Grad Coach

Research Proposal Example/Sample

Detailed Walkthrough + Free Proposal Template

If you’re getting started crafting your research proposal and are looking for a few examples of research proposals , you’ve come to the right place.

In this video, we walk you through two successful (approved) research proposals , one for a Master’s-level project, and one for a PhD-level dissertation. We also start off by unpacking our free research proposal template and discussing the four core sections of a research proposal, so that you have a clear understanding of the basics before diving into the actual proposals.

  • Research proposal example/sample – Master’s-level (PDF/Word)
  • Research proposal example/sample – PhD-level (PDF/Word)
  • Proposal template (Fully editable) 

If you’re working on a research proposal for a dissertation or thesis, you may also find the following useful:

  • Research Proposal Bootcamp : Learn how to write a research proposal as efficiently and effectively as possible
  • 1:1 Proposal Coaching : Get hands-on help with your research proposal

Free Webinar: How To Write A Research Proposal

FAQ: Research Proposal Example

Research proposal example: frequently asked questions, are the sample proposals real.

Yes. The proposals are real and were approved by the respective universities.

Can I copy one of these proposals for my own research?

As we discuss in the video, every research proposal will be slightly different, depending on the university’s unique requirements, as well as the nature of the research itself. Therefore, you’ll need to tailor your research proposal to suit your specific context.

You can learn more about the basics of writing a research proposal here .

How do I get the research proposal template?

You can access our free proposal template here .

Is the proposal template really free?

Yes. There is no cost for the proposal template and you are free to use it as a foundation for your research proposal.

Where can I learn more about proposal writing?

For self-directed learners, our Research Proposal Bootcamp is a great starting point.

For students that want hands-on guidance, our private coaching service is recommended.

Literature Review Course

Psst… there’s more!

This post is an extract from our bestselling Udemy Course, Research Proposal Bootcamp . If you want to work smart, you don't want to miss this .

You Might Also Like:

Example of a literature review

I am at the stage of writing my thesis proposal for a PhD in Management at Altantic International University. I checked on the coaching services, but it indicates that it’s not available in my area. I am in South Sudan. My proposed topic is: “Leadership Behavior in Local Government Governance Ecosystem and Service Delivery Effectiveness in Post Conflict Districts of Northern Uganda”. I will appreciate your guidance and support

MUHAMMAD SHAH

GRADCOCH is very grateful motivated and helpful for all students etc. it is very accorporated and provide easy access way strongly agree from GRADCOCH.

Tamasgen desta

Proposal research departemet management

Salim

I am at the stage of writing my thesis proposal for a masters in Analysis of w heat commercialisation by small holders householdrs at Hawassa International University. I will appreciate your guidance and support

Abrar Shouket

please provide a attractive proposal about foreign universities .It would be your highness.

habitamu abayneh

comparative constitutional law

Kabir Abubakar

Kindly guide me through writing a good proposal on the thesis topic; Impact of Artificial Intelligence on Financial Inclusion in Nigeria. Thank you

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

GeoPoll

How to Determine Sample Size for a Research Study

Frankline kibuacha | apr. 06, 2021 | 3 min. read.

sample size research

This article will discuss considerations to put in place when determining your sample size and how to calculate the sample size.

Confidence Interval and Confidence Level

As we have noted before, when selecting a sample there are multiple factors that can impact the reliability and validity of results, including sampling and non-sampling errors . When thinking about sample size, the two measures of error that are almost always synonymous with sample sizes are the confidence interval and the confidence level.

Confidence Interval (Margin of Error)

Confidence intervals measure the degree of uncertainty or certainty in a sampling method and how much uncertainty there is with any particular statistic. In simple terms, the confidence interval tells you how confident you can be that the results from a study reflect what you would expect to find if it were possible to survey the entire population being studied. The confidence interval is usually a plus or minus (±) figure. For example, if your confidence interval is 6 and 60% percent of your sample picks an answer, you can be confident that if you had asked the entire population, between 54% (60-6) and 66% (60+6) would have picked that answer.

Confidence Level

The confidence level refers to the percentage of probability, or certainty that the confidence interval would contain the true population parameter when you draw a random sample many times. It is expressed as a percentage and represents how often the percentage of the population who would pick an answer lies within the confidence interval. For example, a 99% confidence level means that should you repeat an experiment or survey over and over again, 99 percent of the time, your results will match the results you get from a population.

The larger your sample size, the more confident you can be that their answers truly reflect the population. In other words, the larger your sample for a given confidence level, the smaller your confidence interval.

Standard Deviation

Another critical measure when determining the sample size is the standard deviation, which measures a data set’s distribution from its mean. In calculating the sample size, the standard deviation is useful in estimating how much the responses you receive will vary from each other and from the mean number, and the standard deviation of a sample can be used to approximate the standard deviation of a population.

The higher the distribution or variability, the greater the standard deviation and the greater the magnitude of the deviation. For example, once you have already sent out your survey, how much variance do you expect in your responses? That variation in responses is the standard deviation.

Population Size

population

As demonstrated through the calculation below, a sample size of about 385 will give you a sufficient sample size to draw assumptions of nearly any population size at the 95% confidence level with a 5% margin of error, which is why samples of 400 and 500 are often used in research. However, if you are looking to draw comparisons between different sub-groups, for example, provinces within a country, a larger sample size is required. GeoPoll typically recommends a sample size of 400 per country as the minimum viable sample for a research project, 800 per country for conducting a study with analysis by a second-level breakdown such as females versus males, and 1200+ per country for doing third-level breakdowns such as males aged 18-24 in Nairobi.

How to Calculate Sample Size

As we have defined all the necessary terms, let us briefly learn how to determine the sample size using a sample calculation formula known as Andrew Fisher’s Formula.

  • Determine the population size (if known).
  • Determine the confidence interval.
  • Determine the confidence level.
  • Determine the standard deviation ( a standard deviation of 0.5 is a safe choice where the figure is unknown )
  • Convert the confidence level into a Z-Score. This table shows the z-scores for the most common confidence levels:
  • Put these figures into the sample size formula to get your sample size.

sample size calculation

Here is an example calculation:

Say you choose to work with a 95% confidence level, a standard deviation of 0.5, and a confidence interval (margin of error) of ± 5%, you just need to substitute the values in the formula:

((1.96)2 x .5(.5)) / (.05)2

(3.8416 x .25) / .0025

.9604 / .0025

Your sample size should be 385.

Fortunately, there are several available online tools to help you with this calculation. Here’s an online sample calculator from Easy Calculation. Just put in the confidence level, population size, the confidence interval, and the perfect sample size is calculated for you.

GeoPoll’s Sampling Techniques

With the largest mobile panel in Africa, Asia, and Latin America, and reliable mobile technologies, GeoPoll develops unique samples that accurately represent any population. See our country coverage  here , or  contact  our team to discuss your upcoming project.

Related Posts

Sample Frame and Sample Error

Probability and Non-Probability Samples

How GeoPoll Conducts Nationally Representative Surveys

  • Tags market research , Market Research Methods , sample size , survey methodology
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

sample size of research proposal

Home Audience

Sample Size Determination: Definition, Formula, and Example

sample size of research proposal

Are you ready to survey your research target? Research surveys help you gain insights from your target audience. The data you collect gives you insights to meet customer needs, leading to increased sales and customer loyalty. Sample size calculation and determination are imperative to the researcher to determine the right number of respondents, keeping in mind the research study’s quality.

So, how should you do the sample size determination? How do you know who should get your survey? How do you decide on the number of the target audience?

Sending out too many surveys can be expensive without giving you a definitive advantage over a smaller sample. But if you send out too few, you won’t have enough data to draw accurate conclusions. 

Knowing how to calculate and determine the appropriate sample size accurately can give you an edge over your competitors. Let’s take a look at what a good sample includes. Also, let’s look at the sample size calculation formula so you can determine the perfect sample size for your next survey.

What is Sample Size?

‘Sample size’ is a market research term used for defining the number of individuals included in conducting research. Researchers choose their sample based on demographics, such as age, gender questions , or physical location. It can be vague or specific. 

For example, you may want to know what people within the 18-25 age range think of your product. Or, you may only require your sample to live in the United States, giving you a wide population range. The total number of individuals in a particular sample is the sample size.

What is sample size determination?

Sample size determination is the process of choosing the right number of observations or people from a larger group to use in a sample. The goal of figuring out the sample size is to ensure that the sample is big enough to give statistically valid results and accurate estimates of population parameters but small enough to be manageable and cost-effective.

In many research studies, getting information from every member of the population of interest is not possible or useful. Instead, researchers choose a sample of people or events that is representative of the whole to study. How accurate and precise the results are can depend a lot on the size of the sample.

Choosing the statistically significant sample size depends on a number of things, such as the size of the population, how precise you want your estimates to be, how confident you want to be in the results, how different the population is likely to be, and how much money and time you have for the study. Statistics are often used to figure out how big a sample should be for a certain type of study and research question.

Figuring out the sample size is important in ensuring that research findings and conclusions are valid and reliable.

Why do you need to determine the sample size?

Let’s say you are a market researcher in the US and want to send out a survey or questionnaire . The survey aims to understand your audience’s feelings toward a new cell phone you are about to launch. You want to know what people in the US think about the new product to predict the phone’s success or failure before launch.

Hypothetically, you choose the population of New York, which is 8.49 million. You use a sample size determination formula to select a sample of 500 individuals that fit into the consumer panel requirement. You can use the responses to help you determine how your audience will react to the new product.

However, determining a sample size requires more than just throwing your survey at as many people as possible. If your estimated sample sizes are too big, it could waste resources, time, and money. A sample size that’s too small doesn’t allow you to gain maximum insights, leading to inconclusive results.

LEARN ABOUT: Survey Sample Sizes

What are the terms used around the sample size?

Before we jump into sample size determination, let’s take a look at the terms you should know:

terms_used_around_sample_size

1. Population size: 

Population size is how many people fit your demographic. For example, you want to get information on doctors residing in North America. Your population size is the total number of doctors in North America. 

Don’t worry! Your population size doesn’t always have to be that big. Smaller population sizes can still give you accurate results as long as you know who you’re trying to represent.

2. Confidence level: 

The confidence level tells you how sure you can be that your data is accurate. It is expressed as a percentage and aligned to the confidence interval. For example, if your confidence level is 90%, your results will most likely be 90% accurate.

3. The margin of error (confidence interval): 

There’s no way to be 100% accurate when it comes to surveys. Confidence intervals tell you how far off from the population means you’re willing to allow your data to fall. 

A margin of error describes how close you can reasonably expect a survey result to fall relative to the real population value. Remember, if you need help with this information, use our margin of error calculator .

4. Standard deviation: 

Standard deviation is the measure of the dispersion of a data set from its mean. It measures the absolute variability of a distribution. The higher the dispersion or variability, the greater the standard deviation and the greater the magnitude of the deviation. 

For example, you have already sent out your survey. How much variance do you expect in your responses? That variation in response is the standard deviation.

Sample size calculation formula – sample size determination

With all the necessary terms defined, it’s time to learn how to determine sample size using a sample calculation formula.

Your confidence level corresponds to a Z-score. This is a constant value needed for this equation. Here are the z-scores for the most common confidence levels:

90% – Z Score = 1.645

95% – Z Score = 1.96

99% – Z Score = 2.576

If you choose a different confidence level, various online tools can help you find your score.

Necessary Sample Size = (Z-score)2 * StdDev*(1-StdDev) / (margin of error)2

Here is an example of how the math works, assuming you chose a 90% confidence level, .6 standard deviation, and a margin of error (confidence interval) of +/- 4%.

((1.64)2 x .6(.6)) / (.04)2

( 2.68x .0.36) / .0016

.9648 / .0016

603 respondents are needed, and that becomes your sample size.

Free Sample Size Calculator

How is a sample size determined?

Determining the right sample size for your survey is one of the most common questions researchers ask when they begin a market research study. Luckily, sample size determination isn’t as hard to calculate as you might remember from an old high school statistics class.

Before calculating your sample size, ensure you have these things in place:

Goals and objectives: 

What do you hope to do with the survey? Are you planning on projecting the results onto a whole demographic or population? Do you want to see what a specific group thinks? Are you trying to make a big decision or just setting a direction? 

Calculating sample size is critical if you’re projecting your survey results on a larger population. You’ll want to make sure that it’s balanced and reflects the community as a whole. The sample size isn’t as critical if you’re trying to get a feel for preferences. 

For example, you’re surveying homeowners across the US on the cost of cooling their homes in the summer. A homeowner in the South probably spends much more money cooling their home in the humid heat than someone in Denver, where the climate is dry and cool. 

For the most accurate results, you’ll need to get responses from people in all US areas and environments. If you only collect responses from one extreme, such as the warm South, your results will be skewed.

Precision level: 

How close do you want the survey results to mimic the true value if everyone responded? Again, if this survey determines how you’re going to spend millions of dollars, then your sample size determination should be exact. 

The more accurate you need to be, the larger the sample you want to have, and the more your sample will have to represent the overall population. If your population is small, say, 200 people, you may want to survey the entire population rather than cut it down with a sample.

Confidence level: 

Think of confidence from the perspective of risk. How much risk are you willing to take on? This is where your Confidence Interval numbers become important. How confident do you want to be — 98% confident, 95% confident? 

Understand that the confidence percentage you choose greatly impacts the number of completions you’ll need for accuracy. This can increase the survey’s length and how many responses you need, which means increased costs for your survey. 

Knowing the actual numbers and amounts behind percentages can help make more sense of your correct sample size needs vs. survey costs. 

For example, you want to be 99% confident. After using the sample size determination formula, you find you need to collect an additional 1000 respondents. 

This, in turn, means you’ll be paying for samples or keeping your survey running for an extra week or two. You have to determine if the increased accuracy is more important than the cost.

Population variability: 

What variability exists in your population? In other words, how similar or different is the population?

If you are surveying consumers on a broad topic, you may have lots of variations. You’ll need a larger sample size to get the most accurate picture of the population. 

However, if you’re surveying a population with similar characteristics, your variability will be less, and you can sample fewer people. More variability equals more samples, and less variability equals fewer samples. If you’re not sure, you can start with 50% variability.

Response rate: 

You want everyone to respond to your survey. Unfortunately, every survey comes with targeted respondents who either never open the study or drop out halfway. Your response rate will depend on your population’s engagement with your product, service organization, or brand. 

The higher the response rate, the higher your population’s engagement level. Your base sample size is the number of responses you must get for a successful survey.

Consider your audience: 

Besides the variability within your population, you need to ensure your sample doesn’t include people who won’t benefit from the results. One of the biggest mistakes you can make in sample size determination is forgetting to consider your actual audience. 

For example, you don’t want to send a survey asking about the quality of local apartment amenities to a group of homeowners.

Select your respondents

Focus on your survey’s objectives: 

You may start with general demographics and characteristics, but can you narrow those characteristics down even more? Narrowing down your audience makes getting a more accurate result from a small sample size easier. 

For example, you want to know how people will react to new automobile technology. Your current population includes anyone who owns a car in a particular market. 

However, you know your target audience is people who drive cars that are less than five years old. You can remove anyone with an older vehicle from your sample because they’re unlikely to purchase your product.

Once you know what you hope to gain from your survey and what variables exist within your population, you can decide how to calculate sample size. Using the formula for determining sample size is a great starting point to get accurate results. 

After calculating the sample size, you’ll want to find reliable customer survey software to help you accurately collect survey responses and turn them into analyzed reports.

LEARN MORE: Population vs Sample

In sample size determination, statistical analysis plan needs careful consideration of the level of significance, effect size, and sample size. 

Researchers must reconcile statistical significance with practical and ethical factors like practicality and cost. A well-designed study with a sufficient sample size can improve the odds of obtaining statistically significant results.

To meet the goal of your survey, you may have to try a few methods to increase the response rate, such as:

  • Increase the list of people who receive the survey.
  • To reach a wider audience, use multiple distribution channels, such as SMS, website, and email surveys.
  • Send reminders to survey participants to complete the survey.
  • Offer incentives for completing the survey, such as an entry into a prize drawing or a discount on the respondent’s next order.
  • Consider your survey structure and find ways to simplify your questions. The less work someone has to do to complete the survey, the more likely they will finish it. 
  • Longer surveys tend to have lower response rates due to the length of time it takes to complete the survey. In this case, you can reduce the number of questions in your survey to increase responses.  

QuestionPro’s sample size calculator makes it easy to find the right sample size for your research based on your desired level of confidence, your margin of error, and the size of the population.

FREE TRIAL         LEARN MORE

Frequently Asked Questions (FAQ)

The four ways to determine sample size are: 1. Power analysis 2. Convenience sampling, 3. Random sampling , 4. Stratified sampling

The three factors that determine sample size are: 1. Effect size, 2. Level of significance 3. Power

Using statistical techniques like power analysis, the minimal detectable effect size, or the sample size formula while taking into account the study’s goals and practical limitations is the best way to calculate the sample size.

The sample size is important because it affects how precise and accurate the results of a study are and how well researchers can spot real effects or relationships between variables.

The sample size is the number of observations or study participants chosen to be representative of a larger group

MORE LIKE THIS

website optimization tools

20 Best Website Optimization Tools to Improve Your Website

Mar 22, 2024

digital customer experience software

15 Best Digital Customer Experience Software of 2024

product experience software

15 Best Product Experience Software of 2024

customer analytics software

15 Best Customer Analytics Software of 2024 | QuestionPro

Mar 21, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Sample size estimation for health and social science researchers: The principles and considerations for different study designs

Affiliation.

  • 1 Department of Epidemiology and Community Health, Faculty of Clinical Sciences, University of Ilorin, Ilorin, Nigeria.
  • PMID: 32295935
  • DOI: 10.4103/npmj.npmj_19_20

Sample size is one of the important considerations at the planning phase of a research proposal, but researchers are often faced with challenges of estimating valid sample size. Many researchers frequently use inadequate sample size and this invariably introduces errors into the final findings. Many reviews on sample size estimation have focused more on specific study designs which often present technical equations and formula that are boring to statistically naïve health researchers. Therefore, this compendium reviews all the common sample size estimation formula in social science and health research with the aim of providing basic guidelines and principles to achieve valid sample size estimation. The simplification of the sample size formula and detailed explanation in this review will demystify the difficulties many students as well as some researchers have with statistical formulae for sample size estimation.

Keywords: Health; sample size; social science; study design.

Publication types

  • Biomedical Research*
  • Research Design*
  • Sample Size*
  • Social Sciences*

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Sampling Methods | Types, Techniques & Examples

Sampling Methods | Types, Techniques & Examples

Published on September 19, 2019 by Shona McCombes . Revised on June 22, 2023.

When you conduct research about a group of people, it’s rarely possible to collect data from every person in that group. Instead, you select a sample . The sample is the group of individuals who will actually participate in the research.

To draw valid conclusions from your results, you have to carefully decide how you will select a sample that is representative of the group as a whole. This is called a sampling method . There are two primary types of sampling methods that you can use in your research:

  • Probability sampling involves random selection, allowing you to make strong statistical inferences about the whole group.
  • Non-probability sampling involves non-random selection based on convenience or other criteria, allowing you to easily collect data.

You should clearly explain how you selected your sample in the methodology section of your paper or thesis, as well as how you approached minimizing research bias in your work.

Table of contents

Population vs. sample, probability sampling methods, non-probability sampling methods, other interesting articles, frequently asked questions about sampling.

First, you need to understand the difference between a population and a sample , and identify the target population of your research.

  • The population is the entire group that you want to draw conclusions about.
  • The sample is the specific group of individuals that you will collect data from.

The population can be defined in terms of geographical location, age, income, or many other characteristics.

Population vs sample

It is important to carefully define your target population according to the purpose and practicalities of your project.

If the population is very large, demographically mixed, and geographically dispersed, it might be difficult to gain access to a representative sample. A lack of a representative sample affects the validity of your results, and can lead to several research biases , particularly sampling bias .

Sampling frame

The sampling frame is the actual list of individuals that the sample will be drawn from. Ideally, it should include the entire target population (and nobody who is not part of that population).

Sample size

The number of individuals you should include in your sample depends on various factors, including the size and variability of the population and your research design. There are different sample size calculators and formulas depending on what you want to achieve with statistical analysis .

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

sample size of research proposal

Probability sampling means that every member of the population has a chance of being selected. It is mainly used in quantitative research . If you want to produce results that are representative of the whole population, probability sampling techniques are the most valid choice.

There are four main types of probability sample.

Probability sampling

1. Simple random sampling

In a simple random sample, every member of the population has an equal chance of being selected. Your sampling frame should include the whole population.

To conduct this type of sampling, you can use tools like random number generators or other techniques that are based entirely on chance.

2. Systematic sampling

Systematic sampling is similar to simple random sampling, but it is usually slightly easier to conduct. Every member of the population is listed with a number, but instead of randomly generating numbers, individuals are chosen at regular intervals.

If you use this technique, it is important to make sure that there is no hidden pattern in the list that might skew the sample. For example, if the HR database groups employees by team, and team members are listed in order of seniority, there is a risk that your interval might skip over people in junior roles, resulting in a sample that is skewed towards senior employees.

3. Stratified sampling

Stratified sampling involves dividing the population into subpopulations that may differ in important ways. It allows you draw more precise conclusions by ensuring that every subgroup is properly represented in the sample.

To use this sampling method, you divide the population into subgroups (called strata) based on the relevant characteristic (e.g., gender identity, age range, income bracket, job role).

Based on the overall proportions of the population, you calculate how many people should be sampled from each subgroup. Then you use random or systematic sampling to select a sample from each subgroup.

4. Cluster sampling

Cluster sampling also involves dividing the population into subgroups, but each subgroup should have similar characteristics to the whole sample. Instead of sampling individuals from each subgroup, you randomly select entire subgroups.

If it is practically possible, you might include every individual from each sampled cluster. If the clusters themselves are large, you can also sample individuals from within each cluster using one of the techniques above. This is called multistage sampling .

This method is good for dealing with large and dispersed populations, but there is more risk of error in the sample, as there could be substantial differences between clusters. It’s difficult to guarantee that the sampled clusters are really representative of the whole population.

In a non-probability sample, individuals are selected based on non-random criteria, and not every individual has a chance of being included.

This type of sample is easier and cheaper to access, but it has a higher risk of sampling bias . That means the inferences you can make about the population are weaker than with probability samples, and your conclusions may be more limited. If you use a non-probability sample, you should still aim to make it as representative of the population as possible.

Non-probability sampling techniques are often used in exploratory and qualitative research . In these types of research, the aim is not to test a hypothesis about a broad population, but to develop an initial understanding of a small or under-researched population.

Non probability sampling

1. Convenience sampling

A convenience sample simply includes the individuals who happen to be most accessible to the researcher.

This is an easy and inexpensive way to gather initial data, but there is no way to tell if the sample is representative of the population, so it can’t produce generalizable results. Convenience samples are at risk for both sampling bias and selection bias .

2. Voluntary response sampling

Similar to a convenience sample, a voluntary response sample is mainly based on ease of access. Instead of the researcher choosing participants and directly contacting them, people volunteer themselves (e.g. by responding to a public online survey).

Voluntary response samples are always at least somewhat biased , as some people will inherently be more likely to volunteer than others, leading to self-selection bias .

3. Purposive sampling

This type of sampling, also known as judgement sampling, involves the researcher using their expertise to select a sample that is most useful to the purposes of the research.

It is often used in qualitative research , where the researcher wants to gain detailed knowledge about a specific phenomenon rather than make statistical inferences, or where the population is very small and specific. An effective purposive sample must have clear criteria and rationale for inclusion. Always make sure to describe your inclusion and exclusion criteria and beware of observer bias affecting your arguments.

4. Snowball sampling

If the population is hard to access, snowball sampling can be used to recruit participants via other participants. The number of people you have access to “snowballs” as you get in contact with more people. The downside here is also representativeness, as you have no way of knowing how representative your sample is due to the reliance on participants recruiting others. This can lead to sampling bias .

5. Quota sampling

Quota sampling relies on the non-random selection of a predetermined number or proportion of units. This is called a quota.

You first divide the population into mutually exclusive subgroups (called strata) and then recruit sample units until you reach your quota. These units share specific characteristics, determined by you prior to forming your strata. The aim of quota sampling is to control what or who makes up your sample.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Prospective cohort study

Research bias

  • Implicit bias
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic
  • Social desirability bias

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling, and quota sampling .

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from state to city to neighborhood) to create a sample that’s less expensive and time-consuming to collect data from.

Sampling bias occurs when some members of a population are systematically more likely to be selected in a sample than others.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, June 22). Sampling Methods | Types, Techniques & Examples. Scribbr. Retrieved March 21, 2024, from https://www.scribbr.com/methodology/sampling-methods/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, population vs. sample | definitions, differences & examples, simple random sampling | definition, steps & examples, sampling bias and how to avoid it | types & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Psychol Med
  • v.35(2); Apr-Jun 2013

How to Calculate Sample Size for Different Study Designs in Medical Research?

Jaykaran charan.

Department of Pharmacology, Govt. Medical College, Surat, Gujarat, India

Tamoghna Biswas

1 Independent Researcher, Kolkata, West Bengal, India

Calculation of exact sample size is an important part of research design. It is very important to understand that different study design need different method of sample size calculation and one formula cannot be used in all designs. In this short review we tried to educate researcher regarding various method of sample size calculation available for different study designs. In this review sample size calculation for most frequently used study designs are mentioned. For genetic and microbiological studies readers are requested to read other sources.

INTRODUCTION

In the recent era of evidence-based medicine, biomedical statistics has come under increased scrutiny. Evidence is as good as the research it is based on, which in turn depends on the statistical soundness of the claims it make. One of the important issues faced by a biomedical researcher during the design phase of the study is sample size calculation. Various studies published in Indian and International journals revealed that sample size calculations are not reported properly in the published articles. Many of the studies published in these journals have less than required sample size and hence less power.[ 1 , 2 , 3 ] Many articles have been published in existing literature explaining the methods of calculation of sample size but still a lot of confusion exists.[ 4 , 5 , 6 ] It is very important to understand that method of sample size calculation is different for different study designs and one blanket formula for sample size calculation cannot be used for all study designs. In this article different formulae of sample size calculations are explained based on study designs. Readers are advised to understand the basics of prerequisites needed for calculation of sample size calculation through this article and from other sources also and once they have understood the basics they can use different paid/freely available software available for sample size calculations. For simple study designs formulae given in this article can be used for sample size calculation.

Sample size calculation for cross sectional studies/surveys

Cross sectional studies or cross sectional survey are done to estimate a population parameter like prevalence of some disease in a community or finding the average value of some quantitative variable in a population. Sample size formula for qualitative variable and quantities variable are different.

For qualitative variable

Suppose an epidemiologist want to know proportion of children who are hypertensive in a population then this formula should be used as proportion is a qualitative variable.

An external file that holds a picture, illustration, etc.
Object name is IJPsyM-35-121-g001.jpg

So if the researcher is interested in knowing the average systolic blood pressure in pediatric age group of that city at 5% of type of 1 error and precision of 5 mmHg of either side (more or less than mean systolic BP) and standard deviation, based on previously done studies, is 25 mmHg then formula for sample size calculation will be

An external file that holds a picture, illustration, etc.
Object name is IJPsyM-35-121-g002.jpg

So if the researcher wants to calculate sample size for the above-mentioned case control study to know link between childhood sexual abuse with psychiatric disorder in adulthood and he wants to fix power of study at 80% and assuming expected proportions in case group and control group are 0.35 and 0.20 respectively, and he wants to have equal number cases and control; then the sample size per group will be

An external file that holds a picture, illustration, etc.
Object name is IJPsyM-35-121-g003.jpg

So, the researcher has to take 59 samples in each group.

It is worthy of mention here that these formulas for case control and cohort study are for independent design studies. They are not for matched case control and cohort studies. These formulae can be modified or corrected depending on population size or ratio between sample size and population size. Detailed text should be read to know more about technical aspects of sample size calculation.[ 7 , 8 ] Readers are advised to use various freely available epidemiological calculators like openEpi given in appendix to calculate sample size formula.

Sample size calculation for testing a hypothesis (Clinical trials or clinical interventional studies)

In this kind of research design researcher wants to see the effect of an intervention. Suppose a researcher want to see the effect of an antihypertensive drug so he will select two groups, one group will be given antihypertensive drug and another group will be give placebo. After giving these drug s for a fixed time period blood pressure of both groups will be measured and mean blood pressure of both groups will be compared to see if difference is significant or not. Complex formulae are used for this type of studies and we want to advise readers to use statistical software for calculation of exact sample size. The procedure for calculation of samle size in clinical trials/intervention studies involving two groups is mentioned here. In the case of only two groups method of calculation is mentioned here but if design involves more than two groups then statistical software like G Power should be used for sample size calculation. But understanding of various prerequisites which are needed for sample size calculation is very important.

Formula for sample size calculation for comparison between two groups when endpoint is quantitative data

When the variable is quantitative data like blood pressure, weight, height, etc., then the followingformula can be used for calculation of sample size for comparison between two groups.

An external file that holds a picture, illustration, etc.
Object name is IJPsyM-35-121-g004.jpg

So researcher needs 294 subjects per group.

So simple calculation for sample size when comparison is for two independent groups can be done manually by given formulae but for more than two groups or for matched data and for other complex calculations software should be used [ appendix 1 ].

Sample size formula for animal studies

For animal studies there are two method of calculation of sample size. The most preferred method is the same method which has been mentioned in sample size calculation for testing the hypothesis. While all efforts should be done to calculate the sample size by that method, sometimes it is not possible to get information related to the prerequisites needed for sample size calculation by power analysis like standard deviation, effect size etc. In that condition a second method can be used this is called as “resource equation method”.[ 9 ] In this method a value E is calculated based on decided sample size. The value if E should lies within 10 to 20 for optimum sample size. If a value of E is less than 10 then more animal should be included and if it is more than 20 then sample size should be decreased.

E = Total number of animals - Total number of groups

Suppose in an animal study a researcher formed 4 groups of animal having 8 animals each for different interventions then total animals will be 32 (4 × 8). Hence E will be

E = 32 – 4 = 28

This is more than 20 hence animals should be decreased in each group. So if researcher takes 5 rats in each group then E will be

E = 20 – 4 = 16

E is 16 which lies within 10-20 hence five rats per group for four groups can be considered as appropriate sample size. This is a crude method and should be used only if sample size calculation cannot be done by power analysis method explained in above section for testing the hypothesis.

APPENDIX 1: – FREE SOFTWARE AND CALCULATORS AVAILABLE ONLINE FOR SAMPLE SIZE CALCULATION

An external file that holds a picture, illustration, etc.
Object name is IJPsyM-35-121-g005.jpg

Source of Support: Nil

Conflict of Interest: None.

COMMENTS

  1. A Step-by-Step Process on Sample Size Determination for Medical Research

    Sample size calculation or estimation is an important consideration which necessitate all researchers to pay close attention to when planning a study, which has also become a compulsory consideration for all experimental studies . ... For the development of a research proposal, different institutions may apply different approaches for sample ...

  2. How to Justify Sample Size in Statistics Research

    4 How to justify sample size. To justify the sample size for your research proposal or report, you need to explain how you determined the values of the four main elements and how they relate to ...

  3. Sample Size and its Importance in Research

    The sample size for a study needs to be estimated at the time the study is proposed; too large a sample is unnecessary and unethical, and too small a sample is unscientific and also unethical. The necessary sample size can be calculated, using statistical software, based on certain assumptions. If no assumptions can be made, then an arbitrary ...

  4. PDF Writing the Sample Size Section for your Proposal

    Lecture 23 Writing the Sample Size Section for your Proposal 10 28 1. Align power analysis with data analysis 2. Justify the power analysis 3. Account for uncertainty 4. Plan for missing data 5. Demonstrate enrollment feasibility 6. Plan for multiple aims We discussed six components that should be in the sample size section of a grant proposal.

  5. How to Write a Research Proposal

    Research proposal examples. Writing a research proposal can be quite challenging, but a good starting point could be to look at some examples. We've included a few for you below. Example research proposal #1: "A Conceptual Framework for Scheduling Constraint Management".

  6. PDF Research Proposal Format Example

    Research Proposal Format Example ... B. Sample and Procedures (Chapter 7) 1. Describe your study population and proposed sample (expected size, demographics, etc.) 2. How will the sample be selected? Once they are selected what procedures will they follow as they participate in your study. 2 3. Informed consent: Explain thoroughly how you will ...

  7. Research Proposal Example (PDF + Template)

    Proposal template (Fully editable) If you're working on a research proposal for a dissertation or thesis, you may also find the following useful: Research Proposal Bootcamp: Learn how to write a research proposal as efficiently and effectively as possible. 1:1 Proposal Coaching: Get hands-on help with your research proposal.

  8. How to Determine Sample Size for a Research Study

    2.58. Put these figures into the sample size formula to get your sample size. Here is an example calculation: Say you choose to work with a 95% confidence level, a standard deviation of 0.5, and a confidence interval (margin of error) of ± 5%, you just need to substitute the values in the formula: ( (1.96)2 x .5 (.5)) / (.05)2.

  9. Sample size: how many participants do I need in my research?

    It is the ability of the test to detect a difference in the sample, when it exists in the target population. Calculated as 1-Beta. The greater the power, the larger the required sample size will be. A value between 80%-90% is usually used. Relationship between non-exposed/exposed groups in the sample.

  10. Sample size determination: A practical guide for health researchers

    If the sample size is low, the research outcome might not be reproducible. 1 Informal guidelines for sample size based on the experience of researchers are used in most research studies and may be sufficient, ... More recent proposals in sample size determination reportedly overcome the design or practical challenges in the field. 7, 59.

  11. Sample size determination: A practical guide for health researchers

    For sample size estima-tion, researchers need to (1) provide information regarding the statistical analysis to be applied, (2) determine acceptable precision levels, (3) decide on study power, (4) specify the confidence level, and (5) determine the magnitude of practical significance differences (effect size).

  12. (PDF) Research Sampling and Sample Size Determination: A practical

    According to Oribhabor and Anyanwu (2019), sample size is the number of items that will be constituted in a research study. For descriptive research, a sample of 10% to 30% of the entire ...

  13. What Is Sample Size?

    Sample size is the number of observations or individuals included in a study or experiment. It is the number of individuals, items, or data points selected from a larger population to represent it statistically. The sample size is a crucial consideration in research because it directly impacts the reliability and extent to which you can ...

  14. Sample Size Determination: Definition, Formula, and Example

    Determining the right sample size for your survey is one of the most common questions researchers ask when they begin a market research study. Luckily, sample size determination isn't as hard to calculate as you might remember from an old high school statistics class. Before calculating your sample size, ensure you have these things in place:

  15. PDF Sam ple size A rough guide

    This guide has sample size ready-reckoners for a number of common research designs. Each section is self-contained You need only read the section that applies to you. Examples There are examples in each section, aimed at helping you to describe your sample size calculation in a research proposal or ethics committee submission.

  16. Big enough? Sampling in qualitative inquiry

    So there was no uniform answer to the question and the ranges varied according to methodology. In fact, Shaw and Holland (2014) claim, sample size will largely depend on the method. (p. 87), "In truth," they write, "many decisions about sample size are made on the basis of resources, purpose of the research" among other factors. (p. 87).

  17. [PDF] Sample size A rough guide

    1989. 38. PDF. This guide has sample size ready-reckoners for a number of common research designs, aimed at helping you to describe your sample size calculation in a research proposal or ethics committee submission. This guide has sample size ready-reckoners for a number of common research designs. Each section is self-contained You need only ...

  18. Sample size estimation for health and social science ...

    Sample size is one of the important considerations at the planning phase of a research proposal, but researchers are often faced with challenges of estimating valid sample size. Many researchers frequently use inadequate sample size and this invariably introduces errors into the final findings. Many …

  19. How to prepare a Research Proposal

    Sample size: The proposal should provide information and justification (basis on which the sample size is calculated) about sample size in the methodology section. 3 A larger sample size than needed to test the research hypothesis increases the cost and duration of the study and will be unethical if it exposes human subjects to any potential unnecessary risk without additional benefit.

  20. Sampling Methods

    Example: Simple random sampling. You want to select a simple random sample of 1000 employees of a social media marketing company. You assign a number to every employee in the company database from 1 to 1000, and use a random number generator to select 100 numbers. 2. Systematic sampling.

  21. (PDF) SAMPLE SIZE DETERMINATION

    Abstract. Sample size determination is the essential step of research methodology. It is an act of choosing the number of observers or replicates to include in a statistical sample. In some ...

  22. (PDF) Sample Research Proposal Format

    This paper reviews highlights of research on teaching conducted in the 1970s, discusses current trends, and considers accomplishments likely to be forthcoming in the 1980s.

  23. How to Calculate Sample Size for Different Study Designs in Medical

    In this method a value E is calculated based on decided sample size. The value if E should lies within 10 to 20 for optimum sample size. If a value of E is less than 10 then more animal should be included and if it is more than 20 then sample size should be decreased. E = Total number of animals - Total number of groups.