Test
Scenario
Interpretation
Used when dealing with large sample sizes or when the population standard deviation is known.
A small p-value (smaller than 0.05) indicates strong evidence against the null hypothesis, leading to its rejection.
Appropriate for small sample sizes or when the population standard deviation is unknown.
Similar to the Z-test
Used for tests of independence or goodness-of-fit.
A small p-value indicates that there is a significant association between the categorical variables, leading to the rejection of the null hypothesis.
Commonly used in Analysis of Variance (ANOVA) to compare variances between groups.
A small p-value suggests that at least one group mean is different from the others, leading to the rejection of the null hypothesis.
Measures the strength and direction of a linear relationship between two continuous variables.
A small p-value indicates that there is a significant linear relationship between the variables, leading to rejection of the null hypothesis that there is no correlation.
In general, a small p-value indicates that the observed data is unlikely to have occurred by random chance alone, which leads to the rejection of the null hypothesis. However, it’s crucial to choose the appropriate test based on the nature of the data and the research question, as well as to interpret the p-value in the context of the specific test being used.
The table given below shows the importance of p-value and shows the various kinds of errors that occur during hypothesis testing.
|
|
|
| Correct decision based | Type I error |
| Type II error | Incorrect decision based |
Type I error: Incorrect rejection of the null hypothesis. It is denoted by α (significance level). Type II error: Incorrect acceptance of the null hypothesis. It is denoted by β (power level)
A researcher wants to investigate whether there is a significant difference in mean height between males and females in a population of university students.
Suppose we have the following data:
Starting with interpreting the process of calculating p-value
H0: There is no significant difference in mean height between males and females.
H1: There is a significant difference in mean height between males and females.
The appropriate test statistic for this scenario is the two-sample t-test, which compares the means of two independent groups.
The t-statistic is a measure of the difference between the means of two groups relative to the variability within each group. It is calculated as the difference between the sample means divided by the standard error of the difference. It is also known as the t-value or t-score.
So, the calculated two-sample t-test statistic (t) is approximately 5.13.
The t-distribution is used for the two-sample t-test . The degrees of freedom for the t-distribution are determined by the sample sizes of the two groups.
The t-distribution is a probability distribution with tails that are thicker than those of the normal distribution.
The degrees of freedom (63) represent the variability available in the data to estimate the population parameters. In the context of the two-sample t-test, higher degrees of freedom provide a more precise estimate of the population variance, influencing the shape and characteristics of the t-distribution.
T-Statistic
The t-distribution is symmetric and bell-shaped, similar to the normal distribution. As the degrees of freedom increase, the t-distribution approaches the shape of the standard normal distribution. Practically, it affects the critical values used to determine statistical significance and confidence intervals.
Step 5 : Calculate Critical Value.
To find the critical t-value with a t-statistic of 5.13 and 63 degrees of freedom, we can either consult a t-table or use statistical software.
We can use scipy.stats module in Python to find the critical t-value using below code.
Comparing with T-Statistic:
The larger t-statistic suggests that the observed difference between the sample means is unlikely to have occurred by random chance alone. Therefore, we reject the null hypothesis.
In case the significance level is not specified, consider the below general inferences while interpreting your results.
Graphically, the p-value is located at the tails of any confidence interval. [As shown in fig 1]
Fig 1: Graphical Representation
The p-value in hypothesis testing is influenced by several factors:
Understanding these factors is crucial for interpreting p-values accurately and making informed decisions in hypothesis testing.
The p-value is a crucial concept in statistical hypothesis testing, serving as a guide for making decisions about the significance of the observed relationship or effect between variables.
Let’s consider a scenario where a tutor believes that the average exam score of their students is equal to the national average (85). The tutor collects a sample of exam scores from their students and performs a one-sample t-test to compare it to the population mean (85).
Since, 0.7059>0.05 , we would conclude to fail to reject the null hypothesis. This means that, based on the sample data, there isn’t enough evidence to claim a significant difference in the exam scores of the tutor’s students compared to the national average. The tutor would accept the null hypothesis, suggesting that the average exam score of their students is statistically consistent with the national average.
The p-value is a crucial concept in statistical hypothesis testing, providing a quantitative measure of the strength of evidence against the null hypothesis. It guides decision-making by comparing the p-value to a chosen significance level, typically 0.05. A small p-value indicates strong evidence against the null hypothesis, suggesting a statistically significant relationship or effect. However, the p-value is influenced by various factors and should be interpreted alongside other considerations, such as effect size and context.
Why is p-value greater than 1.
A p-value is a probability, and probabilities must be between 0 and 1. Therefore, a p-value greater than 1 is not possible.
It means that the observed test statistic is unlikely to occur by chance if the null hypothesis is true. It represents a 1% chance of observing the test statistic or a more extreme one under the null hypothesis.
A good p-value is typically less than or equal to 0.05, indicating that the null hypothesis is likely false and the observed relationship or effect is statistically significant.
It is a measure of the statistical significance of a parameter in the model. It represents the probability of obtaining the observed value of the parameter or a more extreme one, assuming the null hypothesis is true.
A low p-value means that the observed test statistic is unlikely to occur by chance if the null hypothesis is true. It suggests that the observed relationship or effect is statistically significant and not due to random sampling variation.
Compare p-values: Lower p-value indicates stronger evidence against null hypothesis, favoring results with smaller p-values in hypothesis testing.
Please login to comment....
IMAGES
VIDEO
COMMENTS
The P -value is, therefore, the area under a tn - 1 = t14 curve to the left of -2.5 and to the right of 2.5. It can be shown using statistical software that the P -value is 0.0127 + 0.0127, or 0.0254. The graph depicts this visually. Note that the P -value for a two-tailed test is always two times the P -value for either of the one-tailed tests.
The p value is a number, calculated from a statistical test, that describes how likely you are to have found a particular set of observations if the null hypothesis were true. P values are used in hypothesis testing to help decide whether to reject the null hypothesis. The smaller the p value, the more likely you are to reject the null hypothesis.
The P-value method is used in Hypothesis Testing to check the significance of the given Null Hypothesis. Then, deciding to reject or support it is based upon the specified significance level or threshold. A P-value is calculated in this method which is a test statistic.
P-Value. The P-value is the smallest significance level \(\alpha\) that leads us to reject the null hypothesis. Alternatively (and the way I prefer to think of P-values), the P-value is the probability that we'd observe a more extreme statistic than we did if the null hypothesis were true.
A p value is used in hypothesis testing to help you support or reject the null hypothesis. The p value is the evidence against a null hypothesis. The smaller the p-value, the stronger the evidence that you should reject the null hypothesis. P values are expressed as decimals although it may be easier to understand what they are if you convert ...
To find the p value for your sample, do the following: Identify the correct test statistic. Calculate the test statistic using the relevant properties of your sample. Specify the characteristics of the test statistic's sampling distribution. Place your test statistic in the sampling distribution to find the p value.
Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.
The p-value estimates how likely it is that you would see the difference described by the test statistic if the null hypothesis of no relationship were true. If the value of the test statistic is more extreme than the statistic calculated from the null hypothesis, then you can infer a statistically significant relationship between the predictor ...
In null-hypothesis significance testing, the -value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.Even though reporting p-values of statistical tests is ...
Here is the technical definition of P values: P values are the probability of observing a sample statistic that is at least as extreme as your sample statistic when you assume that the null hypothesis is true. Let's go back to our hypothetical medication study. Suppose the hypothesis test generates a P value of 0.03.
The textbook definition of a p-value is: A p-value is the probability of observing a sample statistic that is at least as extreme as your sample statistic, given that the null hypothesis is true. For example, suppose a factory claims that they produce tires that have a mean weight of 200 pounds. An auditor hypothesizes that the true mean weight ...
The p-value debate has smoldered since the 1950s, and replacement with confidence intervals has been suggested since the 1980s. Confidence Intervals. A confidence interval provides a range of values within given confidence (e.g., 95%), including the accurate value of the statistical constraint within a targeted population.
Using P values and Significance Levels Together. If your P value is less than or equal to your alpha level, reject the null hypothesis. The P value results are consistent with our graphical representation. The P value of 0.03112 is significant at the alpha level of 0.05 but not 0.01.
The easy-to-use hypothesis testing calculator gives you step-by-step solutions to the test statistic, p-value, critical value and more. ... If the p-value is greater than the level of significance, do not reject the null hypothesis. This method remains unchanged regardless of whether it's a lower tail, upper tail or two-tailed test. To change ...
In testing a hypothesis, we use a method where we gather data in an effort to gather evidence about the hypothesis. ... Calculate probability value (p-value), or find the rejection region: A p-value is found by using the test statistic to calculate the probability of the sample data producing such a test statistic or one more extreme. The ...
When we use z z -scores in this way, the obtained value of z z (sometimes called z z -obtained) is something known as a test statistic, which is simply an inferential statistic used to test a null hypothesis. The formula for our z z -statistic has not changed: z = X¯¯¯¯ − μ σ¯/ n−−√ (7.5.1) (7.5.1) z = X ¯ − μ σ ¯ / n.
A statistical hypothesis test generally involves calculating a test statistic. The decision is then made by either comparing the test statistic to a crucial value or assessing the p-value derived from the test statistic. The P-value in Hypothesis Testing. P-value helps determine whether to accept or reject the null hypothesis (H₀) during ...
Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/statistics-probability/signifi...
Hypothesis testing is a crucial procedure to perform when you want to make inferences about a population using a random sample. These inferences include estimating population properties such as the mean, differences between means, proportions, and the relationships between variables. This post provides an overview of statistical hypothesis testing.
Bonferroni. The simplest way to adjust your P values is to use the conservative Bonferroni correction method which multiplies the raw P values by the number of tests m (i.e. length of the vector P_values). Using the p.adjust function and the 'method' argument set to "bonferroni", we get a vector of same length but with adjusted P values.
Demonstrates the basics of hypothesis testing using the P-value method: find the test statistic which in turn gives us the P-value, then compare the P-value ...
Step 2: The test statistic remains the same, t = ˉx − μ0 (S √n) = 882.4 − 870 (24.3 √13) = 1.8399. Step 3: Compute the p-value. For a right-tailed test, the p-value is found by finding the area to the right of the test statistic t = 1.8339 under a tdistribution with 12 degrees of freedom. See Figure 8-19.
This statistics video explains how to use the p-value to solve problems associated with hypothesis testing. When the p-value is less than alpha, you should ...
Output: t-statistic: -0.3895364838967159 p-value: 0.7059365203154573 Fail to reject the null hypothesis. The difference is not statistically significant. Since, 0.7059>0.05, we would conclude to fail to reject the null hypothesis.This means that, based on the sample data, there isn't enough evidence to claim a significant difference in the exam scores of the tutor's students compared to ...