. However, publishers do not yet have a way to accurately detect whether text has been ...

  23. Quantum physics may help lasers see through fog, aid in surveillance

    Quantum physics may help lasers see through fog, aid in surveillance By Beth Miller May 14, 2024 SHARE Jung-Tsung Shen is developing a prototype of a quantum photonic-dimer laser with a two-year $1 million grant from the Defense Advanced Research Projects Agency of the U.S. Department of Defense.

  24. Pump-probe microscopy reveals how historical paintings fade

    Your Physics World account is separate to any IOP accounts you may have. Registration is free, quick and easy. Access more than 20 years of online content; Choose which e-mail newsletters you want to receive; Read about the big breakthroughs and innovations across 13 scientific topics; Explore the key issues and trends within the global ...

  25. Stock Market Today: Dow Opens Higher as Traders Eye 40000 Milestone

    The Dow Jones Industrial Average just touched 40000 for the first time. The milestone builds on a run for the three major U.S. indexes that reached new heights this week. A key inflation report ...

  26. Quantum Physics Infographics

    Right now, scientists face one of the biggest problems that we have ever faced: the standard model describes the physics we see in our everyday lives, and the quantum model describes what happens in a nanoscopic level, and they don't match. Use these infographics to explain physics concepts and who knows, maybe your students develop the new ...

  27. June 4, 2024: Meeting of the Psychopharmacologic Drugs AC

    Oral Presentations Oral presentations from the public will be scheduled between approximately 2 p.m. and 3.p.m Eastern Time and will take place entirely through an online meeting platform.

  28. Easily detect CVE-2024-21427 with Microsoft Defender for Identity

    The recently published CVE-2024-21427 Windows Kerberos Security Feature Bypass Vulnerability fixed the potential bypass of authentication policies configured in Active Directory. We strongly recommend that you deploy the latest security updates, including the most recent patch, to your servers and devices to help ensure you have the latest protections available.

  29. Physical Science

    Premium Google Slides theme and PowerPoint template. Ignite the scientific curiosity in your 7th grade students with this comprehensive Google Slides and PowerPoint template. Styled in a cheerful yellow, this fun and illustrated template is guaranteed to guide your students through the fascinating world of physics. Get ready to unveil the laws ...

  30. Engineered Bolometer Leg Materials Toward Physics-Limited Thermal

    Engineered Bolometer Leg Materials Toward Physics-Limited Thermal Infrared Imaging Arrays. Release Date: 04/17/2024 Solicitation: 24.B. Open Date: 05/15/2024 Topic Number: A24B-T012. Application Due Date: 06/12/2024 ... The topic seeks a new material or engineered material system, which is inherently more thermally isolating, while maintaining ...