The Mathematics Department at MIT is a world leader in pure and applied mathematical research and education. In pure mathematics we explore exciting current research directions in most of the major fields. In applied mathematics , we look for important connections with other disciplines that may inspire interesting and useful mathematics, and where innovative mathematical reasoning may lead to new insights and applications. Our applied math group focuses on biology, combinatorics, computer science, scientific computing, numerical analysis, and areas of physical applied mathematics.

The Department currently has about 50 faculty members, including many current and former faculty who have received the highest distinctions including an Abel Prize; two National Medals of Science; two MacArthur Awards; two Bôcher, two Cole, five Veblen, one Fulkerson and nine Steele Prizes. Nineteen are members of the National Academies of Science and Engineering and thirty are members of the American Academy of Arts and Sciences. See the award listings for more details.

Post-doctoral Instructors

Instructors in pure and applied mathematics, including CLE Moore Instructors, have the opportunity to reside at MIT for two or three years and work with our faculty. Teaching loads are kept light to provide good conditions for launching research programs. We aim to have roughly 30 Instructors in the Department at any given time.

We are fortunate to attract outstanding students at all levels. Our graduate program trains students for top academic and industrial research positions, and typically has over 100 students enrolled, including many international students. MIT undergraduates are top performers at the Putnam Competition —in the most recent 2023 competition, MIT had the 1st place team and all 5 of the 5 highest ranking individuals. Additionally, 63 MIT students were among those with Honorable Mention or higher. Approximately 360 students are enrolled in one of our two undergraduate programs: Mathematics (course 18) and Mathematics with Computer Science (course 18C).

Environment

Our Department benefits from the lively mathematical community in the Boston area including the outstanding departments at Harvard and other nearby universities.

The Clay Mathematics Institute is a wonderful resource for bringing visitors and hosting important colloquia and workshops. Weekly seminars are held at MIT ; many organized by graduate students. Our annual Simons Lecture series brings distinguished speakers on the latest developments.

Our excellent staff help us run the Department. Most of them can be found in Department Headquarters and in the Math Academic Services office .

  • Skip to Content
  • Bulletin Home

MIT Bulletin

  • Interdisciplinary Programs >
  • Graduate Programs >
  • Around Campus
  • Academic Program
  • Administration
  • Arts at MIT
  • Campus Media
  • Fraternities, Sororities, and Independent Living Groups
  • Medical Services
  • Priscilla King Gray Public Service Center
  • Religious Organizations
  • Student Government
  • Work/​Life and Family Resources
  • Advising and Support
  • Digital Learning
  • Disability and Access Services
  • Information Systems and Technology
  • Student Financial Services
  • Writing and Communication Center
  • Major Course of Study
  • General Institute Requirements
  • Independent Activites Period
  • Undergraduate Research Opportunities Program
  • First-​Year Advising Seminars
  • Interphase EDGE/​x
  • Edgerton Center
  • Grading Options
  • Study at Other Universities
  • Internships Abroad
  • Career Advising and Professional Development
  • Teacher Licensure and Education
  • ROTC Programs
  • Financial Aid
  • Medical Requirements
  • Graduate Study at MIT
  • General Degree Requirements
  • Other Institutions
  • Registration
  • Term Regulations and Examination Policies
  • Academic Performance and Grades
  • Policies and Procedures
  • Privacy of Student Records
  • Abdul Latif Jameel Poverty Action Lab
  • Art, Culture, and Technology Program
  • Broad Institute of MIT and Harvard
  • Center for Archaeological Materials
  • Center for Bits and Atoms
  • Center for Clinical and Translational Research
  • Center for Collective Intelligence
  • Center for Computational Science and Engineering
  • Center for Constructive Communication
  • Center for Energy and Environmental Policy Research
  • Center for Environmental Health Sciences
  • Center for Global Change Science
  • Center for International Studies
  • Center for Real Estate
  • Center for Transportation &​ Logistics
  • Computer Science and Artificial Intelligence Laboratory
  • Concrete Sustainability Hub
  • D-​Lab
  • Deshpande Center for Technological Innovation
  • Division of Comparative Medicine
  • Haystack Observatory
  • Initiative on the Digital Economy
  • Institute for Medical Engineering and Science
  • Institute for Soldier Nanotechnologies
  • Institute for Work and Employment Research
  • Internet Policy Research Initiative
  • Joint Program on the Science and Policy of Global Change
  • Knight Science Journalism Program
  • Koch Institute for Integrative Cancer Research
  • Laboratory for Financial Engineering
  • Laboratory for Information and Decision Systems
  • Laboratory for Manufacturing and Productivity
  • Laboratory for Nuclear Science
  • Legatum Center for Development and Entrepreneurship
  • Lincoln Laboratory
  • Martin Trust Center for MIT Entrepreneurship
  • Materials Research Laboratory
  • McGovern Institute for Brain Research
  • Microsystems Technology Laboratories
  • MIT Center for Art, Science &​ Technology
  • MIT Energy Initiative
  • MIT Environmental Solutions Initiative
  • MIT Kavli Institute for Astrophysics and Space Research
  • MIT Media Lab
  • MIT Office of Innovation
  • MIT Open Learning
  • MIT Portugal Program
  • MIT Professional Education
  • MIT Sea Grant College Program
  • Nuclear Reactor Laboratory
  • Operations Research Center
  • Picower Institute for Learning and Memory
  • Plasma Science and Fusion Center
  • Research Laboratory of Electronics
  • Simons Center for the Social Brain
  • Singapore-​MIT Alliance for Research and Technology Centre
  • Sociotechnical Systems Research Center
  • Whitehead Institute for Biomedical Research
  • Women's and Gender Studies Program
  • Architecture (Course 4)
  • Art and Design (Course 4-​B)
  • Art, Culture, and Technology (SM)
  • Media Arts and Sciences
  • Planning (Course 11)
  • Urban Science and Planning with Computer Science (Course 11-​6)
  • Aerospace Engineering (Course 16)
  • Engineering (Course 16-​ENG)
  • Biological Engineering (Course 20)
  • Chemical Engineering (Course 10)
  • Chemical-​Biological Engineering (Course 10-​B)
  • Chemical Engineering (Course 10-​C)
  • Engineering (Course 10-​ENG)
  • Engineering (Course 1-​ENG)
  • Electrical Engineering and Computer Science (Course 6-​2)
  • Electrical Science and Engineering (Course 6-​1)
  • Computation and Cognition (Course 6-​9)
  • Computer Science and Engineering (Course 6-​3)
  • Computer Science and Molecular Biology (Course 6-​7)
  • Electrical Engineering and Computer Science (MEng)
  • Computer Science and Molecular Biology (MEng)
  • Health Sciences and Technology
  • Archaeology and Materials (Course 3-​C)
  • Materials Science and Engineering (Course 3)
  • Materials Science and Engineering (Course 3-​A)
  • Materials Science and Engineering (PhD)
  • Mechanical Engineering (Course 2)
  • Mechanical and Ocean Engineering (Course 2-​OE)
  • Engineering (Course 2-​A)
  • Nuclear Science and Engineering (Course 22)
  • Engineering (Course 22-​ENG)
  • Anthropology (Course 21A)
  • Comparative Media Studies (CMS)
  • Writing (Course 21W)
  • Economics (Course 14-​1)
  • Mathematical Economics (Course 14-​2)
  • Data, Economics, and Design of Policy (MASc)
  • Economics (PhD)
  • Global Studies and Languages (Course 21G)
  • History (Course 21H)
  • Linguistics and Philosophy (Course 24-​2)
  • Philosophy (Course 24-​1)
  • Linguistics (SM)
  • Literature (Course 21L)
  • Music (Course 21M-​1)
  • Theater Arts (Course 21M-​2)
  • Political Science (Course 17)
  • Science, Technology, and Society/​Second Major (STS)
  • Business Analytics (Course 15-​2)
  • Finance (Course 15-​3)
  • Management (Course 15-​1)
  • Biology (Course 7)
  • Chemistry and Biology (Course 5-​7)
  • Brain and Cognitive Sciences (Course 9)
  • Chemistry (Course 5)
  • Earth, Atmospheric and Planetary Sciences (Course 12)
  • Mathematics (Course 18)
  • Mathematics with Computer Science (Course 18-​C)
  • Physics (Course 8)
  • Department of Electrical Engineering and Computer Science
  • Institute for Data, Systems, and Society
  • Chemistry and Biology
  • Climate System Science and Engineering
  • Computation and Cognition
  • Computer Science and Molecular Biology
  • Computer Science, Economics, and Data Science
  • Humanities and Engineering
  • Humanities and Science
  • Urban Science and Planning with Computer Science
  • African and African Diaspora Studies
  • American Studies
  • Ancient and Medieval Studies
  • Applied International Studies
  • Asian and Asian Diaspora Studies
  • Biomedical Engineering
  • Energy Studies
  • Entrepreneurship and Innovation
  • Environment and Sustainability
  • Latin American and Latino/​a Studies
  • Middle Eastern Studies
  • Polymers and Soft Matter
  • Public Policy
  • Russian and Eurasian Studies
  • Statistics and Data Science
  • Women's and Gender Studies
  • Advanced Urbanism
  • Computational and Systems Biology
  • Computational Science and Engineering
  • Design and Management (IDM &​ SDM)
  • Joint Program with Woods Hole Oceanographic Institution
  • Leaders for Global Operations
  • Microbiology
  • Music Technology and Computation
  • Operations Research
  • Real Estate Development
  • Social and Engineering Systems
  • Supply Chain Management
  • Technology and Policy
  • Transportation
  • School of Architecture and Planning
  • School of Engineering
  • Aeronautics and Astronautics Fields (PhD)
  • Artificial Intelligence and Decision Making (Course 6-​4)
  • Biological Engineering (PhD)
  • Nuclear Science and Engineering (PhD)
  • School of Humanities, Arts, and Social Sciences
  • Humanities (Course 21)
  • Humanities and Engineering (Course 21E)
  • Humanities and Science (Course 21S)
  • Sloan School of Management
  • School of Science
  • Brain and Cognitive Sciences (PhD)
  • Earth, Atmospheric and Planetary Sciences Fields (PhD)
  • Interdisciplinary Programs (SB)
  • Climate System Science and Engineering (Course 1-​12)
  • Computer Science, Economics, and Data Science (Course 6-​14)
  • Interdisciplinary Programs (Graduate)
  • Computation and Cognition (MEng)
  • Computational Science and Engineering (SM)
  • Computational Science and Engineering (PhD)
  • Computer Science, Economics, and Data Science (MEng)
  • Leaders for Global Operations (MBA/​SM and SM)
  • Music Technology and Computation (SM and MASc)
  • Real Estate Development (SM)
  • Statistics (PhD)
  • Supply Chain Management (MEng and MASc)
  • Technology and Policy (SM)
  • Transportation (SM)
  • Aeronautics and Astronautics (Course 16)
  • Aerospace Studies (AS)
  • Civil and Environmental Engineering (Course 1)
  • Comparative Media Studies /​ Writing (CMS)
  • Comparative Media Studies /​ Writing (Course 21W)
  • Computational and Systems Biology (CSB)
  • Computational Science and Engineering (CSE)
  • Concourse (CC)
  • Data, Systems, and Society (IDS)
  • Earth, Atmospheric, and Planetary Sciences (Course 12)
  • Economics (Course 14)
  • Edgerton Center (EC)
  • Electrical Engineering and Computer Science (Course 6)
  • Engineering Management (EM)
  • Experimental Study Group (ES)
  • Global Languages (Course 21G)
  • Health Sciences and Technology (HST)
  • Linguistics and Philosophy (Course 24)
  • Management (Course 15)
  • Media Arts and Sciences (MAS)
  • Military Science (MS)
  • Music and Theater Arts (Course 21M)
  • Naval Science (NS)
  • Science, Technology, and Society (STS)
  • Special Programs
  • Supply Chain Management (SCM)
  • Urban Studies and Planning (Course 11)
  • Women's and Gender Studies (WGS)

Interdisciplinary Doctoral Program in Statistics

The Interdisciplinary Doctoral Program in Statistics is an opportunity for students in a multitude of disciplines to specialize at the doctoral level in a statistics-grounded view of their field. Participating programs include Aeronautics and Astronautics, Brain and Cognitive Sciences, Economics, Mathematics, Mechanical Engineering, Physics, Political Science, and the IDSS Social and Engineering Systems Doctoral Program.

The program is administered jointly by the Statistics and Data Science Center and the participating academic units. Students enrolled in a doctoral program in a participating department may choose to be considered for the Interdisciplinary Doctoral Program in Statistics. Please refer to the program's website for details on the selection process.

Selected students will complete the home department’s degree requirements (including the qualifying exam) along with specified statistics requirements including a doctoral seminar, coursework in probability, statistics, computation and statistics, and data analysis, and a dissertation that utilizes statistical methods in a substantial way. 

For more information about the program, contact the Statistics Academic Administrator .

MIT Academic Bulletin

Print this page.

The PDF includes all information on this page and its related tabs. Subject (course) information includes any changes approved for the current academic year.

ISO Home

Doctoral Degrees

A doctoral degree requires the satisfactory completion of an approved program of advanced study and original research of high quality..

Please note that the Doctor of Philosophy (PhD) and Doctor of Science (ScD) degrees are awarded interchangeably by all departments in the School of Engineering and the School of Science, except in the fields of biology, cognitive science, neuroscience, medical engineering, and medical physics. This means that, excepting the departments outlined above, the coursework and expectations to earn a Doctor of Philosophy and for a Doctor of Science degree from these schools are generally the same. Doctoral students may choose which degree they wish to complete.

Applicants interested in graduate education should apply to the department or graduate program conducting research in the area of interest. Some departments require a doctoral candidate to take a “minor” program outside of the student’s principal field of study; if you wish to apply to one of these departments, please consider additional fields you may like to pursue.

Below is a list of programs and departments that offer doctoral-level degrees.

This site uses cookies to give you the best possible experience. By browsing our website, you agree to our use of cookies.

If you require further information, please visit the Privacy Policy page.

ISO Home

Office of Graduate Education -

mathematics phd mit

Apply to become a part of the Massachusetts Institute of Technology community.

Visit link

Discover & explore

Why choose MIT? Our own graduate students have asked this very same question, and have shared their insights through insightful blog posts . Diverse students explore topics from choosing an advisor to balancing mental health and wellness.

mathematics phd mit

Incoming students

We’re excited to welcome you to MIT! As you prepare to come to Cambridge, lean on these important updates and helpful resources .

mathematics phd mit

Quick links

  • Frequently asked questions
  • Costs & funding
  • Admitted applicants
  • International applicants
  • Master’s degrees
  • Doctoral degrees

This site uses cookies to give you the best possible experience. By browsing our website, you agree to our use of cookies.

If you require further information, please visit the Privacy Policy page.

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

Grad student John Urschel tackles his lifelong balance of math and football in new memoir

Press contact :.

In his new book, John Urschel, former Baltimore Ravens offensive lineman and current PhD candidate in mathematics at MIT, chronicles his life, lived between math and football.

Previous image Next image

It’s been nearly two years since John Urschel retired from the NFL at the age of 26, trading a career as a professional football player at the height of his game for a chance at a PhD in mathematics at MIT. From the looks of it, he couldn’t be happier.

The former offensive lineman for the Baltimore Ravens is now a full-time graduate student who spends his days in Building 2, poring over academic papers and puzzling over problems in graph theory, machine learning, and numerical analysis.

In his new memoir, “Mind and Matter: A Life in Math and Football,” co-written with his wife, journalist and historian Louisa Thomas, Urschel writes about how he has balanced the messy, physically punishing world of football, with the elegant, cerebral field of mathematics.

Urschel presents his life chronologically, through chapters that alternate in focus between math and football, as it often did in real life. For instance, he writes about a moment, following an ecstatic win as part of Penn State’s offensive line, when a coach pulled him aside with a message: With a little more work, he had a shot at the NFL.

With that in mind, he writes, “I went home elated. … I left the football building with a new sense of purpose, a mission.” That same night, he opened his laptop and got to work on a paper that he planned to submit with his advisor to a top linear algebra journal. “Suddenly, surprisingly, I had a strange feeling: I felt torn,” he recalls.

For those who see Urschel as a walking contradiction, or praise him as an exceptional outlier, he poses, in his book, a challenge:

“So often, people want to divide the world into two: matter and energy. Wave and particle. Athlete and mathematician. Why can’t something (or someone) be both?”

A refuge in math

Before he could speak in full sentences, Urschel’s mother could tell that the toddler had a mind for patterns. To occupy the increasingly active youngster, she gave him workbooks filled with puzzles, which he eagerly devoured at the kitchen table. As he got older, she encouraged him further, and often competitively, with games of reasoning and calculation, such as Monopoly and Battleship. And in the grocery store, she let him keep the change if he could calculate the correct amount before the cashier rang it up.

His mother made math a game, and by doing so, lit a lifelong spark. He credits her with recognizing and nurturing his natural interests — something that he hopes to do for his own toddler, Joanna, to whom he dedicates the book.

When he was 5 years old, he saw a picture of his father in full pads, as a linebacker for the University of Alberta — his first exposure to the sport of football. From that moment, Urschel wanted to be like his dad, and he wanted to play football.

And play he did, though he writes that he wasn’t driven by any innate athletic talent.

“The only thing that set me apart from other kids when I played sports was my intensity as a competitor. I couldn’t stand losing — so much so that I would do everything in my power to try to win,” Urschel writes.

This fierce drive earned him a full ride to Penn State University, where he forged a lasting connection with the college and its football team. His seemingly disparate talents in math and football started gaining some media attention, as a bright spot for Penn State in an otherwise dark period. (The team was facing national scrutiny as a consequence of the trial of former coach Jerry Sandusky.) But the more news outlets referred to him as a “student-athlete,” the more the moniker grated against him.

“[The term ‘student-athlete’] is widely considered a joke of sorts in America,” Urschel says. “But it’s something you can actually do. It takes up a great deal of your time, and it’s not easy. But it is possible to be good at sports while tearing it up in academics.”

Urschel proved this in back-to-back years at Penn State, culminating in 2013 with a paper he co-wrote with his advisor, Ludmil Zikatanov, on the spectral bisection of graphs and connectedness, which would later be named the Urschel-Zikatanov theorem. The following year, he was drafted, in the fifth round, by the Baltimore Ravens.

He played his entire professional football career as a guard with the Ravens, in 40 games over two years, 13 of which he started. In 2015, in a full-pads practice at training camp with the team, Urschel was knocked flat with a concussion. Just weeks earlier, he had learned that he had been accepted to MIT, where he hoped to pursue a PhD in applied mathematics, during the NFL offseason.

In the weeks following the concussion, he writes: “I’d reach for a theorem that I knew I knew, and it wouldn’t be there. I would try to visualize patterns, or to stretch or twist shapes — a skill that had always come particularly easy to me — and I would be unable to see the structures or make things move.”

He eventually did regain his facility for math, along with, surprisingly, his need to compete on the field. Despite the possibility of suffering another concussion, he continued to play with the Ravens through 2015. During the off-season, in January 2016, Urschel set foot on the MIT campus to begin work on his PhD.

A quantitative mindset

“It was like stepping into my personal vision of paradise ,” Urschel writes of his first time walking through MIT’s math department in Building 2, noting the chalkboards that lined the hallways, where “casual conversations quickly became discussions of open conjectures . ” Urschel was no less impressed by MIT’s football team, whose practices he joined each Monday during that first semester.

“These students have so much to do at MIT — it’s a very stressful place,” Urschel says. “And this is Division III football. It’s not high level, and they don’t have packed stands of fans — they’re truly just playing for the love of the game.”

He says he was reluctant to return to pro football that summer, and realized throughout that season that he couldn’t wait for Sundays and the prospect of cracking open a math book and tackling problems with collaborators back at MIT and Penn State.

An article in the New York Times in July 2017 tipped the scales that had, up until then, kept math and football as equal passions for Urschel. The article outlined a brain study of 111 deceased NFL players, showing 110 of those players had signs of CTE, or chronic traumatic encephalopathy, associated with repeated blows to the head. Urschel writes that the study didn’t change his love for football, but it did make him reevaluate his choices.

Two days after reading that article, Urschel announced his retirement from the NFL and packed his bags for a permanent move to MIT.

Since then, he has focused his considerable energy on his  research, as well as teaching. Last spring, he was a teaching assistant for the first time, in 18.03 (Differential Equations).

“I love teaching,” says Urschel, who hopes to be a university math professor and encourages students in class to think creatively, rather than simply memorize the formulas that they’re taught.

“I’m fighting against the idea of blindly applying formulas you just learned, and instead teaching students to use their brains,” Urschel says.

He’s also making time to visit local high schools to talk math, and STEM education in general.

“I’m a visible mathematician,” says Urschel — an understatement to be sure. “I have a responsibility to try to help popularize math, and remove some of its stigma.”

His enthusiasm for the subject is highly effective, judging from the overwhelmingly positive reviews from his 18.03 students. Above all, though, he hopes to convey the importance of a “quantitative mindset.”

“I don’t care so much if a random person on the street knows the quadratic formula,” Urschel says. “But I do care if they’re able to think through different problems, whether involving loans of two different rates, or how much you need to put in your 401k. Being capable of thinking quantitatively — it’s the single most important thing.”

Share this news article on:

Press mentions.

Graduate student John Urschel speaks with Forbes contributor Talia Milgrom-Elcott about how his mother helped inspire his love of mathematics and the importance of representation. “It’s very hard to dream of being in a career if you can’t relate to anyone who’s actually in that field,” says Urschel. “One of my main goals in life as a mathematician is to increase representation of African American mathematicians.”

Education Week

Graduate student John Urschel speaks with Education Week reporter Kevin Bushweller about his work aimed at encouraging more students of color to pursue studies in the STEM fields, particularly math. “What really matters is resources, what really matters is how much a child is nurtured and fed things,” says Urschel. “This is just my opinion, but I would say that, by and large, if I had to choose between giving a child a little bit more innate math talent or a little bit more resources, I think, really, resources is what is a very good and bigger predictor [of future success].”

Graduate student John Urschel speaks with Jamison Hensley of ESPN about his efforts aimed at empowering and encouraging more Black students to pursue careers in STEM fields. “Now more than ever, it’s really important that we highlight some of the diverse areas of mathematics that don’t typically get seen every day,” says Urschel.

Associated Press

A new book by graduate student John Urschel chronicles his decision to retire from the NFL and pursue his passion for mathematics at MIT, reports the Associated Press. Urschel explains that through his book, he “wanted to share my love of math and also perhaps train certain peoples’ thinking about math and show them some of the beauty, elegance and importance of mathematics.”

Good Morning America

Graduate student John Urschel appears on Good Morning America to discuss his new book chronicling his career and passion for football and math. “Math is something that I have loved ever since I was very little,” explains Urschel. “I love puzzles, I love problem solving. Math, truly, is just a set of tools to try to solve problems in this world. 

New York Times

Writing for The New York Times , graduate student John Urschel recounts how his high school football coaches motivated him, noting that similar tactics might encourage more children to study math. “There are many ways to be an effective teacher, just as there are many ways to be an effective coach,” writes Urschel. “But all good teachers, like good coaches, communicate that they care about your goals.”

Graduate student John Urschel speaks with Karen Given of WBUR’s Only a Game about how his mother helped encourage his passion for mathematics. "Most kids get their allowance by, you know, mowing the lawn — things like this," Urschel says. "My mom, because she recognized that I was strong in math, wanted to encourage me with respect to math."

TIME reporter Sean Gregory visits MIT to speak with graduate student John Urschel about his new book, and his passion for both mathematics and football. “The United States, more than any other culture, has the strange marriage of athletics and academics,” Urschel says. “I thought it was important to show that this is something that really can co-exist.”

Graduate student John Urschel discusses his new book and passion for both math and football on Fox and Friends . “Football coaches, they tell their best players to dream big,” says Urschel. “I would love to see math teachers telling their students you can be an elite mathematician, you can be a top physicist, you can even dream to be the next Einstein.”

Graduate student John Urschel visits the Today Show to discuss his new book and what inspired him to pursue a PhD in mathematics. Urschel explains that his mother tried to ensure that “whatever I wanted to be the only thing that would limit me was a lack of talent, bad luck, lack of hard work, but it wasn’t going to be the household I was born into or a lack of resources.”

Boston Globe

Boston Globe reporter Ben Volin speaks with graduate student John Urschel about his new book “Mind and Matter: A Life in Math and Football.” “I love solving sort of interesting and tough problems that have to do with our world in some way,” says Urschel of his dreams for after he graduates from MIT. “And I also love teaching.”

Previous item Next item

Related Links

  • John Urschel
  • Department of Mathematics
  • Article: “From the NFL to MIT: The Double Life of John Urschel”

Related Topics

  • Mathematics
  • Sports and fitness
  • STEM education
  • Books and authors
  • Graduate, postdoctoral

Related Articles

Author Malcolm Gladwell, right, speaks with science writer David Epstein, left, in a conversation on ‘Making the Modern Athlete” at the MIT Sloan Sports Analytics Conference, Saturday March 2, 2019.

Big issues on the table at the MIT Sloan Sports Analytics Conference

mathematics phd mit

From football to physics

The 2016 MIT Engineers football team

MIT Football tackles diversity and inclusion conversations

Guests at MIT's Better World event at the Newseum explored exhibits highlighting MIT invention and innovation.

A record crowd in Washington celebrates MIT’s culture of innovation and discovery

More mit news.

Heather Paxson leans on a railing and smiles for the camera.

Heather Paxson named associate dean for faculty of the School of Humanities, Arts, and Social Sciences

Read full story →

Emma Bullock smiles while near the back of a boat and wearing waterproof gear, with the ocean and sky in background.

Researching extreme environments

A person plays chess. A techy overlay says “AI.”

To build a better AI helper, start by modeling the irrational behavior of humans

Illustration showing a city skyline next to an ocean with clouds above it. Single red lines arch over the city and over the ocean, and blue arrows swirl below and across the lines.

Using deep learning to image the Earth’s planetary boundary layer

Santiago Borrego and Unyime Usua stand outdoors in front of a brick wall, each holding out an oyster shell.

Advancing technology for aquaculture

Aerial photo of Boston suburbs. East Boston and Logan Airport are in the foreground.

New flight procedures to reduce noise from aircraft departing and arriving at Boston Logan Airport

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

mathematics phd mit

  • Core Members
  • Affiliate Members

Interdisciplinary Doctoral Program in Statistics

  • Minor in Statistics and Data Science
  • MicroMasters program in Statistics and Data Science
  • Data Science and Machine Learning: Making Data-Driven Decisions
  • Norbert Wiener Fellowship
  • Stochastics and Statistics Seminar
  • IDSS Distinguished Seminars
  • IDSS Special Seminar
  • SDSC Special Events
  • Online events
  • IDS.190 Topics in Bayesian Modeling and Computation
  • Past Events
  • LIDS & Stats Tea

The Interdisciplinary PhD in Statistics (IDPS) is designed for students currently enrolled in a participating MIT doctoral program who wish to develop their understanding of 21st century statistics, using concepts of computation and data analysis as well as elements of classical statistics and probability within their chosen field of study.

Participating programs: Aeronautics & Astronautics Brain and Cognitive Sciences Economics Mathematics Mechanical Engineering Physics Political Science Social and Engineering Systems

How to join IDPS:

Doctoral students in participating programs may submit a selection form between the end of their second semester and penultimate semester in their doctoral program. Selection forms are due by the current semester add date, and students will be notified of a decision by the drop date.

Required documents include a CV, unofficial transcript, anticipated course plan and thesis proposal or statement of interest in statistics.  For access to the selection form or for further information, please contact the IDSS Academic Office at [email protected]

Graduate Departments:

MIT Statistics + Data Science Center Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139-4307 617-253-1764

mathematics phd mit

  • Accessibility
  • Interdisciplinary PhD in Aero/Astro and Statistics
  • Interdisciplinary PhD in Brain and Cognitive Sciences and Statistics
  • Interdisciplinary PhD in Economics and Statistics
  • Interdisciplinary PhD in Mathematics and Statistics
  • Interdisciplinary PhD in Mechanical Engineering and Statistics
  • Interdisciplinary PhD in Physics and Statistics
  • Interdisciplinary PhD in Political Science and Statistics
  • Interdisciplinary PhD in Social & Engineering Systems and Statistics
  • LIDS & Stats Tea
  • Spring 2023
  • Spring 2022
  • Spring 2021
  • Fall – Spring 2020
  • Fall 2019 – IDS.190 – Topics in Bayesian Modeling and Computation
  • Fall 2019 – Spring 2019
  • Fall 2018 and earlier

MIT CCSE

  • Current MIT Graduate Students

Doctoral Programs in Computational Science and Engineering

Application & admission information.

The Center for Computational Science and Engineering (CCSE) offers two doctoral programs in computational science and engineering (CSE) – one leading to a standalone PhD degree in CSE offered entirely by CCSE (CSE PhD) and the other leading to an interdisciplinary PhD degree offered jointly with participating departments in the School of Engineering and the School of Science (Dept-CSE PhD).

While both programs enable students to specialize at the doctoral level in a computation-related field via focused coursework and a thesis, they differ in essential ways. The standalone CSE PhD program is intended for students who plan to pursue research in cross-cutting methodological aspects of computational science. The resulting doctoral degree in Computational Science and Engineering is awarded by CCSE via the the Schwarzman College of Computing. In contrast, the interdisciplinary Dept-CSE PhD program is intended for students who are interested in computation in the context of a specific engineering or science discipline. For this reason, this degree is offered jointly with participating departments across the Institute; the interdisciplinary degree is awarded in a specially crafted thesis field that recognizes the student’s specialization in computation within the chosen engineering or science discipline.

Applicants to the standalone CSE PhD program are expected to have an undergraduate degree in CSE, applied mathematics, or another field that prepares them for an advanced degree in CSE. Applicants to the Dept-CSE PhD program should have an undergraduate degree in a related core disciplinary area as well as a strong foundation in applied mathematics, physics, or related fields. When completing the MIT CSE graduate application , students are expected to declare which of the two programs they are interested in. Admissions decisions will take into account these declared interests, along with each applicant’s academic background, preparation, and fit to the program they have selected.  All applicants are asked to specify MIT CCSE-affiliated faculty that best match their research interests; applicants to the Dept-CSE PhD program also select the home department(s) that best match. At the discretion of the admissions committee, Dept-CSE PhD applications might also be shared with a home department beyond those designated in the application. CSE PhD admissions decisions are at the sole discretion of CCSE; Dept-CSE PhD admission decisions are conducted jointly between CCSE and the home departments.

Please note: These are both doctoral programs in Computational Science and Engineering; applicants interested in Computer Science must apply to the Department of Electrical Engineering and Computer Science .

Important Dates

September 15: Application Opens December 1: Deadline to apply for admission* December – March: Application review period January – March: Decisions released on rolling basis

*All supplemental materials (e.g., transcripts, test scores, letters of recommendation) must also be received by December 1. Application review begins on that date, and incomplete applications may not be reviewed. Please be sure that your recommenders are aware of this hard deadline, as we do not make exceptions. We also do not allow students to upload/submit material beyond what is required, such as degree certificates, extra recommendations, publications, etc.

A complete electronic CSE application includes the following:

  • Three letters of recommendation ;
  • Students admitted to the program will be required to supply official transcripts. Discrepancies between unofficial and official transcripts may result in the revocation of the admission offer.
  • Statement of objectives (limited to approximately one page) and responses to department-specific prompts for Dept-CSE PhD applicants;
  • Official GRE General Test score report , sent to MIT by ETS via institute code 3514 GRE REQUIREMENT WAIVED FOR FALL 2024 ;
  • Official IELTS score report sent to MIT by IELTS†  (international applicants from non-English speaking countries only; see below for more information)
  • Resume or CV , uploaded in PDF format;
  • MIT graduate application fee of $75‡.

‡Application Fee

The MIT graduate application fee of $75.00 is a mandatory requirement set by the Institute payable by credit card. Please visit the MIT Graduate Admission Application Fee Waiver page for information about fee waiver eligibility and instructions.

Please note: CCSE cannot issue fee waivers; email requests for fee waivers sent to [email protected] will not be considered.

Admissions Contact Information

Email: [email protected]

► Current MIT CSE SM Students: Please see the page for Current MIT Graduate Students .

GRE Requirement

GRE REQUIREMENT WAIVED FOR FALL 2024 All applicants are required to take the Graduate Record Examination (GRE) General Aptitude Test. The MIT code for submitting GRE score reports is 3514 (you do not need to list a department code). GRE scores must current; ETS considers scores valid for five years after the testing year in which you tested.

†English Language Proficiency Requirement

The CSE PhD program requires international applicants from non-English speaking countries to take the academic  version of the International English Language Testing System (IELTS).  The IELTS exam measures one’s ability to communicate in English in four major skill areas: listening, reading, writing, and speaking.  A minimum IELTS score of 7 is required for admission.  For more information about the IELTS, and to find out where and how to take the exam, please visit the IELTS web site .

While we will also accept the TOEFL iBT (Test of English as a Foreign Language), we strongly prefer the IELTS. The minimum TOEFL iBT score is 100.

This requirement is waived for those who can demonstrate that one or more of the following are true:

  • English is/was the language of instruction in your four-year undergraduate program,
  • English is the language of your employer/workplace for at least the last four years,
  • English was your language of instruction in both primary and secondary schools.

Degree Requirements for Admission

To be admitted as a regular graduate student, an applicant must have earned a bachelor’s degree or its equivalent from a college, university, or technical school of acceptable standing. Students in their final year of undergraduate study may be admitted on the condition that their bachelor’s degree is awarded before they enroll at MIT.

Applicants without an SM degree may apply to the CSE PhD program, however, the Departments of Aeronautics and Astronautics and Mechanical Engineering nominally require the completion of an SM degree before a student is considered a doctoral candidate. As a result, applicants to those departments holding only a bachelor’s degree are asked in the application to indicate whether they prefer to complete the CSE SM program or an SM through the home department.

Nondiscrimination Policy

The Massachusetts Institute of Technology is committed to the principle of equal opportunity in education and employment.  To read MIT’s most up-to-date nondiscrimination policy, please visit the Reference Publication Office’s nondiscrimination statement page .

Additional Information

For more details, as well as answers to most commonly asked questions regarding the admissions process to individual participating Dept-CSE PhD departments including details on financial support, applicants are referred to the website of the participating department of interest.

GradApply

Smart. Open. Grounded. Inventive. Read our Ideas Made to Matter.

Which program is right for you?

MIT Sloan Campus life

Through intellectual rigor and experiential learning, this full-time, two-year MBA program develops leaders who make a difference in the world.

A rigorous, hands-on program that prepares adaptive problem solvers for premier finance careers.

A 12-month program focused on applying the tools of modern data science, optimization and machine learning to solve real-world business problems.

Earn your MBA and SM in engineering with this transformative two-year program.

Combine an international MBA with a deep dive into management science. A special opportunity for partner and affiliate schools only.

A doctoral program that produces outstanding scholars who are leading in their fields of research.

Bring a business perspective to your technical and quantitative expertise with a bachelor’s degree in management, business analytics, or finance.

A joint program for mid-career professionals that integrates engineering and systems thinking. Earn your master’s degree in engineering and management.

An interdisciplinary program that combines engineering, management, and design, leading to a master’s degree in engineering and management.

Executive Programs

A full-time MBA program for mid-career leaders eager to dedicate one year of discovery for a lifetime of impact.

This 20-month MBA program equips experienced executives to enhance their impact on their organizations and the world.

Non-degree programs for senior executives and high-potential managers.

A non-degree, customizable program for mid-career professionals.

PhD Program

Program overview.

Now Reading 1 of 4

Rigorous, discipline-based research is the hallmark of the MIT Sloan PhD Program. The program is committed to educating scholars who will lead in their fields of research—those with outstanding intellectual skills who will carry forward productive research on the complex organizational, financial, and technological issues that characterize an increasingly competitive and challenging business world.

Start here.

Learn more about the program, how to apply, and find answers to common questions.

Admissions Events

Check out our event schedule, and learn when you can chat with us in person or online.

Start Your Application

Visit this section to find important admissions deadlines, along with a link to our application.

Click here for answers to many of the most frequently asked questions.

PhD studies at MIT Sloan are intense and individual in nature, demanding a great deal of time, initiative, and discipline from every candidate. But the rewards of such rigor are tremendous:  MIT Sloan PhD graduates go on to teach and conduct research at the world's most prestigious universities.

PhD Program curriculum at MIT Sloan is organized under the following three academic areas: Behavior & Policy Sciences; Economics, Finance & Accounting; and Management Science. Our nine research groups correspond with one of the academic areas, as noted below.

MIT Sloan PhD Research Groups

Behavioral & policy sciences.

Economic Sociology

Institute for Work & Employment Research

Organization Studies

Technological Innovation, Entrepreneurship & Strategic Management

Economics, Finance & Accounting

Accounting  

Management Science

Information Technology

System Dynamics  

Those interested in a PhD in Operations Research should visit the Operations Research Center .  

PhD Students_Work and Organization Studies

PhD Program Structure

Additional information including coursework and thesis requirements.

MIT Sloan E2 building campus at night

MIT Sloan Predoctoral Opportunities

MIT Sloan is eager to provide a diverse group of talented students with early-career exposure to research techniques as well as support in considering research career paths.

A group of three women looking at a laptop in a classroom and a group of three students in the background

Rising Scholars Conference

The fourth annual Rising Scholars Conference on October 25 and 26 gathers diverse PhD students from across the country to present their research.

Now Reading 2 of 4

The goal of the MIT Sloan PhD Program's admissions process is to select a small number of people who are most likely to successfully complete our rigorous and demanding program and then thrive in academic research careers. The admission selection process is highly competitive; we aim for a class size of nineteen students, admitted from a pool of hundreds of applicants.

What We Seek

  • Outstanding intellectual ability
  • Excellent academic records
  • Previous work in disciplines related to the intended area of concentration
  • Strong commitment to a career in research

MIT Sloan PhD Program Admissions Requirements Common Questions

Dates and Deadlines

Admissions for 2024 is closed. The next opportunity to apply will be for 2025 admission. The 2025 application will open in September 2024. 

More information on program requirements and application components

Students in good academic standing in our program receive a funding package that includes tuition, medical insurance, and a fellowship stipend and/or TA/RA salary. We also provide a new laptop computer and a conference travel/research budget.

Funding Information

Throughout the year, we organize events that give you a chance to learn more about the program and determine if a PhD in Management is right for you.

PhD Program Events

May phd program overview.

During this webinar, you will hear from the PhD Program team and have the chance to ask questions about the application and admissions process.

June PhD Program Overview

July phd program overview, august phd program overview.

Complete PhD Admissions Event Calendar

Unlike formulaic approaches to training scholars, the PhD Program at MIT Sloan allows students to choose their own adventure and develop a unique scholarly identity. This can be daunting, but students are given a wide range of support along the way - most notably having access to world class faculty and coursework both at MIT and in the broader academic community around Boston.

Now Reading 3 of 4

Students Outside of E62

Profiles of our current students

MIT Sloan produces top-notch PhDs in management. Immersed in MIT Sloan's distinctive culture, upcoming graduates are poised to innovate in management research and education.

Academic Job Market

Doctoral candidates on the current academic market

Academic Placements

Graduates of the MIT Sloan PhD Program are researching and teaching at top schools around the world.

view recent placements 

MIT Sloan Experience

Now Reading 4 of 4

The PhD Program is integral to the research of MIT Sloan's world-class faculty. With a reputation as risk-takers who are unafraid to embrace the unconventional, they are engaged in exciting disciplinary and interdisciplinary research that often includes PhD students as key team members.

Research centers across MIT Sloan and MIT provide a rich setting for collaboration and exploration. In addition to exposure to the faculty, PhD students also learn from one another in a creative, supportive research community.

Throughout MIT Sloan's history, our professors have devised theories and fields of study that have had a profound impact on management theory and practice.

From Douglas McGregor's Theory X/Theory Y distinction to Nobel-recognized breakthroughs in finance by Franco Modigliani and in option pricing by Robert Merton and Myron Scholes, MIT Sloan's faculty have been unmatched innovators.

This legacy of innovative thinking and dedication to research impacts every faculty member and filters down to the students who work beside them.

Faculty Links

  • Accounting Faculty
  • Economic Sociology Faculty
  • Finance Faculty
  • Information Technology Faculty
  • Institute for Work and Employment Research (IWER) Faculty
  • Marketing Faculty
  • Organization Studies Faculty
  • System Dynamics Faculty
  • Technological Innovation, Entrepreneurship, and Strategic Management (TIES) Faculty

Student Research

“MIT Sloan PhD training is a transformative experience. The heart of the process is the student’s transition from being a consumer of knowledge to being a producer of knowledge. This involves learning to ask precise, tractable questions and addressing them with creativity and rigor. Hard work is required, but the reward is the incomparable exhilaration one feels from having solved a puzzle that had bedeviled the sharpest minds in the world!” -Ezra Zuckerman Sivan Alvin J. Siteman (1948) Professor of Entrepreneurship

Sample Dissertation Abstracts - These sample Dissertation Abstracts provide examples of the work that our students have chosen to study while in the MIT Sloan PhD Program.

We believe that our doctoral program is the heart of MIT Sloan's research community and that it develops some of the best management researchers in the world. At our annual Doctoral Research Forum, we celebrate the great research that our doctoral students do, and the research community that supports that development process.

The videos of their presentations below showcase the work of our students and will give you insight into the topics they choose to research in the program.

How Should We Measure the Digital Economy?

2020 PhD Doctoral Research Forum Winner - Avinash Collis

Watch more MIT Sloan PhD Program  Doctoral Forum Videos

mathematics phd mit

Keep Exploring

Ask a question or register your interest

Faculty Directory

Meet our faculty.

mathematics phd mit

Economics Department lobby

PhD Program

Year after year, our top-ranked PhD program sets the standard for graduate economics training across the country. Graduate students work closely with our world-class faculty to develop their own research and prepare to make impactful contributions to the field.

Our doctoral program enrolls 20-24 full-time students each year and students complete their degree in five to six years. Students undertake core coursework in microeconomic theory, macroeconomics, and econometrics, and are expected to complete two major and two minor fields in economics. Beyond the classroom, doctoral students work in close collaboration with faculty to develop their research capabilities, gaining hands-on experience in both theoretical and empirical projects.

How to apply

Students are admitted to the program once per year for entry in the fall. The online application opens on September 15 and closes on December 15.

Meet our students

Our PhD graduates go on to teach in leading economics departments, business schools, and schools of public policy, or pursue influential careers with organizations and businesses around the world. 

Dan Rothman among four MIT faculty named 2023 AAAS Fellows

Caption:Four MIT faculty members — (top row, left to right) Bevin Engelward, William Oliver, (bottom row) Daniel Rothman, and Vladan Vuletić — have been elected as fellows of the American Association for the Advancement of Science (AAAS) for 2023. Image: Courtesy of the fellows

The American Association for the Advancement of Science (AAAS), one of the world’s largest general scientific societies and publisher of the  Science  family of journals, has announced the 2023 class of AAAS Fellows, including four members of the MIT faculty.

The 2023 class of AAAS Fellows comprises 502 scientists, engineers, and innovators across 24 scientific disciplines, who are being recognized for their scientifically and socially distinguished achievements.  

Bevin Engelward initiated her scientific journey at Yale University under the mentorship of Thomas Steitz; following this, she pursued her doctoral studies at the Harvard School of Public Health under Leona Samson. In 1997, she became a faculty member at MIT, contributing to the establishment of the Department of Biological Engineering. Engelward’s research focuses on understanding DNA sequence rearrangements and developing innovative technologies for detecting genomic damage, all aimed at enhancing global public health initiatives.

William Oliver  is the Henry Ellis Warren Professor of Electrical Engineering and Computer Science with a joint appointment in the Department of Physics, and was recently a Lincoln Laboratory Fellow. He serves as director of the Center for Quantum Engineering and associate director of the Research Laboratory of Electronics, and is a member of the National Quantum Initiative Advisory Committee. His research spans the materials growth, fabrication, 3D integration, design, control, and measurement of superconducting qubits and their use in small-scale quantum processors. He also develops cryogenic packaging and control electronics involving cryogenic complementary metal-oxide-semiconductors and single-flux quantum digital logic.

Daniel Rothman is a professor of geophysics in the Department of Earth, Atmospheric, and Planetary Sciences and co-director of the MIT Lorenz Center, a privately funded interdisciplinary research center devoted to learning how climate works. As a theoretical scientist, Rothman studies how the organization of the natural world emerges from the interactions of life and the physical environment. Using mathematics and statistical and nonlinear physics, he builds models that predict or explain observational data, contributing to our understanding of the dynamics of the carbon cycle and climate, instabilities and tipping points in the Earth system, and the dynamical organization of the microbial biosphere.

Vladan Vuletić  is the Lester Wolfe Professor of Physics. His research areas include ultracold atoms, laser cooling, large-scale quantum entanglement, quantum optics, precision tests of physics beyond the Standard Model, and quantum simulation and computing with trapped neutral atoms. His Experimental Atomic Physics Group is also affiliated with the MIT-Harvard Center for Ultracold Atoms and the Research Laboratory of Electronics. In 2020, his group showed that the precision of current atomic clocks could be improved by entangling the atoms — a quantum phenomenon by which particles are coerced to behave in a collective, highly correlated state. 

Related News

3 questions: new faculty interview with abigail bodner , atmospheric observations in china show rise in emissions of a potent greenhouse gas, with a new experimental technique, mit engineers probe the mechanisms of landslides and earthquakes.

UPitt Logo

  • open search

From the latest big breakthrough to the most influential and inspiring figures on campus to Pitt in the community, Pittwire is your official source for what’s happening now.

  • Health and Wellness
  • Technology and Science
  • Arts and Humanities
  • Community Impact
  • Diversity, Equity, and Inclusion
  • Innovation and Research
  • Our City/Our Campus
  • Pitt Magazine
  • Features & Articles
  • Accolades & Honors
  • Ones to Watch
  • Announcements and Updates
  • Life at Pitt
  • Arts & Sciences
  • Computing & Information
  • Dental Medicine
  • Engineering
  • General Studies
  • Health & Rehabilitation
  • Honors College
  • Public & Intl Affairs
  • Public Health
  • Social Work
  • COVID-19 Response
  • Sustainability
  • Undergraduate students
  • Kenneth P. Dietrich School of Arts and Sciences

FPO Tower

Subscribe to Pittwire Today

Pitt undergraduates launched the pittsburgh interdisciplinary mathematics review.

The top of Hillman Library against a blue sky and pink clouds

Pitt’s Department of Mathematics and the University Library System have launched a new peer-reviewed open access journal, the Pittsburgh Interdisciplinary Mathematics Review (PIMR).

Included in this inaugural issue of PIMR are an interview with Professor Jon Rubin , former chair of the Department of Mathematics; an explainer on how math is used to encode and decode messages by Riley Debski, a past Painter Undergraduate Research Fellow; an article on graduate school applications and Pittsburgh mathematics history by editor Neil MacLachlan; and more.

The current editors — accepted to prestigious institutions such as Caltech, University of Pennsylvania, University of Michigan, Northwestern University and Carnegie Mellon University — have been recognized with honors including the NSF Graduate Research Fellowship, the Pennsylvania Space Grant Consortium Undergraduate Scholarship and the Naval ROTC Scholarship as well as Blumberg, Culver, Boren, McCune and Hales-Putnam Prizes.

The student-led journal is inviting potential new editors and authors from all backgrounds to join for future issues .

Faculty from related disciplines are also invited to write expository articles for an undergraduate audience; graduate students can join the referee board. Want to learn more? Reach out to the editorial board .

Access the entire first issue at pimr.pitt.edu .

5 key takeaways from Pitt’s first Year of Discourse and Dialogue

Here are the speakers for pitt’s graduate school commencement ceremonies, help shape pitt it’s 10-year horizon plan.

IMAGES

  1. Mathematician finds balance and beauty in math

    mathematics phd mit

  2. Women in mathematics aim for an equals sign

    mathematics phd mit

  3. Yufei Zhao

    mathematics phd mit

  4. MIT Mathematics

    mathematics phd mit

  5. Q&A: Professor Gigliola Staffilani on women in mathematics

    mathematics phd mit

  6. Wei Zhang wins 2018 New Horizons in Mathematics Breakthrough Prize

    mathematics phd mit

VIDEO

  1. 3-Minute Thesis Competition 2023

  2. Applied Mathematics PhD Program: 2023-24 Virtual Information Session

  3. Masters vs PhD in mathematics

  4. Mathematics and Philosophy of the Infinite

  5. Andrej Bauer

  6. Shaping the Curve: Maryam Mirzakhani’s Influence on the Field of Mathematics

COMMENTS

  1. Graduate

    Graduate Students 2018-2019. The department offers programs covering a broad range of topics leading to the Doctor of Philosophy and the Doctor of Science degrees (the student chooses which to receive; they are functionally equivalent). Candidates are admitted to either the Pure or Applied Mathematics programs but are free to pursue interests ...

  2. Admission

    Welcome to the MIT Mathematics Graduate Admissions page. This page explains the application process in general. For complete details, go to the on-line application which is available mid-September to December. These instructions are repeated there. MIT admits students starting in the Fall term of each year only.

  3. MIT Mathematics

    In total, 68 out of the top 100 test-takers who took the exam on December 2, 2023, were MIT students. Beyond the top 5 scorers, MIT students took 8 of the next 11 spots (each awarded $ 1,000), 7 of the next 10 after that (each awarded $ 250), and 48 out of a total of 75 honorable mentions. "I am incredibly proud of our students' amazing ...

  4. Department of Mathematics < MIT

    The Department of Mathematics offers training at the undergraduate, graduate, and postgraduate levels. Its expertise covers a broad spectrum of fields ranging from the traditional areas of "pure" mathematics, such as analysis, algebra, geometry, and topology, to applied mathematics areas such as combinatorics, computational biology, fluid dynamics, theoretical computer science, and theoretical ...

  5. Faculty Directory

    MacVicar Faculty Fellow. Hahn, Jeremy. [email protected]. 2-374. Rockwell International Career Development Assistant Professor of Mathematics. Hosoi, Anette. [email protected]. 3-262. Professor of Mechanical Engineering and Mathematics.

  6. PDF DEPARTMENT OF MATHEMATICS

    Graduate Study. The Mathematics Department o ers programs covering a broad range of topics leading to the Doctor of Philosophy or Doctor of Science degree. Candidates are admitted to either the Pure or Applied Mathematics programs but are free to pursue interests in both groups. Of the roughly 120 doctoral students, about two thirds are in Pure ...

  7. Mathematics

    Teaching is an important part of the graduate education in Mathematics and all students are expected to teach at least one semester and preferably more, whether supported through other means or not. ... MIT Office of Graduate Education 77 Massachusetts Avenue Room 3-107 Cambridge, MA 02139-4307. Contact Us: [email protected] (617) 253-4860. MIT ...

  8. About Us

    About Us. The Mathematics Department at MIT is a world leader in pure and applied mathematical research and education. In pure mathematics we explore exciting current research directions in most of the major fields. In applied mathematics, we look for important connections with other disciplines that may inspire interesting and useful ...

  9. Interdisciplinary PhD in Mathematics and Statistics

    PhD Earned on Completion: Mathematics and Statistics. IDPS/Mathematics Chair: Philippe Rigollet. ... MIT Statistics + Data Science Center Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139-4307 617-253-1764 Accessibility; About;

  10. Computational Science and Engineering PhD

    Computational Science and Engineering PhD. 77 Massachusetts Avenue. Building 35-434B. Cambridge MA, 02139. 617-253-3725. [email protected]. Website: Computational Science and Engineering PhD. Apply here.

  11. Interdisciplinary Doctoral Program in Statistics < MIT

    The Interdisciplinary Doctoral Program in Statistics is an opportunity for students in a multitude of disciplines to specialize at the doctoral level in a statistics-grounded view of their field. Participating programs include Aeronautics and Astronautics, Brain and Cognitive Sciences, Economics, Mathematics, Mechanical Engineering, Physics ...

  12. Welcome to the MIT Mathematics Department!

    Welcome to the MIT Mathematics Department! As department head, I join with my colleagues in welcoming you to the top ranked mathematics department in the world — a world center in Pure and Applied Mathematics. The broad range of mathematical disciplines we cover include algebra, geometry and topology, number theory, analysis, probability ...

  13. Doctoral Degrees

    A doctoral degree requires the satisfactory completion of an approved program of advanced study and original research of high quality. Please note that the Doctor of Philosophy (PhD) and Doctor of Science (ScD) degrees are awarded interchangeably by all departments in the School of Engineering and the School of Science, except in the fields of ...

  14. MIT Doctoral Programs in Computational Science and Engineering

    The standalone CSE PhD program is intended for students who intend to pursue research in cross-cutting methodological aspects of computational science. The resulting doctoral degree in Computational Science and Engineering is awarded by CCSE via the the Schwarzman College of Computing. In contrast, the interdisciplinary CSE PhD program is ...

  15. Graduate Admissions

    MIT Office of Graduate Education 77 Massachusetts Avenue Room 3-107 Cambridge, MA 02139-4307

  16. Grad student John Urschel tackles his lifelong balance of math and

    A new book by graduate student John Urschel chronicles his decision to retire from the NFL and pursue his passion for mathematics at MIT, reports the Associated Press. Urschel explains that through his book, he "wanted to share my love of math and also perhaps train certain peoples' thinking about math and show them some of the beauty ...

  17. Interdisciplinary Doctoral Program in Statistics

    Interdisciplinary Doctoral Program in Statistics. The Interdisciplinary PhD in Statistics (IDPS) is designed for students currently enrolled in a participating MIT doctoral program who wish to develop their understanding of 21st century statistics, using concepts of computation and data analysis as well as elements of classical statistics and probability within their chosen field of study.

  18. CSE PhD

    The standalone CSE PhD program is intended for students who plan to pursue research in cross-cutting methodological aspects of computational science. The resulting doctoral degree in Computational Science and Engineering is awarded by CCSE via the the Schwarzman College of Computing. In contrast, the interdisciplinary Dept-CSE PhD program is ...

  19. Login

    Mathematics Graduate Admissions 2024 Login This web site allows you to prepare and submit an application to MIT Mathematics for Graduate Admissions. ... For technical assistance, please contact [email protected]. Email (or User ID): Password: This department is not currently accepting new applications. For more information, please see ...

  20. PhD Program

    "MIT Sloan PhD training is a transformative experience. The heart of the process is the student's transition from being a consumer of knowledge to being a producer of knowledge. This involves learning to ask precise, tractable questions and addressing them with creativity and rigor. Hard work is required, but the reward is the incomparable ...

  21. PhD Program

    PhD Program. Year after year, our top-ranked PhD program sets the standard for graduate economics training across the country. Graduate students work closely with our world-class faculty to develop their own research and prepare to make impactful contributions to the field. Our doctoral program enrolls 20-24 full-time students each year and ...

  22. Dan Rothman among four MIT faculty named 2023 AAAS Fellows

    The American Association for the Advancement of Science (AAAS), one of the world's largest general scientific societies and publisher of the Science family of journals, has announced the 2023 class of AAAS Fellows, including four members of the MIT faculty. The 2023 class of AAAS Fellows comprises 502 scientists, engineers, and innovators across 24 scientific disciplines, who are being ...

  23. Pitt undergraduates launched the Pittsburgh Interdisciplinary

    Pitt's Department of Mathematics and the University Library System have launched a new peer-reviewed open access journal, the Pittsburgh Interdisciplinary Mathematics Review (PIMR). ... Northwestern University and Carnegie Mellon University — have been recognized with honors including the NSF Graduate Research Fellowship, ...