U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.
  • Work together
  • Product development
  • Ways of working

menu image

Have you read my two bestsellers, Unlearn and Lean Enterprise? If not, please do. If you have, please write a review!

  • Read my story
  • Get in touch

menu image

  • Oval Copy 2 Blog

How to Implement Hypothesis-Driven Development

  • Facebook__x28_alt_x29_ Copy

Remember back to the time when we were in high school science class. Our teachers had a framework for helping us learn – an experimental approach based on the best available evidence at hand. We were asked to make observations about the world around us, then attempt to form an explanation or hypothesis to explain what we had observed. We then tested this hypothesis by predicting an outcome based on our theory that would be achieved in a controlled experiment – if the outcome was achieved, we had proven our theory to be correct.

We could then apply this learning to inform and test other hypotheses by constructing more sophisticated experiments, and tuning, evolving, or abandoning any hypothesis as we made further observations from the results we achieved.

Experimentation is the foundation of the scientific method, which is a systematic means of exploring the world around us. Although some experiments take place in laboratories, it is possible to perform an experiment anywhere, at any time, even in software development.

Practicing Hypothesis-Driven Development [1] is thinking about the development of new ideas, products, and services – even organizational change – as a series of experiments to determine whether an expected outcome will be achieved. The process is iterated upon until a desirable outcome is obtained or the idea is determined to be not viable.

We need to change our mindset to view our proposed solution to a problem statement as a hypothesis, especially in new product or service development – the market we are targeting, how a business model will work, how code will execute and even how the customer will use it.

We do not do projects anymore, only experiments. Customer discovery and Lean Startup strategies are designed to test assumptions about customers. Quality Assurance is testing system behavior against defined specifications. The experimental principle also applies in Test-Driven Development – we write the test first, then use the test to validate that our code is correct, and succeed if the code passes the test. Ultimately, product or service development is a process to test a hypothesis about system behavior in the environment or market it is developed for.

The key outcome of an experimental approach is measurable evidence and learning. Learning is the information we have gained from conducting the experiment. Did what we expect to occur actually happen? If not, what did and how does that inform what we should do next?

In order to learn we need to use the scientific method for investigating phenomena, acquiring new knowledge, and correcting and integrating previous knowledge back into our thinking.

As the software development industry continues to mature, we now have an opportunity to leverage improved capabilities such as Continuous Design and Delivery to maximize our potential to learn quickly what works and what does not. By taking an experimental approach to information discovery, we can more rapidly test our solutions against the problems we have identified in the products or services we are attempting to build. With the goal to optimize our effectiveness of solving the right problems, over simply becoming a feature factory by continually building solutions.

The steps of the scientific method are to:

  • Make observations
  • Formulate a hypothesis
  • Design an experiment to test the hypothesis
  • State the indicators to evaluate if the experiment has succeeded
  • Conduct the experiment
  • Evaluate the results of the experiment
  • Accept or reject the hypothesis
  • If necessary, make and test a new hypothesis

Using an experimentation approach to software development

We need to challenge the concept of having fixed requirements for a product or service. Requirements are valuable when teams execute a well known or understood phase of an initiative and can leverage well-understood practices to achieve the outcome. However, when you are in an exploratory, complex and uncertain phase you need hypotheses. Handing teams a set of business requirements reinforces an order-taking approach and mindset that is flawed. Business does the thinking and ‘knows’ what is right. The purpose of the development team is to implement what they are told. But when operating in an area of uncertainty and complexity, all the members of the development team should be encouraged to think and share insights on the problem and potential solutions. A team simply taking orders from a business owner is not utilizing the full potential, experience and competency that a cross-functional multi-disciplined team offers.

Framing Hypotheses

The traditional user story framework is focused on capturing requirements for what we want to build and for whom, to enable the user to receive a specific benefit from the system.

As A…. <role>

I Want… <goal/desire>

So That… <receive benefit>

Behaviour Driven Development (BDD) and Feature Injection aims to improve the original framework by supporting communication and collaboration between developers, tester and non-technical participants in a software project.

In Order To… <receive benefit>

As A… <role>

When viewing work as an experiment, the traditional story framework is insufficient. As in our high school science experiment, we need to define the steps we will take to achieve the desired outcome. We then need to state the specific indicators (or signals) we expect to observe that provide evidence that our hypothesis is valid. These need to be stated before conducting the test to reduce the bias of interpretation of results.

If we observe signals that indicate our hypothesis is correct, we can be more confident that we are on the right path and can alter the user story framework to reflect this.

Therefore, a user story structure to support Hypothesis-Driven Development would be;

hdd-card

We believe < this capability >

What functionality we will develop to test our hypothesis? By defining a ‘test’ capability of the product or service that we are attempting to build, we identify the functionality and hypothesis we want to test.

Will result in < this outcome >

What is the expected outcome of our experiment? What is the specific result we expect to achieve by building the ‘test’ capability?

We will have confidence to proceed when < we see a measurable signal >

What signals will indicate that the capability we have built is effective? What key metrics (qualitative or quantitative) we will measure to provide evidence that our experiment has succeeded and give us enough confidence to move to the next stage.

The threshold you use for statistical significance will depend on your understanding of the business and context you are operating within. Not every company has the user sample size of Amazon or Google to run statistically significant experiments in a short period of time. Limits and controls need to be defined by your organization to determine acceptable evidence thresholds that will allow the team to advance to the next step.

For example, if you are building a rocket ship you may want your experiments to have a high threshold for statistical significance. If you are deciding between two different flows intended to help increase user sign up you may be happy to tolerate a lower significance threshold.

The final step is to clearly and visibly state any assumptions made about our hypothesis, to create a feedback loop for the team to provide further input, debate, and understanding of the circumstance under which we are performing the test. Are they valid and make sense from a technical and business perspective?

Hypotheses, when aligned to your MVP, can provide a testing mechanism for your product or service vision. They can test the most uncertain areas of your product or service, in order to gain information and improve confidence.

Examples of Hypothesis-Driven Development user stories are;

Business story.

We Believe That increasing the size of hotel images on the booking page Will Result In improved customer engagement and conversion We Will Have Confidence To Proceed When  we see a 5% increase in customers who review hotel images who then proceed to book in 48 hours.

It is imperative to have effective monitoring and evaluation tools in place when using an experimental approach to software development in order to measure the impact of our efforts and provide a feedback loop to the team. Otherwise, we are essentially blind to the outcomes of our efforts.

In agile software development, we define working software as the primary measure of progress. By combining Continuous Delivery and Hypothesis-Driven Development we can now define working software and validated learning as the primary measures of progress.

Ideally, we should not say we are done until we have measured the value of what is being delivered – in other words, gathered data to validate our hypothesis.

Examples of how to gather data is performing A/B Testing to test a hypothesis and measure to change in customer behavior. Alternative testings options can be customer surveys, paper prototypes, user and/or guerilla testing.

One example of a company we have worked with that uses Hypothesis-Driven Development is lastminute.com . The team formulated a hypothesis that customers are only willing to pay a max price for a hotel based on the time of day they book. Tom Klein, CEO and President of Sabre Holdings shared the story  of how they improved conversion by 400% within a week.

Combining practices such as Hypothesis-Driven Development and Continuous Delivery accelerates experimentation and amplifies validated learning. This gives us the opportunity to accelerate the rate at which we innovate while relentlessly reducing costs, leaving our competitors in the dust. Ideally, we can achieve the ideal of one-piece flow: atomic changes that enable us to identify causal relationships between the changes we make to our products and services, and their impact on key metrics.

As Kent Beck said, “Test-Driven Development is a great excuse to think about the problem before you think about the solution”. Hypothesis-Driven Development is a great opportunity to test what you think the problem is before you work on the solution.

We also run a  workshop to help teams implement Hypothesis-Driven Development . Get in touch to run it at your company. 

[1]  Hypothesis-Driven Development  By Jeffrey L. Taylor

More strategy insights

Overcoming rejection: a guide for entrepreneurs on raising capital, negotiation made simple with dr john lowry, how high performance organizations innovate at scale, read my newsletter.

Insights in every edition. News you can use. No spam, ever. Read the latest edition

We've just sent you your first email. Go check it out!

.

  • Explore Insights
  • Nobody Studios
  • LinkedIn Learning: High Performance Organizations

Introducing our hypothesis framework

Stephen pavlovich.

hypothesis framework

Download printable versions of our hypothesis framework here .

Experiments are the building blocks of optimization programs. Each experiment will at minimum teach us more about the audience – what makes them more or less likely to convert – and will often drive a significant uplift on key metrics.

At the heart of each experiment is the hypothesis – the statement that the experiment is built around.

But hypotheses can range in quality. In fact, many wouldn’t even qualify as a hypothesis: eg “What if we removed the registration step from checkout”. That might be fine to get an idea across, but it’s going to underperform as a test hypothesis.

For us, an effective hypothesis is made up of eight key components. If it’s reduced to just one component showing what you’ll change (the “test concept”), you’ll not just weaken the potential impact of the test – you’ll undermine the entire testing program.

That’s why we created our hypothesis framework. Based on almost 10 years’ experience in optimization and testing, we’ve created a simple framework that’s applicable to any industry.

Conversion.com’s hypothesis framework

Conversion.com Hypothesis Framework

What makes this framework effective?

It’s a simple framework – but there are three factors that make it so effective.

  • Putting data first . Quantitative and qualitative data is literally the first element in the framework. It focuses the optimizer on understanding why visitors aren’t converting, rather than brainstorming solutions and hoping there’ll be a problem to match.
  • Separating lever and concept . This distinction is relatively rare – but for us, it’s crucial. A lever is the core theme for a test (eg “emphasising urgency”), whereas the concept is the application of that lever to a specific area (eg “showing the number of available rooms on the hotel page”). It’s important to make the distinction as it affects what happens after a test completes. If a test wins, you can apply the same lever to other areas, as well as testing bolder creative on the original area. If it loses, then it’s important to question whether the lever or the concept was at fault – ie did you run a lousy test, or were users just not affected by the lever after all?
  • Validating success criteria upfront : The KPI and duration elements are crucial factors in any test, and are often the most overlooked. Many experiments fail by optimizing for a KPI that’s not a priority – eg increasing add-to-baskets without increasing sales. Likewise the duration should not be an afterthought, but instead the result of statistical analysis on the current conversion rate, volume of traffic, and the minimum detectable uplift. All too often, a team will define, build and start an experiment, before realising that its likely duration will be several months.

Terminology

Quant and qual data.

What’s the data and insight that supports the test? This can come from a huge number of sources, like web analytics, sales data, form analysis, session replay, heatmapping, onsite surveys, offsite surveys, focus groups and usability tests. Eg “We know that 96% of visitors to the property results page don’t contact an agent. In usability tests, all users wanted to see the results on a map, rather than just as a list.”

What’s the core theme of the test, if distilled down to a simple phrase? Each lever can have multiple implementations or test concepts, so it’s important to distinguish between the lever and the concept. Eg a lever might be “emphasising urgency” or “simplifying the form”.

What’s the audience or segment that will be included in the test? Like with the area, make sure the audience has sufficient potential and traffic to merit being tested. Eg an audience may be “all visitors” or “returning visitors” or “desktop visitors”.

What’s the goal for the test? It’s important to prioritize the goals, as this will affect the KPIs. Eg the goal may be “increase orders” or “increase profit” or “increase new accounts”.

Test concept

What’s the implementation of the lever? This shows how you’re applying the lever in this test. Eg “adding a map of the local area that integrates with the search filters”.

What’s the flow, page or element that the test is focused on? You’ll need to make sure there’s sufficient potential in the area (ie that an increase will have a meaningful impact) as well as sufficient traffic too (ie that the test can be completed within a reasonable duration – see below). Eg the area may be “the header”, “the application form” or “the search results page”.

The KPI defines how we’ll measure the goal. Eg the KPI could be “the number of successful applications” or “the average profit per order”.

Finally, the duration is how long you expect the test to run. It’s important to calculate this in advance – then stick to it. Eg the duration may be “2 weeks”.

Taking this further

This hypothesis framework isn’t limited to A/B tests on your website – it can apply anywhere: to your advertising creative and channels, even to your SEO, product and pricing strategy. Any change and any experience can be optimized – and to do that effectively requires a data-driven and controlled framework like this.

Don’t forget – you can download printable versions of the hypothesis framework here .

Share this post

Other articles you might like

hypothesis framework

Tips for hiring the ideal CRO consultant for your program

hypothesis framework

Prepare for Launch: Lessons from 1,000 A/B Test Launches

hypothesis framework

CRO is like poker

hypothesis framework

Join 5,000 other people who get our newsletter updates

how-implement-hypothesis-driven-development

How to Implement Hypothesis-Driven Development

Remember back to the time when we were in high school science class. Our teachers had a framework for helping us learn – an experimental approach based on the best available evidence at hand. We were asked to make observations about the world around us, then attempt to form an explanation or hypothesis to explain what we had observed. We then tested this hypothesis by predicting an outcome based on our theory that would be achieved in a controlled experiment – if the outcome was achieved, we had proven our theory to be correct.

We could then apply this learning to inform and test other hypotheses by constructing more sophisticated experiments, and tuning, evolving or abandoning any hypothesis as we made further observations from the results we achieved.

Experimentation is the foundation of the scientific method, which is a systematic means of exploring the world around us. Although some experiments take place in laboratories, it is possible to perform an experiment anywhere, at any time, even in software development.

Practicing  Hypothesis-Driven Development  is thinking about the development of new ideas, products and services – even organizational change – as a series of experiments to determine whether an expected outcome will be achieved. The process is iterated upon until a desirable outcome is obtained or the idea is determined to be not viable.

We need to change our mindset to view our proposed solution to a problem statement as a hypothesis, especially in new product or service development – the market we are targeting, how a business model will work, how code will execute and even how the customer will use it.

We do not do projects anymore, only experiments. Customer discovery and Lean Startup strategies are designed to test assumptions about customers. Quality Assurance is testing system behavior against defined specifications. The experimental principle also applies in Test-Driven Development – we write the test first, then use the test to validate that our code is correct, and succeed if the code passes the test. Ultimately, product or service development is a process to test a hypothesis about system behaviour in the environment or market it is developed for.

The key outcome of an experimental approach is measurable evidence and learning.

Learning is the information we have gained from conducting the experiment. Did what we expect to occur actually happen? If not, what did and how does that inform what we should do next?

In order to learn we need use the scientific method for investigating phenomena, acquiring new knowledge, and correcting and integrating previous knowledge back into our thinking.

As the software development industry continues to mature, we now have an opportunity to leverage improved capabilities such as Continuous Design and Delivery to maximize our potential to learn quickly what works and what does not. By taking an experimental approach to information discovery, we can more rapidly test our solutions against the problems we have identified in the products or services we are attempting to build. With the goal to optimize our effectiveness of solving the right problems, over simply becoming a feature factory by continually building solutions.

The steps of the scientific method are to:

  • Make observations
  • Formulate a hypothesis
  • Design an experiment to test the hypothesis
  • State the indicators to evaluate if the experiment has succeeded
  • Conduct the experiment
  • Evaluate the results of the experiment
  • Accept or reject the hypothesis
  • If necessary, make and test a new hypothesis

Using an experimentation approach to software development

We need to challenge the concept of having fixed requirements for a product or service. Requirements are valuable when teams execute a well known or understood phase of an initiative, and can leverage well understood practices to achieve the outcome. However, when you are in an exploratory, complex and uncertain phase you need hypotheses.

Handing teams a set of business requirements reinforces an order-taking approach and mindset that is flawed.

Business does the thinking and ‘knows’ what is right. The purpose of the development team is to implement what they are told. But when operating in an area of uncertainty and complexity, all the members of the development team should be encouraged to think and share insights on the problem and potential solutions. A team simply taking orders from a business owner is not utilizing the full potential, experience and competency that a cross-functional multi-disciplined team offers.

Framing hypotheses

The traditional user story framework is focused on capturing requirements for what we want to build and for whom, to enable the user to receive a specific benefit from the system.

As A…. <role>

I Want… <goal/desire>

So That… <receive benefit>

Behaviour Driven Development (BDD) and Feature Injection  aims to improve the original framework by supporting communication and collaboration between developers, tester and non-technical participants in a software project.

In Order To… <receive benefit>

As A… <role>

When viewing work as an experiment, the traditional story framework is insufficient. As in our high school science experiment, we need to define the steps we will take to achieve the desired outcome. We then need to state the specific indicators (or signals) we expect to observe that provide evidence that our hypothesis is valid. These need to be stated before conducting the test to reduce biased interpretations of the results. 

If we observe signals that indicate our hypothesis is correct, we can be more confident that we are on the right path and can alter the user story framework to reflect this.

Therefore, a user story structure to support Hypothesis-Driven Development would be;

how-implement-hypothesis-driven-development

We believe < this capability >

What functionality we will develop to test our hypothesis? By defining a ‘test’ capability of the product or service that we are attempting to build, we identify the functionality and hypothesis we want to test.

Will result in < this outcome >

What is the expected outcome of our experiment? What is the specific result we expect to achieve by building the ‘test’ capability?

We will know we have succeeded when < we see a measurable signal >

What signals will indicate that the capability we have built is effective? What key metrics (qualitative or quantitative) we will measure to provide evidence that our experiment has succeeded and give us enough confidence to move to the next stage.

The threshold you use for statistically significance will depend on your understanding of the business and context you are operating within. Not every company has the user sample size of Amazon or Google to run statistically significant experiments in a short period of time. Limits and controls need to be defined by your organization to determine acceptable evidence thresholds that will allow the team to advance to the next step.

For example if you are building a rocket ship you may want your experiments to have a high threshold for statistical significance. If you are deciding between two different flows intended to help increase user sign up you may be happy to tolerate a lower significance threshold.

The final step is to clearly and visibly state any assumptions made about our hypothesis, to create a feedback loop for the team to provide further input, debate and understanding of the circumstance under which we are performing the test. Are they valid and make sense from a technical and business perspective?

Hypotheses when aligned to your MVP can provide a testing mechanism for your product or service vision. They can test the most uncertain areas of your product or service, in order to gain information and improve confidence.

Examples of Hypothesis-Driven Development user stories are;

Business story

We Believe That increasing the size of hotel images on the booking page

Will Result In improved customer engagement and conversion

We Will Know We Have Succeeded When we see a 5% increase in customers who review hotel images who then proceed to book in 48 hours.

It is imperative to have effective monitoring and evaluation tools in place when using an experimental approach to software development in order to measure the impact of our efforts and provide a feedback loop to the team. Otherwise we are essentially blind to the outcomes of our efforts.

In agile software development we define working software as the primary measure of progress.

By combining Continuous Delivery and Hypothesis-Driven Development we can now define working software and validated learning as the primary measures of progress.

Ideally we should not say we are done until we have measured the value of what is being delivered – in other words, gathered data to validate our hypothesis.

Examples of how to gather data is performing A/B Testing to test a hypothesis and measure to change in customer behaviour. Alternative testings options can be customer surveys, paper prototypes, user and/or guerrilla testing.

One example of a company we have worked with that uses Hypothesis-Driven Development is  lastminute.com . The team formulated a hypothesis that customers are only willing to pay a max price for a hotel based on the time of day they book. Tom Klein, CEO and President of Sabre Holdings shared  the story  of how they improved conversion by 400% within a week.

Combining practices such as Hypothesis-Driven Development and Continuous Delivery accelerates experimentation and amplifies validated learning. This gives us the opportunity to accelerate the rate at which we innovate while relentlessly reducing cost, leaving our competitors in the dust. Ideally we can achieve the ideal of one piece flow: atomic changes that enable us to identify causal relationships between the changes we make to our products and services, and their impact on key metrics.

As Kent Beck said, “Test-Driven Development is a great excuse to think about the problem before you think about the solution”. Hypothesis-Driven Development is a great opportunity to test what you think the problem is, before you work on the solution.

How can you achieve faster growth?

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

hypothesis framework

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

hypothesis framework

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis, operational definitions, types of hypotheses, hypotheses examples.

  • Collecting Data

Frequently Asked Questions

A hypothesis is a tentative statement about the relationship between two or more  variables. It is a specific, testable prediction about what you expect to happen in a study.

One hypothesis example would be a study designed to look at the relationship between sleep deprivation and test performance might have a hypothesis that states: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. It is only at this point that researchers begin to develop a testable hypothesis. Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore a number of factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk wisdom that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis.   In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in a number of different ways. One of the basic principles of any type of scientific research is that the results must be replicable.   By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. How would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

In order to measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming other people. In this situation, the researcher might utilize a simulated task to measure aggressiveness.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests that there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type of hypothesis suggests a relationship between three or more variables, such as two independent variables and a dependent variable.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative sample of the population and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • Complex hypothesis: "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "Children who receive a new reading intervention will have scores different than students who do not receive the intervention."
  • "There will be no difference in scores on a memory recall task between children and adults."

Examples of an alternative hypothesis:

  • "Children who receive a new reading intervention will perform better than students who did not receive the intervention."
  • "Adults will perform better on a memory task than children." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when it would be impossible or difficult to  conduct an experiment . These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a correlational study can then be used to look at how the variables are related. This type of research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

A Word From Verywell

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Some examples of how to write a hypothesis include:

  • "Staying up late will lead to worse test performance the next day."
  • "People who consume one apple each day will visit the doctor fewer times each year."
  • "Breaking study sessions up into three 20-minute sessions will lead to better test results than a single 60-minute study session."

The four parts of a hypothesis are:

  • The research question
  • The independent variable (IV)
  • The dependent variable (DV)
  • The proposed relationship between the IV and DV

Castillo M. The scientific method: a need for something better? . AJNR Am J Neuroradiol. 2013;34(9):1669-71. doi:10.3174/ajnr.A3401

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Hypothesis Testing Framework

Now that we've seen an example and explored some of the themes for hypothesis testing, let's specify the procedure that we will follow.

Hypothesis Testing Steps

The formal framework and steps for hypothesis testing are as follows:

  • Identify and define the parameter of interest
  • Define the competing hypotheses to test
  • Set the evidence threshold, formally called the significance level
  • Generate or use theory to specify the sampling distribution and check conditions
  • Calculate the test statistic and p-value
  • Evaluate your results and write a conclusion in the context of the problem.

We'll discuss each of these steps below.

Identify Parameter of Interest

First, I like to specify and define the parameter of interest. What is the population that we are interested in? What characteristic are we measuring?

By defining our population of interest, we can confirm that we are truly using sample data. If we find that we actually have population data, our inference procedures are not needed. We could proceed by summarizing our population data.

By identifying and defining the parameter of interest, we can confirm that we use appropriate methods to summarize our variable of interest. We can also focus on the specific process needed for our parameter of interest.

In our example from the last page, the parameter of interest would be the population mean time that a host has been on Airbnb for the population of all Chicago listings on Airbnb in March 2023. We could represent this parameter with the symbol $\mu$. It is best practice to fully define $\mu$ both with words and symbol.

Define the Hypotheses

For hypothesis testing, we need to decide between two competing theories. These theories must be statements about the parameter. Although we won't have the population data to definitively select the correct theory, we will use our sample data to determine how reasonable our "skeptic's theory" is.

The first hypothesis is called the null hypothesis, $H_0$. This can be thought of as the "status quo", the "skeptic's theory", or that nothing is happening.

Examples of null hypotheses include that the population proportion is equal to 0.5 ($p = 0.5$), the population median is equal to 12 ($M = 12$), or the population mean is equal to 14.5 ($\mu = 14.5$).

The second hypothesis is called the alternative hypothesis, $H_a$ or $H_1$. This can be thought of as the "researcher's hypothesis" or that something is happening. This is what we'd like to convince the skeptic to believe. In most cases, the desired outcome of the researcher is to conclude that the alternative hypothesis is reasonable to use moving forward.

Examples of alternative hypotheses include that the population proportion is greater than 0.5 ($p > 0.5$), the population median is less than 12 ($M < 12$), or the population mean is not equal to 14.5 ($\mu \neq 14.5$).

There are a few requirements for the hypotheses:

  • the hypotheses must be about the same population parameter,
  • the hypotheses must have the same null value (provided number to compare to),
  • the null hypothesis must have the equality (the equals sign must be in the null hypothesis),
  • the alternative hypothesis must not have the equality (the equals sign cannot be in the alternative hypothesis),
  • there must be no overlap between the null and alternative hypothesis.

You may have previously seen null hypotheses that include more than an equality (e.g. $p \le 0.5$). As long as there is an equality in the null hypothesis, this is allowed. For our purposes, we will simplify this statement to ($p = 0.5$).

To summarize from above, possible hypotheses statements are:

$H_0: p = 0.5$ vs. $H_a: p > 0.5$

$H_0: M = 12$ vs. $H_a: M < 12$

$H_0: \mu = 14.5$ vs. $H_a: \mu \neq 14.5$

In our second example about Airbnb hosts, our hypotheses would be:

$H_0: \mu = 2100$ vs. $H_a: \mu > 2100$.

Set Threshold (Significance Level)

There is one more step to complete before looking at the data. This is to set the threshold needed to convince the skeptic. This threshold is defined as an $\alpha$ significance level. We'll define exactly what the $\alpha$ significance level means later. For now, smaller $\alpha$s correspond to more evidence being required to convince the skeptic.

A few common $\alpha$ levels include 0.1, 0.05, and 0.01.

For our Airbnb hosts example, we'll set the threshold as 0.02.

Determine the Sampling Distribution of the Sample Statistic

The first step (as outlined above) is the identify the parameter of interest. What is the best estimate of the parameter of interest? Typically, it will be the sample statistic that corresponds to the parameter. This sample statistic, along with other features of the distribution will prove especially helpful as we continue the hypothesis testing procedure.

However, we do have a decision at this step. We can choose to use simulations with a resampling approach or we can choose to rely on theory if we are using proportions or means. We then also need to confirm that our results and conclusions will be valid based on the available data.

Required Condition

The one required assumption, regardless of approach (resampling or theory), is that the sample is random and representative of the population of interest. In other words, we need our sample to be a reasonable sample of data from the population.

Using Simulations and Resampling

If we'd like to use a resampling approach, we have no (or minimal) additional assumptions to check. This is because we are relying on the available data instead of assumptions.

We do need to adjust our data to be consistent with the null hypothesis (or skeptic's claim). We can then rely on our resampling approach to estimate a plausible sampling distribution for our sample statistic.

Recall that we took this approach on the last page. Before simulating our estimated sampling distribution, we adjusted the mean of the data so that it matched with our skeptic's claim, shown in the code below.

We'll see a few more examples on the next page.

Using Theory

On the other hand, we could rely on theory in order to estimate the sampling distribution of our desired statistic. Recall that we had a few different options to rely on:

  • the CLT for the sampling distribution of a sample mean
  • the binomial distribution for the sampling distribution of a proportion (or count)
  • the Normal approximation of a binomial distribution (using the CLT) for the sampling distribution of a proportion

If relying on the CLT to specify the underlying sampling distribution, you also need to confirm:

  • having a random sample and
  • having a sample size that is less than 10% of the population size if the sampling is done without replacement
  • having a Normally distributed population for a quantitative variable OR
  • having a large enough sample size (usually at least 25) for a quantitative variable
  • having a large enough sample size for a categorical variable (defined by $np$ and $n(1-p)$ being at least 10)

If relying on the binomial distribution to specify the underlying sampling distribution, you need to confirm:

  • having a set number of trials, $n$
  • having the same probability of success, $p$ for each observation

After determining the appropriate theory to use, we should check our conditions and then specify the sampling distribution for our statistic.

For the Airbnb hosts example, we have what we've assumed to be a random sample. It is not taken with replacement, so we also need to assume that our sample size (700) is less than 10% of our population size. In other words, we need to assume that the population of Chicago Airbnbs in March 2023 was at least 7000. Since we do have our (presumed) population data available, we can confirm that there were at least 7000 Chicago Airbnbs in the population in 2023.

Additionally, we can confirm that normality of the sampling distribution applies for the CLT to apply. Our sample size is more than 25 and the parameter of interest is a mean, so this meets our necessary criteria for the normality condition to be valid.

With the conditions now met, we can estimate our sampling distribution. From the CLT, we know that the distribution for the sample mean should be $\bar{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$.

Now, we face our next challenge -- what to plug in as the mean and standard error for this distribution. Since we are adopting the skeptic's point of view for the purpose of this approach, we can plug in the value of $\mu_0 = 2100$. We also know that the sample size $n$ is 700. But what should we plug in for the population standard deviation $\sigma$?

When we don't know the value of a parameter, we will generally plug in our best estimate for the parameter. In this case, that corresponds to plugging in $\hat{\sigma}$, or our sample standard deviation.

Now, our estimated sampling distribution based on the CLT is: $\bar{X} \sim N(2100, 41.4045)$.

If we compare to our corresponding skeptic's sampling distribution on the last page, we can confirm that the theoretical sampling distribution is similar to the simulated sampling distribution based on resampling.

Assumptions not met

What do we do if the necessary conditions aren't met for the sampling distribution? Because the simulation-based resampling approach has minimal assumptions, we should be able to use this approach to produce valid results as long as the provided data is representative of the population.

The theory-based approach has more conditions, and we may not be able to meet all of the necessary conditions. For example, if our parameter is something other than a mean or proportion, we may not have appropriate theory. Additionally, we may not have a large enough sample size.

  • First, we could consider changing approaches to the simulation-based one.
  • Second, we might look at how we could meet the necessary conditions better. In some cases, we may be able to redefine groups or make adjustments so that the setup of the test is closer to what is needed.
  • As a last resort, we may be able to continue following the hypothesis testing steps. In this case, your calculations may not be valid or exact; however, you might be able to use them as an estimate or an approximation. It would be crucial to specify the violation and approximation in any conclusions or discussion of the test.

Calculate the evidence with statistics and p-values

Now, it's time to calculate how much evidence the sample contains to convince the skeptic to change their mind. As we saw above, we can convince the skeptic to change their mind by demonstrating that our sample is unlikely to occur if their theory is correct.

How do we do this? We do this by calculating a probability associated with our observed value for the statistic.

For example, for our situation, we want to convince the skeptic that the population mean is actually greater than 2100 days. We do that by calculating the probability that a sample mean would be as large or larger than what we observed in our actual sample, which was 2188 days. Why do we need the larger portion? We use the larger portion because a sample mean of 2200 days also provides evidence that the population mean is larger than 2100 days; it isn't limited to exactly what we observed in our sample. We call this specific probability the p-value.

That is, the p-value is the probability of observing a test statistic as extreme or more extreme (as determined by the alternative hypothesis), assuming the null hypothesis is true.

Our observed p-value for the Airbnb host example demonstrates that the probability of getting a sample mean host time of 2188 days (the value from our sample) or more is 1.46%, assuming that the true population mean is 2100 days.

Test statistic

Notice that the formal definition of a p-value mentions a test statistic . In most cases, this word can be replaced with "statistic" or "sample" for an equivalent statement.

Oftentimes, we'll see that our sample statistic can be used directly as the test statistic, as it was above. We could equivalently adjust our statistic to calculate a test statistic. This test statistic is often calculated as:

$\text{test statistic} = \frac{\text{estimate} - \text{hypothesized value}}{\text{standard error of estimate}}$

P-value Calculation Options

Note also that the p-value definition includes a probability associated with a test statistic being as extreme or more extreme (as determined by the alternative hypothesis . How do we determine the area that we consider when calculating the probability. This decision is determined by the inequality in the alternative hypothesis.

For example, when we were trying to convince the skeptic that the population mean is greater than 2100 days, we only considered those sample means that we at least as large as what we observed -- 2188 days or more.

If instead we were trying to convince the skeptic that the population mean is less than 2100 days ($H_a: \mu < 2100$), we would consider all sample means that were at most what we observed - 2188 days or less. In this case, our p-value would be quite large; it would be around 99.5%. This large p-value demonstrates that our sample does not support the alternative hypothesis. In fact, our sample would encourage us to choose the null hypothesis instead of the alternative hypothesis of $\mu < 2100$, as our sample directly contradicts the statement in the alternative hypothesis.

If we wanted to convince the skeptic that they were wrong and that the population mean is anything other than 2100 days ($H_a: \mu \neq 2100$), then we would want to calculate the probability that a sample mean is at least 88 days away from 2100 days. That is, we would calculate the probability corresponding to 2188 days or more or 2012 days or less. In this case, our p-value would be roughly twice the previously calculated p-value.

We could calculate all of those probabilities using our sampling distributions, either simulated or theoretical, that we generated in the previous step. If we chose to calculate a test statistic as defined in the previous section, we could also rely on standard normal distributions to calculate our p-value.

Evaluate your results and write conclusion in context of problem

Once you've gathered your evidence, it's now time to make your final conclusions and determine how you might proceed.

In traditional hypothesis testing, you often make a decision. Recall that you have your threshold (significance level $\alpha$) and your level of evidence (p-value). We can compare the two to determine if your p-value is less than or equal to your threshold. If it is, you have enough evidence to persuade your skeptic to change their mind. If it is larger than the threshold, you don't have quite enough evidence to convince the skeptic.

Common formal conclusions (if given in context) would be:

  • I have enough evidence to reject the null hypothesis (the skeptic's claim), and I have sufficient evidence to suggest that the alternative hypothesis is instead true.
  • I do not have enough evidence to reject the null hypothesis (the skeptic's claim), and so I do not have sufficient evidence to suggest the alternative hypothesis is true.

The only decision that we can make is to either reject or fail to reject the null hypothesis (we cannot "accept" the null hypothesis). Because we aren't actively evaluating the alternative hypothesis, we don't want to make definitive decisions based on that hypothesis. However, when it comes to making our conclusion for what to use going forward, we frame this on whether we could successfully convince someone of the alternative hypothesis.

A less formal conclusion might look something like:

Based on our sample of Chicago Airbnb listings, it seems as if the mean time since a host has been on Airbnb (for all Chicago Airbnb listings) is more than 5.75 years.

Significance Level Interpretation

We've now seen how the significance level $\alpha$ is used as a threshold for hypothesis testing. What exactly is the significance level?

The significance level $\alpha$ has two primary definitions. One is that the significance level is the maximum probability required to reject the null hypothesis; this is based on how the significance level functions within the hypothesis testing framework. The second definition is that this is the probability of rejecting the null hypothesis when the null hypothesis is true; in other words, this is the probability of making a specific type of error called a Type I error.

Why do we have to be comfortable making a Type I error? There is always a chance that the skeptic was originally correct and we obtained a very unusual sample. We don't want to the skeptic to be so convinced of their theory that no evidence can convince them. In this case, we need the skeptic to be convinced as long as the evidence is strong enough . Typically, the probability threshold will be low, to reduce the number of errors made. This also means that a decent amount of evidence will be needed to convince the skeptic to abandon their position in favor of the alternative theory.

p-value Limitations and Misconceptions

In comparison to the $\alpha$ significance level, we also need to calculate the evidence against the null hypothesis with the p-value.

The p-value is the probability of getting a test statistic as extreme or more extreme (in the direction of the alternative hypothesis), assuming the null hypothesis is true.

Recently, p-values have gotten some bad press in terms of how they are used. However, that doesn't mean that p-values should be abandoned, as they still provide some helpful information. Below, we'll describe what p-values don't mean, and how they should or shouldn't be used to make decisions.

Factors that affect a p-value

What features affect the size of a p-value?

  • the null value, or the value assumed under the null hypothesis
  • the effect size (the difference between the null value under the null hypothesis and the true value of the parameter)
  • the sample size

More evidence against the null hypothesis will be obtained if the effect size is larger and if the sample size is larger.

Misconceptions

We gave a definition for p-values above. What are some examples that p-values don't mean?

  • A p-value is not the probability that the null hypothesis is correct
  • A p-value is not the probability that the null hypothesis is incorrect
  • A p-value is not the probability of getting your specific sample
  • A p-value is not the probability that the alternative hypothesis is correct
  • A p-value is not the probability that the alternative hypothesis is incorrect
  • A p-value does not indicate the size of the effect

Our p-value is a way of measuring the evidence that your sample provides against the null hypothesis, assuming the null hypothesis is in fact correct.

Using the p-value to make a decision

Why is there bad press for a p-value? You may have heard about the standard $\alpha$ level of 0.05. That is, we would be comfortable with rejecting the null hypothesis once in 20 attempts when the null hypothesis is really true. Recall that we reject the null hypothesis when the p-value is less than or equal to the significance level.

Consider what would happen if you have two different p-values: 0.049 and 0.051.

In essence, these two p-values represent two very similar probabilities (4.9% vs. 5.1%) and very similar levels of evidence against the null hypothesis. However, when we make our decision based on our threshold, we would make two different decisions (reject and fail to reject, respectively). Should this decision really be so simplistic? I would argue that the difference shouldn't be so severe when the sample statistics are likely very similar. For this reason, I (and many other experts) strongly recommend using the p-value as a measure of evidence and including it with your conclusion.

Putting too much emphasis on the decision (and having a significant result) has created a culture of misusing p-values. For this reason, understanding your p-value itself is crucial.

Searching for p-values

The other concern with setting a definitive threshold of 0.05 is that some researchers will begin performing multiple tests until finding a p-value that is small enough. However, with a p-value of 0.05, we know that we will have a p-value less than 0.05 1 time out of every 20 times, even when the null hypothesis is true.

This means that if researchers start hunting for p-values that are small (sometimes called p-hacking), then they are likely to identify a small p-value every once in a while by chance alone. Researchers might then publish that result, even though the result is actually not informative. For this reason, it is recommended that researchers write a definitive analysis plan to prevent performing multiple tests in search of a result that occurs by chance alone.

Best Practices

With all of this in mind, what should we do when we have our p-value? How can we prevent or reduce misuse of a p-value?

  • Report the p-value along with the conclusion
  • Specify the effect size (the value of the statistic)
  • Define an analysis plan before looking at the data
  • Interpret the p-value clearly to specify what it indicates
  • Consider using an alternate statistical approach, the confidence interval, discussed next, when appropriate

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

hypothesis framework

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved March 18, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Theoretical Framework – Types, Examples and Writing Guide

Theoretical Framework – Types, Examples and Writing Guide

Table of Contents

Theoretical Framework

Theoretical Framework

Definition:

Theoretical framework refers to a set of concepts, theories, ideas , and assumptions that serve as a foundation for understanding a particular phenomenon or problem. It provides a conceptual framework that helps researchers to design and conduct their research, as well as to analyze and interpret their findings.

In research, a theoretical framework explains the relationship between various variables, identifies gaps in existing knowledge, and guides the development of research questions, hypotheses, and methodologies. It also helps to contextualize the research within a broader theoretical perspective, and can be used to guide the interpretation of results and the formulation of recommendations.

Types of Theoretical Framework

Types of Types of Theoretical Framework are as follows:

Conceptual Framework

This type of framework defines the key concepts and relationships between them. It helps to provide a theoretical foundation for a study or research project .

Deductive Framework

This type of framework starts with a general theory or hypothesis and then uses data to test and refine it. It is often used in quantitative research .

Inductive Framework

This type of framework starts with data and then develops a theory or hypothesis based on the patterns and themes that emerge from the data. It is often used in qualitative research .

Empirical Framework

This type of framework focuses on the collection and analysis of empirical data, such as surveys or experiments. It is often used in scientific research .

Normative Framework

This type of framework defines a set of norms or values that guide behavior or decision-making. It is often used in ethics and social sciences.

Explanatory Framework

This type of framework seeks to explain the underlying mechanisms or causes of a particular phenomenon or behavior. It is often used in psychology and social sciences.

Components of Theoretical Framework

The components of a theoretical framework include:

  • Concepts : The basic building blocks of a theoretical framework. Concepts are abstract ideas or generalizations that represent objects, events, or phenomena.
  • Variables : These are measurable and observable aspects of a concept. In a research context, variables can be manipulated or measured to test hypotheses.
  • Assumptions : These are beliefs or statements that are taken for granted and are not tested in a study. They provide a starting point for developing hypotheses.
  • Propositions : These are statements that explain the relationships between concepts and variables in a theoretical framework.
  • Hypotheses : These are testable predictions that are derived from the theoretical framework. Hypotheses are used to guide data collection and analysis.
  • Constructs : These are abstract concepts that cannot be directly measured but are inferred from observable variables. Constructs provide a way to understand complex phenomena.
  • Models : These are simplified representations of reality that are used to explain, predict, or control a phenomenon.

How to Write Theoretical Framework

A theoretical framework is an essential part of any research study or paper, as it helps to provide a theoretical basis for the research and guide the analysis and interpretation of the data. Here are some steps to help you write a theoretical framework:

  • Identify the key concepts and variables : Start by identifying the main concepts and variables that your research is exploring. These could include things like motivation, behavior, attitudes, or any other relevant concepts.
  • Review relevant literature: Conduct a thorough review of the existing literature in your field to identify key theories and ideas that relate to your research. This will help you to understand the existing knowledge and theories that are relevant to your research and provide a basis for your theoretical framework.
  • Develop a conceptual framework : Based on your literature review, develop a conceptual framework that outlines the key concepts and their relationships. This framework should provide a clear and concise overview of the theoretical perspective that underpins your research.
  • Identify hypotheses and research questions: Based on your conceptual framework, identify the hypotheses and research questions that you want to test or explore in your research.
  • Test your theoretical framework: Once you have developed your theoretical framework, test it by applying it to your research data. This will help you to identify any gaps or weaknesses in your framework and refine it as necessary.
  • Write up your theoretical framework: Finally, write up your theoretical framework in a clear and concise manner, using appropriate terminology and referencing the relevant literature to support your arguments.

Theoretical Framework Examples

Here are some examples of theoretical frameworks:

  • Social Learning Theory : This framework, developed by Albert Bandura, suggests that people learn from their environment, including the behaviors of others, and that behavior is influenced by both external and internal factors.
  • Maslow’s Hierarchy of Needs : Abraham Maslow proposed that human needs are arranged in a hierarchy, with basic physiological needs at the bottom, followed by safety, love and belonging, esteem, and self-actualization at the top. This framework has been used in various fields, including psychology and education.
  • Ecological Systems Theory : This framework, developed by Urie Bronfenbrenner, suggests that a person’s development is influenced by the interaction between the individual and the various environments in which they live, such as family, school, and community.
  • Feminist Theory: This framework examines how gender and power intersect to influence social, cultural, and political issues. It emphasizes the importance of understanding and challenging systems of oppression.
  • Cognitive Behavioral Theory: This framework suggests that our thoughts, beliefs, and attitudes influence our behavior, and that changing our thought patterns can lead to changes in behavior and emotional responses.
  • Attachment Theory: This framework examines the ways in which early relationships with caregivers shape our later relationships and attachment styles.
  • Critical Race Theory : This framework examines how race intersects with other forms of social stratification and oppression to perpetuate inequality and discrimination.

When to Have A Theoretical Framework

Following are some situations When to Have A Theoretical Framework:

  • A theoretical framework should be developed when conducting research in any discipline, as it provides a foundation for understanding the research problem and guiding the research process.
  • A theoretical framework is essential when conducting research on complex phenomena, as it helps to organize and structure the research questions, hypotheses, and findings.
  • A theoretical framework should be developed when the research problem requires a deeper understanding of the underlying concepts and principles that govern the phenomenon being studied.
  • A theoretical framework is particularly important when conducting research in social sciences, as it helps to explain the relationships between variables and provides a framework for testing hypotheses.
  • A theoretical framework should be developed when conducting research in applied fields, such as engineering or medicine, as it helps to provide a theoretical basis for the development of new technologies or treatments.
  • A theoretical framework should be developed when conducting research that seeks to address a specific gap in knowledge, as it helps to define the problem and identify potential solutions.
  • A theoretical framework is also important when conducting research that involves the analysis of existing theories or concepts, as it helps to provide a framework for comparing and contrasting different theories and concepts.
  • A theoretical framework should be developed when conducting research that seeks to make predictions or develop generalizations about a particular phenomenon, as it helps to provide a basis for evaluating the accuracy of these predictions or generalizations.
  • Finally, a theoretical framework should be developed when conducting research that seeks to make a contribution to the field, as it helps to situate the research within the broader context of the discipline and identify its significance.

Purpose of Theoretical Framework

The purposes of a theoretical framework include:

  • Providing a conceptual framework for the study: A theoretical framework helps researchers to define and clarify the concepts and variables of interest in their research. It enables researchers to develop a clear and concise definition of the problem, which in turn helps to guide the research process.
  • Guiding the research design: A theoretical framework can guide the selection of research methods, data collection techniques, and data analysis procedures. By outlining the key concepts and assumptions underlying the research questions, the theoretical framework can help researchers to identify the most appropriate research design for their study.
  • Supporting the interpretation of research findings: A theoretical framework provides a framework for interpreting the research findings by helping researchers to make connections between their findings and existing theory. It enables researchers to identify the implications of their findings for theory development and to assess the generalizability of their findings.
  • Enhancing the credibility of the research: A well-developed theoretical framework can enhance the credibility of the research by providing a strong theoretical foundation for the study. It demonstrates that the research is based on a solid understanding of the relevant theory and that the research questions are grounded in a clear conceptual framework.
  • Facilitating communication and collaboration: A theoretical framework provides a common language and conceptual framework for researchers, enabling them to communicate and collaborate more effectively. It helps to ensure that everyone involved in the research is working towards the same goals and is using the same concepts and definitions.

Characteristics of Theoretical Framework

Some of the characteristics of a theoretical framework include:

  • Conceptual clarity: The concepts used in the theoretical framework should be clearly defined and understood by all stakeholders.
  • Logical coherence : The framework should be internally consistent, with each concept and assumption logically connected to the others.
  • Empirical relevance: The framework should be based on empirical evidence and research findings.
  • Parsimony : The framework should be as simple as possible, without sacrificing its ability to explain the phenomenon in question.
  • Flexibility : The framework should be adaptable to new findings and insights.
  • Testability : The framework should be testable through research, with clear hypotheses that can be falsified or supported by data.
  • Applicability : The framework should be useful for practical applications, such as designing interventions or policies.

Advantages of Theoretical Framework

Here are some of the advantages of having a theoretical framework:

  • Provides a clear direction : A theoretical framework helps researchers to identify the key concepts and variables they need to study and the relationships between them. This provides a clear direction for the research and helps researchers to focus their efforts and resources.
  • Increases the validity of the research: A theoretical framework helps to ensure that the research is based on sound theoretical principles and concepts. This increases the validity of the research by ensuring that it is grounded in established knowledge and is not based on arbitrary assumptions.
  • Enables comparisons between studies : A theoretical framework provides a common language and set of concepts that researchers can use to compare and contrast their findings. This helps to build a cumulative body of knowledge and allows researchers to identify patterns and trends across different studies.
  • Helps to generate hypotheses: A theoretical framework provides a basis for generating hypotheses about the relationships between different concepts and variables. This can help to guide the research process and identify areas that require further investigation.
  • Facilitates communication: A theoretical framework provides a common language and set of concepts that researchers can use to communicate their findings to other researchers and to the wider community. This makes it easier for others to understand the research and its implications.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Thesis Outline

Thesis Outline – Example, Template and Writing...

Research Paper Conclusion

Research Paper Conclusion – Writing Guide and...

Appendices

Appendices – Writing Guide, Types and Examples

Research Paper Citation

How to Cite Research Paper – All Formats and...

Research Report

Research Report – Example, Writing Guide and...

Delimitations

Delimitations in Research – Types, Examples and...

Help | Advanced Search

Statistics > Methodology

Title: a bayes factor framework for unified parameter estimation and hypothesis testing.

Abstract: The Bayes factor, the data-based updating factor of the prior to posterior odds of two hypotheses, is a natural measure of statistical evidence for one hypothesis over the other. We show how Bayes factors can also be used for parameter estimation. The key idea is to consider the Bayes factor as a function of the parameter value under the null hypothesis. This 'Bayes factor function' is inverted to obtain point estimates ('maximum evidence estimates') and interval estimates ('support intervals'), similar to how P-value functions are inverted to obtain point estimates and confidence intervals. This provides data analysts with a unified inference framework as Bayes factors (for any tested parameter value), support intervals (at any level), and point estimates can be easily read off from a plot of the Bayes factor function. This approach shares similarities but is also distinct from conventional Bayesian and frequentist approaches: It uses the Bayesian evidence calculus, but without synthesizing data and prior, and it defines statistical evidence in terms of (integrated) likelihood ratios, but also includes a natural way for dealing with nuisance parameters. Applications to real-world examples illustrate how our framework is of practical value for making make quantitative inferences.

Submission history

Access paper:.

  • Download PDF
  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

COMMENTS

  1. How to Write a Strong Hypothesis

    6. Write a null hypothesis. If your research involves statistical hypothesis testing, you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0, while the alternative hypothesis is H 1 or H a.

  2. Customer-Driven Engineering

    The hypothesis templates and parameters of the Hypothesis Progression Framework. The framework is "progressive", because the learning in one stage can be carried over to the next.

  3. PDF Hypothesis testing framework

    If they do, then we reject the null hypothesis in favor of the alternative. We'll formally introduce the hypothesis testing framework using an example on testing a claim about a population mean. Sta102/BME102 (Colin Rundel) Lec 10. Lec 10. October 1, 2014 2 / 25.

  4. What Is a Conceptual Framework?

    A conceptual framework is a representation of the relationship you expect to see between your variables, or the characteristics or properties that you want to study. ... Thus, your hypothesis will be that the more hours a student studies, the better they will do on the exam. Note that causal relationships often involve several independent ...

  5. A Practical Guide to Writing Quantitative and Qualitative Research

    Hypothesis-generating (Qualitative hypothesis-generating research) - Qualitative research uses inductive reasoning. - This involves data collection from study participants or the literature regarding a phenomenon of interest, using the collected data to develop a formal hypothesis, and using the formal hypothesis as a framework for testing the ...

  6. 5 steps to a hypothesis-driven design process

    Recruit the users you want to target, have a time frame, and put the design in front of the users. 5. Learn and build. You just learned that the result was positive and you're excited to roll out the feature. That's great! If the hypothesis failed, don't worry—you'll be able to gain some insights from that experiment.

  7. How to Implement Hypothesis-Driven Development

    Make observations. Formulate a hypothesis. Design an experiment to test the hypothesis. State the indicators to evaluate if the experiment has succeeded. Conduct the experiment. Evaluate the results of the experiment. Accept or reject the hypothesis. If necessary, make and test a new hypothesis.

  8. Introducing our hypothesis framework

    This hypothesis framework isn't limited to A/B tests on your website - it can apply anywhere: to your advertising creative and channels, even to your SEO, product and pricing strategy. Any change and any experience can be optimized - and to do that effectively requires a data-driven and controlled framework like this.

  9. How to Implement Hypothesis-Driven Development

    Make observations. Formulate a hypothesis. Design an experiment to test the hypothesis. State the indicators to evaluate if the experiment has succeeded. Conduct the experiment. Evaluate the results of the experiment. Accept or reject the hypothesis. If necessary, make and test a new hypothesis.

  10. The Hypothesis Testing Framework

    The hypothesis testing framework. Start with two hypotheses about the population: the null hypothesis and the alternative hypothesis. Choose a (representative) sample, collect data, and analyze the data. Figure out how likely it is to see data like what we observed, IF the null hypothesis were in fact true.

  11. Hypothesis

    A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon. ... Hempel provides a useful metaphor that describes the relationship between a conceptual framework and the framework as it is observed and perhaps tested (interpreted framework). "The whole system floats, as it were, above the plane of observation and is anchored to it ...

  12. How to Write a Great Hypothesis

    What is a hypothesis and how can you write a great one for your research? A hypothesis is a tentative statement about the relationship between two or more variables that can be tested empirically. Find out how to formulate a clear, specific, and testable hypothesis with examples and tips from Verywell Mind, a trusted source of psychology and mental health information.

  13. Hypothesis Testing Framework

    The formal framework and steps for hypothesis testing are as follows: Identify and define the parameter of interest; Define the competing hypotheses to test; Set the evidence threshold, formally called the significance level; Generate or use theory to specify the sampling distribution and check conditions;

  14. Hypothesis Testing

    There are 5 main steps in hypothesis testing: State your research hypothesis as a null hypothesis and alternate hypothesis (H o) and (H a or H 1 ). Collect data in a way designed to test the hypothesis. Perform an appropriate statistical test. Decide whether to reject or fail to reject your null hypothesis. Present the findings in your results ...

  15. What I learned at McKinsey: How to be hypothesis-driven

    McKinsey consultants follow three steps in this cycle: Form a hypothesis about the problem and determine the data needed to test the hypothesis. Gather and analyze the necessary data, comparing ...

  16. Research frameworks and hypotheses

    A hypothesis is a statement of expectations for your research. To develop one in social science research requires aligning it with a theoretical framework.

  17. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  18. How McKinsey uses Hypotheses in Business & Strategy by McKinsey Alum

    And, being hypothesis-driven was required to have any success at McKinsey. A hypothesis is an idea or theory, often based on limited data, which is typically the beginning of a thread of further investigation to prove, disprove or improve the hypothesis through facts and empirical data. The first step in being hypothesis-driven is to focus on ...

  19. Theoretical Framework

    This type of framework starts with a general theory or hypothesis and then uses data to test and refine it. It is often used in quantitative research. Inductive Framework. This type of framework starts with data and then develops a theory or hypothesis based on the patterns and themes that emerge from the data. It is often used in qualitative ...

  20. What is a Theoretical Framework? How to Write It (with Examples)

    A theoretical framework guides the research process like a roadmap for the study, so you need to get this right. Theoretical framework 1,2 is the structure that supports and describes a theory. A theory is a set of interrelated concepts and definitions that present a systematic view of phenomena by describing the relationship among the variables for explaining these phenomena.

  21. How to Use Product Hypothesis Frameworks for Innovation

    A product hypothesis framework is a tool that helps you structure and communicate your product hypothesis in a consistent and logical way. It also helps you define the key elements of your ...

  22. Forming experimental product hypotheses

    Forming the Hypothesis. With a user or business problem to solve and a hypothesis template ready it's time to fill in the statement blanks. As shown in the table below there's four initial ...

  23. Framework interpretation

    The framework interpretation (also known as the literary framework view, framework theory, or framework hypothesis) is a description of the structure of the first chapter of the Book of Genesis (more precisely Genesis 1:1-2:4a), the Genesis creation narrative. Biblical scholars and theologians present the structure as evidence that Gen. 1 presents a symbolic, rather than literal ...

  24. A Bayes Factor Framework for Unified Parameter Estimation and

    The Bayes factor, the data-based updating factor of the prior to posterior odds of two hypotheses, is a natural measure of statistical evidence for one hypothesis over the other. We show how Bayes factors can also be used for parameter estimation. The key idea is to consider the Bayes factor as a function of the parameter value under the null hypothesis. This 'Bayes factor function' is ...