Center for Teaching

Teaching problem solving.

Print Version

Tips and Techniques

Expert vs. novice problem solvers, communicate.

  • Have students  identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
  • If students are unable to articulate their concerns, determine where they are having trouble by  asking them to identify the specific concepts or principles associated with the problem.
  • In a one-on-one tutoring session, ask the student to  work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
  • When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)

Encourage Independence

  • Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
  • Have students work through problems on their own. Ask directing questions or give helpful suggestions, but  provide only minimal assistance and only when needed to overcome obstacles.
  • Don’t fear  group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others

Be sensitive

  • Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing  positive reinforcement to let students know when they have mastered a new concept or skill.

Encourage Thoroughness and Patience

  • Try to communicate that  the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.

Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills,  a teacher should be aware of principles and strategies of good problem solving in his or her discipline .

The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book  How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes  a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.

instructional strategies to teach problem solving

Teaching Guides

  • Online Course Development Resources
  • Principles & Frameworks
  • Pedagogies & Strategies
  • Reflecting & Assessing
  • Challenges & Opportunities
  • Populations & Contexts

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules
  • Faculty & Staff

Teaching problem solving

Strategies for teaching problem solving apply across disciplines and instructional contexts. First, introduce the problem and explain how people in your discipline generally make sense of the given information. Then, explain how to apply these approaches to solve the problem.

Introducing the problem

Explaining how people in your discipline understand and interpret these types of problems can help students develop the skills they need to understand the problem (and find a solution). After introducing how you would go about solving a problem, you could then ask students to:

  • frame the problem in their own words
  • define key terms and concepts
  • determine statements that accurately represent the givens of a problem
  • identify analogous problems
  • determine what information is needed to solve the problem

Working on solutions

In the solution phase, one develops and then implements a coherent plan for solving the problem. As you help students with this phase, you might ask them to:

  • identify the general model or procedure they have in mind for solving the problem
  • set sub-goals for solving the problem
  • identify necessary operations and steps
  • draw conclusions
  • carry out necessary operations

You can help students tackle a problem effectively by asking them to:

  • systematically explain each step and its rationale
  • explain how they would approach solving the problem
  • help you solve the problem by posing questions at key points in the process
  • work together in small groups (3 to 5 students) to solve the problem and then have the solution presented to the rest of the class (either by you or by a student in the group)

In all cases, the more you get the students to articulate their own understandings of the problem and potential solutions, the more you can help them develop their expertise in approaching problems in your discipline.

Teaching problem solving: Let students get ‘stuck’ and ‘unstuck’

Subscribe to the center for universal education bulletin, kate mills and km kate mills literacy interventionist - red bank primary school helyn kim helyn kim former brookings expert @helyn_kim.

October 31, 2017

This is the second in a six-part  blog series  on  teaching 21st century skills , including  problem solving ,  metacognition , critical thinking , and collaboration , in classrooms.

In the real world, students encounter problems that are complex, not well defined, and lack a clear solution and approach. They need to be able to identify and apply different strategies to solve these problems. However, problem solving skills do not necessarily develop naturally; they need to be explicitly taught in a way that can be transferred across multiple settings and contexts.

Here’s what Kate Mills, who taught 4 th grade for 10 years at Knollwood School in New Jersey and is now a Literacy Interventionist at Red Bank Primary School, has to say about creating a classroom culture of problem solvers:

Helping my students grow to be people who will be successful outside of the classroom is equally as important as teaching the curriculum. From the first day of school, I intentionally choose language and activities that help to create a classroom culture of problem solvers. I want to produce students who are able to think about achieving a particular goal and manage their mental processes . This is known as metacognition , and research shows that metacognitive skills help students become better problem solvers.

I begin by “normalizing trouble” in the classroom. Peter H. Johnston teaches the importance of normalizing struggle , of naming it, acknowledging it, and calling it what it is: a sign that we’re growing. The goal is for the students to accept challenge and failure as a chance to grow and do better.

I look for every chance to share problems and highlight how the students— not the teachers— worked through those problems. There is, of course, coaching along the way. For example, a science class that is arguing over whose turn it is to build a vehicle will most likely need a teacher to help them find a way to the balance the work in an equitable way. Afterwards, I make it a point to turn it back to the class and say, “Do you see how you …” By naming what it is they did to solve the problem , students can be more independent and productive as they apply and adapt their thinking when engaging in future complex tasks.

After a few weeks, most of the class understands that the teachers aren’t there to solve problems for the students, but to support them in solving the problems themselves. With that important part of our classroom culture established, we can move to focusing on the strategies that students might need.

Here’s one way I do this in the classroom:

I show the broken escalator video to the class. Since my students are fourth graders, they think it’s hilarious and immediately start exclaiming, “Just get off! Walk!”

When the video is over, I say, “Many of us, probably all of us, are like the man in the video yelling for help when we get stuck. When we get stuck, we stop and immediately say ‘Help!’ instead of embracing the challenge and trying new ways to work through it.” I often introduce this lesson during math class, but it can apply to any area of our lives, and I can refer to the experience and conversation we had during any part of our day.

Research shows that just because students know the strategies does not mean they will engage in the appropriate strategies. Therefore, I try to provide opportunities where students can explicitly practice learning how, when, and why to use which strategies effectively  so that they can become self-directed learners.

For example, I give students a math problem that will make many of them feel “stuck”. I will say, “Your job is to get yourselves stuck—or to allow yourselves to get stuck on this problem—and then work through it, being mindful of how you’re getting yourselves unstuck.” As students work, I check-in to help them name their process: “How did you get yourself unstuck?” or “What was your first step? What are you doing now? What might you try next?” As students talk about their process, I’ll add to a list of strategies that students are using and, if they are struggling, help students name a specific process. For instance, if a student says he wrote the information from the math problem down and points to a chart, I will say: “Oh that’s interesting. You pulled the important information from the problem out and organized it into a chart.” In this way, I am giving him the language to match what he did, so that he now has a strategy he could use in other times of struggle.

The charts grow with us over time and are something that we refer to when students are stuck or struggling. They become a resource for students and a way for them to talk about their process when they are reflecting on and monitoring what did or did not work.

For me, as a teacher, it is important that I create a classroom environment in which students are problem solvers. This helps tie struggles to strategies so that the students will not only see value in working harder but in working smarter by trying new and different strategies and revising their process. In doing so, they will more successful the next time around.

Related Content

Esther Care, Helyn Kim, Alvin Vista

October 17, 2017

David Owen, Alvin Vista

November 15, 2017

Loren Clarke, Esther Care

December 5, 2017

Global Education K-12 Education

Global Economy and Development

Center for Universal Education

Online only

9:00 am - 10:00 am EDT

Kelli Bird, Ben Castleman

April 23, 2024

Ariell Bertrand, Melissa Arnold Lyon, Rebecca Jacobsen

April 18, 2024

Logo for University System of New Hampshire Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Evan Glazer (University of Georgia)

Editor’s Note: Dr. Glazer chose to use the term Problem-based Instruction and Inquiry, but my reading and other references to this chapter also use the term Problem-based Learning. The reader can assume the terms are equivalent.

Description

  • Problem-based inquiry is an effort to challenge students to address real-world problems and resolve realistic dilemmas.

Such problems create opportunities for meaningful activities that engage students in problem solving and higher-ordered thinking in authentic settings. Many textbooks attempt to promote these skills through contrived settings without relevance to students’ lives or interests. A notorious algebra problem concerns the time at which two railway trains will pass each other:

Two trains leave different stations headed toward each other. Station A is 500 miles west of Station B. Train A leaves station A at 12:00 pm traveling toward Station B at a rate of 60 miles per hour. Train B leaves Station B at 2:30 pm for Station A at a rate of 45 miles per hour. At what time will the trains meet?

Reading this question, one might respond, “Who cares?”, or, “Why do we need to know this?” Such questions have created substantial anxiety among students and have, perhaps, even been the cause of nightmares. Critics would argue that classic “story problems” leave a lasting impression of meaningless efforts to confuse and torment students, as if they have come from hell’s library. Problem-based inquiry, on the other hand, intends to engage students in relevant, realistic problems.

Several changes would need to be made in the above problem to promote problem-based inquiry. It would first have to be acknowledged that the trains are not, in fact, traveling at constant rates when they are in motion; negotiating curves or changing tracks at high speeds can result in accidents.

Further, all of the information about the problem cannot be presented to the learner at the outset; that is, some ambiguity must exist in the context so that students have an opportunity to engage in a problem-solving activity. In addition, the situation should involve a meaningful scenario. Suppose that a person intends to catch a connecting train at the second station and requires a time-efficient itinerary? What if we are not given data about the trains, but instead, the outcome of a particular event, such as an accident?

Why should we use problem-based inquiry to help students learn?

The American educational system has been criticized for having an underachieving curriculum that leads students to memorize and regurgitate facts that do not apply to their lives (Martin, 1987; Paul, 1993). Many claim that the traditional classroom environment, with its orderly conduct and didactic teaching methods in which the teacher dispenses information, has greatly inhibited students’ opportunities to think critically (Dossey et al., 1988; Goodlad, 1984; Wood, 1987). Problem-based inquiry is an attempt to overcome these obstacles and confront the concerns presented by the National Assessment of Educational Progress:

If an unfriendly foreign power had attempted to impose on America the mediocre educational performance that exists today, we might well have viewed it as an act of war. We have, in effect, been committing an act of unthinking, unilateral educational disarmament. (A Nation at Risk, 1983)

Problem-based inquiry emphasizes learning as a process that involves problem solving and critical thinking in situated contexts. It provides opportunities to address broader learning goals that focus on preparing students for active and responsible citizenship. Students gain experience in tackling realistic problems, and emphasis is placed on using communication, cooperation, and resources to formulate ideas and develop reasoning skills.

What is a framework for a problem-based inquiry?

Situated cognition, constructivism, social learning, and communities of practice are assumed theories of learning and cognition in problem-based inquiry environments. These theories have common themes about the context and the process of learning and are often associated.

Characteristics

Some common characteristics in problem-based learning models:

Activity is grounded in a general question about a problem that has multiple possible answers and methods for addressing the question. Each problem has a general question that guides the overall task followed by ill-structured problems or questions that are generated throughout the problem-solving process. That is, to address the larger question, students must derive and investigate smaller problems or questions that relate to the findings and implications of the broader goal. The problems or questions thus created are most likely new to the students and lack known definitive methods or answers that have been predetermined by the teacher.

Learning is student-centered; the teacher acts as facilitator. In essence, the teacher creates an environment where students take ownership in the direction and content of their learning.

Students work collaboratively towards addressing the general question . All of the students work together to attain the shared goal of producing a solution to the problem. Consequently, the groups co-depend on each other’s performance and contributions in order to make their own advances in reasoning toward answering the research questions and the overall problem.

Learning is driven by the context of the problem and is not bound by an established curriculum. In this environment, students determine what and how much they need to learn in order to accomplish a specific task. Consequently, acquired information and learned concepts and strategies are tied directly to the context of the learning situation. Learning is not confined to a preset curriculum. Creation of a final product is not a necessary requirement of all problem-based inquiry models.

Project-based learning models most often include this type of product as an integral part of the learning process, because learning is expected to occur primarily in the act of creating something. Unlike problem based inquiry models, project-based learning does not necessarily address a real-world problem, nor does it focus on providing argumentation for resolution of an issue.

In a problem-based inquiry setting, there is greater emphasis on problem-solving, analysis, resolution, and explanation of an authentic dilemma. Sometimes this analysis and explanation is represented in the form of a project, but it can also take the form of verbal debate and written summary.

Instructional models and applications

  • There is no single method for designing problem-based inquiry learning environments.

Various techniques have been used to generate the problem and stimulate learning. Promoting student-ownership, using a particular medium to focus attention, telling stories, simulating and recreating events, and utilizing resources and data on the Internet are among them. The instructional model, problem based learning will be discussed next with attention to instructional strategies and practical examples.

Problem-Based Learning

  • Problem-based learning (PBL) is an instructional strategy in which students actively resolve complex problems in realistic situations.

It can be used to teach individual lessons, units, or even entire curricula. PBL is often approached in a team environment with emphasis on building skills related to consensual decision making, dialogue and discussion, team maintenance, conflict management, and team leadership. While the fundamental approach of problem solving in situated environments has been used throughout the history of schooling, the term PBL did not appear until the 1970s and was devised as an alternative approach to medical education.

In most medical programs, students initially take a series of fact intensive courses in biology and anatomy and then participate in a field experience as a medical resident in a hospital or clinic. However, Barrows reported that, unfortunately, medical residents frequently had difficulty applying knowledge from their classroom experiences in work-related, problem-solving situations. He argued that the classical framework of learning medical knowledge first in classrooms through studying and testing was too passive and removed from context to take on meaning.

Consequently, PBL was first seen as a medical field immersion experience whereby students learned about their medical specialty through direct engagement in realistic problems and gradual apprenticeship in natural or simulated settings. Problem solving is emphasized as an initial area of learning and development in PBL medical programs more so than memorizing a series of facts outside their natural context.

In addition to the field of medicine, PBL is used in many areas of education and training. In academic courses, PBL is used as a tool to help students understand the utility of a particular concept or study. For example, students may learn about recycling and materials as they determine methods that will reduce the county landfill problem.

In addition, alternative education programs have been created with a PBL emphasis to help at-risk students learn in a different way through partnerships with local businesses and government. In vocational education, PBL experiences often emphasize participation in natural settings.

For example, students in architecture address the problem of designing homes for impoverished areas. Many of the residents need safe housing and cannot afford to purchase typical homes. Consequently, students learn about architectural design and resolving the problem as they construct homes made from recycled materials. In business and the military, simulations are used as a means of instruction in PBL. The affective and physiological stress associated with warfare can influence strategic planning, so PBL in military settings promotes the use of “war games” as a tactic for facing authentic crises.

In business settings, simulations of “what if” scenarios are used to train managers in various strategies and problem-solving approaches to conflict resolution. In both military and business settings, the simulation is a tool that provides an opportunity to not only address realistic problems but to learn from mistakes in a more forgiving way than in an authentic context.

Designing the learning environment

The following elements are commonly associated with PBL activities.

Problem generation: The problems must address concepts and principles relevant to the content domain. Problems are not investigated by students solely for problem solving experiences but as a means of understanding the subject area. Some PBL activities incorporate multidisciplinary approaches, assuming the teacher can provide and coordinate needed resources such as additional content, instructional support, and other teachers. In addition, the problems must relate to real issues that are present in society or students’ lives. Contrived scenarios detract from the perceived usefulness of a concept.

Problem presentation: Students must “own” the problem, either by creating or selecting it. Ownership also implies that their contributions affect the outcome of solving the problem. Thus, more than one solution and more than one method of achieving a solution to the problem are often possible. Furthermore, ownership means that students take responsibility for representing and communicating their work in a unique way.

Predetermined formats of problem structure and analysis towards resolution are not recommended; however, the problem should be presented such that the information in the problem does not call attention to critical factors in the case that will lead to immediate resolution. Ownership also suggests that students will ask further questions, reveal further information, and synthesize critical factors throughout the problem-solving process.

Teacher role: Teachers act primarily as cognitive coaches by facilitating learning and modeling higher order thinking and meta cognitive skills. As facilitators, teachers give students control over how they learn and provide support and structure in the direction of their learning. They help the class create a common framework of expectations using tools such as general guidelines and time lines.

As cognitive modelers, teachers think aloud about strategies and questions that influence how students manage the progress of their learning and accomplish group tasks. In addition, teachers continually question students about the concepts they are learning in the context of the problem in order to probe their understanding, challenge their thinking, and help them deepen or extend their ideas.

Student role: Students first define or select an ill-structured problem that has no obvious solution. They develop alternative hypotheses to resolve the problem and discuss and negotiate their conjectures in a group. Next, they access, evaluate, and utilize data from a variety of available sources to support or refute their hypotheses. They may alter, develop, or synthesize hypotheses in light of new information. Finally, they develop clearly stated solutions that fit the problem and its inherent conditions, based upon information and reasoning to support their arguments. Solutions can be in the form of essays, presentations, or projects.

Maine School Engages Kids With Problem-Solving Challenges (11:37)

https://youtu.be/i17F-b5GG94

[PBS NewsHour].(2013, May 6). Maine School Engages Kids with Problem Solving Challenges. [Video File]. Retrieve from https://youtu.be/i17F-b5GG94

Special correspondent John Tulenko of Leaning Matters reports on a public middle school in Portland, Maine that is taking a different approach to teaching students. Teachers have swapped traditional curriculum for an unusually comprehensive science curriculum that emphasizes problem-solving, with a little help from some robots.

Effectiveness of Problem and Inquiry-based learning.

Why does inquiry-based learning only have an effect size of 0.31 when it is an approach to learning that seems to engage students and teachers so readily in the process of learning?

When is the right and wrong time to introduce inquiry and problem based learning?

Watch video from John Hattie on inquiry and problem-based learning, (2:11 minutes).

[Corwin]. (2015, Nov. 9). John Hattie on inquiry-based learning. [Video File]. Retrieved from https://youtu.be/YUooOYbgSUg.

Glazer, E. (2010) Emerging Perspectives on Learning, Teaching, and Technology, Global Text, Michael Orey. (Chapter 14) Attribution CC 3.0. Retrieved from https://textbookequity.org/Textbooks/Orey_Emerging_Perspectives_Learning.pdf

Instructional Methods, Strategies and Technologies to Meet the Needs of All Learners Copyright © 2017 by Evan Glazer (University of Georgia) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Teaching Problem-Solving Skills

Many instructors design opportunities for students to solve “problems”. But are their students solving true problems or merely participating in practice exercises? The former stresses critical thinking and decision­ making skills whereas the latter requires only the application of previously learned procedures.

Problem solving is often broadly defined as "the ability to understand the environment, identify complex problems, review related information to develop, evaluate strategies and implement solutions to build the desired outcome" (Fissore, C. et al, 2021). True problem solving is the process of applying a method – not known in advance – to a problem that is subject to a specific set of conditions and that the problem solver has not seen before, in order to obtain a satisfactory solution.

Below you will find some basic principles for teaching problem solving and one model to implement in your classroom teaching.

Principles for teaching problem solving

  • Model a useful problem-solving method . Problem solving can be difficult and sometimes tedious. Show students how to be patient and persistent, and how to follow a structured method, such as Woods’ model described below. Articulate your method as you use it so students see the connections.
  • Teach within a specific context . Teach problem-solving skills in the context in which they will be used by students (e.g., mole fraction calculations in a chemistry course). Use real-life problems in explanations, examples, and exams. Do not teach problem solving as an independent, abstract skill.
  • Help students understand the problem . In order to solve problems, students need to define the end goal. This step is crucial to successful learning of problem-solving skills. If you succeed at helping students answer the questions “what?” and “why?”, finding the answer to “how?” will be easier.
  • Take enough time . When planning a lecture/tutorial, budget enough time for: understanding the problem and defining the goal (both individually and as a class); dealing with questions from you and your students; making, finding, and fixing mistakes; and solving entire problems in a single session.
  • Ask questions and make suggestions . Ask students to predict “what would happen if …” or explain why something happened. This will help them to develop analytical and deductive thinking skills. Also, ask questions and make suggestions about strategies to encourage students to reflect on the problem-solving strategies that they use.
  • Link errors to misconceptions . Use errors as evidence of misconceptions, not carelessness or random guessing. Make an effort to isolate the misconception and correct it, then teach students to do this by themselves. We can all learn from mistakes.

Woods’ problem-solving model

Define the problem.

  • The system . Have students identify the system under study (e.g., a metal bridge subject to certain forces) by interpreting the information provided in the problem statement. Drawing a diagram is a great way to do this.
  • Known(s) and concepts . List what is known about the problem, and identify the knowledge needed to understand (and eventually) solve it.
  • Unknown(s) . Once you have a list of knowns, identifying the unknown(s) becomes simpler. One unknown is generally the answer to the problem, but there may be other unknowns. Be sure that students understand what they are expected to find.
  • Units and symbols . One key aspect in problem solving is teaching students how to select, interpret, and use units and symbols. Emphasize the use of units whenever applicable. Develop a habit of using appropriate units and symbols yourself at all times.
  • Constraints . All problems have some stated or implied constraints. Teach students to look for the words "only", "must", "neglect", or "assume" to help identify the constraints.
  • Criteria for success . Help students consider, from the beginning, what a logical type of answer would be. What characteristics will it possess? For example, a quantitative problem will require an answer in some form of numerical units (e.g., $/kg product, square cm, etc.) while an optimization problem requires an answer in the form of either a numerical maximum or minimum.

Think about it

  • “Let it simmer”.  Use this stage to ponder the problem. Ideally, students will develop a mental image of the problem at hand during this stage.
  • Identify specific pieces of knowledge . Students need to determine by themselves the required background knowledge from illustrations, examples and problems covered in the course.
  • Collect information . Encourage students to collect pertinent information such as conversion factors, constants, and tables needed to solve the problem.

Plan a solution

  • Consider possible strategies . Often, the type of solution will be determined by the type of problem. Some common problem-solving strategies are: compute; simplify; use an equation; make a model, diagram, table, or chart; or work backwards.
  • Choose the best strategy . Help students to choose the best strategy by reminding them again what they are required to find or calculate.

Carry out the plan

  • Be patient . Most problems are not solved quickly or on the first attempt. In other cases, executing the solution may be the easiest step.
  • Be persistent . If a plan does not work immediately, do not let students get discouraged. Encourage them to try a different strategy and keep trying.

Encourage students to reflect. Once a solution has been reached, students should ask themselves the following questions:

  • Does the answer make sense?
  • Does it fit with the criteria established in step 1?
  • Did I answer the question(s)?
  • What did I learn by doing this?
  • Could I have done the problem another way?

If you would like support applying these tips to your own teaching, CTE staff members are here to help.  View the  CTE Support  page to find the most relevant staff member to contact. 

  • Fissore, C., Marchisio, M., Roman, F., & Sacchet, M. (2021). Development of problem solving skills with Maple in higher education. In: Corless, R.M., Gerhard, J., Kotsireas, I.S. (eds) Maple in Mathematics Education and Research. MC 2020. Communications in Computer and Information Science, vol 1414. Springer, Cham. https://doi.org/10.1007/978-3-030-81698-8_15
  • Foshay, R., & Kirkley, J. (1998). Principles for Teaching Problem Solving. TRO Learning Inc., Edina MN.  (PDF) Principles for Teaching Problem Solving (researchgate.net)
  • Hayes, J.R. (1989). The Complete Problem Solver. 2nd Edition. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Woods, D.R., Wright, J.D., Hoffman, T.W., Swartman, R.K., Doig, I.D. (1975). Teaching Problem solving Skills.
  • Engineering Education. Vol 1, No. 1. p. 238. Washington, DC: The American Society for Engineering Education.

teaching tips

Catalog search

Teaching tip categories.

  • Assessment and feedback
  • Blended Learning and Educational Technologies
  • Career Development
  • Course Design
  • Course Implementation
  • Inclusive Teaching and Learning
  • Learning activities
  • Support for Student Learning
  • Support for TAs
  • Learning activities ,
  • Utility Menu

University Logo

GA4 Tracking Code

Home

fa51e2b1dc8cca8f7467da564e77b5ea

  • Make a Gift
  • Join Our Email List
  • Problem Solving in STEM

Solving problems is a key component of many science, math, and engineering classes.  If a goal of a class is for students to emerge with the ability to solve new kinds of problems or to use new problem-solving techniques, then students need numerous opportunities to develop the skills necessary to approach and answer different types of problems.  Problem solving during section or class allows students to develop their confidence in these skills under your guidance, better preparing them to succeed on their homework and exams. This page offers advice about strategies for facilitating problem solving during class.

How do I decide which problems to cover in section or class?

In-class problem solving should reinforce the major concepts from the class and provide the opportunity for theoretical concepts to become more concrete. If students have a problem set for homework, then in-class problem solving should prepare students for the types of problems that they will see on their homework. You may wish to include some simpler problems both in the interest of time and to help students gain confidence, but it is ideal if the complexity of at least some of the in-class problems mirrors the level of difficulty of the homework. You may also want to ask your students ahead of time which skills or concepts they find confusing, and include some problems that are directly targeted to their concerns.

You have given your students a problem to solve in class. What are some strategies to work through it?

  • Try to give your students a chance to grapple with the problems as much as possible.  Offering them the chance to do the problem themselves allows them to learn from their mistakes in the presence of your expertise as their teacher. (If time is limited, they may not be able to get all the way through multi-step problems, in which case it can help to prioritize giving them a chance to tackle the most challenging steps.)
  • When you do want to teach by solving the problem yourself at the board, talk through the logic of how you choose to apply certain approaches to solve certain problems.  This way you can externalize the type of thinking you hope your students internalize when they solve similar problems themselves.
  • Start by setting up the problem on the board (e.g you might write down key variables and equations; draw a figure illustrating the question).  Ask students to start solving the problem, either independently or in small groups.  As they are working on the problem, walk around to hear what they are saying and see what they are writing down. If several students seem stuck, it might be a good to collect the whole class again to clarify any confusion.  After students have made progress, bring the everyone back together and have students guide you as to what to write on the board.
  • It can help to first ask students to work on the problem by themselves for a minute, and then get into small groups to work on the problem collaboratively.
  • If you have ample board space, have students work in small groups at the board while solving the problem.  That way you can monitor their progress by standing back and watching what they put up on the board.
  • If you have several problems you would like to have the students practice, but not enough time for everyone to do all of them, you can assign different groups of students to work on different – but related - problems.

When do you want students to work in groups to solve problems?

  • Don’t ask students to work in groups for straightforward problems that most students could solve independently in a short amount of time.
  • Do have students work in groups for thought-provoking problems, where students will benefit from meaningful collaboration.
  • Even in cases where you plan to have students work in groups, it can be useful to give students some time to work on their own before collaborating with others.  This ensures that every student engages with the problem and is ready to contribute to a discussion.

What are some benefits of having students work in groups?

  • Students bring different strengths, different knowledge, and different ideas for how to solve a problem; collaboration can help students work through problems that are more challenging than they might be able to tackle on their own.
  • In working in a group, students might consider multiple ways to approach a problem, thus enriching their repertoire of strategies.
  • Students who think they understand the material will gain a deeper understanding by explaining concepts to their peers.

What are some strategies for helping students to form groups?  

  • Instruct students to work with the person (or people) sitting next to them.
  • Count off.  (e.g. 1, 2, 3, 4; all the 1’s find each other and form a group, etc)
  • Hand out playing cards; students need to find the person with the same number card. (There are many variants to this.  For example, you can print pictures of images that go together [rain and umbrella]; each person gets a card and needs to find their partner[s].)
  • Based on what you know about the students, assign groups in advance. List the groups on the board.
  • Note: Always have students take the time to introduce themselves to each other in a new group.

What should you do while your students are working on problems?

  • Walk around and talk to students. Observing their work gives you a sense of what people understand and what they are struggling with. Answer students’ questions, and ask them questions that lead in a productive direction if they are stuck.
  • If you discover that many people have the same question—or that someone has a misunderstanding that others might have—you might stop everyone and discuss a key idea with the entire class.

After students work on a problem during class, what are strategies to have them share their answers and their thinking?

  • Ask for volunteers to share answers. Depending on the nature of the problem, student might provide answers verbally or by writing on the board. As a variant, for questions where a variety of answers are relevant, ask for at least three volunteers before anyone shares their ideas.
  • Use online polling software for students to respond to a multiple-choice question anonymously.
  • If students are working in groups, assign reporters ahead of time. For example, the person with the next birthday could be responsible for sharing their group’s work with the class.
  • Cold call. To reduce student anxiety about cold calling, it can help to identify students who seem to have the correct answer as you were walking around the class and checking in on their progress solving the assigned problem. You may even want to warn the student ahead of time: "This is a great answer! Do you mind if I call on you when we come back together as a class?"
  • Have students write an answer on a notecard that they turn in to you.  If your goal is to understand whether students in general solved a problem correctly, the notecards could be submitted anonymously; if you wish to assess individual students’ work, you would want to ask students to put their names on their notecard.  
  • Use a jigsaw strategy, where you rearrange groups such that each new group is comprised of people who came from different initial groups and had solved different problems.  Students now are responsible for teaching the other students in their new group how to solve their problem.
  • Have a representative from each group explain their problem to the class.
  • Have a representative from each group draw or write the answer on the board.

What happens if a student gives a wrong answer?

  • Ask for their reasoning so that you can understand where they went wrong.
  • Ask if anyone else has other ideas. You can also ask this sometimes when an answer is right.
  • Cultivate an environment where it’s okay to be wrong. Emphasize that you are all learning together, and that you learn through making mistakes.
  • Do make sure that you clarify what the correct answer is before moving on.
  • Once the correct answer is given, go through some answer-checking techniques that can distinguish between correct and incorrect answers. This can help prepare students to verify their future work.

How can you make your classroom inclusive?

  • The goal is that everyone is thinking, talking, and sharing their ideas, and that everyone feels valued and respected. Use a variety of teaching strategies (independent work and group work; allow students to talk to each other before they talk to the class). Create an environment where it is normal to struggle and make mistakes.
  • See Kimberly Tanner’s article on strategies to promoste student engagement and cultivate classroom equity. 

A few final notes…

  • Make sure that you have worked all of the problems and also thought about alternative approaches to solving them.
  • Board work matters. You should have a plan beforehand of what you will write on the board, where, when, what needs to be added, and what can be erased when. If students are going to write their answers on the board, you need to also have a plan for making sure that everyone gets to the correct answer. Students will copy what is on the board and use it as their notes for later study, so correct and logical information must be written there.

For more information...

Tipsheet: Problem Solving in STEM Sections

Tanner, K. D. (2013). Structure matters: twenty-one teaching strategies to promote student engagement and cultivate classroom equity . CBE-Life Sciences Education, 12(3), 322-331.

  • Designing Your Course
  • A Teaching Timeline: From Pre-Term Planning to the Final Exam
  • The First Day of Class
  • Group Agreements
  • Classroom Debate
  • Flipped Classrooms
  • Leading Discussions
  • Polling & Clickers
  • Teaching with Cases
  • Engaged Scholarship
  • Devices in the Classroom
  • Beyond the Classroom
  • On Professionalism
  • Getting Feedback
  • Equitable & Inclusive Teaching
  • Advising and Mentoring
  • Teaching and Your Career
  • Teaching Remotely
  • Tools and Platforms
  • The Science of Learning
  • Bok Publications
  • Other Resources Around Campus

Why Every Educator Needs to Teach Problem-Solving Skills

Strong problem-solving skills will help students be more resilient and will increase their academic and career success .

Want to learn more about how to measure and teach students’ higher-order skills, including problem solving, critical thinking, and written communication?

Problem-solving skills are essential in school, careers, and life.

Problem-solving skills are important for every student to master. They help individuals navigate everyday life and find solutions to complex issues and challenges. These skills are especially valuable in the workplace, where employees are often required to solve problems and make decisions quickly and effectively.

Problem-solving skills are also needed for students’ personal growth and development because they help individuals overcome obstacles and achieve their goals. By developing strong problem-solving skills, students can improve their overall quality of life and become more successful in their personal and professional endeavors.

instructional strategies to teach problem solving

Problem-Solving Skills Help Students…

   develop resilience.

Problem-solving skills are an integral part of resilience and the ability to persevere through challenges and adversity. To effectively work through and solve a problem, students must be able to think critically and creatively. Critical and creative thinking help students approach a problem objectively, analyze its components, and determine different ways to go about finding a solution.  

This process in turn helps students build self-efficacy . When students are able to analyze and solve a problem, this increases their confidence, and they begin to realize the power they have to advocate for themselves and make meaningful change.

When students gain confidence in their ability to work through problems and attain their goals, they also begin to build a growth mindset . According to leading resilience researcher, Carol Dweck, “in a growth mindset, people believe that their most basic abilities can be developed through dedication and hard work—brains and talent are just the starting point. This view creates a love of learning and a resilience that is essential for great accomplishment.”

icon-resilience

    Set and Achieve Goals

Students who possess strong problem-solving skills are better equipped to set and achieve their goals. By learning how to identify problems, think critically, and develop solutions, students can become more self-sufficient and confident in their ability to achieve their goals. Additionally, problem-solving skills are used in virtually all fields, disciplines, and career paths, which makes them important for everyone. Building strong problem-solving skills will help students enhance their academic and career performance and become more competitive as they begin to seek full-time employment after graduation or pursue additional education and training.

CAE Portal Icon 280

  Resolve Conflicts

In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes “thinking outside the box” and approaching a conflict by searching for different solutions. This is a very different (and more effective!) method than a more stagnant approach that focuses on placing blame or getting stuck on elements of a situation that can’t be changed.

While it’s natural to get frustrated or feel stuck when working through a conflict, students with strong problem-solving skills will be able to work through these obstacles, think more rationally, and address the situation with a more solution-oriented approach. These skills will be valuable for students in school, their careers, and throughout their lives.

Perspectives

    Achieve Success

We are all faced with problems every day. Problems arise in our personal lives, in school and in our jobs, and in our interactions with others. Employers especially are looking for candidates with strong problem-solving skills. In today’s job market, most jobs require the ability to analyze and effectively resolve complex issues. Students with strong problem-solving skills will stand out from other applicants and will have a more desirable skill set.

In a recent opinion piece published by The Hechinger Report , Virgel Hammonds, Chief Learning Officer at KnowledgeWorks, stated “Our world presents increasingly complex challenges. Education must adapt so that it nurtures problem solvers and critical thinkers.” Yet, the “traditional K–12 education system leaves little room for students to engage in real-world problem-solving scenarios.” This is the reason that a growing number of K–12 school districts and higher education institutions are transforming their instructional approach to personalized and competency-based learning, which encourage students to make decisions, problem solve and think critically as they take ownership of and direct their educational journey.

graduate-icon

Problem-Solving Skills Can Be Measured and Taught

Research shows that problem-solving skills can be measured and taught. One effective method is through performance-based assessments which require students to demonstrate or apply their knowledge and higher-order skills to create a response or product or do a task.

What Are Performance-Based Assessments?

instructional strategies to teach problem solving

With the No Child Left Behind Act (2002), the use of standardized testing became the primary way to measure student learning in the U.S. The legislative requirements of this act shifted the emphasis to standardized testing, and this led to a  decline in nontraditional testing methods .

But   many educators, policy makers, and parents have concerns with standardized tests. Some of the top issues include that they don’t provide feedback on how students can perform better, they don’t value creativity, they are not representative of diverse populations, and they can be disadvantageous to lower-income students.

While standardized tests are still the norm, U.S. Secretary of Education Miguel Cardona is encouraging states and districts to move away from traditional multiple choice and short response tests and instead use performance-based assessment, competency-based assessments, and other more authentic methods of measuring students abilities and skills rather than rote learning. 

Performance-based assessments  measure whether students can apply the skills and knowledge learned from a unit of study. Typically, a performance task challenges students to use their higher-order skills to complete a project or process. Tasks can range from an essay to a complex proposal or design.

Preview a Performance-Based Assessment

Want a closer look at how performance-based assessments work?  Preview CAE’s K–12 and Higher Education assessments and see how CAE’s tools help students develop critical thinking, problem-solving, and written communication skills.

Performance-Based Assessments Help Students Build and Practice Problem-Solving Skills

In addition to effectively measuring students’ higher-order skills, including their problem-solving skills, performance-based assessments can help students practice and build these skills. Through the assessment process, students are given opportunities to practically apply their knowledge in real-world situations. By demonstrating their understanding of a topic, students are required to put what they’ve learned into practice through activities such as presentations, experiments, and simulations. 

This type of problem-solving assessment tool requires students to analyze information and choose how to approach the presented problems. This process enhances their critical thinking skills and creativity, as well as their problem-solving skills. Unlike traditional assessments based on memorization or reciting facts, performance-based assessments focus on the students’ decisions and solutions, and through these tasks students learn to bridge the gap between theory and practice.

Performance-based assessments like CAE’s College and Career Readiness Assessment (CRA+) and Collegiate Learning Assessment (CLA+) provide students with in-depth reports that show them which higher-order skills they are strongest in and which they should continue to develop. This feedback helps students and their teachers plan instruction and supports to deepen their learning and improve their mastery of critical skills.

instructional strategies to teach problem solving

Explore CAE’s Problem-Solving Assessments

CAE offers performance-based assessments that measure student proficiency in higher-order skills including problem solving, critical thinking, and written communication.

  • College and Career Readiness Assessment (CCRA+) for secondary education and
  • Collegiate Learning Assessment (CLA+) for higher education.

Our solution also includes instructional materials, practice models, and professional development.

We can help you create a program to build students’ problem-solving skills that includes:

  • Measuring students’ problem-solving skills through a performance-based assessment    
  • Using the problem-solving assessment data to inform instruction and tailor interventions
  • Teaching students problem-solving skills and providing practice opportunities in real-life scenarios
  • Supporting educators with quality professional development

Get started with our problem-solving assessment tools to measure and build students’ problem-solving skills today! These skills will be invaluable to students now and in the future.

instructional strategies to teach problem solving

Ready to Get Started?

Learn more about cae’s suite of products and let’s get started measuring and teaching students important higher-order skills like problem solving..

Eberly Center

Teaching excellence & educational innovation.

This site provides practical strategies to address teaching problems across the disciplines. These strategies are firmly grounded in educational research and learning principles.

How does it work?

This site supplements our 1-on-1 teaching consultations. CONTACT US to talk with an Eberly colleague in person!

learning principles

  • Students' prior knowledge can help or hinder learning. MORE
  • How students organize knowledge influences how they learn and apply what they know. MORE
  • Students' motivation determines, directs, and sustains what they do to learn. MORE
  • To develop mastery, students must acquire component skills, practice integrating them, and know when to apply what they have learned. MORE
  • Faculty Support
  • Graduate Student Support
  • Canvas @ Carnegie Mellon
  • Quick Links

creative commons image

High Impact Tutoring Built By Math Experts

Personalized standards-aligned one-on-one math tutoring for schools and districts

Free ready-to-use math resources

Hundreds of free math resources created by experienced math teachers to save time, build engagement and accelerate growth

Free ready-to-use math resources

20 Effective Math Strategies To Approach Problem-Solving 

Katie Keeton

Math strategies for problem-solving help students use a range of approaches to solve many different types of problems. It involves identifying the problem and carrying out a plan of action to find the answer to mathematical problems.  

Problem-solving skills are essential to math in the general classroom and real-life. They require logical reasoning and critical thinking skills.  students must be equipped with strategies to help them find solutions to problems.

This article explores mathematical problem solving strategies, logical reasoning and critical thinking skills to help learners with solving math word problems independently in real-life situations. 

What are problem-solving strategies?

Problem-solving strategies in math are methods students can use to figure out solutions to math problems. Some problem-solving strategies: 

  • Draw a model
  • Use different approaches
  • Check the inverse to make sure the answer is correct

Students need to have a toolkit of math problem-solving strategies at their disposal to provide different ways to approach math problems. This makes it easier to find solutions and understand math better. 

Strategies can help guide students to the solution when it is difficult ot know when to start.

The ultimate guide to problem solving techniques

The ultimate guide to problem solving techniques

Download these ready-to-go problem solving techniques that every student should know. Includes printable tasks for students including challenges, short explanations for teachers with questioning prompts.

20 Math Strategies For Problem-Solving

Different problem-solving math strategies are required for different parts of the problem. It is unlikely that students will use the same strategy to understand and solve the problem. 

Here are 20 strategies to help students develop their problem-solving skills. 

Strategies to understand the problem

Strategies that help students understand the problem before solving it helps ensure they understand: 

  • The context
  • What the key information is
  • How to form a plan to solve it

Following these steps leads students to the correct solution and makes the math word problem easier .

Here are five strategies to help students understand the content of the problem and identify key information. 

1. Read the problem aloud

Read a word problem aloud to help understand it. Hearing the words engages auditory processing. This can make it easier to process and comprehend the context of the situation.

2. Highlight keywords 

When keywords are highlighted in a word problem, it helps the student focus on the essential information needed to solve it. Some important keywords help determine which operation is needed.  For example, if the word problem asks how many are left, the problem likely requires subtraction.  Ensure students highlight the keywords carefully and do not highlight every number or keyword. There is likely irrelevant information in the word problem.

3. Summarize the information

Read the problem aloud, highlight the key information and then summarize the information. Students can do this in their heads or write down a quick summary.  Summaries should include only the important information and be in simple terms that help contextualize the problem.

4. Determine the unknown

A common problem that students have when solving a word problem is misunderstanding what they are solving. Determine what the unknown information is before finding the answer.  Often, a word problem contains a question where you can find the unknown information you need to solve. For example, in the question ‘How many apples are left?’ students need to find the number of apples left over.

5. Make a plan

Once students understand the context of the word problem, have dentified the important information and determined the unknown, they can make a plan to solve it.  The plan will depend on the type of problem. Some problems involve more than one step to solve them as some require more than one answer.  Encourage students to make a list of each step they need to take to solve the problem before getting started.

Strategies for solving the problem 

1. draw a model or diagram.

Students may find it useful to draw a model, picture, diagram, or other visual aid to help with the problem solving process.  It can help to visualize the problem to understand the relationships between the numbers in the problem. In turn, this helps students see the solution.

math problem that needs a problem solving strategy

Similarly, you could draw a model to represent the objects in the problem:

math problem requiring problem solving

2. Act it out

This particular strategy is applicable at any grade level but is especially helpful in math investigation in elementary school . It involves a physical demonstration or students acting out the problem using movements, concrete resources and math manipulatives .  When students act out a problem, they can visualize and contectualize the word problem in another way and secure an understanding of the math concepts.  The examples below show how 1st-grade students could “act out” an addition and subtraction problem:

3. Work backwards

Working backwards is a popular problem-solving strategy. It involves starting with a possible solution and deciding what steps to take to arrive at that solution.  This strategy can be particularly helpful when students solve math word problems involving multiple steps. They can start at the end and think carefully about each step taken as opposed to jumping to the end of the problem and missing steps in between.

For example,

problem solving math question 1

To solve this problem working backwards, start with the final condition, which is Sam’s grandmother’s age (71) and work backwards to find Sam’s age. Subtract 20 from the grandmother’s age, which is 71.  Then, divide the result by 3 to get Sam’s age. 71 – 20 = 51 51 ÷ 3 = 17 Sam is 17 years old.

4. Write a number sentence

When faced with a word problem, encourage students to write a number sentence based on the information. This helps translate the information in the word problem into a math equation or expression, which is more easily solved.  It is important to fully understand the context of the word problem and what students need to solve before writing an equation to represent it.

5. Use a formula

Specific formulas help solve many math problems. For example, if a problem asks students to find the area of a rug, they would use the area formula (area = length × width) to solve.   Make sure students know the important mathematical formulas they will need in tests and real-life. It can help to display these around the classroom or, for those who need more support, on students’ desks.

Strategies for checking the solution 

Once the problem is solved using an appropriate strategy, it is equally important to check the solution to ensure it is correct and makes sense. 

There are many strategies to check the solution. The strategy for a specific problem is dependent on the problem type and math content involved.

Here are five strategies to help students check their solutions. 

1. Use the Inverse Operation

For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7. As good practice, encourage students to use the inverse operation routinely to check their work. 

2. Estimate to check for reasonableness

Once students reach an answer, they can use estimation or rounding to see if the answer is reasonable.  Round each number in the equation to a number that’s close and easy to work with, usually a multiple of ten.  For example, if the question was 216 ÷ 18 and the quotient was 12, students might round 216 to 200 and round 18 to 20. Then use mental math to solve 200 ÷ 20, which is 10.  When the estimate is clear the two numbers are close. This means your answer is reasonable. 

3. Plug-In Method

This method is particularly useful for algebraic equations. Specifically when working with variables.  To use the plug-in method, students solve the problem as asked and arrive at an answer. They can then plug the answer into the original equation to see if it works. If it does, the answer is correct.

Problem solving math problem 2

If students use the equation 20m+80=300 to solve this problem and find that m = 11, they can plug that value back into the equation to see if it is correct. 20m + 80 = 300 20 (11) + 80 = 300 220 + 80 = 300 300 = 300 ✓

4. Peer Review

Peer review is a great tool to use at any grade level as it promotes critical thinking and collaboration between students. The reviewers can look at the problem from a different view as they check to see if the problem was solved correctly.   Problem solvers receive immediate feedback and the opportunity to discuss their thinking with their peers. This strategy is effective with mixed-ability partners or similar-ability partners. In mixed-ability groups, the partner with stronger skills provides guidance and support to the partner with weaker skills, while reinforcing their own understanding of the content and communication skills.  If partners have comparable ability levels and problem-solving skills, they may find that they approach problems differently or have unique insights to offer each other about the problem-solving process.

5. Use a Calculator

A calculator can be introduced at any grade level but may be best for older students who already have a foundational understanding of basic math operations. Provide students with a calculator to allow them to check their solutions independently, accurately, and quickly. Since calculators are so readily available on smartphones and tablets, they allow students to develop practical skills that apply to real-world situations.  

Step-by-step problem-solving processes for your classroom

In his book, How to Solve It , published in 1945, mathematician George Polya introduced a 4-step process to solve problems. 

Polya’s 4 steps include:

  • Understand the problem
  • Devise a plan
  • Carry out the plan

Today, in the style of George Polya, many problem-solving strategies use various acronyms and steps to help students recall. 

Many teachers create posters and anchor charts of their chosen process to display in their classrooms. They can be implemented in any elementary, middle school or high school classroom. 

Here are 5 problem-solving strategies to introduce to students and use in the classroom.

CUBES math strategy for problem solving

How Third Space Learning improves problem-solving 

Resources .

Third Space Learning offers a free resource library is filled with hundreds of high-quality resources. A team of experienced math experts carefully created each resource to develop students mental arithmetic, problem solving and critical thinking. 

Explore the range of problem solving resources for 2nd to 8th grade students. 

One-on-one tutoring 

Third Space Learning offers one-on-one math tutoring to help students improve their math skills. Highly qualified tutors deliver high-quality lessons aligned to state standards. 

Former teachers and math experts write all of Third Space Learning’s tutoring lessons. Expertly designed lessons follow a “my turn, follow me, your turn” pedagogy to help students move from guided instruction and problem-solving to independent practice. 

Throughout each lesson, tutors ask higher-level thinking questions to promote critical thinking and ensure students are developing a deep understanding of the content and problem-solving skills.

instructional strategies to teach problem solving

Problem-solving

Educators can use many different strategies to teach problem-solving and help students develop and carry out a plan when solving math problems. Incorporate these math strategies into any math program and use them with a variety of math concepts, from whole numbers and fractions to algebra. 

Teaching students how to choose and implement problem-solving strategies helps them develop mathematical reasoning skills and critical thinking they can apply to real-life problem-solving.

READ MORE : 8 Common Core math examples

There are many different strategies for problem-solving; Here are 5 problem-solving strategies: • draw a model  • act it out  • work backwards  • write a number sentence • use a formula

Here are 10 strategies of problem-solving: • Read the problem aloud • Highlight keywords • Summarize the information • Determine the unknown • Make a plan • Draw a model  • Act it out  • Work backwards  • Write a number sentence • Use a formula

1. Understand the problem 2. Devise a plan 3. Carry out the plan 4. Look back

Some strategies you can use to solve challenging math problems are: breaking the problem into smaller parts, using diagrams or models, applying logical reasoning, and trying different approaches.

Related articles

Why Student Centered Learning Is Important: A Guide For Educators

Why Student Centered Learning Is Important: A Guide For Educators

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

Ultimate Guide to Metacognition [FREE]

Looking for a summary on metacognition in relation to math teaching and learning?

Check out this guide featuring practical examples, tips and strategies to successfully embed metacognition across your school to accelerate math growth.

Privacy Overview

You are using an outdated browser. Please upgrade your browser to improve your experience.

instructional strategies to teach problem solving

Problem-based Instruction

This tool explores approaching curriculum design and classroom instruction from the perspective of learning through solving problems.

# DESCRIPTION

Effective learning often exists within the context of a problem. These problems define both the purpose and motivation for learning. All problems, however, are not created equal, and some provide richer ground for learning than others. Sometimes that problem is “How do I get a good grade?” or “What does the teacher want?” (rocky ground). Other times, it’s “I’m curious about…” (sandy ground). Ideally, the problem sounds like, “I need to build a structurally sound building,” or “I want to deepen my relationship with God,” or “What should be our policy in the Middle East?” These problems provide fertile ground for deep and meaningful learning.

As educator John Dewey has suggested:

A large part of the art of instruction lies in making the difficulty of new problems large enough to challenge thought, and small enough so that, in addition to the confusion naturally attending the novel elements, there shall be luminous familiar spots from which helpful suggestions may spring.

(Democracy and Education, 1916; MW 9:164)

Defining a problem that becomes an effective springboard for deep learning is not easy. A process to help is detailed below.

# Developing a Problem

  • Define Outcomes. If the problem is authentic or real-life, one of the learning outcomes is clearly to solve it or attempt to do so. Other learning outcomes include the skills and knowledge needed in that process. The problem can define the required outcomes, or the desired outcomes can define the problem.
  • Content. Once outcomes are determined, you define what resources are available to be used.
  • Developmentally appropriate (not too difficult), yet complex enough to benefit from group work
  • Grounded in a student reality (authentic, real-world, personal)
  • Reflective of learning outcomes, often targeted at a common misconception or difficulty 
  • Ill-structured—meaning that the problem might have multiple possible or seemingly-possible solutions, that it is couched in the complexities of real life, and that it doesn’t contain all the information for its own resolution (not a story problem)

The problem statement may be as short as a question or as detailed as a multi-page case study. A good problem statement will provide enough information to define the boundaries of the issue without leading the student toward an answer. It will challenge students to research, discuss, analyze, and interpret. Students should be able to break it down in ways that indicate starting points or directions. 

The final problem statement is often framed in terms of a specific situation in a specific context along with a role the student is to assume ( Imagine that you’ve been asked to…)

  • Motivation. Although problems are often intrinsically motivating, sometimes you need to spark initial interest. Allowing students to experience the authenticity, the reality or the personal impact of the problem can help.
  • Support. Once students are interested, you can often help them launch their investigation with focus questions, a tutorial guide, or suggestions.
  • Work collaboratively. Students should work collaboratively in small groups or teams towards a solution. Physics instructors use iClickers and Concept Tests to give group quizzes. Business uses Case Methods. Different pedagogies work in different settings, but all require the students to draw from and contribute to group learning.

4.     Assessment: Lastly, you need to consider ways to evaluate student work. 

# Project  

An education instructor finds it difficult to get her students to see past their own biases and to understand the complexities involved when thinking about educational reform. She chooses to put them in charge of the management of failing Chicago schools. In the problem description, she gives some background, establishes a time frame and resource list. The students are excited and begin collaborative research immediately after determining the relevant issues. She supports them in their work with lists of helpful websites and a handbook on educational design. Finally, she develops a rubric for assessing each team’s final proposal based on their abilities to articulate and defend the positions that they took.

# Concept Test  

An instructor chooses several problems with multiple or counter-intuitive solutions as the framework for a curricular unit. She then uses concept tests as a way to assess the individual and group work used to approach the problems.

# Case Study 

An instructor uses a mixture of pre-written and self-generated case studies to emphasize key understandings. He has students work together in teams to discuss and resolve the issues and then present their solutions to the rest of the class.

Sequence carefully.  Careful sequencing of the problems is crucial if the course is to use a number of problem-based activities. The most  important problem is often not appropriate as the first problem. Rather, early problems should model the process and be supported by the instructor.

Pair with collaborative strategies ( Teach One Another ) for the most effective problem-solving. Consider paired discussion, Socratic Method, projects, learning teams, and other approaches.

Use appropriately.  Use this strategy only when a recall is not the primary task of the learning.

Find context. Threshold concepts, concepts that underlie new ways of thinking, are often effective settings for good problem-based activities.

Find the appropriate  level . Many effective problems are messy at first glance. They are complex and ill-structured, offering no easy answer and many potential solutions, which allows for students to find solutions to problems that are not a single-solution scenario.

Not a hands-off instructional strategy. The instructor needs to be deeply involved in structuring, training, guiding, and evaluating student performance.

Time. Problem-based instruction takes time and is less-directly controlled than other approaches.

Newness . Problem-based instruction often requires new skills for both instructor and students. Introducing it for the first time should be done with due preparation and deliberation. 

Difficult . Instructors often tend to under-estimate the difficulties students face when confronted with problems and diminished guidance.

Not content coverage. Although it’s tempting to do so, a problem shouldn’t be designed around a given block of content, but rather around learning outcomes for the content.

# KEY ARTICLES

Merrill, M.D. (2007). A task-centered instructional strategy. Journal of Research on Technology in Education , 40(1), 33-50.

Wilkerson, LuAnn & Gijselaers W.H. (Eds.). (1996). Bringing problem-based learning to higher education. New Directions for Teaching and Learning , San Fransisco: Jossey-Bass, 68. 

# OTHER RESOURCES

Short YouTube intro to PBL

A few problem examples

PBL Clearinghouse

PBL development

Using professional literature to create problems

A thorough but accessible portal on PBL

Book Chapter

instructional strategies to teach problem solving

Don’t Just Tell Students to Solve Problems. Teach Them How.

The positive impact of an innovative uc san diego problem-solving educational curriculum continues to grow.

Published Date

Share this:, article content.

Problem solving is a critical skill for technical education and technical careers of all types. But what are best practices for teaching problem solving to high school and college students? 

The University of California San Diego Jacobs School of Engineering is on the forefront of efforts to improve how problem solving is taught. This UC San Diego approach puts hands-on problem-identification and problem-solving techniques front and center. Over 1,500 students across the San Diego region have already benefited over the last three years from this program. In the 2023-2024 academic year, approximately 1,000 upper-level high school students will be taking the problem solving course in four different school districts in the San Diego region. Based on the positive results with college students, as well as high school juniors and seniors in the San Diego region, the project is getting attention from educators across the state of California, and around the nation and the world.

{/exp:typographee}

In Summer 2023, th e 27 community college students who took the unique problem-solving course developed at the UC San Diego Jacobs School of Engineering thrived, according to Alex Phan PhD, the Executive Director of Student Success at the UC San Diego Jacobs School of Engineering. Phan oversees the project. 

Over the course of three weeks, these students from Southwestern College and San Diego City College poured their enthusiasm into problem solving through hands-on team engineering challenges. The students brimmed with positive energy as they worked together. 

What was noticeably absent from this laboratory classroom: frustration.

“In school, we often tell students to brainstorm, but they don’t often know where to start. This curriculum gives students direct strategies for brainstorming, for identifying problems, for solving problems,” sai d Jennifer Ogo, a teacher from Kearny High School who taught the problem-solving course in summer 2023 at UC San Diego. Ogo was part of group of educators who took the course themselves last summer.

The curriculum has been created, refined and administered over the last three years through a collaboration between the UC San Diego Jacobs School of Engineering and the UC San Diego Division of Extended Studies. The project kicked off in 2020 with a generous gift from a local philanthropist.

Not getting stuck

One of the overarching goals of this project is to teach both problem-identification and problem-solving skills that help students avoid getting stuck during the learning process. Stuck feelings lead to frustration – and when it’s a Science, Technology, Engineering and Math (STEM) project, that frustration can lead students to feel they don’t belong in a STEM major or a STEM career. Instead, the UC San Diego curriculum is designed to give students the tools that lead to reactions like “this class is hard, but I know I can do this!” –  as Ogo, a celebrated high school biomedical sciences and technology teacher, put it. 

Three years into the curriculum development effort, the light-hearted energy of the students combined with their intense focus points to success. On the last day of the class, Mourad Mjahed PhD, Director of the MESA Program at Southwestern College’s School of Mathematics, Science and Engineering came to UC San Diego to see the final project presentations made by his 22 MESA students.

“Industry is looking for students who have learned from their failures and who have worked outside of their comfort zones,” said Mjahed. The UC San Diego problem-solving curriculum, Mjahed noted, is an opportunity for students to build the skills and the confidence to learn from their failures and to work outside their comfort zone. “And from there, they see pathways to real careers,” he said. 

What does it mean to explicitly teach problem solving? 

This approach to teaching problem solving includes a significant focus on learning to identify the problem that actually needs to be solved, in order to avoid solving the wrong problem. The curriculum is organized so that each day is a complete experience. It begins with the teacher introducing the problem-identification or problem-solving strategy of the day. The teacher then presents case studies of that particular strategy in action. Next, the students get introduced to the day’s challenge project. Working in teams, the students compete to win the challenge while integrating the day’s technique. Finally, the class reconvenes to reflect. They discuss what worked and didn't work with their designs as well as how they could have used the day’s problem-identification or problem-solving technique more effectively. 

The challenges are designed to be engaging – and over three years, they have been refined to be even more engaging. But the student engagement is about much more than being entertained. Many of the students recognize early on that the problem-identification and problem-solving skills they are learning can be applied not just in the classroom, but in other classes and in life in general. 

Gabriel from Southwestern College is one of the students who saw benefits outside the classroom almost immediately. In addition to taking the UC San Diego problem-solving course, Gabriel was concurrently enrolled in an online computer science programming class. He said he immediately started applying the UC San Diego problem-identification and troubleshooting strategies to his coding assignments. 

Gabriel noted that he was given a coding-specific troubleshooting strategy in the computer science course, but the more general problem-identification strategies from the UC San Diego class had been extremely helpful. It’s critical to “find the right problem so you can get the right solution. The strategies here,” he said, “they work everywhere.”

Phan echoed this sentiment. “We believe this curriculum can prepare students for the technical workforce. It can prepare students to be impactful for any career path.”

The goal is to be able to offer the course in community colleges for course credit that transfers to the UC, and to possibly offer a version of the course to incoming students at UC San Diego. 

As the team continues to work towards integrating the curriculum in both standardized high school courses such as physics, and incorporating the content as a part of the general education curriculum at UC San Diego, the project is expected to impact thousands more students across San Diego annually. 

Portrait of the Problem-Solving Curriculum

On a sunny Wednesday in July 2023, an experiential-learning classroom was full of San Diego community college students. They were about half-way through the three-week problem-solving course at UC San Diego, held in the campus’ EnVision Arts and Engineering Maker Studio. On this day, the students were challenged to build a contraption that would propel at least six ping pong balls along a kite string spanning the laboratory. The only propulsive force they could rely on was the air shooting out of a party balloon.

A team of three students from Southwestern College – Valeria, Melissa and Alondra – took an early lead in the classroom competition. They were the first to use a plastic bag instead of disposable cups to hold the ping pong balls. Using a bag, their design got more than half-way to the finish line – better than any other team at the time – but there was more work to do. 

As the trio considered what design changes to make next, they returned to the problem-solving theme of the day: unintended consequences. Earlier in the day, all the students had been challenged to consider unintended consequences and ask questions like: When you design to reduce friction, what happens? Do new problems emerge? Did other things improve that you hadn’t anticipated? 

Other groups soon followed Valeria, Melissa and Alondra’s lead and began iterating on their own plastic-bag solutions to the day’s challenge. New unintended consequences popped up everywhere. Switching from cups to a bag, for example, reduced friction but sometimes increased wind drag. 

Over the course of several iterations, Valeria, Melissa and Alondra made their bag smaller, blew their balloon up bigger, and switched to a different kind of tape to get a better connection with the plastic straw that slid along the kite string, carrying the ping pong balls. 

One of the groups on the other side of the room watched the emergence of the plastic-bag solution with great interest. 

“We tried everything, then we saw a team using a bag,” said Alexander, a student from City College. His team adopted the plastic-bag strategy as well, and iterated on it like everyone else. They also chose to blow up their balloon with a hand pump after the balloon was already attached to the bag filled with ping pong balls – which was unique. 

“I don’t want to be trying to put the balloon in place when it's about to explode,” Alexander explained. 

Asked about whether the structured problem solving approaches were useful, Alexander’s teammate Brianna, who is a Southwestern College student, talked about how the problem-solving tools have helped her get over mental blocks. “Sometimes we make the most ridiculous things work,” she said. “It’s a pretty fun class for sure.” 

Yoshadara, a City College student who is the third member of this team, described some of the problem solving techniques this way: “It’s about letting yourself be a little absurd.”

Alexander jumped back into the conversation. “The value is in the abstraction. As students, we learn to look at the problem solving that worked and then abstract out the problem solving strategy that can then be applied to other challenges. That’s what mathematicians do all the time,” he said, adding that he is already thinking about how he can apply the process of looking at unintended consequences to improve both how he plays chess and how he goes about solving math problems.

Looking ahead, the goal is to empower as many students as possible in the San Diego area and  beyond to learn to problem solve more enjoyably. It’s a concrete way to give students tools that could encourage them to thrive in the growing number of technical careers that require sharp problem-solving skills, whether or not they require a four-year degree. 

You May Also Like

A flexible microdisplay can monitor and visualize brain activity in real-time during brain surgery, materials scientist awarded schmidt science fellowship, study finds x’s community notes provides accurate responses to vaccine misinformation, innovative microscopy demystifies metabolism of alzheimer’s, stay in the know.

Keep up with all the latest from UC San Diego. Subscribe to the newsletter today.

You have been successfully subscribed to the UC San Diego Today Newsletter.

Campus & Community

Arts & culture, visual storytelling.

  • Media Resources & Contacts

Signup to get the latest UC San Diego newsletters delivered to your inbox.

Award-winning publication highlighting the distinction, prestige and global impact of UC San Diego.

Popular Searches: Covid-19   Ukraine   Campus & Community   Arts & Culture   Voices

The Edvocate

  • Lynch Educational Consulting
  • Dr. Lynch’s Personal Website
  • Write For Us
  • The Tech Edvocate Product Guide
  • The Edvocate Podcast
  • Terms and Conditions
  • Privacy Policy
  • Assistive Technology
  • Best PreK-12 Schools in America
  • Child Development
  • Classroom Management
  • Early Childhood
  • EdTech & Innovation
  • Education Leadership
  • First Year Teachers
  • Gifted and Talented Education
  • Special Education
  • Parental Involvement
  • Policy & Reform
  • Best Colleges and Universities
  • Best College and University Programs
  • HBCU’s
  • Higher Education EdTech
  • Higher Education
  • International Education
  • The Awards Process
  • Finalists and Winners of The 2022 Tech Edvocate Awards
  • Finalists and Winners of The 2021 Tech Edvocate Awards
  • Finalists and Winners of The 2020 Tech Edvocate Awards
  • Finalists and Winners of The 2019 Tech Edvocate Awards
  • Finalists and Winners of The 2018 Tech Edvocate Awards
  • Finalists and Winners of The 2017 Tech Edvocate Awards
  • Award Seals
  • GPA Calculator for College
  • GPA Calculator for High School
  • Cumulative GPA Calculator
  • Grade Calculator
  • Weighted Grade Calculator
  • Final Grade Calculator
  • The Tech Edvocate
  • AI Powered Personal Tutor

College Minor: Everything You Need to Know

14 fascinating teacher interview questions for principals, tips for success if you have a master’s degree and can’t find a job, 14 ways young teachers can get that professional look, which teacher supplies are worth the splurge, 8 business books every teacher should read, conditional admission: everything you need to know, college majors: everything you need to know, 7 things principals can do to make a teacher observation valuable, 3 easy teacher outfits to tackle parent-teacher conferences, strategies and methods to teach students problem solving and critical thinking skills.

instructional strategies to teach problem solving

The ability to problem solve and think critically are two of the most important skills that PreK-12 students can learn. Why? Because students need these skills to succeed in their academics and in life in general. It allows them to find a solution to issues and complex situations that are thrown there way, even if this is the first time they are faced with the predicament.

Okay, we know that these are essential skills that are also difficult to master. So how can we teach our students problem solve and think critically? I am glad you asked. In this piece will list and discuss strategies and methods that you can use to teach your students to do just that.

  • Direct Analogy Method

A method of problem-solving in which a problem is compared to similar problems in nature or other settings, providing solutions that could potentially be applied.

  • Attribute Listing

A technique used to encourage creative thinking in which the parts of a subject, problem, or task are listed, and then ways to change those component parts are examined.

  • Attribute Modifying

A technique used to encourage creative thinking in which the parts of a subject, problem, or task are listed, and then options for changing or improving each part are considered.

  • Attribute Transferring

A technique used to encourage creative thinking in which the parts of a subject, problem or task listed and then the problem solver uses analogies to other contexts to generate and consider potential solutions.

  • Morphological Synthesis

A technique used to encourage creative problem solving which extends on attribute transferring. A matrix is created, listing concrete attributes along the x-axis, and the ideas from a second attribute along with the y-axis, yielding a long list of idea combinations.

SCAMPER stands for Substitute, Combine, Adapt, Modify-Magnify-Minify, Put to other uses, and Reverse or Rearrange. It is an idea checklist for solving design problems.

  • Direct Analogy

A problem-solving technique in which an individual is asked to consider the ways problems of this type are solved in nature.

  • Personal Analogy

A problem-solving technique in which an individual is challenged to become part of the problem to view it from a new perspective and identify possible solutions.

  • Fantasy Analogy

A problem-solving process in which participants are asked to consider outlandish, fantastic or bizarre solutions which may lead to original and ground-breaking ideas.

  • Symbolic Analogy

A problem-solving technique in which participants are challenged to generate a two-word phrase related to the design problem being considered and that appears self-contradictory. The process of brainstorming this phrase can stimulate design ideas.

  • Implementation Charting

An activity in which problem solvers are asked to identify the next steps to implement their creative ideas. This step follows the idea generation stage and the narrowing of ideas to one or more feasible solutions. The process helps participants to view implementation as a viable next step.

  • Thinking Skills

Skills aimed at aiding students to be critical, logical, and evaluative thinkers. They include analysis, comparison, classification, synthesis, generalization, discrimination, inference, planning, predicting, and identifying cause-effect relationships.

Can you think of any additional problems solving techniques that teachers use to improve their student’s problem-solving skills?

The 4 Types of Brainstorming

Feeling lethargic it may all that screen ....

' src=

Matthew Lynch

Related articles more from author.

instructional strategies to teach problem solving

Kindergartners get little time to play. Why does it matter?

instructional strategies to teach problem solving

Education crisis extends across the United States

instructional strategies to teach problem solving

Top 4 Group Influences in Public Education Part I: Professional Education Organizations

instructional strategies to teach problem solving

Without teacher guidance, all the tech in the world will be quite useless

instructional strategies to teach problem solving

20 Strategies to Teach Students How to Adapt to a New Routine

instructional strategies to teach problem solving

20 Strategies to Help Students Who Exhibit Self-Destructive Behavior

  • Try for free

Problem-Solving

TeacherVision Staff

Jabberwocky

Problem-solving is the ability to identify and solve problems by applying appropriate skills systematically.

Problem-solving is a process—an ongoing activity in which we take what we know to discover what we don't know. It involves overcoming obstacles by generating hypo-theses, testing those predictions, and arriving at satisfactory solutions.

Problem-solving involves three basic functions:

Seeking information

Generating new knowledge

Making decisions

Problem-solving is, and should be, a very real part of the curriculum. It presupposes that students can take on some of the responsibility for their own learning and can take personal action to solve problems, resolve conflicts, discuss alternatives, and focus on thinking as a vital element of the curriculum. It provides students with opportunities to use their newly acquired knowledge in meaningful, real-life activities and assists them in working at higher levels of thinking (see Levels of Questions ).

Here is a five-stage model that most students can easily memorize and put into action and which has direct applications to many areas of the curriculum as well as everyday life:

Expert Opinion

Here are some techniques that will help students understand the nature of a problem and the conditions that surround it:

  • List all related relevant facts.
  • Make a list of all the given information.
  • Restate the problem in their own words.
  • List the conditions that surround a problem.
  • Describe related known problems.

It's Elementary

For younger students, illustrations are helpful in organizing data, manipulating information, and outlining the limits of a problem and its possible solution(s). Students can use drawings to help them look at a problem from many different perspectives.

Understand the problem. It's important that students understand the nature of a problem and its related goals. Encourage students to frame a problem in their own words.

Describe any barriers. Students need to be aware of any barriers or constraints that may be preventing them from achieving their goal. In short, what is creating the problem? Encouraging students to verbalize these impediments is always an important step.

Identify various solutions. After the nature and parameters of a problem are understood, students will need to select one or more appropriate strategies to help resolve the problem. Students need to understand that they have many strategies available to them and that no single strategy will work for all problems. Here are some problem-solving possibilities:

Create visual images. Many problem-solvers find it useful to create “mind pictures” of a problem and its potential solutions prior to working on the problem. Mental imaging allows the problem-solvers to map out many dimensions of a problem and “see” it clearly.

Guesstimate. Give students opportunities to engage in some trial-and-error approaches to problem-solving. It should be understood, however, that this is not a singular approach to problem-solving but rather an attempt to gather some preliminary data.

Create a table. A table is an orderly arrangement of data. When students have opportunities to design and create tables of information, they begin to understand that they can group and organize most data relative to a problem.

Use manipulatives. By moving objects around on a table or desk, students can develop patterns and organize elements of a problem into recognizable and visually satisfying components.

Work backward. It's frequently helpful for students to take the data presented at the end of a problem and use a series of computations to arrive at the data presented at the beginning of the problem.

Look for a pattern. Looking for patterns is an important problem-solving strategy because many problems are similar and fall into predictable patterns. A pattern, by definition, is a regular, systematic repetition and may be numerical, visual, or behavioral.

Create a systematic list. Recording information in list form is a process used quite frequently to map out a plan of attack for defining and solving problems. Encourage students to record their ideas in lists to determine regularities, patterns, or similarities between problem elements.

Try out a solution. When working through a strategy or combination of strategies, it will be important for students to …

Keep accurate and up-to-date records of their thoughts, proceedings, and procedures. Recording the data collected, the predictions made, and the strategies used is an important part of the problem solving process.

Try to work through a selected strategy or combination of strategies until it becomes evident that it's not working, it needs to be modified, or it is yielding inappropriate data. As students become more proficient problem-solvers, they should feel comfortable rejecting potential strategies at any time during their quest for solutions.

Monitor with great care the steps undertaken as part of a solution. Although it might be a natural tendency for students to “rush” through a strategy to arrive at a quick answer, encourage them to carefully assess and monitor their progress.

Feel comfortable putting a problem aside for a period of time and tackling it at a later time. For example, scientists rarely come up with a solution the first time they approach a problem. Students should also feel comfortable letting a problem rest for a while and returning to it later.

Evaluate the results. It's vitally important that students have multiple opportunities to assess their own problem-solving skills and the solutions they generate from using those skills. Frequently, students are overly dependent upon teachers to evaluate their performance in the classroom. The process of self-assessment is not easy, however. It involves risk-taking, self-assurance, and a certain level of independence. But it can be effectively promoted by asking students questions such as “How do you feel about your progress so far?” “Are you satisfied with the results you obtained?” and “Why do you believe this is an appropriate response to the problem?”

Featured High School Resources

lesson plans for animal farm - kit for a complete unit on the novel

Related Resources

Students taking a test

About the author

TeacherVision Staff

TeacherVision Editorial Staff

The TeacherVision editorial team is comprised of teachers, experts, and content professionals dedicated to bringing you the most accurate and relevant information in the teaching space.

sandbbox logo

Logo for Maricopa Open Digital Press

Think back to the first problem in this chapter, the ABC Problem . What did you do to solve it? Even if you did not figure it out completely by yourself, you probably worked towards a solution and figured out some things that did not work.

Unlike exercises, there is never a simple recipe for solving a problem. You can get better and better at solving problems, both by building up your background knowledge and by simply practicing. As you solve more problems (and learn how other people solved them), you learn strategies and techniques that can be useful. But no single strategy works every time.

Pólya’s How to Solve It

George Pólya was a great champion in the field of teaching effective problem solving skills.  He was born in Hungary in 1887, received his Ph.D. at the University of Budapest, and was a professor at Stanford University (among other universities).  He wrote many mathematical papers along with three books, most famously, “How to Solve it.” Pólya died at the age 98 in 1985. [1]

 In 1945, Pólya published the short book How to Solve It , which gave a four-step method for solving mathematical problems:

  • Understand the problem.
  • Devise a plan.
  • Carry out the plan.
  • Looking back.

This is all well and good, but how do you actually do these steps?!?! Steps 1. and 2. are particularly mysterious! How do you “make a plan?” That is where you need some tools in your toolbox, and some experience to draw upon.

Much has been written since 1945 to explain these steps in more detail, but the truth is that they are more art than science. This is where math becomes a creative endeavor (and where it becomes so much fun). We will articulate some useful problem solving strategies, but no such list will ever be complete. This is really just a start to help you on your way. The best way to become a skilled problem solver is to learn the background material well, and then to solve a lot of problems!

We have already seen one problem solving strategy, which we call “Wishful Thinking.” Do not be afraid to change the problem! Ask yourself “what if” questions:

  • What if the picture was different?
  • What if the numbers were simpler?
  • What if I just made up some numbers?

You need to be sure to go back to the original problem at the end, but wishful thinking can be a powerful strategy for getting started.

This brings us to the most important problem solving strategy of all:

Problem Solving Strategy 2 (Try Something!). If you are really trying to solve a problem, the whole point is that you do not know what to do right out of the starting gate. You need to just try something! Put pencil to paper (or stylus to screen or chalk to board or whatever!) and try something. This is often an important step in understanding the problem; just mess around with it a bit to understand the situation and figure out what is going on.

And equally important: If what you tried first does not work, try something else! Play around with the problem until you have a feel for what is going on.

Problem 2 (Payback)

Last week, Alex borrowed money from several of his friends. He finally got paid at work, so he brought cash to school to pay back his debts. First he saw Brianna, and he gave her 1/4 of the money he had brought to school. Then Alex saw Chris and gave him 1/3 of what he had left after paying Brianna. Finally, Alex saw David and gave him 1/2 of what he had remaining. Who got the most money from Alex?

Think/Pair/Share

After you have worked on the problem on your own for a while, talk through your ideas with a partner (even if you have not solved it). What did you try? What did you figure out about the problem?

This problem lends itself to two particular strategies. Did you try either of these as you worked on the problem? If not, read about the strategy and then try it out before watching the solution.

Problem Solving Strategy 3 (Draw a Picture). Some problems are obviously about a geometric situation, and it is clear you want to draw a picture and mark down all of the given information before you try to solve it. But even for a problem that is not geometric, like this one, thinking visually can help! Can you represent something in the situation by a picture?

Draw a square to represent all of Alex’s money. Then shade 1/4 of the square — that’s what he gave away to Brianna. How can the picture help you finish the problem?

After you have worked on the problem yourself using this strategy (or if you are completely stuck), you can watch someone else’s solution.

Problem Solving Strategy 4 (Make Up Numbers). Part of what makes this problem difficult is that it is about money, but there are no numbers given. That means the numbers must not be important. So just make them up!

You can work forwards: Assume Alex had some specific amount of money when he showed up at school, say $100. Then figure out how much he gives to each person. Or you can work backwards: suppose he has some specific amount left at the end, like $10. Since he gave Chris half of what he had left, that means he had $20 before running into Chris. Now, work backwards and figure out how much each person got.

Watch the solution only after you tried this strategy for yourself.

If you use the “Make Up Numbers” strategy, it is really important to remember what the original problem was asking! You do not want to answer something like “Everyone got $10.” That is not true in the original problem; that is an artifact of the numbers you made up. So after you work everything out, be sure to re-read the problem and answer what was asked!

Problem 3 (Squares on a Chess Board)

How many squares, of any possible size, are on a 8 × 8 chess board? (The answer is not 64… It’s a lot bigger!)

Remember Pólya’s first step is to understand the problem. If you are not sure what is being asked, or why the answer is not just 64, be sure to ask someone!

Think / Pair / Share

After you have worked on the problem on your own for a while, talk through your ideas with a partner (even if you have not solved it). What did you try? What did you figure out about the problem, even if you have not solved it completely?

It is clear that you want to draw a picture for this problem, but even with the picture it can be hard to know if you have found the correct answer. The numbers get big, and it can be hard to keep track of your work. Your goal at the end is to be absolutely positive that you found the right answer. You should never ask the teacher, “Is this right?” Instead, you should declare, “Here’s my answer, and here is why I know it is correct!”

Problem Solving Strategy 5 (Try a Simpler Problem). Pólya suggested this strategy: “If you can’t solve a problem, then there is an easier problem you can solve: find it.” He also said: “If you cannot solve the proposed problem, try to solve first some related problem. Could you imagine a more accessible related problem?” In this case, an 8 × 8 chess board is pretty big. Can you solve the problem for smaller boards? Like 1 × 1? 2 × 2? 3 × 3?

Of course the ultimate goal is to solve the original problem. But working with smaller boards might give you some insight and help you devise your plan (that is Pólya’s step (2)).

Problem Solving Strategy 6 (Work Systematically). If you are working on simpler problems, it is useful to keep track of what you have figured out and what changes as the problem gets more complicated.

For example, in this problem you might keep track of how many 1 × 1 squares are on each board, how many 2 × 2 squares on are each board, how many 3 × 3 squares are on each board, and so on. You could keep track of the information in a table:

Problem Solving Strategy 7 (Use Manipulatives to Help You Investigate). Sometimes even drawing a picture may not be enough to help you investigate a problem. Having actual materials that you move around can sometimes help a lot!

For example, in this problem it can be difficult to keep track of which squares you have already counted. You might want to cut out 1 × 1 squares, 2 × 2 squares, 3 × 3 squares, and so on. You can actually move the smaller squares across the chess board in a systematic way, making sure that you count everything once and do not count anything twice.

Problem Solving Strategy 8 (Look for and Explain Patterns). Sometimes the numbers in a problem are so big, there is no way you will actually count everything up by hand. For example, if the problem in this section were about a 100 × 100 chess board, you would not want to go through counting all the squares by hand! It would be much more appealing to find a pattern in the smaller boards and then extend that pattern to solve the problem for a 100 × 100 chess board just with a calculation.

If you have not done so already, extend the table above all the way to an 8 × 8 chess board, filling in all the rows and columns. Use your table to find the total number of squares in an 8 × 8 chess board. Then:

  • Describe all of the patterns you see in the table.
  • Can you explain and justify any of the patterns you see? How can you be sure they will continue?
  • What calculation would you do to find the total number of squares on a 100 × 100 chess board?

(We will come back to this question soon. So if you are not sure right now how to explain and justify the patterns you found, that is OK.)

Problem 4 (Broken Clock)

This clock has been broken into three pieces. If you add the numbers in each piece, the sums are consecutive numbers. ( Consecutive numbers are whole numbers that appear one after the other, such as 1, 2, 3, 4 or 13, 14, 15.)

instructional strategies to teach problem solving

Can you break another clock into a different number of pieces so that the sums are consecutive numbers? Assume that each piece has at least two numbers and that no number is damaged (e.g. 12 isn’t split into two digits 1 and 2.)

Remember that your first step is to understand the problem. Work out what is going on here. What are the sums of the numbers on each piece? Are they consecutive?

After you have worked on the problem on your own for a while, talk through your ideas with a partner (even if you have not solved it). What did you try? What progress have you made?

Problem Solving Strategy 9 (Find the Math, Remove the Context). Sometimes the problem has a lot of details in it that are unimportant, or at least unimportant for getting started. The goal is to find the underlying math problem, then come back to the original question and see if you can solve it using the math.

In this case, worrying about the clock and exactly how the pieces break is less important than worrying about finding consecutive numbers that sum to the correct total. Ask yourself:

  • What is the sum of all the numbers on the clock’s face?
  • Can I find two consecutive numbers that give the correct sum? Or four consecutive numbers? Or some other amount?
  • How do I know when I am done? When should I stop looking?

Of course, solving the question about consecutive numbers is not the same as solving the original problem. You have to go back and see if the clock can actually break apart so that each piece gives you one of those consecutive numbers. Maybe you can solve the math problem, but it does not translate into solving the clock problem.

Problem Solving Strategy 10 (Check Your Assumptions). When solving problems, it is easy to limit your thinking by adding extra assumptions that are not in the problem. Be sure you ask yourself: Am I constraining my thinking too much?

In the clock problem, because the first solution has the clock broken radially (all three pieces meet at the center, so it looks like slicing a pie), many people assume that is how the clock must break. But the problem does not require the clock to break radially. It might break into pieces like this:

instructional strategies to teach problem solving

Were you assuming the clock would break in a specific way? Try to solve the problem now, if you have not already.

  • Image of Pólya by Thane Plambeck from Palo Alto, California (Flickr) [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons ↵

Mathematics for Elementary Teachers Copyright © 2018 by Michelle Manes is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

  • Grades 6-12
  • School Leaders

Get our FREE Field Trip Reflection printable 🦁!

44 Powerful Instructional Strategies Examples for Every Classroom

So many ways to help students learn!

Collage of instructional strategies examples including demonstrations and reading for meaning

Looking for some new ways to teach and learn in your classroom? This roundup of instructional strategies examples includes methods that will appeal to all learners and work for any teacher.

What are instructional strategies?

In the simplest of terms, instructional strategies are the methods teachers use to achieve learning objectives. In other words, pretty much every learning activity you can think of is an example of an instructional strategy. They’re also known as teaching strategies and learning strategies.

The more instructional strategies a teacher has in their tool kit, the more they’re able to reach all of their students. Different types of learners respond better to various strategies, and some topics are best taught with one strategy over another. Usually, teachers use a wide array of strategies across a single lesson. This gives all students a chance to play to their strengths and ensures they have a deeper connection to the material.

There are a lot of different ways of looking at instructional strategies. One of the most common breaks them into five basic types. It’s important to remember that many learning activities fall into more than one of these categories, and teachers rarely use one type of strategy alone. The key is to know when a strategy can be most effective, for the learners or for the learning objective. Here’s a closer look at the five basic types, with instructional strategies examples for each.

Direct Instruction Instructional Strategies Examples

Direct instruction can also be called “teacher-led instruction,” and it’s exactly what it sounds like. The teacher provides the information, while the students watch, listen, and learn. Students may participate by answering questions asked by the teacher or practicing a skill under their supervision. This is a very traditional form of teaching, and one that can be highly effective when you need to provide information or teach specific skills.

This method gets a lot of flack these days for being “boring” or “old-fashioned.” It’s true that you don’t want it to be your only instructional strategy, but short lectures are still very effective learning tools. This type of direct instruction is perfect for imparting specific detailed information or teaching a step-by-step process. And lectures don’t have to be boring—just look at the success of TED Talks .

Didactic Questioning

These are often paired with other direct instruction methods like lecturing. The teacher asks questions to determine student understanding of the material. They’re often questions that start with “who,” “what,” “where,” and “when.”

Demonstration

In this direct instruction method, students watch as a teacher demonstrates an action or skill. This might be seeing a teacher solving a math problem step-by-step, or watching them demonstrate proper handwriting on the whiteboard. Usually, this is followed by having students do hands-on practice or activities in a similar manner.

Drill & Practice

If you’ve ever used flash cards to help kids practice math facts or had your whole class chant the spelling of a word out loud, you’ve used drill & practice. It’s another one of those traditional instructional strategies examples. When kids need to memorize specific information or master a step-by-step skill, drill & practice really works.

Indirect Instruction Instructional Strategies Examples

This form of instruction is learner-led and helps develop higher-order thinking skills. Teachers guide and support, but students drive the learning through reading, research, asking questions, formulating ideas and opinions, and more. This method isn’t ideal when you need to teach detailed information or a step-by-step process. Instead, use it to develop critical thinking skills , especially when more than one solution or opinion is valid.

Problem-Solving

In this indirect learning method, students work their way through a problem to find a solution. Along the way, they must develop the knowledge to understand the problem and use creative thinking to solve it. STEM challenges are terrific examples of problem-solving instructional strategies.

Project-Based Learning

When kids participate in true project-based learning, they’re learning through indirect and experiential strategies. As they work to find solutions to a real-world problem, they develop critical thinking skills and learn by research, trial and error, collaboration, and other experiences.

Learn more: What Is Project-Based Learning?

Concept Mapping

Students use concept maps to break down a subject into its main points and draw connections between these points. They brainstorm the big-picture ideas, then draw lines to connect terms, details, and more to help them visualize the topic.

Case Studies

When you think of case studies, law school is probably the first thing that jumps to mind. But this method works at any age, for a variety of topics. This indirect learning method teaches students to use material to draw conclusions, make connections, and advance their existing knowledge.

Reading for Meaning

This is different than learning to read. Instead, it’s when students use texts (print or digital) to learn about a topic. This traditional strategy works best when students already have strong reading comprehension skills. Try our free reading comprehension bundle to give students the ability to get the most out of reading for meaning.

Flipped Classroom

In a flipped classroom, students read texts or watch prerecorded lectures at home. Classroom time is used for deeper learning activities, like discussions, labs, and one-on-one time for teachers and students.

Learn more: What Is a Flipped Classroom?

Experiential Learning Instructional Strategies Examples

In experiential learning, students learn by doing. Rather than following a set of instructions or listening to a lecture, they dive right into an activity or experience. Once again, the teacher is a guide, there to answer questions and gently keep learning on track if necessary. At the end, and often throughout, the learners reflect on their experience, drawing conclusions about the skills and knowledge they’ve gained. Experiential learning values the process over the product.

Science Experiments

This is experiential learning at its best. Hands-on experiments let kids learn to establish expectations, create sound methodology, draw conclusions, and more.

Learn more: Hundreds of science experiment ideas for kids and teens

Field Trips

Heading out into the real world gives kids a chance to learn indirectly, through experiences. They may see concepts they already know put into practice or learn new information or skills from the world around them.

Learn more: The Big List of PreK-12 Field Trip Ideas

Games and Gamification

Teachers have long known that playing games is a fun (and sometimes sneaky) way to get kids to learn. You can use specially designed educational games for any subject. Plus, regular board games often involve a lot of indirect learning about math, reading, critical thinking, and more.

Learn more: Classic Classroom Games and Best Online Educational Games

Service Learning

This is another instructional strategies example that takes students out into the real world. It often involves problem-solving skills and gives kids the opportunity for meaningful social-emotional learning.

Learn more: What Is Service Learning?

Interactive Instruction Instructional Strategies Examples

As you might guess, this strategy is all about interaction between the learners and often the teacher. The focus is on discussion and sharing. Students hear other viewpoints, talk things out, and help each other learn and understand the material. Teachers can be a part of these discussions, or they can oversee smaller groups or pairings and help guide the interactions as needed. Interactive instruction helps students develop interpersonal skills like listening and observation.

Peer Instruction

It’s often said the best way to learn something is to teach it to others. Studies into the so-called “ protégé effect ” seem to prove it too. In order to teach, you first must understand the information yourself. Then, you have to find ways to share it with others—sometimes more than one way. This deepens your connection to the material, and it sticks with you much longer. Try having peers instruct one another in your classroom, and see the magic in action.

Reciprocal Teaching

This method is specifically used in reading instruction, as a cooperative learning strategy. Groups of students take turns acting as the teacher, helping students predict, clarify, question, and summarize. Teachers model the process initially, then observe and guide only as needed.

Some teachers shy away from debate in the classroom, afraid it will become too adversarial. But learning to discuss and defend various points of view is an important life skill. Debates teach students to research their topic, make informed choices, and argue effectively using facts instead of emotion.

Learn more: High School Debate Topics To Challenge Every Student

Class or Small-Group Discussion

Class, small-group, and pair discussions are all excellent interactive instructional strategies examples. As students discuss a topic, they clarify their own thinking and learn from the experiences and opinions of others. Of course, in addition to learning about the topic itself, they’re also developing valuable active listening and collaboration skills.

Learn more: Strategies To Improve Classroom Discussions

Socratic Seminar and Fishbowl

Take your classroom discussions one step further with the fishbowl method. A small group of students sits in the middle of the class. They discuss and debate a topic, while their classmates listen silently and make notes. Eventually, the teacher opens the discussion to the whole class, who offer feedback and present their own assertions and challenges.

Learn more: How I Use Fishbowl Discussions To Engage Every Student

Brainstorming

Rather than having a teacher provide examples to explain a topic or solve a problem, students do the work themselves. Remember the one rule of brainstorming: Every idea is welcome. Ensure everyone gets a chance to participate, and form diverse groups to generate lots of unique ideas.

Role-Playing

Role-playing is sort of like a simulation but less intense. It’s perfect for practicing soft skills and focusing on social-emotional learning . Put a twist on this strategy by having students model bad interactions as well as good ones and then discussing the difference.

Think-Pair-Share

This structured discussion technique is simple: First, students think about a question posed by the teacher. Pair students up, and let them talk about their answer. Finally open it up to whole-class discussion. This helps kids participate in discussions in a low-key way and gives them a chance to “practice” before they talk in front of the whole class.

Learn more: Think-Pair-Share and Fun Alternatives

Independent Learning Instructional Strategies Examples

Also called independent study, this form of learning is almost entirely student-led. Teachers take a backseat role, providing materials, answering questions, and guiding or supervising. It’s an excellent way to allow students to dive deep into topics that really interest them, or to encourage learning at a pace that’s comfortable for each student.

Learning Centers

Foster independent learning strategies with centers just for math, writing, reading, and more. Provide a variety of activities, and let kids choose how they spend their time. They often learn better from activities they enjoy.

Learn more: The Big List of K-2 Literacy Centers

Computer-Based Instruction

Once a rarity, now a daily fact of life, computer-based instruction lets students work independently. They can go at their own pace, repeating sections without feeling like they’re holding up the class. Teach students good computer skills at a young age so you’ll feel comfortable knowing they’re focusing on the work and doing it safely.

Writing an essay encourages kids to clarify and organize their thinking. Written communication has become more important in recent years, so being able to write clearly and concisely is a skill every kid needs. This independent instructional strategy has stood the test of time for good reason.

Learn more: The Big List of Essay Topics for High School

Research Projects

Here’s another oldie-but-goodie! When kids work independently to research and present on a topic, their learning is all up to them. They set the pace, choose a focus, and learn how to plan and meet deadlines. This is often a chance for them to show off their creativity and personality too.

Personal journals give kids a chance to reflect and think critically on topics. Whether responding to teacher prompts or simply recording their daily thoughts and experiences, this independent learning method strengthens writing and intrapersonal skills.

Learn more: The Benefits of Journaling in the Classroom

Play-Based Learning

In play-based learning programs, children learn by exploring their own interests. Teachers identify and help students pursue their interests by asking questions, creating play opportunities, and encouraging students to expand their play.

Learn more: What Is Play-Based Learning?

More Instructional Strategies Examples

Don’t be afraid to try new strategies from time to time—you just might find a new favorite! Here are some of the most common instructional strategies examples.

Simulations

This strategy combines experiential, interactive, and indirect learning all in one. The teacher sets up a simulation of a real-world activity or experience. Students take on roles and participate in the exercise, using existing skills and knowledge or developing new ones along the way. At the end, the class reflects separately and together on what happened and what they learned.

Storytelling

Ever since Aesop’s fables, we’ve been using storytelling as a way to teach. Stories grab students’ attention right from the start and keep them engaged throughout the learning process. Real-life stories and fiction both work equally well, depending on the situation.

Learn more: Teaching as Storytelling

Scaffolding

Scaffolding is defined as breaking learning into bite-sized chunks so students can more easily tackle complex material. It builds on old ideas and connects them to new ones. An educator models or demonstrates how to solve a problem, then steps back and encourages the students to solve the problem independently. Scaffolding teaching gives students the support they need by breaking learning into achievable sizes while they progress toward understanding and independence.

Learn more: What Is Scaffolding in Education?

Spaced Repetition

Often paired with direct or independent instruction, spaced repetition is a method where students are asked to recall certain information or skills at increasingly longer intervals. For instance, the day after discussing the causes of the American Civil War in class, the teacher might return to the topic and ask students to list the causes. The following week, the teacher asks them once again, and then a few weeks after that. Spaced repetition helps make knowledge stick, and it is especially useful when it’s not something students practice each day but will need to know in the long term (such as for a final exam).

Graphic Organizers

Graphic organizers are a way of organizing information visually to help students understand and remember it. A good organizer simplifies complex information and lays it out in a way that makes it easier for a learner to digest. Graphic organizers may include text and images, and they help students make connections in a meaningful way.

Learn more: Graphic Organizers 101: Why and How To Use Them

Jigsaw combines group learning with peer teaching. Students are assigned to “home groups.” Within that group, each student is given a specialized topic to learn about. They join up with other students who were given the same topic, then research, discuss, and become experts. Finally, students return to their home group and teach the other members about the topic they specialized in.

Multidisciplinary Instruction

As the name implies, this instructional strategy approaches a topic using techniques and aspects from multiple disciplines, helping students explore it more thoroughly from a variety of viewpoints. For instance, to learn more about a solar eclipse, students might explore scientific explanations, research the history of eclipses, read literature related to the topic, and calculate angles, temperatures, and more.

Interdisciplinary Instruction

This instructional strategy takes multidisciplinary instruction a step further, using it to synthesize information and viewpoints from a variety of disciplines to tackle issues and problems. Imagine a group of students who want to come up with ways to improve multicultural relations at their school. They might approach the topic by researching statistical information about the school population, learning more about the various cultures and their history, and talking with students, teachers, and more. Then, they use the information they’ve uncovered to present possible solutions.

Differentiated Instruction

Differentiated instruction means tailoring your teaching so all students, regardless of their ability, can learn the classroom material. Teachers can customize the content, process, product, and learning environment to help all students succeed. There are lots of differentiated instructional strategies to help educators accommodate various learning styles, backgrounds, and more.

Learn more: What Is Differentiated Instruction?

Culturally Responsive Teaching

Culturally responsive teaching is based on the understanding that we learn best when we can connect with the material. For culturally responsive teachers, that means weaving their students’ various experiences, customs, communication styles, and perspectives throughout the learning process.

Learn more: What Is Culturally Responsive Teaching?

Response to Intervention

Response to Intervention, or RTI, is a way to identify and support students who need extra academic or behavioral help to succeed in school. It’s a tiered approach with various “levels” students move through depending on how much support they need.

Learn more: What Is Response to Intervention?

Inquiry-Based Learning

Inquiry-based learning means tailoring your curriculum to what your students are interested in rather than having a set agenda that you can’t veer from—it means letting children’s curiosity take the lead and then guiding that interest to explore, research, and reflect upon their own learning.

Learn more: What Is Inquiry-Based Learning?

Growth Mindset

Growth mindset is key for learners. They must be open to new ideas and processes and believe they can learn anything with enough effort. It sounds simplistic, but when students really embrace the concept, it can be a real game-changer. Teachers can encourage a growth mindset by using instructional strategies that allow students to learn from their mistakes, rather than punishing them for those mistakes.

Learn more: Growth Mindset vs. Fixed Mindset and 25 Growth Mindset Activities

Blended Learning

This strategy combines face-to-face classroom learning with online learning, in a mix of self-paced independent learning and direct instruction. It’s incredibly common in today’s schools, where most students spend at least part of their day completing self-paced lessons and activities via online technology. Students may also complete their online instructional time at home.

Asynchronous (Self-Paced) Learning

This fancy term really just describes strategies that allow each student to work at their own pace using a flexible schedule. This method became a necessity during the days of COVID lockdowns, as families did their best to let multiple children share one device. All students in an asynchronous class setting learn the same material using the same activities, but do so on their own timetable.

Learn more: Synchronous vs. Asynchronous Learning

Essential Questions

Essential questions are the big-picture questions that inspire inquiry and discussion. Teachers give students a list of several essential questions to consider as they begin a unit or topic. As they dive deeper into the information, teachers ask more specific essential questions to help kids make connections to the “essential” points of a text or subject.

Learn more: Questions That Set a Purpose for Reading

How do I choose the right instructional strategies for my classroom?

When it comes to choosing instructional strategies, there are several things to consider:

  • Learning objectives: What will students be able to do as a result of this lesson or activity? If you are teaching specific skills or detailed information, a direct approach may be best. When you want students to develop their own methods of understanding, consider experiential learning. To encourage critical thinking skills, try indirect or interactive instruction.
  • Assessments : How will you be measuring whether students have met the learning objectives? The strategies you use should prepare them to succeed. For instance, if you’re teaching spelling, direct instruction is often the best method, since drill-and-practice simulates the experience of taking a spelling test.
  • Learning styles : What types of learners do you need to accommodate? Most classrooms (and most students) respond best to a mix of instructional strategies. Those who have difficulty speaking in class might not benefit as much from interactive learning, and students who have trouble staying on task might struggle with independent learning.
  • Learning environment: Every classroom looks different, and the environment can vary day by day. Perhaps it’s testing week for other grades in your school, so you need to keep things quieter in your classroom. This probably isn’t the time for experiments or lots of loud discussions. Some activities simply aren’t practical indoors, and the weather might not allow you to take learning outside.

Come discuss instructional strategies and ask for advice in the We Are Teachers HELPLINE group on Facebook !

Plus, check out the things the best instructional coaches do, according to teachers ..

Looking for new and exciting instructional strategies examples to help all of your students learn more effectively? Get them here!

You Might Also Like

What is Project Based Learning? #buzzwordsexplained

What Is Project-Based Learning and How Can I Use It With My Students?

There's a difference between regular projects and true-project based learning. Continue Reading

Copyright © 2024. All rights reserved. 5335 Gate Parkway, Jacksonville, FL 32256

  • Our Mission

4 Tips on Teaching Problem Solving (From a Student)

A student shares her insights into the most important skill you can teach. (Hint: It’s not perseverance.)

Two teenage boys in a full classroom are sitting at a table discussing something.

Education is one of the most important things in the world, but at most schools, students are told to memorize facts, formulas, and functions without any applicability to the real challenges we will face later. Instead, give us challenges; give us problems that focus on real-world scenarios; give us a chance to understand the world we’re entering and to be prepared for it before we’re thrown in headfirst.

At Two Rivers Public Charter School, they taught us how to problem solve, and they made it relevant. Here are four tips that engaged me in my learning that you can adapt in your classroom:

1. Give Your Students Hard Problems

In the real world, we’re not going to have nice problems that will be easy to understand. We are going to have complex problems that require a lot more preparation than most math, science, or English classes will give us. The challenges in the real world won’t be simple, and the problems that are supposed to prepare us for that world shouldn't be either.

2. Make Problem Solving Relevant to Your Students’ Lives

In the seventh grade, we looked at statistics concerning racial murders and the jury system. That’s something that is going to affect students later in life, and we got a chance to look at it from a mathematical perspective. Problems like that are actually relevant to us, and they’re not things we’re supposed to just memorize or learn. They are things from which we can take very important life lessons, and then actually apply them later on in life.

Related Article: Solving Real World Issues Through Problem-Based Learning

In the eighth grade, we wrote policy briefs in relation to gene editing and presented them to the National Academies of Sciences, Engineering, and Medicine. We talked to researchers who worked with CRISPR-Cas9 (a gene editing tool used to modify specific genes in organisms), and we studied how gene editing is evolving and how we can use this modern technology for science applications. At the same time, in English, we read The Giver by Lois Lowry and analyzed whether the society in the book was ethical to gain an understanding of what ethical means and how it’s applicable in real situations, like gene editing.

This wasn’t something where we were being told, “Somebody’s going to buy 60 watermelons at a store.” This was actually happening in real life, and the only people really discussing this were people whom it wasn't even going to affect. This science won’t come into widespread use until much later, and we’re going to be the first ones who are actually in danger from the possible consequences of it. By presenting our policy briefs, we had a chance to make an impact and get our voice out there at only 14.

3. Teach Your Students How to Grapple (It’s More Powerful Than Perseverance)

Grappling is like perseverance, but it goes beyond that. Perseverance means trying again and again, even after you’ve failed. Grappling implies trying even before you fail the first time. It’s thinking, “First, I’ll work with it independently. Okay, I’m really not understanding it. Let me go back to my notes. Okay, I have solved for the first part of it. Now I have the second part of it. Okay, I got the question wrong; let me try again. Maybe I can ask my peer now.” Grappling is working hard to make sure you understand the problem fully, and then using every resource at your fingertips to solve it.

4. Put More Importance on Student Understanding Than on Getting the Right Answer

I am graduating from Two Rivers with a practical view of the world. I don’t think that many students come out of middle school saying, “It was great.” And I don’t think many students have had this introduction to our society and its benefits and drawbacks. I’m also coming out of here with incredible problem-solving skills and the ability to look at any problem and have 10,000 ways to solve it in my mind already—because we don’t just memorize functions or the periodic table. We understand why, and we work to understand how to solve a problem instead of just getting the answer.

As students preparing for the real world, it is so much more impactful for us if our learning is relevant and challenging than if it is just about memorizing the right answers.

Two Rivers Public Charter School

Per pupil expenditures, free / reduced lunch, demographics:.

This blog post is part of our Schools That Work series, which features key practices from Two Rivers Public Charter School .

Log in to Witsby: ASCD’s Next-Generation Professional Learning and Credentialing Platform

Art and Science of Teaching / Problem Solving in Seven Steps

author avatar

Step 1: Determine whether you have a problem and whether it's worth solving

Step 2: affirm positive beliefs regarding your ability to solve the problem, step 3: clarify the obstacle and identify possible solutions, step 4: determine each solution's likelihood of success and consider the resources required, step 5: try out the solution that has the greatest chance of success, step 6: if your solution doesn't work, try a different one, step 7: if you can't find a solution, identify an alternative goal, make it explicit.

Art and Science of Teaching / Problem Solving in Seven Steps- thumbnail

.css-191dech{margin-top:16px;margin-bottom:16px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;} .css-12z0wuy{margin-right:8px;} • .css-16w6vyg{margin:0;font-family:'Poppins',sans-serif;font-weight:400;font-size:0.875rem;line-height:1.43;font-size:1rem;font-weight:400;line-height:1.625rem;letter-spacing:0.2px;} 1 See, for example, Marzano, R. J., & Heflebower, T. (2012). Teaching and assessing 21st century skills . Bloomington, IN: Marzano Research Laboratory; Marzano, R. J. (2007). The art and science of teaching: A comprehensive framework for effective instruction . Alexandria, VA: ASCD.

instructional strategies to teach problem solving

Robert Marzano is the CEO of Marzano Research Laboratory in Centennial, CO, which provides research-based, partner-centered support for educators and education agencies—with the goal of helping teachers improve educational practice.

As strategic advisor, Robert brings over 50 years of experience in action-based education research, professional development, and curriculum design to Marzano Research. He has expertise in standards-based assessment, cognition, school leadership, and competency-based education, among a host of areas.

He is the author of 30 books, 150 articles and chapters in books, and 100 sets of curriculum materials for teachers and students in grades K–12.

ASCD is a community dedicated to educators' professional growth and well-being.

Let us help you put your vision into action., from our issue.

Product cover image 114025b.jpg

To process a transaction with a Purchase Order please send to [email protected]

Teacher Strategies logo

Support our educational content for free when you buy through links on our site. Learn more

What are Instructional Methods of Teaching? [2024] ✅

Marti

  • April 20, 2024
  • Instructional Strategies

Have you ever wondered what instructional methods of teaching are and how they can enhance the learning experience for students? Well, you’re in luck! In this comprehensive guide, we will explore the various instructional methods of teaching, providing you with valuable insights and strategies to implement in your classroom. Get ready to revolutionize your teaching methods and engage your students like never before!

Quick Answer

Instructional methods of teaching refer to the strategies and techniques that educators use to deliver information and facilitate learning in the classroom. These methods can be teacher-centered or student-centered, high-tech or low-tech, and they aim to create an effective and engaging learning environment for students.

Quick Tips and Facts:

  • Instructional methods of teaching are essential for creating an engaging and effective learning environment.
  • These methods can be teacher-centered or student-centered, high-tech or low-tech.
  • Different instructional methods cater to different learning styles and preferences.
  • It’s important to choose instructional methods that align with your teaching goals and the needs of your students.

Background: The Evolution of Instructional Methods

gray glass roof

Teaching methods have evolved over time, adapting to the changing needs and preferences of students. In the past, traditional teacher-centered approaches dominated the classroom, with lectures and scripted lesson plans being the primary means of instruction. However, as educational research and technology advanced, new instructional methods emerged, focusing on student-centered learning and incorporating high-tech tools and resources.

Teacher-Centered Approaches

  • Direct Instruction (Low Tech) ✅

Direct Instruction is a teacher-centered approach that involves conveying knowledge through lectures and scripted lesson plans. This method provides a structured and systematic approach to teaching, ensuring that students receive clear and concise information. While it may be considered low-tech, Direct Instruction remains an effective method for delivering content and introducing new concepts.

  • Flipped Classrooms (High Tech) ✅

Flipped Classrooms have gained popularity in recent years, especially with the advancement of technology. In this approach, students learn new content at home through pre-recorded videos or online resources. Classroom time is then dedicated to activities, discussions, and assignments that reinforce and apply the learned material. Flipped classrooms promote active learning and allow for more personalized instruction.

  • Kinesthetic Learning (Low Tech) ✅

Kinesthetic Learning is a hands-on approach that encourages physical activities to enhance learning. This method recognizes that some students learn best through movement and tactile experiences. Teachers incorporate activities such as role-playing, simulations, and manipulatives to engage students and make learning more interactive.

Student-Centered Approaches

  • Differentiated Instruction (Low Tech) ✅

Differentiated Instruction is a student-centered approach that tailors instruction to meet individual student needs. It recognizes that students have different learning styles, abilities, and interests. Teachers use various strategies, such as flexible grouping, tiered assignments, and individualized learning plans, to accommodate the diverse needs of their students.

  • Inquiry-Based Learning (High Tech) ✅

Inquiry-Based Learning is a student-centered approach that promotes active learning and critical thinking. Students take an active role in their learning by posing questions, conducting investigations, and exploring real-world problems. Technology plays a significant role in inquiry-based learning, providing students with access to vast resources and tools for research and analysis.

  • Expeditionary Learning (Low Tech) ✅

Expeditionary Learning takes students outside the traditional classroom setting and immerses them in real-world learning experiences. This approach emphasizes hands-on activities, field trips, and community engagement. By connecting learning to the real world, expeditionary learning fosters a deeper understanding of concepts and promotes student engagement.

  • Personalized Learning (High Tech) ✅

Personalized Learning is an approach that allows students to take control of their learning by creating self-directed learning plans based on their interests and goals. Technology plays a crucial role in personalized learning, providing students with access to online resources, adaptive learning platforms, and personalized feedback. This method promotes student autonomy and fosters a love for lifelong learning.

  • Game-Based Learning (High Tech) ✅

Game-Based Learning leverages the power of gamification to engage students in problem-solving quests and challenges. By incorporating game elements, such as rewards, levels, and competition, teachers can create an immersive and interactive learning experience. Game-based learning promotes critical thinking, collaboration, and perseverance.

Blended Learning and UDL

  • Blended Learning ✅

Blended Learning combines online and traditional classroom instruction to create a hybrid learning experience. This approach allows for flexibility and personalization, as students can access online resources, collaborate with peers, and receive individualized instruction. Blended learning maximizes the benefits of both face-to-face and online learning, catering to different learning styles and preferences.

  • Universal Design for Learning (UDL) ✅

Universal Design for Learning is an instructional framework that aims to meet the diverse learning needs of all students. UDL provides multiple means of representation, expression, and engagement, allowing students to access and demonstrate their learning in various ways. This approach promotes inclusivity and ensures that all students have equal opportunities to succeed.

Teaching Methods: A to Z

In addition to the methods mentioned above, there are numerous other instructional strategies, prompts, and tools that educators can utilize in the classroom. From cooperative learning and project-based learning to technology integration and formative assessment, the possibilities are endless. The key is to choose methods that align with your teaching goals, the needs of your students, and the subject matter you are teaching.

For the Love of Teaching

Teaching is a dynamic and ever-evolving profession, and instructional methods play a crucial role in creating a positive and effective learning environment. As an educator, it’s essential to stay informed about the latest research, trends, and best practices in instructional methods. By continuously exploring and implementing new strategies, you can enhance your teaching and make a lasting impact on your students’ lives.

woman standing in front of children

What are the 4 instructional methods?

The four instructional methods are teacher-centered approaches, student-centered approaches, blended learning, and Universal Design for Learning (UDL). These methods encompass a wide range of strategies and techniques that educators can use to facilitate learning in the classroom.

Read more about “What Are the Four Teaching Strategies? …”

What is an instructional method in teaching?

An instructional method in teaching refers to the strategies and techniques that educators use to deliver information and facilitate learning in the classroom. These methods can be teacher-centered or student-centered, high-tech or low-tech, and they aim to create an effective and engaging learning environment for students.

Read more about “12 Examples of Pedagogical Practices to Revolutionize Your Teaching! … ✨”

What are the 5 methods of teaching?

The five methods of teaching are Direct Instruction, Flipped Classrooms, Kinesthetic Learning, Differentiated Instruction, and Inquiry-Based Learning. These methods cater to different learning styles and preferences, allowing educators to create a diverse and engaging learning experience for their students.

Read more about “What are the 5 methods of teaching?”

What are the five instructional strategies?

The five instructional strategies are Differentiated Instruction, Inquiry-Based Learning, Expeditionary Learning, Personalized Learning, and Game-Based Learning. These strategies focus on student-centered learning, promoting active engagement, critical thinking, and problem-solving skills.

Read more about “What are the 5 Approaches to Pedagogy? … 👩‍🏫”

a group of people in a room with a projector screen

Instructional methods of teaching are essential for creating an engaging and effective learning environment. By incorporating a variety of teacher-centered and student-centered approaches, educators can cater to the diverse needs and preferences of their students. Whether you choose low-tech or high-tech methods, the key is to align your instructional methods with your teaching goals and the needs of your students. So, go ahead and explore the vast array of instructional methods available, and revolutionize your teaching today!

Recommended Links

  • Instructional Coaching
  • Lesson Planning
  • Classroom Management
  • Differentiated Instruction
  • 12 Examples of Pedagogical Practices to Revolutionize Your Teaching! 2024 ✨

Reference Links

  • The Complete List of Teaching Methods
  • Official Website of Teacher Strategies™
  • Amazon Search Results for Instructional Methods
  • Walmart Search Results for Instructional Methods
  • Etsy Search Results for Instructional Methods

Marti

Marti is a seasoned educator and strategist with a passion for fostering inclusive learning environments and empowering students through tailored educational experiences. With her roots as a university tutor—a position she landed during her undergraduate years—Marti has always been driven by the joy of facilitating others' learning journeys.

Holding a Bachelor's degree in Communication alongside a degree in Social Work, she has mastered the art of empathetic communication, enabling her to connect with students on a profound level. Marti’s unique educational background allows her to incorporate holistic approaches into her teaching, addressing not just the academic, but also the emotional and social needs of her students.

Throughout her career, Marti has developed and implemented innovative teaching strategies that cater to diverse learning styles, believing firmly that education should be accessible and engaging for all. Her work on the Teacher Strategies site encapsulates her extensive experience and dedication to education, offering readers insights into effective teaching methods, classroom management techniques, and strategies for fostering inclusive and supportive learning environments.

As an advocate for lifelong learning, Marti continuously seeks to expand her knowledge and skills, ensuring her teaching methods are both evidence-based and cutting edge. Whether through her blog articles on Teacher Strategies or her direct engagement with students, Marti remains committed to enhancing educational outcomes and inspiring the next generation of learners and educators alike.

Related Posts

instructional strategies to teach problem solving

What are the 4 Key Instructional Skills? [2024] ✅

  • April 17, 2024

What is the 4 Step Method of Instruction Used For? [2024] ✅

12 examples of pedagogical practices to revolutionize your teaching [2024] ✨.

  • April 12, 2024

Leave a Reply Cancel Reply

Your email address will not be published. Required fields are marked *

Add Comment  *

Save my name, email, and website in this browser for the next time I comment.

Post Comment

Trending now

Problem-Solving Method in Teaching

The problem-solving method is a highly effective teaching strategy that is designed to help students develop critical thinking skills and problem-solving abilities . It involves providing students with real-world problems and challenges that require them to apply their knowledge, skills, and creativity to find solutions. This method encourages active learning, promotes collaboration, and allows students to take ownership of their learning.

Table of Contents

Definition of problem-solving method.

Problem-solving is a process of identifying, analyzing, and resolving problems. The problem-solving method in teaching involves providing students with real-world problems that they must solve through collaboration and critical thinking. This method encourages students to apply their knowledge and creativity to develop solutions that are effective and practical.

Meaning of Problem-Solving Method

The meaning and Definition of problem-solving are given by different Scholars. These are-

Woodworth and Marquis(1948) : Problem-solving behavior occurs in novel or difficult situations in which a solution is not obtainable by the habitual methods of applying concepts and principles derived from past experience in very similar situations.

Skinner (1968): Problem-solving is a process of overcoming difficulties that appear to interfere with the attainment of a goal. It is the procedure of making adjustments in spite of interference

Benefits of Problem-Solving Method

The problem-solving method has several benefits for both students and teachers. These benefits include:

  • Encourages active learning: The problem-solving method encourages students to actively participate in their own learning by engaging them in real-world problems that require critical thinking and collaboration
  • Promotes collaboration: Problem-solving requires students to work together to find solutions. This promotes teamwork, communication, and cooperation.
  • Builds critical thinking skills: The problem-solving method helps students develop critical thinking skills by providing them with opportunities to analyze and evaluate problems
  • Increases motivation: When students are engaged in solving real-world problems, they are more motivated to learn and apply their knowledge.
  • Enhances creativity: The problem-solving method encourages students to be creative in finding solutions to problems.

Steps in Problem-Solving Method

The problem-solving method involves several steps that teachers can use to guide their students. These steps include

  • Identifying the problem: The first step in problem-solving is identifying the problem that needs to be solved. Teachers can present students with a real-world problem or challenge that requires critical thinking and collaboration.
  • Analyzing the problem: Once the problem is identified, students should analyze it to determine its scope and underlying causes.
  • Generating solutions: After analyzing the problem, students should generate possible solutions. This step requires creativity and critical thinking.
  • Evaluating solutions: The next step is to evaluate each solution based on its effectiveness and practicality
  • Selecting the best solution: The final step is to select the best solution and implement it.

Verification of the concluded solution or Hypothesis

The solution arrived at or the conclusion drawn must be further verified by utilizing it in solving various other likewise problems. In case, the derived solution helps in solving these problems, then and only then if one is free to agree with his finding regarding the solution. The verified solution may then become a useful product of his problem-solving behavior that can be utilized in solving further problems. The above steps can be utilized in solving various problems thereby fostering creative thinking ability in an individual.

The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to succeed in school and in life.

  • Jonassen, D. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. Routledge.
  • Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235-266.
  • Mergendoller, J. R., Maxwell, N. L., & Bellisimo, Y. (2006). The effectiveness of problem-based instruction: A comparative study of instructional methods and student characteristics. Interdisciplinary Journal of Problem-based Learning, 1(2), 49-69.
  • Richey, R. C., Klein, J. D., & Tracey, M. W. (2011). The instructional design knowledge base: Theory, research, and practice. Routledge.
  • Savery, J. R., & Duffy, T. M. (2001). Problem-based learning: An instructional model and its constructivist framework. CRLT Technical Report No. 16-01, University of Michigan. Wojcikowski, J. (2013). Solving real-world problems through problem-based learning. College Teaching, 61(4), 153-156

Micro Teaching Skills

3 Ways to Strengthen Math Instruction

instructional strategies to teach problem solving

  • Share article

Students’ math scores have plummeted, national assessments show , and educators are working hard to turn math outcomes around.

But it’s a challenge, made harder by factors like math anxiety , students’ feelings of deep ambivalence about how math is taught, and learning gaps that were exacerbated by the pandemic’s disruption of schools.

This week, three educators offered solutions on how districts can turn around poor math scores in a conversation moderated by Peter DeWitt, an opinion blogger for Education Week.

Here are three takeaways from the discussion. For more, watch the recording on demand .

1. Intervention is key

Research shows that early math skills are a key predictor of later academic success.

“Children who know more do better, and math is cumulative—so if you don’t grasp some of the earlier concepts, math gets increasingly harder,” said Nancy Jordan, a professor of education at the University of Delaware.

For example, many students struggle with the concept of fractions, she said. Her research has found that by 6th grade, some students still don’t really understand what a fraction is, which makes it harder for them to master more advanced concepts, like adding or subtracting fractions with unlike denominators.

At that point, though, teachers don’t always have the time in class to re-teach those basic or fundamental concepts, she said, which is why targeted intervention is so important.

 Conceptual photo of of a young boy studying mathematics using fingers in primary school.

Still, Jordan’s research revealed that in some middle schools, intervention time is not a priority: “If there’s an assembly, or if there is a special event or whatever, it takes place during intervention time,” she said. “Or ... the children might sit on computers, and they’re not getting any really explicit instruction.”

2. ‘Gamify’ math class

Students today need new modes of instruction that meet them where they are, said Gerilyn Williams, a math teacher at Pinelands Regional Junior High School in Little Egg Harbor Township, N.J.

“Most of them learn through things like TikTok or YouTube videos,” she said. “They like to play games, they like to interact. So how can I bring those same attributes into my lesson?”

Part of her solution is gamifying instruction. Williams avoids worksheets. Instead, she provides opportunities for students to practice skills that incorporate elements of game design.

That includes digital tools, which provide students with the instant feedback they crave, she said.

But not all the games are digital. Williams’ students sometimes play “trashketball,” a game in which they work in teams to answer math questions. If they get the question right, they can crumble the piece of paper and throw it into a trash can from across the room.

“The kids love this,” she said.

Gerilyn Williams, a middle school math teacher in New Jersey, stands in her classroom.

Williams also incorporates game-based vocabulary into her instruction, drawing on terms from video games.

For example, “instead of calling them quizzes and tests, I call them boss battles,” she said. “It’s less frightening. It reduces that math anxiety, and it makes them more engaging.

“We normalize things like failure, because when they play video games, think about what they’re doing,” Williams continued. “They fail—they try again and again and again and again until they achieve success.”

3. Strengthen teacher expertise

To turn around math outcomes, districts need to invest in teacher professional development and curriculum support, said Chaunté Garrett, the CEO of ELLE Education, which partners with schools and districts to support student learning.

“You’re not going to be able to replace the value of a well-supported and well-equipped mathematics teacher,” she said. “We also want to make sure that that teacher has a math curriculum that’s grounded in the standards and conceptually based.”

Students will develop more critical thinking skills and better understand math concepts if teachers are able to relate instruction to real life, Garrett said—so that “kids have relationships that they can pull on, and math has some type of meaning and context to them outside of just numbers and procedures.”

Tonya Clarke, coordinator of K–12 mathematics in the division of school leadership and improvement for Clayton County Public Schools in Jonesboro, Ga., in the hallway at Adamson Middle School.

It’s important for math curriculum to be both culturally responsive and relevant, she added. And teachers might need training on how to offer opportunities for students to analyze and solve real-world problems.

“So often, [in math problems], we want to go back to soccer and basketball and all of those things that we lived through, and it’s not that [current students] don’t enjoy those, but our students live social media—they literally live it,” Garrett said. “Those are the things that have to live out in classrooms right now, and if we’re not doing those things, we are doing a disservice.”

Sign Up for EdWeek Update

Edweek top school jobs.

Conceptual image of A.I. robot head and numbers flowing through it's head.

Sign Up & Sign In

module image 9

IMAGES

  1. Problem Solving Activities: 7 Strategies

    instructional strategies to teach problem solving

  2. 6 Teaching Strategies To Promote Deeper Learning

    instructional strategies to teach problem solving

  3. How to Teach Problem Solving Skills in Elementary School

    instructional strategies to teach problem solving

  4. 3 problem solving skills

    instructional strategies to teach problem solving

  5. Developing Problem-Solving Skills for Kids

    instructional strategies to teach problem solving

  6. 8 problem solving strategies

    instructional strategies to teach problem solving

VIDEO

  1. Simple strategies to help beginners learn Addition!

  2. Teach problem-solving skills the quick and easy way

  3. Addition tips for beginners! Bookwork is important! #mathshorts #addition #beginners #kids

  4. Unlocking the Power of Learning Theory for Impactful Problem Solving

  5. Instructional Strategies for Mathematics in the Intermediate Grades

  6. How Effective Leaders Teach Problem Solving Skills #podcast #creativity #problemsolving #business

COMMENTS

  1. Teaching Problem Solving

    To teach students problem solving skills, a teacher should be aware of principles and strategies of good problem solving in his or her discipline. The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book How to Solve It: A New Aspect of Mathematical Method (Princeton University ...

  2. Teaching problem solving

    Strategies for teaching problem solving apply across disciplines and instructional contexts. First, introduce the problem and explain how people in your discipline generally make sense of the given information. Then, explain how to apply these approaches to solve the problem. Introducing the problem Explaining how people in your discipline understand and interpret these types of problems can ...

  3. Teaching Problem Solving

    Problem-Solving Fellows Program Undergraduate students who are currently or plan to be peer educators (e.g., UTAs, lab TAs, peer mentors, etc.) are encouraged to take the course, UNIV 1110: The Theory and Teaching of Problem Solving. Within this course, we focus on developing effective problem solvers through students' teaching practices.

  4. Teaching problem solving: Let students get 'stuck' and 'unstuck'

    Teaching problem solving: Let students get 'stuck' and 'unstuck'. This is the second in a six-part blog series on teaching 21st century skills, including problem solving , metacognition ...

  5. Ch. 5 Problem Based Learning

    Problems are not investigated by students solely for problem solving experiences but as a means of understanding the subject area. Some PBL activities incorporate multidisciplinary approaches, assuming the teacher can provide and coordinate needed resources such as additional content, instructional support, and other teachers.

  6. Teaching Problem-Solving Skills

    Some common problem-solving strategies are: compute; simplify; use an equation; make a model, diagram, table, or chart; or work backwards. Choose the best strategy. Help students to choose the best strategy by reminding them again what they are required to find or calculate. Be patient.

  7. Problem Solving in STEM

    When you do want to teach by solving the problem yourself at the board, talk through the logic of how you choose to apply certain approaches to solve certain problems. ... Structure matters: twenty-one teaching strategies to promote student engagement and cultivate classroom equity. CBE-Life Sciences Education, 12(3), 322-331. Online Resources ...

  8. Why Every Educator Needs to Teach Problem-Solving Skills

    Resolve Conflicts. In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes "thinking outside the box" and approaching a conflict by searching for different solutions.

  9. Solve a Teaching Problem

    These strategies are firmly grounded in educational research and learning principles. How does it work? Step 1: Identify a PROBLEM you encounter in your teaching. Step 2: Identify possible REASONS for the problem Step 3: Explore STRATEGIES to address the problem. This site supplements our 1-on-1 teaching consultations.

  10. 20 Effective Math Strategies For Problem Solving

    Here are five strategies to help students check their solutions. 1. Use the Inverse Operation. For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7.

  11. BYU-Idaho Learning and Teaching

    The most important problem is often not appropriate as the first problem. Rather, early problems should model the process and be supported by the instructor. Pair with collaborative strategies (Teach One Another) for the most effective problem-solving. Consider paired discussion, Socratic Method, projects, learning teams, and other approaches.

  12. 6 Tips for Teaching Math Problem-Solving Skills

    1. Link problem-solving to reading. When we can remind students that they already have many comprehension skills and strategies they can easily use in math problem-solving, it can ease the anxiety surrounding the math problem. For example, providing them with strategies to practice, such as visualizing, acting out the problem with math tools ...

  13. Eight Instructional Strategies for Promoting Critical Thinking

    Students grappled with ideas and their beliefs and employed deep critical-thinking skills to develop arguments for their claims. Embedding critical-thinking skills in curriculum that students care ...

  14. Don't Just Tell Students to Solve Problems. Teach Them How

    "In school, we often tell students to brainstorm, but they don't often know where to start. This curriculum gives students direct strategies for brainstorming, for identifying problems, for solving problems," sai d Jennifer Ogo, a teacher from Kearny High School who taught the problem-solving course in summer 2023 at UC San Diego. Ogo was part of group of educators who took the course ...

  15. PDF Effective Problem-Solving Instruction, Part 2: Multiple Strategies

    Teachers can use specific strategies during problem-solving instruction to build students' understanding of core mathematics concepts and skills. The three important strategies that apply at all grade levels and in all areas of mathematics are: use of visual representations, encouragement of multiple approaches to solving problems, and ...

  16. Problem-Solving in Elementary School

    "I recommended Moss teachers teach just one problem-solving process to our 6-year-olds across all academic content areas and challenge students to use the same process for social problem-solving," he explained. ... Edutopia is a free source of information, inspiration, and practical strategies for learning and teaching in preK-12 education ...

  17. Strategies and Methods to Teach Students Problem Solving and Critical

    The process helps participants to view implementation as a viable next step. Thinking Skills. Skills aimed at aiding students to be critical, logical, and evaluative thinkers. They include analysis, comparison, classification, synthesis, generalization, discrimination, inference, planning, predicting, and identifying cause-effect relationships.

  18. Instructional Strategies for Teaching Problem Solving

    Instructional strategies used in teaching problem-solving skills include providing sufficient context, learning to think actively, and offering temporary supports. Review the examples of effective ...

  19. Problem Solving Resources

    Problem-solving is the ability to identify and solve problems by applying appropriate skills systematically. Problem-solving is a process—an ongoing activity in which we take what we know to discover what we don't know. It involves overcoming obstacles by generating hypo-theses, testing those predictions, and arriving at satisfactory solutions.

  20. Problem Solving Strategies

    Problem Solving Strategy 9 (Find the Math, Remove the Context). Sometimes the problem has a lot of details in it that are unimportant, or at least unimportant for getting started. The goal is to find the underlying math problem, then come back to the original question and see if you can solve it using the math.

  21. 44 Instructional Strategies Examples for Every Kind of Classroom

    Problem-Solving. In this indirect learning method, students work their way through a problem to find a solution. Along the way, they must develop the knowledge to understand the problem and use creative thinking to solve it. STEM challenges are terrific examples of problem-solving instructional strategies.

  22. 4 Tips on Teaching Problem Solving (From a Student)

    The challenges in the real world won't be simple, and the problems that are supposed to prepare us for that world shouldn't be either. 2. Make Problem Solving Relevant to Your Students' Lives. In the seventh grade, we looked at statistics concerning racial murders and the jury system. That's something that is going to affect students ...

  23. Art and Science of Teaching / Problem Solving in Seven Steps

    Teachers can help students overcome this tendency by replacing negative self-talk with positive self-talk. Have students affirm such useful beliefs as, There are a number of ways to solve the problem, help is probably available, ... Teachers should make instruction in problem-solving strategies an explicit part of K-12 education. The model ...

  24. What are Instructional Methods of Teaching? [2024]

    Instructional methods of teaching refer to the strategies and techniques that educators use to deliver information and facilitate learning in the classroom. These methods can be teacher-centered or student-centered, high-tech or low-tech, and they aim to create an effective and engaging learning environment for students. Quick Tips and Facts:

  25. Problem-Solving Method In Teaching

    The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to ...

  26. Teaching Creative Problem-Solving: Teaching Creative Problem-Solving

    Creative problem-solving focuses more on divergent thinking. Divergent thinking is when a person takes all the available information and looks for all the possibilities, whether they are efficient, reasonable, achievable, or not. Divergent thinking is an important measurable component of creativity" (Moore et al., 2009, p. 267).

  27. 3 Ways to Strengthen Math Instruction

    2. 'Gamify' math class. Students today need new modes of instruction that meet them where they are, said Gerilyn Williams, a math teacher at Pinelands Regional Junior High School in Little Egg ...