• Resources library

Polya’s Problem-Solving Process

Emma Moore, Teaching Excellence Program Master Teacher 

Problem-solving skills are crucial for students to navigate challenges, think critically, and find innovative solutions. In PISA, problem-solving competence is defined as “an individual’s capacity to engage in cognitive processing to understand and resolve problem situations where a method of solution is not immediately obvious” (OECD, 2014, p. 30). Returning to the classroom post-COVID, I found that students had lost their ‘grit’ for these deep-thinking tasks. They either struggled to start, gave up easily, or stopped at their first ‘answer’ without considering if it answered the problem or was the only possible solution.

To re-invigorate these skills, I investigated the impact of explicitly teaching Polya's problem-solving process in my Year Six class. This framework developed student agency and supported them to manage their feelings if they felt challenged by the work.

Here, I will share the impact of this initiative and how it empowered students to become effective and resilient problem solvers.  

Understanding Polya's Problem-Solving Process

Polya's problem-solving process, developed by mathematician George Polya, provides a structured approach to problem-solving that can be applied across various domains. This four-step process consists of understanding the problem, devising a plan, trying the plan, and revisiting the solution. (Polya, 1947)

In order to focus on the skills and knowledge of the problem-solving process, I began by using tasks where the mathematical processes were obvious. This allowed me to focus on the problem-solving process explicitly.

Polya's Problem-Solving Process - Figure 1

The question shown in Figure 2 is taken from Peter Sullivan and Pat Lilburn's Open-Ended Maths Activities book. This task was used to establish a baseline assessment for each stage of the process. I planned the prompts in dot points and revealed them one by one through the PowerPoint. After launching the task and giving the students time to think, they recorded all their possible answers in their workbook.

Understanding Polya's Problem-Solving Process - Figure 2

The student sample shown in Figure 3 demonstrates that the student followed a pattern and stuck to it but did not revisit their work. On line two, their response (1 half and 1 half is 2 quarters) is unreasonable.

Understanding Polya's Problem-Solving Process - Figure 3: Sample gathered from a small group of students

Figure 3 is a sample gathered from a small group of students. This group required support to start. They used paper folding and paper strips to model their thinking.

Over half of the class could give at least one correct answer, but only four students showed signs of checking to see if their plans addressed the problem and yielded correct answers. Understanding the problem and revisiting the solutions became the focus of my inquiry.

The following series of lessons covering operations with fractions and decimals focused on the stages of Polya’s process.  

Step 1: Understanding the Problem

The first step of Polya's problem-solving process emphasises the importance of ensuring you thoroughly comprehend the problem. In this step, students learn to read and analyse the problem statement, identify the key information, and clarify any uncertainties. This process encourages critical thinking (Bicer et al., 2020) as students develop the ability to break down complex problems into manageable parts. I facilitated this process by engaging students in discussions and guiding them to identify the essential components of the problem. By fostering a collaborative learning environment, students shared their perspectives and learned to refine their questions when they were unsure. Figure 6 shares an example of a prompt I use for Step 1.

Figure 4: Example prompt for Step 1.

Understanding Polya's Problem-Solving Process - Figure 4: Example prompt

Initially, students who were stuck provided the classic ‘white flag’ responses.

Student: I just don’t get it.

Teacher: What part don’t you get?

Student: All of it!

As a starting point, the students and I co-created a classroom display of helpful questions the students could use to develop their understanding.

These questions supported me to develop a deeper understanding of what students didn’t understand when they expressed uncertainty. This could range from not understanding specific terminology (often easy to explain) to where numbers came from and why their classmates interpreted the problem differently. I found engaging in this step made triaging their misunderstandings easier.  

Step 2: Devising a Plan

Once students had grasped the problem, the next step was to formulate a plan of action. In this step, students explored different strategies and selected the most appropriate approach. I prompted students to brainstorm possible solutions, draw diagrams, make tables, and create algorithms, all the time fostering creativity and diverse thinking.

This step had been a strength during the baseline assessment data, and a wide range of strategies were explored. Polya’s strategies were displayed in the classroom as the mathematician’s strategy tool kit, so students were comfortable acknowledging the many ways to solve the problem.

Students developed critical thinking and decision-making skills by keeping this step in problem-solving. They become adept at evaluating multiple approaches and selecting the most effective strategy to solve a problem, thus promoting the development of mathematical reasoning abilities (Barnes, 2021). Figure 7 shows a slide used in Step 2.

Figure 5: Example prompt for Step 2.

Understanding Polya's Problem-Solving Process - Figure 5: Example prompt for Step 2

Step 3: Try

The students implemented their selected strategy, performed calculations, made models, drew diagrams, created tables, and found patterns. This stage encouraged students to persevere and take ownership of their problem-solving process.

At Cowes Primary School, we have developed whole-school expectations around providing opportunities for hands-on learning, allowing students to engage in practical activities that support the development of ideas, expecting students to represent their work visually (pictures, materials and manipulatives), using language and numbers/symbols. This approach enhances students' problem-solving skills and fosters a sense of autonomy and confidence in their capabilities and ability to talk about their work (Roche et al., 2023). Figure 9 shows the slide used for Step 3.

Figure 6: Example prompt for Step 3.

Understanding Polya's Problem-Solving Process - Figure 6: Example prompt for Step 3

Step 4. Re-visiting the solution

The last step in Polya's problem-solving process is re-visit. After finding a solution, students critically analyse and evaluate their approach after finding a solution. They consider the effectiveness of their chosen strategy, identify strengths and weaknesses, and reflect on how they could improve their problem-solving techniques. This step was missing from most students’ work during the baseline assessment.

As a class, we added to the display questions to facilitate better reflective practice and developed a more critical approach to looking at our work. This process encouraged students to refine their answers, not go too far down the wrong path, fostered resilience, embrace challenge and normalise uncertainty (Buckley & Sullivan, 2023).

Figure 7: Class display showing our questions.

Understanding Polya's Problem-Solving Process - Figure 7: Class display showing questions

  Figure 8: Student samples from the task.

Understanding Polya's Problem-Solving Process - Figure 8: Fraction Wall sample task

Impact and Benefits:

Figure 9 shows four tasks, including the initial baseline assessment. The blue series shows the percentage of students who arrived at least one correct solution. The green series shows evidence that students were revisiting their initial solutions using other strategies to check they were correct or checking in with other groups and adjusting. There was a steady increase in both skills over the course of these four tasks.

Understanding Polya's Problem-Solving Process - Figure 9: Shows four tasks, including the initial baseline assessment

By explicitly teaching Polya's problem-solving process, the students cultivated valuable skills that extend beyond maths problems. Some of the key benefits observed were:

Mathematical Reasoning: Polya's process promotes the development of mathematical reasoning skills. Students analysed problems, explored different strategies, and apply logical thinking to arrive at solutions. These skills can enhance their overall mathematical proficiency.

Self-efficacy: Through problem-solving, students gained confidence in their ability to tackle problems. They become more self-reliant, taking ownership of their learning, and seeking solutions proactively.

Collaboration and Communication: The process encouraged collaboration and communication among students. They discussed problems, shared ideas, and considered multiple perspectives, students developed effective teamwork and interpersonal skills.

Metacognition: The reflective aspect of Polya's process fostered metacognitive skills, enabling students to monitor and regulate their thinking processes. They learned to identify their strengths and weaknesses, supporting continuous improvement and growth.  

Overall using the 4 steps was a really effective and an explicit way to focus on developing the problem-solving skills of my Year 6 students.

This article was originally published for the Mathematical Association of Victoria's Prime Number.    

References:

Barnes, A. (2021). Enjoyment in learning mathematics: Its role as a potential barrier to children’s perseverance in mathematical reasoning. Educational Studies in Mathematics , 106(1), 45–63. https://doi.org/10.1007/s10649-020-09992-x

Bicer, Ali, Yujin Lee, Celal Perihan, Mary M. Capraro, and Robert M. Capraro. ‘Considering Mathematical Creative Self-Efficacy with Problem Posing as a Measure of Mathematical Creativity’. Educational Studies in Mathematics 105, no. 3 (November 2020): 457–85. https://doi.org/10.1007/s10649-020-09995-8

Buckley, S., & Sullivan, P. (2023). Reframing anxiety and uncertainty in the mathematics classroom. Mathematics Education Research Journal , 35(S1), 157–170. https://doi.org/10.1007/s13394-021-00393-8

OECD (Ed.). (2014). Creative problem solving: Students’ skills in tackling real-life problems. OECD.

Pólya, G. (1988). How to solve it: A new aspect of mathematical method (2nd ed). Princeton university press.

Roche, A., Gervasoni, A., & Kalogeropoulos, P. (2023). Factors that promote interest and engagement in learning mathematics for low-achieving primary students across three learning settings. Mathematics Education Research Journal , 35(3), 525–556. https://doi.org/10.1007/s13394-021-00402-w

Four Steps of Polya's Problem Solving Techniques

Related tags:

In the world of mathematics and algorithms, problem-solving is an art which follows well-defined steps. Such steps do not follow some strict rules and each individual can come up with their steps of solving the problem. But there are some guidelines which can help to solve systematically.

In this direction, mathematician George Polya crafted a legacy that has guided countless individuals through the maze of problem-solving. In his book “ How To Solve It ,” Polya provided four fundamental steps that serve as a compass for handling mathematical challenges. 

  • Understand the problem
  • Devise a Plan
  • Carry out the Plan
  • Look Back and Reflect

Let’s look at each one of these steps in detail.

Polya’s First Principle: Understand the Problem

Before starting the journey of problem-solving, a critical step is to understand every critical detail in the problem. According to Polya, this initial phase serves as the foundation for successful solutions.

At first sight, understanding a problem may seem a trivial task for us, but it is often the root cause of failure in problem-solving. The reason is simple: We often understand the problem in a hurry and miss some important details or make some unnecessary assumptions. So, we need to clearly understand the problem by asking these essential questions:

  • Do we understand all the words used in the problem statement? 
  • What are we asked to find or show? What is the unknown? What is the information given? Is there enough information to enable you to find a solution?
  • What is the condition or constraints given in the problem? Separate the various parts of the condition: Is it possible to satisfy the condition? Is the condition sufficient to determine the unknown? Or is it insufficient? Or redundant? Or contradictory?
  • Can you write down the problem in your own words? If required, use suitable notations, symbols, equations, or expressions to convey ideas and encapsulate critical details. This can work as our compass, which can guide us through calculations to reach the solution.
  • After knowing relevant details, visualization becomes a powerful tool. Can you think of a diagram that might help you understand the problem? This can serve as a bridge between the abstract and tangible details and reveal patterns that might not be visible after looking at the problem description.

Just as a painter understands the canvas before using the brush, understanding the problem is the first step towards the correct solution.

Polya’s Second Principle: Devise a Plan

Polya mentions that there are many reasonable ways to solve problems. If we want to learn how to choose the best problem-solving strategy, the most effective way is to solve a variety of problems and observe different steps involved in the thought process and implementation techniques.

During this practice, we can try these strategies:

  • Guess and check
  • Identification of patterns
  • Construction of orderly lists
  • Creation of visual diagrams
  • Elimination of possibilities
  • Solving simplified versions of the problem
  • Using symmetry and models
  • Considering special cases
  • Working backwards
  • Using direct reasoning
  • Using formulas and equations

Here are some critical questions at this stage:

  • Can you solve a portion of the problem? Consider retaining only a segment of conditions and discarding the rest.
  • Have you encountered this problem before? Have you encountered a similar problem in a slightly different form with the same or a similar unknown? Look closely at the unknown.
  • If the proposed problem proves challenging, try to solve related problems first. Can you imagine a more approachable related problem? A more general or specialized version? Could you utilize their solutions, results, or methods?
  • Can you derive useful insights from the data? Can you think of other data that would help determine the unknown? Did you utilize all the given data? Did you incorporate the entire set of conditions? Have you considered all essential concepts related to the problem?

Polya’s Third Principle: Carry out the Plan

This is the execution phase where we transform the blueprint of our devised strategy into a correct solution. As we proceed, our goal is to put each step into action and move towards the solution.

In general, after identifying the strategy, we need to move forward and persist with the chosen strategy. If it is not working, then we should not hesitate to discard it and try another strategy. All we need is care and patience. Don’t be misled, this is how mathematics is done, even by professionals. There is one important thing: We need to verify the correctness of each step or prove the correctness of the entire solution.

Polya’s Fourth Principle: Look Back and Reflect

In the rush to solve a problem, we often ignore learning from the completed solutions. So according to Polya, we can gain a lot of new insights by taking the time to reflect and look back at what we have done, what worked, and what didn’t. Doing this will enable us to predict what strategy to use to solve future problems.

  • Can you check the result? 
  • Can you check the concepts and theorems used? 
  • Can you derive the solution differently?
  • Can you use the result, or the method, for some other problem?

By consistently following the steps, you can observe a lot of interesting insights on your own.

George Polya's problem-solving methods give us a clear way of thinking to get better at math. These methods change the experience of dealing with math problems from something hard to something exciting. By following Polya's ideas, we not only learn how to approach math problems but also learn how to handle the difficult parts of math problems.

Shubham Gautam

Share on social media:

Don’t fill this out if you’re human:

More blogs to explore

Originated from the “Games of Chance,” probability in itself is a branch of mathematics concerned about how likely it is that a proposition is true.

There are 3 doors behind which are two goats and a car. You pick door 1 hoping for the car but don’t open it right away. Monty Hall, the game show host who knows what's behind the doors, opens door 3, which has a goat. Here's the game: do you want to pick door No. 2? Is it to your advantage to switch your choice?

A cube is painted with some color on all faces. Now, we cut it into 1000 small cubes of equal size. How many small cubes are painted?

Given two non-negative integers, m and n, we have to find their greatest common divisor or HCF. It is the largest number, a divisor of both m and n. The Euclidean algorithm is one of the oldest and most widely known methods for computing the GCD of two integers.

This is one of the basic problems to learn the properties of prime numbers and the divisibility rule. There could be several variations and several ideas of proof available to this question.

The Probability distribution lists the probabilities of the events that happened in any given random experiment. For example rolling a dice.

Follow us on:

© 2020 Code Algorithms Pvt. Ltd.

All rights reserved.

sadlier-connect

  • Mathematics
  • Reading and Writing
  • Intervention
  • Professional Learning
  • Virtual Events
  • What is Phonics?
  • Teaching Grammar
  • Vocabulary Games
  • What is Virtual Learning?
  • About Sadlier
  • Find a Sales Representative
  • International Distributors
  • International Programs
  • Online Catalogs
  • Sadlier School Site Map
  • Pricing & Ordering Information
  • Sadlier’s W-9
  • Sadlier’s Sole Source Letter
  • Sadlier’s Credit Application
  • Privacy Policy
  • Return Policy
  • Terms & Conditions

Sadlier's Math Blog

what is polya's problem solving strategy

  • Counting and Cardinality
  • Operations and Algebraic Thinking
  • Number and Operations in Base 10
  • Measurement and Data
  • Math Practices
  • Number and Operations Fractions
  • Statistics and Probability
  • The Number System
  • Ratios and Proportional Relationships
  • Expressions and Equations
  • MP1—Problem Solving
  • MP2—Abstract <−>Quantitative
  • MP3—Reasoning
  • MP4—Modeling
  • MP5—Using Tools
  • MP6—Precision
  • MP7—Structure
  • MP8—Repeated Reasoning
  • Kindergarten Math Activities
  • First Grade Math Activities
  • Second Grade Math Activities
  • Third Grade Math Activities
  • Fourth Grade Math Activities
  • Fifth Grade Math Activities
  • Sixth Grade Math Activities
  • Seventh Grade Math Activities
  • Eighth Grade Math Activities
  • Professional Development
  • Test-Taking Strategies
  • Classroom Posters
  • Writing In Mathematics

April 19, 2023 3-5-operations-and-algebraic-thinking , k-2-operations-and-algebraic-thinking , 6-8-expressions-and-equations

Polya’s problem-solving process: finding unknowns elementary & middle school, by: jeff todd.

In this article, we'll explore how a focus on finding “unknowns” in math will lead to active problem-solving strategies for Kindergarten to Grade 8 classrooms. Through the lens of George Polya and his four-step problem-solving heuristic, I will discuss how you can apply the concept of finding unknowns to your classroom. Plus, download my Finding Unknowns in Elementary and Middle School Math Classes Tip Sheet .

polyas-problem-solving-steps-to-solve-unknowns-in-elementary-and-middle-school-classes

It is unfortunate that in the United States mathematics has a reputation for being dry and uninteresting. I hear this more from adults than I do from children—in fact, I find that children are naturally curious about how math works and how it relates to the world around them. It is from adults that they get the idea that math is dry, boring, and unrelated to their lives. Despite what children may or may not hear about math, I focus on making instruction exciting and showing my students that math applicable to their lives.

Problem solving is a fundamental means of developing students' mathematical knowledge and it also shows them that math concepts apply to real-world concepts.

Problem solving is one way I show my students that math relates to their lives! Problem solving is a fundamental means of developing students' mathematical knowledge and it also shows them that math concepts apply to real-world concepts.

Who Is George Polya?

George Polya was a European-born scholar and mathematician who moved to the U.S in 1940, to work at Stanford University. When considering the his classroom experience of teaching mathematics, he noticed that students were not presented with a view of mathematics that excited and energized them. I know that I have felt this way many times in my teaching career and have often asked: How can I make this more engaging and yet still maintain rigor?

Polya suggested that math should be presented in the light of being able to solve problems. His 1944 book,  How to Solve It  contains his famous four-step problem solving heuristic. Polya suggests that by presenting mathematical thinking as a way to find “unknowns,” it becomes more engaging for students.

He even goes as far as to say that his general four-step problem-solving heuristic can be applied to any field of human endeavor—to any opportunity where a problem exists.

Polya suggested that math should be presented in the light of being able to solve problems...that by presenting mathematical thinking as a way to find “unknowns,” it becomes more engaging for students.

Polya specifically wrote about problem-solving at the high school mathematics level. For those of us teaching students in the elementary and middle school levels, finding ways to apply Polya’s problem-solving process as he intended forces us to rethink the way we teach.

Particularly in the lower grade levels, finding “unknowns” can be relegated to prealgebra and algebra courses in the later grades. Nonetheless, today’s standards call for algebra and algebraic thinking at early grade levels. The  download  for today’s post presents one way you can find unknowns at each grade level.

This table lists “unknown situations” from modern math standards and suggests a problem-solving challenge for each grade level. Use this list to apply Polya’s Four-Step Problem-Solving Process in the lower grades!

Presenting Mathematics  As A Way To Find "Unknowns" In Real-Life Situations

I would like to share a conversation I had recently with my friend Stu. I have been spending my summers volunteering for a charitable organization in Central America that provides medical services for the poor, runs ESL classes, and operates a Pre-K to Grade 6 school. We were talking about the kind of professional development that I might provide the teachers, and he was intrigued by the thought that we could connect mathematical topics to real life. We specifically talked about the fact that he remembers little or nothing about how to find the area of a figure and never learned in school why it might be important to know about area. Math was presented to him as a set of rules and procedures rather than as a way to find unknowns in real-life situations.

That’s what I am talking about here, and it’s what I believe Polya was talking about. How can we create classrooms where students are able to use their mathematical knowledge to solve problems, whether real-life or purely mathematical?

As Polya noted, there are two ways that mathematics can be presented, either as deductive system of rules and procedures or as an inductive method of making mathematics. Both ways of thinking about mathematics have endured through the centuries, but at least in American education, there has been an emphasis on a procedural approach to math. Polya noticed this in the 1940s, and I think that although we have made progress, there is still an over-emphasis on skill and procedure at the expense of problem-solving and application.

I recently reread Polya’s book. I can’t say that it is an “easy” read, but I would say that it was valuable for me to revisit his own words in order to be sure I understood what he was advocating. As a result, I made the following outline of his problem-solving process and the questions he suggests we use with students.

Polya's Problem-Solving Process

1. understand the problem, and desiring the solution .

  • Restate the problem
  • Identify the principal parts of the problem
  • Essential questions
  • What is unknown?
  • What data are available?
  • What is the condition?

2. Devising a Problem-Solving Plan 

  • Look at the unknown and try to think of a familiar problem having the same or similar unknown
  • Here is a problem related to yours and solved before. Can you use it?
  • Can you restate the problem?
  • Did you use all the data?
  • Did you use the whole condition?

3. Carrying Out the Problem-Solving Plan 

  • Can you see that each step is correct?
  • Can you prove that each step is correct?

4. Looking Back

  • Can you check the result?
  • Can you check the argument?
  • Can you derive the result differently?
  • Can you see the result in a glance?
  • Can you use the result, or the method, for some other problem?

Polya's Suggestions For Helping Students Solve Problems

I also found four suggestions from Polya about what teachers can do to help students solve problems:

Suggestion One In order for students to understand the problem, the teacher must focus on fostering in students the desire to find a solution. Absent this motivation, it will always be a fight to get students to solve problems when they are not sure what to do.

Suggestion Two A second key feature of this first phase of problem-solving is giving students strategies forgetting acquainted with problems.

Suggestion Three Another suggestion is that teachers should help students learn strategies to be able to work toward a better understanding of any problem through experimentation.

Suggestion Four Finally, when students are not sure how to solve a problem, they need strategies to “hunt for the helpful idea.”

Whether you are thinking of problem-solving in a traditional sense (solving computational problems and geometric proofs, as illustrated in Polya’s book) or you are thinking of the kind of problem-solving students can do through STEAM activities, I can’t help but hear echoes of Polya in Standard for Math Practice 1: Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary.

In Conclusion

We all know we should be fostering students’ problem-solving ability in our math classes. Polya’s focus on “finding unknowns” in math has wide applicability to problems whether they are purely mathematical or more general.

Grab my  download  and start  applying Polya’s Four-Step Problem-Solving Process in the lower grades!

what is polya's problem solving strategy

Lindsey Nicholson

  • Presentations:oral
  • Presentations:poster
  • News & Blog

Polya’s Problem Solving Techniques

Teaching University students to carry out critical and independent science research is challenging, and they need to learn to flex new muscles and approaches in their brain, that are not always well stretched at the school stage. I have found the summary of George Polyas lessons that I reproduce below on a number of websites (e.g. here ) and I do not know the original source, but its great – have a read:

In 1945 George Polya published a book How To Solve It , which quickly became his most prized publication. It sold over one million copies and has been translated into 17 languages. In this book he identifies four basic principles of problem solving.

Polya’s First Principle: Understand the Problem

This seems so obvious that it is often not even mentioned, yet students are often stymied in their efforts to solve problems simply because they don’t understand it fully, or even in part. Polya taught teachers to ask students questions such as:

  • Do you understand all the words used in stating the problem?
  • What are you asked to find or show?
  • Can you restate the problem in your own words?
  • Can you think of a picture or diagram that might help you understand the problem?
  • Is there enough information to enable you to find a solution?

Polya’s Second Principle: Devise a Plan

Polya mentions that there are many reasonable ways to solve problems. The skill at choosing an appropriate strategy is best learned by solving many problems. You will find choosing a strategy increasingly easy. A partial list of strategies is included:

  • Guess and check
  • Look for a pattern
  • Make an orderly list
  • Draw a picture
  • Eliminate the possibilities
  • Solve a simpler problem
  • Use symmetry
  • Use a model
  • Consider special cases
  • Work backwards
  • Use direct reasoning
  • Use a formula
  • Solve an equation
  • Be ingenious

Polya’s Third Principle: Carry Out the Plan

This step is usually easier than devising the plan. In general, all you need is care and patience, given that you have the necessary skills. Persist with the plan that you have chosen. If it continues not to work, discard it and  choose another. Don’t be misled, this is how things are done, even by professionals.

Polya’s Fourth Principle: Look Back

Polya mentions that much can be gained by taking the time to reflect and look back at what you have done, what worked, and what didn’t. Doing this will enable you to predict what strategy to use to solve future problems.

These principles and more details about strategies of carrying them out are summarized in this document: Polya’s Problem Solving Techniques

George Polya (1887–1985) was one of the most influential mathematicians of the twentieth century. His basic research contributions span complex analysis, mathematical physics, probability theory, geometry, and combinatorics. He was a teacher par excellence who maintained a strong interest in pedagogical matters throughout his long career. Even after his retirement from Stanford University in 1953, he continued to lead an active mathematical life. He taught his final course, on combinatorics, at the age of ninety.

' src=

About lindsey

Comments are closed.

Search this website

Recent posts.

  • Pathways to limiting global warming to 1.5°C
  • What of women in science?
  • JIRP student presentations at the IGS Global Seminar Series
  • Engaging Rural and Alaska Native Undergraduates and Youth in Arctic STEM
  • Canadian connections
  • Glacier webcams
  • IFMGA Mountain Talks Series
  • Austrian Assessment Report
  • Austrian Academy of Sciences Joint Academy Day 2021
  • Denial of anthropogenic climate change
  • Attribution of climate change
  • Difference between 1.5° and 2.0°C warming
  • Water-Energy-Food Nexus
  • Global greenhouse gas emissions by sector
  • World population and its appetite
  • Common errors in (student) science writing
  • Climate inaction tops WEF risk assessment for 2021
  • Earth surface and energy uptake in the climate system
  • Habilitation Thesis
  • Imposter syndrome and nurturing work envionments
  • Book about glacier research on Vernagtferner
  • #shareEGU20
  • Records of loss and the left behind
  • The practice of my science
  • Glaciers on Mt Kenya
  • Glaciers of the Arid Andes
  • System change not climate change
  • JIRP presence at the AGU meeting
  • Timelapse images of Lewis glacier
  • aber cryoconite
  • all models are wrong
  • arctic sea ice
  • better figures
  • climate lab book
  • from a glaciers perspective
  • glacier bytes
  • glacier change
  • glacier hazards chile
  • miscellaneous debris
  • plantery geomorphology images
  • real climate
  • wasatch weather
  • alpine sciences
  • energy & future
  • mountain hydrology
  • pop greenland
  • rocky glaciers
  • Entries feed
  • Comments feed
  • WordPress.org

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

2.3.1: George Polya's Four Step Problem Solving Process

  • Last updated
  • Save as PDF
  • Page ID 90483

Step 1: Understand the Problem

  • Do you understand all the words?
  • Can you restate the problem in your own words?
  • Do you know what is given?
  • Do you know what the goal is?
  • Is there enough information?
  • Is there extraneous information?
  • Is this problem similar to another problem you have solved?

Step 2: Devise a Plan: Below are some strategies one might use to solve a problem. Can one (or more) of the following strategies be used? (A strategy is defined as an artful means to an end.)

Physics Network

What is Polya’s method of problem solving?

Nearly 100 years ago, a man named George Polya designed a four-step method to solve all kinds of problems: Understand the problem, make a plan, execute the plan, and look back and reflect. Because the method is simple and generalizes well, it has become a classic method for solving problems.

What are the 4 problem solving methods?

  • Rubber duck problem solving.
  • Lateral thinking.
  • Trial and error.
  • The 5 Whys.

What is Polya’s third step in the problem solving process?

Third. Carry out your plan. Carrying out your plan of the solution, check each step. Can you see clearly that the step is correct?

What is the part of Polya’s four step strategy is often overlooked?

Understand the Problem. This part of Polya’s four-step strategy is often overlooked. You must have a clear understanding of the problem. To help you focus on understanding the problem, consider the following questions: • • • • • Can you restate the problem in your own words?

What are the 5 problem-solving methods?

  • Step 1: Identify the Problem.
  • Step 2: Generate potential solutions.
  • Step 3: Choose one solution.
  • Step 4: Implement the solution you’ve chosen.
  • Step 5: Evaluate results.
  • Next Steps.

What is the best problem-solving method Why?

One of the most effective ways to solve any problem is a brainstorming session. The gist of it is to generate as many ideas as you can and in the process, come up with a way to remove a problem.

What are the 7 steps of problem-solving?

  • 7 Steps for Effective Problem Solving.
  • Step 1: Identifying the Problem.
  • Step 2: Defining Goals.
  • Step 3: Brainstorming.
  • Step 4: Assessing Alternatives.
  • Step 5: Choosing the Solution.
  • Step 6: Active Execution of the Chosen Solution.
  • Step 7: Evaluation.

What are the 3 types of problem-solving?

  • Social sensitive thinking.
  • Logical thinking.
  • Intuitive thinking.
  • Practical thinking.

What are the 3 stages of problem-solving?

A few months ago, I produced a video describing this the three stages of the problem-solving cycle: Understand, Strategize, and Implement. That is, we must first understand the problem, then we think of strategies that might help solve the problem, and finally we implement those strategies and see where they lead us.

What are the three problem-solving techniques?

  • Trial and Error.
  • Difference Reduction.
  • Means-End Analysis.
  • Working Backwards.

Who is the father of problem-solving method?

George Polya, known as the father of modern problem solving, did extensive studies and wrote numerous mathematical papers and three books about problem solving.

What are the examples of problem-solving strategies?

  • Guess (includes guess and check, guess and improve)
  • Act It Out (act it out and use equipment)
  • Draw (this includes drawing pictures and diagrams)
  • Make a List (includes making a table)
  • Think (includes using skills you know already)

Which step of Polya’s problem-solving strategy where you can freely state the problems in your own word?

The first step of Polya’s Process is to Understand the Problem. Some ways to tell if you really understand what is being asked is to: State the problem in your own words.

Which method is also known as problem-solving method?

Brainstorming and team problem-solving techniques are both useful tools in this stage of problem solving. Many alternative solutions to the problem should be generated before final evaluation.

What is the 5 step approach?

Step 1: Identify the problem. Step 2: Review the evidence. Step 3: Draw a logic model. Step 4: Monitor your logic model. Step 5: Evaluate the logic model.

What is the problem-solving approach?

A problem-solving approach is a technique people use to better understand the problems they face and to develop optimal solutions. They empower people to devise more innovative solutions by helping them overcome old or binary ways of thinking.

What is another term for problem solving?

synonyms for problem-solving Compare Synonyms. analytical. investigative. inquiring. rational.

How many tools are used for problem solving?

The problem solving tools include three unique categories: problem solving diagrams, problem solving mind maps, and problem solving software solutions. They include: Fishbone diagrams. Flowcharts.

What are the stages of problem solving?

  • Step 1: Define the Problem. What is the problem?
  • Step 2: Clarify the Problem.
  • Step 3: Define the Goals.
  • Step 4: Identify Root Cause of the Problem.
  • Step 5: Develop Action Plan.
  • Step 6: Execute Action Plan.
  • Step 7: Evaluate the Results.
  • Step 8: Continuously Improve.

How do you teach problem solving?

  • Model a useful problem-solving method. Problem solving can be difficult and sometimes tedious.
  • Teach within a specific context.
  • Help students understand the problem.
  • Take enough time.
  • Ask questions and make suggestions.
  • Link errors to misconceptions.

What are the 4 common barriers to problem-solving?

Some barriers do not prevent us from finding a solution, but do prevent us from finding the most efficient solution. Four of the most common processes and factors are mental set, functional fixedness, unnecessary constraints and irrelevant information.

Why is Polya the father of problem-solving?

Pólya is considered the father of mathematical problem-solving in the 20th century. It was his constant refrain that problem-solving was not some innate special ability but can actually be taught to anyone.

What is George Polya known for?

He was regarded as the father of the modern emphasis in math education on problem solving. A leading research mathematician of his time, Dr. Polya made seminal contributions to probability, combinatorial theory and conflict analysis. His work on random walk and his famous enumeration theorem have been widely applied.

What is the most difficult part of solving a problem?

Contrary to what many people think, the hardest step in problem solving is not coming up with a solution, or even sustaining the gains that are made. It is identifying the problem in the first place.

What are 10 problem-solving strategies?

  • Guess and check.
  • Make a table or chart.
  • Draw a picture or diagram.
  • Act out the problem.
  • Find a pattern or use a rule.
  • Check for relevant or irrelevant information.
  • Find smaller parts of a large problem.
  • Make an organized list.

Privacy Overview

IMAGES

  1. Digital Tools To Teach Problem Solving

    what is polya's problem solving strategy

  2. Polya's Problem-Solving Strategy

    what is polya's problem solving strategy

  3. 4 steps of polya's problem solving

    what is polya's problem solving strategy

  4. POLYA'S PROBLEM-SOLVING STRATEGY (PART 1)

    what is polya's problem solving strategy

  5. (1st Part.)Lesson 2. Problem Solving Strategies(Polya's Four Steps)

    what is polya's problem solving strategy

  6. Polya`s Problem Solving Techniques

    what is polya's problem solving strategy

VIDEO

  1. How to Solve Any Math Problem with Polya's Method

  2. CHP 3 Lesson 2, Polya's 4 steps in problem solving

  3. TASK 3: PROJECT PRODUCT (GROUP: NUHA AND FARAHIN)

  4. TASK 3: PROJECT PRODUCT (NURFARAHIN)

  5. POLYA'S PROBLEM SOLVING STRATEGY || SEM 20

  6. Polya’s Problem Solving

COMMENTS

  1. PDF Polya's Problem Solving Techniques

    Polya's Problem Solving Techniques In 1945 George Polya published the book How To Solve It which quickly became his most prized publication. It sold over one million copies and has been translated ... at choosing an appropriate strategy is best learned by solving many problems. You will nd choosing a strategy increasingly easy. A partial list ...

  2. Polya's Problem Solving Process

    Polya's 4-Step Process. George Polya was a mathematician in the 1940s. He devised a systematic process for solving problems that is now referred to by his name: the Polya 4-Step Problem-Solving ...

  3. 10.1: George Polya's Four Step Problem Solving Process

    10.1: George Polya's Four Step Problem Solving Process Expand/collapse global location 10.1: George Polya's Four Step Problem Solving Process ... Step 2: Devise a Plan: Below are some strategies one might use to solve a problem. Can one (or more) of the following strategies be used? (A strategy is defined as an artful means to an end.) 1. Guess ...

  4. Mastering Problem-Solving: A Guide to Polya's Four-Step Approach

    The Polya problem-solving approach, also known as the Polya method or Polya's four-step approach, is a widely used framework for solving mathematical problems. ... The goal is to find a strategy ...

  5. Module 1: Problem Solving Strategies

    Step 1: Understanding the problem. We are given in the problem that there are 25 chickens and cows. All together there are 76 feet. Chickens have 2 feet and cows have 4 feet. We are trying to determine how many cows and how many chickens Mr. Jones has on his farm. Step 2: Devise a plan.

  6. Polya's Problem-Solving Process

    Polya's problem-solving process, developed by mathematician George Polya, provides a structured approach to problem-solving that can be applied across various domains. This four-step process consists of understanding the problem, devising a plan, trying the plan, and revisiting the solution. ... Polya's strategies were displayed in the ...

  7. Four Steps of Polya's Problem Solving Techniques

    Polya's Second Principle: Devise a Plan. Polya mentions that there are many reasonable ways to solve problems. If we want to learn how to choose the best problem-solving strategy, the most effective way is to solve a variety of problems and observe different steps involved in the thought process and implementation techniques.

  8. PDF 1. Understand Polya's problem-solving method. 2. State and apply

    tice problem solving, the better you become at it. Much of the advice presented in this section is based on a problem-solving process developed by the eminent Hungarian mathematician George Polya (see the historical high-light at the end of this section). We will now outline Polya's method. George Polya's Problem-Solving Method

  9. Polya's four steps to solving a problem

    Polya's four steps to solving a problem. George Polya (1887-1985), a Hungarian mathematician, wrote "How to solve it." for high school students in 1957. ... This strategy can turn a problem which on first glance seems intractable into something more doable. Use variables and write an equation-- the method of algebra. Very useful in a lot of ...

  10. Polya's Problem-Solving Process: Finding Unknowns ...

    Polya specifically wrote about problem-solving at the high school mathematics level. For those of us teaching students in the elementary and middle school levels, finding ways to apply Polya's problem-solving process as he intended forces us to rethink the way we teach. Particularly in the lower grade levels, finding "unknowns" can be ...

  11. Polya's Problem Solving Techniques

    Polya's First Principle: Understand the Problem Before starting the journey of problem-solving, a critical step is to understand every critical detail in the problem.

  12. Problem Solving Strategies & Polya's 4-step Process

    Math in the Modern World Playlist: https://www.youtube.com/watch?v=vb-hDOm3GzU&list=PLbZl6MGLeYnsoaxa2L-xouDPHcoe9z23x&index=3A more logical answer to 13:36 ...

  13. POLYA'S PROBLEM-SOLVING STRATEGY (PART 1)

    Polya's Problem Solving Strategy is one of the topic included in the Mathematics in the Modern World. It is basically the steps on how to deal with various m...

  14. PDF Polya's four-step approach to problem solving

    Remember, problem solving is as much an art as it is a science!! Remember Some of the Possible Strategies Given Earlier. 1. Draw pictures. 2. Use a variable and choose helpful names for variables or unknowns. 3. Be systematic.

  15. POLYA'S PROBLEM SOLVING STRATEGY PART 1

    MATHEMATICS IN THE MODERN WORLD POLYA'S PROBLEM-SOLVING STRATEGY PART 1In this video, you will learn to apply Polya's Problem-Solving Strategy. Problem: Num...

  16. PDF EFFECTIVENESS OF POLYA PROBLEM-SOLVING AND 16483898 LEARNING ...

    Polya Problem-Solving approach is in the context of Piaget's theory, an individual constructivist's theory ... that successful students' problem-solving strategies at least contain conscious qualitative analysis of a problem, such as, making a sketch of the problem, restating the problem in one's own words, and conscious quantitative ...

  17. George Polya s Problem-Solving Tips

    Separate the various parts of the condition. Can you write them down? DEVISING A PLAN. Second. Find the connection between the data and the unknown. You may be obliged to consider auxiliary problems if an immediate connection cannot be found. You should obtain eventually a plan of the solution.

  18. PDF Step 2: Develop a Problem Solving Strategy

    Use a formula Simplify the problem Draw a picture Look for a pattern Eliminate wrong answers Guess and check. STEP 3: DO THE STRATEGY. Show all work! Do not erase anything. STEP 4: CHECK YOUR ANSWER TO SEE IF IT IS REASONABLE AND ACCURATE. JMAP Extras - Polya www.jmap.org after George Polya Hungarian Mathematician 1887-1985.

  19. Polya's Problem Solving Techniques

    Polya's Second Principle: Devise a Plan. Polya mentions that there are many reasonable ways to solve problems. The skill at choosing an appropriate strategy is best learned by solving many problems. You will find choosing a strategy increasingly easy. A partial list of strategies is included: Polya's Third Principle: Carry Out the Plan.

  20. 2.3.1: George Polya's Four Step Problem Solving Process

    Is there extraneous information? Is this problem similar to another problem you have solved? Step 2: Devise a Plan: Below are some strategies one might use to solve a problem. Can one (or more) of the following strategies be used? (A strategy is defined as an artful means to an end.) 1. Guess and test.

  21. PDF Polya'S Four Step Problem Solving Process

    POLYA'S FOUR STEP PROBLEM SOLVING PROCESS Understand Devise a Plan Carry out Plan Look Back PROBLEM SOLVING STRATEGIES (exmples) Making a Drawing Guessing and Checking ... winning strategy. Before the game begins, all of the numbers on the Factor Game sheet are exposed.

  22. Polya'S Problem Solving Strategy || Mathematics in The Modern World

    In this video you will learn to apply Polya's Problem - Solving Strategy. References: Aufmann, R. (2018). Mathematics in the Modern World. Rex Publishing. ...

  23. What is Polya's method of problem solving?

    What is Polya's third step in the problem solving process? Third. Carry out your plan. Carrying out your plan of the solution, check each step. Can you see clearly that the step is correct? What is the part of Polya's four step strategy is often overlooked? Understand the Problem. This part of Polya's four-step strategy is often overlooked.